Table of Contents

About the Documentation .. xli
 Documentation and Release Notes ... xli
 Using the Examples in This Manual .. xli
 Merging a Full Example .. xlii
 Merging a Snippet ... xlii
 Documentation Conventions .. xliii
 Documentation Feedback ... xliv
 Requesting Technical Support ... xlv
 Self-Help Online Tools and Resources xlvi
 Creating a Service Request with JTAC xlvi

Part 1 Overview

Chapter 1 Adaptive Services Overview 3
 Adaptive Services Overview .. 3
 Packet Flow Through the Adaptive Services or Multiservices PIC 5

Chapter 2 Adaptive Services Configuration Overview 7
 Understanding Service Sets ... 7
 Configuring Service Sets to be Applied to Services Interfaces 9
 Configuring Interface Service Sets 9
 Configuring Next-Hop Service Sets 11
 Determining Traffic Direction ... 12
 Interface Style Service Sets ... 13
 Next-Hop Style Service Sets ... 13
 Service Filters in ACX Series ... 14
 Guidelines for Applying Service Filters 15
 Restrictions for Inline Services Interfaces 15
 Statement Hierarchy for Applying Service Filters 15
 Associating Service Rules with Inline Services Interfaces 15
 Filtering Traffic Before Accepting Packets for Service Processing . 16
 Service Filter Match Conditions for IPv4 Traffic 16
 Service Filter Actions .. 18
 Configuring Queuing and Scheduling on Inline Services Interface 19
 Configuring Service Rules .. 20
 Configuring Service Set Limitations 21
 Configuring Service Interface Pools 23
 Enabling Services PICs to Accept Multicast Traffic 23
 Applying Filters and Services to Interfaces 24
 Configuring Service Filters .. 24
 Example: Configuring Service Sets .. 26
Chapter 5

NAT Configuration Overview .. 75
Network Address Translation Overview on ACX Series 75
Network Address Port Translation Overview 77
Network Address Translation Address Overload in ACX Series 77
Network Address Translation Constraints on ACX 79
Network Address Translation Configuration Overview 80
Configuring Source and Destination Addresses Network Address Translation Overview .. 80
Configuring Pools of Addresses and Ports for Network Address Translation Overview .. 82
Configuring NAT Pools ... 82
Preserve Range and Preserve Parity 83
Specifying Destination and Source Prefixes Without Configuring a Pool .. 83
Network Address Translation Rules Overview 84
Configuring Match Direction for NAT Rules 85
Configuring Match Conditions in NAT Rules 86
Configuring Actions in NAT Rules 87
Configuring Translation Types .. 89
Configuring NAT Rules for IPsec Passthrough for Non-NAT-T Peers .. 91
Configuring Address Pools for Network Address Port Translation (NAPT) Overview .. 92
Endpoint Independent Flow for NAPT 93
Enabling Inline Services Interface on ACX Series 93
Configuring Service Sets for Network Address Translation 95
Carrier-Grade NAT Implementation: Best Practices 96
Use Round-Robin Address-Allocation When Using APP with the MS-DPC .. 97
Use the EIM Feature Only When Needed 97
Define Port Block Allocation Block Sizes Based on Expected Number of User Sessions .. 98
Considerations When Changing Port Block Allocation Configuration on Running Systems .. 100
Do Not Allocate NAT Pools That Are Larger Than Needed 100
MS-MPC and MS-MIC ... 100
MS-DPC .. 101
Configure System Logging for NAT Only When Needed 102
Limit the Impact of Missing IP Fragments 103
Do Not Use Configurations Prone to Packet Routing Loops 103
Inactivity Timeouts ... 105
Enable Dump on Flow Control 106
Chapter 6 Avoiding IPv4 Exhaustion Using Junos Address Aware Network Addressing and Stateful NAT64

Sample IPv6 Transition Scenarios .. 109
 Example 1: IPv4 Depletion with a Non-IPv6 Access Network 109
 Example 2: IPv4 Depletion with an IPv6 Access Network 110
 Example 3: IPv4 Depletion for Mobile Networks 111
Configuring Stateful NAT64 .. 111

Chapter 7 Hiding Private Networks Using Static Source NAT

Configuring Static Source Translation in IPv4 Networks 115
 Configuring the NAT Pool and Rule 115
 Configuring the Service Set for NAT 118
 Configuring Trace Options ... 120
 Sample Configuration - Static Source NAT Using a Static Pool With An Address Prefix And An Address Range 121
 Sample Configuration - Static Source Nat for One-To-One Mapping Between a Private Subnet and a Public Subnet 121
Configuring Static Source Translation in IPv6 Networks 123
 Configuring the NAT Pool and Rule 123
 Configuring the Service Set for NAT 125
 Configuring Trace Options ... 126
Example: Configuring Basic NAT44 127
Example: Configuring NAT for Multicast Traffic 129
 Rendezvous Point Configuration 129
 Router 1 Configuration .. 133

Chapter 8 Making Private Servers Available Using Static Destination NAT

Configuring Static Destination Address Translation in IPv4 Networks 135

Chapter 9 Allowing Components of a Private Network to Share a Single Address Using NAPT

Configuring Address Pools for Network Address Port Translation (NAPT)
 Overview ... 141
 Round-Robin Allocation for NAPT 142
 Sequential Allocation for NAPT 142
 Preserve Parity and Preserve Range for NAPT 143
 Address Pooling and Endpoint Independent Mapping for NAPT 143
 Address Pooling .. 144
 Endpoint Independent Mapping and Endpoint Independent Filtering .. 145
 Secured Port Block Allocation for NAPT 145
 Secured Port Block Allocation for NAPT 146
 Interim Logging for Port Block Allocation 146
 Comparison of NAPT Implementation Methods 146
Configuring NAPT in IPv4 Networks 147
Configuring NAPT in IPv6 Networks 152
Example: Configuring NAT with Port Translation 154
Example: NAPT Configuration on the MS-MPC With an Interface Service Set 155
Example: Dynamic Source NAT as a Next-Hop Service 161
<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Mapping Addresses and Ports With Deterministic NAT</th>
<th>163</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deterministic NAPT Overview</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Benefits of Deterministic NAPT</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Understanding Deterministic NAPT Algorithms</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Deterministic NAPT Restrictions</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>Configuring Deterministic NAPT</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Configuring the NAT Pool for Deterministic NAPT</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Configuring the NAT Rule for Deterministic NAPT</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Configuring the Service Set for Deterministic NAT</td>
<td>172</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 11</th>
<th>Securing Traffic Using NAT-PT and ALGs</th>
<th>173</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALGs Available for Junos OS Address Aware NAT</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>ALGs Available by Default for Junos OS Address Aware NAT on ACX500</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>ALG Support Details</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>Basic TCP</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>Basic UDP</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>DNS</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>FTP</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>ICMP</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>TFTP</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>UNIX Remote-Shell Services</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Configuring NAT-PT</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Configuring the DNS ALG Application</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Configuring the NAT Pool and NAT Rule</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Configuring the Service Set for NAT</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>Configuring Trace Options</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Example: Configuring NAT-PT</td>
<td>195</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 12</th>
<th>Providing IPv4 Connectivity Across IPv6-Only Network Using 464XLAT</th>
<th>213</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>464XLAT Overview</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>Benefits of 464XLAT</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>Configuring 464XLAT Provider-Side Translater for IPv4 Connectivity Across IPv6-Only Network</td>
<td>214</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 13</th>
<th>Reducing Traffic and Bandwidth Requirements Using Port Control Protocol</th>
<th>217</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Port Control Protocol Overview</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>Benefits of Port Control Protocol</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>Port Control Protocol Version 2</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Configuring Port Control Protocol</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>Configuring PCP Server Options</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>Configuring a PCP Rule</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>Configuring a NAT Rule</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Configuring a Service Set to Apply PCP</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>SYSLOG Message Configuration</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Example: Configuring Port Control Protocol with NAPT44</td>
<td>225</td>
</tr>
<tr>
<td>Chapter 14</td>
<td>Automatically Assigning Ports Using Secured Port Block Allocation</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Secured Port Block Allocation for NAPT44 and NAT64 Overview</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>Benefits of Secured Port Block Allocation</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>Interim Logging for Secured Port Block Allocation</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>Benefits of Interim Logging</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>Guidelines for Configuring Interim Logging for Secured Port Block Allocation</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>Guidelines for Configuring Secured Port Block Allocation</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>Configuring Secured Port Block Allocation</td>
<td>240</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 15</th>
<th>Connecting Specific Ports and Addresses Using Port Forwarding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Forwarding Overview</td>
<td>243</td>
</tr>
<tr>
<td>Benefits of Port Forwarding</td>
<td>244</td>
</tr>
<tr>
<td>Configuring Port Forwarding for Static Destination Address Translation</td>
<td>244</td>
</tr>
<tr>
<td>Configuring Port Forwarding Without Destination Address Translation</td>
<td>248</td>
</tr>
<tr>
<td>Example: Configuring Port Forwarding with Twice NAT</td>
<td>250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 16</th>
<th>Allocating a Few Public Addresses to Many Private Hosts Using Dynamic NAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Dynamic Address-Only Source Translation in IPv4 Networks</td>
<td>253</td>
</tr>
<tr>
<td>Example: Dynamic Source NAT as a Next-Hop Service</td>
<td>258</td>
</tr>
<tr>
<td>Example: Assigning Addresses from a Dynamic Pool for Static Use</td>
<td>259</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 17</th>
<th>Achieving Line-Rate, Low-Latency Translations Using Inline NAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inline Network Address Translation Overview</td>
<td>261</td>
</tr>
<tr>
<td>Benefits of Inline NAT</td>
<td>262</td>
</tr>
<tr>
<td>Example: Configuring Inline Network Address Translation—Interface-Based Method</td>
<td>263</td>
</tr>
<tr>
<td>Example: Configuring Inline Network Address Translation—Route-Based Method</td>
<td>270</td>
</tr>
<tr>
<td>Example: Configuring Inline Network Address Translation Hairpinning</td>
<td>278</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 18</th>
<th>Removing Address Dependency Using Network Prefix Translation for IPv6 Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stateless Source Network Prefix Translation for IPv6 Overview</td>
<td>285</td>
</tr>
<tr>
<td>Benefits of Stateless Source Network Prefix Translation</td>
<td>285</td>
</tr>
<tr>
<td>NPTv6</td>
<td>286</td>
</tr>
<tr>
<td>Guidelines for Configuring Stateless Source Network Prefix Translation</td>
<td>287</td>
</tr>
<tr>
<td>Interoperation of Functionalities with Network Prefix Translation for IPv6</td>
<td>288</td>
</tr>
<tr>
<td>Address Mapping Algorithm</td>
<td>288</td>
</tr>
<tr>
<td>Internal to External Translation</td>
<td>289</td>
</tr>
<tr>
<td>External to Internal Translation</td>
<td>289</td>
</tr>
<tr>
<td>Checksum-Neutral Translation</td>
<td>289</td>
</tr>
<tr>
<td>Multihoming</td>
<td>289</td>
</tr>
<tr>
<td>Hairpinning</td>
<td>289</td>
</tr>
<tr>
<td>Load Balancing</td>
<td>290</td>
</tr>
<tr>
<td>ICMPv6 for NPTv6</td>
<td>290</td>
</tr>
</tbody>
</table>
Chapter 19 Monitoring NAT

- Configuring NAT Session Logs .. 305
- Monitoring NAT Pool Usage ... 306
- Using the Enterprise-Specific Utility MIB .. 307
 - Using the Enterprise-Specific Utility MIB .. 307
 - Populating the Enterprise-Specific Utility MIB with Information 308
- Stopping the SLAX Script with the CLI 313
- Clearing the Utility MIB ... 314
- Recovering from an Abnormal SLAX Script Exit or a SLAX Script Exit with the CLI ... 314

Part 3 Transitioning to IPv6 Using Softwires

Chapter 20 Softwires Overview

- Tunneling Services for IPv4-to-IPv6 Transition Overview 317
 - 6to4 Overview .. 317
 - Basic 6to4 ... 318
 - 6to4 Anycast .. 318
 - 6to4 Provider-Managed Tunnels ... 319
 - DS-Lite Softwires—IPv4 over IPv6 319
 - 6rd Softwires—IPv6 over IPv4 ... 320

Chapter 21 Softwires Configuration Overview

- Configuring Softwire Rules .. 323
- Configuring Service Sets for Softwire 324

Chapter 22 Transitioning to IPv6 Using 6to4 Softwires

- Configuring a 6to4 Provider-Managed Tunnel 327

Chapter 23 Transitioning to IPv6 Using DS-Lite Softwires

- Configuring a DS-Lite Softwire Concentrator 331
- Configuring IPv6 Multicast Interfaces 333
- Example: Basic DS-Lite Configuration 333
- Example: Configuring DS-Lite and 6rd in the Same Service Set 340
- Protecting CGN Devices Against Denial of Service (DOS) Attacks 349
 - Mapping Refresh Behavior ... 349
 - EIF Inbound Flow Limit .. 349
- DS-Lite Subnet Limitation ... 349
- DS-Lite Per Subnet Limitation Overview 349
- Configuring DS-Lite Per Subnet Session Limitation to Prevent Denial of Service Attacks ... 350
Chapter 24 Transitioning to IPv6 Using 6rd Softwires 353
 Configuring a 6rd Softwire Concentrator ... 353
 Configuring Stateful Firewall Rules for 6rd Softwire 354
 Example: Basic 6rd Configuration ... 355
 High Availability and Load Balancing for 6rd Softwires 361
 Load Balancing a 6rd Domain Across Multiple Services PICs 361
 Example: Load Balancing a 6rd Domain Across Multiple Services PICs . 361
 Configuring High Availability for 6rd Using 6rd Anycast 367
 Configuring Inline 6rd ... 367
 Configuring the Bandwidth for Inline Services 368
 Configuring the Interfaces ... 368
 Configuring the Softwire Concentrator and Rule 370
 Configuring the Service Set .. 371
 Configuring the Routing Instance ... 371
 Inline 6rd and 6to4 Configuration Guidelines 372
 Examples: 6rd and 6to4 Configurations 373
 Example: 6rd with Interface-Style Service Set Configuration 373
 Example: 6rd with Next-Hop-Style Service Set Configuration 374
 Example: 6rd Anycast Configuration ... 376
 Example: Hairpinning Between 6rd Domains Configuration 377
 Example: 6to4 Configuration .. 379

Chapter 25 Transitioning to IPv6 Using Mapping of Address and Port with Encapsulation (MAP-E) .. 381
 Configuring Mapping of Address and Port with Encapsulation (MAP-E) 381
 Understanding Mapping of Address and Port with Encapsulation (MAP-E) 381
 Benefits of Mapping of Address and Port with Encapsulation (MAP-E) 381
 Mapping of Address and Port with Encapsulation (MAP-E) Terminology 382
 Mapping of Address and Port with Encapsulation (MAP-E) Functionality .. 382
 Mapping of Address and Port with Encapsulation (MAP-E) Supported and Unsupported Features 383
 Configuring Mapping of Address and Port with Encapsulation (MAP-E) 384
 Equal Cost Multiple Path (ECMP) support for Mapping of Address and Port with Encapsulation (MAP-E) 388
 Equal Cost Multiple Path (ECMP) support for Mapping of Address and Port with Encapsulation (MAP-E) 388
 Benefits .. 388
 Disabling auto-routes to support ECMP with Mapping of Address and Port with Encapsulation (MAP-E) 388

Chapter 26 Monitoring and Troubleshooting Softwires 393
 Ping and Traceroute for DS-Lite .. 393
 Monitoring Softwire Statistics .. 393
 Monitoring CGN, Stateful Firewall, and Softwire Flows 395
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>399</td>
<td>ALG Overview</td>
</tr>
<tr>
<td>399</td>
<td>ALG Descriptions</td>
</tr>
<tr>
<td>401</td>
<td>Supported ALGs</td>
</tr>
<tr>
<td>401</td>
<td>ALG Support Details</td>
</tr>
<tr>
<td>402</td>
<td>Basic TCP ALG</td>
</tr>
<tr>
<td>402</td>
<td>Basic UDP ALG</td>
</tr>
<tr>
<td>402</td>
<td>BOOTP</td>
</tr>
<tr>
<td>403</td>
<td>DCE RPC Services</td>
</tr>
<tr>
<td>403</td>
<td>DNS</td>
</tr>
<tr>
<td>403</td>
<td>FTP</td>
</tr>
<tr>
<td>403</td>
<td>Gatekeeper RAS</td>
</tr>
<tr>
<td>404</td>
<td>H323</td>
</tr>
<tr>
<td>404</td>
<td>ICMP</td>
</tr>
<tr>
<td>404</td>
<td>IIOP</td>
</tr>
<tr>
<td>404</td>
<td>IKE ALG</td>
</tr>
<tr>
<td>404</td>
<td>IP</td>
</tr>
<tr>
<td>404</td>
<td>NetBIOS</td>
</tr>
<tr>
<td>404</td>
<td>NetShow</td>
</tr>
<tr>
<td>405</td>
<td>ONC RPC Services</td>
</tr>
<tr>
<td>405</td>
<td>PPTP</td>
</tr>
<tr>
<td>405</td>
<td>RealAudio</td>
</tr>
<tr>
<td>406</td>
<td>Sun RPC and RPC Portmap Services</td>
</tr>
<tr>
<td>406</td>
<td>RTSP</td>
</tr>
<tr>
<td>406</td>
<td>SIP</td>
</tr>
<tr>
<td>406</td>
<td>SNMP</td>
</tr>
<tr>
<td>406</td>
<td>SQLNet</td>
</tr>
<tr>
<td>406</td>
<td>TFTP</td>
</tr>
<tr>
<td>406</td>
<td>Traceroute</td>
</tr>
<tr>
<td>406</td>
<td>UNIX Remote-Shell Services</td>
</tr>
<tr>
<td>406</td>
<td>Winframe</td>
</tr>
<tr>
<td>412</td>
<td>Juniper Networks Defaults</td>
</tr>
<tr>
<td>422</td>
<td>Examples: Referencing the Preset Statement from the Junos OS Default Group</td>
</tr>
<tr>
<td>424</td>
<td>ALGs Available for Junos OS Address Aware NAT</td>
</tr>
<tr>
<td>431</td>
<td>ALGs Configuration Overview</td>
</tr>
<tr>
<td>431</td>
<td>Configuring Application Sets</td>
</tr>
<tr>
<td>431</td>
<td>Configuring Application Properties</td>
</tr>
<tr>
<td>432</td>
<td>Configuring an Application Protocol</td>
</tr>
<tr>
<td>434</td>
<td>Configuring the Network Protocol</td>
</tr>
<tr>
<td>436</td>
<td>Configuring the ICMP Code and Type</td>
</tr>
<tr>
<td>437</td>
<td>Configuring Source and Destination Ports</td>
</tr>
<tr>
<td>440</td>
<td>Configuring the Inactivity Timeout Period</td>
</tr>
<tr>
<td>440</td>
<td>Configuring an IKE ALG Application</td>
</tr>
<tr>
<td>441</td>
<td>Configuring SIP</td>
</tr>
<tr>
<td>443</td>
<td>SIP ALG Interaction with Network Address Translation</td>
</tr>
<tr>
<td>448</td>
<td>Junos OS SIP ALG Limitations</td>
</tr>
<tr>
<td>449</td>
<td>Configuring an SNMP Command for Packet Matching</td>
</tr>
<tr>
<td>Configuring an RPC Program Number ... 449</td>
<td></td>
</tr>
<tr>
<td>Configuring the TTL Threshold .. 450</td>
<td></td>
</tr>
<tr>
<td>Configuring a Universal Unique Identifier 450</td>
<td></td>
</tr>
<tr>
<td>Examples: Configuring Application Protocols 450</td>
<td></td>
</tr>
<tr>
<td>Verifying the Output of ALG Sessions 451</td>
<td></td>
</tr>
<tr>
<td>FTP Example .. 451</td>
<td></td>
</tr>
<tr>
<td>Sample Output .. 452</td>
<td></td>
</tr>
<tr>
<td>FTP System Log Messages .. 452</td>
<td></td>
</tr>
<tr>
<td>Analysis ... 453</td>
<td></td>
</tr>
<tr>
<td>Troubleshooting Questions .. 453</td>
<td></td>
</tr>
<tr>
<td>RTSP ALG Example .. 454</td>
<td></td>
</tr>
<tr>
<td>Sample Output .. 454</td>
<td></td>
</tr>
<tr>
<td>Analysis ... 455</td>
<td></td>
</tr>
<tr>
<td>Troubleshooting Questions .. 455</td>
<td></td>
</tr>
<tr>
<td>System Log Messages ... 456</td>
<td></td>
</tr>
<tr>
<td>System Log Configuration ... 456</td>
<td></td>
</tr>
<tr>
<td>System Log Output ... 457</td>
<td></td>
</tr>
<tr>
<td>ICMP, Ping, and Traceroute ALGs for MS-MICs and MS-MPCs 458</td>
<td></td>
</tr>
<tr>
<td>Monitoring Port Control Protocol Operations 459</td>
<td></td>
</tr>
</tbody>
</table>

Part 5 Securing Content Using Junos Network Secure and IDS

Chapter 29 Junos Network Secure Overview 463

Chapter 30 Junos Network Secure Configuration Overview 467

Chapter 31 IDS Configuration on MS-DPC Overview 497
Chapter 32
IDS Configuration on MS-MPC for Network Attack Protection 511

- Understanding IDS on an MS-MPC 511
- Intrusion Detection Services ... 511
- Benefits .. 512
- Session Limits .. 512
- Suspicious Packet Patterns ... 513
- Header Anomaly Attacks .. 514

Configuring Protection Against Network Attacks on an MS-MPC 515

- Configuring Protection Against Network Probing, Network Flooding, and Suspicious Pattern Attacks .. 515
- Configuring IDS Rule Name and Direction 516
- Configuring Session Limits for Subnets 516
- Configuring Session Limits Independent of the Protocol 517
- Configuring ICMP Address Sweep Protection 518
- Configuring TCP Port Scanner Protection 519
- Configuring ICMP Flooding Protection 519
- Configuring UDP Flooding Protection 520
- Configuring TCP SYN Flooding Protection 520
- Configuring ICMP Fragmentation Protection 522
- Configuring ICMP Large Packet Protection 522
- Configuring IP Bad Options Protection 522
- Configuring Land Attack Protection 523
- Configuring TCP SYN Fragment Protection 523
- Configuring WinNuke Protection ... 523
- Configuring the Service Set .. 523

Configuring Protection Against Header Anomaly Attacks 524

Configuring Logging of Network Attack Protection Packet Drops on an MS-MPC ... 524

Chapter 33
Monitoring Junos Network Secure 527

- Monitoring Stateful Firewall Conversations 527
- Monitoring CGN, Stateful Firewall, and Softwire Flows 527
- Monitoring Global Stateful Firewall Statistics 528

Part 6
Creating Secure Tunnels Using Junos VPN Site Secure

Chapter 34
Junos VPN Site Secure Overview 531

- Understanding Junos VPN Site Secure 531
- IPsec .. 531
- Security Associations ... 532
- IKE .. 532
- Non-Support for NAT-T .. 533
- Comparison of IPsec on ES PICs and Junos VPN Site Secure on MultiServices Line Cards ... 533
- Authentication Algorithms .. 534
- Encryption Algorithms ... 535
- IPsec Protocols .. 537
Chapter 35 Junos VPN Site Secure Configuration Overview 545

IPsec for ACX Series Overview .. 545
 IPsec .. 546
 Security Associations ... 546
 IKE .. 547
Minimum Security Association Configurations 547
Minimum Manual SA Configuration .. 547
Minimum Dynamic SA Configuration ... 547
Configuring Security Associations ... 549
 Configuring Manual Security Associations 549
 Configuring the Direction for IPsec Processing 550
 Configuring the Protocol for a Manual IPsec SA 551
 Configuring the Security Parameter Index 551
 Configuring the Auxiliary Security Parameter Index 552
 Configuring Authentication for a Manual IPsec SA 552
 Configuring Encryption for a Manual IPsec SA 552
 Configuring Dynamic Security Associations 554
 Clearing Security Associations ... 554
Example: Configuring Manual SAs .. 555
Configuring IKE Proposals ... 571
 Configuring the Authentication Algorithm for an IKE Proposal 572
 Configuring the Authentication Method for an IKE Proposal 572
 Configuring the Diffie-Hellman Group for an IKE Proposal 573
 Configuring the Encryption Algorithm for an IKE Proposal 574
 Configuring the Lifetime for an IKE SA .. 575
Example: Configuring an IKE Proposal .. 575
Configuring IKE Policies .. 576
 Configuring the IKE Phase .. 577
 Configuring the Mode for an IKE Policy 578
 Configuring the Proposals in an IKE Policy 578
 Configuring the Preshared Key for an IKE Policy 579
 Configuring the Local Certificate for an IKE Policy 579
 Configuring a Certificate Revocation List 580
 Configuring the Description for an IKE Policy 580
 Configuring Local and Remote IDs for IKE Phase 1 Negotiation 580
 Enabling Invalid SPI Recovery ... 581
Example: Configuring an IKE Policy ... 582
Configuring IKE Activation Time ... 583
Configuring IPsec Proposals .. 584
 Configuring the Authentication Algorithm for an IPsec Proposal 584
 Configuring the Description for an IPsec Proposal 586
 Configuring the Encryption Algorithm for an IPsec Proposal 586
 Configuring the Lifetime for an IPsec SA 587
 Configuring the Protocol for a Dynamic SA 588
Table of Contents

Configuring IPsec Policies ... 588
Configuring the Description for an IPsec Policy 589
Configuring Perfect Forward Secrecy 589
Configuring the Proposals in an IPsec Policy 590
IPsec Policy for Dynamic Endpoints 590
Example: Configuring an IPsec Policy 591

Configuring IPsec Rules ... 592
Configuring Match Direction for IPsec Rules 593
Configuring Match Conditions in IPsec Rules 593
Configuring Actions in IPsec Rules 595
 Enabling IPsec Packet Fragmentation 596
 Configuring Destination Addresses for Dead Peer Detection 596
 Configuring or Disabling IPsec Anti-Replay 598
 Enabling System Log Messages 598
 Specifying the MTU for IPsec Tunnels 599

Configuring IPsec Rule Sets ... 599
Service Sets ... 600

Configuring IPsec Service Sets ... 600
 Configuring the Local Gateway Address for IPsec Service Sets 601
 IKE Addresses in VRF Instances 601
 Clearing SAs When Local Gateway Address or MS-MPC or MS-MIC Goes Down .. 602
 Configuring IKE Access Profiles for IPsec Service Sets 603
 Configuring Certification Authorities for IPsec Service Sets 603
 Configuring or Disabling Antireplay Service 604
 Clearing the Do Not Fragment Bit 605
 Configuring Passive-Mode Tunneling 605
 Configuring the Tunnel MTU Value 606
 Configuring IPsec Multipath Forwarding with UDP Encapsulation .. 607

Tracing IPsec Operations .. 608
Disabling NAT-T on MX Series Routers for Handling NAT with IPsec-Protected Packets .. 609
Tracing Junos VPN Site Secure Operations 610
 Disabling IPsec Tunnel Endpoint in Traceroute 611
 Tracing IPsec PKI Operations .. 612

Multitask Example: Configuring IPsec Services 613
 Configuring the IKE Proposal .. 613
 Configuring the IKE Policy (and Referencing the IKE Proposal) 614
 Configuring the IPsec Proposal 615
 Configuring the IPsec Policy (and Referencing the IPsec Proposal) 616
 Configuring the IPsec Rule (and Referencing the IKE and IPsec Policies) 617
 Configuring IPsec Trace Options 618
 Configuring the Access Profile (and Referencing the IKE and IPsec Policies) ... 619
 Configuring the Service Set (and Referencing the IKE Profile and the IPsec Rule) .. 620

Example: Configuring Junos VPN Site Secure on MS-MIC and MS-MPC 621
Example: Configuring a Route-based IPsec Tunnel from an ACX device to an SRX device ... 633
Chapter 49 Tunneling PPP Packets Across a Network Using Layer 2 Tunneling

Layer 2 Tunneling Protocol Overview ... 903
L2TP Services Configuration Overview 904
L2TP Minimum Configuration .. 905
Configuring L2TP Tunnel Groups ... 907
Configuring Access Profiles for L2TP Tunnel Groups 908
Configuring the Local Gateway Address and PIC 908
Configuring Window Size for L2TP Tunnels 909
Configuring Timers for L2TP Tunnels 909
Hiding Attribute-Value Pairs for L2TP Tunnels 909
Configuring System Logging of L2TP Tunnel Activity 910
Configuring the Identifier for Logical Interfaces that Provide L2TP Services ... 911
Example: Configuring Multilink PPP on a Shared Logical Interface 912
AS PIC Redundancy for L2TP Services 913
Examples: Configuring L2TP Services 914
Tracing L2TP Operations ... 917

Part 13 Configuration Statements and Operational Commands

Chapter 50 Configuration Statements .. 923
adaptive-services-pics ... 935
address (Interfaces) ... 936
address (Services NAT Pool) .. 937
address-allocation ... 938
address-pooling ... 938
address-range ... 939
aggregation (IDS) ... 940
allow-ip-options (Services Stateful Firewall) 941
allow-ip-options (IDS MS-MPC) .. 942
allow-ipv6-extension-header (IDS MS-MPC) 943
allow-multicast ... 944
allow-overlapping-nat-pools .. 944
anti-replay-window-size (Services IPsec VPN) 945
anti-replay-window-size (Services Service Set) 946
app-mapping-timeout .. 947
application ... 948
application-protocol .. 949
application-profile .. 951
application-set ... 952
application-sets (Services CoS) .. 953
application-sets (IDS MS-DPC) ... 953
application-sets (PCP) ... 954
application-sets (Services NAT) .. 954
application-sets (Services Stateful Firewall) 955
applications (Services ALGs) ... 955
applications (Services CoS) .. 956
applications (IDS MS-DPC) .. 956
applications (PCP) ... 957
applications (Services NAT) .. 957
applications (Services Stateful Firewall) 958
authentication ... 959
authentication-algorithm (Services IKE) 960
authentication-algorithm (Services IPsec) 961
authentication-method ... 963
auxiliary-spi ... 964
backup-remote-gateway ... 964
bundle ... 965
by-destination (IDS MS-DPC) ... 966
by-destination (IDS MS-MPC) ... 967
by-pair (IDS MS-DPC) ... 968
by-protocol (IDS MS-MPC) .. 969
by-source (IDS MS-DPC) ... 971
by-source (IDS MS-MPC) ... 972
bypass-traffic-on-exceeding-flow-limits 973
bypass-traffic-on-pic-failure ... 974
cgn-pic ... 975
child-inactivity-timeout ... 976
cisco-interoperability ... 977
class ... 978
clat-prefix ... 979
clear-dont-fragment-bit (Interfaces GRE Tunnels) 980
clear-dont-fragment-bit (Services IPsec VPN) 981
clear-dont-fragment-bit (Services NAT Options) 981
clear-dont-fragment-bit (Services Service Set) 982
clear-ike-sas-on-pic-restart ... 983
clear-ipsec-sas-on-pic-restart ... 983
compression ... 984
compression-device (Interfaces) .. 985
copy-dont-fragment-bit (Services IPsec VPN) 985
copy-dont-fragment-bit (Services Service Set) 986
cos-rules (Service Set) .. 987
data (FTP) ... 988
dead-peer-detection (Services IPsec VPN) 989
description (Services IPsec VPN) ... 990
destination-address (Services CoS) 990
destination-address (IDS MS-DPC) 991
destination-address ... 991
destination-address (PCP) ... 992
destination-address (Services NAT) 993
destination-address (Services Stateful Firewall) 994
destination-address-range (IDS MS-DPC)) 995
destination-address-range (PCP) ... 996
destination-address-range (Services NAT) 997
destination-address-range (Services Stateful Firewall) 998
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-pool</td>
<td>998</td>
</tr>
<tr>
<td>destination-port</td>
<td>999</td>
</tr>
<tr>
<td>destination-port (PCP)</td>
<td>1000</td>
</tr>
<tr>
<td>destination-port range</td>
<td>1001</td>
</tr>
<tr>
<td>destination-prefix (IDS)</td>
<td>1002</td>
</tr>
<tr>
<td>destination-prefix (Services NAT)</td>
<td>1003</td>
</tr>
<tr>
<td>destination-prefix-ipv6 (IDS)</td>
<td>1004</td>
</tr>
<tr>
<td>destination-prefix-list (PCP)</td>
<td>1005</td>
</tr>
<tr>
<td>destination-prefix-list (Services CoS)</td>
<td>1006</td>
</tr>
<tr>
<td>destination-prefix-list (Services IDS)</td>
<td>1007</td>
</tr>
<tr>
<td>destination-prefix-list (Services NAT)</td>
<td>1008</td>
</tr>
<tr>
<td>destination-prefix-list (Services Stateful Firewall)</td>
<td>1009</td>
</tr>
<tr>
<td>destined-port</td>
<td>1010</td>
</tr>
<tr>
<td>deterministic-port-block-allocation</td>
<td>1011</td>
</tr>
<tr>
<td>dh-group</td>
<td>1012</td>
</tr>
<tr>
<td>dial-options</td>
<td>1013</td>
</tr>
<tr>
<td>direction</td>
<td>1014</td>
</tr>
<tr>
<td>disable-natt (Services IPsec VPN)</td>
<td>1015</td>
</tr>
<tr>
<td>distinguished-name</td>
<td>1016</td>
</tr>
<tr>
<td>dns-alg-pool</td>
<td>1017</td>
</tr>
<tr>
<td>dns-alg-prefix</td>
<td>1017</td>
</tr>
<tr>
<td>dns-filter</td>
<td>1018</td>
</tr>
<tr>
<td>dns-filter-template</td>
<td>1021</td>
</tr>
<tr>
<td>drop-member-traffic (Aggregated Multiservices)</td>
<td>1023</td>
</tr>
<tr>
<td>ds-lite</td>
<td>1024</td>
</tr>
<tr>
<td>dscp (Services CoS)</td>
<td>1025</td>
</tr>
<tr>
<td>dynamic</td>
<td>1026</td>
</tr>
<tr>
<td>ecmp-alb</td>
<td>1027</td>
</tr>
<tr>
<td>ei-mapping-timeout</td>
<td>1028</td>
</tr>
<tr>
<td>eif-flow-limit</td>
<td>1029</td>
</tr>
<tr>
<td>enable-rejoin (aggregated Multiservices)</td>
<td>1030</td>
</tr>
<tr>
<td>encapsulation</td>
<td>1031</td>
</tr>
<tr>
<td>encryption</td>
<td>1032</td>
</tr>
<tr>
<td>encryption-algorithm</td>
<td>1034</td>
</tr>
<tr>
<td>establish-tunnels</td>
<td>1035</td>
</tr>
<tr>
<td>f-max-period</td>
<td>1036</td>
</tr>
<tr>
<td>facility-override (Service Sets)</td>
<td>1037</td>
</tr>
<tr>
<td>facility-override (System Log Reporting)</td>
<td>1038</td>
</tr>
<tr>
<td>family (Aggregated Multiservices)</td>
<td>1039</td>
</tr>
<tr>
<td>family (Interfaces)</td>
<td>1040</td>
</tr>
<tr>
<td>family (Voice Services)</td>
<td>1041</td>
</tr>
<tr>
<td>filtering-type</td>
<td>1042</td>
</tr>
<tr>
<td>force-entry (IDS MS-DPC)</td>
<td>1042</td>
</tr>
<tr>
<td>forwarding-class (Services PIC Classifiers)</td>
<td>1043</td>
</tr>
<tr>
<td>forwarding-class (Services CoS Fragmentation Properties)</td>
<td>1044</td>
</tr>
<tr>
<td>fragment-limit</td>
<td>1045</td>
</tr>
<tr>
<td>fragment-threshold (Forwarding Class Maps)</td>
<td>1046</td>
</tr>
<tr>
<td>fragment-threshold (Interfaces LSQ)</td>
<td>1047</td>
</tr>
<tr>
<td>fragmentation-map</td>
<td>1048</td>
</tr>
</tbody>
</table>
Table of Contents

- fragmentation-maps ... 1049
- from (Services CoS) ... 1050
- from (IDS MS-DPC) .. 1051
- from (PCP) .. 1052
- from ... 1053
- from (Services NAT) ... 1054
- from (Services Stateful Firewall) 1055
- ftp (Services CoS) ... 1056
- gate-timeout ... 1057
- global-dns-stats-log-timer ... 1058
- group (Traffic Load Balancer) .. 1059
- gw-interface .. 1060
- hash-keys (Aggregated Multiservices) 1061
- hash-keys (Interfaces) .. 1064
- header-integrity-check ... 1066
- hello-interval (L2TP) .. 1067
- hide-avps (L2TP) .. 1068
- high-availability-options (Aggregated Multiservices) 1069
- hint ... 1070
- host (L2TP) .. 1071
- host (service-set) ... 1072
- hot-standby .. 1073
- icmp-code .. 1074
- icmp-fragment-check (IDS MS-MPC) 1074
- icmp-large-packet-check (IDS MS-MPC) 1075
- icmp-type .. 1075
- ids-rules .. 1076
- ids-rule-sets .. 1076
- ignore-entry .. 1077
- ike ... 1078
- ike-access-profile ... 1079
- inactivity-timeout ... 1080
- initiate-dead-peer-detection ... 1081
- input (Interfaces) ... 1081
- instance (Traffic Load Balancer) 1082
- interface .. 1084
- interface-service (Services Interfaces) 1085
- interfaces (Aggregated Multiservices) 1086
- interfaces (Voice Services) .. 1087
- interval ... 1088
- ipsec ... 1089
- ipsec-inside-interface .. 1090
- ipsec-vpn-options ... 1091
- ipsec-vpn-rules .. 1092
- ipv6-multicast-interfaces ... 1093
- l2tp-access-profile ... 1094
- land-attack-check .. 1095
- land-attack-check (IDS MS-MPC) 1096
- learn-sip-register ... 1097
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>no-anti-replay</td>
<td>1143</td>
</tr>
<tr>
<td>no-anti-replay (Services Service Set)</td>
<td>1144</td>
</tr>
<tr>
<td>no-certificate-chain-in-ike</td>
<td>1145</td>
</tr>
<tr>
<td>no-fragmentation</td>
<td>1146</td>
</tr>
<tr>
<td>no-ipsec-tunnel-in-traceroute</td>
<td>1147</td>
</tr>
<tr>
<td>no-nat-traversal (Services IPsec VPN)</td>
<td>1147</td>
</tr>
<tr>
<td>no-per-unit-scheduler</td>
<td>1148</td>
</tr>
<tr>
<td>no-termination-request</td>
<td>1148</td>
</tr>
<tr>
<td>no-translation</td>
<td>1149</td>
</tr>
<tr>
<td>one-to-one (Aggregated Multiservices)</td>
<td>1150</td>
</tr>
<tr>
<td>output</td>
<td>1150</td>
</tr>
<tr>
<td>overload-pool</td>
<td>1151</td>
</tr>
<tr>
<td>overload-prefix</td>
<td>1151</td>
</tr>
<tr>
<td>package (Loading on PIC)</td>
<td>1152</td>
</tr>
<tr>
<td>passive-mode-tunneling</td>
<td>1152</td>
</tr>
<tr>
<td>pba-interim-logging-interval</td>
<td>1153</td>
</tr>
<tr>
<td>pcp-rules</td>
<td>1154</td>
</tr>
<tr>
<td>pcp-server</td>
<td>1154</td>
</tr>
<tr>
<td>per-unit-scheduler</td>
<td>1155</td>
</tr>
<tr>
<td>perfect-forward-secrecy (Services)</td>
<td>1156</td>
</tr>
<tr>
<td>pgcp</td>
<td>1156</td>
</tr>
<tr>
<td>pgcp-rules</td>
<td>1156</td>
</tr>
<tr>
<td>pic-boot-timeout</td>
<td>1156</td>
</tr>
<tr>
<td>policy (Services IKE)</td>
<td>1157</td>
</tr>
<tr>
<td>policy (IPsec)</td>
<td>1157</td>
</tr>
<tr>
<td>pool</td>
<td>1157</td>
</tr>
<tr>
<td>pool (Service Interface)</td>
<td>1158</td>
</tr>
<tr>
<td>port (Services NAT)</td>
<td>1158</td>
</tr>
<tr>
<td>port (Services Voice)</td>
<td>1159</td>
</tr>
<tr>
<td>port (System Log Messsages)</td>
<td>1159</td>
</tr>
<tr>
<td>port-forwarding</td>
<td>1160</td>
</tr>
<tr>
<td>port-forwarding-mappings</td>
<td>1160</td>
</tr>
<tr>
<td>ports-per-session</td>
<td>1160</td>
</tr>
<tr>
<td>post-service-filter</td>
<td>1160</td>
</tr>
<tr>
<td>ppp-access-profile</td>
<td>1160</td>
</tr>
<tr>
<td>pre-shared-key (Services IKE)</td>
<td>1160</td>
</tr>
<tr>
<td>preserve-interface</td>
<td>1161</td>
</tr>
<tr>
<td>primary (Adaptive Services Interfaces)</td>
<td>1161</td>
</tr>
<tr>
<td>primary (Link Services I Q PIC Interfaces)</td>
<td>1162</td>
</tr>
<tr>
<td>profile (Traffic Load Balancer)</td>
<td>1162</td>
</tr>
<tr>
<td>profile (Web Filter)</td>
<td>1162</td>
</tr>
<tr>
<td>proposal (Services IKE)</td>
<td>1163</td>
</tr>
<tr>
<td>proposal (Services IPsec VPN)</td>
<td>1163</td>
</tr>
<tr>
<td>proposals</td>
<td>1163</td>
</tr>
<tr>
<td>protocol (Applications)</td>
<td>1163</td>
</tr>
<tr>
<td>protocol (IPsec)</td>
<td>1164</td>
</tr>
<tr>
<td>ptp-rules</td>
<td>1164</td>
</tr>
<tr>
<td>queues</td>
<td>1164</td>
</tr>
<tr>
<td>real-service (Traffic Load Balancer)</td>
<td>1165</td>
</tr>
<tr>
<td>overload-prefix</td>
<td>1165</td>
</tr>
<tr>
<td>overload-prefix</td>
<td>1165</td>
</tr>
<tr>
<td>package (Loading on PIC)</td>
<td>1165</td>
</tr>
<tr>
<td>passive-mode-tunneling</td>
<td>1165</td>
</tr>
<tr>
<td>pba-interim-logging-interval</td>
<td>1165</td>
</tr>
<tr>
<td>pcp-rules</td>
<td>1165</td>
</tr>
<tr>
<td>pcp-server</td>
<td>1165</td>
</tr>
<tr>
<td>per-unit-scheduler</td>
<td>1165</td>
</tr>
<tr>
<td>perfect-forward-secrecy (Services)</td>
<td>1165</td>
</tr>
<tr>
<td>pgcp</td>
<td>1165</td>
</tr>
<tr>
<td>pgcp-rules</td>
<td>1165</td>
</tr>
<tr>
<td>pic-boot-timeout</td>
<td>1165</td>
</tr>
<tr>
<td>policy (Services IKE)</td>
<td>1166</td>
</tr>
<tr>
<td>policy (IPsec)</td>
<td>1166</td>
</tr>
<tr>
<td>pool</td>
<td>1166</td>
</tr>
<tr>
<td>pool (Service Interface)</td>
<td>1166</td>
</tr>
<tr>
<td>port (Services NAT)</td>
<td>1166</td>
</tr>
<tr>
<td>port (Services Voice)</td>
<td>1166</td>
</tr>
<tr>
<td>port (System Log Messsages)</td>
<td>1166</td>
</tr>
<tr>
<td>port-forwarding</td>
<td>1166</td>
</tr>
<tr>
<td>port-forwarding-mappings</td>
<td>1166</td>
</tr>
<tr>
<td>ports-per-session</td>
<td>1166</td>
</tr>
<tr>
<td>post-service-filter</td>
<td>1166</td>
</tr>
<tr>
<td>ppp-access-profile</td>
<td>1166</td>
</tr>
<tr>
<td>pre-shared-key (Services IKE)</td>
<td>1166</td>
</tr>
<tr>
<td>preserve-interface</td>
<td>1166</td>
</tr>
<tr>
<td>primary (Adaptive Services Interfaces)</td>
<td>1167</td>
</tr>
<tr>
<td>primary (Link Services I Q PIC Interfaces)</td>
<td>1167</td>
</tr>
<tr>
<td>profile (Traffic Load Balancer)</td>
<td>1167</td>
</tr>
<tr>
<td>profile (Web Filter)</td>
<td>1167</td>
</tr>
<tr>
<td>proposal (Services IKE)</td>
<td>1168</td>
</tr>
<tr>
<td>proposal (Services IPsec VPN)</td>
<td>1168</td>
</tr>
<tr>
<td>proposals</td>
<td>1168</td>
</tr>
<tr>
<td>protocol (Applications)</td>
<td>1168</td>
</tr>
<tr>
<td>protocol (IPsec)</td>
<td>1168</td>
</tr>
<tr>
<td>ptp-rules</td>
<td>1168</td>
</tr>
<tr>
<td>queues</td>
<td>1168</td>
</tr>
<tr>
<td>real-service (Traffic Load Balancer)</td>
<td>1168</td>
</tr>
</tbody>
</table>
services (NAT) .. 1242
session-limit (IDS MS-DPC) 1243
session-limit (IDS MS-MPC) 1244
set-dont-fragment-bit (Services Set) 1246
set-dont-fragment-bit (Services IPsec VPN) 1247
sip-call-hold-timeout 1248
sip .. 1249
snmp-command ... 1250
snmp-trap-thresholds 1251
software-concentrator 1253
software-options .. 1254
software-rules ... 1255
source-address (PCP) 1256
source-address (Service Sets) 1257
source-address (Services CoS) 1258
source-address (IDS MS-DPC) 1259
source-address ... 1259
source-address (Services NAT) 1260
source-address (Services Stateful Firewall) 1261
source-address-range (IDS MS-DPC) 1262
source-address-range (PCP) 1263
source-address-range (Services NAT) 1264
source-address-range (Services Stateful Firewall) 1265
source-pool .. 1265
source-port .. 1266
source-prefix (IDS) .. 1267
source-prefix (Services NAT) 1268
source-prefix-ipv6 (IDS) 1269
source-prefix-list (PCP) 1270
source-prefix-list (Services CoS) 1271
source-prefix-list (Services IDS) 1272
source-prefix-list (Services NAT) 1273
source-prefix-list (Services Stateful Firewall) 1274
spi .. 1275
stateful-firewall-rules 1276
stateful-nat64 .. 1276
syslog (Services CoS) 1277
syslog (IDS MS-DPC) 1277
syslog ... 1278
syslog (Services L2TP) 1279
syslog (Services NAT) 1280
syslog (Services Service Set) 1281
syslog (Services Stateful Firewall) 1282
syn-cookie (IDS MS-DPC) 1283
tcp-fast-open .. 1284
tcp-mss (Services) .. 1285
tcp-non-syn .. 1286
tcp-syn-defense (IDS MS-MPC) 1287
tcp-syn-fragment-check (IDS MS-MPC) 1287
video (Application Profile) .. 1354
virtual-service (Traffic Load Balancer) .. 1355
voice .. 1357
voice (Application Profile) ... 1357
warm-standby .. 1358
web-filter .. 1359
web-filter-profile ... 1361

Chapter 51 Operational Commands ... 1363

clear services cos statistics .. 1368
clear services crtp statistics .. 1369
clear services ids .. 1370
clear services ids destination-table 1371
clear services ids pair-table ... 1372
clear services ids source-table .. 1373
clear services inline nat pool .. 1374
clear services inline nat statistics .. 1375
clear services inline softwire statistics 1376
clear services ipsec-vpn certificates 1377
clear services ipsec-vpn ike security-associations 1378
clear services ipsec-vpn ipsec security-associations 1379
clear services ipsec-vpn ipsec statistics 1380
clear services l2tp destination .. 1381
clear services l2tp destination statistics 1383
clear services l2tp multilink ... 1384
clear services l2tp session .. 1385
clear services l2tp session statistics 1388
clear services l2tp tunnel ... 1390
clear services l2tp tunnel statistics 1392
clear services nat flows ... 1394
clear services nat mappings .. 1396
clear services nat mappings app .. 1398
clear services nat mappings eim .. 1400
clear services nat mappings pcp .. 1402
clear services redundancy-set last-saved-state id 1404
clear security pki ca-certificate ... 1405
clear security pki certificate-request 1406
clear security pki crl ... 1407
clear security pki key-pair .. 1408
clear security pki local-certificate .. 1409
clear services service-set statistics ids drops 1410
clear services service-sets statistics ids session-limits counters 1411
clear services service-sets statistics integrity-drops 1412
clear services service-sets statistics packet-drops 1413
clear services service-sets statistics syslog 1414
clear services sessions .. 1415
clear services stateful-firewall flows 1418
clear services stateful-firewall sip-call 1421
clear services stateful-firewall sip-register 1424
clear services stateful-firewall statistics 1427
clear services web-filter statistics profile 1428
request interface revert 1429
request interface (revert | switchover) (Adaptive Services) 1430
request interface switchover 1432
request security pki ca-certificate enroll 1433
request security pki ca-certificate load 1434
request security pki ca-certificate verify 1435
request security pki crl load 1436
request security pki generate-certificate-request 1437
request security pki generate-key-pair 1439
request security pki local-certificate enroll 1440
request security pki local-certificate generate-self-signed .. 1442
request security pki local-certificate load 1443
request security pki local-certificate verify 1444
request services ipsec-vpn ipsec switch tunnel 1445
request services redundancy-set trigger 1446
request services url-filter delete gencfg-data 1447
request services url-filter force dns-resolution 1448
request services url-filter update url-filter-database file 1450
request services url-filter validate 1451
request services web-filter delete gencfg-data 1452
request services web-filter update dns-filter-database 1453
request services web-filter force dns-resolution 1454
request services web-filter update url-filter-database file 1455
request services web-filter validate dns-filter-file-name .. 1456
request services web-filter validate url-filter-file-name 1457
show interfaces (Adaptive Services) 1458
show interfaces (Link Services IQ) 1466
show interfaces (Redundant Adaptive Services) 1490
show interfaces (Redundant Link Services IQ) 1492
show interfaces load-balancing (Aggregated Multiservices) ... 1506
show interfaces redundancy 1510
show security pki ca-certificate 1513
show security pki certificate-request 1517
show security pki crl ... 1520
show security pki local-certificate 1523
show services alg conversations 1526
show services alg statistics 1532
show services cos statistics 1545
show services crtp ... 1548
show services crtp flows 1551
show services ha detail 1553
show services ha statistics 1555
show services ids .. 1560
show services inline nat pool 1568
show services inline nat statistics 1570
show services inline softwire statistics 1573
show services ipsec-vpn certificates 1577
show services ipsec-vpnike security-associations . 1580
show services ipsec-vpn ipsec security-associations . 1585
show services ipsec-vpn ipsec statistics . 1591
show services link-services cpu-usage . 1595
show services l2tp multilink . 1600
show services l2tp radius . 1604
show services l2tp session . 1608
show services l2tp summary . 1617
show services l2tp tunnel . 1623
show services l2tp user . 1629
show services nat deterministic-nat internal-host . 1633
show services nat deterministic-nat nat-port-block . 1635
show services nat ipv6-multicast-interfaces . 1637
show services nat mappings . 1639
show services nat pool . 1644
show services pcp statistics . 1650
show services redundancy-group . 1653
show services service-sets cpu-usage . 1661
show services service-sets memory-usage . 1663
show services service-sets statistics ids drops . 1665
show services service-sets statistics ids session-limits counters . 1667
show services service-sets statistics integrity-drops . 1678
show services service-sets statistics packet-drops . 1682
show services service-sets statistics syslog . 1685
show services service-sets statistics tcp . 1691
show services service-sets statistics tcp-mss . 1692
show services service-sets summary . 1693
show services sessions . 1695
show services sessions (Aggregated Multiservices) . 1704
show services sessions analysis . 1711
show services sessions tcp-log . 1715
show services softwire . 1716
show services softwire flows . 1718
show services softwire statistics . 1721
show services stateful-firewall conversations . 1728
show services stateful-firewall flow-analysis . 1733
show services stateful-firewall flows . 1737
show services stateful-firewall sip-call . 1743
show services stateful-firewall sip-register . 1748
show services stateful-firewall statistics . 1752
show services stateful-firewall statistics application-protocol sip . 1761
show services stateful-firewall subscriber-analysis . 1764
show services subscriber analysis . 1767
show services tcp-log connections . 1770
show services traffic-load-balance statistics . 1770
show services url-filter dns-resolution profile . 1783
show services url-filter dns-resolution-statistics profile template . 1786
show services url-filter statistics profile template . 1791
show services web-filter dns-resolution profile . 1794
show services web-filter dns-resolution-statistics profile template 1797
show services web-filter statistics profile .. 1802
List of Figures

Part 1 Overview

Chapter 1 Adaptive Services Overview ... 3
Figure 1: Packet Flow Through the Adaptive Services or MultiServices PIC 6

Chapter 3 Plug-in Adaptive Services .. 39
Figure 2: DNS Request for Blacklisted Domain 40

Part 2 Translating IP Addresses Using NAT

Chapter 4 NAT Overview ... 61
Figure 3: Dynamic NAT Flow .. 65
Figure 4: Stateful NAT64 Flow ... 66
Figure 5: 464XLAT Wireline Flow ... 66
Figure 6: 464XLAT Wireless Flow ... 67
Figure 7: DS-Lite Flow ... 67

Chapter 6 Avoiding IPv4 Exhaustion Using Junos Address Aware Network Addressing and Stateful NAT64 .. 109
Figure 8: IPv4 Depletion Solution - IPv4 Access Network 110
Figure 9: IPv4 Depletion Solution - IPv6 Access Network 110

Chapter 7 Hiding Private Networks Using Static Source NAT 115
Figure 10: Configuring NAT for Multicast Traffic 129

Chapter 11 Securing Traffic Using NAT-PT and ALGs 173
Figure 11: Configuring DNS ALGs with NAT-PT Network Topology 196

Chapter 12 Providing IPv4 Connectivity Across IPv6-Only Network Using 464XLAT ... 213
Figure 12: 464XLAT Wireline Flow .. 213
Figure 13: 464XLAT Wireless Flow .. 214

Chapter 13 Reducing Traffic and Bandwidth Requirements Using Port Control Protocol ... 217
Figure 14: Basic PCP NAPT44 Topology ... 218
Figure 15: PCP with DS-Lite Plain Mode ... 218
Figure 16: PCP with NAPT44 .. 225

Chapter 17 Achieving Line-Rate, Low-Latency Translations Using Inline NAT 261
Figure 17: Supported Inline NAT Types ... 262
Figure 18: Inline Source NAT Using an MX Series Device with an MPC 263
Figure 19: Interface-Based Inline Source NAT 264
Figure 20: Inline Source NAT Using an MX Series Device with an MPC 270
Figure 21: Route-Based Inline Source NAT .. 271
Figure 22: Inline NAT Hairpinning With MX Series 279

Part 3 Transitioning to IPv6 Using Softwires

Chapter 20 Softwires Overview .. 317
Figure 23: 6rd Softwire Flow ... 320

Chapter 23 Transitioning to IPv6 Using DS-Lite Softwires 331
Figure 24: DS-Lite Topology ... 334

Chapter 25 Transitioning to IPv6 Using Mapping of Address and Port with
Encapsulation (MAP-E) ... 381
Figure 25: Sample MAP-E Deployment ... 382

Part 6 Creating Secure Tunnels Using Junos VPN Site Secure

Chapter 34 Junos VPN Site Secure Overview 531
Figure 26: AH Protocol ... 537
Figure 27: ESP Protocol .. 538
Figure 28: IPsec with One Forwarding Path 539
Figure 29: Appended UDP Header .. 539
Figure 30: IPsec with Multiple Forwarding Paths 540

Chapter 35 Junos VPN Site Secure Configuration Overview 545
Figure 31: Manual SA Topology ... 556
Figure 32: IPsec VPN Tunnel Topology .. 622
Figure 33: Route-based IPsec Tunnel Topology 634

Chapter 37 Dynamically Assigning Tunnels Using Junos VPN Site Secure 647
Figure 34: IPsec Dynamic Endpoint Tunneling Topology 657
Figure 35: IKE Dynamic SAs ... 663
Figure 36: MS PIC IKE Dynamic SA Topology Diagram 682

Part 8 Configuring Inter-Chassis MS-MPC and MS-MIC Redundancy
for NAT and Stateful Firewall

Chapter 41 Configuring Inter-Chassis MS-MPC and MS-MIC Redundancy
for NAT and Stateful Firewall (Release 16.1 and later) 743
Figure 37: Stateful Sync Topology .. 745

Chapter 42 Configuring Inter-Chassis Stateful Synchronization for NAT
and Stateful Firewall (Release 15.1 and earlier) 769
Figure 38: Inter-Chassis High Availability Topology 770

Part 9 Configuring Interface Redundancy and Bundling on LSQ Interfaces

Chapter 45 Enabling Bundling on LSQ Interfaces 801
Figure 39: Inline MLPPP for WAN Interfaces 802
Part 10 Distributing Traffic Among Next-Hop Servers with Traffic Load Balancer

Chapter 46 Configuring Traffic Load Balancer ... 843

Figure 40: TLB Topology for Transparent Mode 844
Figure 41: TLB Topology for Translated Mode 845
List of Tables

About the Documentation ... xli

Table 1: Notice Icons .. xliii
Table 2: Text and Syntax Conventions .. xlv

Part 1 Overview

Chapter 2 Adaptive Services Configuration Overview

Table 3: Service Filter Match Conditions for IPv4 Traffic 17
Table 4: Terminating Actions for Service Filters 18
Table 5: Nonterminating Actions for Service Filters 18
Table 6: System Log Message Severity Levels 33
Table 7: Adaptive Services Tracing Flags 37

Chapter 3 Plug-in Adaptive Services

Table 8: URL Filter Database File Format 48

Part 2 Translating IP Addresses Using NAT

Chapter 4 NAT Overview

Table 9: Carrier-Grade NAT—Feature Comparison by Platform 69
Table 10: Carrier-Grade NAT Translation Types 72

Chapter 9 Allowing Components of a Private Network to Share a Single Address Using NAPT

Table 11: Comparison of NAPT Implementation Methods 146

Chapter 10 Mapping Addresses and Ports With Deterministic NAT

Table 12: Deterministic NAPT Commit Constraints 168

Chapter 11 Securing Traffic Using NAT-PT and ALGs

Table 13: ALGs Available for NAT by Type of Interface Card 174
Table 14: ALGs Available by Default ... 177

Chapter 19 Monitoring NAT

Table 15: Arguments for services-oids.slax Script 312

Part 4 Enabling Traffic to Pass Securely Using ALGs

Chapter 27 ALG Overview

Table 16: ALGs Supported by Junos OS .. 399
Table 17: RealAudio Product Port Usage 407
Table 18: Supported RPC Services .. 408
Table 19: ALGs Available for NAT by Type of Interface Card 425
Chapter 28 ALGs Configuration Overview 431
Table 20: Application Protocols Supported by Services Interfaces 433
Table 21: Network Protocols Supported by Services Interfaces 435
Table 22: ICMP Codes and Types Supported by Services Interfaces 436
Table 23: Port Names Supported by Services Interfaces 437
Table 24: Requesting Messages with NAT Table 447

Part 5 Securing Content Using Junos Network Secure and IDS
Chapter 30 Junos Network Secure Configuration Overview 467
Table 25: IP Option Values ... 472

Part 6 Creating Secure Tunnels Using Junos VPN Site Secure
Chapter 34 Junos VPN Site Secure Overview 531
Table 26: Statement Equivalents for ES and AS Interfaces 533
Chapter 37 Dynamically Assigning Tunnels Using Junos VPN Site Secure 647
Table 27: Default IKE and IPsec Proposals for Dynamic Negotiations 652

Part 10 Distributing Traffic Among Next-Hop Servers with Traffic Load Balancer
Chapter 46 Configuring Traffic Load Balancer 843
Table 28: TLB Configuration Limits ... 849
Table 29: Trace Flags ... 860

Part 11 Enabling Load Balancing and High Availability Using Multiservices Interfaces
Chapter 47 Enabling Load Balancing and High Availability Using Multiservices Interfaces 865
Table 30: Key Configuration Statements Used in this Example 881

Part 12 Handling VoIP and Layer 2 Traffic
Chapter 49 Tunneling PPP Packets Across a Network Using Layer 2 Tunneling 903
Table 31: System Log Message Severity Levels 910

Part 13 Configuration Statements and Operational Commands
Chapter 50 Configuration Statements .. 923
Table 32: Hash Keys Supported for AMS for Service Applications 1062
Table 33: Behavior of Member Interface After One Multiservices PIC Fails 1130
Table 34: Behavior of Member Interface After Two Multiservices PICs Fail 1131
Table 35: Trace Flags ... 1314
Table 36: Trace Flags ... 1327

Chapter 51 Operational Commands .. 1363
Table 37: clear services nat flows Output Fields 1394
Table 38: clear services nat mappings Output Fields 1396
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>clear services nat mappings app Output Fields</td>
<td>1398</td>
</tr>
<tr>
<td>40</td>
<td>clear services nat mappings eim Output Fields</td>
<td>1401</td>
</tr>
<tr>
<td>41</td>
<td>clear services nat mappings pcp Output Fields</td>
<td>1402</td>
</tr>
<tr>
<td>42</td>
<td>clear services sessions Output Fields</td>
<td>1403</td>
</tr>
<tr>
<td>43</td>
<td>clear services stateful-firewall flows Output Fields</td>
<td>1417</td>
</tr>
<tr>
<td>44</td>
<td>clear services stateful-firewall sip-call Output Fields</td>
<td>1423</td>
</tr>
<tr>
<td>45</td>
<td>clear services stateful-firewall sip-register Output Fields</td>
<td>1426</td>
</tr>
<tr>
<td>46</td>
<td>Adaptive Services and Redundant Adaptive Services show interfaces</td>
<td>1458</td>
</tr>
<tr>
<td>47</td>
<td>show interfaces (Link Services IQ) Output Fields</td>
<td>1467</td>
</tr>
<tr>
<td>48</td>
<td>show interfaces (Redundant Link Services IQ) Output Fields</td>
<td>1493</td>
</tr>
<tr>
<td>49</td>
<td>Aggregated Multiservices show interfaces load-balancing Output Fields</td>
<td>1506</td>
</tr>
<tr>
<td>50</td>
<td>show interfaces redundancy Output Fields</td>
<td>1510</td>
</tr>
<tr>
<td>51</td>
<td>show security pki ca-certificate Output Fields</td>
<td>1513</td>
</tr>
<tr>
<td>52</td>
<td>show security pki certificate-request Output Fields</td>
<td>1517</td>
</tr>
<tr>
<td>53</td>
<td>show security pki crl Output Fields</td>
<td>1520</td>
</tr>
<tr>
<td>54</td>
<td>show security pki local-certificate Output Fields</td>
<td>1523</td>
</tr>
<tr>
<td>55</td>
<td>show services alg conversations Output Fields</td>
<td>1527</td>
</tr>
<tr>
<td>56</td>
<td>show services alg statistics Output Fields</td>
<td>1533</td>
</tr>
<tr>
<td>57</td>
<td>show services cos statistics Output Fields</td>
<td>1545</td>
</tr>
<tr>
<td>58</td>
<td>show services crtp Output Fields</td>
<td>1548</td>
</tr>
<tr>
<td>59</td>
<td>show services crtp flows Output Fields</td>
<td>1551</td>
</tr>
<tr>
<td>60</td>
<td>show services ha detail Output Fields</td>
<td>1553</td>
</tr>
<tr>
<td>61</td>
<td>show services ha statistics Output Fields</td>
<td>1555</td>
</tr>
<tr>
<td>62</td>
<td>show services ids Output Fields</td>
<td>1561</td>
</tr>
<tr>
<td>63</td>
<td>show services inline nat pool Output Fields</td>
<td>1568</td>
</tr>
<tr>
<td>64</td>
<td>show services inline nat statistics Output Fields</td>
<td>1570</td>
</tr>
<tr>
<td>65</td>
<td>show services inline software statistics Output Fields</td>
<td>1573</td>
</tr>
<tr>
<td>66</td>
<td>show services ipsec-vpn certificates Output Fields</td>
<td>1577</td>
</tr>
<tr>
<td>67</td>
<td>show services ipsec-vpn ike security-associations Output Fields</td>
<td>1580</td>
</tr>
<tr>
<td>68</td>
<td>show services ipsec-vpn ipsec security-associations Output Fields</td>
<td>1585</td>
</tr>
<tr>
<td>69</td>
<td>show services ipsec-vpn ipsec statistics Output Fields</td>
<td>1591</td>
</tr>
<tr>
<td>70</td>
<td>show services link-services cpu-usage Output Fields</td>
<td>1595</td>
</tr>
<tr>
<td>71</td>
<td>show services l2tp multilink Output Fields</td>
<td>1600</td>
</tr>
<tr>
<td>72</td>
<td>show services l2tp radius Output Fields</td>
<td>1604</td>
</tr>
<tr>
<td>73</td>
<td>show services l2tp session Output Fields</td>
<td>1609</td>
</tr>
<tr>
<td>74</td>
<td>show services l2tp summary Output Fields</td>
<td>1617</td>
</tr>
<tr>
<td>75</td>
<td>show services l2tp tunnel Output Fields</td>
<td>1624</td>
</tr>
<tr>
<td>76</td>
<td>show services l2tp user Output Fields</td>
<td>1629</td>
</tr>
<tr>
<td>77</td>
<td>show services nat deterministic-nat internal-host Output Fields</td>
<td>1633</td>
</tr>
<tr>
<td>78</td>
<td>show services nat deterministic-nat nat-port-block Output Fields</td>
<td>1635</td>
</tr>
<tr>
<td>79</td>
<td>show services nat ipv6-multicast-interfaces Output Fields</td>
<td>1637</td>
</tr>
<tr>
<td>80</td>
<td>show services nat mappings Output Fields</td>
<td>1640</td>
</tr>
<tr>
<td>81</td>
<td>show services nat pool Output Fields</td>
<td>1645</td>
</tr>
<tr>
<td>82</td>
<td>show services pcp statistics Output Fields</td>
<td>1650</td>
</tr>
<tr>
<td>83</td>
<td>show services redundancy-group Output Fields</td>
<td>1653</td>
</tr>
<tr>
<td>84</td>
<td>show services service-sets cpu-usage Output Fields</td>
<td>1661</td>
</tr>
<tr>
<td>85</td>
<td>show services service-sets memory-usage Output Fields</td>
<td>1664</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>86</td>
<td>show services service-set statistics ids drops Output Fields</td>
<td>1665</td>
</tr>
<tr>
<td>87</td>
<td>show services service-sets statistics ids session-limits counters Output Fields</td>
<td>1672</td>
</tr>
<tr>
<td>88</td>
<td>show services service-sets integrity-drops Output Fields</td>
<td>1678</td>
</tr>
<tr>
<td>89</td>
<td>show services service-sets packet-drops Output Fields</td>
<td>1683</td>
</tr>
<tr>
<td>90</td>
<td>show services service-sets statistics syslog Output Fields</td>
<td>1685</td>
</tr>
<tr>
<td>91</td>
<td>show services service-sets statistics tcp-mss Output Fields</td>
<td>1692</td>
</tr>
<tr>
<td>92</td>
<td>show services service-sets summary Output Fields</td>
<td>1693</td>
</tr>
<tr>
<td>93</td>
<td>show services sessions Output Fields</td>
<td>1698</td>
</tr>
<tr>
<td>94</td>
<td>show services sessions Output Fields</td>
<td>1706</td>
</tr>
<tr>
<td>95</td>
<td>show services sessions analysis Output Fields</td>
<td>1711</td>
</tr>
<tr>
<td>96</td>
<td>show services sessions tcp-log interface Output Fields</td>
<td>1715</td>
</tr>
<tr>
<td>97</td>
<td>show-services-softwire Output Fields</td>
<td>1716</td>
</tr>
<tr>
<td>98</td>
<td>show services softwire flows Output Fields</td>
<td>1719</td>
</tr>
<tr>
<td>99</td>
<td>command-name Output Fields</td>
<td>1721</td>
</tr>
<tr>
<td>100</td>
<td>show services stateful-firewall conversations Output Fields</td>
<td>1730</td>
</tr>
<tr>
<td>101</td>
<td>show services stateful-firewall flow-analysis Output Fields</td>
<td>1733</td>
</tr>
<tr>
<td>102</td>
<td>show services stateful-firewall flows Output Fields</td>
<td>1739</td>
</tr>
<tr>
<td>103</td>
<td>show services stateful-firewall sip-call Output Fields</td>
<td>1745</td>
</tr>
<tr>
<td>104</td>
<td>show services stateful-firewall sip-register Output Fields</td>
<td>1750</td>
</tr>
<tr>
<td>105</td>
<td>show services stateful-firewall statistics Output Fields</td>
<td>1752</td>
</tr>
<tr>
<td>106</td>
<td>show services stateful-firewall statistics application-protocol-sip Output Fields</td>
<td>1761</td>
</tr>
<tr>
<td>107</td>
<td>show services stateful-firewall subscriber-analysis Output Fields</td>
<td>1764</td>
</tr>
<tr>
<td>108</td>
<td>show services subscriber analysis Output Fields</td>
<td>1767</td>
</tr>
<tr>
<td>109</td>
<td>show services sessions tcp-log connections interface Output Fields</td>
<td>1770</td>
</tr>
<tr>
<td>110</td>
<td>show services traffic-load-balance statistics Output Fields</td>
<td>1772</td>
</tr>
<tr>
<td>111</td>
<td>show services url-filter dns-resolution profile Output Fields</td>
<td>1783</td>
</tr>
<tr>
<td>112</td>
<td>show services url-filter dns-resolution-statistics profile template Output Fields</td>
<td>1786</td>
</tr>
<tr>
<td>113</td>
<td>show services url-filter statistics profile template Output Fields</td>
<td>1791</td>
</tr>
<tr>
<td>114</td>
<td>show services web-filter dns-resolution profile Output Fields</td>
<td>1794</td>
</tr>
<tr>
<td>115</td>
<td>show services web-filter dns-resolution-statistics profile template Output Fields</td>
<td>1797</td>
</tr>
<tr>
<td>116</td>
<td>show services web-filter statistics profile Output Fields</td>
<td>1802</td>
</tr>
</tbody>
</table>
About the Documentation

- Documentation and Release Notes on page xli
- Using the Examples in This Manual on page xlii
- Documentation Conventions on xliii
- Documentation Feedback on page xlv
- Requesting Technical Support on page xlv

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product documentation page on the Juniper Networks website at https://www.juniper.net/documentation/.

If the information in the latest release notes differs from the information in the documentation, follow the product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts. These books go beyond the technical documentation to explore the nuances of network architecture, deployment, and administration. The current list can be viewed at https://www.juniper.net/books.

Using the Examples in This Manual

If you want to use the examples in this manual, you can use the load merge or the load merge relative command. These commands cause the software to merge the incoming configuration into the current candidate configuration. The example does not become active until you commit the candidate configuration.

If the example configuration contains the top level of the hierarchy (or multiple hierarchies), the example is a full example. In this case, use the load merge command.

If the example configuration does not start at the top level of the hierarchy, the example is a snippet. In this case, use the load merge relative command. These procedures are described in the following sections.
Merging a Full Example

To merge a full example, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration example into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following configuration to a file and name the file `ex-script.conf`. Copy the `ex-script.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   system {
       scripts {
           commit {
               file ex-script.xsl;
           }
       }
   }
   interfaces {
       fxp0 {
           disable;
           unit 0 {
               family inet {
                   address 10.0.0.1/24;
               }
           }
       }
   }
   ```

2. Merge the contents of the file into your routing platform configuration by issuing the `load merge` configuration mode command:

   ```
   [edit]
   user@host# load merge /var/tmp/ex-script.conf
   load complete
   ```

Merging a Snippet

To merge a snippet, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration snippet into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following snippet to a file and name the file `ex-script-snippet.conf`. Copy the `ex-script-snippet.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   commit {
       file ex-script-snippet.xsl;
   }
   ```
2. Move to the hierarchy level that is relevant for this snippet by issuing the following configuration mode command:

```
[edit]
user@host# edit system scripts
[edit system scripts]
```

3. Merge the contents of the file into your routing platform configuration by issuing the `load merge relative` configuration mode command:

```
[edit system scripts]
user@host# load merge relative /var/tmp/ex-script-snippet.conf
load complete
```

For more information about the `load` command, see CLI Explorer.

Documentation Conventions

Table 1 on page xliii defines notice icons used in this guide.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Informational note</td>
<td>Indicates important features or instructions.</td>
</tr>
<tr>
<td></td>
<td>Caution</td>
<td>Indicates a situation that might result in loss of data or hardware damage.</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>Alerts you to the risk of personal injury or death.</td>
</tr>
<tr>
<td></td>
<td>Laser warning</td>
<td>Alerts you to the risk of personal injury from a laser.</td>
</tr>
<tr>
<td></td>
<td>Tip</td>
<td>Indicates helpful information.</td>
</tr>
<tr>
<td></td>
<td>Best practice</td>
<td>Alerts you to a recommended use or implementation.</td>
</tr>
</tbody>
</table>

Table 2 on page xlv defines the text and syntax conventions used in this guide.
Table 2: Text and Syntax Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents text that you type.</td>
<td>To enter configuration mode, type the <code>configure</code> command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>user@host> configure</code></td>
</tr>
<tr>
<td>Fixed-width text like this</td>
<td>Represents output that appears on the terminal screen.</td>
<td><code>user@host> show chassis alarms</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No alarms currently active</td>
</tr>
<tr>
<td>Italic text like this</td>
<td>- Introduces or emphasizes important new terms.</td>
<td>• A policy term is a named structure that defines conditions and actions.</td>
</tr>
<tr>
<td></td>
<td>- Identifies guide names.</td>
<td>• Junos OS CLI User Guide</td>
</tr>
<tr>
<td></td>
<td>- Identifies RFC and internet draft titles.</td>
<td>• RFC 1997, BGP Communities Attribute</td>
</tr>
<tr>
<td>Italic text like this</td>
<td>Represents variables (options for which you substitute a value) in commands or configuration statements.</td>
<td>Configure the machine's domain name:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>[edit] root@# set system domain-name domain-name</code></td>
</tr>
<tr>
<td>Text like this</td>
<td>Represents names of configuration statements, commands, files, and directories; configuration hierarchy levels; or labels on routing platform components.</td>
<td>To configure a stub area, include the stub statement at the <code>[edit protocols ospf area area-id]</code> hierarchy level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The console port is labeled CONSOLE</td>
</tr>
<tr>
<td><code>< ></code> (angle brackets)</td>
<td>Encloses optional keywords or variables.</td>
<td><code>stub <default-metric metric>;</code></td>
</tr>
<tr>
<td>`</td>
<td>` (pipe symbol)</td>
<td>Indicates a choice between the mutually exclusive keywords or variables on either side of the symbol. The set of choices is often enclosed in parentheses for clarity.</td>
</tr>
</tbody>
</table>
Table 2: Text and Syntax Conventions (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents graphical user interface (GUI) items you click or select.</td>
<td>• In the Logical Interfaces box, select All Interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To cancel the configuration, click Cancel.</td>
</tr>
<tr>
<td>> (bold right angle bracket)</td>
<td>Separates levels in a hierarchy of menu selections.</td>
<td>In the configuration editor hierarchy, select Protocols > Ospf.</td>
</tr>
</tbody>
</table>

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation. You can use either of the following methods:

- Online feedback system—Click TechLibrary Feedback, on the lower right of any page on the Juniper Networks TechLibrary site, and do one of the following:

 - Click the thumbs-up icon if the information on the page was helpful to you.
 - Click the thumbs-down icon if the information on the page was not helpful to you or if you have suggestions for improvement, and use the pop-up form to provide feedback.
 - E-mail—Send your comments to techpubs-comments@juniper.net. Include the document or topic name, URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC). If you are a customer with an active Juniper Care or Partner Support Services support contract, or are covered under warranty, and need post-sales technical support, you can access our tools and resources online or open a case with JTAC.

- Product warranties—For product warranty information, visit https://www.juniper.net/support/warranty/.
- JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week, 365 days a year.
Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called the Customer Support Center (CSC) that provides you with the following features:

- Find CSC offerings: https://www.juniper.net/customers/support/
- Search for known bugs: https://prsearch.juniper.net/
- Find product documentation: https://www.juniper.net/documentation/
- Find solutions and answer questions using our Knowledge Base: https://kb.juniper.net/
- Download the latest versions of software and review release notes: https://www.juniper.net/customers/csc/software/
- Search technical bulletins for relevant hardware and software notifications: https://kb.juniper.net/InfoCenter/
- Join and participate in the Juniper Networks Community Forum: https://www.juniper.net/company/communities/
- Create a service request online: https://myjuniper.juniper.net

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool: https://entitlementsearch.juniper.net/entitlementsearch/

Creating a Service Request with JTAC

You can create a service request with JTAC on the Web or by telephone.

- Visit https://myjuniper.juniper.net.
- Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see https://support.juniper.net/support/requesting-support/.
PART 1

Overview

- Adaptive Services Overview on page 3
- Adaptive Services Configuration Overview on page 7
- Plug-in Adaptive Services on page 39
Adaptive Services Overview

MultiServices PICs and MultiServices Dense Port Concentrators (MS-DPCs) provide adaptive services interfaces, which allow you to coordinate multiple services on a single PIC by configuring a set of services and applications. MultiServices PICs and MS-DPCs offer a special range of services you configure in one or more service sets.

The MultiServices PIC is available in three versions, the MultiServices 100, the MultiServices 400, and the MultiServices 500, which differ in memory size and performance. All versions offer enhanced performance in comparison with AS PICs. MultiServices PICs are supported on M Series and T Series routers except M20 routers.

The MultiServices DPC is available for MX Series routers; it includes a subset of the functionality supported on the MultiServices PIC. Currently the MultiServices DPC supports the following Layer 3 services: stateful firewall, NAT, IDS, IPsec, active flow monitoring, RPM, and generic routing encapsulation (GRE) tunnels (including GRE key and fragmentation); it also supports graceful Routing Engine switchover (GRES) and Dynamic Application Awareness for Junos OS. For more information about supported packages, see Enabling Service Packages.

It is also possible to group several Multiservices PICs into an aggregated Multiservices (AMS) system. An AMS configuration eliminates the need for separate routers within a system. The primary benefit of having an AMS configuration is the ability to support load balancing of traffic across multiple services PICs. Starting with Junos OS 11.4, all MX Series routers will support high availability (HA) and Network Address Translation (NAT) on AMS infrastructure. See "Configuring Load Balancing on AMS Infrastructure" on page 874 for more information.

NOTE: The MultiServices PICs are polling based and not interrupt based; as a result, a high value in the show chassis pic "Interrupt load average" field may not mean that the PIC has reached its maximum limit of processing.
The following services are configured within a service set and are available only on adaptive services interfaces:

- **Stateful firewall**—A type of firewall filter that considers state information derived from previous communications and other applications when evaluating traffic.

- **Network Address Translation (NAT)**—A security procedure for concealing host addresses on a private network behind a pool of public addresses.

- **Intrusion detection service (IDS)**—A set of tools for detecting, redirecting, and preventing certain kinds of network attack and intrusion.

- **IP Security (IPsec)**—A set of tools for configuring manual or dynamic security associations (SAs) for encryption of data traffic.

- **Class of service (CoS)**—A subset of CoS functionality for services interfaces, limited to DiffServ code point (DSCP) marking and forwarding-class assignment. CoS BA classification is not supported on services interfaces.

The configuration for these services comprises a series of rules that you can arrange in order of precedence as a **rule set**. Each rule follows the structure of a firewall filter, with a **from** statement containing input or match conditions and a **then** statement containing actions to be taken if the match conditions are met.

The following services are also configured on the MultiServices PICs and MS-DPCs, but do not use the rule set definition:

- **Layer 2 Tunneling Protocol (L2TP)**—A tool for setting up secure tunnels using Point-to-Point Protocol (PPP) encapsulation across Layer 2 networks.

- **Link Services Intelligent Queuing (LSQ)**—Interfaces that support Junos OS class-of-service (CoS) components, link fragmentation and interleaving (LFI) (FRF.12), Multilink Frame Relay (MLFR) user-to-network interface (UNI) network-to-network interface (NNI) (FRF.16), and Multilink PPP (MLPPP).

- **Voice services**—A feature that uses the Compressed Real-Time Transport Protocol (CRTP) to enable voice over IP traffic to use low-speed links more effectively.

In addition, Junos OS includes the following tools for configuring services:

- **Application protocols definition**—Allows you to configure properties of application protocols that are subject to processing by router services, and group the application definitions into application sets.

- **Service-set definition**—Allows you to configure combinations of directional rules and default settings that control the behavior of each service in the service set.

NOTE: Logging of adaptive services interfaces messages to an external server by means of the fxp0 port is not supported on M Series routers. The architecture does not support system logging traffic out of a management interface. Instead, access to an external server is supported on a Packet Forwarding Engine interface.
Packet Flow Through the Adaptive Services or Multiservices PIC

You can optionally configure service sets to be applied at one of the following three points while the packets transit the router:

- An interface service set applied at the inbound interface.
- A next-hop service set applied at the forwarding table.
- An interface service set applied at the outbound interface.

The packet flow is as follows, graphically displayed in Figure 1 on page 6. (You can configure a service set as either an interface service set or a next-hop service set.)

1. Packets enter the router on the inbound interface.
2. A policer, filter, service filter, service set, postservice filter, and input forwarding-table filter are applied sequentially to the traffic; these are all optional items in the configuration. If an interface service set is applied, the packets are forwarded to the AS or MultiServices PIC for services processing and then sent back to the Packet Forwarding Engine; if a service filter is also applied, only packets matching the service filter are sent to the PIC. The optional postservice filter is applied and postprocessing takes place.
3. A next-hop service set can be applied to the VPN routing and forwarding (VRF) table or to inet.0. If it is applied, packets are sent to the PIC for services processing and sent back to the Packet Forwarding Engine.

 NOTE: For NAT, the next-hop service set can only be applied to the VRF table. For all other services, the next-hop service set can be applied to either the VRF table or to inet.0.

4. On the output interface, an output filter, output policer, and interface service set can be applied sequentially to the traffic if you have configured any of these items. If an interface service set is applied, the traffic is forwarded to the PIC for processing and sent back to the Packet Forwarding Engine, which then forwards the traffic.
5. Packets exit the router.
NOTE: When an AS PIC experiences persistent back pressure as a result of high traffic volume for 3 seconds, the condition triggers an automatic core dump and reboot of the PIC to help clear the blockage. A system log message at level LOG_ERR is generated. This mechanism applies to both Layer 2 and Layer 3 service packages.

Related Documentation
- Understanding Services PICs
- Adaptive Services Overview on page 3
- Supported Platforms
- Services Configuration Procedure
Understanding Service Sets

Junos OS enables you to create service sets that define a collection of services to be performed by an Adaptive Services interface (AS) or Multiservices line cards (MS-DPC, MS-MIC, and MS-MPC). You can configure the service set either as an interface-style service set or as a next-hop-style service set.
An interface service set is used as an action modifier across an entire interface. You can use an interface-style service set when you want to apply services to packets passing through an interface.

A next-hop service set is a route-based method of applying a particular service. Only packets destined for a specific next hop are serviced by the creation of explicit static routes. This configuration is useful when services need to be applied to an entire virtual private network (VPN) routing and forwarding (VRF) table, or when routing decisions determine that services need to be performed. When a next-hop service is configured, the service interface is considered to be a two-legged module with one leg configured to be the inside interface (inside the network) and the other configured as the outside interface (outside the network).

To configure service sets, include the following statements at the [edit services] hierarchy level:

```
[edit services]
service-set service-set-name {
  (ids-rules rule-names | ids-rule-sets rule-set-name);
  (ipsec-vpn-rules rule-names | ipsec-vpn-rule-sets rule-set-name);
  max-session-setup-rate max-setup-rate;
  (nat-rules rule-names | nat-rule-sets rule-set-name);
  (pgcp-rules rule-names | pgcp-rule-sets rule-set-name);
  (ptsp-rules rule-names | ptsp-rule-sets rule-set-name);
  stateful-firewall-rules rule-names | stateful-firewall-rule-sets rule-set-name);
  allow-multicast;
  extension-service service-name {
    provider-specific rules;
  }
  interface-service {
    service-interface interface-name;
  }
  ipsec-vpn-options {
    anti-replay-window-size bits;
    clear-dont-fragment-bit;
    ike-access-profile profile-name;
    local-gateway address;
    no-anti-replay;
    passive-mode-tunneling;
    trusted-ca [ ca-profile-names ];
    tunnel-mtu bytes;
  }
  max-flows number;
  next-hop-service {
    inside-service-interface interface-name.unit-number;
    outside-service-interface interface-name.unit-number;
    service-interface-pool name;
  }
  syslog {
    host hostname {
      services severity-level;
      facility-override facility-name;
      log-prefix prefix-value;
    }
  }
```

Related Documentation

- Configuring Service Sets to be Applied to Services Interfaces on page 9
- Configuring Service Rules on page 20
- Configuring IPsec Service Sets on page 600
- Configuring Service Set Limitations on page 21
- Configuring System Logging for Service Sets on page 33
- Enabling Services PICs to Accept Multicast Traffic on page 23
- Tracing Services PIC Operations on page 35
- Example: Configuring Service Sets on page 26

Configuring Service Sets to be Applied to Services Interfaces

You configure a services interface to specify the adaptive services interface on which the service is to be performed. Services interfaces are used with either of the service set types described in the following sections.

- Configuring Interface Service Sets on page 9
- Configuring Next-Hop Service Sets on page 11
- Determining Traffic Direction on page 12

Configuring Interface Service Sets

An interface service set is used as an action modifier across an entire interface. To configure the services interface, include the `interface-service` statement at the `[edit services service-set service-set-name]` hierarchy level:

```
[edit services service-set service-set-name]
interface-service {
    service-interface interface-name;
```
Only the device name is needed, because the router software manages logical unit numbers automatically. The services interface must be an adaptive services interface for which you have configured unit 0 family inet at the [edit interfaces interface-name] hierarchy level.

When you have defined and grouped the service rules by configuring the service-set definition, you can apply services to one or more interfaces installed on the router. When you apply the service set to an interface, it automatically ensures that packets are directed to the PIC.

To associate a defined service set with an interface, include a service-set statement with the input or output statement at the [edit interfaces interface-name unit logical-unit-number family inet service] hierarchy level:

```plaintext
[edit interfaces interface-name unit logical-unit-number family inet service]
input {
    service-set service-set-name <service-filter filter-name>
    post-service-filter filter-name;
}
output {
    service-set service-set-name <service-filter filter-name>
}
```

If a packet is entering the interface, the match direction is input. If a packet is leaving the interface, the match direction is output. The service set retains the input interface information even after services are applied, so that functions such as filter-class forwarding and destination class usage (DCU) that depend on input interface information continue to work.

You configure the same service set on the input and output sides of the interface. You can optionally include filters associated with each service set to refine the target and additionally process the traffic. If you include the service-set statement without a service-filter definition, the router software assumes the match condition is true and selects the service set for processing automatically.

NOTE: If you configure service sets with filters, they must be configured on the input and output sides of the interface.

You can include more than one service set definition on each side of the interface. If you include multiple service sets, the router software evaluates them in the order in which they appear in the configuration. The system executes the first service set for which it finds a match in the service filter and ignores the subsequent definitions. A maximum of six service sets can be applied to an interface. When you apply multiple service sets to an interface, you must also configure and apply a service filter to the interface.

An additional statement allows you to specify a filter for processing the traffic after the input service set is executed. To configure this type of filter, include the post-service-filter
statement at the [edit interfaces interface-name unit logical-unit-number family inet service input] hierarchy level:

post-service-filter filter-name;

The post-service-filter statement is not supported when the service interface is on an MS-MIC or MS-MPC.

For an example, see “Example: Configuring Service Sets” on page 26.

NOTE: With interface-style service sets that are configured with Junos OS extension-provide packages, the traffic fails to get serviced when the ingress interface is part of a VRF instance and the service interface is not part of the same VRF instance.

NOTE: When the MultiServices PIC configured for a service set is either administratively taken offline or undergoes a failure, all the traffic entering the configured interface with an IDP service set would be dropped without notification. To avoid this traffic loss, include the bypass-traffic-on-pic-failure statement at the [edit services service-set service-set-name service-set-options] hierarchy level. When this statement is configured, the affected packets are forwarded in the event of a MultiServices PIC failure or offlining, as though interface-style services were not configured. This issue applies only to Junos Application Aware (previously known as Dynamic Application Awareness) configurations using IDP service sets. This forwarding feature worked only with the Packet Forwarding Engine (PFE) initially. Starting with Junos OS Release 11.3, the packet-forwarding feature is extended to packets generated by the Routing Engine for bypass service sets as well.

Configuring Next-Hop Service Sets

A next-hop service set is a route-based method of applying a particular service. Only packets destined for a specific next hop are serviced by the creation of explicit static routes. This configuration is useful when services need to be applied to an entire virtual private network (VPN) routing and forwarding (VRF) table, or when routing decisions determine that services need to be performed.

When a next-hop service is configured, the AS or Multiservices PIC is considered to be a two-legged module with one leg configured to be the inside interface (inside the network) and the other configured as the outside interface (outside the network).

NOTE: You can create IFL indexes greater than 8000 only if the interface service set is not configured.
To configure the domain, include the `service-domain` statement at the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level:

```plaintext
    service-domain (inside | outside);
```

The `service-domain` setting must match the configuration for the next-hop service inside and outside interfaces. To configure the inside and outside interfaces, include the `next-hop-service` statement at the `[edit services service-set service-set-name]` hierarchy level. The interfaces you specify must be logical interfaces on the same ASPIC. You cannot configure `unit 0` for this purpose, and the logical interface you choose must not be used by another service set.

```plaintext
    next-hop-service {
        inside-service-interface interface-name.unit-number;
        outside-service-interface interface-name.unit-number;
    }
```

Traffic on which the service is applied is forced to the inside interface using a static route. For example:

```plaintext
    routing-options {
        static {
            route 10.1.2.3 next-hop sp-1/1/0.1;
        }
    }
```

After the service is applied, traffic exits by way of the outside interface. A lookup is then performed in the Packet Forwarding Engine (PFE) to send the packet out of the AS or Multiservices PIC.

The reverse traffic enters the outside interface, is serviced, and sent to the inside interface. The inside interface forwards the traffic out of the AS or Multiservices PIC.

Determining Traffic Direction

When you configure next-hop service sets, the ASPIC functions as a two-part interface, in which one part is the `inside` interface and the other part is the `outside` interface. The following sequence of actions takes place:

1. To associate the two parts with logical interfaces, you configure two logical interfaces with the `service-domain` statement, one with the `inside` value and one with the `outside` value, to mark them as either an inside or outside service interface.

2. The router forwards the traffic to be serviced to the inside interface, using the next-hop lookup table.

3. After the service is applied, the traffic exits from the outside interface. A route lookup is then performed on the packets to be sent out of the router.

4. When the reverse traffic returns on the outside interface, the applied service is undone; for example, IPsec traffic is decrypted or NAT addresses are unmasked. The serviced packets then emerge on the inside interface, the router performs a route lookup, and the traffic exits the router.
A service rule’s match direction, whether input, output, or input/output, is applied with respect to the traffic flow through the AS PIC, not through a specific inside or outside interface.

When a packet is sent to an AS PIC, packet direction information is carried along with it. This is true for both interface style and next-hop style service sets.

Interface Style Service Sets

Packet direction is determined by whether a packet is entering or leaving any Packet Forwarding Engine interface (with respect to the forwarding plane) on which the `interface-service` statement is applied. This is similar to the input and output direction for stateless firewall filters.

The match direction can also depend on the network topology. For example, you might route all the external traffic through one interface that is used to protect the other interfaces on the router, and configure various services on this interface specifically. Alternatively, you might use one interface for priority traffic and configure special services on it, but not care about protecting traffic on the other interfaces.

Next-Hop Style Service Sets

Packet direction is determined by the AS PIC interface used to route packets to the AS PIC. If you use the `inside-interface` statement to route traffic, then the packet direction is **input**. If you use the `outside-interface` statement to direct packets to the AS PIC, then the packet direction is **output**.

The interface to which you apply the service sets affects the match direction. For example, apply the following configuration:

```
sp-1/1/0 unit1 service-domain inside;
sp-1/1/0 unit2 service-domain outside;
```

If you configure **match-direction input**, you include the following statements:

```
[edit]
services service-set test1 next-hop-service inside-service-interface sp-1/0/0.1;
services service-set test1 next-hop-service outside-service-interface sp-1/0/0.2;
services ipsec-vpn rule test-ipsec-rule match-direction input;
routing-options static route 10.0.0.0/24 next-hop sp-1/1/0.1;
```

If you configure **match-direction output**, you include the following statements:

```
[edit]
services service-set test2 next-hop-service inside-service-interface sp-1/0/0.1;
services service-set test2 next-hop-service outside-service-interface sp-1/0/0.2;
services ipsec-vpn rule test-ipsec-rule match-direction output;
routing-options static route 10.0.0.0/24 next-hop sp-1/1/0.2;
```

The essential difference between the two configurations is the change in the match direction and the static routes’ next hop, pointing to either the AS PIC’s inside or outside interface.
Service Filters in ACX Series

When you apply a service set to the traffic at an inline services interface, you can optionally use service filters to refine the target of the set of services and also to process traffic. Service filters enable you to manipulate traffic by performing packet filtering to a defined set of services on an inline services interface before the traffic is delivered to its destination. In ACX Series routers, you can apply a service filter to traffic before packets are accepted for input service processing.

NOTE: In ACX Series routers, the service-set filters are implemented using ternary content addressable memory (TCAM) space. The allocated TCAM space is shared by the bridge family filter. The same space is shared by the NNI-Address-Overload-Reverse filter (for each service set that is configured with address overloading, the internal filters are configured for the given overloaded IP address and the port range to redirect the matched reverse-nat (public to private) traffic to the service). From a scaling perspective, the allocated 124 hardware TCAM entries are shared by these features and the allocation of TCAM entries works on a first-come-first-serve basis mode.
Guidelines for Applying Service Filters

This topic covers the following information:

- Restrictions for Inline Services Interfaces on page 15
- Statement Hierarchy for Applying Service Filters on page 15
- Associating Service Rules with Inline Services Interfaces on page 15
- Filtering Traffic Before Accepting Packets for Service Processing on page 16

Restrictions for Inline Services Interfaces

You can apply a service filter to IPv4 traffic associated with a service set at an inline services interface only.

ACX Series routers do not support post-service filters.

Statement Hierarchy for Applying Service Filters

You can enable packet filtering of IPv4 traffic before a packet is accepted for input service processing. To do this, apply a service filter to the inline services interface input in conjunction with an interface service set.

The following configuration shows the hierarchy levels at which you can apply the service filters to inline services interfaces:

```plaintext
[edit]
interfaces {
    interface-name {
        unit unit-number {
            family (inet | inet6) {
                service {
                    input {
                        service-set service-set-name service-filter service-filter-name;
                    }
                    output {
                        [ service-set service-set-name <service-filter filter-name> ];
                    }
                }
            }
        }
    }
}
```

Associating Service Rules with Inline Services Interfaces

To define and group the service rules be applied to an inline services interface, you define an interface service set by including the service-set service-set-name statement at the [edit services] hierarchy level.
To apply an interface service set to the input of an inline services interface, you include the `service-set service-set-name` at the following hierarchy levels:

- `[edit interfaces interface-name unit unit-number input]`

Filtering Traffic Before Accepting Packets for Service Processing

To filter IPv4 traffic before accepting packets for input service processing, include the `service-set service-set-name service-filter service-filter-name` at the following hierarchy level:

- `[edit interfaces interface-name unit unit-number family inet service input]`

For the `service-set-name`, specify a service set configured at the `[edit services service-set]` hierarchy level.

The service set retains the input interface information even after services are applied, so that functions such as filter-class forwarding that depend on input interface information continue to work.

The following requirements apply to filtering inbound or outbound traffic before accepting packets for service processing:

- You configure the same service set on the input and output sides of the interface.
- If you include the `service-set` statement without an optional `service-filter` definition, Junos OS assumes that the match condition is true and selects the service set for processing automatically.
- The service filter is applied only if a service set is configured and selected.

Related Documentation

- Enabling Inline Services Interface on ACX Series on page 93
- Understanding Service Sets
- Service Filters in ACX Series on page 14
- Service Filter Match Conditions for IPv4 Traffic on page 16
- Service Filter Actions on page 18
- Configuring Service Sets to Be Applied to Services Interfaces
- Configuring Queuing and Scheduling on Inline Services Interface on page 19

Service Filter Match Conditions for IPv4 Traffic

In ACX Series, service filters support only a subset of the stateless firewall filter match conditions for IPv4 traffic. Table 3 on page 17 describes the service filter match conditions.
Table 3: Service Filter Match Conditions for IPv4 Traffic

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-address</td>
<td>Match the IP destination address field.</td>
<td>family inet</td>
</tr>
<tr>
<td>address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>destination-port</td>
<td>Match the UDP or TCP destination port field.</td>
<td>family inet</td>
</tr>
<tr>
<td>number</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>You cannot specify both the port and destination-port match conditions in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the same term.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition for IPv4 traffic, we recommend that</td>
<td></td>
</tr>
<tr>
<td></td>
<td>you also configure the protocol udp or protocol tcp match statement in the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>same term to specify which protocol is being used on the port.</td>
<td></td>
</tr>
<tr>
<td>ip-options</td>
<td>Match the 8-bit IP option field, if present, to the specified value or list of values.</td>
<td>family inet</td>
</tr>
<tr>
<td>values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>protocol</td>
<td>Match the IP protocol type field.</td>
<td>family inet</td>
</tr>
<tr>
<td>number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source-address</td>
<td>Match the IP source address.</td>
<td>family inet</td>
</tr>
<tr>
<td>address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source-port</td>
<td>Match the UDP or TCP source port field.</td>
<td>family inet</td>
</tr>
<tr>
<td>number</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition for IPv4 traffic, we recommend that</td>
<td></td>
</tr>
<tr>
<td></td>
<td>you also configure the protocol udp or protocol tcp match statement in the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>same term to specify which protocol is being used on the port.</td>
<td></td>
</tr>
<tr>
<td>tcp-flags</td>
<td>Match one or more of the low-order 6 bits in the 8-bit TCP flags field in</td>
<td>family inet</td>
</tr>
<tr>
<td>value</td>
<td>the TCP header.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition for IPv4 traffic, we recommend that</td>
<td></td>
</tr>
<tr>
<td></td>
<td>you also configure the protocol tcp match statement in the same term to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>specify that the TCP protocol is being used on the port.</td>
<td></td>
</tr>
</tbody>
</table>

Related Documentation

- Enabling Inline Services Interface on ACX Series on page 93
- **Understanding Service Sets**
- Service Filters in ACX Series on page 14
- Guidelines for Applying Service Filters on page 15
- Service Filter Actions on page 18
- Configuring Service Sets to Be Applied to Services Interfaces
- Configuring Queuing and Scheduling on Inline Services Interface on page 19
Service Filter Actions

ACX Series support different sets of terminating and nonterminating actions that you can configure in a service filter term.

NOTE: Service filters do not support the `next term` action.

Table 4 on page 18 describes the terminating actions you can configure in a service filter term.

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>service</td>
<td>Direct the packet to service processing.</td>
<td>inet</td>
</tr>
</tbody>
</table>

Table 5 on page 18 describes the nonterminating actions you can configure in a service filter term.

<table>
<thead>
<tr>
<th>Nonterminating Action</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>Accept the packet.</td>
<td>inet</td>
</tr>
<tr>
<td>count counter-name</td>
<td>Count the packet in the named counter.</td>
<td>inet</td>
</tr>
<tr>
<td>log</td>
<td>Log the packet header information in a buffer within the Packet Forwarding Engine. You can access this information by issuing the <code>show firewall log</code> command at the command-line interface (CLI).</td>
<td>inet</td>
</tr>
<tr>
<td>port-mirror</td>
<td>Port-mirror the packet based on the specified family.</td>
<td>inet</td>
</tr>
</tbody>
</table>

Related Documentation

- Enabling Inline Services Interface on ACX Series on page 93
- Understanding Service Sets
- Service Filters in ACX Series on page 14
- Guidelines for Applying Service Filters on page 15
- Service Filter Match Conditions for IPv4 Traffic on page 16
- Configuring Service Sets to Be Applied to Services Interfaces
- Configuring Queuing and Scheduling on Inline Services Interface on page 19
Configuring Queuing and Scheduling on Inline Services Interface

To configure queuing and scheduling on an inline services interface, you need to include `scheduler-map` statement at the `[edit class-of-services interfaces si-/0/0/0] hierarchy level.

```
[edit class-of-service]
scheduler-maps <scheduler-map-name>;
interfaces si-0/0/0 { 
scheduler-map <scheduler-map-name>;
}
```

The `queue-number 7` of the inline services interface has `strict-high` priority because the timing packets received by ACX Series routers gets assigned to this queue. You can explicitly override this strict-high priority by assigning an explicit scheduler for `queue-number 7` in the `scheduler-map` statement attached to inline services interface as shown below:

```
[edit class-of-service]
forwarding-classes { 
  class <class-name> queue-number 7;
}
interfaces { 
  si-0/0/0{ 
    scheduler-map <scheduler-map-name>;
  }
}
scheduler-maps { 
  <map-name> { 
    forwarding-class <class-name> scheduler <scheduler-name>;
  }
}
schedulers { 
  <scheduler-name> { 
    priority low;
  }
}
```

The following are the CoS limitations for inline services:

- Inline services packets classified with packet loss priority as `medium-high` in the ingress path are treated as `high` on the egress path.
- When both timing and NAT services are enabled on the router, you should not classify NAT traffic into a forwarding class mapped with `queue-number 7`, because if you do so, the performance of timing services can degrade.
- If a scheduler with `queue-number 7` in the `scheduler-map` statement is attached to an inline services interface, then the scheduler should be configured with `strict priority`, else the timing performance can degrade.
Related Documentation

- Network Address Translation Overview on ACX Series on page 75
- Network Address Port Translation Overview on page 77
- Enabling Inline Services Interface on ACX Series on page 93
- Understanding Service Sets
- Service Filters in ACX Series on page 14
- Network Address Translation Address Overload in ACX Series on page 77
- Network Address Translation Constraints on ACX on page 79
- Configuring Address Pools for Network Address Port Translation (NAPT) Overview on page 92
- Configuring Service Sets to Be Applied to Services Interfaces

Configuring Service Rules

You specify the collection of rules and rule sets that constitute the service set. The router performs rule sets in the order in which they appear in the configuration. You can include only one rule set for each service type. You configure the rule names and content for each service type at the [edit services name] hierarchy level for each type:

- You configure intrusion detection service (IDS) rules at the [edit services ids] hierarchy level; for more information, see “Configuring IDS Rules on an MS-DPC” on page 498 for MS-DPC cards and “Configuring Protection Against Network Attacks on an MS-MPC” on page 515 for MS-MPC cards.
- You configure IP Security (IPsec) rules at the [edit services ipsec-vpn] hierarchy level; for more information, see “Understanding Junos VPN Site Secure” on page 531.
- You configure Network Address Translation (NAT) rules at the [edit services nat] hierarchy level; for more information, see “Junos Address Aware Network Addressing Overview” on page 61.
- You configure packet-triggered subscribers and policy control (PTSP) rules at the [edit services ptsp] hierarchy level; for more information, see Configuring PTSP Service Rules.
- You configure softwire rules for DS-Lite or 6rd softwires at the [edit services softwire] hierarchy level; for more information, see "Configuring Softwire Rules" on page 323.
- You configure stateful firewall rules at the [edit services stateful-firewall] hierarchy level; for more information, see "Configuring Stateful Firewall Rules" on page 467.

To configure the rules and rule sets that constitute a service set, include the following statements at the [edit services service-set service-set-name] hierarchy level:

```
((ids-rules rule-names | ids-rule-sets rule-set-name));
((ipsec-vpn-rules rule-names | ipsec-vpn-rule-sets rule-set-name));
((nat-rules rule-names | nat-rule-sets rule-set-name));
((pgcp-rules rule-names | pgcp-rule-sets rule-set-name));
((softwire-rules rule-names | softwire-rule-sets rule-set-name));
```
Foreach servicetype, you can include one or more individual rules, or one rule set. If you configure a service set with IPsec rules, it must not contain rules for any other services. You can, however, configure another service set containing rules for the other services and apply both service sets to the same interface.

NOTE: You can also include Junos Application Aware (previously known as Dynamic Application Awareness) functionality within service sets. To do this, you must include an idp-profile statement at the [edit services service-set] hierarchy level, along with application identification (APPID) rules, and, as appropriate, application-aware access list (AACL) rules and a policy-decision-statistics-profile. Only one service set can be applied to a single interface when Junos Application Aware functionality is used. For more information, see “Configuring IDS Rules on an MS-DPC” on page 498, APPID Overview, and Application Aware Services Interfaces Feature Guide for Routing Devices.

Configuring Service Set Limitations

You can set the following limitations on service set capacity:

- You can limit the maximum number of flows allowed per service set. To configure the maximum value, include the `max-flows` statement at the [edit services service-set service-set-name] hierarchy level:

  ```
  [edit services service-set service-set-name]
  max-flows number;
  ```

The `max-flows` statement permits you to assign a single flow limit value. For IDS service sets only, you can specify various types of flow limits with a finer degree of control. For more information, see the description of the `session-limit` statement in “Configuring IDS Rule Sets on an MS-DPC” on page 506.
NOTE: When an aggregated multiservices (AMS) interface is configured as the service interface for a service set, the max-flow value configured for the service set is applied to each of the member interfaces in the AMS interface. That is, if you have configured 1000 as the max-flow value for a service set that uses an AMS interface with four active member interfaces, each of the member interfaces can handle 1000 flows each, resulting in an effective max-flow value of 4000.

- You can limit the maximum segment size (MSS) allowed by the Transmission Control Protocol (TCP). To configure the maximum value, include the `tcp-mss` statement at the `[edit services service-set service-set-name]` hierarchy level:

  ```
  [edit services service-set service-set-name]
  tcp-mss number;
  ```

 The TCP protocol negotiates an MSS value during session connection establishment between two peers. The MSS value negotiated is primarily based on the MTU of the interfaces to which the communicating peers are directly connected to. However in the network, due to variation in link MTU on the path taken by the TCP packets, some packets that are still well within the MSS value may be fragmented when the concerned packet’s size exceeds the link's MTU.

 If the router receives a TCP packet with the SYN bit and MSS option set and the MSS option specified in the packet is larger than the MSS value specified by the `tcp-mss` statement, the router replaces the MSS value in the packet with the lower value specified by the `tcp-mss` statement. The range for the `tcp-mss mss-value` parameter is from 536 through 65535.

 To view statistics of SYN packets received and SYN packets whose MSS value is modified, issue the `show services service-sets statistics tcp-mss` operational mode command. For more information on this topic, see the Junos OS Administration Library.

- Starting in Junos OS Release 17.1R1, you can limit the session setup rate per service set for an MS-MPC. To configure the maximum setup rate allowed, include the `max-session-setup-rate` statement at the `[edit services service-set service-set-name]` hierarchy level:

  ```
  [edit services service-set service-set-name]
  max-session-setup-rate (number | numberk);
  ```

 The maximum session setup rate is the maximum number of session setups allowed per second. After this rate is reached, any additional session setup attempts are dropped.

 The range for the `max-session-setup-rate number` is 1 through 429,496,729. You can also express the setup rate as thousands of sessions by using `numberk`. Starting in Junos OS Release 18.4R1, 1k=1000 for the `max-session-setup-rate`. Prior to Junos OS Release 18.4R1, 1k=1024. If you do not include the `max-session-setup-rate` statement, the session setup rate is not limited.
Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.4R1</td>
<td>Starting in Junos OS Release 18.4R1, 1k=1000 for the max-session-setup-rate.</td>
</tr>
<tr>
<td>17.1R1</td>
<td>Starting in Junos OS Release 17.1R1, you can limit the session setup rate per service set for an MS-MPC.</td>
</tr>
</tbody>
</table>

Related Documentation

- Understanding Service Sets on page 7
- Configuring Service Sets to be Applied to Services Interfaces on page 9
- Configuring Service Rules on page 20
- Configuring System Logging for Service Sets on page 33

Configuring Service Interface Pools

To configure a service interface pool, include the following statements at the [edit services service-interface-pools] hierarchy level:

```
[edit services service-interface-pools]
pool pool-name {
    interface interface-name.unit-number;
}
```

Related Documentation

- Configuring Service Sets to be Applied to Services Interfaces on page 9

Enabling Services PICs to Accept Multicast Traffic

To allow multicast traffic to be sent to the Adaptive Services or Multiservices PIC, include the `allow-multicast` statement at the [edit services service-set service-set-name] hierarchy level. If this statement is not included, multicast traffic is dropped by default. This statement applies only to multicast traffic using a next-hop service set; interface service set configuration is not supported. Only unidirectional flows are created for multicast packets.

Related Documentation

- Understanding Service Sets on page 7
- Configuring Service Sets to be Applied to Services Interfaces on page 9
- Configuring Service Rules on page 20
- Example: Configuring Service Sets on page 26
- Example: Configuring NAT for Multicast Traffic on page 129

Applying Filters and Services to Interfaces

When you have defined and grouped the service rules by configuring the service-set definition, you can apply services to one or more interfaces on the router. To associate a defined service set with an interface, include the service-set statement with the input or output statement at the [edit interfaces interface-name unit logical-unit-number family inet service] hierarchy level:

```diff
[edit interfaces interface-name unit logical-unit-number family inet service]
  input {
    service-set service-set-name <service-filter filter-name>;
    post-service-filter filter-name;
  }
  output {
    service-set service-set-name <service-filter filter-name>;
  }
```

NOTE: When you enable services on an interface, reverse-path forwarding is not supported. You cannot configure services on the management interface (fxp0) or the loopback interface (lo0).

You can configure different service sets on the input and output sides of the interface. However, for service sets with bidirectional service rules, you must include the same service set definition in both the input and output statements. Any service set you include in the service statement must be configured with the interface-service statement at the [edit services service-set service-set-name] hierarchy level; for more information, see “Configuring Service Sets to be Applied to Services Interfaces” on page 9.

NOTE: If you configure an interface with an input firewall filter that includes a reject action and with a service set that includes stateful firewall rules, the router executes the input firewall filter before the stateful firewall rules are run on the packet. As a result, when the Packet Forwarding Engine sends an Internet Control Message Protocol (ICMP) error message out through the interface, the stateful firewall rules might drop the packet because it was not seen in the input direction.

Possible workarounds are to include a forwarding-table filter to perform the reject action, because this type of filter is executed after the stateful firewall in the input direction, or to include an output service filter to prevent the locally generated ICMP packets from going to the stateful firewall service.

Configuring Service Filters

You can optionally include filters associated with each service set to refine the target and additionally process the traffic. If you include the service-set statement without a
service-filter definition, the router software assumes that the match condition is true and selects the service set for processing automatically.

To configure service filters, include the firewall statement at the [edit] hierarchy level:

```plaintext
firewall {
    family inet {
        service-filter filter-name {
            term term-name {
                from {
                    match-conditions;
                }
                then {
                    action;
                    action-modifiers;
                }
            }
        }
    }
}
```

NOTE: You must specify inet as the address family to configure a service filter.

You configure service filters in a similar way to firewall filters. Service filters have the same match conditions as firewall filters, but the following specific actions:

- **count**—Add the packet to a counter total.
- **log**—Log the packet.
- **port-mirror**—Port-mirror the packet.
- **sample**—Sample the packet.
- **service**—Forward the packet for service processing.
- **skip**—Omit the packet from service processing.

For more information about configuring firewall filters, see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.

You can also include more than one service set definition on each side of the interface. If you include multiple service sets, the router software evaluates them in the order specified in the configuration. It executes the first service set for which it finds a match in the service filter and ignores the subsequent definitions.

An additional statement allows you to specify a filter for processing the traffic after the input service set is executed. To configure this type of filter, include the post-service-filter statement at the [edit interfaces interface-name unit logical-unit-number family inet service input] hierarchy level:
NOTE: The software performs postservice filtering only when it has selected and executed a service set. If the traffic does not meet the match criteria for any of the configured service sets, the postservice filter is ignored. The post-service-filter statement is not supported when the service interface is on an MS-MIC or MS-MPC.

For an example of applying a service set to an interface, see “Examples: Configuring Services Interfaces” on page 30.

For more information on applying filters to interfaces, see the Junos OS Network Interfaces Library for Routing Devices. For general information on filters, see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.

NOTE: After NAT processing is applied to packets, they are not subject to output service filters. The service filters affect only untranslated traffic.

Example: Configuring Service Sets

Apply two service sets, my-input-service-set and my-output-service-set, on an interface-wide basis. All traffic has my-input-service-set applied to it. After the service set is applied, additional filtering is done using my_post_service_input_filter.

```
[edit interfaces fe-0/1/0]
unit 0 {
    family inet {
        service {
            input {
                service-set my-input-service-set;
                post-service-filter my_post_service_input_filter;
            }
            output {
                service-set my-output-service-set;
            }
        }
    }
}
```

Related Documentation

- Understanding Services PICs
- Configuring Service Sets to be Applied to Services Interfaces on page 9
- Examples: Configuring Services Interfaces on page 30

- Understanding Service Sets on page 7
Configuring AS or Multiservices PIC Redundancy

You can configure AS or Multiservices PIC redundancy on M Series and T Series routers, except TX Matrix routers, that have multiple AS or Multiservices PICs. To configure redundancy, you specify a redundancy services PIC (rsp) interface in which the primary PIC is active and a secondary PIC is on standby. If the primary PIC fails, the secondary PIC becomes active, and all service processing is transferred to it. If the primary AS or Multiservices PIC is restored, it remains on standby and does not preempt the secondary PIC; you need to manually restore the services to the primary PIC. To determine which PIC is currently active, issue the `show interfaces redundancy` command.

Failover to the secondary PIC occurs under the following conditions:

- The primary PIC, FPC, or Packet Forwarding Engine goes down, resets, or is physically removed from the router.
- The PIC or FPC is taken offline using the `request chassis pic fpc-slot slot-number pic-slot slot-number offline` or `request chassis fpc slot slot-number offline` command. For more information, see the CLI Explorer.
- The driver watchdog timer expires.
- The `request interface switchover` command is issued. For more information, see the CLI Explorer.

NOTE: Adaptive Services and Multiservices PICs in Layer-2 mode (running Layer 2 services) are not rebooted when a MAC flow-control situation is detected.

NOTE: When you perform a switchover from a primary PIC to a secondary or standby PIC or a revert operation by issuing `request interfaces (revert | switchover)` command for redundancy services PICs (rsp), the PIC that was previously the active PIC before the switchover or reversion is automatically rebooted. The reboot of the PIC that was previously active and functioning as the primary PIC does not disrupt traffic forwarding.

The physical interface type `rsp` specifies the pairings between primary and secondary `sp` interfaces to enable redundancy. To configure an AS or Multiservices PIC as the backup, include the `redundancy-options` statement at the `[edit interfaces rsppnumber]` hierarchy level:

```
[edit interfaces rsppnumber]
redundancy-options {
  primary sp-fpc/pic/port;
  secondary sp-fpc/pic/port;
```
hot-standby;
}

For the **rsp** interface, **number** can be from 0 through 15.

NOTE: You can include a similar redundancy configuration for Link Services IQ (LSQ) PICs at the [edit interfaces risq number] hierarchy level. For more information, see “Configuring LSQ Interface Redundancy in a Single Router Using Virtual Interfaces” on page 790.

The following constraints apply to redundant AS or Multiservices PIC configurations:

- The services supported in redundancy configurations include stateful firewall, NAT, IDS, and IPsec. Services mounted on the AS or Multiservices PIC that use interface types other than sp- interfaces, such as tunneling and voice services, are not supported. For information on flow monitoring redundancy, see Configuring Services Interface Redundancy with Flow Monitoring.

NOTE: For IPsec functionality, the router no longer needs to renegotiate security associations (SAs) during warm standby PIC switchover. Instead, the warm standby feature has been made stateful by periodically setting a checkpoint between the working state of the PIC and the Routing Engine, which should lessen the downtime during switchover. If you prefer to retain the earlier behavior, you can include the clear-ipsec-sas-on-pic-restart statement at the [edit services ipsec-vpn] hierarchy level. If you enable this capability, the router renegotiates the IPsec SAs on warm standby PIC switchover. For more information, see “Configuring Security Associations” on page 549.

- We recommend that you pair the same model type in RSP configurations, such as two ASMs or two AS2 PICs. If you pair unlike models, the two PICs may perform differently.
- You can specify an AS or Multiservices PIC (sp interface) as the primary for only one rsp interface.
- An sp interface can be a secondary for multiple rsp interfaces. However, the same sp interface cannot be configured as a primary interface in one rsp configuration and as a secondary in another configuration.
- When the secondary PIC is active, if another primary PIC that is paired with it in an rsp configuration fails, no failover takes place.
- When you configure an AS or Multiservices PIC within a redundant configuration, the sp interface cannot have any configured services. Apply the configurations at the [edit interfaces rsp number] hierarchy level, using, for example, the unit and services-options statements. Exceptions include the multiservice-options statement used in flow monitoring configurations, which can be configured separately for the primary and secondary sp interfaces, and the traceoptions statement.
• All the operational mode commands that apply to sp interfaces also apply to rsp interfaces. You can issue show commands for the rsp interface or the primary and secondary sp interfaces.

• If a secondary PIC fails while it is in use, the rsp interface returns to the “not present” state. If the primary PIC comes up later, service is restored to it.

• For redundant Multiservices (rms-) interfaces, similar to the configuration of other bundle interfaces, the properties of the Multiservices (ms-) member interfaces, such as the logical unit and the address family, are inherited from the underlying rms-interface. If you previously configured the member ms-interface properties separately, and attempt to configure the rms-interface properties by using the relevant statements at the [edit interfaces rmsnumber] hierarchy level, an error occurs when you perform a commit check operation. You must configure the properties of interfaces that are part of the rms-interface only by using the statements at the [edit interfaces rmsnumber] hierarchy level.

Related Documentation

- Understanding Services PICs
- Examples: Configuring Services Interfaces on page 30
- Example: Configuring an Aggregated Multiservices Interface (AMS) on page 878

Enabling Session Offloading for Multiservices DPCs

The Junos OS enables you to configure session offloading for Multiservices DPCs on MX Series routers. This enables Fast Update Filters (FUF) at the PIC level for a multiservices interface (ms-fpc-pic-port). To configure session offloading, include the session-offload statement at the [edit chassis fpc slot-number pic number adaptive-services service-package extension-provider] hierarchy level:

```
[edit chassis fpc slot-number pic number adaptive-services service-package extension-provider]
session-offload;
```

Currently, session offloading is supported only for a maximum of one multiservices interface.

NOTE: When session offloading is enabled for a Multiservices PIC, we recommend that you limit dynamic application awareness features for Intrusion Detection and Prevention (IDP) only for that interface.
Examples: Configuring Services Interfaces

Apply the `my-service-set` service set on an interface-wide basis. All traffic that is accepted by `my_input_filter` has `my-input-service-set` applied to it. After the service set is applied, additional filtering is done using the `my_post_service_input_filter` filter.

```plaintext
[edit interfaces fe-0/1/0]
unit 0 {
    family inet {
        filter {
            input my_input_filter;
            output my_output_filter;
        }
        service {
            input {
                service-set my-input-service-set;
                post-service-filter my_post_service_input_filter;
            }
            output {
                service-set my-output-service-set;
            }
        }
    }
}
```

Configure two redundancy interfaces, `rsp0` and `rsp1`, and associated services.

```plaintext
[edit interfaces]
rsp0 {
    redundancy-options {
        primary sp-0/0/0;
        secondary sp-1/3/0;
    }
    unit 0 {
        family inet;
    }
    unit 30 {
        family inet;
        service-domain inside;
    }
    unit 31 {
        family inet;
        service-domain outside;
    }
}
rsp1 {
    redundancy-options {
        primary sp-0/1/0;
        secondary sp-1/3/0;
    }
    unit 0 {
        family inet;
    }
}
unit 20 {
  family inet;
  service-domain inside;
}
unit 21 {
  family inet;
  service-domain outside;
}

[edit services]
service-set null-sfw-with-nat {
  stateful-firewall-rules allow-all;
  nat-rules rule1;
  next-hop-service {
    inside-service-interface rsp0.30;
    outside-service-interface rsp0.31;
  }
}

[edit routing-instances]
vpna {
  interface rsp0.0;
}

Related Documentation

- Understanding Services PICs
- Configuring the Address and Domain for Services Interfaces on page 31
- Configuring Default Timeout Settings for Services Interfaces
- Configuring System Logging for Services Interfaces
- Applying Filters and Services to Interfaces on page 24
- Example: Configuring an Aggregated Multiservices Interface (AMS) on page 878

Configuring the Address and Domain for Services Interfaces

On the AS or Multiservices PIC, you configure a source address for system log messages by including the `address` statement at the `[edit interfaces interface-name unit logical-unit-number family inet]` hierarchy level:

```
address address {
 ...
}
```

Assign an IP address to the interface by configuring the `address` value. The AS or Multiservices PIC generally supports only IP version 4 (IPv4) addresses configured using the `family inet` statement, but IPsec services support IP version 6 (IPv6) addresses as well, configured using the `family inet6` statement.
NOTE: If you configure the same address on multiple interfaces in the same routing instance, Junos OS uses only the first configuration, the remaining address configurations are ignored and can leave interfaces without an address. Interfaces that do not have an assigned address cannot be used as a donor interface for an unnumbered Ethernet interface.

For example, in the following configuration the address configuration of interface xe-0/0/1.0 is ignored:

```plaintext
interfaces {
 xe-0/0/0 {
 unit 0 {
 family inet {
 address 192.168.1.1/24;
 }
 }
 }
 xe-0/0/1 {
 unit 0 {
 family inet {
 address 192.168.1.1/24;
 }
 }
 }
}
```

For more information on configuring the same address on multiple interfaces, see Configuring the Interface Address.

For information on other addressing properties you can configure that are not specific to service interfaces, see the Junos OS Network Interfaces Library for Routing Devices.

The service-domain statement specifies whether the interface is used within the network or to communicate with remote devices. The software uses this setting to determine which default stateful firewall rules to apply, and to determine the default direction for service rules. To configure the domain, include the service-domain statement at the [edit interfaces interface-name unit logical-unit-number] hierarchy level:

```
service-domain (inside | outside);
```

If you are configuring the interface in a next-hop service-set definition, the service-domain setting must match the configuration for the inside-service-interface and outside-service-interface statements; for more information, see "Configuring Service Sets to be Applied to Services Interfaces" on page 9.

Related Documentation
- Configuring Default Timeout Settings for Services Interfaces
- Configuring System Logging for Services Interfaces
- Examples: Configuring Services Interfaces on page 30
- Example: Configuring an Aggregated Multiservices Interface (AMS) on page 878
Configuring System Logging for Service Sets

You specify properties that control how system log messages are generated for the service set. These values override the values configured at the [edit interfaces interface-name services-options] hierarchy level.

To configure service-set-specific system logging values, include the syslog statement at the [edit services service-set service-set-name] hierarchy level:

```plaintext
syslog {
 host hostname {
 class class-name
 facility-override facility-name;
 log-prefix prefix-value;
 port port-number
 services severity-level;
 source-address source-address
 }
}
```

Configure the host statement with a hostname or an IP address that specifies the system log target server. The hostname local directs system log messages to the Routing Engine. For external system log servers, the hostname must be reachable from the same routing instance to which the initial data packet (that triggered session establishment) is delivered. You can specify only one system logging hostname. The source-address parameter is supported on the ms, rms, and mams interfaces.

Starting in Junos OS Release 17.4R1, you can configure up to a maximum of four system log servers (combination of local system log hosts and remote system log collectors) for each service set under [edit services service-set service-set-name] hierarchy level.

---

**NOTE:** Junos OS does not support the exporting of system log messages to an external system log server through the fxp.0 interface; this is because the high transmission rate of system log messages and the limited bandwidth of the fxp.0 interface can cause several problems. The external system log server must be reachable through a routable interface.

---

Table 6 on page 33 lists the severity levels that you can specify in configuration statements at the [edit services service-set service-set-name syslog host hostname] hierarchy level. The levels from emergency through info are in order from highest severity (greatest effect on functioning) to lowest.

**Table 6: System Log Message Severity Levels**

<table>
<thead>
<tr>
<th>Severity Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>Includes all severity levels</td>
</tr>
<tr>
<td>emergency</td>
<td>System panic or other condition that causes the router to stop functioning</td>
</tr>
</tbody>
</table>
### Table 6: System Log Message Severity Levels (continued)

<table>
<thead>
<tr>
<th>Severity Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alert</td>
<td>Conditions that require immediate correction, such as a corrupted system database</td>
</tr>
<tr>
<td>critical</td>
<td>Critical conditions, such as hard drive errors</td>
</tr>
<tr>
<td>error</td>
<td>Error conditions that generally have less serious consequences than errors in the emergency, alert, and critical levels</td>
</tr>
<tr>
<td>warning</td>
<td>Conditions that warrant monitoring</td>
</tr>
<tr>
<td>notice</td>
<td>Conditions that are not errors but might warrant special handling</td>
</tr>
<tr>
<td>info</td>
<td>Events or non-error conditions of interest</td>
</tr>
</tbody>
</table>

We recommend setting the system logging severity level to `error` during normal operation. To monitor PIC resource usage, set the level to `warning`. To gather information about an intrusion attack when an intrusion detection system error is detected, set the level to `notice` for a specific service set. To debug a configuration or log NAT functionality, set the level to `info`.

For more information about system log messages, see the System Log Explorer.

To select the class of messages to be logged to the specified system log host, include the `class` statement at the `[edit services service-set service-set-name syslog host hostname]` hierarchy level:

```
class class-name;
```

To use one particular facility code for all logging to the specified system log host, include the `facility-override` statement at the `[edit services service-set service-set-name syslog host hostname]` hierarchy level:

```
facility-override facility-name;
```

The supported facilities are: `authorization`, `daemon`, `ftp`, `kernel`, `user`, and `local0` through `local7`.

To specify a text prefix for all logging to this system log host, include the `log-prefix` statement at the `[edit services service-set service-set-name syslog host hostname]` hierarchy level:

```
log-prefix prefix-value;
```

**Related Documentation**
- Understanding Service Sets on page 7
- Configuring Service Sets to be Applied to Services Interfaces on page 9
Tracing Services PIC Operations

Tracing operations track all adaptive services operations and record them in a log file. The logged error descriptions provide detailed information to help you solve problems faster.

By default, no events are traced. If you include the `traceoptions` statement at the `[edit services adaptive-services-pics]` or `[edit services logging]` hierarchy level, the default tracing behavior is the following:

- Important events are logged in a file called `serviced` located in the `/var/log` directory.
- When the file `serviced` reaches 128 kilobytes (KB), it is renamed `serviced.0`, then `serviced.2`, and so on, until there are three trace files. Then the oldest trace file (`serviced.2`) is overwritten. (For more information about how log files are created, see the System Log Explorer.)
- Log files can be accessed only by the user who configures the tracing operation.

You cannot change the directory (`/var/log`) in which trace files are located. However, you can customize the other trace file settings by including the following statements:

```
file filename <files number> <match regular-expression> <size size> <world-readable | no-world-readable>;
flag {
 all;
 command-queued;
 config;
 handshake;
 init;
 interfaces;
 mib;
 removed-client;
 show;
}
```

You include these statements at the `[edit services adaptive-services-pics traceoptions]` or `[edit services logging traceoptions]` hierarchy level.

These statements are described in the following sections:

- Configuring the Adaptive Services Log Filename on page 36
- Configuring the Number and Size of Adaptive Services Log Files on page 36
- Configuring Access to the Log File on page 36
- Configuring a Regular Expression for Lines to Be Logged on page 36
- Configuring the Trace Operations on page 37
Configuring the Adaptive Services Log Filename

By default, the name of the file that records trace output is serviced. You can specify a different name by including the file statement at the [edit services adaptive-services-pics traceoptions] or [edit services logging traceoptions] hierarchy level:

    file filename;

Configuring the Number and Size of Adaptive Services Log Files

By default, when the trace file reaches 128 kilobytes (KB) in size, it is renamed filename.0, then filename.1, and so on, until there are three trace files. Then the oldest trace file (filename.2) is overwritten.

You can configure the limits on the number and size of trace files by including the following statements at the [edit services adaptive-services-pics traceoptions] or [edit services logging traceoptions] hierarchy level:

    file <filename> files number size size;

For example, set the maximum file size to 2 MB, and the maximum number of files to 20. When the file that receives the output of the tracing operation (filename) reaches 2 MB, filename is renamed filename.0, and a new file called filename is created. When the new filename reaches 2 MB, filename.0 is renamed filename.1 and filename is renamed filename.0. This process repeats until there are 20 trace files. Then the oldest file (filename.19) is overwritten by the newest file (filename.0).

The number of files can be from 2 through 1000 files. The file size of each file can be from 10 KB through 1 gigabyte (GB).

Configuring Access to the Log File

By default, log files can be accessed only by the user who configures the tracing operation.

To specify that any user can read all log files, include the file world-readable statement at the [edit services adaptive-services-pics traceoptions] or [edit services logging traceoptions] hierarchy level:

    file <filename> world-readable;

To explicitly set the default behavior, include the file no-world-readable statement at the [edit services adaptive-services-pics traceoptions] or [edit services logging traceoptions] hierarchy level:

    file <filename> no-world-readable;

Configuring a Regular Expression for Lines to Be Logged

By default, the trace operation output includes all lines relevant to the logged events.
You can refine the output by including the `match` statement at the `[edit services adaptive-services-pics traceoptions file filename]` or `[edit services logging traceoptions]` hierarchy level and specifying a regular expression (regex) to be matched:

```bash
file <filename> match regular-expression;
```

### Configuring the Trace Operations

By default, if the `traceoptions` configuration is present, only important events are logged. You can configure the trace operations to be logged by including the following statements at the `[edit services adaptive-services-pics traceoptions]` or `[edit services logging traceoptions]` hierarchy level:

```bash
flag {
 all;
 configuration;
 routing-protocol;
 routing-socket;
 snmp;
}
```

Table 7 on page 37 describes the meaning of the adaptive services tracing flags.

**Table 7: Adaptive Services Tracing Flags**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Trace all operations.</td>
<td>Off</td>
</tr>
<tr>
<td>command-queued</td>
<td>Trace command enqueue events.</td>
<td>Off</td>
</tr>
<tr>
<td>config</td>
<td>Log reading of the configuration at the [edit services] hierarchy level.</td>
<td>Off</td>
</tr>
<tr>
<td>handshake</td>
<td>Trace handshake events.</td>
<td>Off</td>
</tr>
<tr>
<td>init</td>
<td>Trace initialization events.</td>
<td>Off</td>
</tr>
<tr>
<td>interfaces</td>
<td>Trace interface events.</td>
<td>Off</td>
</tr>
<tr>
<td>mib</td>
<td>Trace GGSN SNMP MIB events.</td>
<td>Off</td>
</tr>
<tr>
<td>removed-client</td>
<td>Trace client cleanup events.</td>
<td>Off</td>
</tr>
<tr>
<td>show</td>
<td>Trace CLI command servicing.</td>
<td>Off</td>
</tr>
</tbody>
</table>

To display the end of the log, issue the `show log serviced | last` operational mode command:

```
[edit]
user@host# run show log serviced | last
```
Configuring Fragmentation Control for MS-DPC and MS-PIC Service Interfaces

Two configuration options are available to prevent excessive consumption of computational CPU cycles on a services PIC caused by the handling of large numbers of fragmented packets. Such fragment handling can be exploited in DOS attacks. The `fragment-limit` option establishes a maximum number of fragments for a packet. When this number is exceeded, the packet is dropped. The `reassembly-timeout` specifies the maximum time from the receipt of the first and latest fragments in a packet. When the number is exceeded, the packet is dropped.

To configure fragmentation control for MS-DPC and MS-PIC service interfaces:

1. In configuration mode, go to the `[edit interfaces interface-name services-options]` hierarchy level.
   ```
 edit interfaces interface-name services-options
   ```

2. Configure the fragment limit.
   ```
 [edit services interface-name services-options]
 set fragment-limit number-of-fragments
   ```

3. Configure the reassembly timeout.
   ```
 [edit services interface-name services-options]
 set reassembly-timeout number-of-fragments
   ```
CHAPTER 3

Plug-in Adaptive Services

- DNS Request Filtering for Blacklisted Website Domains on page 39
- URL Filtering Overview on page 47
- Configuring URL Filtering on page 50
- Exchanging Data More Efficiently Using TCP Fast Open on page 54
- Configuring TFO on page 55

DNS Request Filtering for Blacklisted Website Domains

- Overview of DNS Request Filtering on page 39
- How to Configure DNS Request Filtering on page 41

Overview of DNS Request Filtering

Starting in Junos OS Release 18.3R1, you can configure DNS filtering to identify DNS requests for blacklisted website domains. Starting in Junos OS Release 19.3R1, you can configure DNS filtering if you are running Next Gen Services with the MX-SPC3 services card. Next Gen Services are supported on MX240, MX480 and MX960 routers. For DNS request types A, AAAA, MX, CNAME, TXT, SRV, and ANY, you configure the action to take for a DNS request for a blacklisted domain. You can either:

- Block access to the website by sending a DNS response that contains the IP address or fully qualified domain name (FQDN) of a DNS sinkhole server. This ensures that when the client attempts to send traffic to the blacklisted domain, the traffic instead goes to the sinkhole server (see Figure 2 on page 40).
- Log the request and allow access.

For other DNS request types for a blacklisted domain, the request is logged and access is allowed.

The actions that the sinkhole server takes are not controlled by the DNS request filtering feature; you are responsible for configuring the sinkhole server actions. For example, the sinkhole server could send a message to the requestor that the domain is not reachable and prevent access to the blacklisted domain.
Benefits on page 40
- Blacklisted Domain Filter Database File on page 40
- DNS Filter Profile on page 40

Benefits

DNS filtering redirects DNS requests for blacklisted website domains to sinkhole servers, while preventing anyone operating the system from seeing the list of blacklisted domains. This is because the blacklisted domain names are in an encrypted format.

Blacklisted Domain Filter Database File

DNS request filtering requires a blacklisted domain filter database .txt file, which identifies each blacklisted domain name, the action to take on a DNS request for the blacklisted domain, and the IP address or fully qualified domain name (FQDN) of a DNS sinkhole server.

DNS Filter Profile

You configure a DNS filter profile to specify which blacklisted domain filter database file to use. You can also specify the interfaces on which DNS request filtering is performed, limit the filtering to requests for specific DNS servers, and limit the filtering to requests from specific source IP address prefixes.
How to Configure DNS Request Filtering

To filter DNS requests for blacklisted website domains, perform the following:

- How to Configure a Domain Filter Database on page 41
- How to Configure a DNS Filter Profile on page 42
- How to Configure a Service Set for DNS Filtering on page 46

How to Configure a Domain Filter Database

Create one or more domain filter database files that include an entry for each blacklisted domain. Each entry specifies what to do with a DNS request for a blacklisted website domain.

To configure a domain filter database file:

1. Create the name for the file. The database file name can have a maximum length of 64 characters and must have a .txt extension.

2. Add a file header with a format such as 20170314_01:domain,sinkhole_ip,v6_sinkhole,sinkhole_fqdn,id,action.

3. Add an entry in the file for each blacklisted domain. You can include a maximum of 10,000 domain entries. Each entry in the database file has the following items:

   hashed-domain-name,IPv4 sinkhole address,IPv6 sinkhole address,sinkhole FQDN,ID,action

   where:

   - hashed-domain-name is a hashed value of the blacklisted domain name (64 hexadecimal characters). The hash method and hash key that you use to produce the hashed domain value are needed when you configure DNS filtering with the Junos OS CLI.

   - IPv4 sinkhole address is the address of the DNS sinkholes server for IPv4 DNS requests.

   - IPv6 sinkhole address is the address of the DNS sinkholes server for IPv6 DNS requests.

   - sinkhole FQDN is the fully qualified domain name of the DNS sinkholes server.

   - ID is a 32-bit number that uniquely associates the entry with the hashed domain name.

   - action is the action to apply to a DNS request that matches the blacklisted domain name. If you enter replace, the MX Series router sends the client a DNS response with the IP address or FQDN of the DNS sinkholes server. If you enter report, the DNS request is logged and then sent to the DNS server.

4. In the last line of the file, include the file hash, which you calculate by using the same key and hash method that you used to produce the hashed domain names.
5. Save the database files on the Routing Engine in the `/var/db/url-filterd` directory.

6. Validate the domain filter database file.
   
   ```
 user@host > request services web-filter validate dns-filter-file-name filename hash-key key-string hash-method hash-method-name
   ```

7. If you make any changes to the database file, apply the changes.
   
   ```
 user@host > request services web-filter update dns-filter-database filename
   ```

### How to Configure a DNS Filter Profile

A DNS filter profile includes general settings for filtering DNS requests for blacklisted website domains, and includes up to 32 templates. The template settings apply to DNS requests on specific uplink and downlink logical interfaces or routing instances, or to DNS requests from specific source IP address prefixes, and override the corresponding settings at the DNS profile level. You can configure up to eight DNS filter profiles.

To configure a DNS filter profile:

1. Configure the name for a DNS filter profile:
   
   ```
 [edit]
 user@host# edit services web-filter profile profile-name
   ```
   
   The maximum number of profiles is 8.

2. Configure the interval for logging per-client statistics for DNS filtering. The range is 0 through 60 minutes and the default is 5 minutes.
   
   ```
 [edit services web-filter profile profile-name]
 user@host# set global-dns-stats-log-timer minutes
   ```

3. Configure general DNS filtering settings for the profile. These values are used if a DNS request does not match a specific template.
   
   a. Specify the name of the domain filter database to use when filtering DNS requests.
      
      ```
 [edit services web-filter profile profile-name dns-filter]
 user@host# set database-file filename
      ```

   b. (Optional) To limit DNS filtering to DNS requests that are destined for specific DNS servers, specify up to three IP addresses (IPv4 or IPv6).
      
      ```
 [edit services web-filter profile profile-name dns-filter]
 user@host# set dns-server [ip-address]
      ```
c. Specify the hash method that was used to create the hashed domain name in the domain filter database file.

```
[edit services web-filter profile profile-name dns-filter]
user@host# set hash-method hash-method-name
```

The only supported hash method is `hmac-sha2-256`.

d. Specify the hash key that you used to create the hashed domain name in the domain filter database file.

```
[edit services web-filter profile profile-name dns-filter]
user@host# set hash-key key-string
```

e. Configure the interval for logging statistics for DNS requests and for sinkhole actions performed for each customer IP address. The range is 1 through 60 minutes and the default is 5 minutes.

```
[edit services web-filter profile profile-name dns-filter]
user@host# set statistics-log-timer minutes
```

f. Configure the time to live while sending the DNS response after taking the DNS sinkhole action. The range is 0 through 86,400 seconds and the default is 1800.

```
[edit services web-filter profile profile-name dns-filter]
user@host# set dns-resp-ttl seconds
```

g. Configure the level of subdomains that are searched for a match. The range is 0 through 10. A value of 0 indicates that subdomains are not searched.

```
[edit services web-filter profile profile-name dns-filter]
user@host# set wildcarding-level level
```

For example, if you set the `wildcarding-level` to 4 and the database file includes an entry for `example.com`, the following comparisons are made for a DNS request that arrives with the domain `198.51.100.0.example.com`:

- `198.51.100.0.example.com`: no match
- `51.100.0.example.com`: no match for one level down
- `100.0.example.com`: no match for two levels down
- `0.example.com`: no match for three levels down
- `example.com`: match for four levels down

4. Configure a template. You can configure a maximum of 8 templates in a profile. Each template identifies filter settings for DNS requests on specific uplink and downlink
logical interfaces or routing instances, or for DNS requests from specific source IP address prefixes.

a. Configure the name for the template.

   [edit services web-filter profile profile-name]
   user@host# set dns-filter-template template-name

b. (Optional) Specify the client-facing logical interfaces (uplink) to which the DNS filtering is applied.

   [edit services web-filter profile profile-name dns-filter-template template-name]
   user@host# set client-interfaces [ client-interface-name ]

c. (Optional) Specify the server-facing logical interfaces (downlink) to which the DNS filtering is applied.

   [edit services web-filter profile profile-name dns-filter-template template-name]
   user@host# set server-interfaces [ server-interface-name ]

d. (Optional) Specify the routing instance for the client-facing logical interface to which the DNS filtering is applied.

   [edit services web-filter profile profile-name dns-filter-template template-name]
   user@host# set client-routing-instance client-routing-instance-name

e. (Optional) Specify the routing instance for the server-facing logical interface to which DNS filtering is applied.

   [edit services web-filter profile profile-name dns-filter-template template-name]
   user@host# set server-routing-instance server-routing-instance-name

---

**NOTE:** If you configure the client and server interfaces or the client and server routing instances, implicit filters are installed on the interfaces or routing instances to direct DNS traffic to the services PIC for DNS filtering. If you configure neither the client and server interfaces nor the routing instances, you must provide a way to direct DNS traffic to the services PIC (for example, via routes).

---

f. Specify the name of the domain filter database to use when filtering DNS requests.

   [edit services web-filter profile profile-name dns-filter-template template-name dns-filter]
   user@host# set database-file filename
g. (Optional) To limit DNS filtering to DNS requests that are destined for specific
DNS servers, specify up to three IP addresses (IPv4 or IPv6).

[edit services web-filter profile profile-name dns-filter-template template-name
dns-filter]
user@host# set dns-server [ ip-address ]

h. Specify the hash method that was used to create the hashed domain name in the
domain filter database file.

[edit services web-filter profile profile-name dns-filter-template template-name
dns-filter]
user@host# set hash-method hash-method-name

The only supported hash method is hmac-sha-256.

i. Specify the hash key that was used to create the hashed domain name in the
domain filter database file.

[edit services web-filter profile profile-name dns-filter-template template-name
dns-filter]
user@host# set hash-key key-string

j. Configure the interval for logging statistics for DNS requests and for sinkhole actions
performed for each customer IP address. The range is 1 through 60 minutes and
the default is 5 minutes.

[edit services web-filter profile profile-name dns-filter-template template-name
dns-filter]
user@host# set statistics-log-timer minutes

k. Configure the time to live while sending the DNS response after taking the DNS
sinkhole action. The range is 0 through 86,400 seconds and the default is 1800.

[edit services web-filter profile profile-name dns-filter-template template-name
dns-filter]
user@host# set dns-resp-ttl seconds

l. Configure the level of subdomains that are searched for a match. The range is 0
through 10. A value of 0 indicates that subdomains are not searched.

[edit services web-filter profile profile-name dns-filter-template template-name
dns-filter]
user@host# set wildcarding-level level

For example, if you set the wildcarding-level to 4 and the database file includes an
entry for example.com, the following comparisons are made for a DNS request that
arrives with the domain 198.51.100.0.example.com:
• 198.51.100.0.example.com: no match
• 51.100.0.example.com: no match for one level down
• 100.0.example.com: no match for two levels down
• 0.example.com: no match for three levels down
• example.com: match for four levels down

m. Configure a term for the template. You can configure a maximum of 64 terms in a template.

[edit services web-filter profile profile-name dns-filter-template template-name ]
user@host# set term term-name

n. (Optional) Specify the source IP address prefixes of DNS requests you want to filter. You can configure a maximum of 64 prefixes in a term.

[edit services web-filter profile profile-name dns-filter-template template-name ]
term term-name
user@host# set from src-ip-prefix [source-prefix]

o. Accept DNS requests for DNS filtering.

[edit services web-filter profile profile-name dns-filter-template template-name ]
term term-name
user@host# set then accept

p. Specify that the sinkhole action identified in the domain filter database is performed on blacklisted DNS requests.

[edit services web-filter profile profile-name dns-filter-template template-name ]
term term-name
user@host# set then dns-sinkhole

How to Configure a Service Set for DNS Filtering

• Associate the DNS filter profile with a next-hop service set and enable logging for DNS filtering. The service interface can be an ms- or vms- interface Next Gen Services with MX-SPC3 services card), or it can be an aggregated multiservices (AMS) interface.

[edit services service-set-set-name ]
user@host# set web-filter-profile profile-name
user@host# set syslog host hostname class urlf-logs
user@host# set next-hop-service inside-service-interface interface-name.unit-number
user@host# set next-hop-service outside-service-interface interface-name.unit-number
Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3R1</td>
<td>Starting in Junos OS Release 19.3R1, you can configure DNS filtering if you are running Next Gen Services with the MX-SPC3 services card. Next Gen Services are supported on MX240, MX480 and MX960 routers.</td>
</tr>
</tbody>
</table>

URL Filtering Overview

Starting in Junos OS Release 17.2, you can use URL filtering to determine which Web content is not accessible to users.

Components of this feature include the following:

- URL filter database file
- Configuration of one or more templates (up to eight per profile)
- URL Filter Plug-in (jservices-urlf)
- URL filtering daemon (url-filterd)

The URL filter database file is stored on the Routing Engine and contains all the blacklisted URLs. Configured templates define which traffic to monitor, what criteria to match, and which actions to take. You configure the templates and the location of the URL filter database file in a profile.

Starting in Junos OS Release 17.2R2 and 17.4R1, you can disable the filtering of HTTP traffic that contains an embedded IP address (for example, http://10.1.1.1) belonging to a blacklisted domain name in the URL filter database.

To enable the URL filtering feature, you must configure jservices-urlf as the package-name at the [edit chassis fpc slot-number pic pic-number adaptive-services service-package extension-provider] hierarchy level. Once enabled, jservices-urlf maintains the URL filtering profile and receives all traffic to be filtered, the filtering criteria, and the action to be taken on the filtered traffic.

The URL filtering daemon (url-filterd), which also resides on the Routing Engine, resolves the domain name of each URL in the URL filter database to a list of IPv4 and IPv6 addresses. It then downloads the list of IP addresses to the service PIC, which runs jservices-urlf. Then url-filterd interacts with the Dynamic Firewall process (dfwd) to install filters on the Packet Forwarding Engine to punt the selected traffic from the Packet Forwarding Engine to the service PIC.

As new HTTP and HTTPS traffic reaches the router, a decision is made based on the information in the URL filter database file. The filtering rules are checked and either the router accepts the traffic and passes it on or blocks the traffic. If the traffic is blocked, one of the following configured actions is taken:

- An HTTP redirect is sent to the user.
- A custom page is sent to the user.
• An HTTP status code is sent to the user.
• A TCP reset is sent.

Accept is also an option. In this case, the traffic is not blocked.

For more details on the URL filtering feature, see the following sections:

• URL Filter Database File on page 48
• URL Filter Profile Caveats on page 48

URL Filter Database File
The URL filter database file contains entries of URLs and IP addresses. Create the URL filter database file in the format indicated in Table 8 on page 48 and locate it on the Routing Engine in the /var/db/url-filter directory.

Table 8: URL Filter Database File Format

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>FQDN</td>
<td>Fully qualified domain name.</td>
<td><a href="http://www.badword.com/iii/bad.jpg">www.badword.com/iii/bad.jpg</a></td>
</tr>
<tr>
<td>URL</td>
<td>Full string URL without the Layer 7 protocol.</td>
<td><a href="http://www.yahoo.com/*badword*/">www.yahoo.com/*badword*/</a></td>
</tr>
<tr>
<td>IPv4 address</td>
<td>HTTP request on a specific IPv4 address.</td>
<td>10.1.1.199</td>
</tr>
<tr>
<td>IPv6 address</td>
<td>HTTP request on a specific IPv6 address.</td>
<td>1::1</td>
</tr>
</tbody>
</table>

You must specify a custom URL filter database in the profile. If needed, you can also assign a custom URL filter database file with any template, and that database takes precedence over the database configured at the profile level.

If you change the contents of the URL filter database file, use the request services (url-filter | web-filter) update command. Other commands to help maintain the URL filter database file include the following:

• request services (url-filter | web-filter) delete
• request services (url-filter | web-filter) force
• request services (url-filter | web-filter) validate

URL Filter Profile Caveats
The URL filter profile consists of from one to eight templates. Each template consists of a set of configured logical interfaces where traffic is monitored for URL filtering and one or more terms.

A term is a set of match criteria with actions to be taken if the match criteria is met. You must configure at least one term to configure URL filtering. Each term consists of a from
statement and a then statement, where the from statement defines the source IP prefixes and destination ports that are monitored. The then statement specifies the action to be taken. If you omit the from statement, any source IP prefix and any destination port are considered to match. But you can omit only one from statement per template or per profile.

Example configuration of multiple terms
without from statements

```
template1 {
 client-interfaces [xe-4/0/3.35 xe-4/0/3.36];
 server-interfaces xe-4/0/0.31;
 dns-source-interface xe-4/0/0.1;
 dns-routing-instance data_vr;
 routing-instance data_vr2;
 dns-server 50.0.0.3;
 dns-retries 3;
 url-filter-database url_database.txt;
 term term1 {
 then {
 tcp-reset;
 }
 }
 term term2 {
 then {
 redirect-url www.google.com;
 }
 }
}
```

If you omit more than one from statement per template, you will get the following error message on commit:

```
URLFD_CONFIG_FAILURE: Configuration not valid:
Cannot have two wild card terms in template template1
error: configuration check-out failed
```

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2R2</td>
<td>Starting in Junos OS Release 17.2R2 and 17.4R1, you can disable the filtering of HTTP traffic that contains an embedded IP address (for example, <a href="http://10.1.1.1">http://10.1.1.1</a>) belonging to a blacklisted domain name in the URL filter database.</td>
</tr>
</tbody>
</table>

Related Documentation

- Configuring URL Filtering on page 50
- request services url-filter update url-filter-database file on page 1450
- request services url-filter force dns-resolution on page 1448
- request services url-filter delete gencfg-data on page 1447
- request services url-filter validate on page 1451
Configuring URL Filtering

URL filtering is configured on a service PIC. The interfaces you are dealing with are services interfaces (which use the `ms` prefix) or aggregated multiservices (AMS) interfaces (which use the `ams` prefix). For more information on AMS interfaces, see the Adaptive Services Interfaces Feature Guide for Routing Devices starting with “Understanding Aggregated Multiservices Interfaces” on page 865.

To configure the URL filtering feature, you must first configure `jservices-urlf` as the `package-name` at the `[edit chassis fpc slot-number pic pic-number adaptive-services service-package extension-provider]` hierarchy level. For more information on configuring the `extension-provider package package-name` configuration statement, see the `package (Loading on PIC)` statement.

A URL filtering profile is a collection of templates. Each template consists of a set of criteria that defines which URLs are blacklisted and how the recipient is notified.

To configure the URL profile:

1. Assign a name to the URL profile.

   ```
 [edit]
 user@host# edit services (web-filter | url-filter) profile profile-name
   ```

   NOTE: Starting in Junos OS Release 18.3R1, configure the profile at the `[edit services web-filter]` hierarchy level. Before Junos OS Release 18.3R1, configure the profile at the `[edit services url-filter]` hierarchy level.

2. Specify the name of the URL filter database to use.

   ```
 [edit services (web-filter | url-filter) profile profile-name]
 user@host# set url-filter-database filename
   ```

3. Configure one or more templates for the profile.

   To configure each template:

   a. Name the template.

   ```
 [edit services (web-filter | url-filter) profile profile-name]
 user@host# set (url-filter-template template-name | template template-name)
   ```

   NOTE: Starting in Junos OS Release 18.3R1, configure the template with the `url-filter-template` statement. Before Junos OS Release 18.3R1, configure the template with the `template` statement.
b. Go to that new template hierarchy level.

```
[edit services (web-filter | url-filter) profile profile-name]
user@host# edit (url-filter-template template-name | template template-name)
```

c. Specify the name of the URL filter database to use.

```
[edit services (web-filter | url-filter) profile profile-name (url-filter-template template-name | template template-name)]
user@host# set url-filter-database filename
```

d. Specify the loopback interface for which the source IP address is picked for sending DNS queries.

```
[edit services (web-filter | url-filter) profile profile-name (url-filter-template template-name | template template-name)]
user@host# set dns-source-interface loopback-interface-name
```

e. Disable the filtering of HTTP traffic that contains an embedded IP address (for example, http://10.1.1.1) belonging to a blacklisted domain name in the URL filter database.

```
[edit services (web-filter | url-filter) profile profile-name (url-filter-template template-name | template template-name)]
user@host# set disable-url-filtering
```

f. Configure the DNS resolution time interval in minutes.

```
[edit services (web-filter | url-filter) profile profile-name (url-filter-template template-name | template template-name)]
user@host# set dns-resolution-interval minutes
```

g. Configure the number of retries for a DNS query in case the query fails or times out.

```
[edit services (web-filter | url-filter) profile profile-name]
user@host# set dns-retries number
```

h. Specify the IP addresses (IPv4 or IPv6) of DNS servers to which the DNS queries are sent.

```
[edit services (web-filter | url-filter) profile profile-name (url-filter-template template-name | template template-name)]
user@host# set dns-server [ip-address]
```

i. Specify the client-facing logical interfaces on which the URL filtering is configured.
j. Specify the server-facing logical interfaces on which the URL filtering is configured.

```
[edit services (web-filter | url-filter) profile profile-name (url-filter-template template-name | template template-name)]
user@host# set server-interfaces [server-interface-name]
```

k. Specify the routing instance on which the URL filtering is configured.

```
[edit services (web-filter | url-filter) profile profile-name (url-filter-template template-name | template template-name)]
user@host# set routing-instance routing-instance-name
```

l. Specify the routing instance on which the DNS server is reachable.

```
[edit services (web-filter | url-filter) profile profile-name (url-filter-template template-name | template template-name)]
user@host# dns-routing-instance dns-routing-instance-name
```

4. Configure the term information.

Terms are used in filters to segment the policy or filter into small match and action pairs.

a. Name the term.

```
[edit services (web-filter | url-filter) profile profile-name (url-filter-template template-name | template template-name)]
user@host# set term term-name
```

b. Go to the new term hierarchy level.

```
[edit services (web-filter | url-filter) profile profile-name (url-filter-template template-name | template template-name)]
user@host# edit term term-name
```

c. Specify the source IP address prefixes for traffic you want to filter.

```
[edit services (web-filter | url-filter) profile profile-name (url-filter-template template-name | template template-name) term term-name]
user@host# set from src-ip-prefix [prefix]
```

d. Specify the destination ports for traffic you want to filter.
e. Configure an action to take.

[edit services (web-filter | url-filter) profile profile-name (url-filter-template template-name | template-template-name) term term-name]
user@host# set from dest-port [port]

The action can be one of the following:

custom-page custom-page—Send a custom page string to the user.

http-status-code http-status-code—Send an HTTP status code to the user.

redirect-url redirect-url—Send an HTTP redirect to the user.

tcp-reset—Send a TCP reset to the user.

5. Associate the URL profile with a next-hop service set.

NOTE: For URL filtering, you must configure the service set as a next-hop service set.

[edit]
user@host# set services service-set service-set-name (web-filter-profile profile-name | url-filter-profile profile-name)
user@host# set services service-set service-set-name next-hop-service inside-service-interface interface-name.unit-number
user@host# set services service-set service-set-name next-hop-service outside-service-interface interface-name.unit-number

NOTE: The service interface can also be of the ams prefix. If you are using ams interfaces at the [edit services service-set service-set-name] hierarchy level for the URL filter, you must also configure the load-balancing-options hash-keys statement at the [edit interfaces ams-interface-name unit number] hierarchy level. For more information on configuring ams interfaces for next-hop service sets, see Example: Filtering Web Content on Multiple Service PICs Using an Aggregated Multiservices Interface.

NOTE: Starting in Junos OS Release 18.3R1, configure the service set with the web-filter-profile statement. Before Junos OS Release 18.3R1, configure the service set with the url-filter-profile statement.
TCP Fast Open (TFO) is an update to TCP that saves up to one full round-trip time (RTT) over the standard three-way connection handshake during a TCP session. TFO support is for MS-MPC and MS-MIC.

The standard three-way connection handshake involves three sets of send and receive messages between two hosts and the following exchange of SYN (synchronize) and ACK (acknowledgement) packets:

1. Host A sends a TCP SYN packet to Host B. Host B receives it.
2. Host B sends a SYN-ACK packet to Host A. Host A receives it.
3. Host A sends an ACK packet to Host B. Host B receives it.

In standard TCP, although data can be carried in SYN packets, this data cannot be delivered until the three-way handshake is completed. TFO removes this constraint and allows data in SYN packets to be delivered to the application, yielding significant latency improvement.

The key component of TFO is the Fast Open Cookie (cookie), which is a Message Authentication Code (MAC) tag generated by the server. The client requests a cookie in one regular TCP connection, then uses it for future TCP connections to exchange data during the handshake.

The TFO option is used to request or to send a TFO cookie. When a cookie is not present or is empty, the option is used by the client to request a cookie from the server. When the cookie is present, the option is used to pass the cookie from the server to the client or from the client back to the server.

The following list outlines how the client requests a TFO cookie:

1. The client sends a SYN with a TFO option that has the cookie field empty.
2. The server generates a cookie and sends it through the TFO option of a SYN-ACK packet.
3. The client caches the cookie for future TFO connections.

Thereafter, the two devices perform a TFO exchange:

1. The client sends a SYN with data and the cookie in the TFO option.
2. The server validates the cookie:
   - If the cookie is valid, the server sends a SYN-ACK acknowledging both the SYN and the data.
     The server then delivers the data to the application.
• Otherwise, the server drops the data and sends a SYN-ACK acknowledging only the SYN sequence number.

The rest of the connection proceeds like a normal TCP connection. The client can repeat many TFO operations once it acquires a cookie (until the cookie is expired by the server). Thus, TFO is useful for applications in which the same client reconnects to the same server multiple times and exchanges data.

Related Documentation

• tcp-fast-open on page 1284
• Configuring TFO on page 55

Configuring TFO

In this topic, the three modes of TCP Fast Open (TFO) are described and examples given. The case of using NAT with TFO is also covered.

• Three Modes for TFO on page 55
• Using NAT and TFO on page 57

Three Modes for TFO

No configuration is required to use TFO. TFO is enabled by default. In default mode, all TFO packets are forwarded by the service PIC. Besides the default, there are two other modes for TFO that you configure through the CLI:

• Drop TFO—If this mode is set, no TFO packets are forwarded.
• Disable TFO—If this mode is set, any SYN or SYN ACK packet carrying TFO, data, or both, will be stripped of the TFO and the data before being forwarded.

The TFO option is enabled per service set. The service set can be either a next-hop service set or an interface-style service set. Following is an example interface-style service set configuration:

```
[edit]
services {
 service-set ss2 {
 stateful-firewall-rules sfw_rule;
 interface-service {
 service-interface ms-2/3/0;
 }
 }
 stateful-firewall {
 rule sfw_rule {
 match-direction input-output;
 term 0 {
 from {
 source-address {
 any-ipv4;
 }
 } destination-address {
```
any-ipv4;
} then {
    accept;
} }
}
}
}
}
}

In this instance, TFO is enabled by default (no TFO configuration). The output for the `show services service-sets statistics tcp` command is as follows:

```
user@host> show services service-sets statistics tcp
Interface: ms-2/3/0
Service set: ss2
TCP open/close statistics:
 TCP first packet non-syn: 0
 TCP first packet reset: 0
 TCP first packet FIN: 0
 TCP non syn discard: 0
 TCP extension alloc fail: 0
 TFO SYN with cookie request: 1
 TFO SYN with cookie: 0
 TFO SYN ACK with cookie: 0
 TFO packets forwarded: 0
 TFO packets dropped: 1
 TFO packets stripped: 0
```

If you drop TFO enabled packets, you have the following configuration and output:

```
[edit]
services {
 service-set ss2 {
 service-set-options {
 tcp-fast-open drop;
 }
 stateful-firewall-rules sfw_rule;
 interface-service {
 service-interface ms-2/3/0;
 }
 }
}

user@host> show services service-sets statistics tcp
Interface: ms-2/3/0
Service set: ss2
TCP open/close statistics:
 TCP first packet non-syn: 0
 TCP first packet reset: 0
 TCP first packet FIN: 0
```

Copyright © 2019, Juniper Networks, Inc.
If you strip the TFO option, the configuration and output change accordingly:

```
[edit]
services {
 service-set ss2 {
 service-set-options {
 tcp-fast-open disabled;
 }
 stateful-firewall-rules sfw_rule;
 interface-service {
 service-interface ms-2/3/0;
 }
 }
}
```

```
user@host> show services service-sets statistics tcp
```

Interface: ms-2/3/0
Service set: ss2
TCP open/close statistics:
- TCP first packet non-syn: 0
- TCP first packet reset: 0
- TCP first packet FIN: 0
- TCP non syn discard: 0
- TCP extension alloc fail: 0
- TFO SYN with cookie request: 1
- TFO SYN with cookie: 0
- TFO SYN ACK with cookie: 0
- TFO packets forwarded: 0
- TFO packets dropped: 0
- TFO packets stripped: 1

### Using NAT and TFO

If NAT is configured in the service set and you are using TFO, you should configure address-pooling paired (APP). APP allows a private IP address to be mapped to the same public IP address from a NAT pool for all its sessions.

If you do not configure APP, NAT can give a different IP address to the client from the same NAT pool than the one it sent to the server before. The server does not recognize the IP address, drops the TFO option, and replies with SYN ACK and the data the client sent is not acknowledged. Therefore, even though the connection is successful and no packet is lost, the benefit of TFO is lost. But if client comes back with the same IP address,
the server recognizes it and acknowledges the data. Therefore, always enable APP with a high mapping timeout value with TFO.

To configure APP:

1. Configure APP:
   
   set services nat rule rule-name term term-name then translated address-pooling paired

2. Configure a high mapping timeout value:
   
   set services nat pool nat-pool-name mapping-timeout seconds

Related Documentation

- tcp-fast-open on page 1284
PART 2

Translating IP Addresses Using NAT

- NAT Overview on page 61
- NAT Configuration Overview on page 75
- Avoiding IPv4 Exhaustion Using Junos Address Aware Network Addressing and Stateful NAT64 on page 109
- Hiding Private Networks Using Static Source NAT on page 115
- Making Private Servers Available Using Static Destination NAT on page 135
- Allowing Components of a Private Network to Share a Single Address Using NAPT on page 141
- Mapping Addresses and Ports With Deterministic NAT on page 163
- Securing Traffic Using NAT-PT and ALGs on page 173
- Providing IPv4 Connectivity Across IPv6-Only Network Using 464XLAT on page 213
- Reducing Traffic and Bandwidth Requirements Using Port Control Protocol on page 217
- Automatically Assigning Ports Using Secured Port Block Allocation on page 233
- Connecting Specific Ports and Addresses Using Port Forwarding on page 243
- Allocating a Few Public Addresses to Many Private Hosts Using Dynamic NAT on page 253
- Achieving Line-Rate, Low-Latency Translations Using Inline NAT on page 261
- Removing Address Dependency Using Network Prefix Translation for IPv6 Traffic on page 285
- Monitoring NAT on page 305
CHAPTER 4

NAT Overview

- Junos Address Aware Network Addressing Overview on page 61
- Junos OS Carrier-Grade NAT Implementation Overview on page 68
- Carrier-Grade NAT Feature Comparison for Junos Address Aware by Type of Interface Card on page 69

Junos Address Aware Network Addressing Overview

Junos Address Aware Network Addressing provides Network Address Translation (NAT) functionality for translating IP addresses. This is particularly important because the Internet Assigned Numbers Authority (IANA) allocated the last large block of IPv4 addresses in early 2011.

This topic includes the following sections:

- Benefits of NAT on page 61
- NAT Concept and Facilities Overview on page 62
- IPv4-to-IPv4 Basic NAT on page 63
- Deterministic NAPT on page 64
- Static Destination NAT on page 64
- Twice NAT on page 64
- IPv6 NAT on page 64
- Application-Level Gateway (ALG) Support on page 65
- NAT-PT with DNS ALG on page 65
- Dynamic NAT on page 65
- Stateful NAT64 on page 66
- 464XLAT on page 66
- Dual-Stack Lite on page 67
- Junos Address Aware Network Addressing Line Card Support on page 67

Benefits of NAT

NAT supports a wide range of networking goals, including:
• Concealing a set of host addresses on a private network behind a pool of public addresses to protect the host addresses from direct targeting in network attacks and to avoid IPv4 address exhaustion
• Providing the tools to transition to IPv6 based on business requirements and to ensure uninterrupted subscriber and service growth
• Providing IPv4–IPv6 coexistence

NAT Concept and Facilities Overview

Junos Address Aware Network Addressing provides carrier-grade NAT (CGN) for IPv4 and IPv6 networks, and facilitates the transit of traffic between different types of networks.

Junos Address Aware Network Addressing supports a diverse set of NAT translation options:

• Static-source translation—Allows you to hide a private network. It features a one-to-one mapping between the original address and the translated address; the mapping is configured statically. For more information, see “Basic NAT” on page 63.
• Deterministic NAPT—Eliminates the need for address translation logging by ensuring that the original source IPv4 or IPv6 address and port always map to the same post-NAT IPv4 address and port range.
• Dynamic-source translation—Includes two options: dynamic address-only source translation and Network Address Port Translation (NAPT):
  • Dynamic address-only source translation—mdash;A NAT address is picked up dynamically from a source NAT pool and the mapping from the original source address to the translated address is maintained as long as there is at least one active flow that uses this mapping. For more information, see “Dynamic NAT” on page 65.
  • NAPT—Both the original source address and the source port are translated. The translated address and port are picked up from the corresponding NAT pool. For more information, see “NAPT” on page 63.
• Static destination translation—Allows you to make selected private servers accessible. It features a one-to-one mapping between the translated address and the destination address; the mapping is configured statically. For more information, see “Static Destination NAT” on page 64.
• Protocol translation—Allows you to assign addresses from a pool on a static or dynamic basis as sessions are initiated across IPv4 or IPv6 boundaries. For more information, see “Configuring NAT-PT” on page 188, “NAT-PT with DNS ALG” on page 65, and “Stateful NAT64” on page 66.
• Encapsulation of IPv4 packets into IPv6 packets using softwires—Enables packets to travel over softwires to a carrier-grade NAT endpoint where they undergo source-NAT processing to hide the original source address. For more information, see “Tunneling Services for IPv4-to-IPv6 Transition Overview” on page 317.
Junos Address Aware Network Addressing supports NAT functionality described in IETF RFCs and Internet drafts, as shown in “Supported NAT and SIP Standards” in Standards Reference.

**NOTE:** Not all types of NAT are supported on all interface types. See “Carrier-Grade NAT Feature Comparison for Junos Address Aware by Type of Interface Card” on page 69, which lists features available on supported interfaces.

### IPv4-to-IPv4 Basic NAT

Basic Network Address Translation or Basic NAT is a method by which IP addresses are mapped from one group to another, transparent to end users. Network Address Port Translation or NAPT is a method by which many network addresses and their TCP/UDP ports are translated into a single network address and its TCP/UDP ports. Together, these two operations, referred to as traditional NAT, provide a mechanism to connect a realm with private addresses to an external realm with globally unique registered addresses.

Traditional NAT, specified in RFC 3022, Traditional IP Network Address Translator, is fully supported by Junos Address Aware Network Addressing. In addition, NAPT is supported for source addresses.

**Basic NAT**

With Basic NAT, a block of external addresses is set aside for translating addresses of hosts in a private domain as they originate sessions to the external domain. For packets outbound from the private network, Basic NAT translates source IP addresses and related fields such as IP, TCP, UDP, and ICMP header checksums. For inbound packets, Basic NAT translates the destination IP address and the checksums listed above.

Hairpinning is supported for basic NAT.

**NAPT**

Use NAPT to enable the components of the private network to share a single external address. NAPT translates the transport identifier (for example, TCP port number, UDP port number, or ICMP query ID) of the private network into a single external address. NAPT can be combined with Basic NAT to use a pool of external addresses in conjunction with port translation.

For packets outbound from the private network, NAPT translates the source IP address, source transport identifier (TCP/UDP port or ICMP query ID), and related fields, such as IP, TCP, UDP, and ICMP header checksums. For inbound packets, NAPT translates the destination IP address, the destination transport identifier, and the IP and transport header checksums.

On MX Series routers with MS-MICs and MS-MPCs, if you configure a NAPT44 NAT rule and the source IP address of a spoofed packet is equal to the NAT pool and the NAT rule match condition fails, the packet is continuously looped between the services PIC and
the Packet Forwarding Engine. We recommend that you manually clear the session and create a filter to block NAT pool IP spoofing under such conditions.

Hairpinning is supported for NAPT.

**Deterministic NAPT**

Use deterministic NAPT44 to ensure that the original source IPv4 address and port always map to the same post-NAT IPv4 address and port range, and that the reverse mapping of a given translated external IPv4 address and port are always mapped to the same internal IP address. This eliminates the need for address translation logging. Starting in Junos OS Release 17.4R1, deterministic NAPT64 is supported on the MS-MPC and MS-MIC. Deterministic NAPT64 ensures that the original source IPv6 address and port always map to the same post-NAT IPv4 address and port range, and that the reverse mapping of a given translated external IPv4 address and port are always mapped to the same internal IPv6 address.

**Static Destination NAT**

Use static destination NAT to translate the destination address for external traffic to an address specified in a destination pool. The destination pool contains one address and no port configuration.

For more information about static destination NAT, see RFC 2663, *IP Network Address Translator (NAT) Terminology and Considerations.*

**Twice NAT**

In Twice NAT, both the source and destination addresses are subject to translation as packets traverse the NAT router. The source information to be translated can be either address only or address and port. For example, you would use Twice NAT when you are connecting two networks in which all or some addresses in one network overlap with addresses in another network (whether the network is private or public). In traditional NAT, only one of the addresses is translated.

To configure Twice NAT, you must specify both a destination address and a source address for the match direction, pool or prefix, and translation type.

You can configure application-level gateways (ALGs) for ICMP and traceroute under stateful firewall, NAT, or class-of-service (CoS) rules when Twice NAT is configured in the same service set. These ALGs cannot be applied to flows created by the Packet Gateway Control Protocol (PGCP). Twice NAT does not support other ALGs. By default, the Twice NAT feature can affect IP, TCP, and UDP headers embedded in the payload of ICMP error messages.

Twice NAT, specified in RFC 2663, *IP Network Address Translator (NAT) Terminology and Considerations,* is fully supported by Junos Address Aware Network Addressing.

**IPv6 NAT**

IPv6-to-IPv6 NAT (NAT66), defined in Internet draft draft-mrw-behave-nat66-01, IPv6-to-IPv6 Network Address Translation (NAT66), is fully supported by Junos Address Aware Network Addressing.
Application-Level Gateway (ALG) Support

Junos Address Aware Network Addressing supports a number of ALGs. You can use NAT rules to filter incoming traffic based on ALGS. For more information, see “Network Address Translation Rules Overview” on page 84.

NAT-PT with DNS ALG

NAT-PT and Domain Name System (DNS) ALG are used to facilitate communication between IPv6 hosts and IPv4 hosts. Using a pool of IPv4 addresses, NAT-PT assigns addresses from that pool to IPv6 nodes on a dynamic basis as sessions are initiated across IPv4 or IPv6 boundaries. Inbound and outbound sessions must traverse the same NAT-PT router so that it can track those sessions. RFC 2766, Network Address Translation - Protocol Translation (NAT-PT), recommends the use of NAT-PT for translation between IPv6-only nodes and IPv4-only nodes, and not for IPv6-to-IPv6 translation between IPv6 nodes or IPv4-to-IPv4 translation between IPv4 nodes.

DNS is a distributed hierarchical naming system for computers, services, or any resource connected to the Internet or a private network. The DNS ALG is an application-specific agent that allows an IPv6 node to communicate with an IPv4 node and vice versa.

When DNS ALG is employed with NAT-PT, the DNS ALG translates IPv6 addresses in DNS queries and responses to the corresponding IPv4 addresses and vice versa. IPv4 name-to-address mappings are held in the DNS with “A” queries. IPv6 name-to-address mappings are held in the DNS with “AAAA” queries.


Dynamic NAT

Dynamic NAT flow is shown in Figure 3 on page 65.

Figure 3: Dynamic NAT Flow

With dynamic NAT, you can map a private IP address (source) to a public IP address drawing from a pool of registered (public) IP addresses. NAT addresses from the pool are assigned dynamically. Assigning addresses dynamically also allows a few public IP addresses to be used by several private hosts, in contrast with an equal-sized pool required by source static NAT.

For more information about dynamic address translation, see RFC 2663, IP Network Address Translator (NAT) Terminology and Considerations.
Stateful NAT64

Stateful NAT64 flow is shown in Figure 4 on page 66.

Figure 4: Stateful NAT64 Flow

Stateful NAT64 is a mechanism to move to an IPv6 network and at the same time deal with IPv4 address depletion. By allowing IPv6-only clients to contact IPv4 servers using unicast UDP, TCP, or ICMP, several IPv6-only clients can share the same public IPv4 server address. To allow sharing of the IPv4 server address, NAT64 translates incoming IPv6 packets into IPv4 (and vice versa).

When stateful NAT64 is used in conjunction with DNS64, no changes are usually required in the IPv6 client or the IPv4 server. DNS64 is out of scope of this document because it is normally implemented as an enhancement to currently deployed DNS servers.

Stateful NAT64, specified in RFC 6146, Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers, is fully supported by Junos Address Aware Network Addressing.

464XLAT

Starting in Junos OS Release 17.1R1, you can configure a 464XLAT Provider-Side Translater (PLAT). This is supported only on MS-MICs and MS-MPCs. 464XLAT provides a simple and scalable technique for an IPv4 client with a private address to connect to an IPv4 host over an IPv6 network. 464XLAT only supports IPv4 in the client-server model, so it does not support IPv4 peer-to-peer communication or inbound IPv4 connections.

A customer-side translator (CLAT), which is not a Juniper Networks product, translates the IPv4 packet to IPv6 by embedding the IPv4 source and destination addresses in IPv6 /96 prefixes, and sends the packet over an IPv6 network to the PLAT. The PLAT translates the packet to IPv4, and sends the packet to the IPv4 host over an IPv4 network (see Figure 5 on page 66).

Figure 5: 464XLAT Wireline Flow
XLAT464 provides the advantages of not having to maintain an IPv4 network and not having to assign additional public IPv4 addresses.

The CLAT can reside on the end user mobile device in an IPv6-only mobile network, allowing mobile network providers to roll out IPv6 for their users and support IPv4-only applications on mobile devices (see Figure 6 on page 67).

Figure 6: 464XLAT Wireless Flow

Dual-Stack Lite

Dual-stack lite (DS-Lite) flow is shown in Figure 7 on page 67.

Figure 7: DS-Lite Flow

DS-Lite employs IPv4-over-IPv6 tunnels to cross an IPv6 access network to reach a carrier-grade IPv4-IPv4 NAT. This facilitates the phased introduction of IPv6 on the Internet by providing backward compatibility with IPv4.

DS-Lite is supported on MX series routers with MS-DPCs and on M Series routers with MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS release 17.4R1, DS-Lite is supported on MX Series routers with MS-MPCs and MS-MICs. Starting in Junos OS release 19.2R1, DS-Lite is supported on MX Virtual Chassis and MX Broadband Network Gateway (BNG) routers.

Junos Address Aware Network Addressing Line Card Support

Junos Address Aware Network Addressing technologies are available on the following line cards:

- MultiServices Dense Port Concentrator (MS-DPC)
- MS-100, MS-400, and MS-500 MultiServices PICS
MultiServices Modular Port Concentrator (MS-MPC) and MultiServices Modular Interface Card (MS-MIC)

Modular Port Concentrators (inline NAT).

For a listing of the specific NAT types supported on each type of card, see “Carrier-Grade NAT Feature Comparison for Junos Address Aware by Type of Interface Card” on page 69.

### Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2R1</td>
<td>Starting in Junos OS release 19.2R1, DS-Lite is supported on MX Virtual Chassis and MX Broadband Network Gateway (BNG) routers.</td>
</tr>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS Release 17.4R1, deterministic NAPT64 is supported on the MS-MPC and MS-MIC.</td>
</tr>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS release 17.4R1, DS-Lite is supported on MX Series routers with MS-MPCs and MS-MICs.</td>
</tr>
<tr>
<td>17.1R1</td>
<td>Starting in Junos OS Release 17.1R1, you can configure a 464 XLAT Provider-Side Translator (PLAT).</td>
</tr>
</tbody>
</table>

### Related Documentation
- Carrier-Grade NAT Feature Comparison for Junos Address Aware by Type of Interface Card on page 69
- ALGs Available for Junos OS Address Aware NAT on page 173

### Junos OS Carrier-Grade NAT Implementation Overview

Junos OS enables you to implement and scale a Carrier-Grade Network Address Translation (CGNAT) solution based on the type of services interfaces used for your implementation:

- MultiServices Denser Port Concentrator (MS-DPC)—The layer 3 services package is used to configure NAT for MS-DPC adaptive services PICs. This solution provides the NAT functionality described in “Junos Address Aware Network Addressing Overview” on page 61.
- MS-100, MS-400, and MS-500 MultiServices PICs—The layer 3 services package is used to configure NAT for multiservices PICs. This solution provides the NAT functionality described in “Junos Address Aware Network Addressing Overview” on page 61.
- MultiServices Modular Port Concentrator (MS-MPC) and MultiServices Modular Interface Card (MS-MIC)—MS-MPCs and MS-MICs are pre-configured to enable configuration of carrier-grade NAT. This solution provides the NAT functionality described in “Junos Address Aware Network Addressing Overview” on page 61.
- Inline NAT for Modular Port Concentrator (MPC) Line Cards)—Inline NAT leverages the services capabilities of MPC line cards, allowing a cost-effective implementation.
of NAT functionality on the data plane, as described in “Inline Network Address Translation Overview” on page 261.

Related Documentation

- Carrier-Grade NAT Feature Comparison for Junos Address Aware by Type of Interface Card on page 69
- Carrier-Grade NAT Implementation: Best Practices on page 96
- Example: Configuring Basic NAT44 on page 127

Carrier-Grade NAT Feature Comparison for Junos Address Aware by Type of Interface Card

Table 9 on page 69 summarizes feature differences among the Junos OS carrier-grade NAT implementations.

Starting in Junos OS release 17.2R1, inline NAT is supported on the MPC5E and MPC6E.

Starting in Junos OS release 17.4R1, inline NAT is supported on the MPC7E, MPC8E, and MPC9E.

Table 9: Carrier-Grade NAT—Feature Comparison by Platform

<table>
<thead>
<tr>
<th>Feature</th>
<th>MS-DPC</th>
<th>MS-100</th>
<th>MS-400</th>
<th>MS-500</th>
<th>MS-MPC</th>
<th>MS-MIC</th>
<th>MPC1, MPC2, MPC3, MPC5E, MPC6E, MPC7E, MPC8E, and MPC9E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Source NAT</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td>Inline NAT</td>
</tr>
<tr>
<td>Dynamic Source NAT - Address Only</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>Dynamic Source NAT - NAPT Port Translation with Secured Port Block Allocation</td>
<td>yes</td>
<td></td>
<td>yes</td>
<td></td>
<td>yes</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>Dynamic Source NAT - NAPT44 Port Translation with Deterministic Port Block Allocation</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>Feature</td>
<td>MS-DPC</td>
<td>MS-100</td>
<td>MS-400</td>
<td>MS-500</td>
<td>MS-MPC</td>
<td>MS-MIC</td>
<td>MPC1, MPC2, MPC3, MPC5E, MPC6E, MPC7E, MPC8E, and MPC9E</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>Dynamic Source NAT - NAPT64 Port Translation with Deterministic Port Block Allocation</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Static Destination NAT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Twice NAT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>NAPT - Preserve Parity and Range</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>NAPT - APR/EIF/EIM</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>IKE ALG</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Stateful NAT64</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Stateful NAT64 with APP/EIM/EIF</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 9: Carrier-Grade NAT—Feature Comparison by Platform (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>MS-DPC</th>
<th>MS-100</th>
<th>MS-400</th>
<th>MS-500</th>
<th>MS-MPC</th>
<th>MS-MIC</th>
<th>MPC1, MPC2, MPC3, MPC5E, MPC6E, MPC7E, MPC8E, and MPC9E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stateful NAT64 with ALGs</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>• FTP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• IKE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• TFTP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SIP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• RTSP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS-Lite</td>
<td>yes</td>
<td>yes</td>
<td>yes (DS-Lite supported for MS-MPC and MS-MIC starting in Junos OS release 17.4R1)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6rd</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>6to4</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>464 XLAT</td>
<td>no</td>
<td>yes (starting in Junos OS Release 17.1R1)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overlap Address Across NAT Pool</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Port Control Protocol</td>
<td>yes</td>
<td>yes (Port Control Protocol with NAPT44 is supported for MS-MPC and MS-MIC starting in Junos OS Release 17.4R1, PCP with DS-Lite is not supported.)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGN-PIC</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>AMS Support</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Port forwarding</td>
<td>yes</td>
<td>yes (Port forwarding is supported for MS-MPC and MS-MIC starting in Junos OS Release 17.4R1.)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No translation</td>
<td>yes</td>
<td>yes (No translation supported for MS-MPC and MS-MIC starting in Junos OS Release 15.1R1)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10 on page 72 summarizes availability of translation types by type of line card.

**Table 10: Carrier-Grade NAT Translation Types**

<table>
<thead>
<tr>
<th>Translation Type</th>
<th>MS-DPC</th>
<th>MS-100</th>
<th>MS-400</th>
<th>MS-500</th>
<th>MS-MPC</th>
<th>MS-MIC</th>
<th>MPC1, MPC2, MPC3, MPC5E, MPC6E, MPC7E, MPC8E, and MPC9E</th>
<th>Inline NAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic-nat44</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>MPC1, MPC2, MPC3, MPC5E, MPC6E, MPC7E, MPC8E, and MPC9E</td>
<td>yes</td>
</tr>
<tr>
<td>basic-nat66</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>MPC1, MPC2, MPC3, MPC5E, MPC6E, MPC7E, MPC8E, and MPC9E</td>
<td>no</td>
</tr>
<tr>
<td>basic-nat-pt</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>MPC1, MPC2, MPC3, MPC5E, MPC6E, MPC7E, MPC8E, and MPC9E</td>
<td>no</td>
</tr>
<tr>
<td>deterministic-napt44</td>
<td>yes</td>
<td>yes (deterministic-napt44 supported for MS-MPC and MS-MIC starting in Junos OS Release 17.3R1, in Junos OS Release 14.2R7 and later 14.2 releases, in 15.1R3 and later 15.1 releases, and in 16.1R5 and later 16.1 releases)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deterministic-napt64</td>
<td>no</td>
<td>yes (deterministic-napt64 supported for MS-MPC and MS-MIC starting in Junos OS Release 17.4R1)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dnat-44</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>MPC1, MPC2, MPC3, MPC5E, MPC6E, MPC7E, MPC8E, and MPC9E</td>
<td>no</td>
</tr>
<tr>
<td>dynamic-nat44</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>MPC1, MPC2, MPC3, MPC5E, MPC6E, MPC7E, MPC8E, and MPC9E</td>
<td>no</td>
</tr>
<tr>
<td>napt-44</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>MPC1, MPC2, MPC3, MPC5E, MPC6E, MPC7E, MPC8E, and MPC9E</td>
<td>no</td>
</tr>
<tr>
<td>napt-66</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>MPC1, MPC2, MPC3, MPC5E, MPC6E, MPC7E, MPC8E, and MPC9E</td>
<td>no</td>
</tr>
<tr>
<td>napt-pt</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>MPC1, MPC2, MPC3, MPC5E, MPC6E, MPC7E, MPC8E, and MPC9E</td>
<td>no</td>
</tr>
<tr>
<td>stateful-nat464</td>
<td>no</td>
<td>yes (starting in Junos OS Release 17.1R1)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stateful-nat64</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>MPC1, MPC2, MPC3, MPC5E, MPC6E, MPC7E, MPC8E, and MPC9E</td>
<td>no</td>
</tr>
<tr>
<td>twice-basic-nat-44</td>
<td>yes</td>
<td>yes (twice-dynamic-nat-44 supported for MS-MPC and MS-MIC starting in Junos OS Release 15.1R1)</td>
<td>yes (twice-basic-nat-44 supported for inline NAT starting in Junos OS Release 15.1R1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 10: Carrier-Grade NAT Translation Types (continued)

<table>
<thead>
<tr>
<th>Translation Type</th>
<th>MS-DPC</th>
<th>MS-100</th>
<th>MS-400</th>
<th>MS-500</th>
<th>MS-MPC</th>
<th>MS-MIC</th>
<th>MPC1, MPC2, MPC3, MPC5E, MPC6E, MPC7E, MPC8E, and MPC9E</th>
</tr>
</thead>
<tbody>
<tr>
<td>twice-dynamic-nat-44</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td>no</td>
<td>no (twice-dynamic-nat-44 supported for MS-MPC and MS-MIC starting in Junos OS Release 15.1R1)</td>
</tr>
<tr>
<td>twice-dynamic-napt-44</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td>no</td>
<td>no (twice-dynamic-napt-44 supported for MS-MPC and MS-MIC starting in Junos OS Release 15.1R1)</td>
</tr>
</tbody>
</table>
## Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS release 17.4R1, inline NAT is supported on the MPC7E, MPC8E, and MPC9E.</td>
</tr>
<tr>
<td>17.4R1</td>
<td>Dynamic Source NAT - NAPT64 Port Translation with Deterministic Port Block Allocation supported for MS-MPC and MS-MIC</td>
</tr>
<tr>
<td>17.4R1</td>
<td>DS-Lite supported for MS-MPC and MS-MIC</td>
</tr>
<tr>
<td>17.4R1</td>
<td><strong>deterministic-napt64</strong> supported for MS-MPC and MS-MIC</td>
</tr>
<tr>
<td>17.4R1</td>
<td>Port forwarding is supported for MS-MPC and MS-MIC</td>
</tr>
<tr>
<td>17.2R1</td>
<td>Starting in Junos OS release 17.2R1, inline NAT is supported on the MPC5E and MPC6E.</td>
</tr>
<tr>
<td>17.1R4</td>
<td>Port Control Protocol with NAPT44 is supported for MS-MPC and MS-MIC</td>
</tr>
<tr>
<td>17.1R1</td>
<td>464XLAT</td>
</tr>
<tr>
<td>17.1R1</td>
<td><strong>stateful-nat464</strong></td>
</tr>
<tr>
<td>15.1R1</td>
<td>Twice NAT supported for MS-MPC and MS-MIC</td>
</tr>
<tr>
<td>15.1R1</td>
<td>NAPT - Preserve Parity and Range supported for MS-MPC and MS-MIC</td>
</tr>
<tr>
<td>15.1R1</td>
<td>No translation supported for MS-MPC and MS-MIC</td>
</tr>
<tr>
<td>15.1R1</td>
<td><strong>twice-dynamic-nat-44</strong> supported for MS-MPC and MS-MIC</td>
</tr>
<tr>
<td>15.1R1</td>
<td><strong>twice-basic-nat-44</strong> supported for inline NAT</td>
</tr>
<tr>
<td>15.1R1</td>
<td><strong>twice-dynamic-nat-44</strong> supported for MS-MPC and MS-MIC</td>
</tr>
<tr>
<td>15.1R1</td>
<td><strong>twice-dynamic-napt-44</strong> supported for MS-MPC and MS-MIC</td>
</tr>
<tr>
<td>14.2R7</td>
<td>Dynamic Source NAT - NAPT44 Port Translation with Deterministic Port Block Allocation supported for MS-MPC and MS-MIC</td>
</tr>
<tr>
<td>14.2R7</td>
<td>IKE ALG</td>
</tr>
<tr>
<td>14.2R7</td>
<td><strong>deterministic-napt44</strong> supported for MS-MPC and MS-MIC</td>
</tr>
<tr>
<td>14.2R2</td>
<td>Dynamic Source NAT - NAPT Port Translation with Secured Port Block Allocation supported for MS-MPC and MS-MIC</td>
</tr>
</tbody>
</table>

### Related Documentation
- Junos OS Carrier-Grade NAT Implementation Overview on page 68
CHAPTER 5

NAT Configuration Overview

- Network Address Translation Overview on ACX Series on page 75
- Network Address Port Translation Overview on page 77
- Network Address Translation Address Overload in ACX Series on page 77
- Network Address Translation Constraints on ACX on page 79
- Network Address Translation Configuration Overview on page 80
- Configuring Source and Destination Addresses Network Address Translation Overview on page 80
- Configuring Pools of Addresses and Ports for Network Address Translation Overview on page 82
- Network Address Translation Rules Overview on page 84
- Configuring Address Pools for Network Address Port Translation (NAPT) Overview on page 92
- Enabling Inline Services Interface on ACX Series on page 93
- Configuring Service Sets for Network Address Translation on page 95
- Carrier-Grade NAT Implementation: Best Practices on page 96

Network Address Translation Overview on ACX Series

Network Address Translation (NAT) is a method for modifying or translating network address information in packet headers. Either or both source and destination addresses in a packet may be translated. NAT can include the translation of port numbers as well as IP addresses.

NAT is described in RFC 1631 to solve IP (version 4) address depletion problems. NAT has been found to be a useful tool for firewalls, traffic redirect, load sharing, network migrations, and so on.
NOTE: In ACX Series routers, NAT is supported only on the ACX1100 AC-powered router and ACX500 routers for inline NAT and inline IPsec services. ACX1100 AC-powered router supports only source NAT for IPv4 packets. Static and dynamic NAT types are currently not supported. Service chaining (GRE, NAT, and IPSec) on ACX1100-AC and ACX500 routers is not supported.

A license is required for enabling inline services on ACX500 routers.

NOTE: ACX5048 and ACX5096 routers do not support NAT configurations.

Source NAT is the translation of the source IP address of a packet leaving the router. Source NAT is used to allow hosts with private IP addresses to access a public network.

Source NAT allows connections to be initiated only for outgoing network connections—for example, from a private network to the Internet. Source NAT is commonly used to:

- Translate a single IP address to another address (for example, to provide a single device in a private network with access to the Internet).
- Translate a contiguous block of addresses to another block of addresses of the same size.
- Translate a contiguous block of addresses to another block of addresses of smaller size.
- Translate a contiguous block of addresses to a single IP address or a smaller block of addresses using port translation.
- Translate a contiguous block of addresses to the address of the egress interface.

Related Documentation

- Network Address Port Translation Overview on page 77
- Enabling Inline Services Interface on ACX Series on page 93
- Understanding Service Sets
- Service Filters in ACX Series on page 14
- Guidelines for Applying Service Filters on page 15
- Service Filter Match Conditions for IPv4 Traffic on page 16
- Service Filter Actions on page 18
- Network Address Translation Address Overload in ACX Series on page 77
- CoS for NAT Services on ACX Series Routers
- Network Address Translation Constraints on ACX on page 79
- Configuring Address Pools for Network Address Port Translation (NAPT) Overview on page 92
Network Address Port Translation Overview

Network Address Port Translation (NAPT) is a method by which many network addresses and their TCP/UDP ports are translated into a single network address and its TCP/UDP ports. This translation can be configured in both IPv4 and IPv6 networks.

In ACX Series routers, you can have up to 4096 network address translations at a time.

Network Address Translation Address Overload in ACX Series

The NAT services on ACX Series routers allows Junos OS interface addresses to be shared with a NAPT pool. This feature of sharing the same address/port between the NAPT pool and Junos OS is termed as address overloading.

To achieve address overloading, the available IPv4 address or port range of 1 to 65,536 addresses is partitioned between Junos OS and NAT as shown below:

- Junos OS—1 to 49,159 addresses.
- Junos OS—53,255 through 65,535 addresses.

The number of ports reserved for NAPT pool with address overload feature is 4096.
To enable address-overloading, include the `address-overload` statement and the `interface` statement at the `[edit services nat pool nat-pool-name]` hierarchy level.

The `address-overload` statement enables sharing of IPv4 address between Junos OS and the NAT pool. Along with the `address-overload` statement, you must also specify the `interface` statement so that the first available IPv4 address or port of the interface is picked up for the NAT pool.

You can configure the address overload feature the following ways:

- Configure an interface along with the `address-overload` statement as shown in the following example.

  ```
 pool p3 {
 address-overload;
 interface ge-0/0/1.0;
 port {
 range low 49160 high 53255;
 }
 }
  ```

  In this case, the primary address on the interface is picked for the NAT pool.

- Directly configure a /32 address as shown in the following example:

  ```
 pool p4 {
 address-overload;
 address 45.0.0.1/32;
 port {
 range low 49160 high 53255;
 }
 }
  ```

  The `interface` statement enables sharing of IPv4 interface address with the NAT pool along with the port range specified in the pool.

**Related Documentation**

- Network Address Translation Overview on ACX Series on page 75
- Network Address Port Translation Overview on page 77
- Enabling Inline Services Interface on ACX Series on page 93
- **Understanding Service Sets**
  - Service Filters in ACX Series on page 14
  - Guidelines for Applying Service Filters on page 15
  - Service Filter Match Conditions for IPv4 Traffic on page 16
  - Service Filter Actions on page 18
- CoS for NAT Services on ACX Series Routers
- Network Address Translation Constraints on ACX on page 79
Network Address Translation Constraints on ACX

You should consider the following constraints while configuring Network Address Translation (NAT) on ACX Series routers:

- When a port is defined in a NAT pool, you can configure only one address or one address range in the pool.
- ACX Series routers support nat-rules with match-direction as input. match-direction as output is not supported.
- When you specify an address range or an address prefix in a NAT pool, the maximum number of addresses supported is 65,535. ACX Series routers supports up to 4096 network address translations at a time.
- The maximum number of service sets that can be configured is 2.
- In a NAT rule term, the from clause can contain a maximum of 4 matching addresses.
- The maximum terms per NAT rule allowed is 4.
- The maximum NAT rules per service set allowed is 2.

Related Documentation

- Network Address Translation Overview on ACX Series on page 75
- Network Address Port Translation Overview on page 77
- Enabling Inline Services Interface on ACX Series on page 93
- Understanding Service Sets
  - Guidelines for Applying Service Filters on page 15
- Network Address Translation Address Overload in ACX Series on page 77
- CoS for NAT Services on ACX Series Routers
  - Configuring Address Pools for Network Address Port Translation (NAPT) Overview on page 92
  - Configuring Service Sets to Be Applied to Services Interfaces
  - Configuring Queuing and Scheduling on Inline Services Interface on page 19
Network Address Translation Configuration Overview

To configure network address translation (NAT), complete the following high-level steps:

1. Configure the source and destination addresses. For more information, see “Configuring Source and Destination Addresses Network Address Translation Overview” on page 80.

2. Define the addresses or prefixes, address ranges, and ports used for NAT. For more information, see “Configuring Pools of Addresses and Ports for Network Address Translation Overview” on page 82.

3. If applicable, configure the address pools for network address port translation (NAPT). For more information, see “Configuring Address Pools for Network Address Port Translation (NAPT) Overview” on page 141.

4. Configure the NAT rules. Within the rules, include match directions, match conditions, actions, and translation types. For more information, see “Network Address Translation Rules Overview” on page 84.

5. Configure service sets for NAT processing. Within each service set, define the interfaces for handling inbound and outbound traffic and a NAT rule or ruleset. For more information, see “Configuring Service Sets for Network Address Translation” on page 95.

Related Documentation

- Junos Address Aware Network Addressing Overview on page 61
- Carrier-Grade NAT Feature Comparison for Junos Address Aware by Type of Interface Card on page 69

Configuring Source and Destination Addresses Network Address Translation Overview

You must configure a specific address, a prefix, or the address-range boundaries:

- The following addresses, while valid in inet.0, cannot be used for NAT translation:
  - 0.0.0.0/32
  - 127.0.0.0/8 (loopback)
  - 128.0.0.0/16 (martian)
  - 191.255.0.0/16 (martian)
  - 192.0.0.0/24 (martian)
  - 223.255.255.0/24 (martian)
  - 224.0.0.0/4 (multicast)
  - 240.0.0.0/4 (reserved)
  - 255.255.255.255 (broadcast)
The addresses that are specified as valid in the inet.0 routing table and not supported for NAT translation are or longer match filter types. You cannot specify any regions within such address prefixes in a NAT pool.

- On MX Series routers with MS-MPCs and MS-MICs, if you configure a NAT address pool with a prefix length that is equal to or greater than /16, the PIC does not contain sufficient memory to provision the configured pool. Also, memory utilization problems might occur if you attempt to configure many pools whose combined total IP addresses exceed /16. In such circumstances, a system logging message is generated stating that the NAT pool name is failed to be created and that the service set is not activated. On MS-MPCs and MS-MICs, you must not configure NAT pools with prefix lengths greater than or equal to /16.

- You can specify one or more IPv4 address prefixes in the pool statement and in the from clause of the NAT rule term. This enables you to configure source translation from a private subnet to a public subnet without defining a rule term for each address in the subnet. Destination translation cannot be configured by this method. For more information, see Examples: Configuring NAT Rules.

- When you configure static source NAT, the address prefix size you configure at the [edit services nat pool pool-name] hierarchy level must be larger than the source-address prefix range configured at the [edit services nat rule rule-name term term-name from] hierarchy level. The source-address prefix range must also map to a single subnet or range of IPv4 or IPv6 addresses in the pool statement. Any pool addresses that are not used by the source-address prefix range are left unused. Pools cannot be shared.

- When you configure a NAT address pool prefix size with the address statement at the [edit services nat pool nat-pool-name] hierarchy level, the subnet and broadcast addresses are not included in the list of usable IP addresses. For example, if you use address 10.11.12.0/28 in a NAT pool, the addresses 10.11.12.0 (subnet address) and 10.11.12.15 (broadcast address) are not available.

**NOTE:** When you include a NAT configuration that changes IP addresses, it might affect forwarding path features elsewhere in your router configuration, such as source class usage (SCU), destination class usage (DCU), filter-based forwarding, or other features that target specific IP addresses or prefixes.

NAT configuration might also affect routing protocol operation, because the protocol peering, neighbor, and interface addresses can be altered when routing protocols packets transit the Adaptive Services (AS) or Multiservices PIC.

**Related Documentation**
- Junos Address Aware Network Addressing Overview on page 61
Configuring Pools of Addresses and Ports for Network Address Translation Overview

- Configuring NAT Pools on page 82
- Preserve Range and Preserve Parity on page 83
- Specifying Destination and Source Prefixes Without Configuring a Pool on page 83

Configuring NAT Pools

You can use the `pool` statement to define the addresses (or prefixes), address ranges, and ports used for Network Address Translation (NAT). To configure the information, include the `pool` statement at the [edit services nat] hierarchy level.

Starting in Junos OS Release 14.2, configure the NAT pool as follows. Starting in Junos OS Release 16.1, the `limit-ports-per-address` statement is supported.

```
[edit services nat]
pool nat-pool-name {
 address ip-prefix/ prefix-length;
 address-range low minimum-value high maximum-value;
 limit-ports-per-address number;
 port {
 automatic (sequential | random-allocation);
 range low minimum-value high maximum-value random-allocation;
 preserve-parity;
 preserve-range {
 }
 }
}
```

In Junos OS Release 14.1 and earlier, configure the NAT pool as follows:

```
[edit services nat]
pool nat-pool-name {
 address ip-prefix/ prefix-length;
 address-range low minimum-value high maximum-value;
 port (automatic | range low minimum-value high maximum-value);
 preserve-parity;
 preserve-range {
 }
}
```

To configure pools for traditional NAT, specify either a destination pool or a source pool.

With static source NAT and dynamic source NAT, you can specify multiple IPv4 addresses (or prefixes) and IPv4 address ranges. Up to 32 prefixes or address ranges (or a combination) can be supported within a single pool.

With static destination NAT, you can also specify multiple address prefixes and address ranges in a single term. Multiple destination NAT terms can share a destination NAT pool. However, the netmask or range for the from address must be smaller than or equal to the netmask or range for the destination pool address. If you define the pool to be larger than required, some addresses will not be used. For example, if you define the pool size
as 100 addresses and the rule specifies only 80 addresses, the last 20 addresses in the pool are not used.

For constraints on specific translation types, see “Network Address Translation Rules Overview” on page 84.

With source static NAT, the prefixes and address ranges cannot overlap between separate pools.

In an address range, the low value must be a lower number than the high value. When multiple address ranges and prefixes are configured, the prefixes are depleted first, followed by the address ranges.

When you specify a port for dynamic source NAT, address ranges are limited to a maximum of 65,000 addresses, for a total of (65,000 x 65,535) or 4,259,775,000 flows. A dynamic NAT pool with no address port translation supports up to 65,535 addresses. There is no limit on the pool size for static source NAT.

Preserve Range and Preserve Parity

You can configure your carrier-grade NAT (CGN) to preserve the range or parity of the packet source port when it allocates a source port for an outbound connection. You can configure the preserve parity and preserve range options under the NAT pool definition by including the preserve-range and preserve-parity configuration statements at the [edit services nat pool poolname port] hierarchy level.

Preserving range and preserving parity are supported on MX series routers with MS-DPCs and on M Series routers with MS-100, MS-400, and MS-500 MultiServices PICS. Preserving range and preserving parity are supported on MX series routers with MS-MPCs and MS-MICs starting in Junos OS release 15.1R1.

• Preserve range—RFC 4787, Network Address Translation (NAT) Behavioral Requirements for Unicast UDP, defines two ranges: 0 through 1023, and 1024 through 65,535. When the preserve-range knob is configured and the incoming port falls into one of these ranges, CGN allocates a port from that range only. However, if there is no available port in the range, the port allocation request fails and that session is not created. The failure is reflected on counters and system logging, but no Internet Control Message Protocol (ICMP) message is generated. If this knob is not configured, allocation is based on the configured port range without regard to the port range that contains the incoming port. The exception is some application-level gateways (ALGs), such as hello, that have special zones.

• Preserve parity—When the preserve-parity knob is configured, CGN allocates a port with the same even or odd parity as the incoming port. If the incoming port number is odd or even, the outgoing port number should correspondingly be odd or even. If a port number of the desired parity is not available, the port allocation request fails, the session is not created, and the packet is dropped.

Specifying Destination and Source Prefixes Without Configuring a Pool

You can directly specify the destination or source prefix used in NAT without configuring a pool.
To configure the information, include the `rule` statement at the [edit services nat] hierarchy level:

```
[edit services nat]
rule rule-name {
 term term-name {
 then {
 translated {
 destination-prefix prefix;
 }
 }
 }
}
```

### Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>Starting in Junos OS Release 16.1, the <code>limit-ports-per-address</code> statement is supported.</td>
</tr>
<tr>
<td>14.2</td>
<td>Starting in Junos OS Release 14.2, configure the NAT pool as follows.</td>
</tr>
</tbody>
</table>

### Network Address Translation Rules Overview

To configure a NAT rule, include the `rule rule-name` statement at the [edit services nat] hierarchy level:

```
[edit services nat]
allow-overlapping-nat-pools;
apply-groups;
apply-groups-except;
pool pool-name;
port-forwarding port-forwarding-name;
rule rule-name {
 match-direction (input | output);
 term term-name {
 from {
 application-sets set-name;
 applications [application-names];
 destination-address (address | any-unicast) <except>;
 destination-address-range low minimum-value high maximum-value <except>;
 destination-prefix-list list-name <except>;
 source-address (address | any-unicast) <except>;
 source-address-range low minimum-value high maximum-value <except>;
 source-prefix-list list-name <except>;
 }
 then {
 no-translation;
 translated {
 address-pooling paired;
 clat-prefix clat-prefix;
 destination-pool nat-pool-name;
 }
 }
 }
}
```
Each rule must include a **match-direction** statement that specifies the direction in which the match is applied.

---

**NOTE:** ACX Series routers support only **input** as the match direction.

---

In addition, each NAT rule consists of a set of terms, similar to a firewall filter. A term consists of the following:

- **from** statement—Specifies the match conditions and applications that are included and excluded.

- **then** statement—Specifies the actions and action modifiers to be performed by the router software.

The following sections explain how the components of NAT rules:

- Configuring Match Direction for NAT Rules on page 85
- Configuring Match Conditions in NAT Rules on page 86
- Configuring Actions in NAT Rules on page 87
- Configuring Translation Types on page 89
- Configuring NAT Rules for IPsec Passthrough for Non-NAT-T Peers on page 91

### Configuring Match Direction for NAT Rules

Each rule must include a **match-direction** statement that specifies the direction in which the match is applied. To configure where the match is applied, include the **match-direction** statement at the [edit services nat rule rule-name] hierarchy level:

```
[edit services nat rule rule-name]
match-direction (input | output);
```
The match direction is used with respect to the traffic flow through the Multiservices DPC and Multiservices PICs. When a packet is sent to the PIC, direction information is carried along with it. The packet direction is determined based on the following criteria:

- With an interface service set, packet direction is determined by whether a packet is entering or leaving the interface on which the service set is applied.

- With a next-hop service set, packet direction is determined by the interface used to route the packet to the Multiservices DPC or Multiservices PIC. If the inside interface is used to route the packet, the packet direction is input. If the outside interface is used to direct the packet to the PIC or DPC, the packet direction is output. For more information about inside and outside interfaces, see “Configuring Service Sets to be Applied to Services Interfaces” on page 9.

- On the Multiservices DPC and Multiservices PIC, a flow lookup is performed. If no flow is found, rule processing is performed. All rules in the service set are considered. During rule processing, the packet direction is compared against rule directions. Only rules with direction information that matches the packet direction are considered.

### Configuring Match Conditions in NAT Rules

To configure NAT match conditions, include the `from` statement at the `[edit services nat rule rule-name term term-name]` hierarchy level:

```
[edit services nat rule rule-name term term-name]
from {
 application-sets set-name;
 applications [application-names];
 destination-address (address | any-unicast) <except>;
 destination-address-range low minimum-value high maximum-value <except>;
 destination-prefix-list list-name <except>;
 source-address (address | any-unicast) <except>;
 source-address-range low minimum-value high maximum-value <except>;
 source-prefix-list list-name <except>;
}
```

To configure traditional NAT, you can use the destination address, a range of destination addresses, the source address, or a range of source addresses as a match condition, in the same way that you would configure a firewall filter; for more information, see the *Routing Policies, Firewall Filters, and Traffic Policers Feature Guide*.

Alternatively, you can specify a list of source or destination prefixes by including the `prefix-list` statement at the `[edit policy-options]` hierarchy level and then including either the `destination-prefix-list` or `source-prefix-list` statement in the NAT rule. For an example, see “Examples: Configuring Stateful Firewall Rules” on page 473.

If the `translation-type` statement in the `then` statement of the NAT rule is set to `stateful-nat-64`, the range specified by the `destination-address-range` or the `destination-prefix-list` in the `from` statement must be within the range specified by the `destination-prefix` statement in the `then` statement.

If at least one NAT term within a NAT rule has the address pooling paired (APP) functionality enabled (by including the `address-pooling` statement at the `[edit services nat rule...`
nat rule rule-name term term-name then translated] hierarchy level, all the other terms in the NAT rule that use the same NAT address pool as the address pool for the term with APP enabled must have APP enabled. Otherwise, if you add a NAT rule term without enabling APP to a rule that contains other terms with APP enabled, all the terms with APP enabled in a NAT rule drop traffic flows that match the specified criteria in the NAT rule.

For MX Series routers with MS-MICs and MS-MPCs, although the address pooling paired (APP) functionality is enabled within a NAT rule (by including the address-pooling statement at the [edit services nat rule rule-name term term-name then translated] hierarchy level), it is a characteristic of a NAT pool. Such a NAT pool for which APP is enabled cannot be shared with NAT rules that do not have APP configured.

When configuring NAT, if any traffic is destined for the following addresses and does not match a NAT flow or NAT rule, the traffic is dropped:

- Addresses specified in the from destination-address statement when you are using destination translation
- Addresses specified in the source NAT pool when you are using source translation

Configuring Actions in NAT Rules

To configure NAT actions, include the then statement at the [edit services nat rule rule-name term term-name] hierarchy level:

```
[edit services nat]
rule rule-name {
 term term-name {
 from {
 destination-address-range low minimum-value high maximum-value <except>;
 destination-prefix-list list-name <except>;
 }
 then {
 destination-prefix destination-prefix;
 }
 }
[edit services nat rule rule-name term term-name]
then {
 no-translation;
syslog;
translated {
 clat-prefix clat-prefix;
destination-pool nat-pool-name;
destination-prefix destination-prefix;
source-pool nat-pool-name;
source-prefix source-prefix;
translation-type (basic-nat-pt | basic-nat44 | basic-nat66 | dnat-44 | dynamic-nat44 | napt-44 | napt-66 | napt-pt | stateful-nat464 | stateful-nat64 | twice-basic-nat-44 | twice-dynamic-nat-44 | twice-napt-44);
}
}
```
- The **no-translation** statement allows you to specify addresses that you want excluded from NAT.

  The no-translation statement is supported on MX series routers with MS-DPCs and on M Series routers with MS-100, MS-400, and MS-500 MultiServices PICS. The no-translation statement is supported on MX series routers with MS-MPCs and MS-MICs starting in Junos OS release 15.1R1.

- The **system log** statement enables you to record an alert in the system logging facility.

- The **destination-pool**, **destination-prefix**, **source-pool**, and **source-prefix** statements specify addressing information that you define by including the **pool** statement at the [edit services nat] hierarchy level; for more information, see "Configuring Pools of Addresses and Ports for Network Address Translation Overview" on page 82.


  **NOTE:** In Junos OS Release 13.2 and earlier, the following restriction was not enforced by the CLI: if the translation-type statement in the then statement of a NAT rule was set to stateful-nat-64, the range specified by the destination-address-range or the destination-prefix-list in the from statement needed to be within the range specified by the destination-prefix statement in the then statement. Starting in Junos OS Release 13.3R1, this restriction is enforced.
Configuring Translation Types

The implementation details of the nine options of the translation-type statement are as follows:

- **basic-nat44**—This option implements the static translation of source IP addresses without port mapping. You must configure the from source-address statement in the match condition for the rule. The size of the address range specified in the statement must be the same as or smaller than the source pool. You must specify either a source pool or a destination prefix. The referenced pool can contain multiple addresses but you cannot specify ports for translation.

  NOTE: In an interface service set, all packets destined for the source address specified in the match condition are automatically routed to the services PIC, even if no service set is associated with the interface.

  NOTE: Prior to Junos OS Release 11.4R3, you could only use a source NAT pool in a single service set. As of Junos OS Release 11.4R3 and subsequent releases, you can reuse a source NAT pool in multiple service sets.

- **basic-nat66**—This option implements the static translation of source IP addresses without port mapping in IPv6 networks. The configuration is similar to the basic-nat44 implementation, but with IPv6 addresses.

  The basic-nat66 option is not available if you are using MS-MPCs or MS-MICs.

- **basic-nat-pt**—This option implements translation of addresses of IPv6 hosts, as they originate sessions to the IPv4 hosts in an external domain and vice versa. This option is always implemented with DNS ALG. You must define the source and destination pools of IPv4 addresses. You must configure one rule and define two terms. Configure the IPv6 addresses in the from statement in both term statements. In the then statement of the first term within the rule, reference both the source and destination pools and configure dns-alg-prefix. Configure the source prefix in the then statement of the second term within the same rule.

  The basic-nat-pt option is not available if you are using MS-MPCs or MS-MICs.

- **deterministic-napt44**—This option implements algorithm-based allocation of blocks of destination ports and IP address. This ensures that an incoming (source) IP address and port always map to the same destination IP address and port, thus eliminating the need for the address translation logging. When you use deterministic-napt44, you must also use deterministic-port-block-allocation at the [edit services nat pool poolname port] hierarchy level.

  The deterministic-napt44 option is supported on MX series routers with MS-DPCs and on M Series routers with MS-100, MS-400, and MS-500 MultiServices PICS. The deterministic-napt44 option if you are using MX Series routers with MS-MPCs or
MS-MICs is supported only in Junos OS release 14.2R7 and later 14.2 releases and in release 15.1R3 and later 15.1 releases.

- **dnat-44**—This option implements static translation of destination IP addresses without port mapping. The size of the pool address space must be greater than or equal to the destination address space. You must specify a name for the destination pool statement. The referenced pool can contain multiple addresses, ranges, or prefixes, as long as the number of NAT addresses in the pool is larger than the number of destination addresses in the from statement. You must include exactly one destination-address value at the [edit services nat rule rule-name term term-name from] hierarchy level; if it is a prefix, the size must be less than or equal to the pool prefix size. Any addresses in the pool that are not matched in the value remain unused, because a pool cannot be shared among multiple terms or rules.

- **dynamic-nat44**—This option implements dynamic translation of source IP addresses without port mapping. You must specify a source-pool. The referenced pool must include an address configuration (for address-only translation). The dynamic-nat44 address-only option supports translating up to 16,777,216 addresses to a smaller size pool. The requests from the source address range are assigned to the addresses in the pool until the pool is used up, and any additional requests are rejected. A NAT address assigned to a host is used for all concurrent sessions from that host. The address is released to the pool only after all the sessions for that host expire. This feature enables the router to share a few public IP addresses between several private hosts. Because all the private hosts might not simultaneously create sessions, they can share a few public IP addresses.

- **napt-44**—This option implements dynamic translation of source IP addresses with port mapping. You must specify a name for the source-pool statement. The referenced pool must include a port configuration. If the port is configured as automatic or a port range is specified, then it implies that Network Address Port Translation (NAPT) is used.

- **napt-66**—This option implements dynamic address translation of source IP addresses with port mapping for IPv6 addresses. The configuration is similar to the napt-44 implementation, but with IPv6 addresses. The napt-66 option is not available if you are using MS-MPCs or MS-MICs.

- **napt-pt**—This option implements dynamic address and port translation for source and static translation of destination IP address. You must specify a name for the source-pool statement. The referenced pool must include a port configuration (for NAPT). Additionally, you must configure two rules, one for the DNS traffic and the other for the rest of the traffic. The rule meant for the DNS traffic should be DNS ALG enabled and the dns-alg-prefix statement should be configured. Moreover, the prefix configured in the dns-alg-prefix statement must be used in the second rule to translate the destination IPv6 addresses to IPv4 addresses. The napt-pt option is not available if you are using MS-MPCs or MS-MICs.

- **stateful-nat464**—This option implements 464XLAT Provider-Side Translator (PLAT) address translation for source IP addresses and IPv6 prefix removal translation for destination IPv4 addresses. You must specify the IPv4 addresses used for translation.
at the [edit services nat pool] hierarchy level. This pool must be referenced in the rule that translates the IPv6 addresses to IPv4.

The stateful-nat464 option is available only if you are using MS-MPCs or MS-MICs, and is supported starting in Junos OS Release 17.1R1.

• stateful-nat64—This option implements dynamic address and port translation for source IP addresses and prefix removal translation for destination IP addresses. You must specify the IPv4 addresses used for translation at the [edit services nat pool] hierarchy level. This pool must be referenced in the rule that translates the IPv6 addresses to IPv4.

• twice-basic-nat-44—This option implements static source and static destination translation for IPv4 addresses, thus combining basic-nat44 for source and dnat-44 for destination addresses.

The twice-basic-nat-44 option is supported on MS-DPCs and MS-100, MS-400, and MS-500 MultiServices PICS. The twice-basic-nat-44 option is supported on MS-MPCs and MS-MICs starting in Junos OS Release 15.1R1.

• twice-dynamic-nat-44—This option implements source dynamic and destination static translation for IPv4 addresses, combining dynamic-nat44 for source and dnat-44 for destination addresses.

The twice-dynamic-nat-44 option is supported on MS-DPCs and MS-100, MS-400, and MS-500 MultiServices PICS. The twice-dynamic-nat-44 option is supported on MS-MPCs and MS-MICs starting in Junos OS Release 15.1R1.

• twice-napt-44—This option implements source NAPT and destination static translation for IPv4 addresses, combining nap44 for source and dnat-44 for destination addresses.

The twice-napt-44 option is supported on MS-DPCs and MS-100, MS-400, and MS-500 MultiServices PICS. The twice-napt-44 option is supported on MS-MPCs and MS-MICs starting in Junos OS Release 15.1R1.

For more information on NAT methods, see RFC 2663, IP Network Address Translator (NAT) Terminology and Considerations.

**Configuring NAT Rules for IPsec Passthrough for Non-NAT-T Peers**

Before Junos OS Release 17.4R1, Network Address Translation-Traversal (NAT-T) is not supported for the Junos VPN Site Secure suite of IPsec features on the MX Series routers. Starting in Junos OS Release 14.2R7, 15.1R5, 16.1R2, and 17.1R1, you can pass IKEv1 and IPsec packets through NAPT-44 and NAT64 rules between IPsec peers that are not NAT-T compliant. Only ESP tunnel mode is supported. This feature is supported only on MS-MPCs and MS-MICs.

To configure NAT rules for IPsec passthrough for NAPT-44 or NAT64:

1. **Configure an IKE ALG application.** See “Configuring Application Properties” on page 431.

2. **Add the application to an application set.** See “Configuring Application Sets” on page 431.
3. Configure a NAT pool. See “Configuring Pools of Addresses and Ports for Network Address Translation Overview” on page 82.

4. Configure the NAT rule:
   a. Configure a match direction for the rule. See “Configuring Match Direction for NAT Rules” on page 85.

   b. Configure one of the matching conditions to be the application set for IKE and IPsec passthrough that you configured in Step 2.

   
   
   [edit services nat rule rule-name term term-name from]
   user@host# set application-sets set-name

   c. Configure other match conditions. See “Configuring Match Conditions in NAT Rules” on page 86.

   d. Configure the translation type as NAPT-44 or NAT64.

   
   
   [edit services nat rule rule-name term term-name then translated]
   user@host# set translation-type (napt-44 | stateful-nat64)

   e. Configure other NAT actions. See “Configuring Actions in NAT Rules” on page 87.

5. Assign the NAT rule to a service set.

   
   
   [edit services]
   user@host# set service-set service-set-name nat-rules rule-name

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1R1</td>
<td>Starting in Junos OS Release 14.2R7, 15.1R5, 16.1R2, and 17.1R1, you can pass IKEv1 and IPsec packets through NAPT-44 and NAT64 rules between IPsec peers that are not NAT-T compliant.</td>
</tr>
</tbody>
</table>

Related Documentation

- Junos Address Aware Network Addressing Overview on page 61

**Configuring Address Pools for Network Address Port Translation (NAPT) Overview**

With Network Address Port Translation (NAPT), you can have up to 4096 network address or port translations.

The `port` statement specifies port assignment for the translated addresses. To configure a specific range of port numbers, include the `port range low minimum-value high maximum-value` statement at the `[edit services nat pool nat-pool-name]` hierarchy level.
Junos OS for ACX Series routers allocates ports sequentially—that is, ACX Series routers allocate the first available address or port from the NAT pool.

The NAT pool called `napt` in the following configuration example uses the sequential implementation:

```
pool napt {
 address-range low 100.0.0.1 high 100.0.0.3;
 port {
 range low 49160 high 53255;
 }
}
```

- Endpoint Independent Flow for NAPT on page 93

**Endpoint Independent Flow for NAPT**

Endpoint independent flow ensures the assignment of the same external address *and* port for all connections from a given host or port to any destination. This means if the address or port are from a different source, you are free to assign a different external address.

**Related Documentation**

- Network Address Translation Overview on ACX Series on page 75
- Network Address Port Translation Overview on page 77
- Enabling Inline Services Interface on ACX Series on page 93
- Understanding Service Sets
- Service Filters in ACX Series on page 14
- Guidelines for Applying Service Filters on page 15
- Service Filter Match Conditions for IPv4 Traffic on page 16
- Service Filter Actions on page 18
- Network Address Translation Address Overload in ACX Series on page 77
- CoS for NAT Services on ACX Series Routers
- Network Address Translation Constraints on ACX on page 79
- Configuring Service Sets to Be Applied to Services Interfaces
- Configuring Queuing and Scheduling on Inline Services Interface on page 19

**Enabling Inline Services Interface on ACX Series**

The inline services interface is a virtual interface that resides on the Packet Forwarding Engine. The si- interface makes it possible to provide NAT and IPsec services without using a special services PIC.

To configure inline services interface, you define the service interface as type si- (service-inline) interface. You must also reserve adequate bandwidth for the inline services interface.
interface. This enables you to configure both interface or next-hop service sets used for
NAT and IPsec services.

NOTE: In ACX Series routers, you can configure only one inline services
interface as an anchor interface for NAT and IPsec sessions: si-0/0/0.

NOTE: In ACX Series routers, only ACX1100-AC and ACX500 routers support
IPsec services. ACX Series routers support only basic NAT.

To enable inline services interface:

1. Access an FPC-managed slot and the PIC where the interface is to be enabled.

   [edit chassis]
   user@host# edit fpc slot-number pic number

2. Enable the interface and specify the amount of bandwidth reserved on each Packet
   Forwarding Engine for tunnel traffic that uses inline services.

   [edit chassis fpc slot-number pic number]
   user@host# set inline-services bandwidth 1g

Related Documentation

- Network Address Translation Overview on ACX Series on page 75
- Network Address Port Translation Overview on page 77
- IPsec for ACX Series Overview on page 545
- Understanding Service Sets
- Service Filters in ACX Series on page 14
- Guidelines for Applying Service Filters on page 15
- Service Filter Match Conditions for IPv4 Traffic on page 16
- Service Filter Actions on page 18
- Network Address Translation Address Overload in ACX Series on page 77
- CoS for NAT Services on ACX Series Routers
- Network Address Translation Constraints on ACX on page 79
- Configuring Address Pools for Network Address Port Translation (NAPT) Overview on
  page 92
- Configuring Service Sets to Be Applied to Services Interfaces
- Configuring Queuing and Scheduling on Inline Services Interface on page 19
Configuring Service Sets for Network Address Translation

When configuring a service set for NAT processing, make sure you have defined:

- Service interface(s) for handling inbound and outbound traffic

**NOTE:** Prior to Junos OS Release 11.4R3, you could only use a source NAT pool in a single service set. As of Junos OS Release 11.4R3 and subsequent releases, you can reuse a source or destination NAT pool in multiple service sets, provided that the service interfaces associated with the service sets are in different virtual routing and forwarding (VRF) instances.

- For interface style service sets, when a NAT pool is reused in multiple service sets, the service interfaces used in the `interface-service` option of each service set must be in different VRFs.
- For next-hop style service sets, when a NAT pool is reused in multiple service sets, the service interfaces used in the `outside-interface` option of each service set must be in different VRFs.

*Not adhering to these service interface restrictions will cause multiple routes to be installed in the same VRF for the same NAT addresses, causing reverse traffic to be processed incorrectly.*

To enable sharing of source NAT pools, include the `allow-overlapping-nat-pools` statement at the `[edit services nat]` hierarchy level.

- A NAT rule or ruleset

**NOTE:** To configure an MS-DPC interface to be used exclusively for carrier-grade NAT (CGN) or related services (intrusion detection, stateful firewall, and softwire), include the `cgn-pic` statement at the `[edit interfaces interface-name services-options]` hierarchy level. This allows CGN to access all of the available memory on the MS-DPC.

To configure a NAT service set:

1. At the `[edit services]` hierarchy level, define the service set.

   ```
 [edit services]
 user@host# edit service-set service-set-name
   ```

2. Configure either an interface service, which requires a single service interface, or a next-hop service, which requires an inside and outside service interface.

   ```
 [edit services service-set service-set-name]
   ```
user@host# set interface-service service-interface interface-name

Or

[edit services service-set service-set-name]
user@host# set next-hop-service inside-service-interface interface-name
outside-service-interface interface-name

NOTE: On ACX series routers, or if you have a Trio-based line card (MPC/MIC), you can use an inline-services interface that was configured on that card, as shown in this example:

[edit]
user@host# set interfaces si-0/0/0
[edit services service-set s1]
user@host# set interface-service service-interface si-0/0/0

For more information on interface service and next-hop service, see “Configuring Service Sets to be Applied to Services Interfaces” on page 9.

3. Configure a reference to the NAT rules or ruleset to be used with the service set.

[edit services service-set service-set-name]
user@host set nat-rules rule-or-ruleset-name

4. (Optional) For NAT64, specify that the don't fragment (DF) bit for IPv4 packet headers is cleared when packet length is less than 1280 bytes.

[edit services service-set service-set-name]
user@host# set nat-options stateful-nat64 clear-dont-fragment-bit

Related Documentation

- Configuring Service Sets to be Applied to Services Interfaces on page 9

Carrier-Grade NAT Implementation: Best Practices

The following topics present the best practices for carrier-grade NAT implementation:

- Use Round-Robin Address-Allocation When Using APP with the MS-DPC on page 97
- Use the EIM Feature Only When Needed on page 97
- Define Port Block Allocation Block Sizes Based on Expected Number of User Sessions on page 98
- Considerations When Changing Port Block Allocation Configuration on Running Systems on page 100
- Do Not Allocate NAT Pools That Are Larger Than Needed on page 100
Use Round-Robin Address-Allocation When Using APP with the MS-DPC

**BEST PRACTICE:** If you are using an MS-DPC and you configure address-pooling paired (APP) in a NAT rule, you should use round-robin address allocation for the NAT pool.

The APP feature maps a private IP address to the same public IP address in a NAT pool for all the NAT sessions for that private IP address.

Sequential address allocation for NAT pools is the default on the MS-DPC, and allocates all the ports for a public IP address before assigning the next IP address. Sequential allocation, together with APP, might result in mapping multiple private hosts to the same public IP address, resulting in fast port exhaustion for a public IP address while other ports are still available from the remaining IP addresses in the NAT pool.

Round-robin allocation, on the other hand, assigns the next IP address in the NAT pool to the next private IP address needing translation, reducing the chance that all the ports for one public IP address are depleted.

For more information about APP and round-robin address allocation, see “Configuring Address Pools for Network Address Port Translation (NAPT) Overview” on page 141.

**NOTE:** The MS-MPC and MS-MIC only use round-robin allocation.

The following example shows round-robin address allocation.

```
[edit services]
nat pool natpool-1 {
 port {
 automatic;
 }
 address-allocation round-robin;
 mapping-timeout 120;
}
```

Use the EIM Feature Only When Needed

**BEST PRACTICE:** Do not use endpoint-independent mapping (EIM) in NAT rule terms that include Junos ALGs. EIM assigns the same external NAT address and port for a specific session from a private host, but adds
processing overhead. EIM provides no benefit for any of the Junos ALGs, which already employ the functionality used by EIM.

**BEST PRACTICE:** Enable EIM for applications that do reuse the source ports and rely on a CGNAT device to maintain the same address and port mapping for all traffic sent to different destinations. For example, use EIM for console gaming applications such as Xbox and PS4 or applications that use unilateral self-address fixing methods (UNSAF). See ([IETF RFC 3424 IAB Considerations for Unilateral Self-Address Fixing (UNSAF) Across Network Address Translation](http://www.ietf.org/rfc/rfc3424.txt)).

For more information about EIM, see “Configuring Address Pools for Network Address Port Translation (NAPT) Overview” on page 141.

The following example uses the Junos SIP ALG in the NAT rule, so EIM is not used.

```plaintext
[edit services nat]
rule natrule-1 {
 match-direction input;
 term1 {
 from {
 applications junos-sip;
 }
 }
 then {
 translated {
 source-pool natpool-3;
 translation-type {
 napt-44;
 }
 address-pooling paired;
 }
 }
}
```

**Define Port Block Allocation Block Sizes Based on Expected Number of User Sessions**

**BEST PRACTICE:** For secure port allocation and deterministic port block allocation, define a port block allocation block size that is 2 to 4 times larger than the expected average number of active sessions for a user. For example, if the user is expected to have an average of approximately 200 to 250 NAT sessions active, configuring the block size to 512 or 1024 provides a liberal allocation.
BEST PRACTICE: If you are rolling out secure port block allocation using the MX Series as a NAT device and are not sure of your subscriber user profile and traffic profile, set the port block size to 1024 if you have enough NAT IP addresses to handle the estimated peak number of private subscribers. The number of NAT IP addresses times 62 gives you the number of private subscribers that can be handled with a port block size of 1024 (there are 62 blocks per IP address). Then, closely monitor the MX Series router by using the `show services nat pool` detail command to determine whether the block size needs to be changed.

BEST PRACTICE: Be careful not to make the block size too large if the number of IP addresses you can allocate to the NAT pool is limited. Making a port block size that is large enough to efficiently assign the blocks to your subscribers might cause all the port blocks to be tied up.

Secure port block allocation allocates blocks of ports to a particular user for NAT44 or NAT64. Secure port block allocation limits the number of syslog messages by generating only one syslog per block of ports.

However, configuring the block size incorrectly can lead to inefficient use of NAT resources or to performance issues. For example, when a user connects to a website that requires the establishment of a significant number of sockets for a single HTML page, a corresponding number of new ports must be allocated. The port block size should be large enough to prevent continual allocation of new blocks. If the number of concurrent sessions for a private subscriber exceeds the number of ports available in the active port block, the other port blocks allocated to the subscriber are scanned for available ports to use or a new block is allocated from the free block pool for the subscriber. The scanning of allocated port blocks and allocation of additional blocks can result in delays in setting up new sessions and loading web pages.

For more information about port block allocation, see “Configuring Secured Port Block Allocation” on page 240 and “Configuring Deterministic NAPT” on page 169.

The following example sets the port block size to 1024.

```
[edit services nat]
pool natpool-1 {
 address-range low 192.0.2.0 high 192.0.2.10;
 port {
 automatic;
 secure-port-block-allocation {
 block-size 1024;
 max-blocks-per-user 8;
 active-block-timeout 300;
 }
 }
 mapping-timeout 300;
}
```
Considerations When Changing Port Block Allocation Configuration on Running Systems

**BEST PRACTICE:** Before changing the secure port block allocation or deterministic port block configuration on a running system when using an MS-MPC or MS-MIC, plan for a quick disruption in the NAT sessions. The change in configuration results in the re-creation of all the current NAT sessions.

**BEST PRACTICE:** Before changing the port block allocation configuration on a running system when using an MS-DPC, plan for a disruption of services. After changing the configuration, you must reboot the MS-DPC, or if this is not possible, you must deactivate and reactivate the service set.

Changes to port block allocation configuration include:

- Changing any NAT pool PBA configuration.
- Changing a PBA NAT pool to a non-PBA NAT pool.
- Changing a non-PBA NAT pool to a PBA NAT pool.

For more information about configuring port block allocation, see “Configuring Secured Port Block Allocation” on page 240 and “Configuring Deterministic NAPT” on page 169.

Do Not Allocate NAT Pools That Are Larger Than Needed

**MS-MPC and MS-MIC**

**BEST PRACTICE:** When using NAPT44 as your translation type with the MS-MIC or MS-MPC, do not configure NAT pools that are larger than needed for the peak session rate, which would tie up valuable IPv4 resources. Each conversation, also known as a session, includes two flows — an ingress and egress flow. Each conversation requires one port and each IP address in the pool has a 1024-65535 port range (64K), so the NAT pool size does not need to be larger than:

\[ \text{peak number of conversations} / 64K \]

**BEST PRACTICE:** When using NAPT44 as your translation type with the MS-MIC, we recommend a maximum NAT pool size of 128 addresses (a /25 network).
BEST PRACTICE: When using NAPT44 as your translation type with the MS-MPC, we recommend a maximum NAT pool size of 256 addresses (a /24 network).

The maximum recommended NAT pool size when using NAPT-44 for an MS-MIC is 128 IP addresses because the MS-MIC supports a maximum of 14 million flows, or 7 million conversations, which require 7 million ports. A total of 7 million ports are available with 128 IP addresses, with each IP address having a port range of 1024–65535.

The maximum recommended NAT pool size for each slot on an MS-MPC when using NAPT-44 is 256 IP addresses because each slot supports a maximum of 30 million flows, or 15 million conversations, which require 15 million ports. A total of 15 million ports are available with 256 IP addresses, with each IP address having a port range of 1024–65535.

You can use larger pools than the recommended values, and you can expect that configurations that use the port block allocation (PBA) feature require larger pools. This is because PBA assigns blocks of ports to private IP addresses, which changes the pool efficiency model.

For more information about configuring NAT pools, see “Configuring Pools of Addresses and Ports for Network Address Translation Overview” on page 82.

MS-DPC

BEST PRACTICE: When using NAPT44 as your translation type with the MS-DPC, do not configure NAT pools that are larger than needed for the peak flow rate, which would tie up valuable IPv4 resources. Each conversation includes two flows (1 reverse flow for each forward flow). Each conversation requires one port and each IP address in the pool has a 1024–65535 port range (64K), so the NAT pool size does not need to be larger than:

\[
\text{peak number of conversations} / 64K
\]

BEST PRACTICE: When using NAPT44 as your translation type with the MS-DPC, do not configure NAT pools with more than 64 addresses (a /26 network).

The maximum NAT pool size for an MS-DPC is 64 IP addresses because the MS-DPC supports a maximum of 8 million flows, or 4 million conversations, which requires a maximum of 4 million ports. A total of 4 million ports are available with 64 IP addresses, with each IP address having a port range of 1024–65535. If APP, EIM, and EIF are enabled, the MS-DPC supports a maximum of 5.8 million flows, or 2.9 million conversations, so the maximum NAT pool size would be less.

For more information about configuring NAT pools, see “Configuring Pools of Addresses and Ports for Network Address Translation Overview” on page 82.
Configure System Logging for NAT Only When Needed

**BEST PRACTICE:** Do not enable system logging per session for secure port block allocation configurations.

**BEST PRACTICE:** Do not enable system logging for deterministic NAT configurations.

**BEST PRACTICE:** Enable system logging at the service-set level rather than at the services interface level when possible.

**BEST PRACTICE:** In production networks, always send the log messages to an external system log server. This avoids adding CPU load to the Routing Engine, which occurs when messages are logged locally.

**BEST PRACTICE:** Specify the system log class to restrict logging to the class of applications in which you are interested.

**BEST PRACTICE:** If you configure system logging within a NAT rule term, use a stateful firewall rule to restrict the traffic that reaches the NAT rule term.

System log messages can negatively affect the performance of the services card, depending on the frequency of creation and deletion of sessions. All system log messages created by the services card require CPU processing at the services card, and the system log messages themselves constitute traffic that is sent across the MX Series router and competes with user traffic to reach the external log server.

Secure port block allocation removes the need to configure logs per session, because you know the block and block size and can derive the ports allocated to each user.

Deterministic NAT removes the need to log at all, because all information on port allocation can be deduced mathematically.

The following example restricts logging to NAT events and sends log messages to the external log server 203.0.113.4

```plaintext
[edit services service-set S-SET-1]
class {
 nat-logs;
}
```
When you configure system logging within a NAT rule term, all traffic that enters the NAT rule term generates a log, which can cause excessive logging. This might result in the logging rate limit being reached, and you would lose logs that you do need.

For more information about configuring system logging for NAT, see “Configuring NAT Session Logs” on page 305.

Limit the Impact of Missing IP Fragments

**BEST PRACTICE:** For the services interface that is configured for NAT, limit the impact of missing or delayed fragments by configuring the following:

- Maximum number of fragments for a packet
- Maximum wait time for a missing fragment

IP fragments received by the services card configured for NAT are buffered as they arrive. This allows an integrity check of the completely reassembled packet before the packet is processed by NAT. Missing or delayed fragments can cause the already received fragments to be held until the internal buffer is full and they are flushed out, resulting in CPU usage overhead and reduced traffic forwarding.

Configuring the maximum number of fragments a packet can have and limiting the wait time for a missing fragment reduces the chance of the internal buffer becoming full.

The following example sets the maximum number of fragments to 10 and the maximum wait time to 3 seconds.

```
[edit interfaces ms-0/0/0]
services-options {
 fragment-limit 10;
 reassembly-timeout 3;
}
```

Do Not Use Configurations Prone to Packet Routing Loops

**BEST PRACTICE:** Prevent packet routing loops by ensuring that only the intended traffic is allowed to reach the services card and be processed by the service set NAT rule. You can do this by:

- Configuring a source-address range under the NAT rule when possible.
- Configuring a firewall filter that accepts only the traffic meant to be serviced by the NAT rule in a next-hop style service set.
Packet looping between the Packet Forwarding Engine and the services card results in persistent high CPU usage on the services card. Packet looping can be caused by the services card receiving traffic from an unexpected private source network. When unexpected traffic is processed by NAT, a pinhole is created, and in the case of EIF many pinholes might be created. These pinholes cause routing loops if the return traffic routes back through the services card.

The following example shows a firewall filter that only allows traffic from 198.51.100.0/24 to reach services interface ms-1/0/0, which is the inside interface for a next-hop service set.

```
[edit firewall filter to_be_serviced]
term 1 {
 from
 address {
 198.51.100.0/24;
 }
 then accept;
}
term 2 {
 then disard;
}
[edit interfaces ms-1/0/0]
unit 1 {
 family inet {
 filter {
 output to_be_serviced;
 }
 service-domain inside;
 }
}
```

For more information about configuring firewall filters, see the *Routing Policies, Firewall Filters, and Traffic Policers Feature Guide*.

The following example shows a NAT rule that only processes traffic from 198.51.100.0/24 (other traffic reaches the services interface, but is not processed).

```
[edit services nat]
rule rule_1 {
 match-direction input;
 term t1 {
 from {
 source-address {
 198.51.100.0/24;
 }
 }
 then {
 translated {
 source-pool pool1;
 translation-type {
 napt-44;
 }
 }
 }
 }
}
```
For more information about configuring NAT rules, see “Network Address Translation Rules Overview” on page 84.

Inactivity Timeouts

**BEST PRACTICE:** Set the inactivity timeout only for user-defined applications that could require the NAT session mapping to remain in memory for longer than the default NAT inactivity timeout of 30 seconds. For example, an HTTP or HTTPS banking application may require more than 30 seconds of inactivity because the user must enter data.

**BEST PRACTICE:** Before making changes to the existing inactivity timeouts, run the following commands several times during peak hours. Then run the commands after making the changes, and verify that the changes are not starving the MX Series router of NAT resources or the services card of memory.

- `show services sessions count`
- `show services nat pool detail`
- `show services service-sets summary`

The following example shows the inactivity timeout being set to 1800 seconds for HTTPS and HTTP applications.

```
[edit applications]
application https {
 inactivity-timeout 1800;
 destination-port 443;
 protocol tcp;
}
application http {
 inactivity-timeout 1800;
 destination-port 443;
 protocol tcp;
}
```

For more information about configuring user-defined applications, see “Configuring Application Properties” on page 431.

You need to weigh the risks of setting high inactivity timeouts for all traffic. While the default NAT inactivity timeout of 30 seconds may be too low for some user-defined applications, setting a timeout value too high can tie up NAT resources. For example,
setting high inactivity timeout values can tie up any TCP session that is inactive just minutes after it was created. If the TCP session is not cleanly closed by a FIN or RST by the client or server, the session will sit in memory and tie up the NAT resources assigned to it until the timeout value expires.

Setting higher inactivity timeouts that impact every UDP and TCP port can be dangerous, especially with UDP traffic like DNS. Unlike TCP, UDP has no way to end a session other than timing out, so all UDP sessions would stay active for the full inactivity timeout value.

The following example is not a recommended configuration because it sets high inactivity timeout values for all TCP and UDP traffic.

```
[edit applications]
application UDP-All {
 protocol UDP;
 source-port 1-65535;
 inactivity-timeout 3600;
}
application TCP-All {
 protocol TCP;
 source-port 1-65535;
 inactivity-timeout 3600;
}
```

We do not have specific recommended inactivity timeout values. The proper inactivity timeout values depend on several factors, including:

- What applications are used on an end user’s network
  For example, Apple has stated that an inactivity timeout of 60 minutes is required for the following Apple services, which require a long connection lifetime:
  - Apple Push Services: inbound TCP port 5223
  - Exchange Active Sync: inbound TCP port 443
  - MobileMe: inbound TCP ports 5222 and 5223
- How the NAT solution is being used, for example as a Gi NAT device or as an Enterprise edge router
- How large your NAT pools are
- How much traffic each services card receives during peak loads
- How much memory you have available

### Enable Dump on Flow Control

**BEST PRACTICE:** Enable the dump-on-flow-control option for any services card that is processing NAT traffic in a production network. This option detects when a services card is locked up, writes a core dump that Juniper Networks can analyze to determine why the card locked up, and recovers the services card by restarting it.
For the MS-MIC and MS-MPC, set the dump-on-flow-control option under the pc-interface, which is used to send control traffic from the Routing Engine to the services card. The following example shows the configuration if the services interface is ms-2/1/0.

```
[edit interfaces pc-2/1/0]
multiservice-options {
 flow-control-options {
 dump-on-flow-control;
 }
}
```

For the MS-DPC, set the dump-on-flow control option under the sp-interface. The following example shows the configuration if the services interface is sp-2/1/0.

```
[edit interfaces sp-2/1/0]
multiservice-options {
 flow-control-options {
 dump-on-flow-control;
 }
}
```

Related Documentation

• Network Address Translation Configuration Overview on page 80
Avoiding IPv4 Exhaustion Using Junos Address Aware Network Addressing and Stateful NAT64

- Sample IPv6 Transition Scenarios on page 109
- Configuring Stateful NAT64 on page 111

Sample IPv6 Transition Scenarios

The Junos OS supports many IPv6 transition scenarios required by Junos OS customers. The following are selected examples:

- Example 1: IPv4 Depletion with a Non-IPv6 Access Network on page 109
- Example 2: IPv4 Depletion with an IPv6 Access Network on page 110
- Example 3: IPv4 Depletion for Mobile Networks on page 111

Example 1: IPv4 Depletion with a Non-IPv6 Access Network

Figure 8 on page 110 depicts a scenario in which the Internet service provider (ISP) has not significantly changed its IPv4 network. This approach enables IPv4 hosts to access the IPv4 Internet and IPv6 hosts to access the IPv6 Internet. A dual-stack host can be treated as an IPv4 host when it uses the IPv4 access service, and as an IPv6 host when it uses the IPv6 access service.
Two new types of devices must be deployed in this approach: a dual-stack home gateway and a dual-stack carrier-grade Network Address Translation (NAT). The dual-stack home gateway integrates IPv4 forwarding and v6-over-v4 tunneling functions. It can also integrate a v4-v4 NAT function. The dual-stack carrier-grade NAT (CGN) integrates v6-over-v4 tunneling and carrier-grade v4-v4 NAT functions.

Example 2: IPv4 Depletion with an IPv6 Access Network

In the scenario shown in Figure 9 on page 110, the ISP network is IPv6-only.

The dual-stack lite (DS-Lite) solution accommodates IPv6-only ISPs. The best business model for this approach is that the customer premises equipment (CPE) has integrated the functions for tunneling IPv6 to an IPv4 backbone, tunneling IPv4 to an IPv6 backbone, and can automatically detect which solution is required.

Not all customers of a given ISP must switch from IPv4 access to IPv6 access simultaneously; in fact, transition can be managed better by switching groups of
customers (for example, all those connected to a single point of presence) on an incremental basis. Such an incremental approach should prove easier to plan, schedule, and execute than an across-the-board conversion.

Example 3: IPv4 Depletion for Mobile Networks

The complexity of mobile networks necessitates a flexible migration approach to ensure minimal disruption and maximum backward compatibility during transition. NAT64 can be used to enable IPv6 devices to communicate to IPv4 hosts without modifying the clients.

Configuring Stateful NAT64

To configure stateful NAT64, you must configure a rule at the [edit services nat] hierarchy level for translating the source address dynamically and the destination address statically.

**BEST PRACTICE:** When you configure the service set that includes your NAT rule, include the set stateful-nat64 clear-dont-fragment-bit at the [edit services service-set service-set-name] hierarchy level. This clears the DF (don’t fragment) bit in order to prevent unnecessary creation of an IPv6 fragmentation header when translating IPv4 packets that are less than 1280 bytes. RFC 6145, *IP/ICMP Translation Algorithm*, provides a full discussion of the use of the DF flag to control generation of fragmentation headers. For more information on service sets for NAT, see “Configuring Service Sets for Network Address Translation” on page 95.

To configure stateful NAT64:

1. In configuration mode, go to the [edit services nat] hierarchy level.

   ```
 [edit]
 user@host# edit services nat
   ```

2. Define the pool of source addresses to be used for dynamic translation.

   ```
 [edit services nat]
 user@host# set pool pool name address source addresses
 user@host# set pool pool name port source ports
   ```

   For example:

   ```
 [edit services nat]
 user@host# set pool src-pool-nat64 address 203.0.113.0/24
 user@host# set pool src-pool-nat64 port automatic
   ```
NOTE: Starting in Junos OS release 14.2, the sequential option is introduced to enable you to configure sequential allocation of ports. The sequential and random-allocation options available with the port automatic statement at the [edit services nat pool nat-pool-name] hierarchy level are mutually exclusive. You can include the sequential option for sequential allocation and the random-allocation option for random delegation of ports. By default, sequential allocation of ports takes place if you include only the port automatic statement at the [edit services nat pool nat-pool-name] hierarchy level. The auto option is hidden and is deprecated in Junos OS Release 14.2 and later, and is only maintained for backward compatibility. It might be removed completely in a future software release.

3. Define a NAT rule for translating the source addresses. Set the match-direction statement of the rule as input. Then define a term that uses stateful-nat64 as the translation type for translating the addresses of the pool defined in the previous step.

```plaintext
[edit services nat]
user@host# set rule rule name match-direction input
user@host# set rule rule name term term name from source-address source address
user@host# set rule rule name term term name from destination-address destination address
user@host# set rule rule name term term name then translated source-pool pool name
user@host# set rule rule name term term name then translated destination-prefix destination prefix
user@host# set rule rule name term term name then translated translation-type stateful-nat64
```

For example:

```plaintext
[edit services nat]
user@host# set rule stateful-nat64 match-direction input
user@host# set rule stateful-nat64 term t1 from source-address 2001:DB8::0/96
user@host# set rule stateful-nat64 term t1 from destination-address 64:FF9B::/96
user@host# set rule stateful-nat64 term t1 then translated source-pool src-pool-nat64
user@host# set rule stateful-nat64 term t1 then translated destination-prefix 64:FF9B::/96
user@host# set rule stateful-nat64 term t1 then translated translation-type stateful-nat64
```

The following example configures dynamic source address (IPv6-to-IPv4) and static destination address (IPv6-to-IPv4) translation.

```plaintext
[edit services]
user@host# show nat {
 pool src-pool-nat64 {
 address 203.0.113.0/24;
 port {
 automatic;
 }
 }
```
rule stateful-nat64 {
    match-direction input;
    term t1 {
        from {
            source-address {
                2001:db8::/96;
            }
            destination-address {
                64:ff9b::/96;
            }
        }
        then {
            translated {
                source-pool src-pool-nat64;
                destination-prefix 64:ff9b::/96;
                translation-type {
                    stateful-nat64;
                }
            }
        }
    }
}

service-set sset-nat64 {
    nat-options {
        stateful-nat64 {
            clear-dont-fragment-bit;
        }
    }
    service-set-options;
    nat-rules stateful-nat64;
    interface-service {
        service-interface ms-0/1/0;
    }
}
NOTE: If you configure two NAT64 rules and associate them with the same service set, along with stateful firewall rules, and apply the service set on two VLAN-tagged interfaces, for traffic that is transmitted matching both the NAT rules, the traffic that is destined to the second NAT rule is dropped. In such a scenario, traffic flows are not dropped on the Routing Engine. This behavior of traffic drop by the second NAT rule is expected. With Junos OS Extension-Provider packages installed on a device, because endpoint-independent mapping (EIM) is not supported, EIM per VLAN or per NAT rule term. The second session, which is dropped by the second NAT rule in the configuration scenario described here, is not created owing to the following sequence of events:

1. The first packet matching either rule creates an EIM and a session.
2. The second packet matches the EIM entry because the second packet is sent with the same source IP address and port as the first packet (but with a different destination address).

This condition causes allocation (reuse) of the same public IP address and port to the second packet as the first packet. The reverse flow for this session has the same 5-tuple data as the reverse flow of the first session. This behavior causes flow addition failure because a duplicate flow in the same service set is not permitted.

To work around this problem, disable EIM in both the NAT rules, which causes both the sessions to be established and processed correctly. Alternatively, to avoid this problem, specify the NAT rules on different service-sets configured on different units of the media interface with EIM enabled to successfully establish both the sessions.

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2</td>
<td>Starting in Junos OS release 14.2, the <strong>sequential</strong> option is introduced to enable you to configure sequential allocation of ports.</td>
</tr>
</tbody>
</table>
Hiding Private Networks Using Static Source NAT

To configure the translation type as **basic-nat44**, you must configure the NAT pool and rule, service set with service interface, and trace options. This topic includes the following tasks:

- Configuring the NAT Pool and Rule on page 115
- Configuring the Service Set for NAT on page 118
- Configuring Trace Options on page 120
- Sample Configuration - Static Source NAT Using a Static Pool With An Address Prefix And An Address Range on page 121
- Sample Configuration - Static Source Nat for One-To-One Mapping Between a Private Subnet and a Public Subnet on page 121

### Configuring the NAT Pool and Rule

To configure the NAT pool, rule, and term:

1. In configuration mode, go to the `[edit services nat]` hierarchy level.

   ```
 [edit]
 user@host# edit services nat
   ```

2. Configure the NAT pool with an address.

   ```
 [edit services nat]
 user@host# set pool pool name address address
   ```
In the following example, the pool name is src_pool and the address is 10.10.10.2/32.

[edit services nat]
user@host# set pool src_pool address 10.10.10.2/32

3. Configure the NAT rule and the match direction.

[edit services nat]
user@host# set rule rule-name match-direction match-direction

In the following example, the NAT rule name is rule-basic-nat44 and the match direction is input.

[edit services nat]
user@host# set rule rule-basic-nat44 match-direction input

4. Configure the source address in the from statement.

[edit services nat]
user@host# set rule rule-basic-nat44 term term-name from from source-address address

In the following example, the term name is t1 and the input condition is source-address 3.1.1.2/32.

[edit services nat]
user@host# set rule rule-basic-nat44 term t1 from source-address 3.1.1.2/32

5. Configure the NAT term action and properties of the translated traffic.

[edit services nat]
user@host# set rule rule-basic-nat44 term t1 then term-action translated-property

In the following example, the term action is translated and the property of the translated traffic is source-pool src_pool.

[edit services nat]
user@host# set rule rule-basic-nat44 term t1 then translated source-pool src_pool

6. Configure the translation type.

[edit services nat]
user@host# set rule rule-basic-nat44 term t1 then translated translation-type translation-type

In the following example, the translation type is basic-nat44.

[edit services nat]
user@host# set rule rule-basic-nat44 term t1 then translated translation-type basic-nat44

7. Verify the configuration by using the show command at the [edit services nat] hierarchy level.

```
[edit services]
user@host# show

nat {
 pool src_pool {
 address 10.10.10.2/32;
 }
 rule rule-basic-nat44 {
 match-direction input;
 term t1 {
 from {
 source-address {
 3.1.1.2/32;
 }
 }
 then {
 translated {
 source-pool src_pool;
 translation-type {
 basic-nat44;
 }
 }
 }
 }
 }
}
```

**NOTE:** If you don’t configure a stateful firewall (SFW) rule for your traffic, then each packet is subjected to the following default stateful firewall rule:

- Allow any valid packets from inside to outside.
- Create forward and return flow based on packets 5-tuple.
- Allow only valid packets matching return flows from outside to inside.

The stateful firewall’s packet validity checks are described in the *Stateful Firewall Anomaly Checking* in “Junos Network Secure Overview” on page 463. When a packets pass stateful firewall validity checking but are not matched by a NAT rule, they are not translated and may be forwarded if the NAT node has a valid route to the packets’ destination IP addresses.
NOTE: When you add or delete a parameter in the from statement (NAT rule term match condition) at the [edit services service-set service-set-name nat-rules rule-name term term-name] hierarchy level, this configuration change triggers a deletion and addition of the NAT policy (which is equivalent to the deactivation and activation of a service set) that causes all existing NAT mappings to be deleted. Because the sessions are not closed owing to the change in the NAT policy, this behavior causes the mappings to timeout immediately after the sessions are closed. This behavior is expected and is applicable only with Junos OS Extension-Provider packages installed on a device. When a NAT policy is deleted and readded, only EIM mappings are deleted. This NAT policy change does not deactivate and activate the service set. We recommend that you deactivate and reactivate the service set in such scenarios in Junos OS Release 14.2 and earlier.

Configuring the Service Set for NAT

To configure the service set for NAT:

1. In configuration mode, go to the [edit services] hierarchy level.

   [edit]
   user@host# edit services

2. Configure the service set.

   [edit services]
   user@host# edit service-set service-set-name

   In the following example, the service set name is s1.

   [edit services]
   user@host# edit service-set s1

3. For the s1 service set, set the reference to the NAT rules configured at the [edit services nat] hierarchy level.

   [edit services service-set s1]
   user@host# set nat-rules rule-name

   In the following example, the rule name is rule-basic-nat44.

   [edit services service-set s1]
   user@host# set nat-rules rule-basic-nat44

4. Configure the service interface.

   [edit services service-set s1]
In the following example, the service interface name is `ms-1/2/0`.

```
[edit services service-set s1]
user@host# set interface-service service-interface ms-1/2/0
```

**NOTE:** If you have a Trio-based line card, you can configure an inline-services interface on that card:

```
[edit]
user@host# set interfaces si-0/0/0
[edit services service-set s1]
user@host# set interface-service service-interface si-0/0/0
```

5. Verify the configuration by using the `show` command at the `[edit services]` hierarchy level.

```
[edit services]
user@host# show
service-set s1 {
 nat-rules rule-basic-nat44;
 interface-service {
 service-interface ms-1/2/0;
 }
}
```

6. Associate the NAT service set with an `xe-` interface:

```
user@host# set interfaces xe-1/1/0 unit 0 family inet address 10.255.247.2/24
user@host# set interfaces xe-1/1/0 unit 0 family inet service input service-set s1
user@host# set interfaces xe-1/1/0 unit 0 family inet service output service-set s1
```

7. Verify the configuration by using the `show` command at the `[edit interfaces]` hierarchy level.

```
[edit interfaces]
user@host# show
xe-1/1/0 {
 unit 0 {
 family inet {
 service {
 input {
 service-set s1;
 }
 output {
 service-set s1;
 }
 }
 }
 address 10.255.247.2/24;
 }
}
```
Configuring Trace Options

To configure the trace options:

1. In configuration mode, go to the [edit services adaptive-services-pics] hierarchy level.

```
[edit]
user@host# edit services adaptive-services-pics
```

2. Configure the trace options.

```
[edit services adaptive-services-pics]
user@host# set traceoptions flag tracing parameter
```
In the following example, the tracing parameter is all.

```
[edit services adaptive-services-pics]
user@host# set traceoptions flag all
```

3. Verify the configuration by using the show command at the [edit services] hierarchy level.

```
[edit services]
user@host# show
adaptive-services-pics {
 traceoptions {
 flag all;
 }
}
```

```
[edit]
user@host# show services
service-set s1 {
 nat-rules rule-basic-nat44;
 interface-service {
 service-interface ms-1/2/0;
 }
}
}
}
}
Sample Configuration - Static Source NAT Using a Static Pool With An Address Prefix And An Address Range

[edit services nat]
pool pl1 {
 address 30.30.30.252/30;
 address-range low 20.20.20.1 high 20.20.20.2;
}
rule r1 {
 match-direction input;
 term t1 {
 from {
 source-address {
 10.10.10.252/30;
 }
 }
 }
 then {
 translated {
 source-pool pl1;
 translation-type basic-nat44;
 }
 }
}

Sample Configuration - Static Source Nat for One-To-One Mapping Between a Private Subnet and a Public Subnet

[edit]
user@host# show services
service-set s1 {
 nat-rules rule-basic-nat44;
 interface-service {
 service-interface ms-1/2/0;
 }
}
nat {
 pool src_pool {
 address 10.10.10.2/32;
 }
 rule rule-basic-nat44 {
 match-direction input;
 term t1 {
 from {
 source-address {
 3.1.1.2/32;
 }
 }
 then {
 translated {
 source-pool src_pool;
 translation-type {
 basic-nat44;
 }
 }
 }
 }
 }
}

adaptive-services-pics {
 traceoptions {
 flag all;
 }
}

[edit interfaces]
user@host# show
xe-1/1/0 {
 unit 0 {
 family inet {
 service {
 input {
 service-set s1;
 }
 output {
 service-set s1;
 }
 address 10.255.247.2/24;
 }
 }
 }
}
Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2</td>
<td>We recommend that you deactivate and reactivate the service set in such scenarios in Junos OS Release 14.2 and earlier.</td>
</tr>
</tbody>
</table>

Configuring Static Source Translation in IPv6 Networks

To configure the translation type as \texttt{basic-nat66}, you must configure the NAT pool and rule, service set with service interface, and trace options. The \texttt{basic-nat66} translation type is not available if you are using MS-MPCs or MS-MICs.

This topic includes the following tasks:

- Configuring the NAT Pool and Rule on page 123
- Configuring the Service Set for NAT on page 125
- Configuring Trace Options on page 126

Configuring the NAT Pool and Rule

To configure the NAT pool, rule, and term:

1. In configuration mode, go to the \texttt{[edit services nat]} hierarchy level.

   ```
   [edit]
   user@host# edit services nat
   ```

2. Configure the NAT pool with an address.

   ```
   [edit services nat]
   user@host# set pool pool name address address
   ```

 In the following example, the pool name is \texttt{src_pool} and the address is 10.10.10.2/32.

   ```
   [edit services nat]
   user@host# set pool src_pool address 10.10.10.2/32
   ```

3. Configure the NAT rule and the match direction.

   ```
   [edit services nat]
   user@host# set rule rule-name match-direction match-direction
   ```

 In the following example, the rule name is \texttt{rule-basic-nat66} and the match direction is \texttt{input}.

   ```
   [edit services nat]
   user@host# set rule rule-basic-nat66 match-direction input
   ```

4. Configure the source address in the \texttt{from} statement.
In the following, the term name is `t1` and the input condition is `source-address 2001:db8:10::0/96`.

```
[edit services nat]
user@host# set rule rule-basic-nat66 term t1 from source-address
address
```

5. Configure the NAT term action and properties of the translated traffic.

```
[edit services nat]
user@host# set rule rule-basic-nat66 term t1 then term-action translated-property
```

In the following example, the term action is `translated` and the property of the translated traffic is `source-pool src_pool`.

```
[edit services nat]
user@host# set rule rule-basic-nat66 term t1 then translated source-pool src_pool
```

6. Configure the translation type.

```
[edit services nat]
user@host# set rule rule-basic-nat66 term t1 then translated translation-type
translation-type
```

In the following example, the translation type is `basic-nat66`.

```
[edit services nat]
user@host# set rule rule-basic-nat66 term t1 then translated translation-type basic-nat66
```

7. Verify the configuration by using the `show` command at the `[edit services]` hierarchy level.

```
[edit services]
user@host# show
nat {
  pool src_pool {
    address 10.10.10.2/32;
  }
  rule rule-basic-nat66 {
    match-direction input;
    term t1 {
      from {
        source-address {
          2001:db8:10::0/96;
        }
      }
    }
  }
}
Configuring the Service Set for NAT

To configure the service set for NAT:

1. In configuration mode, go to the [edit services] hierarchy level.

   [edit]
   user@host# edit services

2. Configure the service set.

   [edit services]
   user@host# edit service-set service-set-name

   In the following example, the service set name is s1.

   [edit services]
   user@host# edit service-set s1

3. For the s1 service set, set the reference to the NAT rules configured at the [edit services nat] hierarchy level.

   [edit services service-set s1]
   user@host# set nat-rules rule-name

   In the following example, the rule name is rule-basic-nat66.

   [edit services service-set s1]
   user@host# set nat-rules rule-basic-nat66

4. Configure the service interface.

   [edit services service-set s1]
   user@host# set interface-service service-interface service-interface-name

   In the following example, the service interface name is sp-1/2/0.

   [edit services service-set s1]
5. Verify the configuration by using the `show` command at the `[edit services]` hierarchy level.

```
[edit services]
user@host# show
 service-set s1 {
 nat-rules rule-basic-nat66;
 interface-service {
 service-interface sp-1/2/0;
 }
 }
```

### Configuring Trace Options

To configure the trace options at the `[edit services adaptive-services-pics]` hierarchy level:

1. In configuration mode, go to the `[edit services adaptive-services-pics]` hierarchy level.

```
[edit]
user@host# edit services adaptive-services-pics
```

2. Configure the trace options.

```
[edit services adaptive-services-pics]
user@host# set traceoptions flag tracing parameter
```

In the following example, the tracing parameter is `all`.

```
[edit services adaptive-services-pics]
user@host# set traceoptions flag all
```

3. Verify the configuration by using the `show` command at the `[edit services]` hierarchy level.

```
[edit services]
user@host# show
 adaptive-services-pics {
 traceoptions {
 flag all;
 }
 }
```

The following example configures the translation type as `basic-nat66`.

```
[edit]
user@host# show services
```
Example: Configuring Basic NAT44

This example describes how to implement a basic NAT44 configuration.

- Requirements on page 127
- Overview on page 128
- Configuring Basic NAT44 on page 128

Requirements

This example uses the following hardware and software components:

- An MX Series 5G Universal Routing Platform with a Services DPC or an M Series Multiservice Edge router with a services PIC
- A domain name server (DNS)
- Junos OS Release 11.4 or higher
Overview

This example shows a complete CGN NAT44 configuration and advanced options.

Configuring Basic NAT44

Chassis Configuration

**Step-by-Step Procedure**

To configure the service PIC (FPC 5 Slot 0) with the Layer 3 service package:

1. Go to the [edit chassis] hierarchy level.
   
   user@host# edit chassis

2. Configure the Layer 3 service package.
   
   [edit chassis]
   user@host# set fpc 5 pic 0 adaptive-services service-package layer-3

Interfaces Configuration

**Step-by-Step Procedure**

To configure interfaces to the private network and the public Internet:

1. Define the interface to the private network.
   
   user@host# edit interfaces ge-1/3/5
   [edit interfaces ge-1/3/5]
   user@host# set description “Private”
   user@host# edit unit 0 family inet
   [edit interfaces ge-1/3/5 unit 0 family inet]
   user@host# set service input service-set s2
   user@host# set service output service-set s2
   user@host# set address 9.0.0.1/24

2. Define the interface to the public Internet.
   
   user@host# edit interfaces ge-1/3/6
   [edit interfaces ge-1/3/6]
   user@host# set description “Public”
   user@host# set unit 0 family inet address 128.0.0.1/24

3. Define the service interface for NAT processing.
   
   user@host# edit interfaces sp-5/0/0
   [edit interfaces sp-5/0/0]
   user@host# set unit 0 family inet
Example: Configuring NAT for Multicast Traffic

Figure 10 on page 129 illustrates the network setup for the following configuration, which allows IP multicast traffic to be sent to the Multiservices PIC.

Figure 10: Configuring NAT for Multicast Traffic

- Rendezvous Point Configuration on page 129
- Router 1 Configuration on page 133

Rendezvous Point Configuration

On the rendezvous point (RP), all incoming traffic from the multicast source at 192.168.254.0/27 is sent to the static NAT pool `mcast_pool`, where its source is translated.
to 20.20.20.0/27. The service set nat_ss is a next-hop service set that allows IP multicast traffic to be sent to the Multiservices DPC or Multiservices PIC. The inside interface on the PIC is ms-1/1/0.1 and the outside interface is ms-1/1/0.2.

```
[edit services]
nat {
pool mcast_pool {
 address 20.20.20.0/27;
}
rule nat_rule_1 {
 match-direction input;
 term 1 {
 from {
 source-address 192.168.254.0/27;
 }

 then {
 translated {
 source-pool mcast_pool;
 translation-type basic-nat44;
 }
 syslog;
 }
 }
}
}

service-set nat_ss {
 allow-multicast;
 nat-rules nat_rule_1;
 next-hop-service {
 inside-service-interface ms-1/1/0.1;
 outside-service-interface ms-1/1/0.2;
 }
}
```

The Gigabit Ethernet interface ge-0/3/0 carries traffic out of the RP to Router 1. The multiservices interface ms-1/1/0 has two logical interfaces: unit 1 is the inside interface for next-hop services and unit 2 is the outside interface for next-hop services. Multicast source traffic comes in on the Fast Ethernet interface fe-1/2/1, which has the firewall filter fbf applied to incoming traffic.

```
[edit interfaces]
ge-0/3/0 {
 unit 0 {
 family inet {
 address 10.10.1.1/30;
 }
 }
}

ms-1/1/0 {
 unit 0 {
 family inet;
 }
 unit 1 {

Multicast packets can only be directed to the Multiservices DPC or the Multiservices PIC using a next-hop service set. In the case of NAT, you must also configure a VPN routing and forwarding instance (VRF). Therefore, the routing instance stage is created as a “dummy” forwarding instance. To direct incoming packets to stage, you configure filter-based forwarding through a firewall filter called fbf, which is applied to the incoming interface fe-1/2/1. A lookup is performed in stage.inet.0, which has a multicast static route that is installed with the next hop pointing to the PIC’s inside interface. All multicast traffic matching this route is sent to the PIC.

```
[edit firewall]
filter fbf {
  term 1 {
    then {
      routing-instance stage;
    }
  }
}
```

The routing instance stage forwards IP multicast traffic to the inside interface ms-1/1/0.1 on the Multiservices DPC or Multiservices PIC:

```
[edit]
routing-instances stage {
  instance-type forwarding;
  routing-options {
    static {
      route 224.0.0.0/4 next-hop ms-1/1/0.1;
    }
  }
}
```

You enable OSPF and Protocol Independent Multicast (PIM) on the Fast Ethernet and Gigabit Ethernet logical interfaces over which IP multicast traffic enters and leaves the
RP. You also enable PIM on the outside interface (ms-1/1/0.2) of the next-hop service set.

```
[edit protocols]
ospf {
  area 0.0.0.0 {
    interface fe-1/2/1.0 {
      passive;
    }
    interface lo0.0;
    interface ge-0/3/0.0;
  }
}
pim {
  rp {
    local {
      address 10.255.14.160;
    }
  }
  interface fe-1/2/1.0;
  interface lo0.0;
  interface ge-0/3/0.0;
  interface ms-1/1/0.2;
}
```

As with any filter-based forwarding configuration, in order for the static route in the forwarding instance stage to have a reachable next hop, you must configure routing table groups so that all interface routes are copied from inet.0 to the routing table in the forwarding instance. You configure routing tables inet.0 and stage.inet.0 as members of fbf_rib_group, so that all interface routes are imported into both tables.

```
[edit routing-options]
interface-routes {
  rib-group inet fbf_rib_group;
}
rib-groups fbf_rib_group {
  import-rib [ inet.0 stage.inet.0 ];
}
multicast {
  rpf-check-policy no_rpf;
}
```

Reverse path forwarding (RPF) checking must be disabled for the multicast group on which source NAT is applied. You can disable RPF checking for specific multicast groups by configuring a policy similar to the one in the example that follows. In this case, the no_rpf policy disables RPF check for multicast groups belonging to 224.0.0.0/4.

```
[edit policy-options]
policy-statement no_rpf {
  term 1 {
    from {
      route-filter 224.0.0.0/4 orlonger;
    }
  }
```
Router 1 Configuration

The Internet Group Management Protocol (IGMP), OSPF, and PIM configuration on Router
1 is as follows. Because of IGMP static group configuration, traffic is forwarded out
fe-3/0/0.0 to the multicast receiver without receiving membership reports from host
members.

```
[edit protocols]
igmp {
    interface fe-3/0/0.0 {
    }
}
ospf {
    area 0.0.0.0 {
        interface fe-3/0/0.0 {
            passive;
        }
        interface lo0.0;
        interface ge-7/2/0.0;
    }
    pim {
        rp {
            static {               
                address 10.255.14.160;
            }
        }
        interface fe-3/0/0.0;
        interface lo0.0;
        interface ge-7/2/0.0;
    }
}
```

The routing option creates a static route to the NAT pool, mcast_pool, on the RP.

```
[edit routing-options]
static {
    route 20.20.20.0/27 next-hop 10.10.1.1;
}
```
Making Private Servers Available Using Static Destination NAT

- Configuring Static Destination Address Translation in IPv4 Networks on page 135

Configuring Static Destination Address Translation in IPv4 Networks

To use destination address translation, the size of the pool address space must be greater than or equal to the destination address space. You must specify a name for the `destination-pool` statement, which can contain multiple addresses, ranges, or prefixes, as long as the number of NAT addresses in the pool is larger than the number of destination addresses in the `from` statement.

To configure destination address translation in IPv4 networks:

1. In configuration mode, go to the `[edit services]` hierarchy level.

   ```
   [edit]
   user@host# edit services
   ```

2. Configure the service set and the NAT rule.

   ```
   [edit services]
   user@host# set service-set service-set-name nat-rules rule-name
   ```

 In the following example, the name of the service set is `s1` and the name of the NAT rule is `rule-dnat44`.

   ```
   [edit services]
   user@host# set service-set s1 nat-rules rule-dnat44
   ```

3. Go to the `[interface-service]` hierarchy level of the service set.

   ```
   [edit services]
   user@host# edit service-set s1 interface-service
   ```

4. Configure the service interface.
In the following example, the name of the service interface is `ms-0/1/0`.

NOTE: If the service interface is not present in the router, or the specified interface is not functional, the following command can result in an error.

5. Go to the `[edit services nat]` hierarchy level. Issue the following command from the top of the services hierarchy, or use the `top` keyword.

   ```
   [edit services service-set s1]
   user@host# top edit services nat
   ```

6. Configure the NAT pool with an address.

   ```
   [edit services nat]
   user@host# set pool pool-name address address
   ```

 In the following example, `dest-pool` is used as the pool name and `4.1.1.2` as the address.

   ```
   user@host# set pool dest-pool address 4.1.1.2
   ```

7. Configure the rule, match direction, term, and destination address.

   ```
   [edit services nat]
   user@host# set rule rule-name match-direction match-direction term term-name from destination-address address
   ```

 In the following example, the name of the rule is `rule-dnat44`, the match direction is `input`, the name of the term is `t1`, and the address is `20.20.20.20`.

   ```
   [edit services nat]
   user@host# set rule rule-dnat44 match-direction input term t1 from destination-address 20.20.20.20
   ```

8. Go to the `[edit services nat rule rule-dnat44 term t1]` hierarchy level.

   ```
   [edit services nat]
   user@host# edit rule rule-dnat44 term t1
   ```

9. Configure the destination pool and the translation type.
In the following example, the destination pool name is `dest-pool`, and the translation type is `dnat-44`.

[edit services nat rule rule-dnat44 term t1]
user@host# set then translated destination-pool dest-pool-name translation-type dnat-44

10. Go to the `[edit services adaptive-services-pics]` hierarchy level. In the following command, the `top` keyword ensures that the command is run from the top of the hierarchy.

[edit services nat rule rule-dnat44 term t1]
user@host# top edit services adaptive-services-pics

11. Configure the trace options.

[edit services adaptive-services-pics]
user@host# set traceoptions flag tracing parameter

In the following example, the tracing parameter is configured as `all`.

[edit services adaptive-services-pics]
user@host# set traceoptions flag all

12. Verify the configuration by using the `show` command at the `[edit services]` hierarchy level.

[edit services]
user@host# show
service-set s1 {
 nat-rules rule-dnat44;
 interface-service {
 service-interface ms-0/1/0;
 }
}
nat {
 pool dest-pool {
 address 4.1.1.2/32;
 }
 rule rule-dnat44 {
 match-direction input;
 term t1 {
 from {
 destination-address {
 20.20.20.20/32;
 }
 }
 then {
 translated {
 user@host# show
 service-set s1 {
 nat-rules rule-dnat44;
 interface-service {
 service-interface ms-0/1/0;
 }
 }
 }
 }
 }
 }
}
The following example configures the translation type as **dnat-44**.

```
[edit services]
user@host# show
service-set s1 {
    nat-rules rule-dnat44;
    interface-service {
        service-interface ms-0/1/0;
    }
}
nat {
    pool dest-pool {
        address 4.1.1.2/32;
    }
    rule rule-dnat44 {
        match-direction input;
        term t1 {
            from {
                destination-address {
                    20.20.20.20/32;
                }
            }
            then {
                translated {
                    destination-pool dest-pool;
                    translation-type {
                        dnat-44;
                    }
                }
            }
        }
    }
}
adaptive-services-pics {
    traceoptions {
        flag all;
    }
}
```

In the following configuration, **term1** configures source address translation for traffic from any private address to any public address. The translation is applied for all services. **term2** performs destination address translation for Hypertext Transfer Protocol (HTTP) traffic.
from any public address to the server's virtual IP address. The virtual server IP address is translated to an internal IP address.

```
[edit services nat]
rule my-nat-rule {
  match-direction input;
  term my-term1 {
    from {
      source-address private;
      destination-address public;
    }
    then {
      translated {
        source-pool my-pool; # pick address from a pool
        translation-type napt-44; # dynamic NAT with port translation
      }
    }
  }
}
rule my-nat-rule2 {
  match-direction input;
  term my-term2 {
    from {
      destination-address 192.168.137.3; # my server's virtual address
      application http;
    }
    then {
      translated {
        destination-pool nat-pool-name;
        translation-type dnat-44; # static destination NAT
      }
    }
  }
}
```

The following configuration performs NAT using the destination prefix `20.20.10.0/32` without defining a pool.

```
[edit services nat]
rule src-nat {
  match-direction input;
  term t1 {
    from {
      destination-address 10.10.10.10/32;
      then {
        translation-type dnat44;
        destination-prefix 20.20.10.0/24;
      }
    }
  }
}
```
Related Documentation

- Configuring Source and Destination Addresses Network Address Translation Overview on page 80
CHAPTER 9

Allowing Components of a Private Network to Share a Single Address Using NAPT

- Configuring Address Pools for Network Address Port Translation (NAPT) Overview on page 141
- Configuring NAPT in IPv4 Networks on page 147
- Configuring NAPT in IPv6 Networks on page 152
- Example: Configuring NAT with Port Translation on page 154
- Example: NAPT Configuration on the MS-MPC With an Interface Service Set on page 155
- Example: Dynamic Source NAT as a Next-Hop Service on page 161

Configuring Address Pools for Network Address Port Translation (NAPT) Overview

With Network Address Port Translation (NAPT), you can configure up to 32 address ranges with up to 65,536 addresses each.

The port statement specifies port assignment for the translated addresses. To configure automatic assignment of ports, include the port automatic statement at the [edit services nat pool nat-pool-name] hierarchy level. By default, sequential allocation of ports occurs.

Starting with Junos OS Release 14.2, you can include the sequential option with the port automatic statement at the [edit services nat pool nat-pool-name] hierarchy level for sequenced allocation of ports from the specified range. To configure a specific range of port numbers, include the port range low minimum-value high maximum-value statement at the [edit services nat pool nat-pool-name] hierarchy level.

NOTE: When 99% of the total available ports in pool for napt-44, no new flows are allowed on that NAT pool.

Starting with Junos OS Release 14.2, the auto option is hidden and is deprecated, and is only maintained for backward compatibility. It might be removed completely in a future software release.
The Junos OS provides several alternatives for allocating ports:

- Round-Robin Allocation for NAPT on page 142
- Sequential Allocation for NAPT on page 142
- Preserve Parity and Preserve Range for NAPT on page 143
- Address Pooling and Endpoint Independent Mapping for NAPT on page 143
- Secured Port Block Allocation for NAPT on page 145
- Comparison of NAPT Implementation Methods on page 146

Round-Robin Allocation for NAPT

To configure round-robin allocation for NAT pools, include the `address-allocation round-robin` configuration statement at the `[edit services nat pool pool-name]` hierarchy level. When you use round-robin allocation, one port is allocated from each address in a range before repeating the process for each address in the next range. After ports have been allocated for all addresses in the last range, the allocation process wraps around and allocates the next unused port for addresses in the first range.

- The first connection is allocated to the address:port 100.0.0.1:3333.
- The second connection is allocated to the address:port 100.0.0.2:3333.
- The third connection is allocated to the address:port 100.0.0.3:3333.
- The fourth connection is allocated to the address:port 100.0.0.4:3333.
- The fifth connection is allocated to the address:port 100.0.0.5:3333.
- The sixth connection is allocated to the address:port 100.0.0.6:3333.
- The seventh connection is allocated to the address:port 100.0.0.7:3333.
- The eighth connection is allocated to the address:port 100.0.0.8:3333.
- The ninth connection is allocated to the address:port 100.0.0.9:3333.
- The tenth connection is allocated to the address:port 100.0.0.10:3333.
- The eleventh connection is allocated to the address:port 100.0.0.11:3333.
- The twelfth connection is allocated to the address:port 100.0.0.12:3333.
- Wraparound occurs and the thirteenth connection is allocated to the address:port 100.0.0.1:3334.

Sequential Allocation for NAPT

With sequential allocation, the next available address in the NAT pool is selected only when all the ports available from an address are exhausted.

Sequential Allocation can be configured only for the MS-DPC and the MS-100, MS-400, and MS-500 MultiServices PICS. The MS-MPC and MS-MIC cards use only the round-robin allocation approach.
NOTE:

- This legacy implementation provides backward compatibility and is no longer a recommended approach.

The NAT pool called \texttt{napt} in the following configuration example uses the sequential implementation:

```plaintext
pool napt {
  address-range low 100.0.0.1 high 100.0.0.3;
  address-range low 100.0.0.4 high 100.0.0.6;
  address-range low 100.0.0.8 high 100.0.0.10;
  address-range low 100.0.0.12 high 100.0.0.13;
  port {
    range low 3333 high 3334;
  }
}
```

In this example, the ports are allocated starting from the first address in the first address-range, and allocation continues from this address until all available ports have been used. When all available ports have been used, the next address (in the same address-range or in the following address-range) is allocated and all its ports are selected as needed. In the case of the example \texttt{napt} pool, the tuple address, port 100.0.0.4:3333, is allocated only when all ports for all the addresses in the first range have been used.

- The first connection is allocated to the address:port 100.0.0.1:3333.
- The second connection is allocated to the address:port 100.0.0.1:3334.
- The third connection is allocated to the address:port 100.0.0.2:3333.
- The fourth connection is allocated to the address:port 100.0.0.2:3334, and so on.

Preserve Parity and Preserve Range for NAPT

Preserve parity and preserve range options are available for NAPT, and are supported on MS-DPCs and MS-100, MS-400, and MS-500 MultiServices PICS. Support for MS-MPCs and MS-MICs starts in Junos OS Release 15.1R1. The following options are available for NAPT:

- Preserving parity—Use the \texttt{preserve-parity} command to allocate even ports for packets with even source ports and odd ports for packets with odd source ports.
- Preserving range—Use the \texttt{preserve-range} command to allocate ports within a range from 0 to 1023, assuming the original packet contains a source port in the reserved range. This applies to control sessions, not data sessions.

Address Pooling and Endpoint Independent Mapping for NAPT

- Address Pooling on page 144
- Endpoint Independent Mapping and Endpoint Independent Filtering on page 145
Address Pooling

Address pooling, or address pooling paired (APP) ensures assignment of the same external IP address for all sessions originating from the same internal host. You can use this feature when assigning external IP addresses from a pool. This option does not affect port utilization.

Address pooling solves the problems of an application opening multiple connections. For example, when Session Initiation Protocol (SIP) client sends Real-Time Transport Protocol (RTP) and Real-Time Control Protocol (RTCP) packets, the SIP generally server requires that they come from the same IP address, even if they have been subject to NAT. If RTP and RTCP IP addresses are different, the receiving endpoint might drop packets. Any point-to-point (P2P) protocol that negotiates ports (assuming address stability) benefits from address pooling paired.

The following are use cases for address pooling:

- A site that offers instant messaging services requires that chat and their control sessions come from the same public source address. When the user signs on to chat, a control session authenticates the user. A different session begins when the user starts a chat session. If the chat session originates from a source address that is different from the authentication session, the instant messaging server rejects the chat session, because it originates from an unauthorized address.

- Certain websites such as online banking sites require that all connections from a given host come from the same IP address.

NOTE: Starting with Junos OS Release 14.1, when you deactivate a service-set that contains address pooling paired (APP) for that service-set, messages are displayed on the PIC console and the mappings are cleared for that service-set. These messages are triggered when the deletion of a service-set commences and again generated when the deletion of the service-set is completed. The following sample messages are displayed when deletion starts and ends:

- Nov 15 08:33:13.974 LOG: Critical] SVC-SET ss1 (iid 5) deactivate/delete: NAT Mappings and flows deletion initiated
- Nov 15 08:33:14.674 LOG: Critical] SVC-SET ss1 (iid 5) deactivate/delete: NAT Mappings and flows deletion completed

In a scaled environment that contains a large number of APP in a service set, a heavy volume of messages is generated and this process takes some amount of time. We recommend that you wait until the console messages indicating the completion of deletion of the service set are completed before you reactivate the service-set again.
Endpoint Independent Mapping and Endpoint Independent Filtering

Endpoint independent mapping (EIM) ensures the assignment of the same external address and port for all connections from a given host if they use the same internal port. This means if they come from a different source port, you are free to assign a different external address.

EIM and APP differ as follows:

- APP ensures assigning the same external IP address.
- EIM provides a stable external IP address and port (for a period of time) to which external hosts can connect. Endpoint independent filtering (EIF) controls which external hosts can connect to an internal host.

NOTE: Starting with Junos OS Release 14.1, when you deactivate a service-set that contains endpoint independent mapping (EIM) mapping for that service-set, messages are displayed on the PIC console and the mappings are cleared for that service-set. These messages are triggered when the deletion of a service-set commences and again generated when the deletion of the service-set is completed. The following sample messages are displayed when deletion starts and ends:

- Nov 15 08:33:13.974 LOG: Critical] SVC-SET ss1 (iid 5) deactivate/delete: NAT Mappings and flows deletion initiated
- Nov 15 08:33:14.674 LOG: Critical] SVC-SET ss1 (iid 5) deactivate/delete: NAT Mappings and flows deletion completed

In a scaled environment that contains a large number of EIM mappings in a service set, a heavy volume of messages is generated and this process takes some amount of time. We recommend that you wait until the console messages indicating the completion of deletion of the service set are completed before you reactivate the service-set again.

Secured Port Block Allocation for NAPT

Port block allocation is supported on MX series routers with MS-DPCs and on M Series routers with MS-100, MS-400, and MS-500 MultiServices PICS. Port block allocation is supported on MX series routers with MS-MPCs and MS-MICs starting in Junos OS release 14.2R2.

Carriers track subscribers using the IP address (RADIUS or DHCP) log. If they use NAPT, an IP address is shared by multiple subscribers, and the carrier must track the IP address and port, which are part of the NAT log. Because ports are used and reused at a very high rate, tracking subscribers using the log becomes difficult due to the large number of messages, which are difficult to archive and correlate. By enabling the allocation of ports
in blocks, port block allocation can significantly reduce the number of logs, making it
easier to track subscribers.

- Secured Port Block Allocation for NAPT on page 146
- Interim Logging for Port Block Allocation on page 146

Secured Port Block Allocation for NAPT

Secured port block allocation can be used for translation types napt-44 and
stateful-nat64.

When allocating blocks of ports, the most recently allocated block is the current active
block. New requests for NAT ports are served from the active block. Ports are allocated
randomly from the current active block.

When you configure secured port block allocation, you can specify the following:

- block-size
- max-blocks-per-address
- active-block-timeout

Interim Logging for Port Block Allocation

With port block allocation we generate one syslog log per set of ports allocated for a
subscriber. These logs are UDP based and can be lost in the network, particularly for
long-running flows. Interim logging triggers re-sending the above logs at a configured
interval for active blocks that have traffic on at least one of the ports of the block.

Interim logging is activated by including the pba-interim-logging-interval statement under
services-options for sp-interfaces.

See Also
- Configuring Secured Port Block Allocation on page 240
- Configuring NAT Session Logs on page 305
- Secured Port Block Allocation for NAPT44 and NAT64 Overview on page 233

Comparison of NAPT Implementation Methods

Table 11 on page 146 provides a feature comparison of available NAPT implementation
methods.

<table>
<thead>
<tr>
<th>Feature/Function</th>
<th>Dynamic Port Allocation</th>
<th>Secured Port Block Allocation</th>
<th>Deterministic Port Block Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users per IP</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Security Risk</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Log Utilization</td>
<td>High</td>
<td>Low</td>
<td>None (no logs necessary)</td>
</tr>
</tbody>
</table>
Table 11: Comparison of NAPT Implementation Methods (continued)

<table>
<thead>
<tr>
<th>Feature/Function</th>
<th>Dynamic Port Allocation</th>
<th>Secured Port Block Allocation</th>
<th>Deterministic Port Block Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Risk Reduction</td>
<td>Random allocation</td>
<td>active-block-timeout feature</td>
<td>n/a</td>
</tr>
<tr>
<td>Increasing Users per IP</td>
<td>n/a</td>
<td>Configure multiples of smaller port blocks to maximize users/ public IP</td>
<td>Algorithm-based port allocation</td>
</tr>
</tbody>
</table>

Configuring NAPT in IPv4 Networks

Network Address Port Translation (NAPT) is a method by which many network addresses and their TCP/UDP ports are translated into a single network address and its TCP/UDP ports. This translation can be configured in both IPv4 and IPv6 networks. This section describes the steps for configuring NAPT in IPv4 networks.

To configure NAPT, you must configure a rule at the [edit services nat] hierarchy level for dynamically translating the source IPv4 addresses.

To configure the NAPT in IPv4 networks:

1. In configuration mode, go to the [edit services] hierarchy level.

 [edit]
 user@host# edit services

2. Configure the service set and NAT rule.

 [edit services]
 user@host# set service-set service-set-name nat-rules rule-name

 In the following example, the name of the service set is s1 and the name of the NAT rule is rule-napt-44.

 [edit services]
 user@host# set service-set s1 nat-rules rule-napt-44

3. Go to the [interface-service] hierarchy level of the service set.

 [edit services]
 user@host# edit service-set s1 interface-service

4. Configure the service interface.

 [edit services service-set s1 interface service]
 user@host# set service-interface service-interface-name

 In the following example, the name of the service interface is ms-0/1/0.
NOTE: If the service interface is not present in the router, or the specified interface is not functional, the following command can result in an error.

```
[edit services service-set sl interface service]
user@host# set service-interface ms-0/1/0
```

5. Go to the [edit services nat] hierarchy level. Issue the command from the top of the services hierarchy, or use the top keyword.

```
[edit services service-set sl interface service]
user@host# top edit services nat
```

6. Configure the NAT pool with an address.

```
[edit services nat]
user@host# set pool pool-name address address
```

In the following example, the name of the pool is napt-pool and the address is 10.10.10.0.

```
[edit services nat]
user@host# set pool napt-pool address 10.10.10.0
```

7. Configure the port.

```
[edit services nat]
user@host# set pool pool-name port port-type
```

In the following example, the port type is selected as sequential or auto.

```
[edit services nat]
user@host# set pool napt-pool port automatic
```

NOTE: Starting in Junos OS Release 14.2, the sequential option is introduced to enable you to configure sequential allocation of ports. The sequential and random-allocation options available with the port automatic statement at the [edit services nat pool nat-pool-name] hierarchy level are mutually exclusive. You can include the sequential option for sequential allocation and the random-allocation option for random delegation of ports. By default, sequential allocation of ports takes place if you include only the port automatic statement at the [edit services nat pool nat-pool-name] hierarchy level. The auto option is hidden and is deprecated in Junos OS Release 14.2 and later, and is only maintained for backward compatibility. It might be removed completely in a future software release.
8. Configure the rule and the match direction.

[edit services nat]
user@host# set rule rule-name match-direction match-direction

In the following example, the name of the rule is rule-napt-44 and the match direction is input.

[edit services nat]
user@host# set rule rule-napt-44 match-direction input

9. Configure the term, the action for the translated traffic, and the translation type.

[edit services nat]
user@host# set rule rule-name term term-name then translated translated-action translation-type napt-44

In the following example, the name of the term is t1, the action for the translated traffic is translated, the name of the source pool is napt-pool, and the translation type is napt-44.

[edit services nat]
user@host# set rule rule-napt-44 match-direction input term t1 then translated source-pool napt-pool translation-type napt-44

10. Go to the [edit services adaptive-services-pics] hierarchy level. In the command, the top keyword ensures that the command is run from the top of the hierarchy.

[edit services nat]
user@host# top edit services adaptive-services-pics

11. Configure the trace options.

[edit services adaptive-services-pics]
user@host# set traceoptions flag tracing parameter

In the following example, the tracing parameter is configured as all.

[edit services adaptive-services-pics]
user@host# set traceoptions flag all

12. Verify the configuration by using the show command at the [edit services] hierarchy level.

[edit services]
user@host# show
service-set s1 {
 nat-rules rule-napt-44;
 interface-service {
The following example configures the translation type as `napt-44`.

```plaintext
[edit services]
user@host# show
service-set s1 {
  nat-rules rule-napt-44;
  interface-service {
    service-interface ms-0/1/0;
  }
}

nat {
  pool napt-pool {
    address 10.10.10.0/32;
    port {
      automatic auto;
    }
  }
  rule rule-napt-44 {
    match-direction input;
    term t1 {
      then {
        translated {
          source-pool napt-pool;
          translation-type {
            napt-44;
          }
        }
      }
    }
  }
}

adaptive-services-pics {
  traceoptions {
    flag all;
  }
}
```
The following configuration shows dynamic address translation from a large prefix to a small pool, translating a /24 subnet to a pool of 10 addresses. When the addresses in the source pool (src-pool) are exhausted, NAT is provided by the NAPT overload pool (pat-pool).

```
[edit services nat]
pool src-pool {
    address-range low 192.16.2.1 high 192.16.2.10;
}
pool pat-pool {
    address-range low 192.16.2.11 high 192.16.2.12;
    port automatic auto;
    rule myrule {
        match-direction input;
        term myterm {
            from {
                source-address 10.150.1.0/24;
            }
            then {
                translated {
                    source-pool src-pool;
                    overload-pool pat-pool;
                    translation-type napt-44;
                }
            }
        }
    }
}
```

The following configuration shows dynamic address translation from a large prefix to a small pool, translating a /24 subnet to a pool of 10 addresses. Sessions from the first 10 host sessions are assigned an address from the pool on a first-come, first-served basis, and any additional requests are rejected. Each host with an assigned NAT can participate in multiple sessions.

```
[edit services nat]
pool my-pool {
    address-range low 10.10.10.1 high 10.10.10.10;
}
rule src-nat {
    match-direction input;
    term t1 {
        from {
            source-address 192.168.1.0/24;
        }
    }
}
```
Then {
 translated {
 translation-type dynamic-nat44;
 source-pool my-pool;
 }
}
}

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2</td>
<td>Starting in Junos OS Release 14.2, the sequential option is introduced to enable you to configure sequential allocation of ports.</td>
</tr>
</tbody>
</table>

Configuring NAPT in IPv6 Networks

Network Address Port Translation (NAPT) is a method by which many network addresses and their TCP/UDP ports are translated into a single network address and its TCP/UDP ports. This translation can be configured in both IPv4 and IPv6 networks. This section describes the steps for configuring NAPT in IPv6 networks. Configuring NAPT in IPv6 networks is not supported if you are using MS-MPCs or MS-MICs. For information about configuring NAPT in IPv4 networks, see "Configuring NAPT in IPv4 Networks" on page 147.

To configure NAPT, you must configure a rule at the [edit services nat] hierarchy level for dynamically translating the source IPv6 addresses.

To configure NAPT in IPv6 networks:

1. In configuration mode, go to the [edit services nat] hierarchy level.

   ```
   [edit]
   user@host# edit services nat
   ```

2. Define the pool of IPv6 source addresses that must be used for dynamic translation. For NAPT, also specify port numbers when configuring the source pool.

   ```
   [edit services nat]
   user@host# set pool pool name address IPv6 source addresses
   user@host# set pool pool name port source ports
   ```

 For example:

   ```
   [edit services nat]
   user@host# set pool IPV6-NAPT-Pool address 2002::1/96
   user@host# set pool IPV6-NAPT-Pool port automatic sequential
   ```
3. Define a NAT rule for translating the source addresses. To do this, set the `match-direction` statement of the rule as `input`. In addition, define a term that uses `napt-66` as the translation type for translating the addresses of the pool defined in the previous step. Note that the `napt-66` translation type is supported only on the MS-DPC, MS-100, MS-400, and MS-500 line cards.

```
[edit services nat]
user@host# set rule rule name match-direction input
user@host# set rule rule name term term name then translated source-pool pool name
user@host# set rule rule name term term name then translated translation-type napt-66
```

For example:

```
[edit services nat]
user@host# set rule IPV6-NAPT-Rule match-direction input
user@host# set rule IPV6-NAPT-Rule term t1 then translated source-pool IPV6-NAPT-Pool
user@host# set rule IPV6-NAPT-Rule term t1 then translated translation-type napt-66
```

4. Enter the `up` command to navigate to the `[edit services]` hierarchy level.

```
[edit services nat]
user@host# up
```

5. Define a service set to specify the services interface that must be used, and reference the NAT rule implemented for NAPT translation.

```
[edit services]
user@host# set service-set service-set name interface service-service-interface
services interface
user@host# set service-set service-set name nat-rules rule name
```

For example:

```
[edit services]
user@host# set service-set IPV6-NAPT-ServiceSet interface-service-service-interface sp-0/1/0
user@host# set service-set IPV6-NAPT-ServiceSet nat-rules IPV6-NAPT-Rule
```

6. Define the trace options for the adaptive services PIC.

```
[edit services]
user@host# set adaptive-services-pics traceoptions flag tracing parameter
```

For example:

```
[edit services]
user@host# set adaptive-services-pics traceoptions flag all
```
The following example configures dynamic source (address and port) translation or NAPT for an IPv6 network.

```
[edit services]
user@host# show
    service-set IPV6-NAPT-ServiceSet {
        nat-rules IPV6-NAPT-Rule;
        interface-service {
            service-interface sp-0/1/0;
        }
    }

    nat {
        pool IPV6-NAPT-Pool {
            address 2002::1/96;
            port automatic sequential;
        }

        rule IPV6-NAPT-Rule {
            match-direction input;
            term term1 {
                translated {
                    source-pool IPV6-NAPT-Pool;
                    translation-type {
                        napt-66;
                    }
                }
            }
        }
    }

    adaptive-services-pics {
        traceoptions {
            flag all;
        }
    }
```

Example: Configuring NAT with Port Translation

This example shows how to configure NAT with port translation.

- Requirements on page 154
- Overview on page 155
- Configuring NAT with Port Translation on page 155

Requirements

This example uses the following hardware and software components:

- An MX Series 5G Universal Routing Platform with a Services DPC or an M Series Multiservice Edge router with a services PIC
- A domain name server (DNS)
- Junos OS Release 11.4 or higher
Overview

This example shows a complete CGN NAT44 configuration and advanced options.

Configuring NAT with Port Translation

Step-by-Step Procedure

To configure the service set:
1. Configure a service set.

 user@host# edit services service-set s2

2. Specify the NAT rule to be used.

 [edit services service-set s2]
 host# set nat-rules r1

3. Specify the interface service.

 [edit services service-set s2]
 host# set interface-service service-interface sp-5/0/0

Results

 user@host# show services service-sets sset2

 nat-rules r1;
 interface-service {
 service-interface sp-5/0/0;
 }

Related Documentation

• Example: NAPT Configuration on the MS-MPC With an Interface Service Set

This example shows how to configure network address translation with port translation (NAPT) on an MX series router using a MultiServices Modular Port Concentrator (MS-MPC) as a services interface card.

• Requirements on page 156
• Overview on page 156
• Configuration on page 156
Requirements

This example uses the following hardware and software components:

- MX-series router
- MultiServices Modular Port Concentrator (MS-MPC)
- Junos OS Release 13.2R1 or higher

Overview

A service provider has chosen an MS-MPC as a platform to provide NAT services to accommodate new subscribers.

Configuration

To configure NAPT44 using the MS-MPC as a services interface card, perform these tasks:

- Configuring Interfaces on page 157
- Configure an Application Set of Acceptable Application Traffic on page 157
- Configuring a Stateful Firewall Rule on page 158
- Configuring NAT Pool and Rule on page 159
- Configuring the Service Set on page 160

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```
set interfaces ge-0/2/0 unit 0 family inet address 10.255.248.2/24
set interfaces xe-1/1/0 unit 0 family inet address 10.255.247.2/24
set interfaces xe-1/1/0 unit 0 family inet service input service-set sset1
set interfaces xe-1/1/0 unit 0 family inet service output service-set sset1
set interfaces ms-3/0/0 unit 0 family inet
set applications application-set accept-algs application junos-http
set applications application-set accept-algs application junos-ftp
set applications application-set accept-algs application junos-tftp
set applications application-set accept-algs application junos-telnet
set applications application-set accept-algs application junos-sip
set applications application-set accept-algs application junos-rtcp
set services stateful-firewall rule sf-rule1 match-direction input-output
set services stateful-firewall rule sf-rule1 term sf-term1 from source-address 10.255.247.0/24
set services stateful-firewall rule sf-rule1 term sf-term1 from application-sets accept-algs
set services stateful-firewall rule sf-rule1 term sf-term1 then accept
set services nat pool napt-pool address 1.1.1.0/24
set services nat pool napt-pool port automatic
* nat rule for napt
set services nat rule nat-rule1 match-direction input
set services nat rule nat-rule1 term nat-term1 from source-address 10.255.247.0/24
```
set services nat rule nat-rule1 term nat-term1 from application-sets accept-algs
set services nat rule nat-rule1 term nat-term1 then translated source-pool napt-pool
set services nat rule nat-rule1 term nat-term1 then translated translation-type napt-44
* nat rule for basic nat
set services service-set sset1 stateful-firewall-rules sf-rule1
set services service-set sset1 nat-rules nat-rule1
set services service-set sset1 interface-service service-interface ms-3/0/0

Configuring Interfaces

Step-by-Step Procedure
Configure the interfaces required for NAT processing. You will need the following interfaces:

- A customer-facing interface that handles traffic from and to the customer.
- An internet-facing interface.
- A services interface that provides NAT and stateful firewall services to the customer-facing interface

1. Configure the interface for the customer-facing interface.

 user@host# edit
 [edit]
 user@host# set interfaces xe-1/1/0 unit 0 family inet address 10.255.247.2/24
 user@host# set interfaces xe-1/1/0 unit 0 family inet service input service-sets set1
 user@host# set interfaces xe-1/1/0 unit 0 family inet service output service-sets set1

2. Configure the interface for the Internet-facing interface.

 [edit]
 set interfaces ge-0/2/0 unit 0 family inet address 10.255.248.2/24

3. Configure the interface for the service set that will connect services to the customer-facing interface. In our example, the interface resides on an MS-MPC.

 [edit]
 user@host# set interfaces ms-3/0/0 unit 0 family inet

Configure an Application Set of Acceptable Application Traffic

Step-by-Step Procedure
Identify the acceptable applications for incoming traffic.

1. Specify an application set that contains acceptable incoming application traffic.

 user@host# set applications application-set accept-algs application junos-http
 user@host# set applications application-set accept-algs application junos-ftp
 user@host# set applications application-set accept-algs application junos-tftp
 user@host# set applications application-set accept-algs application junos-telnet
results

user@host# edit services applications application-set accept-algs
user@host# show

application junos-http;
application junos-ftp;
application junos-tftp;
application junos-telnet;
application junos-sip;
application junos-

configuring a stateful firewall rule

step-by-step procedure

configure a stateful firewall rule that will accept all incoming traffic.

1. Specify firewall matching for all input and output

 user@host# set services stateful-firewall rule sf-rule1 match-direction input-output

2. Identify source-address and acceptable application traffic from the customer-facing interface.

 user@host# set services stateful-firewall rule sf-rule1 term sf-term1 from
 source-address 10.255.247.0/24
 user@host# set services stateful-firewall rule sf-rule1 term sf-term1 from
 application-sets accept-algs
 user@host# set services stateful-firewall rule sf-rule1 term sf-term1 then accept
Results

```
user@host# edit services stateful-firewall
user@host# show
rule sf-rule1 {
    match-direction input-output;
    term sf-term1 {
        from {
            source-address {
                10.255.247.0/24;
            }
            application-sets accept-algs;
        }
        then {
            accept;
        }
    }
}
```

Configuring NAT Pool and Rule

Step-by-Step Procedure

Configure a NAT pool and rule for address translation with automatic port assignment.

1. Configure the NAT pool with automatic port assignment.

   ```
   user@host# set services nat pool napt-pool address 1.1.1.0/24
   user@host# set services nat pool napt-pool port automatic auto
   ```

2. Configure a NAT rule that applies translation type **napt-44** using the defined NAT pool.

   ```
   user@host# set services nat rule nat-rule1 term nat-term1 from application-sets accept-algs
   user@host# set services nat rule nat-rule1 term nat-term1 then translated source-pool napt-pool
   user@host# set services nat rule nat-rule1 term nat-term1 then translated translation-type napt-44
   ```
Results

```
user@host# edit services nat
user@host# show

pool napt-pool {
    address 1.1.1.0/24;
    port {
        automatic;
    }
}
rule nat-rule1 {
    match-direction input;
    term nat-term1 {
        from {
            source-address {
                10.255.247.0/24;
            }
            application-sets accept-algs;
        }
        then {
            translated {
                source-pool napt-pool;
                translation-type {
                    napt-44;
                }
            }
        }
    }
}
```

Configuring the Service Set

Step-by-Step Procedure

Configure an interface type service set.

1. Specify the NAT and stateful firewall rules that apply to customer traffic.

   ```
   user@host set services service-set sset1 stateful-firewall-rules sf-rule1
   user@host set services service-set sset1 nat-rules bat-rule1
   ```

2. Specify the services interface that applies the rules to customer traffic.

   ```
   set services service-set sset1 interface-service service-interface ms-3/0/0
   ```
Results

```plaintext
user@host# edit services service-set sset1
user@host# show
set services service-set sset1 stateful-firewall-rules sf-rule1
set services service-set sset1 nat-rules nat-rule1
set services service-set sset1 interface-service service-interface ms-3/0/0
```

Related Documentation
- Junos Address Aware Network Addressing Overview on page 61

Example: Dynamic Source NAT as a Next-Hop Service

The following example shows dynamic-source NAT applied as a next-hop service:

```plaintext
[edit interfaces]
ge-0/2/0 {
    unit 0 {
        family mpls;
    }
    unit 3/0/0 {
        unit 0 {
            family inet;
        }
        unit 20 {
            family inet;
        }
        unit 32 {
            family inet;
        }
    }
}
[edit routing-instances]
protected-domain {
    interface ge-0/2/0.0;
    interface sp-1/3/0.20;
    instance-type vrf;
    route-distinguisher 10.58.255.17:37;
    vrf-import protected-domain-policy;
    vrf-export protected-domain-policy;
    routing-options {
        static {
            route 0.0.0.0/0 next-hop sp-1/3/0.20;
        }
    }
}
[edit policy-options]
policy-statement protected-domain-policy {
    term t1 {
        then reject;
    }
}
[edit services]
```
stateful-firewall {
 rule allow-all {
 match-direction input;
 term t1 {
 then {
 accept;
 }
 }
 }
}

nat {
 pool my-pool {
 address 10.58.16.100;
 port automatic;
 }
 rule hide-all {
 match-direction input;
 term t1 {
 then {
 translated {
 source-pool my-pool;
 translation-type napt-44;
 }
 }
 }
 }
}

service-set null-sfw-with-nat {
 stateful-firewall-rules allow-all;
 nat-rules hide-all;
 next-hop-service {
 inside-service-interface sp-1/3/0.20;
 outside-service-interface sp-1/3/0.32;
 }
}
CHAPTER 10

Mapping Addresses and Ports With Deterministic NAT

- Deterministic NAPT Overview on page 164
- Configuring Deterministic NAPT on page 169
Deterministic NAPT Overview

You can configure deterministic NAPT44 to ensure that the original source IPv4 address and port always map to the same post-NAT IPv4 address and port range, and that the reverse mapping of a given translated external IPv4 address and port are always mapped to the same internal IPv4 address. You can configure deterministic NAPT64 to ensure that the original source IPv6 address and port always map to the same post-NAT IPv4 address and port range, and that the reverse mapping of a given translated external IPv4 address and port are always mapped to the same internal IPv6 address. Deterministic NAPT uses an algorithm-based allocation of blocks of destination ports.

Deterministic NAPT44 is supported on MX series routers with MS-DPCs and on M Series routers with MS-100, MS-400, and MS-500 MultiServices PICS. Deterministic NAPT 44 is supported for MS-MPCs and MS-MICs starting in Junos OS release 17.3R1, in Junos OS release 14.2R7 and later 14.2 releases, and in Junos OS release 15.1R3 and later 15.1 releases. Starting in Junos OS Release 17.4R1, deterministic NAPT64 is supported on the MS-MPC and MS-MIC.

If the source address in the from clause of a deterministic NAPT rule does not have a prefix of /32, the network and broadcast addresses in the source address range are not translated unless you configure include-boundary-addresses.

For detailed information on how to configure deterministic NAPT, see “Configuring Deterministic NAPT” on page 169.

Benefits of Deterministic NAPT

- Eliminates the need for address translation logging because an IP address is always mapped to the same external IP address and port range, and the reverse mapping of a given translated external IP address and port are always mapped to the same internal IP address.

Understanding Deterministic NAPT Algorithms

The effectiveness of your implementation of deterministic NAPT depends on your analysis of your subscriber requirements. The block size you provide indicates how many ports will be made available for each incoming subscriber address from the range in the from clause specified in the applicable NAT rule. The allocation algorithm computes an offset value to determine the outgoing IP address and port. A reverse algorithm is used to derive the originating subscriber address.

NOTE: In order to track subscribers without using logs, an ISP must use a reverse algorithm to derive a subscriber (source) addresses from a translated address.
The following variables are used in forward calculation (private subscriber IP address to public IP address) and reverse calculation (public IP address to private subscriber IP address):

- **Pr_Prefix**—Any pre-NAT IPv4 subscriber address.
- **Pr_Port**—Any pre-NAT protocol port.
- **Block_Size**—Number of ports configured to be available for each Pr_Prefix.

If \textit{block-size} is configured as zero, the method for computing the block size is computed as follows:

\[\text{block-size} = \text{int}(64512/\text{ceil}([\text{Nr_Addr_PR_Prefix}/\text{Nr_Addr_PU_Prefix}])) \]

where 64512 is the maximum available port range per public IP address.

- **Base_PR_Prefix**—First usable pre-NAT IPv4 subscriber address in a \textit{from} clause of the NAT rule.
- **Base_PU_Prefix**—First usable post-NAT IPv4 subscriber address configured in the NAT pool.
- **Pu_Port_Range_Start**—First usable post-NAT port. This is 1024.
- **Pr_Offset**—The offset of the pre-NAT IP address that is being translated from the first usable pre-NAT IPv4 subscriber address in a \textit{from} clause of the NAT rule. \textit{PR_Offset} = Pr_Prefix – Base_Pr_Prefix.
- **PR_Port_Offset**—Offset of the pre-NAT IP address multiplied by the block size. \textit{PR_Port_Offset} = Pr_Offset \times Block_Size.
- **Pu_Prefix**—Post-NAT address for a given Pr_Prefix.
- **Pu_Start_Port**—Post-NAT start port for a flow from a given Pr_Prefix
- **Pu_Actual_Port**—Post-NAT port seen on a reverse flow.
- **Nr_Addr_PR_Prefix**—Number of usable pre-NAT IPv4 subscriber addresses in a \textit{from} clause clause of the NAT rule.
- **Nr_Addr_PU_Prefix**—Number of usable post-NAT IPv4 addresses configured in the NAT pool.
- **Rounded_PORT_Range_Per_IP**—Number of ports available for each post-NAT IP address. \textit{Rounded_PORT_Range_Per_IP} = \text{ceil}([\text{Nr_Addr_PR_Prefix}/\text{Nr_Addr_PU_Prefix}]) \times Block_Size.
- **Pu_Offset**—Offset of the post-NAT IP address from the first usable post-NAT address. \textit{Pu_Offset} = Pu_Prefix – Base_Pu_Prefix.
- **Pu_Port_Offset**—Offset of the post-NAT port from 1024 added to the product of the offset of the post-NAT IP address and the number of ports available for each post-NAT IP address. \textit{Pu_Port_Offset} = (Pu_Offset \times Rounded_PORT_Range_Per_IP) + (Pu_Actual_Port – Pu_Port_Range_Start).

Algorithm Usage—Assume the following configuration:
services {
 nat {
 pool src-pool {
 address-range low 32.32.32.1 high 32.32.32.254;
 port {
 automatic {
 random-allocation;
 }
 deterministic-block-allocation {
 block-size 249;
 }
 }
 }
 }
 rule det-nat {
 match-direction input;
 term t1 {
 from {
 source-address {
 10.1.0.0/16;
 }
 }
 then {
 translated {
 source-pool src-pool;
 translation-type {
 deterministic-napt44;
 }
 }
 }
 }
 }
}

Forward Translation

1. \(Pr_{Offset} = Pr_{Prefix} - Base_{Pr_{Prefix}} \)

2. \(Pr_{Port_{Offset}} = Pr_{Offset} \times Block_{Size} \)

3. \(Rounded_{Port_{Range_{Per_{IP}}}} = \text{ceil}\left(\frac{Nr_{Addr_{PR_{Prefix}}}}{Nr_{Addr_{PU_{Prefix}}}} \right) \times Block_{Size} \)

4. \(Pu_{Prefix} = Base_{Public_{Prefix}} + \text{floor}\left(\frac{Pr_{Port_{Offset}}}{Rounded_{Port_{Range_{Per_{IP}}}}} \right) \)

5. \(Pu_{Start_{Port}} = Pu_{Port_{Range_{Start}}} + \left(Pr_{Port_{Offset}} \mod Rounded_{Port_{Range_{Per_{IP}}}} \right) \)

Using the sample configuration and assuming a subscriber flow sourced from 10.1.1.250:5000:

1. \(Pr_{Offset} = 10.1.1.250 - 10.1.0.1 = 505 \)

2. \(Pr_{Port_{Offset}} = 505 \times 249 = 125,745 \)
3. Rounded Port Range Per IP = ceil((65,533/254)) * 249 = 259 * 249 = 64,491

4. Pu Prefix = 32.32.32.1 + floor(125,745 / 64,491) = 32.32.32.1 + 1 = 32.32.32.2

5. Pu Start Port = 1,024 + (125,745 % 64,491) = 62278
 - 10.1.1.250 is translated to 32.32.32.2.
 - The starting port is 62278. There are 249 ports available to the subscriber based on the configured block size. The available port range spans ports 62278 through 62526 (inclusive).
 - The specific flow 10.1.1.250:5000 randomly assigns any of the ports in its range because random allocation was specified.

Reverse Translation

1. Pu Offset = Pu Prefix – Base Pu Prefix

2. Pu Port Offset = (Pu Offset * Rounded Port Range Per IP) + (Pu Actual Port – Pu Port Range Start)

3. Subscriber IP = Base Pr Prefix + floor(Pu Port Offset / Block Size)

The reverse translation is determined as follows. Assume a flow returning to 32.32.32.2:62278.

1. Pu Offset = 32.32.32.2 – 32.32.32.1 = 1

2. Pu Port Offset = (1 * 64,491) + (62,280 - 1024) = 125,747

3. Subscriber IP = 10.1.0.1 + floor(125,747 / 249) = 10.1.0.1 + 505 = 10.1.1.250

NOTE: In reverse translation, only the original private IP address can be derived, and not the original port in use. This is sufficiently granular for law enforcement requirements.

When you have configured deterministic NAPT, you can use the `show services nat deterministic-nat internal-host` and `show services nat deterministic-nat nat-port-block` commands to show forward and reverse mapping. However, mappings will change if you reconfigure your deterministic port block allocation block size or the `from` clause for your NAT rule. In order to provide historical information on mappings, we recommend that you write scripts that can show specific mappings for prior configurations.
Deterministic NAPT Restrictions

When you configure deterministic NAPT, you must be aware of the following restrictions. Violation of any restriction results in a commit error. The restrictions and their error messages are shown in Table 12 on page 168.

Table 12: Deterministic NAPT Commit Constraints

<table>
<thead>
<tr>
<th>Restriction</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>The total number of deterministic NAT blocks must be greater than or equal to the from clause addresses configured. This means that the Rounded_Port.Range.Per.IP value must be less than or equal to 64,512.</td>
<td>Number of addresses and port blocks combination in the NAT pool is less than number of addresses in 'from' clause</td>
</tr>
<tr>
<td>IPv6 addresses should not be used in deterministic NAT pool/from clause.</td>
<td>Invalid IP address in pool p1 with translation type deterministic-napt44 OR There is already a range configured with v4 address range</td>
</tr>
<tr>
<td>The from clause addresses should be same if the same deterministic NAT pool is used across multiple terms/rules. Only one from clause address/range should be specified if the same deterministic NAT pool is used across multiple terms/rules.</td>
<td>With translation-type deterministic-napt44, same 'from' address/range should be configured if pool is shared by multiple rules or terms</td>
</tr>
<tr>
<td>The from clause must have at least one source address.</td>
<td>With translation-type deterministic-napt44, at least one non-except 'from' address/range should be configured. error: configuration check-out failed</td>
</tr>
<tr>
<td>There should not be address overlap between except entries in the from clause addresses.</td>
<td>overlapping address, in the 'from' clause between 'except' entries</td>
</tr>
<tr>
<td>Addresses in a NAT pool used for deterministic NAPT should not overlap with the addresses in any other NAT pool.</td>
<td>NAT pool det-nat-pool1 overlaps with det-nat-pool used by service set sset_det-nat error: configuration check-out failed</td>
</tr>
<tr>
<td>A deterministic NAT pool cannot be used with other translation types. In addition, a deterministic NAT pool cannot be used in both deterministic NAPT44 and deterministic NAPT64 NAT rules.</td>
<td>Deterministic NAT pool cannot be used with other translation-types</td>
</tr>
<tr>
<td>Deterministic NAPT44 must use a source pool with deterministic-port-block-allocation configuration.</td>
<td>Deterministic NAPT44 must use a source pool with deterministic-port-block-allocation configuration</td>
</tr>
<tr>
<td>If address-allocation round-robin is configured, a commit results in display of a warning indicating that this technique is not needed with translation-type deterministic-napt44 and is ignored.</td>
<td>Address allocation round-robin is not needed with translation-type deterministic-napt44</td>
</tr>
<tr>
<td>The total number of IP addresses assigned to a deterministic NAT pool should be less than or equal to 2^{24} (16777216).</td>
<td>Number of addresses in pool with deterministic-napt44 translation are limited to at most 16777216 (2^{24})</td>
</tr>
</tbody>
</table>
Configuring Deterministic NAT

Deterministic NATP44 is supported on MX series routers with MS-DPCs and on M Series routers with MS-100, MS-400, and MS-500 MultiServices PICS. Deterministic NATP44 is supported for MS-MPCs and MS-MICs starting in Junos OS release 17.3R1, in Junos OS release 14.2R7 and later 14.2 releases, and in Junos OS release 15.1R3 and later 15.1 releases. Starting in Junos OS Release 17.4R1, deterministic NATP64 is supported on the MS-MPC and MS-MIC.

To configure deterministic NATP, perform the following:

- Configuring the NAT Pool for Deterministic NATP on page 169
- Configuring the NAT Rule for Deterministic NATP on page 171
- Configuring the Service Set for Deterministic NAT on page 172

Configuring the NAT Pool for Deterministic NATP

To configure the NAT pool for deterministic NATP:

1. At the `[edit services nat pool poolname]` hierarchy level, create a pool.

   ```
   user@host# edit services nat pool poolname
   
   user@host# set address-rangelow address high address
   ```

 Or

   ```
   user@host# set address address-prefix
   ```

2. Define the range of addresses to be translated, specifying the upper and lower limits of the range or an address prefix that describes the range.

   ```
   [edit services nat pool pba-pool1]
   user@host# set address-range low address high address
   ```

3. To configure automatic port assignment, specify either sequential or random allocation.

   ```
   [edit services nat pool pba-pool1]
   user@host# set port automatic (sequential | random-allocation)
   ```

Related Documentation

- Configuring Deterministic NATP on page 169
NOTE: Starting in Junos OS Release 14.2R1, the sequential option is introduced to enable you to configure sequential allocation of ports. The sequential and random-allocation options available with the port automatic statement at the [edit services nat pool nat-pool-name] hierarchy level are mutually exclusive. You can include the sequential option for sequential allocation and the random-allocation option for random delegation of ports. By default, sequential allocation of ports takes place if you include only the port automatic statement at the [edit services nat pool nat-pool-name] hierarchy level.

For releases earlier than Junos OS Release 14.2R1, configure automatic sequential port assignment by using the auto option at the [edit services nat pool nat-pool-name port automatic] hierarchy level.

4. To configure a range of ports to assign, specify the low and high values for the port. If you do not configure automatic port assignment, you must configure a range of ports.

NOTE: If you specify a range of ports to assign, the automatic statement is ignored.

```
[edit services nat pool pba-pool1]
user@host# set port range low minimum-value high maximum-value
```

5. Configure deterministic port block allocation. Specify `block-size` or accept the default value of 512.

You can also specify `include-boundary-addresses` if you want the lowest and highest addresses (the network and broadcast addresses) in the source address range of a NAT rule to be translated when the NAT pool is used. If the source address has a prefix of /32, the lowest and highest address are automatically translated.

```
[edit services nat pool pba-pool1]
user@host# set port deterministic-port-block-allocation block-size block-size include-boundary-addresses
```

For example:

```
[edit services nat pool pba-pool1]
user@host# set port deterministic-port-block-allocation block-size 256
```
NOTE: In order for deterministic-port-block-allocation configuration changes to take effect, you must reboot the services PIC whenever you change any of the following nat pool options:

- address or address-range
- port range
- port deterministic-port-block-allocation block-size

See Also
- Network Address Translation Configuration Overview on page 80

Configuring the NAT Rule for Deterministic NAPT

To configure the NAT rule for deterministic NAPT:

1. Configure the NAT rule name.

   ```
   [edit services nat]
   user@host# set rule rule-name
   ```

2. Configure the NAT rule match direction as input.

   ```
   [edit services nat]
   user@host# set rule rule-name match-direction input
   ```

3. Specify the addresses that are translated by the NAT rule.

 To specify one address:

   ```
   [edit services nat]
   user@host# set rule rule-name term term-name from source-address address
   ```

 To specify a range of addresses:

   ```
   [edit services nat]
   user@host# set rule rule-name term term-name from source-address-range low minimum-value high maximum-value
   ```

4. Specify the NAT pool that contains the addresses for translated traffic.

   ```
   [edit services nat]
   user@host# set rule rule-name term term-name then translated source-pool nat-pool-name
   ```
5. Configure the translation type as deterministic NAPT44 or deterministic NAPT64.

```
[edit services nat]
user@host# set rule rule-name term term-name then translation-type
   (deterministic-napt44 | deterministic-napt64)
```

Configuring the Service Set for Deterministic NAT

To configure the service set for deterministic NAPT:

1. Define the service set.

```
[edit services]
user@host# edit service-set service-set-name
```

2. Configure either an interface service, which requires a single service interface, or a next-hop service, which requires an inside and outside service interface.

```
[edit services service-set service-set-name]
user@host# set interface-service service-interface interface-name
```

or

```
[edit services service-set service-set-name]
user@host# set next-hop-service inside-service-interface interface-name
   outside-service-interface interface-name
```

3. Specify the NAT rules or ruleset to be used with the service set.

```
[edit services service-set service-set-name]
user@host# set nat-rules rule-name
```
CHAPTER 11

Securing Traffic Using NAT-PT and ALGs

- ALGs Available for Junos OS Address Aware NAT on page 173
- ALGs Available by Default for Junos OS Address Aware NAT on ACX500 Router on page 177
- Configuring NAT-PT on page 188
- Example: Configuring NAT-PT on page 195

ALGs Available for Junos OS Address Aware NAT

The following Application Level Gateways (ALGs) listed in Table 13 on page 174 are supported for NAT processing on the listed platforms.

To view the implementation details (port, protocol, and so on) for these Junos OS default applications, locate the Junos OS Default ALG Name in the table and then look up the listed name in the groups. For example, for details about TFTP, look up junos-tftp as shown.

```
user@host# show groups junos-defaults applications application junos-tftp
```

TIP: The Junos OS provides the junos-alg, which enables other ALGs to function by handling ALG registrations, causing slow path packets to flow through registered ALGs, and transferring ALG events to the ALG plug-ins. The junos-alg ALG is automatically available on the MS-MPC and MS-MIC platforms, as well as on the MX-SPC3 services card for Next Gen Services on the MX240, MX480, and MX960 and does not require further configuration.

NOTE: The remote shell (RSH) and remote login (rlogin) application layer gateways (ALGs) are not supported with network address port translation (NAPT) on MX Series routers with MS-MICs and MS-MPCs.
Table 13 on page 174 summarizes the ALGs available for Junos OS Address Aware NAT for services interfaces cards.

Table 13: ALGs Available for NAT by Type of Interface Card

<table>
<thead>
<tr>
<th>ALG</th>
<th>MS-DPC</th>
<th>MS-MPC, MS-MIC</th>
<th>MX-SPC3 Services Card</th>
<th>Junos OS Default ALG Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic TCP ALG</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic UDP ALG</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOOTP</td>
<td>yes</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCE RPC Services</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNS</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNS</td>
<td>no</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTP</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gatekeeper RAS</td>
<td>no</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H323</td>
<td>no</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Specific Junos OS ALGs are not supported. However, a feature called TCP tracker, available by default, performs segment ordering and retransmit and connection tracking, validations for TCP connections.

NOTE: TCP tracker performs limited integrity and validation checks for UDP.

- `junos-bootpc`
- `junos-bootps`
- `junos-dce-podimap`
- `junos-dce-rpc-endpoint-mapper-service`
- `junos-dce-rpc-msexchange-directory-nsp`
- `junos-dce-rpc-msexchange-directory-rfr`
- `junos-dce-rpc-msexchange-information-store`
- `junos-dns-udp`
- `junos-dns-tcp`
- `junos-h323-ras`
- `junos-h323`
Table 13: ALGs Available for NAT by Type of Interface Card (continued)

<table>
<thead>
<tr>
<th>ALG</th>
<th>MS-DPC</th>
<th>MS-MPC, MS-MIC</th>
<th>MX-SPC3 Services Card</th>
<th>JunosOS Default ALG Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMP</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>• junos-icmp-all</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• junos-icmp-ping</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOTE: In Junos OS Release 14.1 and earlier, ICMP messages are handled by default, but PING ALG support is not provided. Starting in Junos OS 14.2, ICMP messages are handled by default and PING ALG support is provided.</td>
</tr>
</tbody>
</table>

| IIOP | yes | no | | • junos-iiop-java |
| | | | | • junos-iiop-orbix |

| IKE ALG| no | yes | | • junos-ike |
| | | | | **NOTE:** Starting in Junos OS Release 14.2R7, 15.1R5, 16.1R2, and 17.1R1, the IKE ALG ALG is supported on MS-MPCs and MS-MICs. |

| IP | yes | The TCP tracker, available by default on these platforms, performs limited integrity and validation checks. | • junos-ip |
| | | | |

NETBIOS	yes	no		• junos-netbios-datagram
				• junos-netbios-name-tcp
				• junos-netbios-name-udp
				• junos-netbios-session

| NETSHOW| yes | no | | • junos-netshow |
| | | | | |

| PPTP | yes | yes | | • junos-pptp |
| | | | | |

| REALAUDIO| yes | no | | • junos-realaudio |
| | | | | |

| Sun RPC and RPC Port Map Services | yes | yes | • junos-rrc-rpcmap-tcp | • junos-rrc-rpcmap-udp |
| | | | | |
Table 13: ALGs Available for NAT by Type of Interface Card (continued)

<table>
<thead>
<tr>
<th>ALG</th>
<th>MS-DPC</th>
<th>MS-MPC, MS-MIC</th>
<th>MX-SPC3 Services Card</th>
<th>JunosOS Default ALG Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTSP</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>· junos-rtsp</td>
</tr>
<tr>
<td>SIP</td>
<td>yes</td>
<td>Yes</td>
<td></td>
<td>· junos-sip</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The SIP callid is not translated in register messages.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOTE: SIP sessions are limited to 12 hours (720 minutes) for NAT processing on the MS-MIC and MS-MPC interface cards. SIP sessions on the MS-DPC have no time limits.</td>
</tr>
<tr>
<td>SNMP</td>
<td>yes</td>
<td>No</td>
<td></td>
<td>· junos-snmp-get</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· junos-snmp-get-next</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· junos-snmp-response</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· junos-snmp-trap</td>
</tr>
<tr>
<td>SQLNET</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>· junos-sqlnet</td>
</tr>
<tr>
<td>TFTP</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>· junos-tftp</td>
</tr>
<tr>
<td>Traceroute</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>· junos-traceroute</td>
</tr>
<tr>
<td>Unix Remote Shell Service</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>· junos-rsh</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOTE: Remote Shell (RSH) ALG is not supported for network address port translation (NAPT).</td>
</tr>
<tr>
<td>WINFrame</td>
<td>yes</td>
<td>No</td>
<td></td>
<td>· junos-citrix-winframe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· junos-citrix-winframe-udp</td>
</tr>
<tr>
<td>TALK-UDP</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td>· junos-talk-udp</td>
</tr>
<tr>
<td>MS RPC</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td>· junos-rpc-portmap-tcp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· junos-rpc-portmap-udp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· junos-rpc-services-tcp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· junos-rpc-services-udp</td>
</tr>
</tbody>
</table>
Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1R1</td>
<td>Gatekeeper RAS (Starting in Junos OS Release 17.1R1)</td>
</tr>
<tr>
<td>14.2R7</td>
<td>Starting in Junos OS Release 14.2R7, 15.1R5, 16.1R2, and 17.1R1, the IKE ALG ALG is supported on MS-MPCs and MS-MICs.</td>
</tr>
<tr>
<td>14.2</td>
<td>Starting In Junos OS 14.2, ICMP messages are handled by default and PING ALG support is provided.</td>
</tr>
</tbody>
</table>

Related Documentation

- ALG Descriptions on page 399

ALGs Available by Default for Junos OS Address Aware NAT on ACX500 Router

The following Application Level Gateways (ALGs) listed in Table 13 on page 174 are supported for NAT processing on ACX500 routers.

To view the implementation details (port, protocol, and so on) for these Junos OS default applications, locate the Junos OS Default ALG Name in the table and then look up the listed name in the groups. For example, for details about TFTP, look up `junos-tftp` as shown.

NOTE: The ALG for NAT is supported only on the ACX500 indoor routers.

TIP: The Junos OS provides the `junos-alg`, which enables other ALGs to function by handling ALG registrations, causing slow path packets to flow through registered ALGs, and transferring ALG events to the ALG plug-ins. The `junos-alg` ALG is automatically available on the ACX500 router and does not require further configuration.

NOTE: The remote login (rlogin) application layer gateways (ALGs) are not supported with network address port translation (NAPT) on ACX500 router.

Table 14: ALGs Available by Default

<table>
<thead>
<tr>
<th>ALG</th>
<th>ACX500 Router</th>
<th>Junos OS Default ALG Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic TCP ALG</td>
<td>yes</td>
<td>NOTE: Specific Junos OS ALGs are not supported. However, a feature called TCP tracker, available by default, performs segment ordering and retransmit and connection tracking, validations for TCP connections.</td>
</tr>
</tbody>
</table>
Table 14: ALGs Available by Default (continued)

<table>
<thead>
<tr>
<th>ALG</th>
<th>ACX500 Router</th>
<th>Junos OS Default ALG Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic UDP ALG</td>
<td>yes</td>
<td>NOTE: TCP tracker performs limited integrity and validation checks for UDP.</td>
</tr>
<tr>
<td>DNS</td>
<td>yes</td>
<td>• junos-dns-tcp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• junos-dns-udp</td>
</tr>
<tr>
<td>FTP</td>
<td>yes</td>
<td>• junos-ftp</td>
</tr>
<tr>
<td>ICMP</td>
<td>yes</td>
<td>• junos-icmp-all</td>
</tr>
<tr>
<td>TFTP</td>
<td>yes</td>
<td>• junos-tftp</td>
</tr>
<tr>
<td>Unix Remote Shell Service</td>
<td>yes</td>
<td>• junos-rsh</td>
</tr>
</tbody>
</table>

NOTE: TCPtrackerperformslimitedintegrityandvalidationchecksforUDP.

NOTE: ICMP messages are handled by default, but PING ALG support is not provided.

NOTE: Remote Shell (RSH) ALG is not supported for network address port translation (NAPT).

ALG Support Details

This section includes details about the ALGs. It includes the following:

- Basic TCP on page 178
- Basic UDP on page 179
- DNS on page 179
- FTP on page 181
- ICMP on page 183
- TFTP on page 184
- UNIX Remote-Shell Services on page 185

Basic TCP

This ALG performs basic sanity checking on TCP packets. If it finds errors, it generates the following anomaly events and system log messages:

- TCP source or destination port zero
- TCP header length check failed
- TCP sequence number zero and no flags are set
- TCP sequence number zero and FIN/PSH/RST flags are set
- TCP FIN/RST or SYN(URG|FIN|RST) flags are set
The TCP ALG performs the following steps:

1. When the router receives a SYN packet, the ALG creates TCP forward and reverse flows and groups them in a conversation. It tracks the TCP three-way handshake.
2. The SYN-defense mechanism tracks the TCP connection establishment state. It expects the TCP session to be established within a small time interval (currently 4 seconds). If the TCP three-way handshake is not established in that period, the session is terminated.
3. A keepalive mechanism detects TCP sessions with nonresponsive endpoints.
4. ICMP errors are allowed only when a flow matches the selector information specified in the ICMP data.

Basic UDP

This ALG performs basic sanity checking on UDP headers. If it finds errors, it generates the following anomaly events and system log messages:

- UDP source or destination port 0
- UDP header length check failed

The UDP ALG performs the following steps:

1. When it receives the first packet, the ALG creates bidirectional flows to accept forward and reverse UDP session traffic.
2. If the session is idle for more than the maximum allowed idle time (the default is 30 seconds), the flows are deleted.
3. ICMP errors are allowed only when a flow matches the selector information specified in the ICMP data.

DNS

The Domain Name System (DNS) ALG handles data associated with locating and translating domain names into IP addresses. The ALG typically runs on port 53. The ALG monitors DNS query and reply packets and supports only UDP traffic. The ALG does not support payload translations. The DNS ALG closes the session only when a reply is received or an idle timeout is reached.

The following is an example for configuring DNS ALG:

1. Creating NAT interface.

```plaintext
[edit]
services{
    service-set set-dns{
        nat-rules nat-dns;
        interface-service{
            service-interface ms-0/2/0;
        }
    }
}
```
2. Configuring NAT pool.

```yaml
[edit]
services {   nat {   pool p-napt {     address 1.1.1.1/32;   }   }
}
```

3. Defining NAT rules for DNS ALG.

```yaml
[edit]
services {   nat {   rule nat-dns {     match-direction input;     term term1 {       from {         source-address {           50.50.50.2/32;         }         applications junos-dns-udp;       }     }   }   }
}
```

4. Binding service sets to the interface.

```yaml
[edit]
interfaces {   ge-0/1/0 {     media-type copper;     unit 0 {       family inet {         service {           input {             service-set set-dns;           }           output {             service-set set-dns;           }         }       }
```
FTP

FTP is the File Transfer Protocol, specified in RFC 959. In addition to the main control connection, data connections are also made for any data transfer between the client and the server; and the host, port, and direction are negotiated through the control channel.

For non-passive-mode FTP, Junos OS stateful firewall service scans the client-to-server application data for the PORT command, which provides the IP address and port number to which the server connects. For passive-mode FTP, Junos OS stateful firewall service scans the client-to-server application data for the PASV command and then scans the server-to-client responses for the 227 response, which contains the IP address and port number to which the client connects.

There is an additional complication: FTP represents these addresses and port numbers in ASCII. As a result, when addresses and ports are rewritten, the TCP sequence number might be changed, and thereafter the NAT service needs to maintain this delta in SEQ and ACK numbers by performing sequence NAT on all subsequent packets.

Support for stateful firewall and NAT services requires that you configure the FTP ALG on TCP port 21 to enable the FTP control protocol. The ALG performs the following tasks:

- Automatically allocates data ports and firewall permissions for dynamic data connection
- Creates flows for the dynamically negotiated data connection
- Monitors the control connection in both active and passive modes
- Rewrites the control packets with the appropriate NAT address and port information

On ACX500, for passive FTP to work properly without FTP application layer gateway (ALG) enabled (by not specifying the application junos-ftp statement at the [edit services nat rule rule-name term term-name from] hierarchy level), you must enable the address
pooling paired (APP) functionality enabled (by including the **address-pooling** statement at the `[edit services nat rule rule-name term term-name then translated]` hierarchy level). Such a configuration causes the data and control FTP sessions to receive the same NAT address.

The following is an example for configuring FTP ALG:

1. Creating NAT interface.

   ```
   [edit]
   services {
      service-set set-ftp {
         nat-rules nat-ftp;
         interface-service {
            service-interface ms-0/2/0;
         }
      }
   }
   ``

2. Configuring NAT pool.

   ```
 [edit]
 services {
 nat {
 pool p-napt {
 address 30.30.30.0/24;
 port {
 range low 9000 high 9010;
 }
 }
 }
 }
 ``

3. Defining NAT rules for FTP ALG.

   ```
   [edit]
   services {
      nat {
         rule nat-ftp {
            match-direction input;
            term term1 {
               from {
                  source-address {
                     10.10.0/24;
                  }
                  applications junos-ftp;
               }
               then {
                  translated {
                     source-pool p-napt;
                     translation-type { napt-44;
                  }
               }
      }
   ```
4. Binding service sets to the interface.

```yaml
[edit]
  interfaces {
    ge-0/1/0 {
      media-type copper;
      unit 0 {
        family inet {
          service {
            input {
              service-set set-ftp;
            }
            output {
              service-set set-ftp;
            }
            address 10.10.10.1/24;
          }
        }
      }
      ge-0/1/1 {
        media-type copper;
        unit 0 {
          family inet {
            address 10.10.10.1/24;
          }
        }
      }
      ms-0/2/0 {
        unit 0 {
          family inet;
        }
      }
    }
  }
```

ICMP

The Internet Control Message Protocol (ICMP) is defined in RFC 792. The Junos OS allows ICMP messages to be filtered by specific type or specific type code value. ICMP error packets that lack a specifically configured type and code are matched against any existing flow in the opposite direction to check for the legitimacy of the error packet. ICMP error packets that pass the filter matching are subject to NAT translation.

The ICMP ALG always tracks ping traffic statefully using the ICMP sequence number. Each echo reply is forwarded only if there is an echo request with the corresponding sequence number. For any ping flow, only 20 echo requests can be forwarded without
receiving an echo reply. When you configure dynamic NAT, the PING packet identifier is translated to allow additional hosts in the NAT pool to use the same identifier.

Support for NAT services requires that you configure the ICMP ALG if the protocol is needed. You can configure the ICMP type and code for additional filtering.

TFTP

The Trivial File Transfer Protocol (TFTP) is specified in RFC 1350. The initial TFTP requests are sent to UDP destination port 69. Additional flows can be created to get or put individual files. Support of NAT services requires that you configure the TFTP ALG for UDP destination port 69.

The following is an example for configuring TFTP ALG:

1. Creating NAT interface.

   ```
   [edit]
   services {
     service-set set-tftp {
       nat-rules nat-tftp;
       interface-service {
         service-interface ms-0/2/0;
       }
     }
   }
   ```

2. Configuring NAT pool.

   ```
   [edit]
   services {
     nat {
       pool p-napt {
         address 1.1.1.1/32;
       }
     }
   }
   ```

3. Defining NAT rules for TFTP ALG.

   ```
   [edit]
   services {
     nat {
       rule nat-tftp {
         match-direction input;
         term term1 {
           from {
             source-address {
               50.50.50.2/32;
             }
             applications junos-tftp;
           }
           then {
             ```
binding service sets to the interface.

```
[edit]
interfaces {
  ge-0/1/0 {
    media-type copper;
    unit 0 {
      family inet {
        service {
          input {
            service-set set-tftp;
          }
          output {
            service-set set-tftp;
          }
          address 50.50.50.1/24;
        }
      }
    }
    ge-0/1/1 {
      media-type copper;
      unit 0 {
        family inet {
          address 60.60.60.1/24;
        }
      }
    }
    ms-0/2/0 {
      unit 0 {
        family inet;
      }
    }
  }
}
```

UNIX Remote-Shell Services

Three protocols form the basis for UNIX remote-shell services:

- **Exec**—Remote command execution; enables a user on the client system to execute a command on the remote system. The first command from client (**rcmd**) to server (**rshd**) uses well-known TCP port 512. A second TCP connection can be opened at the request
The client port number for the second connection is sent to the server as an ASCII string.

- Login—Better known as `rlogin`; uses well-known TCP port 513. For details, see RFC 1282. No special firewall processing is required.

- Shell—Remote command execution; enables a user on the client system to execute a command on the remote system. The first command from client (`rcmd`) to server (`rshd`) uses well-known TCP port 514. A second TCP connection can be opened at the request of `rcmd`. The client port number for the second connection is sent to the server as an ASCII string.

NAT remote-shell services require that any dynamic source port assigned be within the port range 512 to 1023. If you configure a NAT pool, this port range is reserved exclusively for remote shell applications.

The following is an example for configuring RSH ALG:

1. Creating NAT interface.

   ```
   [edit]
   services {
     service-set set-rsh {
       nat-rules nat-rsh;
       interface-service {
         service-interface ms-0/2/0;
       }
     }
   }
   ```

2. Configuring NAT pool.

   ```
   [edit]
   services {
     nat {
       pool p-napt {
         address 1.1.1.1/32;
       }
     }
   }
   ```

3. Defining NAT rules for RSH ALG.

   ```
   [edit]
   services {
     nat {
       rule nat-rsh {
         match-direction input;
         term term1 {
           from {
             source-address {
               50.50.50.2/32;
            }
           }
         }
       }
     }
   }
   ```
applications junos-rsh;
}
then {
 translated {
 source-pool p-napt;
 translation-type {
 dynamic-nat44;
 }
 }
}
}
}
}
}
}

4. Binding service sets to the interface.

[edit]
interfaces {
 ge-0/1/0 {
 media-type copper;
 unit 0 {
 family inet {
 service {
 input {
 service-set set-rsh;
 }
 output {
 service-set set-rsh;
 }
 }
 }
 address 50.50.50.1/24;
 }
 }
 ge-0/1/1 {
 media-type copper;
 unit 0 {
 family inet {
 address 60.60.60.1/24;
 }
 }
 }
 ms-0/2/0 {
 unit 0 {
 family inet;
 }
 }
}

Related Documentation
- Junos Network Secure Overview on page 463
- Configuring Stateful Firewall Rules on page 467
Configuring NAT-PT

To configure the translation type as basic-nat-pt, you must configure the DNS ALG application, the NAT pools and rules, a service set with a service interface, and trace options. Configuring NAT-PT is not supported if you are using MS-MPCs or MS-MICs.

This topic includes the following tasks:

- Configuring the DNS ALG Application on page 188
- Configuring the NAT Pool and NAT Rule on page 189
- Configuring the Service Set for NAT on page 192
- Configuring Trace Options on page 193

Configuring the DNS ALG Application

To configure the DNS ALG application:

1. In configuration mode, go to the [edit applications] hierarchy level.

   ```
   [edit]
   user@host# edit applications
   ```

2. Configure the ALG to which the DNS traffic is destined at the [edit applications] hierarchy level. Define the application name and specify the application protocol to use in match conditions in the first NAT rule or term.

   ```
   [edit applications]
   user@host# set application application-name application-protocol application-protocol
   ```

 In the following example, the application name is dns-alg and application protocol is dns.

   ```
   [edit applications]
   user@host# set application dns-alg application-protocol dns
   ```

3. Verify the configuration by using the show command at the [edit applications] hierarchy level.

   ```
   [edit applications]
   user@host# show application dns-alg {
     application-protocol dns;
   }
   ```
Configuring the NAT Pool and NAT Rule

To configure the NAT pool and NAT rule:

1. In configuration mode, go to the [edit services nat] hierarchy level.

 [edit]
 user@host# edit services nat

2. Configure the NAT pool and its address.

 [edit services nat]
 user@host# set pool pool-name address address

 In the following example, the name of the NAT pool is p1 and the address is 10.10.10.2/32.

 [edit services nat]
 user@host# set pool p1 address 10.10.10.2/32

3. Configure the source pool and its address.

 [edit services nat]
 user@host# set pool source-pool-name address address

 In the following example, the name of the source pool is src_pool0 and the source pool address is 20.1.1.1/32.

 [edit services nat]
 user@host# set pool src_pool0 address 20.1.1.1/32

4. Configure the destination pool and its address.

 [edit services nat]
 user@host# set pool destination-pool-name address address

 In the following example, the name of the destination pool is dst_pool0 and the destination pool address is 50.1.1.2/32.

 [edit services nat]
 user@host# set pool dst_pool0 address 50.1.1.2/32

5. Configure the rule and the match direction.

 [edit services nat]
 user@host# set rule rule-name match-direction match-direction
In the following example, the rule name is `rule-basic-nat-pt` and the match direction is `input`.

```text
[edit services nat]
user@host# set rule basic-nat-pt match-direction input
```

6. Configure the term and the input conditions for the NAT term.

```text
[edit services nat]
user@host# set rule rule-basic-nat-pt term term from
```

In the following example, the term is `t1` and the input conditions are `source-address 2000::2/128`, `destination-address 4000::2/128`, and `applications dns_alg`.

```text
[edit services nat]
user@host# set rule rule-basic-nat-pt term t1 from source-address 2000::2/128
[edit services nat]
user@host# set rule rule-basic-nat-pt term t1 from destination-address 4000::2/128
[edit services nat]
user@host# set rule rule-basic-nat-pt term t1 from applications dns_alg
```

7. Configure the NAT term action and the properties of the translated traffic.

```text
[edit services nat]
user@host# set rule rule-basic-nat-pt term t1 then term-action translated-property
```

In the following example, the term action is `translated` and the properties of the translated traffic are `source-pool src_pool0`, `destination-pool dst_pool0`, and `dns-alg-prefix 2001:db8:10::0/96`.

```text
[edit services nat]
user@host# set rule rule-basic-nat-pt term t1 then translated source-pool src_pool0
[edit services nat]
user@host# set rule rule-basic-nat-pt term t1 then translated destination-pool dst_pool0
[edit services nat]
user@host# set rule rule-basic-nat-pt term t1 then translated dns-alg-prefix 2001:db8:10::0/96
```

8. Configure the translation type.

```text
[edit services nat]
user@host# set rule rule-basic-nat-pt term t1 then translated translation-type translation-type
```

In the following example, the translation type is `basic-nat-pt`.

```text
[edit services nat]
user@host# set rule rule-basic-nat-pt term t1 then translated translation-type basic-nat-pt
```
9. Configure another term and the input conditions for the NAT term.

 [edit services nat]
 user@host# set rule rule-basic-nat-pt term term-name from from

In the following example, the term name is t2 and the input conditions are source-address 2000::2/128 and destination-address 2001:db8:10::0/96.

 [edit services nat]
 user@host# set rule rule-basic-nat-pt term t2 from source-address 2000::2/128
 [edit services nat]
 user@host# set rule rule-basic-nat-pt term t2 from destination-address 2001:db8:10::0/96

10. Configure the NAT term action and the property of the translated traffic.

 [edit services nat]
 user@host# set rule rule-basic-nat-pt term t2 then term-action translated-property

In the following example, the term action is translated and the property of the translated traffic is source-prefix 19.19.19.1/32.

 [edit services nat]
 user@host# set rule rule-basic-nat-pt term t2 then translated source-prefix 19.19.19.1/32

11. Configure the translation type.

 [edit services nat]
 user@host# set rule rule-basic-nat-pt term t2 then translated translation-type
 translation-type

In the following example, the translation type is basic-nat-pt.

 [edit services nat]
 user@host# set rule rule-basic-nat-pt term t2 then translated translation-type
 basic-nat-pt

12. Verify the configuration by using the **show** command at the [edit services nat] hierarchy level.

 [edit services nat]
 user@host# show
 pool p1 {
 address 10.10.10.2/32;
 }
 pool src_pool0 {
 address 20.1.1.1/32;
 }
 pool dst_pool0 {
 address 50.1.1.2/32;
 }
Configuring the Service Set for NAT

To configure the service set for NAT:

1. In configuration mode, go to the `[edit services]` hierarchy level.

   ```
   [edit]
   user@host# edit services
   ```

2. Configure the service set.

   ```
   [edit services]
   ```
In the following example, the name of the service set is `ss_dns`.

```
[edit services]
user@host# edit service-set ss_dns
```

3. Configure the service set with NAT rules.

```
[edit services service-set ss_dns]
user@host# set nat-rules rule-name
```

In the following example, the rule name is `rule-basic-nat-pt`.

```
[edit services service-set ss_dns]
user@host# set nat-rules rule-basic-nat-pt
```

4. Configure the service interface.

```
[edit services service-set ss_dns]
user@host# set interface-service service-interface service-interface-name
```

In the following example, the name of service interface is `sp-1/2/0`.

```
[edit services service-set ss_dns]
user@host# set interface-service service-interface sp-1/2/0
```

5. Verify the configuration by using the `show services` command from the [edit] hierarchy level.

```
[edit]
user@host# show services
service-set ss_dns {
    nat-rules rule-basic-nat-pt;
    interface-service {
        service-interface sp-1/2/0;
    }
}
```

Configuring Trace Options

To configure the trace options:

1. In configuration mode, go to the [edit services adaptive-services-pics] hierarchy level.

```
[edit]
user@host# edit services adaptive-services-pics
```

2. Configure the trace options.
In the following example, the tracing parameter is all.

```
user@host# set traceoptions flag all
```

3. Verify the configuration by using the `show` command at the [edit services] hierarchy level.

```
user@host# show
```

The following example configures the translation type as `basic-nat-pt`.

```
user@host# show services
service-set ss_dns {
    nat-rules rule-basic-nat-pt;
    interface-service {
        service-interface sp-1/2/0;
    }
}

nat {
    pool p1 {
        address 10.10.10.2/32;
    }
    pool src_pool0 {
        address 20.1.1.1/32;
    }
    pool dst_pool0 {
        address 50.1.1.2/32;
    }
    rule rule-basic-nat-pt {
        match-direction input;
        term t1 {
            from {
                source-address {
                    2000::2/128;
                }
                destination-address {
                    4000::2/128;
                }
                applications dns_alg;
            }
            then {
                translated {
                    source-pool src_pool0;
                }
            }
        }
    }
}
```
Example: Configuring NAT-PT

A Domain Name System application-level gateway (DNS ALG) is used with Network Address Translation-Protocol Translation (NAT-PT) to facilitate name-to-address mapping. You can configure the DNS ALG to map addresses returned in the DNS response to an IPv6 address. Configuring NAT-PT is not supported if you are using MS-MPCs or MS-MICs.

When you configure NAT-PT with DNS ALG support, you must configure two NAT rules or one rule with two terms. In this example, you configure two rules. The first NAT rule ensures that the DNS query and response packets are translated correctly. For this rule to work, you must configure a DNS ALG application and reference it in the rule. The second rule is required to ensure that NAT sessions are destined to the address mapped by the DNS ALG.

Then, you must configure a service set, and then apply the service set to the interfaces.
This example describes how to configure NAT-PT with DNS ALG:

- Requirements on page 196
- Overview and Topology on page 196
- Configuration of NAT-PT with DNS ALGs on page 197

Requirements

This example uses the following hardware and software components:

- Junos OS Release 11.2
- A multiservices interface (ms-)

Overview and Topology

The following scenario shows the process of NAT-PT with DNS ALG when a laptop in an IPv6-only domain requests access to a server in an IPv4-only domain.

Figure 11: Configuring DNS ALGs with NAT-PT Network Topology

The Juniper Networks router in the center of the illustration performs address translation in two steps. When the laptop requests a session with the www.example.com server that is in an IPv4-only domain, the Juniper Networks router performs the following:

- Translates the IPv6 laptop and DNS server addresses into IPv4 addresses.
- Translates the AAAA request from the laptop into an A request so that the DNS server can provide the IPv4 address.
When the DNS server responds with the A request, the Juniper Networks router performs the following:

- Translates the IPv4 DNS server address back into an IPv6 address.
- Translates the A request back into a AAAA request so that the laptop now has the 96-bit IPv6 address of the www.example.com server.

After the laptop receives the IPv6 version of the www.example.com server address, the laptop initiates a second session using the 96-bit IPv6 address to access that server. The Juniper Networks router performs the following:

- Translates the laptop IPv4 address directly into its IPv4 address.
- Translates the 96-bit IPv6 www.example.com server address into its IPv4 address.

Configuration of NAT-PT with DNS ALGs

To configure NAT-PT with DNS ALG, perform the following tasks:

- Configuring the Application-Level Gateway on page 197
- Configuring the NAT Pools on page 198
- Configuring the DNS Server Session: First NAT Rule on page 199
- Configuring the HTTP Session: Second NAT Rule on page 203
- Configuring the Service Set on page 206
- Configuring the Stateful Firewall Rule on page 208
- Configuring Interfaces on page 209

Step-by-Step Procedure

Configure the DNS application as the ALG to which the DNS traffic is destined. The DNS application protocol closes the DNS flow as soon as the DNS response is received. When you configure the DNS application protocol, you must specify the UDP protocol as the network protocol to match in the application definition.

To configure the DNS application:

1. In configuration mode, go to the [edit applications] hierarchy level.

   ```
   user@host# edit applications
   ```

2. Define the application name and specify the application protocol to use in match conditions in the first NAT rule.

   ```
   [edit applications]
   user@host# set application application-name application-protocol protocol-name
   ```

 For example:

   ```
   [edit applications]
   ```
3. Specify the protocol to match, in this case UDP.

 [edit applications]
 user@host# set application application-name protocol type

 For example:

 [edit applications]
 user@host# set application application-name protocol udp

4. Define the UDP destination port for additional packet matching, in this case the domain port.

 [edit applications]
 user@host# set application application-name destination-port value

 For example:

 [edit applications]
 user@host# set application application-name destination-port 53

Results

 [edit applications]
 user@host# show application dns_alg {
 application-protocol dns;
 protocol udp;
 destination-port 53;
 }

Configuring the NAT Pools

Step-by-Step Procedure

In this configuration, you configure two pools that define the addresses (or prefixes) used for NAT. These pools define the IPv4 addresses that are translated into IPv6 addresses. The first pool includes the IPv4 address of the source. The second pool defines the IPv4 address of the DNS server. To configure NAT pools:

1. In configuration mode, go to the [edit services nat] hierarchy level.

 user@host# edit services nat

2. Specify the name of the first pool and the IPv4 source address (laptop).

 [edit services nat]
 user@host# set pool nat-pool-name address ip-prefix
For example:

```
[edit services nat]
user@host# set pool pool1 address 40.1.1.1/32
```

3. Specify the name of the second pool and the IPv4 address of the DNS server.

```
[edit services nat]
user@host# set pool nat-pool-name address ip-prefix
```

For example:

```
[edit services nat]
user@host# set pool pool2 address 50.1.1.1/32
```

Results The following sample output shows the configuration of NAT pools.

```
[edit services nat]
user@host# show
pool pool1 {  
    address 40.1.1.1/32;
}
pool pool2 {  
    address 50.1.1.1/32;
}
```

Configuring the DNS Server Session: First NAT Rule

Step-by-Step Procedure

The first NAT rule is applied to DNS traffic going to the DNS server. This rule ensures that the DNS query and response packets are translated correctly. For this rule to work, you must configure a DNS ALG application and reference it in the rule. The DNS application was configured in “Configuring the DNS ALG Application” on page 188. In addition, you must specify the direction in which traffic is matched, the source address of the laptop, the destination address of the DNS server, and the actions to take when the match conditions are met.

To configure the first NAT rule:

1. In configuration mode, go to the [edit services nat] hierarchy level.

```
user@host# edit services nat
```

2. Specify the name of the NAT rule.

```
[edit services nat]
user@host# edit rule rule-name
```
For example:

```
[edit services nat]
user@host# edit rule rule1
```

3. Specify the name of the NAT term.

```
[edit services nat rule rule-name]
user@host# edit term term-name
```

For example:

```
[edit services nat rule rule1]
user@host# edit term term1
```

4. Define the match conditions for this rule.

a. Specify the IPv6 source address of the device (laptop) attempting to access an IPv4 address.

```
[edit services nat rule rule-name term term-name]
user@host# set from source-address source-address
```

For example:

```
[edit services nat rule rule1 term term1]
user@host# set from source-address 2000::2/128
```

b. Specify the IPv6 destination address of the DNS server.

```
[edit services nat rule rule-name term term-name]
user@host# set from destination-address prefix
```

For example:

```
[edit services nat rule rule1 term term1]
user@host# set from destination-address 4000::2/128
```

c. Reference the DNS application to which the DNS traffic destined for port 53 is applied.

```
[edit services nat rule rule1 term term1]
user@host# set from applications application-name
```

In this example, the application name configured in the Configuring the DNS Application step is `dns_alg`.

```
[edit services nat rule rule1 term term1]
user@host# set from applications dns_alg
```
5. Define the actions to take when the match conditions are met. The source and destination pools you configured in “Configuring the NAT Pools” on page 198 are applied here.

 a. Apply the NAT pool configured for source translation.

 [edit services nat rule rule-name term term-name]
 user@host# set then translated source-pool nat-pool-name

 For example:

 [edit services nat rule rule1 term term1]
 user@host# set then translated source-pool pool1

 b. Apply the NAT pool configured for destination translation.

 [edit services nat rule rule-name term term-name]
 user@host# set then translated destination-pool nat-pool-name

 For example:

 [edit services nat rule rule1 term term1]
 user@host# set then translated source-pool pool2

6. Define the DNS ALG 96-bit prefix for IPv4-to-IPv6 address mapping.

 [edit services nat rule rule-name term term-name]
 user@host# set then translated dns-alg-prefix dns-alg-prefix

 For example:

 [edit services nat rule rule1 term term1]
 user@host# set then translated dns-alg-prefix 10:10:10::0/96

7. Specify the type of NAT used for source and destination traffic.

 [edit services nat rule rule-name term term-name]
 user@host# set then translated translation-type basic-nat-pt

 For example:

 [edit services nat rule rule1 term term1]
 user@host# set then translated translation-type basic-nat-pt

NOTE: In this example, since NAT is achieved using address-only translation, the basic-nat-pt translation type is used. To achieve NAT using address and port translation (NAPT), use the napt-pt translation type.
8. Specify the direction in which to match traffic that meets the rule conditions.

[edit services nat rule rule-name]
user@host# set match-direction (input | output)

For example:

[edit services nat rule rule1]
user@host# set match-direction input

9. Configure system logging to record information from the services interface to the /var/log directory.

[edit services nat rule rule-name term term-name]
user@host# set then syslog

For example:

[edit services nat rule rule1 term term1]
user@host# set then syslog
Results

The following sample output shows the configuration of the first NAT rule that goes to the DNS server.

```
[edit services nat]
user@host# show
rule rule1 {
  match-direction input;
  term term1 {
    from {
      source-address {
        2000::2/128;
      }
      destination-address {
        4000::2/128;
      }
      applications dns_alg;
    }
    then {
      translated {
        source-pool pool1;
        destination-pool pool2;
        dns-alg-prefix 10:10:10::0/96;
        translation-type {
          basic-nat-pt;
        }
      }
      syslog;
    }
  }
}
```

Configuring the HTTP Session: Second NAT Rule

Step-by-Step Procedure

The second NAT rule is applied to destination traffic going to the IPv4 server (www.example.com). This rule ensures that NAT sessions are destined to the address mapped by the DNS ALG. For this rule to work, you must configure the DNS ALG address map that correlates the DNS query or response processing done by the first rule with the actual data sessions processed by the second rule. In addition, you must specify the direction in which traffic is matched: the IPv4 address for the IPv6 source address (laptop), the 96-bit prefix to prepend to the IPv4 destination address (www.example.com), and the translation type.

To configure the second NAT rule:

1. In configuration mode, go to the following hierarchy level.

   ```
   user@host# edit services nat
   ```

2. Specify the name of the NAT rule and term.

   ```
   [edit services nat]
   ```
user@host# edit rule rule-name term term-name

For example:

[edit services nat]
user@host# edit rule rule2 term term1

3. Define the match conditions for this rule:

a. Specify the IPv6 address of the device attempting to access the IPv4 server.

[edit services nat rule rule-name term term-name]
user@host# set from source-address source-address

For example:

[edit services nat rule rule2 term term1]
user@host# set from source-address 2000::2/128

b. Specify the 96-bit IPv6 prefix to prepend to the IPv4 server address.

[edit services nat rule rule-name term term-name]
user@host# set from destination-address prefix

For example:

[edit services nat rule rule2 term term1]
user@host# set from destination-address 10:10:10::c0a8:108/128

4. Define the actions to take when the match conditions are met.

• Specify the prefix for the translation of the IPv6 source address.

[edit services nat rule rule-name term term-name]
user@host# set then translated source-prefix source-prefix

For example:

[edit services nat rule rule2 term term1]
user@host# set then translated source-prefix 19.19.19.1/32

5. Specify the type of NAT used for source and destination traffic.

[edit services nat rule rule-name term term-name]
user@host# set then translated translation-type basic-nat-pt

For example:

[edit services nat rule rule2 term term1]
user@host# set then translated translation-type basic-nat-pt
NOTE: In this example, since NAT is achieved using address-only translation, the basic-nat-pt translation type is used. To achieve NAT using address and port translation (NAPT), you must use the napt-pt translation type.

6. Specify the direction in which to match traffic that meets the conditions in the rule.

```
[edit services nat rule rule-name]
user@host# set match-direction (input | output)
```

For example:

```
[edit services nat rule rule2]
user@host# set match-direction input
```
Results

The following sample output shows the configuration of the second NAT rule.

```
[edit services nat]
user@host# show
rule rule2 {
  match-direction input;
  term term1 {
    from {
      source-address {
        2000::2/128;
      }
      destination-address {
        10:10:10::c0a8:108/128;
      }
    }
    then {
      translated {
        source-prefix 19.19.19.1/32;
        translation-type {
          basic-nat-pt;
        }
      }
    }
  }
}
```

Configuring the Service Set

Step-by-Step Procedure

This service set is an interface service set used as an action modifier across the entire services (ms-) interface. Stateful firewall and NAT rule sets are applied to traffic processed by the services interface.

To configure the service set:

1. In configuration mode, go to the [edit services] hierarchy level.

   ```
   user@host# edit services
   ```

2. Define a service set.

   ```
   [edit services]
   user@host# edit service-set service-set-name
   ```

 For example:

   ```
   [edit services]
   user@host# edit service-set ss
   ```

3. Specify properties that control how system log messages are generated for the service set.
The example below includes all severity levels.

```
[edit services service-set ss]
user@host# set syslog host local services severity-level
```

4. Specify the stateful firewall rule included in this service set.

```
[edit services service-set ss]
user@host# set stateful-firewall-rules rule1 severity-level
```

The example below references the stateful firewall rule defined in "Configuring the Stateful Firewall Rule" on page 208.

```
[edit services service-set ss]
user@host# set stateful-firewall-rules rule1
```

5. Define the NAT rules included in this service set.

```
[edit services service-set ss]
user@host# set nat-rules rule-name
```

The example below references the two rules defined in this configuration example.

```
[edit services service-set ss
user@host# set nat-rules rule1
user@host# set nat-rules rule2
```

6. Configure an adaptive services interface on which the service is to be performed.

```
[edit services service-set ss]
user@host# set interface-service service-interface interface-name
```

For example:

```
[edit services service-set ss
user@host# interface-service service-interface ms-2/0/0
```

Only the device name is needed, because the router software manages logical unit numbers automatically. The services interface must be an adaptive services interface for which you have configured unit 0 family inet at the [edit interfaces interface-name] hierarchy level in “Configuring Interfaces” on page 209.
The following sample output shows the configuration of the service set.

```
[edit services]
user@host# show
service-set ss {
    syslog {
        host local {
            services any;
        }
    }
    stateful-firewall-rules rule1;
    nat-rules rule1;
    nat-rules rule2;
    interface-service {
        service-interface ms-2/0/0;
    }
}
```

Configuring the Stateful Firewall Rule

Step-by-Step Procedure

This example uses a stateful firewall to inspect packets for state information derived from past communications and other applications. The NAT-PT router checks the traffic flow matching the direction specified by the rule, in this case both input and output. When a packet is sent to the services (ms-) interface, direction information is carried along with it.

To configure the stateful firewall rule:

1. In configuration mode, go to the [edit services stateful firewall] hierarchy level.

   ```
   user@host# edit services stateful firewall
   ```

2. Specify the name of the stateful firewall rule.

   ```
   [edit services stateful-firewall]
   user@host# edit rule rule-name
   ```

 For example:

   ```
   [edit services stateful-firewall]
   user@host# edit rule rule1
   ```

3. Specify the direction in which traffic is to be matched.

   ```
   [edit services stateful-firewall rule rule-name]
   user@host# set match-direction (input | input-output | output)
   ```

 For example:

   ```
   [edit services stateful-firewall rule rule1]
   ```
4. Specify the name of the stateful firewall term.

 [edit services stateful-firewall rule rule-name]
 user@host# edit term term-name

 For example:

 [edit services stateful-firewall rule rule1]
 user@host# edit term term1

5. Define the terms that make up this rule.

 [edit services stateful-firewall rule rule-name term term-name]
 user@host# set then accept

 For example:

 [edit services stateful-firewall rule rule1 term term1]
 user@host# set then accept

Results

The following sample output shows the configuration of the services stateful firewall.

```
[edit services]
user@host# show
stateful-firewall {
  rule rule1 {
    match-direction input-output;
    term term1 {
      then {
        accept;
      }
    }
  }
}
```

Configuring Interfaces

Step-by-Step Procedure

After you have defined the service set, you must apply services to one or more interfaces installed on the router. In this example, you configure one interface on which you apply the service set for input and output traffic. When you apply the service set to an interface, it automatically ensures that packets are directed to the services (`ms-`) interface.

To configure the interfaces:

1. In configuration mode, go to the [edit interfaces] hierarchy level.
2. Configure the interface on which the service set is applied to automatically ensure that packets are directed to the services (ms-) interface.

a. For IPv4 traffic, specify the IPv4 address.

   ```
   [edit interfaces]
   user@host# set ge-1/0/9 unit 0 family inet address 30.1.1.1/24
   ```

 b. Apply the service set defined in “Configuring Interfaces” on page 209.

   ```
   [edit interfaces]
   user@host# set ge-1/0/9 unit 0 family inet6 service input service-set ss
   user@host# set ge-1/0/9 unit 0 family inet6 service output service-set ss
   ```

c. For IPv6 traffic, specify the IPv6 address.

   ```
   [edit interfaces]
   user@host# set ge-1/0/9 unit 0 family inet6 address 2000::1/64
   ```

3. Specify the interface properties for the services interface that performs the service.

   ```
   [edit interfaces]
   user@host# set ms-2/0/0 services-options syslog host local services any
   user@host# set ms-2/0/0 unit 0 family inet
   user@host# set ms-2/0/0 unit 0 family inet6
   ```
Results

The following sample output shows the configuration of the interfaces for this example.

```plaintext
[edit interfaces]
user@host# show

ge-1/0/9 {
    unit 0 {
        family inet {
            address 30.1.1.1/24;
        }
        family inet6 {
            service {
                input {
                    service-set ss;
                }
                output {
                    service-set ss;
                }
            }
            address 2000::1/64;
        }
    }
}
ms-2/0/0 {
    services-options {
        syslog {
            host local {
                services any;
            }
        }
    }
    unit 0 {
        family inet;
        family inet6;
    }
}
```

Related Documentation

- Junos Address Aware Network Addressing Overview on page 61
- Configuring NAT-PT on page 188
- Configuring Service Sets to be Applied to Services Interfaces on page 9
- Example: Configuring Layer 3 Services and the Services SDK on Two PICs on page 478
- dns-alg-prefix on page 1017
- dns-alg-pool on page 1017
CHAPTER 12

Providing IPv4 Connectivity Across IPv6-Only Network Using 464XLAT

- 464XLAT Overview on page 213
- Configuring 464XLAT Provider-Side Translator for IPv4 Connectivity Across IPv6-Only Network on page 214

464XLAT Overview

Starting in Junos OS Release 17.1R1, you can configure a 464XLAT Provider-Side Translator (PLAT). This is supported only on MS-MICs and MS-MPCs. 464XLAT provides a simple and scalable technique for an IPv4 client with a private address to connect to an IPv4 host over an IPv6 network. 464XLAT only supports IPv4 in the client-server model, so it does not support IPv4 peer-to-peer communication or inbound IPv4 connections.

XLAT464 provides the advantages of not having to maintain an IPv4 network for this IPv4 traffic and not having to assign additional public IPv4 addresses.

A customer-side translator (CLAT), which is not a Juniper Networks product, translates the IPv4 packet to IPv6 by embedding the IPv4 source and destination addresses in IPv6 /96 prefixes, and sends the packet over an IPv6 network to the PLAT. The PLAT translates the packet to IPv4, and sends the packet to the IPv4 host over an IPv4 network (see Figure 12 on page 213).

Figure 12: 464XLAT Wireline Flow
The CLAT uses a unique source IPv6 prefix for each end user, and translates the IPv4 source address by embedding it in the IPv6 /96 prefix. In Figure 12 on page 213, the CLAT source IPv6 prefix is 2001:db8:aaaa::/96, and the IPv4 source address 192.168.1.2 is translated to 2001:db8:aaaa::192.168.1.2. The CLAT translates the IPv4 destination address by embedding it in the IPv6 /96 prefix of the PLAT (MX Series router). In Figure 12 on page 213, the PLAT destination IPv6 prefix is 2001:db8:bbbb::/96, so the CLAT translates the IPv4 destination address 198.51.100.1 to 2001:db8:bbbb::198.51.100.

The CLAT can reside on the end user mobile device in an IPv6-only mobile network, allowing mobile network providers to roll out IPv6 for their users and support IPv4-only applications on mobile devices (see Figure 13 on page 214).

Figure 13: 464XLAT Wireless Flow

To configure the PLAT on the MX Series router, you create a NAT rule that uses the PLAT IPv6 prefix for the destination address and destination prefix and uses the NAT translation type stateful-nat464. For the source address and CLAT prefix in the NAT rule, identify the IPv6 prefix for the CLAT. The NAT rule must specify a NAT pool that the PLAT uses for converting the private IPv4 source address to a public IPv4 address.

Benefits of 464XLAT

- No need to maintain an IPv4 transit network
- No need to assign additional public IPv4 addresses

Related Documentation

- Configuring 464XLAT Provider-Side Translator for IPv4 Connectivity Across IPv6-Only Network on page 214

Configuring 464XLAT Provider-Side Translator for IPv4 Connectivity Across IPv6-Only Network

Starting in Junos OS Release 17.1R1, you can configure a 464XLAT Provider-Side Translator (PLAT). This is supported only on MS-MICs and MS-MPCs. 464XLAT provides a simple and scalable technique for an IPv4 client with a private address to connect to an IPv4 host over an IPv6 network. 464XLAT only supports IPv4 in the client-server model, so it does not support IPv4 peer-to-peer communication or inbound IPv4 connections.

The following restrictions apply when configuring the PLAT:

- An overload-pool cannot be configured in the NAT rule.
Different terms in the NAT rule cannot have the same destination-prefix.

To configure the PLAT:

1. Configure a NAT pool NAT pool that the PLAT uses for converting the private IPv4 source address to a public IPv4 address. See “Configuring Pools of Addresses and Ports for Network Address Translation Overview” on page 82.

2. Configure a name for a NAT rule.

```
[edit services nat]
user@host# set rule rule-name
```

3. Configure a match direction for the rule. See “Configuring Match Direction for NAT Rules” on page 85.

4. Configure the IPv6 source address prefix. This must be the CLAT IPv6 prefix or contain the CLAT IPv6 prefix.

```
[edit services nat rule rule-name term term-name from]
user@host# set source-address address
```

5. Configure the IPv6 destination address prefix, which must have a length of /96. This is the PLAT destination IPv6 IP prefix.

```
[edit services nat rule rule-name term term-name from]
user@host# set destination-address address
```

6. Specify the NAT pool that the PLAT uses for converting the private IPv4 source address to a public IPv4 address.

```
[edit services nat rule rule-name term term-name then translated]
user@host# set source-pool nat-pool-name
```

7. Specify the CLAT IPv6 source prefix.

```
[edit services nat rule rule-name term term-name then translated]
user@host# set clat-prefix clat-prefix
```

8. Configure the IPv6 destination prefix, which must have a length of /96. This is the PLAT destination IPv6 IP prefix.

```
[edit services nat rule rule-name term term-name then translated]
user@host# set destination-prefix destination-prefix
```

9. Configure the translation type as stateful NAT464.
10. Enable address pooling paired (APP).

```bash
[edit services nat rule rule-name term term-name then translated]
user@host# set translation-type stateful-nat464
```

11. Assign the NAT rule to a service set.

```bash
[edit services]
user@host# set service-set service-set-name nat-rules rule-name
```

Related Documentation

- 464XLAT Overview on page 213
Port Control Protocol (PCP) provides a way to control the forwarding of incoming packets by upstream devices, such as NAT44 and firewall devices, and a way to reduce application keepalive traffic. PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICs. Starting in Junos OS Release 17.4R1, PCP for NAT44 is also supported on the MS-MPC and MS-MIC. Starting in Junos OS Release 18.2R1, PCP on the MS-MPC and MS-MIC supports DS-Lite. In Junos OS Release 18.1 and earlier releases, PCP on the MS-MPC and MS-MIC does not support DS-Lite.

PCP is designed to be implemented in the context of both Carrier-Grade NATs (CGNs) and small NATs (for example, residential NATs). PCP enables hosts to operate servers for a long time (as in the case of a webcam) or a short time (for example, while playing a game or on a phone call) when behind a NAT device, including when behind a CGN operated by their ISP. PCP enables applications to create mappings from an external IP address and port to an internal IP address and port. These mappings are required for successful inbound communications destined to machines located behind a NAT or a firewall. After a mapping for incoming connections is created, remote computers must be informed about the IP address and port for the incoming connection. This is usually done in an application-specific manner.

Junos OS supports PCP version 2 and version 1.

PCP consists of the following components:

- **PCP client**—A host or gateway that issues PCP requests to a PCP server in order to obtain and control resources.
- **PCP server**—Typically a CGN gateway or co-located server that receives and processes PCP requests.
Junos OS enables configuring PCP servers for mapping flows using NAPT44 capabilities such as port forwarding and port block allocation. Flows can be processed from these sources:

- Traffic containing PCP requests received directly from user equipment, as shown in Figure 14 on page 218.

Figure 14: Basic PCP NAPT44 Topology

- Mapping of traffic containing PCP requests added by a router functioning as a DS-Lite softwire initiator (B4). This mode, known as DS-Lite plain mode, is shown in Figure 15 on page 218.

Figure 15: PCP with DS-Lite Plain Mode

NOTE: Junos OS does not support deterministic port block allocation for PCP-originated traffic.

Benefits of Port Control Protocol

Many NAT-friendly applications send frequent application-level messages to ensure their sessions are not being timed out by a NAT device. PCP is used to:
• Reduce the frequency of these NAT keepalive messages
• Reduce bandwidth on the subscriber’s access network
• Reduce traffic to the server
• Reduce battery consumption on mobile devices

Port Control Protocol Version 2

Starting with Junos OS Release 15.1, Port Control Protocol (PCP) version 2 is supported, which is in compliance with RFC 6887. PCP provides a way to control the forwarding of incoming packets by upstream devices, such as NAT44, and firewall devices, and a way to reduce application keep-alive traffic. PCP version 2 supports nonce authentication. PCP allows applications to create mappings from an external IP address and port to an internal IP address and port. A nonce payload prevents a replay attack and it is sent by default unless it is explicitly disabled.

Client nonce verification for version 2 map requests (for refresh or delete) requires that the nonce received in the original map request that causes the PCP mapping to be created is preserved. The version of the initial request that enables the mapping to be created is also preserved. This behavior of saving the nonce and version parameters denotes that 13 bytes per PCP mapping are used. This slight increase in storage space is not significant when matched with the current memory usage of a system for a single requested mapping (taking into account the endpoint-independent mapping (EIM) and endpoint-independent filtering (EIF) that are created along with it). In a customer deployment, PCP causes EIM and EIF mappings to represent a fraction of all such mappings.

Until Junos Release 15.1, services PICs support PCP servers on Juniper Networks routers in accordance with PCP draft version 22 with version 1 message encoding. With PCP being refined from the draft version as defined in Port Control Protocol (PCP) draft-ietf-pcp-base-22 (July 2012 expiration) to a finalized, standard version as defined in RFC 6887 -- Port Control Protocol (PCP), the message encoding changed to version 2 with the addition of a random nonce payload to authenticate peer and map requests as necessary. Version 1 does not decode messages compliant with version 2 format and nonce authentication is not supported. In a real-world network environment, with customer premises equipment (CPE) devices increasingly supporting version 2 only, it is required to parse and send version 2 messages. Backward compatibility with version 1-supporting CPE devices is maintained (version negotiation is part of the standard) and authenticates request nonce payload packets when v2 messages are in use.

The output of the show services pcp statistics command contains the PCP unsupported version field, which is incremented to indicate whenever the version is not 1 or 2. A new field, PCP request nonce does not match existing mapping, is introduced to indicate the number of PCP version 2 requests that were ignored because the nonce payload did not match the one recorded in the mapping (authentication failed). If version 2 is in use, the client nonce is used for authentication.
Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.2R1</td>
<td>Starting in Junos OS Release 18.2R1, PCP on the MS-MPC and MS-MIC supports DS-Lite.</td>
</tr>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS Release 17.4R1, PCP for NAPT44 is also supported on the MS-MPC and MS-MIC.</td>
</tr>
<tr>
<td>15.1</td>
<td>Starting with Junos OS Release 15.1, Port Control Protocol (PCP) version 2 is supported, which is in compliance with RFC 6887.</td>
</tr>
</tbody>
</table>

Related Documentation
- Configuring Port Control Protocol on page 220

Configuring Port Control Protocol

This topic describes how to configure port control protocol (PCP). PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, PCP for NAPT44 is also supported on the MS-MPC and MS-MIC. Starting in Junos OS Release 18.2R1, PCP on the MS-MPC and MS-MIC supports DS-Lite. In Junos OS Release 18.1 and earlier releases, PCP on the MS-MPC and MS-MIC does not support DS-Lite.

Perform the following configuration tasks:

- Configuring PCP Server Options on page 220
- Configuring a PCP Rule on page 222
- Configuring a NAT Rule on page 223
- Configuring a Service Set to Apply PCP on page 224
- SYSLOG Message Configuration on page 224

Configuring PCP Server Options

1. Specify a PCP server name.

   ```
   user @host# edit services pcp server server-name
   ```

2. Set the IPv4 or IPv6 addresses of the server. For PCP DS-Lite, the `ipv6-address` must match the address of the AFTR (Address Family Transition Router or softwire concentrator).

   ```
   user @host# edit services pcp server server-name
   ```

 NOTE: Starting in Junos OS Release 18.2R1, PCP on the MS-MPC and MS-MIC supports DS-Lite. In Junos OS Release 18.1 and earlier releases, PCP on the MS-MPC and MS-MIC does not support DS-Lite.
3. For PCP DS-Lite, provide the name of the DS-Lite softwire concentrator configuration.

 [edit services pcp server server-name]
 user @host# set softwire-concentrator softwire-concentrator-name

4. Specify the minimum and maximum mapping lifetimes for the server.

 [edit services pcp server server-name]
 user @host# set mapping-lifetime-minimum mapping-lifetime-min
 user @host# set mapping-lifetime-maximum mapping-lifetime-max

5. Specify the time limits for generating short lifetime or long lifetime errors.

 [edit services pcp server server-name]
 user @host# set short-lifetime-error short-lifetime-error
 user @host# set long-lifetime-error long-lifetime-error

6. (Optional)—Enable PCP options on the specified PCP server. The following options are available—third-party and prefer-failure. The third-party option is required to enable third-party requests by the PCP client. DS-Lite requires the third-party option. The prefer-failure option requests generation of an error message when the PCP client requests a specific IP address/port that is not available, rather than assigning another available address from the NAT pool. If prefer-failure is not specified NAPT44 assigns an available address/port from the NAT pool based on the configured NAT options.

 [edit services pcp server server-name]
 user @host# set pcp-options third-party
 user @host# set pcp-options prefer-failure

7. (Optional)—Specify which NAT pool to use for mapping.

 [edit services pcp server server-name]
 user @host# set nat-options pool-name1 <poolname2...>
NOTE: When you do not explicitly specify a NAT pool for mapping, the Junos OS performs a partial rule match based on source IP, source port, and protocol, and the Junos OS uses the NAT pool configured for the first matching rule to allocate mappings for PCP.

You must use explicit configuration in order to use multiple NAT pools.

8. (Optional)—Configure the maximum number of mappings per client. The default is 32 and maximum is 128.

 [edit services pcp server server-name]
 user@host# set max-mappings-per-client max-mappings-per-client

Configuring a PCP Rule

A PCP rule is has the same basic options as all service set rules:

- A **term** option that allows a single rule to have multiple applications.
- A **from** option that identifies the traffic that is subject to the rule.
- A **then** option that identifies what action is to be taken. In the case of a PCP rule, this option identifies the pcp server that handles selected traffic

1. Go to the [edit services pcp rule rule-name] hierarchy level and specify **match-direction** input.

 user@host# edit services pcp rule rule-name
 user@host# set match-direction input

2. Go to the [edit services pcp rule rule-name term term-name] hierarchy level and provide a term name.

 user@host# edit term term-name

3. (Optional)—Provide a **from** option to filter the traffic to be selected for processing by the rule. When you omit the **from** option, all traffic handled by the service set’s service interface is subject to the rule. The following options are available at the [edit services pcp rule rule-name term term-name from] hierarchy level:

 - **application-sets set-name** — Traffic for the application set is processed by the PCP rule.
 - **applications [application-name]** — Traffic for the application is processed by the PCP rule.
destination-address *address* <except> — Traffic for the destination address or prefix is processed by the PCP rule. If you include the *except* option, traffic for the destination address or prefix is not processed by the PCP rule.

destination-address-range *high maximum-value low minimum-value* <except> — Traffic for the destination address range is processed by the PCP rule. If you include the *except* option, traffic for the destination address range is not processed by the PCP rule.

destination-port *high maximum-value low minimum-value* — Traffic for the destination port range is processed by the PCP rule.

destination-prefix-list *list-name* <except> — Traffic for a destination address in the prefix list is processed by the PCP rule. If you include the *except* option, traffic for a destination address in the prefix list is not processed by the PCP rule.

source-address *address* <except> — Traffic from the source address or prefix is processed by the PCP rule. If you include the *except* option, traffic from the source address or prefix is not processed by the PCP rule.

source-address-range *high maximum-value low minimum-value* <except> — Traffic from the source address range is processed by the PCP rule. If you include the *except* option, traffic from the source address range is not processed by the PCP rule.

source-prefix-list *list-name* <except> — Traffic from a source address in the prefix list is processed by the PCP rule. If you include the *except* option, traffic from a source address in the prefix list is not processed by the PCP rule.

4. Set the *then* option to identify the target PCP server.

   ```
   [edit services pcp rule rule-name term term-name]
   user@host# set then pcp-server server-name
   ```

Configuring a NAT Rule

To configure a NAT rule:

1. Configure the NAT rule name and the match direction.

   ```
   [edit services nat]
   user@host# set rule rule-name match-direction match-direction
   ```

2. Specify the NAT pool to use:

   ```
   [edit services nat rule-name term term-name then translated]
   user@host# set source-pool nat-pool-name
   ```

3. Configure the translation type.

   ```
   [edit services nat rule-name term term-name then translated]
   ```
4. If you are using PCP with IPv4-to-IPv4 NAT or with DS-Lite, configure endpoint-independent mapping (EIM) and endpoint-independent filtering (EIF).

```
set translation-type translation-type
```

```
[edit services nat rule-name term term-name then translated]
user@host# set mapping-type endpoint-independent
user@host# set filtering-type endpoint-independent
```

NOTE: The PCP mappings are not created if you do not configure EIM and EIF with PCP for IPv4-to-IPv4 NAT or for DS-Lite.

Configuring a Service Set to Apply PCP

To use PCP, you must provide the rule name (or name of a list of rule names) in the `pcp-rule rule-name` option.

1. Go to the [edit services service-set service-set-name] hierarchy level.

```
user@host# edit services service-set service-set-name
```

2. If this is a new service set, provide basic service set information, including interface information and any other rules that may apply.

3. Specify the name of the PCP rule or rule list used to send traffic to the specified PCP server.

```
[edit services service-set service-set-name ]
user@host# set pcp-rule rule-name | rule-listname
```

NOTE: Your service set must also identify any required `nat-rule` and `softwire-rule`.

SYSLOG Message Configuration

A new syslog class, configuration option, `pcp-logs`, has been provided to control PCP log generation. It provides the following levels of logging:

- **protocol**—All logs related to mapping creation, deletion are included at this level of logging.
- **protocol-error**—All protocol error related logs (such as mapping refresh failed, PCP look up failed, mapping creation failed), are included in this level of logging.
- **system-error**—Memory and infrastructure errors are included in this level of logging.
See Also • Port Control Protocol Overview on page 217

Example: Configuring Port Control Protocol with NAPT44

NOTE: PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, PCP for NAPT44 is also supported on the MS-MPC and MS-MIC.

• Requirements on page 225
• Overview on page 225
• PCP Configuration on page 226

Requirements

Hardware Requirements

• UEs with PCP clients.
• An MX 3D Router with an MS-DPC services PIC.

Software Requirements

• Junos OS 13.2
• Layer-3 Services Package

Overview

An ISP wants to enable UEs with PCP clients to maintain connections to servers without timing out. The PCP clients generate PCP requests for the type and duration of the connection they require. Connections may be of a long duration, such as applications using a webcam, or a shorter duration, such as online games. An MX 3D router provides a PCP server to interpret PCP client requests, and NAPT44. Figure 16 on page 225 shows the basic topology for this example.

Figure 16: PCP with NAPT44
PCP Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```
set chassis fpc 2 pic 0 adaptive-services service-package layer-3
set interfaces sp-2/0/0 services-options inactivity-timeout 180 cgn-pic
set interfaces sp-2/0/0 unit 0 family inet
set interfaces xe-3/2/0 unit 0 family inet service input service-set sset_0
set interfaces xe-3/2/0 unit 0 family inet service output service-set sset_0
set interfaces xe-3/2/0 unit 0 family inet address 30.0.0.1/24
set interfaces xe-5/0/0 unit 0 family inet address 25.0.0.1/24
set services nat pool pcp-pool address 44.0.0.0/16
set services nat pool pcp-pool port automatic random-allocation address-allocation round-robin
set services nat pool pcp-pool address-allocation round-robin
set services nat rule pcp-rule match-direction input
set services nat rule pcp-rule term t0 then translated source-pool pcp-pool translation-type napt-44
set services nat rule pcp-rule term t0 then translated mapping-type endpoint-independent
filtering-type endpoint-independent
set services nat rule pcp-rule term t0 then translated mapping-type endpoint-independent
filtering-type endpoint-independent
set services pcp server pcp-s1 ipv4-address 124.124.124.122 mapping-lifetime-minimum 600
cpcp server pcp-s1 mapping-lifetime-minimum 600
set services pcp server pcp-s1 mapping-lifetime-minimum 86500
set services pcp server pcp-s1 short-lifetime-error 120 long-lifetime-error 1200
set services pcp server pcp-s1 max-mappings-per-client 128 pcp-options third-party prefer-failure
set services service-set sset_0 pcp-rules r1
set services service-set sset_0 nat-rules pcp-rule
set services service-set sset_0 interface-service service-interface sp-2/0/0.0
```

Chassis Configuration

Step-by-Step Procedure

To configure the service PIC (FPC 2 Slot 0) with the Layer 3 service package:

1. Go to the [edit chassis] hierarchy level.

 `user@host# edit chassis`

2. Configure the Layer 3 service package.

 `[edit chassis]`
 `user@host# set fpc 2 pic 0 adaptive-services service-package layer-3`
Results

```
user@host# show chassis fpc 2 pic 0

pcp-rules pcp-napt44-rule;
nat-rules pcp-rule;
interface-service {
    service-interface sp-2/0/0.0;
}
```

Interface Configuration

Step-by-Step Procedure

1. Configure the services MS-DPC.

   ```
   user@host# set interfaces sp-2/0/0 services-options inactivity-timeout 180 cgn-pic
   user@host# set interfaces sp-2/0/0 unit 0 family inet
   ```

2. Configure the customer-facing interface used for NAT and PCP services.

   ```
   user@host# set interfaces xe-3/2/0 unit 0 family inet service input service-set sset_0
   user@host# set interfaces xe-3/2/0 unit 0 family inet service output service-set sset_0
   user@host# set interfaces xe-3/2/0 unit 0 family inet address 30.0.0.1/24
   ```

3. Configure the Internet-facing interface.

   ```
   user@host# set interfaces xe-5/0/0 unit 0 family inet address 25.0.0.1/24
   ```
Results

user@host#

sp-2/0/0 {
 services-options {
 inactivity-timeout 180;
 cgn-pic;
 }
 unit 0 {
 family inet;
 }
}

xe-3/2/0 {
 unit 0 {
 family inet {
 service {
 input {
 service-set sset_0;
 }
 output {
 service-set sset_0;
 }
 }
 address 30.0.0.1/24;
 }
 }
}

xe-5/0/0 {
 unit 0 {
 family inet {
 address 25.0.0.1/24;
 }
 }
}

NAT Configuration

Step-by-Step Procedure

1. Go the [edit services nat] hierarchy.

 user@host# edit services nat

2. Configure a NAT pool called pcp-pool.

 [edit services nat]
 user@host# set pool pcp-pool address 44.0.0.0/16
 user@host# set pool pcp-pool port automatic random-allocation
 user@host# set pool pcp-pool address-allocation round-robin

3. Configure a NAT rule called pcp-rule.

 [edit services nat]
 user@host# set rule pcp-rule term t0 then translated source-pool pcp-pool
 translation-type napt-44
PCP Configuration

Step-by-Step Procedure

To configure the PCP server and PCP rule options.

1. Go to the `edit services pcp` hierarchy level for server `pcp-s1`

   ```
   user@host# edit services pcp server pcp-s1
   ```

2. Configure the PCP server options.

   ```
   [edit services pcp server pcp-s1]
   user@host# set ipv4-address 124.124.124.122
   user@host# set mapping-lifetime-minimum 600
   user@host# set mapping-lifetime-maximum 86500
   user@host# set short-lifetime-error 120
   user@host# set long-lifetime-error 1200
   user@host# set max-mappings-per-client 128
   user@host# set pcp-options third-party prefer-failure
   ```
3. Create the PCP rule.

 [edit services pcp rule pcp-napt44-rule]
 user@host# edit rule pcp-napt44-rule

4. Configure the PCP rule options.

 [edit services pcp rule pcp-napt44-rule]
 user@host# set match-direction input
 user@host# set term t0 then pcp-server pcp-s1

Results

 user@host# show services pcp

server pcp-s1 {
 ipv4-address 124.124.124.122;
 mapping-lifetime-minimum 600;
 mapping-lifetime-maximum 86500;
 short-lifetime-error 120;
 long-lifetime-error 1200;
 max-mappings-per-client 128;
 pcp-options third-party prefer-failure;
}
rule pcp-napt44-rule {
 match-direction input;
 term t0 {
 then {
 pcp-server pcp-s1;
 }
 }
}

Service Set Configuration

Step-by-Step Procedure

1. Create a service set, sset_0, at the edit services service-set hierarchy level.

 user@host# edit services service-set sset_0

2. Identify the NAT rule associated with the service set.

 [edit services service-set sset_0]
 user@host# set nat-rules pcp-rule
3. Identify the PCP rule associated with the service set.

```
[edit services service-set sset_0]
user@host# set pcp-rules r1
```

4. Identify the service interface associated with the service set.

```
[edit services service-set sset_0]
user@host# set interface-service service-interface sp-2/0/0.0
```

Results

```
user@host# show
pcp-rules pcp-napt44-rule;
nat-rules pcp-rule;
interface-service {
    service-interface sp-2/0/0.0;
}
```

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS Release 17.4R1, PCP for NATP44 is also supported on the MS-MPC and MS-MIC.</td>
</tr>
</tbody>
</table>
Automatically Assigning Ports Using Secured Port Block Allocation

- Secured Port Block Allocation for NAPT44 and NAT64 Overview on page 233
- Interim Logging for Secured Port Block Allocation on page 234
- Guidelines for Configuring Interim Logging for Secured Port Block Allocation on page 235
- Guidelines for Configuring Secured Port Block Allocation on page 238
- Configuring Secured Port Block Allocation on page 240

Secured Port Block Allocation for NAPT44 and NAT64 Overview

Secured port block allocation ensures that when a subscriber requires a port to be assigned for the first time, a block of ports are allocated to the particular user. Here, a subscriber is defined uniquely as a private IP address and service set ID. Because the subscriber has a block of ports assigned to it, all subsequent requests from this subscriber use ports from the assigned block. A new port block is allocated when the current active block is exhausted, or after the active port block timeout interval has expired. You can configure the maximum number of blocks allocated to a user. This behavior of allocation of NAT ports in blocks is different from the traditional NAT utility where the request for a port allocates a single port and not a group of ports in a block.

You can use the secured port block allocation mechanism to allocate ports in blocks for NAPT44 (translation of an IPv4 address to an IPv4 address) and NAT64 (translation of an IPv6 address to an IPv4 address) types. By using secured port block allocation, the port usage might be a little inefficient, depending on traffic patterns. Secured port block allocation is supported on MX series routers with MS-DPCs and on M Series routers with MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS release 14.2R2, secured port block allocation is supported on MX series routers with MS-MPCs and MS-MICs.

Starting with Junos OS Release 15.1, in an environment in which Junos Address Aware (carrier-grade NAT) is employed, service providers or carrier operators can monitor and track the consumption of resources and types of services being utilized by subscribers or users in an easier and effective manner by using system logging messages recorded for the allocation of ports to clients. By using IP addresses in RADIUS or DHCP logs, evaluation of the logs is performed to analyze and determine the services usage and bandwidth consumption by subscribers. With carrier-grade NAT, because IP addresses
are shared by multiple subscribers, examining logs to track the IP addresses and ports that are part of the system logs might be time-consuming and difficult. Also, because ports are allocated and released at frequent intervals depending on the logging-in and closure of subscriber sessions, a large number of logs are triggered for every port allocation and deallocation. As a result, excessive syslogs render it cumbersome to archive and correlate the logs to identify a subscriber. You can now allocate ports in blocks, which reduces the amount of syslogs considerably.

Benefits of Secured Port Block Allocation

- Reduces the effort to correlate logs to a subscriber
- Reduces the number of logs

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2R2</td>
<td>Starting in Junos OS release 14.2R2, secured port block allocation is supported on MX series routers with MS-MPCs and MS-MICs.</td>
</tr>
</tbody>
</table>

Interim Logging for Secured Port Block Allocation

With port block allocation we generate one syslog log per set of ports allocated for a subscriber. These logs are UDP based and can be lost in the network, particularly for long-running flows. Interim logging triggers re-sending the above logs at a configured interval for active blocks that have traffic on at least one of the ports of the block. Depending on your network topology, you can set the interval for the port block allocation logs based on the period of the archive so that at least one log per port block (for an active flow) in each archive is present.

To configure the interim logging interval at the services interface level, which applies to all the NAT pools on that ms- interface, include the `pba-interim-logging-interval seconds` statement at the `[edit interfaces ms-fpc/pic/port services-options]` hierarchy level. The `pba-interim-logging-interval` option is supported on MX series routers with MS-DPCs and on M Series routers with MS-100, MS-400, and MS-500 MultiServices PICS. The `pba-interim-logging-interval` option is supported on MX series routers with MS-MPCs and MS-MICs starting in Junos OS release 14.2R2.

Starting in Junos OS Release 15.1R1, you can also configure the interim logging interval at a NAT pool level. This capability is supported only on MX Series routers with MS-MPCs and MS-MICs. To configure the interim logging interval at a NAT pool level, include the `interim-logging-interval seconds` statement at the `[edit services nat pool pool-name port secured-port-block-allocation]` hierarchy level. You can specify a value from 0 through 86400 seconds for the interim logging frequency.

Benefits of Iterim Logging

- Enables you to identify the currently used port blocks
- Eliminates the need to search and analyze archived logs to identify the internal host that is using the external IP address and port
<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1R1</td>
<td>Starting in Junos OS Release 15.1R1, you can also configure the interim logging interval at a NAT pool level.</td>
</tr>
</tbody>
</table>

Related Documentation

- Configuring NAT Session Logs on page 305
- Secured Port Block Allocation for NAPT44 and NAT64 Overview on page 233

Guidelines for Configuring Interim Logging for Secured Port Block Allocation

Observe the following guidelines when you configure the interim logging interval for secured port block allocation:

- Interim logging is enabled only when the interim logging functionality is configured. The `pba-interim-logging-interval` statement that you can configure at the `[edit interfaces ms-fpc/pic/port services-options]` hierarchy level of an ms-interface is provided for backward compatibility. The `pba-interim-logging-interval` option is supported on MX series routers with MS-DPCs and on M Series routers with MS-100, MS-400, and MS-500 MultiServices PICS. The `pba-interim-logging-interval` option is supported on MX series routers with MS-MPCs and MS-MICs starting in Junos OS release 14.2R2.

The `interim-logging-interval` statement that is available for configuration on the MS-MPC and MS-MIC starting in Junos OS release 15.1R1 provides interim logging for a specific NAT pool.

- If you configure the interim logging capability to be applicable to all PBA pools residing on that particular services interface and the interim logging capability for a specific PBA pool, the NAT pool-specific interval takes precedence over the services interface specific interval. For port blocks allocated from other PBA pools for which interim logging interval at the NAT pool-level is not configured, the logging interval value as configured at the ms-interface-level applies.

- The default value is zero, which denotes no interim logging message is generated.

- Interim logs are sent any time after the configured period of time in seconds. The time-difference is not fixed between the logging intervals of two logs.

- Interim logs are generated for port blocks (both active and inactive) that contain at least one port in use by a flow which has traffic. No timer controls run on the port blocks to generate the logs. When a packet is received on a flow, the validation is performed to generate an interim log. If the conditions are satisfied, an interim log is generated for that port block. Interim logs are not generated for deleted port blocks.

- The interim log contains the timestamp of the port block creation in hexadecimal format (when local time is set, the hexadecimal value provides the time in UTC format).

- The conversion of the timestamp to UTC format can be performed in the external syslog server as necessary.
• In certain scenarios, it is possible that the timestamp in hexadecimal value and the actual timestamp in ALLOC messages differ by a couple of seconds. This behavior occurs because the syslog mechanism contains a slight difference when it reads the time (as seen in PORT_BLOCKALLOC syslog) and the time at which NAT application reads the time (to update the ALLOC time in the subscriber context). The interim system log displays the ALLOC time retrieved from the subscriber context.

• Because these logs are generated on CPU computation and in the fast path, a slight impact might be observed with fast path performance only when a generation of the log occurs.

• Port block creation timestamp in hexadecimal is saved in the JSERVICES_NAT_PORT_BLOCK_RELEASE message, even if interim logging is not present.

• If you define the logging interval when traffic flow is in progress, this functionality takes effect on existing and new flows. You need not reboot the MIC or activate and deactivate the service set.

• If the flows or subscribers are timing out, it denotes that no new packets or traffic flows are seen for this 5-tuple data or for that particular subscriber. In such a case, interim logs are not generated.

• If the interim-logging interval is lower than the inactivity-timeout of the flow, interim logs are not observed when the flow is timing out and the interim-logging interval has elapsed. If the interim-logging interval is lower than the subscriber-timeout value, interim logs are not observed when the subscriber is timing out and the interim-logging interval has elapsed. For example, if the inactivity-timeout is configured to 2500 seconds and the interim-logging is configured as 1800 seconds, when the flow is timing out, there is a point in time when 1800 seconds has elapsed since the last packet was seen on this flow and no interim log is generated in this case.

• The interim logs are recorded for those pools that have PBA configured. If pools exist without the PBA configuration present on the service network processing unit (NPU), interim logs are not saved even if you enable the interim logging functionality.

• You can configure only a range of values for the interval at which the logs need to be generated, such as 0, [1800, 86400].

• You can enable the generation of syslogs by using the syslog statement at the [edit system] and [edit services service-sets service-set name nat rule rule-name term term-name then] hierarchy levels that contain the NAT rules with PBA pools. Interim logs are not triggered if the recording of syslogs are not enabled on the system.

• We recommend that you configure the interim-logging interval to be higher than the inactivity timeout period for established flows. Also, we recommend that you configure the interim-logging interval to be higher than the subscriber-timeout value. When endpoint-independent mapping (EIM) is configured, the interim-logging interval must be higher than the sum of the address pooling paired (APP) timeout and EIM timeout values.

• Transmission of logs occurs in clear-text format similar to other log messages that the services PICs do not encrypt. It is assumed that the transport of logs and the positioning of the log collector are within a secured realm. Because the messages do not contain
sensitive details such as username or passwords, the messages do not cause any security or reliability risks. Increased generation of log messages does not cause a possibility of a flood of logs because the frequency of logging can be configured, depending on the network topology, traffic levels, and your monitoring needs.

- The logs for PBA in the microkernel start with the prefix of ASP_. These logs have been modified to start with the prefix of JSERVICES_. The following are examples of system logs for PBA in the microkernel and with the Junos OS Extension-Provider packages installed and configured on the device.

 Microkernel: 1970-01-01 00:32:36 [FWNAT]:ASP_NAT_PORT_BLOCK_ACTIVE: 2001:0:0:0:0:0:2 -> 1.1.1.1:1050-1091 0x6f

 Junos OS Extension-Provider (eJunos): 1970-01-01 00:32:36 [nat64] [FWNAT]:JSERVICES_NAT_PORT_BLOCK_ACTIVE: 2001:0:0:0:0:0:2 -> 1.1.1.1:1050-1091 0x6f

- Also, you can specify the interim logging interval per NAT pool instead of a global configuration per MS-PIC, based on whether you want the syslog settings to apply to all the NAT pools on a device or for a particular NAT pool. For NAT, the member interfaces must have the jservices-nat package configured. The JSERVICES_NAT_PORT_BLOCK_ACTIVE system logging message is generated when you configure interim logging for PBA. The following sample logs denote the log messages generated with the interim interval set as 1800 seconds. You can notice that the timestamp between consecutive interim logs is more than 1800 seconds.

 1970-01-01 00:01:51 [FWNAT]:JSERVICES_NAT_PORT_BLOCK_ALLOC: 2001:0:0:0:0:0:2 -> 1.1.1.1:1050-1091
 1970-01-01 00:32:36 [nat64] [FWNAT]:JSERVICES_NAT_PORT_BLOCK_ACTIVE: 2001:0:0:0:0:0:2 -> 1.1.1.1:1050-1091 0x6f
 1970-01-01 01:03:20 [nat64] [FWNAT]:JSERVICES_NAT_PORT_BLOCK_ACTIVE: 2001:0:0:0:0:0:2 -> 1.1.1.1:1050-1091 0x6f
 1970-01-01 01:34:04 [nat64] [FWNAT]:JSERVICES_NAT_PORT_BLOCK_ACTIVE: 2001:0:0:0:0:0:2 -> 1.1.1.1:1050-1091 0x6f
 1970-01-01 02:04:48 [nat64] [FWNAT]:JSERVICES_NAT_PORT_BLOCK_ACTIVE: 2001:0:0:0:0:0:2 -> 1.1.1.1:1050-1091 0x6f

- Starting in Junos OS release 19.3R1, when you configure a softwire prefix other than 128, all the JSERVICES_NAT_PORT_BLOCK logs now displays the prefixed B4 address. The following JSERVICES_NAT_PORT_BLOCK are modified:

 - JSERVICES_NAT_PORT_BLOCK_ALLOC
 - JSERVICES_NAT_PORT_BLOCK_RELEASE
 - JSERVICES_NAT_PORT_BLOCK_ACTIVE

In earlier Junos OS releases, when a softwire prefix was configured, some of the B4 addresses displayed in the JSERVICES_NAT_PORT_BLOCK log were /128 addresses. For example, when a /56 prefix was configured, the port block syslog displayed the following B4 addresses:

- The JSERVICES_NAT_PORT_BLOCK_ALLOC displayed the /128 B4 address of the first B4 which was allocated a port from a particular port block
- The JSERVICES_NAT_PORT_BLOCK_RELEASE displayed the /128 B4 address of the last B4 which released its port back to the port block

Related Documentation
- Configuring NAT Session Logs on page 305
- Secured Port Block Allocation for NAPT44 and NAT64 Overview on page 233

Guidelines for Configuring Secured Port BlockAllocation

Keep the following points in mind when you configure secured PBA:

- Block size is not configurable at the NAT rule level.
- Increase in setup rate of sessions is not impacted when you configure secured PBA.
- If a block of a particular size is not available, an out-of-ports message is displayed and smaller-sized blocks are not allocated alternatively in such a scenario.
- Addresses in the pool using port-block-allocation method cannot be used in any other pool.
- Port range in the NAT pool must be contiguous.
- Preserve parity (Allocate ports with same parity as the original port) is not supported with block-allocation of ports.
- The limitation on the number of open sessions when the specified threshold is reached (for intrusion detection services) and the maximum number of blocks that can be allocated to a user address that is configured for secured PBA are independent functionalities.
- The functionality to preserve privileged port range after translation is not supported. The blocks are assigned from unprivileged port range (1024-65535). For ports in privileged range, port block allocation method is not applicable.
- Port usage efficiency is lower when port-block allocation is enabled. PBA does not use ports from 0-1023 of a NAT IP address.
- If you configure the automatic port assignment method, which enables sequential assignment of ports, the port range from 1024 through 65535 is available for allocation to users.
- Port blocks can start at any start port that you can configure.
- The number of ports used is dependent on the block size and the rest of the ports are not be used.
- An overloaded pool, which indicates an address pool that can be used if the source pool becomes exhausted, is not supported with secured PBA.
- NAT IP addresses of PBA pool must not overlap with any other pool. Although a validation is not performed to identify whether any overlapping pools exist, you must ensure that the addresses of a pool that is used for PBA are not used in other pools. This condition is because some of the users require the overload pool to use the same
IP addresses as that of NAT IP addresses, but a different port range of PBA pool to support the address pooling paired (APP) functionality.

- The block-size is fixed per NAT pool and is configurable at the NAT pool level. Multiple port blocks can be allocated to a private IP address.

- You can configure the maximum number of blocks per pool per subscriber by including the `max-blocks-per-user` statement at the `[edit services nat pool pool-name port secured-port-block-allocation]` hierarchy level. If a subscriber matches two pools, that particular user can be allocated a maximum of port blocks that equals the sum of the maximum number of port blocks for each pool for that subscriber. New requests for NAT ports arrive from the current active block only.

- Ports can be allocated randomly from the current active block, which specifies whether ports should be allocated sequentially or randomly within the port block.

- A block is active for a timeout interval that you can define by including the `active-block-timeout timeout-seconds` at the `[edit services nat pool pool-name port secured-port-block-allocation]` hierarchy level. After the timeout period, a new block is allocated even if ports are available in the active block. The default timeout of an active block is 120 seconds. When you configure it as 0 (infinite), the active block transitions to inactive only when it runs out of ports and a new block is allocated.

- If the maximum number of blocks of blocks is exceeded, and a new request is received, the active block is moved to a block that contains available ports. Any non-active block without any ports in use is freed to NAT pool.

- In addition to tracking port blocks assigned to each private IP address, actual ports in use are also computed and maintained. This metric is used to calculate port usage efficiency.

- A syslog message is generated for each block allocation and release. The format of the message is similar to the messages recorded for individual port allocation and release.

- Session setup rate is the same or slightly improved than the existing non-block allocation setup rate. NAT pool using block-port allocation method can have partial port ranges. If the address is used for port forwarding, those ports can be removed from the pool port range. You can configure partial port ranges by using the `port range low minimum-value high maximum-value random-allocation` statement at the `[edit services nat pool nat-pool-name]` hierarchy level. Port block allocation works in the same manner as NAPT44 for TCP, UDP, and ICMP traffic.

- Randomness can be achieved by allocating ports randomly within the block and changing active block periodically. The block of ports do not contain random ports (ports within the block are sequential). This capability is supported with aggregated multiservices (ams) interfaces.

- The starting port number is calculated differently in the microkernel and in Junos OS Extension-Provider packages. In the microkernel, the starting or first port is the nearest multiple of the block size after 1023. In that implementation, more ports are wasted because ports are wasted at the beginning and the end of the port range depending on the block size. In Junos OS Extension-Provider packages, the start port of a block
is not restricted to a multiple of the block size. The start port can start at the lower boundary of the range of the port configured.

Related Documentation

- Configuring NAT Session Logs on page 305
- Secured Port Block Allocation for NAPT44 and NAT64 Overview on page 233

Configuring Secured Port Block Allocation

Secured port block allocation is supported on MX series routers with MS-DPCs and on M Series routers with MS-100, MS-400, and MS-500 MultiServices PICS. Secured port block allocation is supported on MX series routers with MS-MPCs and MS-MICs starting in Junos OS release 14.2R2. To configure secured port block allocation:

1. At the `edit services nat pool nat-pool-name` hierarchy level, create a pool.

   ```
   user@host# edit services nat pool poolname
   ```

 For example:

   ```
   user@host# edit services nat pool pba-pool1
   ```

2. Define the range of addresses to be translated, specifying the upper and lower limits of the range or an address prefix that describes the range.

   ```
   [edit services nat pool nat-pool-name]
   user@host# set address-range low address high address
   ```

 Or

   ```
   user@host# set address address-prefix
   ```

 For example:

   ```
   [edit services nat pool pba-pool1]
   user@host# set address 203.0.113.0/24
   ```

3. Define the range of ports to be used in the translation, or use automatic port assignment by the Junos OS. You can optionally specify random assignment of ports; sequential assignment is the default.

   ```
   [edit services nat pool nat-pool-name]
   user@host# set port range low address high address random
   ```

 Or

   ```
   user@host# set port automatic random-allocation
   ```

 For example:
[edit services nat pool pba-pool1]
user@host# set port range low 256 high 511 random

Or

[edit services nat pool pba-pool1]
user@host# set port automatic random-allocation

NOTE: When you configure a port range, the range should be a multiple of the port block-size value (see Step 4). When the nat pool port range is not a multiple of the port block-size value, the number of ports or port-blocks that are effectively available for use is less than the configured number of ports and port-blocks.

When you configure automatic assignment of ports, the available port range for allocation is 1024 through 65535. Automatic allocation can result in no ports being available for use. Use the show services nat pool command on the Routing Engine after you configure the port block allocation method to determine the number of ports and port blocks available for allocation to users.

4. Configure secured port block allocation. Specify active-block-timeout, block-size, and max-blocks-per-address, or accept the default values for those options.

[edit services nat pool nat-pool-name]
user@host# set secured-port-block-allocation active-block-timeout
active-block-timeout block-size block-size max-blocks-per-address
max-blocks-per-address

For example:

[edit services nat pool pba-pool1]
user@host# set secured-port-block-allocation active-block-timeout 120 block-size 256 max-blocks-per-address 12
NOTE: In order for secured-port-block-allocation configuration changes to take effect, you must reboot the services PIC whenever you change any of the following nat pool options:

- `nat-pool-name`
- address or address-range
- port range
- port secured-port-block-allocation block-size
- port secured-port-block-allocation max-blocks-per-address.
- port secured-port-block-allocation active-block-timeout.
- from hierarchy in the nat rule

NOTE: If you make any configuration changes related to a NAT pool that has secured port block allocation configured, you must delete the existing NAT address pool, wait at least 5 seconds, and then configure a new NAT address pool. We also strongly recommend that you perform this procedure if you make any changes to the NAT pool configuration, even when secured port block allocation is not configured.

NOTE: MS-MICs and MS-MPCs support up to a maximum of nine million port blocks per NPU. If your configuration exceeds this maximum supported number, one or more service sets might not be activated on that NPU.

Related Documentation

- Network Address Translation Configuration Overview on page 80
CHAPTER 15

Connecting Specific Ports and Addresses Using Port Forwarding

- Port Forwarding Overview on page 243
- Configuring Port Forwarding for Static Destination Address Translation on page 244
- Configuring Port Forwarding Without Destination Address Translation on page 248
- Example: Configuring Port Forwarding with Twice NAT on page 250

Port Forwarding Overview

You can map an external IP address and port with an IP address and port in a private network. This mapping, called port forwarding, is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, port forwarding is also supported on the MS-MPC and MS-MIC.

Port forwarding allows the destination address and port of a packet to be changed to reach the correct host in a Network Address Translation (NAT) gateway. The translation facilitates reaching a host within a masqueraded, typically private, network, based on the port number on which the packet was received from the originating host. An example of this type of destination is the host of a public HTTP server within a private network. You can also configure port forwarding without translating a destination address. Port forwarding supports endpoint-independent mapping (EIM), endpoint-independent filtering (EIF), and address pooling paired (APP).

Port forwarding works only with the FTP application-level gateway (ALG), and has no support for technologies that offer IPv6 services over IPv4 infrastructure, such as IPv6 rapid deployment (6rd) and dual-stack lite (DS-Lite). Port forwarding supports only **dnat-44** and **twice-napt-44** on IPv4 networks.
Benefits of Port Forwarding

- Allows remote computers, such as public machines on the Internet, to connect to a non-standard port of a specific computer that is hidden within a private network.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS Release 17.4R1, port forwarding is also supported on the MS-MPC and MS-MIC.</td>
</tr>
</tbody>
</table>

Related Documentation

- Configuring Port Forwarding for Static Destination Address Translation on page 244
- Configuring Port Forwarding Without Destination Address Translation on page 248

Configuring Port Forwarding for Static Destination Address Translation

You can configure destination address translation with port forwarding. Port forwarding allows the destination address and port of a packet to be changed to reach the correct host in a Network Address Translation (NAT) gateway. Port forwarding is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, port forwarding is also supported on the MS-MPC and MS-MIC.

To configure destination address translation with port forwarding:

1. In configuration mode, go to the [edit services nat] hierarchy level.

 [edit]
 user@host# edit services nat

2. Configure the NAT pool with an address.

 [edit services nat]
 user@host# set pool pool-name address address

 In the following example, dest-pool is used as the pool name and 192.0.2.2 as the address.

 user@host# set pool dest-pool address 192.0.2.2

3. Configure the rule, match direction, term, and destination address.

 [edit services nat]
 user@host# set rule rule-name match-direction match-direction term term-name from destination-address address

 In the following example, the name of the rule is rule-dnat44, the match direction is input, the name of the term is t1, and the address is 198.51.100.20.
[edit services nat]
user@host# set rule-rule-dnat44 match-direction input term t1 from
destination-address 198.51.100.20

4. Configure the destination port range.

[edit services nat]
user@host# set rule rule-name match-direction match-direction term term-name from
destination-port range high maximum-value low minimum-value

In the following example, the upper port range is 50 and the lower port range is 20.

[edit services nat]
user@host# set rule-rule-dnat44 match-direction input term t1 from destination-port range high 50 low 20

5. Go to the [edit services nat rule rule-name term term-name] hierarchy level.

[edit services nat]
user@host# edit rule rule-name term term-name

6. Configure the destination pool.

[edit services nat rule rule-name term term-name]
user@host# set then translated destination-pool dest-pool-name

In the following example, the destination pool name is dest-pool.

[edit services nat rule-rule-dnat44 term t1]
user@host# set then translated destination-pool dest-pool

7. Specify the name of the mapping for port forwarding and configure the translation type. You can only configure one mapping within a NAT rule term.

[edit services nat rule rule-name term term-name]
user@host# set then port-forwarding-mappings map-name
user@host# set then translated translation-type translation-type

In the following example, the port forwarding mapping name is map1, and the translation type is dnat-44.

[edit services nat rule-rule-dnat44 term t1]
user@host# set then port-forwarding-mappings map1
user@host# set then translated translation-type dnat-44

8. Go to the [edit services nat port-forwarding map-name] hierarchy level.

[edit services nat]
user@host# edit port-forwarding map-name

9. Configure the mapping for port forwarding.

[edit port-forwarding map-name]
user@host# set destined-port port-id
user@host# set translated-port port-id

In the following example, the destination port number that needs to be translated is 23 and the port to which traffic is mapped is 45.

[edit port-forwarding map1]
user@host# set destined-port 23
user@host# set translated-port 45

NOTE:
- Multiple port mappings are supported with port forwarding. Up to 32 port maps can be configured for port forwarding.
- The destination port should not overlap the port range configured for NAT.

10. Apply the NAT rule to the service set that performs the port mapping.

[edit services service-set service-set-name]
user@host# set nat-rules rule-name

NOTE: On the MS-MPC and MS-MIC, you cannot apply port forwarding NAT rules to an AMS interface.

11. Verify the configuration by using the `show` command at the [edit services nat] hierarchy level.

```
[edit services]
user@host# show
nat {
    pool dest-pool {
        address 192.0.2.2/32;
    }
    rule rule-dnat44 {
        match-direction input;
        term t1
            from {
                destination-address {
                    198.51.100.20/32
                }
                destination-port {
                    range low 20 high 50;
                }
            }
    }
} 
```
```c
}
}
}
}
then {
port-forwarding-mappings map1;
translated {
  destination-pool dest-pool;
  translation-type {
    dnat-44;
  }
}
}
}
}
port-forwarding map1 {
  destined-port 45;
  translated-port 23;
}
}
}
service-set ssl {
  nat-rules rule-dnat44;
  interface-service {
    service-interface sp-10/0/0.0;
  }
}
}
```

NOTE:

- A similar configuration is possible with twice NAT for IPv4. See “Example: Configuring Port Forwarding with Twice NAT” on page 250.
- Port forwarding and stateful firewall can be configured together. Stateful firewall has precedence over port forwarding.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS Release 17.4R1, port forwarding is also supported on the MS-MPC and MS-MIC.</td>
</tr>
</tbody>
</table>

Related Documentation

- Configuring Port Forwarding Without Destination Address Translation on page 248
Configuring Port Forwarding Without Destination Address Translation

You can configure port forwarding without translating a destination address. Port forwarding allows the destination port to be changed to reach the correct port in a Network Address Translation (NAT) gateway. Port forwarding is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, port forwarding is also supported on the MS-MPC and MS-MIC.

To configure port forwarding without destination address translation in IPv4 networks:

1. In configuration mode, go to the [edit services nat] hierarchy level.

 [edit]
 user@host# edit services nat

2. Configure the rule, match direction, term name, and any conditions that the traffic must match before the rule is applied.

 [edit services nat]
 user@host# set rule rule-name match-direction match-direction term term-name from
 match-conditions

 In the following example, the name of the rule is rule-port-forwarding, the match direction is input, the name of the term is t1, and the destination address that must be matched is 198.51.100.20.

 [edit services nat]
 user@host# set rule rule-port-forwarding match-direction input term t1 from
 destination-address 198.51.100.20

3. Go to the [edit services nat rule rule-name term term-name] hierarchy level.

 [edit services nat]
 user@host# edit rule rule-name term term-name

4. Specify that there is no address translation for this rule.

 [edit services nat rule rule-name term term-name]
 user@host# set then no-translation

5. Specify the name of the mapping for port forwarding. You can only configure one mapping within a NAT rule term.

 [edit services nat rule rule-name term term-name]
 user@host# set then port-forwarding-mappings map-name

 In the following example, the port forwarding mapping name is map1.
6. Go to the [edit services nat port-forwarding map-name] hierarchy level.

```
[edit services nat]
user@host# edit port-forwarding map-name
```

7. Configure the mapping for port forwarding.

```
[edit port-forwarding map-name]
user@host# set destined-port port-id
user@host# set translated-port port-id
```

In the following example, the destination port number that needs to be translated is 23 and the port to which traffic is mapped is 45.

```
[edit port-forwarding map1]
user@host# set destined-port 23
user@host# set translated-port 45
```

NOTE:

- Multiple port mappings are supported with port forwarding. Up to 32 port maps can be configured for port forwarding.
- The destination port should not overlap the port range configured for NAPT.

8. Apply the NAT rule to the service set that performs the port mapping.

```
[edit services service-set service-set-name]
user@host# set nat-rules rule-name
```

NOTE: On the MS-MPC and MS-MIC, you cannot apply port forwarding NAT rules to an AMS interface.

9. Verify the configuration by using the show command at the [edit services] hierarchy level.

```
[edit services]
user@host# show nat {
  rule rule-port-forwarding {
    match-direction input;
    term t1 {
      then {
```
NOTE: Port forwarding and stateful firewall can be configured together. Stateful firewall has precedence over port forwarding.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS Release 17.4R1, port forwarding is also supported on the MS-MPC and MS-MIC.</td>
</tr>
</tbody>
</table>

Related Documentation

- Configuring Port Forwarding for Static Destination Address Translation on page 244

Example: Configuring Port Forwarding with Twice NAT

The following example configures port forwarding with **twice-napt-44** as the translation type. The example also has stateful firewall and multiple port maps configured.

Port forwarding is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, port forwarding is also supported on the MS-MPC and MS-MIC.

```bash
[edit services]
user@host# show
service-set in {
  syslog {
    host local {
      services any;
    }
  }
  stateful-firewall-rules r;
  nat-rules r;
  interface-service {
    service-interface sp-10/0/0.0;
  }
```
stateful-firewall {
 rule r {
 match-direction input;
 term t {
 from {
 destination-port {
 range low 20 high 5000;
 }
 }
 then {
 reject;
 }
 }
 }
}

nat {
 pool x {
 address 203.0.113.2/32;
 }
 rule r {
 match-direction input;
 term t {
 from {
 destination-address {
 198.51.100.2/32;
 }
 destination-port {
 range low 10 high 20000;
 }
 }
 then {
 port-forwarding-mappings y;
 translated {
 destination-pool x;
 translation-type {
 twice-napt-44;
 }
 }
 }
 }
 }
 port-forwarding y {
 destined-port 45;
 translated-port 23;
 destined-port 55;
 translated-port 33;
 destined-port 65;
 translated-port 43;
 }
}

adaptive-services-pics {
 traceoptions {
 file sp-trace;
 flag all;
 }
}
NOTE:
- Stateful firewall has precedence over port forwarding. In this example, for instance, no traffic destined to any port between 20 and 5000 will be translated.
- Up to 32 port maps can be configured.

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS Release 17.4R1, port forwarding is also supported on the MS-MPC and MS-MIC.</td>
</tr>
</tbody>
</table>

Related Documentation:
- Configuring Port Forwarding for Static Destination Address Translation on page 244
Allocating a Few Public Addresses to Many Private Hosts Using Dynamic NAT

- Configuring Dynamic Address-Only Source Translation in IPv4 Networks on page 253
- Example: Dynamic Source NAT as a Next-Hop Service on page 258
- Example: Assigning Addresses from a Dynamic Pool for Static Use on page 259

Configuring Dynamic Address-Only Source Translation in IPv4 Networks

In IPv4 networks, dynamic address translation (dynamic NAT) is a mechanism to dynamically translate the destination traffic without port mapping. To use dynamic NAT, you must specify a source pool name, which includes an address configuration.

To configure dynamic NAT in IPv4 networks:

1. In configuration mode, go to the [edit services] hierarchy level.

 [edit]
 user@host# edit services

2. Configure the service set and NAT rule.

 [edit services]
 user@host# set service-set service-set-name nat-rules rule-name

 In the following example, the name of the service set is s1, and the name of the NAT rule is rule-dynamic-nat44.

 [edit services]
 user@host# set service-set s1 nat-rules rule-dynamic-nat44

3. Go to the [interface-service] hierarchy level for the service set.

 [edit services]
 user@host# edit service-set s1 interface-service

4. Configure the service interface.
In the following example, the name of the service interface is `ms-0/1/0`.

NOTE: If the service interface is not present in the router, or the specified interface is not functional, the following command can result in an error.

5. Go to the `[edit services nat]` hierarchy level. Issue the following command from the top of the services hierarchy, or use the `top` keyword.

6. Configure the NAT pool with an address.

7. Configure the rule, match direction, term, and source address.

8. Go to the `[edit rule rule-dynamic-nat-44 term t1]` hierarchy level.
9. Configure the source pool and the translation type.

 [edit services nat rule rule-dynamic-nat44 term t1]
 user@host# set then translated source-pool src-pool-name translation-type translation-type

In the following example, the name of the source pool is source-dynamic-pool and the translation type is dynamic-nat44.

 [edit services nat rule rule-dynamic-nat44 term t1]
 user@host# set then translated source-pool source-dynamic-pool translation-type dynamic-nat44

10. Go to the [edit services adaptive-services-pics] hierarchy level. In the following command, the top keyword ensures that the command is run from the top of the hierarchy.

 [edit services nat rule rule-dynamic-nat44 term t1]
 user@host# top editservices adaptive-services-pics

11. Configure the trace options.

 [edit services adaptive-services-pics]
 user@host# set traceoptions flag tracing parameter

In the following example, the tracing parameter is configured as all.

 [edit services adaptive-services-pics]
 user@host# set traceoptions flag all

12. Verify the configuration by using the show command at the [edit services] hierarchy level.

 [edit services]
 user@host# show
 service-set s1 {
 nat-rules rule-dynamic-nat44;
 interface-service {
 service-interface ms-0/1/0;
 }
 }
 nat {
 pool source-dynamic-pool {
 address 10.1.1.0/24;
 }
 rule rule-dynamic-nat44 {
 match-direction input;
 term t1 {
 from {
 source-address {
 3.1.1.0/24;
 }
 }
 }
 }
 }
The following example configures the translation type as `dynamic-nat44`.

```
[edit services]
user@host# show
service-set s1 {
  nat-rules rule-dynamic-nat44;
  interface-service {
    service-interface ms-0/1/0;
  }
}

nat {
  pool source-dynamic-pool {
    address 10.1.1.0/24;
  }
  rule rule-dynamic-nat44 {
    match-direction input;
    term t1 {
      from {
        source-address {
          3.1.1.0/24;
        }
      }
      then {
        translated {
          destination-pool source-dynamic-pool;
          translation-type {
            dynamic-nat44;
          }
        }
      }
    }
    adaptive-services-pics {
      traceoptions {
        flag all;
      }
    }
  }
}
```
The following configuration specifies that NAT is not performed on incoming traffic from the source address 192.168.20.24/32 by providing a NAT rule term t0 that configures no-translation. Dynamic NAT is performed on all other incoming traffic, as configured by term t1 of the NAT rule. The no-translation option is supported on MX Series routers with MS-DPCs and on M Series routers with MS-100, MS-400, and MS-500 MultiServices PICS. The no-translation option is supported on MX Series routers with MS-MPCs and MS-MICs starting in Junos OS release 15.1R1.

```
[edit services nat]
pool my-pool {
    address-range low 10.10.10.1 high 10.10.10.16;
    port automatic;
}
rule src-nat {
    match-direction input;
    term t0 {
        from {
            source-address 192.168.20.24/32;
        }
        then {
            no-translation;
        }
    }
    term t1 {
        then {
            translated {
                translation-type dynamic-nat44;
                source-pool my-pool;
            }
        }
    }
}
```

The following configuration performs NAT using the source prefix 20.20.10.0/24 without defining a pool.

```
[edit services nat]
rule src-nat {
    match-direction input;
    term t1 {
        then {
            translation-type dynamic-nat44;
            source-prefix 20.20.10.0/24;
        }
    }
}
```

The following configuration performs NAT using the destination prefix 20.20.10.0/32 without defining a pool.

```
[edit services nat]
rule src-nat {
    match-direction input;
    ```
term t1 {
 from {
 destination-address 10.10.10.10/32;
 then {
 translation-type dnat44;
 destination-prefix 20.20.10.0/24;
 }
 }
}

Example: Dynamic Source NAT as a Next-Hop Service

The following example shows dynamic-source NAT applied as a next-hop service:

[edit interfaces]
ge-0/2/0 {
 unit 0 {
 family mpls;
 }
} sp-1/3/0 {
 unit 0 {
 family inet;
 }
 unit 20 {
 family inet;
 }
 unit 32 {
 family inet;
 }
}
[edit routing-instances]
protected-domain {
 interface ge-0/2/0.0;
 interface sp-1/3/0.20;
 instance-type vrf;
 route-distinguisher 10.58.255.17:37;
 vrf-import protected-domain-policy;
 vrf-export protected-domain-policy;
 routing-options {
 static {
 route 0.0.0.0/0 next-hop sp-1/3/0.20;
 }
 }
}
[edit policy-options]
policy-statement protected-domain-policy {
 term t1 {
 then reject;
 }
}
[edit services]
stateful-firewall {
rule allow-all {
 match-direction input;
 term t1 {
 then {
 accept;
 }
 }
}
}

nat {
pool my-pool {
 address 10.58.16.100;
 port automatic;
}
rule hide-all {
 match-direction input;
 term t1 {
 then {
 translated {
 source-pool my-pool;
 translation-type napt-44;
 }
 }
 }
}
}

service-set null-sfw-with-nat {
 stateful-firewall-rules allow-all;
 nat-rules hide-all;
 next-hop-service {
 inside-service-interface sp-1/3/0.20;
 outside-service-interface sp-1/3/0.32;
 }
}

Example: Assigning Addresses from a Dynamic Pool for Static Use

The following configuration statically assigns a subset of addresses that are configured as part of a dynamic pool (dynamic-pool) to two separate static pools (static-pool and static-pool2).

[edit services nat]
pool dynamic-pool {
 address 20.20.10.0/24;
}
pool static-pool {
 address-range low 20.20.10.10 high 10.20.10.12;
}
pool static-pool2 {
 address 20.20.10.15/32;
}
rule src-nat {
match-direction input;
term t1 {
 from {
 source-address 30.30.30.0/24;
 }
 then {
 translation-type dynamic-nat44;
 source-pool dynamic-pool;
 }
}
term t2 {
 from {
 source-address 10.10.10.2;
 }
 then {
 translation-type basic-nat44;
 source-pool static-pool;
 }
}
term t3 {
 from {
 source-address 10.10.10.10;
 }
 then {
 translation-type basic-nat44;
 source-pool static-pool2;
 }
}
CHAPTER 17

Achieving Line-Rate, Low-Latency Translations Using Inline NAT

- Inline Network Address Translation Overview on page 261
- Example: Configuring Inline Network Address Translation—Interface-Based Method on page 263
- Example: Configuring Inline Network Address Translation—Route-Based Method on page 270
- Example: Configuring Inline Network Address Translation Hairpinning on page 278

Inline Network Address Translation Overview

Inline NAT uses the capabilities of the MPC line card, eliminating the need for a services card for NAT. Consequently, you can achieve line-rate, low-latency address translations (up to 120 Gbps per slot). The current implementation provides:

- 1:1 static address mapping.
- Bidirectional mapping - source NAT for outbound traffic and destination NAT for inbound traffic.
- No limit on number of flows.
- Support for Source, destination, and twice NAT, as shown in Figure 17 on page 262. Inline NAT supports the translation type basic-nat44. Starting in Junos OS Release 15.1R1, inline NAT also supports twice-basic-nat-44.
- Support for hairpinning.
To configure inline NAT, you define your service interface as type si- (service-inline) interface. You must also reserve adequate bandwidth for the inline interface. This enables you to configure both interface or next-hop service-sets used for NAT. The si- interface serves as a "virtual service PIC".

NOTE: Only static NAT is supported. Port translation and dynamic NAT are not supported. An MS-MPC, MS-MIC, MS-DPC, or MS-PIC is still needed for any stateful-firewall processing and dynamic port translation.

Benefits of Inline NAT

- Eliminates the need for a services card
- Supports more NAT flows than a services card

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1R1</td>
<td>Starting in Junos OS Release 15.1R1, inline NAT also supports twice-basic-nat-44</td>
</tr>
</tbody>
</table>

Related Documentation

- Network Address Translation Configuration Overview on page 80
- Example: Configuring Inline Network Address Translation—Interface-Based Method on page 263
- Carrier-Grade NAT Feature Comparison for Junos Address Aware by Type of Interface Card on page 69
Example: Configuring Inline Network Address Translation—Interface-Based Method

This configuration example illustrates how to configure interface-based inline network address translation (NAT) on MX Series devices using si- (service-inline) interfaces with interface-style service-sets.

This topic covers:

- Requirements on page 263
- Overview and Topology on page 263
- Configuration on page 264
- Verification on page 268

Requirements

This example uses the following hardware and software components:

- MX Series router with a Modular Port Concentrator (MPC) line card
- Junos OS Release 11.4R1 or higher

Overview and Topology

As of Junos OS Release 11.4R1, MPC line cards can perform some services without the need of a dedicated services card, such as an MS-MPC. Inline services generally provide better performance than using a services card, however their functionality tends to be more basic. For example, inline NAT supports only static NAT.

In this example, an MX Series device with an MPC line card provides inline source NAT services to traffic flowing between two end hosts. The topology for this scenario is shown in Figure 18 on page 263.

Figure 18: Inline Source NAT Using an MX Series Device with an MPC

As shown in the figure, host H1 sends traffic towards server S1. The MX Series device performs source NAT to translate H1’s source IP address from 10.1.1.2 to 192.0.2.2. Server S1 then sends return traffic to host H1 using the destination IP address 192.0.2.2, and the MX Series device reverts H1’s IP address back to 10.1.1.2.

The following configuration elements are used in this scenario:
• Inline service interface—a virtual interface that resides on the Packet Forwarding Engine of the MPC. To access services, traffic flows in and out of these si- (service-inline) interfaces.

• Service set—defines the service(s) to be performed, and identifies which inline interface(s) will feed traffic into and out of the service set. There are two ways to implement service sets:
 - Interface-style—an interface-based method, where packets arriving at an interface are forwarded through the inline service.
 - Next-hop-style—a route-based method, where static routes are used to forward packets destined for a specific destination through the inline service.

This example uses the interface-style service set.

• NAT rule—uses an if-then structure (similar to firewall filters) to define matching conditions and then apply address translation to the matching traffic.

• NAT pool—a user-defined set of IP addresses that are used by the NAT rule for translation.

These elements come together as shown in Figure 19 on page 264.

Figure 19: Interface-Based Inline Source NAT

Configuration

To configure inline NAT using an interface-style service set, perform these tasks:

- Enable Inline Services and Create an Inline Interface on page 265
- Configure NAT Rule and Pool on page 265
- Configure the (Interface-style) Service Set on page 266
- Configure Physical Interfaces on page 266

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```bash
## Enable inline services, create an si- interface, reserve bandwidth ##
set chassis fpc 0 pic 0 inline-services bandwidth 1g
```
Enable Inline Services and Create an Inline Interface

Step-by-Step Procedure

1. Enable inline services for the relevant FPC slot and PIC slot, and define the amount of bandwidth to dedicate for inline services.

 The FPC and PIC settings here will create and map to an si- interface.

   ```
   [edit chassis fpc 0 pic 0]
   user@MX# set inline-services bandwidth 1g
   ```

2. On the si- interface, specify the protocol family (or families) that will need NAT services.

   ```
   [edit interfaces si-0/0/0]
   user@MX# set unit 0 family inet
   ```

Configure NAT Rule and Pool

Step-by-Step Procedure

1. Configure a NAT rule that matches on traffic arriving at the MX device from H1's subnet (10.1.1.0/24), translates it using basic IPv4 NAT, and uses an IP address from pool p1.

   ```
   [edit services nat]
   user@MX# set rule SRC-NAT1 match-direction input
   user@MX# set rule SRC-NAT1 term r1 from source-address 10.1.1.0/24
   user@MX# set rule SRC-NAT1 term r1 then translated translation-type basic-nat44
   ```
Configure the NAT pool.

```
[edit services nat]
user@MX# set pool p1 address 192.0.2.0/24
```

Configure the (Interface-style) Service Set

1. Configure a service set that uses the inline NAT service (`nat-rules`), and the inline interface defined above. Use the `interface-service` parameter to specify that this is an interface-style service set.

 Traffic will flow into and out of the si- interface to access the inline NAT service.

   ```
   [edit services]
   user@MX# set service-set INT-STYLE-SS-NAT1 nat-rules SRC-NAT1
   user@MX# set service-set INT-STYLE-SS-NAT1 interface-service service-interface si-0/0/0.0
   ```

Configure Physical Interfaces

1. Configure the physical interfaces.

   ```
   [edit interfaces]
   user@MX# set xe-0/0/0 unit 0 family inet address 10.1.1.1/24
   user@MX# set xe-1/0/0 unit 0 family inet address 192.168.1.1/24
   ```

2. On the 'inside' interface, specify that traffic will be sent through the service set defined above.

   ```
   [edit interfaces xe-0/0/0 unit 0]
   user@MX# set family inet service input service-set INT-STYLE-SS-NAT1
   user@MX# set family inet service output service-set INT-STYLE-SS-NAT1
   ```
chassis {
 fpc 0 {
 pic 0 {
 inline-services {
 bandwidth 1g;
 }
 }
 }
}

services {
 service-set INT-STYLE-SS-NAT1 {
 nat-rules SRC-NAT1;
 interface-service {
 service-interface si-0/0/0.0;
 }
 }
 nat {
 pool p1 {
 address 192.0.2.0/24;
 }
 rule SRC-NAT1 {
 match-direction input;
 term r1 {
 from {
 source-address {
 10.1.1.0/24;
 }
 }
 then {
 translated {
 source-pool p1;
 translation-type {
 basic-nat44;
 }
 }
 }
 }
 }
 }
}

interfaces {
 si-0/0/0 {
 unit 0 {
 family inet;
 }
 }
 xe-0/0/0 {
 description INSIDE;
 unit 0 {
 family inet {
 service {
 input {
 service-set INT-STYLE-SS-NAT1;
 }
 output {
 service-set INT-STYLE-SS-NAT1;
 }
 }
 }
 }
 }
}
Verification

Confirm that the configuration is working properly.

- Verifying Reachability from Host H1 to Server S1 on page 268
- Verifying Address Translation on page 268

Verifying Reachability from Host H1 to Server S1

Purpose
Verify reachability between H1 and S1.

Action
On host H1, verify that the host can ping server S1.

```
user@H1> ping 192.168.1.2 count 5
PING 192.168.1.2 (192.168.1.2): 56 data bytes
64 bytes from 192.168.1.2: icmp_seq=0 ttl=63 time=0.991 ms
64 bytes from 192.168.1.2: icmp_seq=1 ttl=63 time=14.186 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=63 time=3.016 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=63 time=3.742 ms
64 bytes from 192.168.1.2: icmp_seq=4 ttl=63 time=4.748 ms
--- 192.168.1.2 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.991/5.337/14.186/4.593 ms
```

Meaning
H1 can successfully reach S1.

Verifying Address Translation

Purpose
Verify that address translation is working correctly.

Action
1. On the MX device, verify that the inline NAT configuration details have been applied correctly.
2. On server S1, verify that the server is receiving the pings from H1’s NAT-translated source IP address (192.0.2.2).

Issue the command below, and send pings again from H1.

```
user@S1> monitor traffic interface xe-1/1/1 no-resolve
```

NOTE: For this setup, another MX device is used to represent server S1 to enable monitoring of the inbound traffic.

```
23:28:28.577377 In IP 192.0.2.2 > 192.168.1.2: ICMP echo request, id 3293, seq 0, length 64
23:28:28.577405 Out IP 192.168.1.2 > 192.0.2.2: ICMP echo reply, id 3293, seq 0, length 64
23:28:29.579253 In IP 192.0.2.2 > 192.168.1.2: ICMP echo request, id 3293, seq 1, length 64
23:28:29.579278 Out IP 192.168.1.2 > 192.0.2.2: ICMP echo reply, id 3293, seq 1, length 64
23:28:30.579275 In IP 192.0.2.2 > 192.168.1.2: ICMP echo request, id 3293, seq 2, length 64
23:28:30.579302 Out IP 192.168.1.2 > 192.0.2.2: ICMP echo reply, id 3293, seq 2, length 64
23:28:31.580279 In IP 192.0.2.2 > 192.168.1.2: ICMP echo request, id 3293, seq 3, length 64
23:28:31.580305 Out IP 192.168.1.2 > 192.0.2.2: ICMP echo reply, id 3293, seq 3, length 64
23:28:32.58266 In IP 192.0.2.2 > 192.168.1.2: ICMP echo request, id 3293, seq 4, length 64
23:28:32.582293 Out IP 192.168.1.2 > 192.0.2.2: ICMP echo reply, id 3293, seq 4, length 64
```

```
^C
10 packets received by filter
0 packets dropped by kernel
```

Meaning Step 1 above confirms that the inline NAT service parameters and interface-style service set are correctly implemented. Step 2 above confirms that server S1 is correctly receiving H1’s pings from its NAT-translated source IP address.

Related Documentation
- Inline Network Address Translation Overview on page 261
- Understanding Service Sets on page 7
Example: Configuring Inline Network Address Translation—Route-Based Method

This configuration example illustrates how to configure route-based inline network address translation (NAT) on MX Series devices using si- (service-inline) interfaces with next-hop style service-sets.

This topic covers:

- Requirements on page 270
- Overview and Topology on page 270
- Configuration on page 271
- Verification on page 276

Requirements

This example uses the following hardware and software components:

- MX Series router with a Modular Port Concentrator (MPC) line card
- Junos OS Release 11.4R1 or higher

Overview and Topology

As of Junos OS Release 11.4R1, MPC line cards can perform some services without the need of a dedicated services card, such as an MS-MPC. Inline services generally provide better performance than using a services card, however their functionality tends to be more basic. For example, inline NAT supports only static NAT.

In this example, an MX Series device with an MPC line card provides inline source NAT services to traffic flowing between two end hosts. The topology for this scenario is shown in Figure 18 on page 263

Figure 20: Inline Source NAT Using an MX Series Device with an MPC

As shown in the figure, host H1 sends traffic towards server S1. The MX Series device performs source NAT to translate H1’s source IP address from 10.1.1.2 to 192.0.2.2. Server S1 then sends return traffic to host H1 using the destination IP address 192.0.2.2, and the MX Series device reverts H1’s IP address back to 10.1.2.

The following configuration elements are used in this scenario:
• Inline service interface—a virtual interface that resides on the Packet Forwarding Engine of the MPC. To access services, traffic flows in and out of these si- (service-inline) interfaces.

• Service set—defines the service(s) to be performed, and identifies which inline interface(s) will feed traffic into and out of the service set. There are two ways to implement service sets:
 - Interface-style—an interface-based method, where packets arriving at an interface are forwarded through the inline service.
 - Next-hop-style—a route-based method, where static routes are used to forward packets destined for a specific destination through the inline service.

This example uses the next-hop-style service set.

• NAT rule—uses an if-then structure (similar to firewall filters) to define matching conditions and then apply address translation to the matching traffic.

• NAT pool—a user-defined set of IP addresses that are used by the NAT rule for translation.

• Routing instance—a collection of routing tables, interfaces, and routing protocol parameters that run separate from the main (default) routing instance.

 Route-based inline NAT is typically used in scenarios that involve routing instances.

These elements come together as shown in Figure 19 on page 264.

Figure 21: Route-Based Inline Source NAT

Configuration

To configure inline NAT using a next-hop-style service set, perform these tasks:

- Configure Physical Interfaces on page 272
- Enable Inline Services and Create an Inline Interface on page 272
- Configure Routing Instance and Identify Traffic to Send Through Inline NAT Service on page 273
- Configure NAT Rule and Pool on page 273
- Configure the (Next-hop-style) Service Set on page 274
CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```
##Configure interfaces##
set interfaces xe-0/0/0 unit 0 family inet address 10.1.1.1/24
set interfaces xe-0/0/0 description INSIDE
set interfaces xe-1/0/0 unit 0 family inet address 192.168.1.1/24
set interfaces xe-1/0/0 description OUTSIDE
## Enable inline services, create an si- interface, reserve bandwidth ##
set chassis fpc 0 pic 0 inline-services bandwidth 1g
set interfaces si-0/0/0 unit 0 family inet
set interfaces si-0/0/0 unit 1 service-domain inside
set interfaces si-0/0/0 unit 2 family inet
set interfaces si-0/0/0 unit 2 service-domain outside
## Configure routing instance, feed traffic into the inline NAT service ##
set routing-instances RI-A instance-type virtual-router
set routing-instances RI-A interface xe-0/0/0.0
set routing-instances RI-A interface si-0/0/0.1
set routing-instances RI-A routing-options static route 192.168.1.2/32 next-hops si-0/0/0.1
## Configure a NAT rule and pool ##
set services nat rule SRC-NAT1 match-direction input
set services nat rule SRC-NAT1 term r1 from source-address 10.1.1.0/24
set services nat rule SRC-NAT1 term r1 then translated translation-type basic-nat44
set services nat rule SRC-NAT1 term r1 then translated source-pool p1
set services nat pool p1 address 192.0.2.0/24
## Configure the (next-hop-style) service set ##
set services service-set NH-STYLE-SS-NAT1 nat-rules SRC-NAT1
set services service-set NH-STYLE-SS-NAT1 next-hop-service inside-service-interface si-0/0/0.1
set services service-set NH-STYLE-SS-NAT1 next-hop-service outside-service-interface si-0/0/0.2
```

Configure Physical Interfaces

Step-by-Step Procedure
1. Configure the physical interfaces.

```
[edit interfaces]
user@MX# set xe-0/0/0 unit 0 family inet address 10.1.1.1/24
user@MX# set xe-0/0/0 description INSIDE
user@MX# set xe-1/0/0 unit 0 family inet address 192.168.1.1/24
user@MX# set xe-1/0/0 description OUTSIDE
```

Enable Inline Services and Create an Inline Interface

Step-by-Step Procedure
1. Enable inline services for the relevant FPC slot and PIC slot, and define the amount of bandwidth to dedicate for inline services.

The FPC and PIC settings here will create and map to an si- interface.
2. On the si- interface, create two logical units. For each unit, specify the protocol family (or families) that will need NAT services, and the 'inside' or 'outside' interfaces for the service domain.

```
[edit interfaces s i-0/0/0]
user@MX# set unit 1 family inet
user@MX# set unit 1 service-domain inside
user@MX# set unit 2 family inet
user@MX# set unit 2 service-domain outside
```

NOTE: The FPC and PIC settings here must match the settings defined above.

Configure Routing Instance and Identify Traffic to Send Through Inline NAT Service

Step-by-Step Procedure

1. Configure a routing instance that includes the 'inside' physical and si- interfaces, as well as a static route that identifies traffic to forward into the inline NAT service through the si- interface.

 For simplicity, the static route used here simply identifies server S1.

```
[edit routing-instances]
user@MX# set RI-A instance-type virtual-router
user@MX# set RI-A interface xe-0/0/0.0
user@MX# set RI-A interface si-0/0/0.1
user@MX# set RI-A routing-options static route 192.168.1.2/32 next-hop si-0/0/0.1
```

Configure NAT Rule and Pool

Step-by-Step Procedure

1. Configure a NAT rule that matches on traffic arriving at the MX device from H1's subnet (10.1.1.0/24), translates it using basic IPv4 NAT, and uses an IP address from pool p1.

```
[edit services nat]
user@MX# set rule SRC-NAT1 match-direction input
user@MX# set rule SRC-NAT1 term r1 from source-address 10.1.1.0/24
user@MX# set rule SRC-NAT1 term r1 then translated translation-type basic-nat44
user@MX# set rule SRC-NAT1 term r1 then translated source-pool p1
```

2. Configure the NAT pool.
Configure the (Next-hop-style) Service Set

Step-by-Step Procedure

1. Configure a service set that uses the inline NAT service (nat-rules), and the inline interfaces defined above. Use the next-hop-service parameter to specify that this is a next-hop-style service set, and assign the si- interfaces as 'inside' and 'outside' based on their settings above.

 Traffic will flow into and out of the si- interfaces to access the inline NAT service.

   ```
   [edit services]
   user@MX# set service-set NH-STYLE-SS-NAT1 nat-rules SRC-NAT1
   user@MX# set service-set NH-STYLE-SS-NAT1 next-hop-service
      inside-service-interface si-0/0/0.1
   user@MX# set service-set NH-STYLE-SS-NAT1 next-hop-service
      outside-service-interface si-0/0/0.2
   ```
Results

chassis {
 fpc 0 {
 pic 0 {
 inline-services {
 bandwidth 1g;
 }
 }
 }
}

services {
 service-set NH-STYLE-SS-NAT1 {
 nat-rules SRC-NAT1;
 next-hop-service {
 inside-service-interface si-0/0/0.1;
 outside-service-interface si-0/0/0.2;
 }
 }
 nat {
 pool pl {
 address 192.0.2.0/24;
 }
 rule SRC-NAT1 {
 match-direction input;
 term r1 {
 from {
 source-address {
 10.1.1.0/24;
 }
 }
 then {
 translated {
 source-pool pl;
 translation-type {
 basic-nat44;
 }
 }
 }
 }
 }
 }
}

interfaces {
 si-0/0/0 {
 unit 1 {
 family inet;
 service-domain inside;
 }
 unit 2 {
 family inet;
 service-domain outside;
 }
 }
 xe-0/0/0 {
 description INSIDE;
 unit 0 {
 family inet {
 address 10.1.1.1/24;
 }
 }
 }
}
xe-1/0/0 {
 description OUTSIDE;
 unit 0 {
 family inet {
 address 192.168.1.1/24;
 }
 }
}

routing-instances {
 RI-A {
 instance-type virtual-router;
 interface xe-0/0/0.0;
 interface si-0/0/0.1;
 routing-options {
 static {
 route 192.168.1.2/32 next-hop si-0/0/0.1;
 }
 }
 }
}

Verification

Confirm that the configuration is working properly.

- Verifying Reachability from Host H1 to Server S1 on page 276
- Verifying Address Translation on page 277

Verifying Reachability from Host H1 to Server S1

Purpose Verify reachability between H1 and S1.

Action On host H1, verify that the host can ping server S1.

user@H1> ping 192.168.1.2 count 5
PING 192.168.1.2 (192.168.1.2): 56 data bytes
64 bytes from 192.168.1.2: icmp_seq=0 ttl=63 time=0.926 ms
64 bytes from 192.168.1.2: icmp_seq=1 ttl=63 time=0.859 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=63 time=0.853 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=63 time=0.825 ms
64 bytes from 192.168.1.2: icmp_seq=4 ttl=63 time=0.930 ms
--- 192.168.1.2 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.825/0.879/0.930/0.042 ms

Meaning H1 can successfully reach S1.
Verifying Address Translation

Purpose
Verify that address translation is working correctly.

Action
1. On the MX device, verify that the inline NAT configuration details have been applied correctly.

 user@MX> show services inline nat pool
 Interface: si-0/0/0, Service set: NH-STYLE-SS-NAT1
 NAT pool: p1, Translation type: BASIC NAT44
 Address range: 192.0.2.0-192.0.2.255
 NATed packets: 5, deNATed packets: 5, Errors: 0, Skipped packets: 0

2. On server S1, verify that the server is receiving the pings from H1’s NAT-translated source IP address (192.0.2.2).

 Issue the command below, and send pings again from H1.

 user@S1> monitor traffic interface xe-1/1/1 no-resolve
 verbose output suppressed, use <detail> or <extensive> for full protocol decode
 Address resolution is OFF.
 Listening on xe-1/1/1, capture size 96 bytes

 20:19:36.182690 In IP 192.0.2.2 > 192.168.1.2: ICMP echo request, id 4436, seq 0, length 64
 20:19:36.182719 Out IP 192.168.1.2 > 192.0.2.2: ICMP echo reply, id 4436, seq 0, length 64
 20:19:37.182918 In IP 192.0.2.2 > 192.168.1.2: ICMP echo request, id 4436, seq 1, length 64
 20:19:37.182945 Out IP 192.168.1.2 > 192.0.2.2: ICMP echo reply, id 4436, seq 1, length 64
 20:19:38.183914 In IP 192.0.2.2 > 192.168.1.2: ICMP echo request, id 4436, seq 2, length 64
 20:19:38.183940 Out IP 192.168.1.2 > 192.0.2.2: ICMP echo reply, id 4436, seq 2, length 64
 20:19:39.184872 In IP 192.0.2.2 > 192.168.1.2: ICMP echo request, id 4436, seq 3, length 64
 20:19:39.184896 Out IP 192.168.1.2 > 192.0.2.2: ICMP echo reply, id 4436, seq 3, length 64
 20:19:40.185882 In IP 192.0.2.2 > 192.168.1.2: ICMP echo request, id 4436, seq 4, length 64
 20:19:40.185907 Out IP 192.168.1.2 > 192.0.2.2: ICMP echo reply, id 4436, seq 4, length 64
 ^C
 10 packets received by filter
 0 packets dropped by kernel

NOTE: For this setup, another MX device is used to represent server S1 to enable monitoring of the inbound traffic.
Meaning

Step 1 above confirms that the inline NAT service parameters and next-hop-style service set are correctly implemented. Step 2 above confirms that server S1 is correctly receiving H1’s pings from its NAT-translated source IP address.

Related Documentation

- Inline Network Address Translation Overview on page 261
- Understanding Service Sets on page 7
- Example: Configuring Inline Network Address Translation—Interface-Based Method on page 263
- Day One: CGNAT Up and Running on the MX Series

Example: Configuring Inline Network Address Translation Hairpinning

This configuration example illustrates how to configure inline network address translation (NAT) hairpinning on MX Series devices using si- (service-inline) interfaces with a next-hop style service set.

This topic covers:

- Requirements on page 278
- Overview and Topology on page 278
- Configuration on page 279
- Verification on page 282

Requirements

This example uses the following hardware and software components:

- MX Series router with a Modular Port Concentrator (MPC) line card

Overview and Topology

MPC line cards can perform some services without the need of a dedicated services card, such as an MS-MPC. Inline services generally provide better performance than using a services card.

This example shows hairpinning for inline basic NAT44. Generally, a source host in a subnetwork might not recognize that traffic is intended for a destination host within the same subnetwork because the source host identifies the destination host only by its public IP address. NAT hairpinning analyzes the IP packets and routes the traffic back to the correct destination host instead of passing the traffic through to the public network.

The topology for this scenario is shown in Figure 22 on page 279.
As shown in Figure 22 on page 279, host H1 and H2 are in the subnet 192.168.20.0/24. H1 sends traffic towards the public address of host H2, 192.0.2.4. The MX Series device performs NAT to translate the destination address of 192.0.2.4 to 192.168.20.4, the private IP address of H2, and sends the traffic to host H2.

The following configuration elements are used in this scenario:

- **Inline service interface**—a virtual interface that resides on the Packet Forwarding Engine of the MPC. To access services, traffic flows in and out of these si- (service-inline) interfaces.
- **Service set**—defines the service(s) to be performed, and identifies which si-inline interfaces will feed traffic into and out of the service set. This example uses a next-hop-style service set, where static routes are used to forward packets with a specific destination through the inline service. In this example, the 0.0.0.0/0 destination is used, so all traffic from the subnet is forwarded to the inline service.
- **NAT rule**—uses an if-then structure to define matching conditions and then apply address translation to the matching traffic.
- **NAT pool**—a user-defined set of IP addresses that are used by the NAT rule for translation.
- **Routing instance**—a collection of routing tables, interfaces, and routing protocol parameters that run separate from the main (default) routing instance.

Configuration

To configure inline NAT using a next-hop-style service set, perform these tasks:

- Configure Physical Interfaces on page 280
- Enable Inline Services and Create an Inline Interface on page 280
- Configure Routing Instance and Identify Traffic to Send Through Inline NAT Service on page 281
- Configure NAT Rule and Pool on page 281
- Configure the (Next-hop-style) Service Set on page 281

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.
Configure interfaces

```
set interfaces ge-3/1/9 unit 0 family inet address 192.168.20.1/24
set interfaces xe-5/2/2 unit 0 family inet address 203.0.113.1/24
```

Enable inline services, create an si-interface, reserve bandwidth

```
set chassis fpc 5 pic 1 inline-services bandwidth 10g
set interfaces si-5/1/0 unit 0 family inet
set interfaces si-5/1/0 unit 1 family inet
set interfaces si-5/1/0 unit 1 service-domain inside
set interfaces si-5/1/0 unit 2 family inet
set interfaces si-5/1/0 unit 2 service-domain outside
```

Configure routing instance, feed traffic into the inline NAT service

```
set routing-instances vr-1 instance-type virtual-router
set routing-instances vr-1 interface ge-3/1/0.0
set routing-instances vr-1 interface si-5/1/0.1
set routing-instances vr-1 routing-options static route 0.0.0.0/0 next-hop si-5/1/0.1
```

Configure a NAT rule and pool

```
set services nat rule nat_rule1 match-direction input
set services nat rule nat_rule1 term t1 from source-address 192.168.20.0/24
set services nat rule nat_rule1 term t1 then translated source-pool source_pool_1
set services nat rule nat_rule1 term t1 then translated translation-type basic-nat44
set services nat pool source_pool_1 address 192.0.2.0/24
```

Configure the (next-hop-style) service set

```
set services service-set inline_nat_ss1 nat-rules nat_rule1
set services service-set inline_nat_ss1 next-hop-service inside-service-interface si-5/1/0.1
set services service-set inline_nat_ss1 next-hop-service outside-service-interface si-5/1/0.2
```

Configure Physical Interfaces

Step-by-Step Procedure

1. Configure the physical interfaces.

   ```
   [edit interfaces]
   user@host# set interfaces ge-3/1/9 unit 0 family inet address 192.168.20.1/24
   user@host# set interfaces xe-5/2/2 unit 0 family inet address 203.0.113.1/24
   ```

Enable Inline Services and Create an Inline Interface

Step-by-Step Procedure

1. Enable inline services for the relevant FPC slot and PIC slot, and define the amount of bandwidth to dedicate for inline services.

 The FPC and PIC settings here will create and map to an si-interface.

   ```
   [edit chassis fpc 5 pic 1]
   user@host# set inline-services bandwidth 10g
   ```

2. On the si-interface, create two logical units. For each unit, specify the protocol family (or families) that will need NAT services, and the 'inside' or 'outside' interfaces for the service domain.

   ```
   [edit interfaces si-5/1/0]
   user@host# set unit 0 family inet
   ```
Configure Routing Instance and Identify Traffic to Send Through Inline NAT Service

Step-by-Step Procedure

1. Configure a routing instance that includes the 'inside' physical and si- interfaces, as well as a static route that forwards all traffic into the inline NAT service through the si- interface.

   ```
   [edit routing-instances]
   user@host# set vr-1 instance-type virtual-router
   user@host# set vr-1 interface ge-3/1/9.0
   user@host# set vr-1 interface si-5/1/0.1
   user@host# set vr-1 routing-options static route 0.0.0.0/0 next-hops si-5/1/0.1
   ```

Configure NAT Rule and Pool

Step-by-Step Procedure

1. Configure a NAT rule that matches on traffic arriving at the MX device from subnet 192.168.20.0/24, translates it using basic IPv4 NAT, and uses an IP address from pool source_pool_1.

   ```
   [edit services nat]
   user@host# set rule nat_rule1 match-direction input
   user@host# set rule nat_rule1 term t1 from source-address 192.168.20.0/24
   user@host# set rule nat_rule1 term t1 then translated source_pool_1
   user@host# set rule nat_rule1 term t1 then translated translation-type basic-nat
   ```

2. Configure the NAT pool.

   ```
   [edit services nat]
   user@host# set pool source_pool_1 address 192.0.2.0/24
   ```

Configure the (Next-hop-style) Service Set

Step-by-Step Procedure

Configure a service set that uses the inline NAT service (nat-rules), and the inline interfaces defined above. Use the next-hop-service parameter to specify that this is a next-hop-style service set, and assign the si- interfaces as 'inside' and 'outside' based on their settings above.

Traffic will flow into and out of the si- interfaces to access the inline NAT service.

```
[edit services]
user@host# set service-set inline_nat_ss1 nat-rules nat_rule1
```
Verification

- **Verifying That si Interface Comes Up on page 282**
- **Verifying NAT Pools Are Configured on the si Interface on page 282**
- **Verifying Address Translation on page 282**

Verifying That si Interface Comes Up

Purpose Verify that the si interface comes up.

Action On the MX Series router, verify that the si interface and logical units that you configured come up.

```bash
user@host> show interfaces terse si-5/1/0
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>si-5/1/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>si-5/1/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>si-5/1/0.1</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>si-5/1/0.2</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verifying NAT Pools Are Configured on the si Interface

Purpose Verify that the NAT pools are configured on the si interface.

Action On the MX Series router, verify that the NAT pools are configured correctly on the si interface.

```bash
user@host> show services inline nat pool
```

<table>
<thead>
<tr>
<th>Interface: si-5/1/0, Service set: inline_nat_ssl</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT pool: source_pool_1, Translation type: BASIC NAT44</td>
</tr>
<tr>
<td>Address range: 192.0.2.0–192.0.2.255</td>
</tr>
<tr>
<td>NATed packets: 9, deNATed packets: 9, Errors: 0, Skipped packets: 0</td>
</tr>
</tbody>
</table>

Verifying Address Translation

Purpose Verify that the si interface is properly translating IP addresses.
Action On the MX Series router, verify that IP addresses are being translated.

user@host> show services inline nat statistics

Aug 10 02:32:27

<table>
<thead>
<tr>
<th>Service</th>
<th>PIC Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>si-5/1/0</td>
</tr>
</tbody>
</table>

Control Plane Statistics

- Received IPv4 packets: 0
- ICMPv4 error packets pass through: 0
- ICMPv4 error packets locally generate: 0
- Dropped IPv4 packets: 0
- Received IPv6 packets: 0
- ICMPv6 error packets pass through for NPTv6: 0
- ICMPv6 error packets locally generated for NPTv6: 0
- Dropped IPv6 packets: 0

Data Plane Statistics

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 NATed packets</td>
<td>18</td>
<td>1512</td>
</tr>
<tr>
<td>IPv4 deNATed packets</td>
<td>18</td>
<td>1512</td>
</tr>
<tr>
<td>IPv4 error packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv4 skipped packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 NATed packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 deNATed packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 error packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 skipped packets</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Related Documentation

- Inline Network Address Translation Overview on page 261
- Understanding Service Sets on page 7
- Example: Configuring Inline Network Address Translation—Interface-Based Method on page 263
- Day One: CGNAT Up and Running on the MX Series
CHAPTER 18

Removing Address Dependency Using Network Prefix Translation for IPv6 Traffic

- Stateless Source Network Prefix Translation for IPv6 Overview on page 285
- Guidelines for Configuring Stateless Source Network Prefix Translation on page 287
- Interoperation of Functionalities with Network Prefix Translation for IPv6 on page 288
- Working of NPTv6 with Interface-Style and Next Hop-Style Service Sets on page 290
- Example: Achieving Address Independence By Configuring Stateless Network Prefix Translation in IPv6 Networks by Using Interface-Style Service Sets on page 291
- Example: Achieving Address Independence By Configuring Stateless Network Prefix Translation in IPv6 Networks by Using Next-Hop-Style Service Sets on page 297

Stateless Source Network Prefix Translation for IPv6 Overview

Starting with Junos OS Release 15.1, you can configure stateless translation of source address prefixes in IPv6 networks (IPv6 to IPv6). This capability is supported on MX Series routers with MPCs where inline NAT is supported. To configure stateless network prefix translation for IPv6 packets (NPTv6), include the translation-type nptv6 statement at the [edit services nat rule rule-name term term-name then translated] hierarchy level. The NPTv6 translator translates the source address prefix in such a way that the transport layer checksum of the packet does not need to be recomputed. NPTv6 defines a stateless method of IPv6 network prefix translation between internal and external networks. NPTv6 does not maintain the state for each node or each flow in the translator. You can use the show services nat mappings nptv6 (internal | external) command to view the NAT mappings for NPTv6 for internal and external addresses respectively. You can also use the show services inline nat statistics and show services inline nat pool commands to display information about inline NAT with NPTv6 configured.

Benefits of Stateless Source Network Prefix Translation

- For edge networks, you do not need to renumber the IPv6 addresses used inside the local network for interfaces, access lists, and system logging messages if:
 - The global prefixes used by the edge network are changed.
 - The IPv6 addresses are used inside the edge network or within other upstream networks (such as multihomed devices) when a site adds, drops, or changes upstream networks.
• IPv6 addresses used by the edge network do not need ingress filtering in upstream networks and do not need their customer-specific prefixes advertised to upstream networks.

• Connections that traverse the translation function are not disrupted by a reset or brief outage of an NPTv6 translator.

NPTv6

Network prefix translation for IPv6 (NPTv6) defines a stateless way of IPv6 address prefix translation between internal and external networks. NPTv6 does not maintain the state for each node or each flow in the translator. Maintenance of mapping state is not required for the address mapping of inbound or outbound packets. A stateless, transport-agnostic IPv6-to-IPv6 NPTv6 function offers the advantage of address-independence associated with IPv4-to-IPv4 NAT (NAPT44) and provides a 1:1 relationship between addresses in the inside and outside prefixes, thereby preserving end-to-end reachability at the network layer. In upstream networks, IPv6 addresses used by the edge network always contain a provider-allocated prefix.

NPTv6 is designed to provide address independence to the edge networks to achieve internal address stability, regardless of its upstream service provider networks. However, using provider-independent addresses without translation might be very expensive because the routing table enumerates the edge networks, instead of enumerating the transit domain that provides the service to the edge networks. This phenomenon can cause a massive and unmanageable route table. NPTv6 is a mechanism that effectively and cohesively provides address independence without advertising an internal network prefix to external networks. In contrast, the main objective of network address port translation (NAPT) for IPv4 (NAPT44) is to solve IPv4 address depletion, although it brings the same benefit of address independence. NAPT for IPv6, specifically NAPT66, is already supported in microkernel. However, similar to NAPT44, NAPT66 requires flow-state information to be preserved. NPTv6 provides a simple and streamlined technique to avoid as many of the limitations associated with NAPT66 as possible. It is defined to include a two-way, checksum-neutral, and an algorithmic translation function.

NPTv6 does not maintain state information for a node, flow, or a connection in the translator. Internal to external and external to internal packets are translated algorithmically using information present in the IPv6 header. As a result of its stateless nature, if multiple NPTv6 translators exist between the same two networks, the load can shift or be dynamically shared among them. Also, unlike NAPT44, because the mapping can be done in either direction, the translator does not interfere with the inbound connection establishment. Instead, a firewall can be used in conjunction with an NPTv6 translator. This behavior offers the network administrator more flexibility to specify security policy than that can be achieved with a traditional NAT.

Another advantage of NPTv6 is checksum-neutral translations. The translator does not need to rewrite the transport header for updating the checksum and does not perform port mapping. As a result, to deploy new transport layer protocols, you do not need to modify the translator. Because the transport layer is not modified, the algorithm does not interfere with encryption of the IP payload. Although NPTv6 compares favorably to NAPT44 or NAPT66 in several ways, it does not eliminate all of the architectural problems.
Because NPTv6 modifies the IP headers of packets, it is not compatible with security mechanisms such as the IPsec authentication header. The use of separate internal and external prefixes creates complexity for Domain Name System (DNS) deployment. Also, those applications that require application layer gateways (ALGs) to work correctly through NAPT44 or NAPT66 devices might require similar ALGs to work through NPTv6 translators. Because NPTv6 does not maintain connection states, the failure of the translator does not impact the non-transmit power control (TPC) traffic through the server. TCP connections can be interrupted because of the change in the source IP address of a connection. Connections might be timed out and then reestablished in this case.

NPTv6 uses inline NAT. Inline NAT uses the capabilities of the Modular Port Concentrator (MPC) line card, eliminating the need for a MultiServices DPC (MS-DPC) for NAT. To configure inline NAT, you define your service interface as type sl- (service-inline) interface. You must also reserve adequate bandwidth for the inline interface. This enables you to configure both interface service sets and next-hop service sets used for NAT. The sl-interface serves as a virtual service PIC.

Guidelines for Configuring Stateless Source Network Prefix Translation

Keep the following points in mind when you configure stateless translation of source IPv6 prefixes:

This topic contains the following sections that describe the working behavior of different functionalities with stateless source IPv6 prefix translation and the various system conditions:

- Graceful Routing Engine switchover (GRES) support is the same as for NAT44.
- Unified ISSU and nonstop software upgrade (NSSU) are not supported.
- NPTv6 deployment enables direct inbound connections to internal nodes from external networks. This mechanism causes slight vulnerability because it opens the internal nodes to attacks from outside. The stateless translation of NPTv6 makes it difficult to trace external connection requests, based on connection states. This behavior enables NAT44 networks to be well-protected against external attacks. The best option to secure an NPTv6 translator is to add a firewall above the NPTv6 translator.
- A 6rd software concentrator interoperates with NPTv6. All other mechanisms that do not require the application layer gateway (ALG) to change the source IP address in the payload are supported. TCP, UDP, ICMP, SSH, and Telnet are supported by the NPTv6 translator. FTP and Session Initiation Protocol (SIP) that require the ALG to change the source IP address in the payload are not supported.
- The NPTv6 pools are allocated in the external data memory. The pool data structure consists of the address prefix, prefix length, and the checksum. The size of each record is of 192 bits. For every pool, a denat pool is allocated automatically. The size of the denat pool is 192 bits. There is a total allocation of 8000 64-bit entries for NAT-processed and untranslated NPTv6 pools. This allocation comes from the 64,000 entries allocated for the inline services (JNH_APP_INLINE_SVCS).
- Chaining of inline services for interoperation of 6rd with NPTv6 is not supported.
• You need to configure a source pool and specify the `from` (source) address, while configuring NPTv6.

• The external and internal prefix lengths must be greater than or equal to /16 subnet mask and less than or equal to /112 subnet mask.

• Two different internal prefixes cannot be translated to the same external prefix.

• NPTv6 cannot be applied to IPSec and Internet Key Exchange (IKE) packets. The NPTv6 translator is bypassed in this case.

• Because the translation is of one IPv6 address prefix, there is only one address in the pool. If more than one address is configured by the user, the system does not raise any error, instead only the first address prefix of the pool is chosen for translation.

• For packets going from internal network to external network, if the internal subnet is not mapped or is set to 0xFFFF, then the datagram is discarded and an ICMP destination unreachable error is generated.

• For packets going from internal network to external network, if the 16-bit word has the adjustment added to it using the 1's complement method and is equal to 0xFFFF, then the value is written as zero.

• For packets coming from the external network to internal network, if the 16-bit word has the adjustment subtracted from it using 1's complement method and is equal to 0xFFFF, the 16-bit word is overwritten as zero.

• For translation of prefixes /48 or shorter, the adjustment must be added or subtracted from the first 16 bits after the /48 subnet mask, the values of which are not 0xFFFF. If the prefix is /49 or longer, then the adjustment must be added or subtracted from the first 16 bits (from 64 to 123), the values of which are not 0xFFFF.

Interoperation of Functionalities with Network Prefix Translation for IPv6

This topic contains the following sections that describe the working behavior of different functionalities with stateless source IPv6 prefix translation and the various system conditions:

Address Mapping Algorithm

The NPTv6 translator filters the packets going out of the network and, if the source address of the packet matches with the source address defined in the rule (the `from` or source address in configuration), the source address is replaced with an address prefix from the pool defined for the rule. The next 16 bits after the prefix of the source address are replaced with the checksum-adjusted value to ensure that the checksum remains the same in the outgoing packet even though the source address is changed. During the definition of the configuration rule and pool for the packets going outside the network, a denat rule and pool are created for the translation of the destination address for the packets coming into the network.
Internal to External Translation

When a packet is going from the internal network to the external network, the IPv6 prefix in the source address of the packet (coming from inside node) is mapped to the external prefix. After checksum adjustment, the packet is routed toward the external network.

External to Internal Translation

When a packet is coming from external network to internal network, the IPv6 prefix in the destination address of the packet (coming from outside host) is mapped to the internal prefix. After checksum adjustment, the packet is routed to internal network.

Checksum-Neutral Translation

The NPTv6 translator translates the source address prefix in such a way that the transport layer checksum of the packet does not need to be recomputed. A checksum change caused by modifying part of the area covered by the checksum can be corrected by making an additional change to a different 16-bit field covered by the same checksum. This checksum neutral method first computes 1’s complement checksum of the internal-prefix and the external-prefix.

For packets coming from the internal network, the adjustment is calculated as 1’s complement and it is computed as follows:

\[\text{Adjustment} = \text{Internal prefix checksum} - \text{External prefix checksum}. \]

The adjustment value is added to the 16-bit word of the source address after the prefix.

For packets coming from external network, the adjustment is 1’s complement and it is calculated as follows:

\[\text{Adjustment} = \text{External prefix checksum} - \text{Internal prefix checksum}. \]

The adjustment is added to the 16-bit word of the destination address after the translated prefix.

Multihoming

If there are two NPTv6 translators with different external IPv6 prefix configurations for the same internal IPv6 prefix, then these two NPTV6 translators will translate the same internal IPv6 network prefix to two different external IPv6 network prefixes, depending on the translator the packet traverses.

Hairpinning

When an internal node has knowledge of only the external (that is, the global address) of another internal node, it uses that address to send packet to that internal node. If such a packet is received by an NPTv6 translator, that packet is routed toward the internal network again after it undergoes source address and destination address translation.
Load Balancing

Load sharing is achieved when two translators have the same internal to external mapping configuration and packet load is shared between them. How the load balancing is achieved is beyond the scope of NPTv6.

The balancing could be implemented based on subnet ID portion of the IPv6 address. There can be two si- logical interfaces with the same mapping of the internal prefix to the external prefix. Packets are routed to one of the si- logical interfaces based on the subnet ID.

ICMPv6 for NPTv6

Any host in the internal network should be able to ping a host in the external network through an NPTv6 translator. All ICMP error messages should be forwarded to the host in the internal network. During internal to external translation if there is no mapping possible for a prefix, then packet is dropped and the ICMP Destination Unreachable message is sent back. An ICMPv6 Destination Unreachable error is returned by the translator if the ICMP error is enabled in the following cases:

- If source address prefix lengths are less than or equal to /48 and the 48-63 bits are equal to 0xFFFF
- If prefix lengths are greater than /48 and all the 16-bit blocks in the interface ID (IID) (bits 64-127) are equal to 0xFFFF

Otherwise the packet is discarded.

For prefix lengths less than or equal to /48, the bits 48-63 are used as the 16-bit word adjusted for checksum. For prefix lengths greater than /48, the first 16-bit block in the IID that does not have the value 0xFFFF is the 16-bit word adjusted for checksum.

If the interface ID (IID) part of the address to be translated contains all zeros, ICMPv6 Parameter Problem error is returned by the translator if the ICMP error option is enabled. Otherwise the packet is discarded. ICMPv6 errors are generated by the control plane. The source address of the ICMPv6 packet is the IP address of the ingress interface.

Working of NPTv6 with Interface-Style and Next Hop-Style Service Sets

The objective is to add network prefix translation for IPv6 (NPTv6) inline service that performs stateless translation of the source IPv6 address. Consider a sample topology in which NPTv6 is implemented between an internal network with the prefix of FD01:0203:0405:/48 and an external network with the prefix of 2001:0DBB:0001:/48.

The source addresses FD01:0203:0405:/48 in the packets from a single administrative domain (internal network) destined to hosts in global network (external network) will be translated to 2001:0DBB:0001:/48. Packets destined to internal network coming from external network will have their destination address as 2001:0DBB:0001:/48. This
destination address will be mapped to internal network address FD01:0203:0405:/48 and will be forwarded to the internal network host. The lengths of both the subnets are assumed to be the same for this case. If they differ the shorter one would be extended to the prefix length of the longer one by suffixing zeros.

Address mapping algorithm used for NPTv6 is checksum-neutral. The translated IP headers will generate the same IPv6 pseudo-header checksum. Checksum is calculated using the standard Internet checksum algorithm. Changes that are made during translation of the IPv6 prefix are offset by the calculated changes made to the other parts of the IPv6 address. This results in transport layers that use the Internet checksum (such as TCP and UDP) calculating the same IPv6 pseudo-header checksum for both the internal and external forms of the same datagram and avoids the need to modify transport layer headers to correct the checksum value. The algorithm can map the addresses for inbound packets and outbound packets.

The NPTv6 translator works for both fragmented packets and packets with IP options enabled. The configuration changes required for NPTv6 are covered in the next sections.

The configuration of a router to handle services is through the definition of logical service interface, service sets and service set rules. These define how the service is applied to the packets.

The inline services logical interface, si-ifl, implementation available for static v4-v4 source-address inline-NAT can be reused for inline NPTv6. The configuration for the NPTv6 implemented for MS-DPC can be modified for inline NPTv6 implementation. There are two types of service set configurations—interface style and next hop style.

For the next hop-style service, a route entry is configured to steer packets to an inline service interface. There the packet would go through the service rules. If the packet matches the service rules, it is processed as per the service rules. For the interface-style service, the service set is configured directly on the media interface affecting traffic as it leaves and enters the interface. The packets are steered to the inline service interface by the service filter applied to the media interface.

Example: Achieving Address Independence By Configuring Stateless Network Prefix Translation in IPv6 Networks by Using Interface-Style Service Sets

You can configure stateless translation of source address prefixes in IPv6 networks (IPv6 to IPv6) on MX Series routers with MPCs that support inline NAT. The NPTv6 translator translates the source address prefix in such a way that the transport layer checksum of the packet does not need to be recomputed. NPTv6 defines a stateless method of IPv6 network prefix translation between internal and external networks. NPTv6 does not maintain the state for each node or each flow in the translator. You can use the `show services nat mappings nptv6 (internal | external)` command to view the NAT mappings for NPTv6 for internal and external addresses respectively. You can also use the `show services inline nat statistics` and `show services inline nat pool` commands to display information about inline NAT with NPTv6 configured.
NOTE: This functionality is supported on MX Series routers with Trio-based FPCs (MPCs).

This example describes how to configure stateless source prefix translation for IPv6 packets using interface-style service sets on MX Series routers with MPCs, and contains the following sections:

- Requirements on page 292
- Overview and Topology for Stateless Network Prefix Translation in IPv6 Networks Using Interface-Style Service Sets on page 292
- Configuration on page 292
- Verification on page 296

Requirements

This example uses the following hardware and software components:

- One MX Series router with an MPC.
- Junos OS Release 15.1R1 or later for MX Series routers

Overview and Topology for Stateless Network Prefix Translation in IPv6 Networks Using Interface-Style Service Sets

For the interface style service, the service set is configured directly on the media interface affecting traffic as it leaves and enters the interface. The packets are steered to the inline service interface by the service filter applied to the media interface.

When you have defined and grouped the service rules by configuring the service-set definition, you can apply services to one or more interfaces installed on the router. When you apply the service set to an interface, it automatically ensures that packets are directed to the PIC.

Consider a sample configuration scenario in which NPTv6 is configured using interface-style service sets. An inline services interface, si-0/1/0, is configured with a bandwidth reserved for 10 gigabits per second. The si-0/1/0 interface is defined with inet6 family. A NAT address pool, nptv6_pool, is configured with the address of abcd:ef12:3456::/48. A NAT rule is applied in the input direction to perform NPTv6 translation on packets that arrive from the source address of 1234:5678:9abc::/48. For packets from the source address of 1234:5678:9abc::/48 that match the NAT rule criterion, the address from the NAT address pool is allocated. A service set, ss_nptv6, is specified with the NAT rule. A gigabit Ethernet interface, ge-5/0/0, is configured and the service set is applied to this interface.

Configuration

To configure stateless network prefix translation for IPv6 using interface-style service sets, perform these tasks:
CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them in a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level:

Configuring Interfaces
- `set interfaces si-0/1/0 unit 0 family inet6`

Configuring Interfaces for Traffic to Be Handled By the Service Set
- `set interfaces ge-5/0/0 unit 0 family inet6 service input service-set nptv6-service-set`
- `set interfaces ge-5/0/0 unit 0 family inet6 service output service-set nptv6-service-set`
- `set interfaces ge-5/0/0 unit 0 family inet6 address 1234:5678:9abc::/64`

Configuring Bandwidth for the Service Inline (si-) Interface
- `set chassis fpc 0 pic 1 inline-services bandwidth 10g`

Configuring NAT Pool and Rules
- `set services nat pool ss_nptv6_pool address abcd:ef12:3456::/48`
- `set services nat rule ss_nptv6_rule match-direction input term t0 from-source-address 1234:5678:9abc::/48`
- `set services nat rule ss_nptv6_rule match-direction input term t0 then translated source-pool ss_nptv6_pool`
- `set services nat rule ss_nptv6_rule match-direction input term t0 then translated translation-type nptv6`

Configuring the Service Set
- `set services service-set ss_nptv6 nat-rules ss_nptv6_rule`
- `set services service-set ss_nptv6 nat-options nptv6 icmpv6-error-messages`
- `set services service-set ss_nptv6 interface-service service-interface si-0/1/0.0`

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure stateless network prefix translation for IPv6 using interface-style service sets:

1. Configure an inline services (si-) interface.

 [edit]
 user@host# set interfaces si-0/1/0 unit 0 family inet6

2. Configure the interfaces for traffic to be handled by the service set.

 [edit]
 user@host# set interfaces ge-5/0/0 unit 0 family inet6 service input service-set nptv6-service-set
 user@host# set interfaces ge-5/0/0 unit 0 family inet6 service output service-set nptv6-service-set
3. Configure the bandwidth for the service inline (si-) interface.

 [edit]
 user@host# set chassis fpc 0 pic 1 inline-services bandwidth 10g

4. Configure a NAT pool and rule.

 [edit]
 user@host# set services nat pool ss_nptv6_pool address abcd:ef12:3456::/48
 user@host# set services nat rule ss_nptv6_rule match-direction input term t0 from
 source-address 1234:5678:9abc::/48
 user@host# set services nat rule ss_nptv6_rule match-direction input term t0 then
 translated source-pool ss_nptv6_pool
 user@host# set services nat rule ss_nptv6_rule match-direction input term t0 then
 translated translation-type nptv6

5. Configure the service set

 [edit]
 user@host# set services service-set ss_nptv6nat-rules ss_nptv6_rule
 user@host# set services service-set ss_nptv6 nat-options nptv6
 icmpv6-error-messages
 user@host# set services service-set ss_nptv6 interface-service service-interface
 si-0/1/0.0

Results

From the configuration mode, confirm your configuration by entering the `show chassis`, `show interfaces`, and `show services` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
user@host# show chassis
chassis {
  fpc 0 {
    pic 1 {
      inline-services {
        bandwidth 10g;
      }
    }
  }
}

user@host# show interfaces
interfaces {
  si-0/1/0 {
```
user@host# show services

services {
 service-set ss_nptv6 {
 nat-rules ss_nptv6_rule;
 nat-options {
 nptv6 {
 icmpv6-error-messages;
 }
 }
 interface-service {
 service-interface si-0/1/0.0;
 }
 nat {
 pool ss_nptv6_pool {
 address abcd:ef12:3456::/48;
 }
 rule ss_nptv6_rule {
 match-direction input;
 term t0 {
 from {
 source-address {
 1234:5678:9abc::/48;
 }
 }
 then {
 translated {
 source-pool ss_nptv6_pool;
 translation-type {
 nptv6;
 }
 }
 }
 }
 }
 }
 }
}
Verification

To confirm that the configuration is working properly, perform the following:

- Verifying the NAT Pool Mappings on page 296
- Verifying the Inline NAT Pools and Statistics on page 296

Verifying the NAT Pool Mappings

Purpose
Verify the existing NAT address pools and mappings for IPv6 network prefix translation.

Action
From operational mode, use the `show services nat mappings nptv6` command:

```
user@host> show services nat mappings nptv6 internal 1111:2222:3333:aaaa:bbbb::1
```

```
Interface       Service-set     NAT-Pool           Address Mapping
si-0/1/0        ss_nptv6         ss_nptv6_pool   1111:2222:3333:aaaa:bbbb::1 ->
              aaaa:bbbb:cccc:dddd:bbbb::1
```

```
user@host> show services nat mappings nptv6 external aaaa:bbbb:cccc:dddd:bbbb::1
```

```
Interface       Service-set     NAT-Pool              Address Mapping
si-0/1/0        ss_nptv6            ss_nptv6_pool   1111:2222:3333:aaaa:bbbb::1
-> aaaa:bbbb:cccc:dddd:bbbb::1
```

Meaning
The output shows the mapping between NAT addresses and ports for IPv6 stateless network prefix translation of external and internal addresses. The address and port details that are originally sent and converted using NAT are displayed.

Verifying the Inline NAT Pools and Statistics

Purpose
Verify the inline NAT pools and statistics for IPv6 network prefix translation.

Action
From operational mode, use the `show services inline nat` command:

```
user@host> show services inline nat statistics interfacesi-4/0/0
```

```
Service PIC Name: si-4/0/0

Control Plane Statistics
  ICMPv4 errors packets pass through :0
  ICMPv4 errors packets locally generated :0
  ICMPv6 errors packets pass through :0
  ICMPv6 errors packets locally generated :0
  Dropped packets :0
```
<table>
<thead>
<tr>
<th>Data Plane Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATed packets : 0</td>
</tr>
<tr>
<td>deNATed packets : 0</td>
</tr>
<tr>
<td>Errors : 0</td>
</tr>
</tbody>
</table>

user@host> show services inline nat pool

Interface: si-4/0/0, Service set: ss_nptv6
 NAT pool: ss_nptv6_pool1, Translation type: NPTV6
 Address range: abcd:ef12:3456::/48
 NATed packets: 0, deNATed packets: 0, Errors: 0

 NAT pool: ss_nptv6_pool2, Translation type: NPTV6
 Address range: 1111:2222:3333::/48
 NATed packets: 0, deNATed packets: 0, Errors: 0

user@host> show services inline nat pool ss_nptv6_pool1

Interface: si-4/0/0, Service set: ss_nptv6
 NAT pool: ss_nptv6_pool1, Translation type: NPTV6
 Address range: abcd:ef12:3456::/48
 NATed packets: 0, deNATed packets: 0, Errors: 0

Meaning

The output shows the information about inline NAT address translations, such as the number of packets that are subject to NAT processing, the packets that are not translated, and the packets with translation errors for a specified service set and an si-interface.

Related Documentation

Example: Achieving Address Independence By Configuring Stateless Network Prefix Translation in IPv6 Networks by Using Next-Hop-Style Service Sets

You can configure stateless translation of source address prefixes in IPv6 networks (IPv6 to IPv6) on MX Series routers with MPCs where inline NAT is supported. The NPTv6 translator translates the source address prefix in such a way that the transport layer checksum of the packet does not need to be recomputed. NPTv6 defines a stateless method of IPv6 network prefix translation between internal and external networks. NPTv6 does not maintain per node or per flow state in the translator. You can use the show services nat mappings nptv6 (internal | external) command to view the NAT mappings for NPTv6 for internal and external addresses respectively. You can also use the show services inline nat statistics and show services inline nat pool commands to display information about inline NAT with NPTv6 configured.

NOTE: This functionality is supported on MX Series routers with Trio-based FPCs (MPCs).
This example describes how to configure stateless source prefix translation for IPv6 packets using next-hop style service sets on MX Series routers with MPCs, and contains the following sections:

- Requirements on page 298
- Overview and Topology of Stateless Network Prefix Translation in IPv6 Networks Using Next-Hop Style Service Sets on page 298
- Configuration on page 299
- Verification on page 303

Requirements

This example uses the following hardware and software components:

- One MX Series router with an MPC.
- Junos OS Release 15.1R1 or later for MX Series routers

Overview and Topology of Stateless Network Prefix Translation in IPv6 Networks Using Next-Hop Style Service Sets

A next-hop service set is a route-based method of applying a particular service. Only packets destined for a specific next hop are serviced by the creation of explicit static routes. This configuration is useful when services need to be applied to an entire virtual private network (VPN) routing and forwarding (VRF) table, or when routing decisions determine that services need to be performed.

For the next hop style service, a route entry is configured to steer packets to an inline service interface. The packet is validated through the service rules. If the packet matches the service rules, it would be processed according to the service rules.

Consider a sample configuration scenario in which NPTv6 is configured using next-hop style service sets. An inline services interface, si-0/1/0, is configured with a bandwidth reserved for 10 gigabits per second. The si-0/1/0 interface is defined with inet6 family. A NAT address pool, nptv6_pool, is configured with the address of abcd:ef12:3456::/48. A NAT rule is applied in the input direction to perform NPTv6 translation on packets that arrive from the source address of 1234:5678:9abc::/48. For packets from the source address of 1234:5678:9abc::/48 that match the NAT rule criterion, the address from the NAT address pool is allocated. The service set is configured for forwarding next-hops with the service interface of si-0/1/0.1 associated with the service set applied inside the network, with parameters for next hop service interfaces for the inside network and si-/1/0.2 associated with the service set applied outside the network. A service set, ss_nptv6, is specified with the NAT rule. The service interface domain is specified for the si- interface with the inside service-domain configured for si-0/1/0.1 and outside service domain configured for si-0/1/0.2. A routing instance, inst1, is configured with the instance type as a VRF instance. interface si-0/1/0.1 and interface ge-5/0/0 are associated with inst1. The inside and outside interface domain matches that specified with the inside-service-interface and outside-service-interface statements. A policy is configured for NAT events with the action to reject all packets.
Configuration

To configure stateless network prefix translation for IPv6 using next-hop style service sets, perform these tasks:

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them in a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level:

- **Configuring Inline Interfaces**
 - set interfaces si-0/1/0 unit 0 family inet6
 - set interfaces si-0/1/0 unit 1 family inet6
 - set interface si-0/1/0 unit 1 service-domain inside
 - set interfaces si-0/1/0 unit 2 family inet6
 - set interfaces si-0/1/0 unit 2 service-domain outside
 - set interfaces ge-5/0/0 unit 0 family inet6 address 1234:5678:9abc::1/64

- **Configuring Bandwidth for Inline Services**
 - set chassis fpc 0 pic 1 inline-services bandwidth 10g

- **Configuring NAT Pool and Rule**
 - set services nat pool ss_nptv6_pool address abcd:ef12:3456::/48
 - set services nat rule ss_nptv6_rule match-direction input term t0 from source-address 1234:5678:9abc::/48
 - set services nat rule ss_nptv6_rule match-direction input term t0 then translated source-pool ss_nptv6_pool
 - set services nat rule ss_nptv6_rule match-direction input term t0 then translated translation-type nptv6

- **Configuring a Service Set**
 - set services service-set ss_nptv6 nat-rules ss_nptv6_rule
 - set services service-set ss_nptv6 nat-options nptv6 icmpv6-error-messages
 - set services service-set ss_nptv6 nexthop-service inside-service-interface si-0/1/0.1
 - set services service-set ss_nptv6 nexthop-service outside-service-interface si-0/1/0.2

- **Configuring Routing Instances**
 - set routing-instances inst1 instance-type vrf
 - set routing-instances inst1 interface si-0/1/0.1
 - set routing-instances inst1 interface ge-5/0/0.0
 - set routing-instances inst1 route-distinguisher 1234:5678
 - set routing-instances inst1 vrf-import reject-all
 - set routing-instances inst1 vrf-export reject-all
 - set routing-instances inst1 routing-options rib inst1.inet6.0 static route ::/0/0 next-hop si-0/1/0.1

- **Configuring the Policy and Action Modifier**
 - set policy-options policy-statement reject-all then reject
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To configure stateless network prefix translation for IPv6 using next-hop style service sets:

1. Configure the inline interface for NAT services.

   ```
   [edit]
   user@host# set interfaces si-0/1/0 unit 0 family inet6
   user@host# set interfaces si-0/1/0 unit 1 family inet6
   user@host# set interfaces si-0/1/0 unit 1 service-domain inside
   user@host# set interfaces si-0/1/0 unit 2 family inet6
   user@host# set interfaces si-0/1/0 unit 2 service-domain outside
   user@host# set interfaces ge-5/0/0 unit 0 family inet6 address 1234:5678:9abc::1/64
   ```

2. Set the bandwidth for inline services.

   ```
   [edit]
   user@host# set chassis fpc 0 pic 1 inline-services bandwidth 10g
   ```

3. Configure the NAT pool and rule.

   ```
   [edit]
   user@host# set services nat pool ss_nptv6_pool address abcd:ef12:3456::/48
   user@host# set services nat rule ss_nptv6_rule match-direction input term 0 from source-address 1234:5678:9abc::/48
   user@host# set services nat rule ss_nptv6_rule match-direction input term 0 then translated source-pool ss_nptv6_pool
   user@host# set services nat rule ss_nptv6_rule match-direction input term 0 then translated translation-type nptv6
   ```

4. Configure a service set using the NAT rule associated with the NAT pool.

   ```
   [edit]
   user@host# set services service-set ss_nptv6nat-rules ss_nptv6_rule
   user@host# set services service-set ss_nptv6nat-options nptv6 icmpv6-error-messages
   user@host# set services service-set ss_nptv6 nexthop-service inside-service-interface si-0/1/0.1
   user@host# set services service-set ss_nptv6 nexthop-service outside-service-interface si-0/1/0.2
   ```

5. Configure routing instances that use the si- interfaces configured.

   ```
   [edit]
   user@host# set routing-instances inst1 instance-type vrf
   user@host# set routing-instances inst1 interface si-0/1/0.1
   ```
6. Configure the policy and the action modifier for NAT packets.

 [edit]
 user@host# set policy-options policy-statement reject-all then reject

Results

From the configuration mode, confirm your configuration by entering the `show chassis`, `show interfaces`, `show policy-options`, `show routing-instances`, and `show services` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.
service-domain outside;
}

ge-5/0/0 {
 unit 0 {
 family inet6 {
 address 1234:5678:9abc::1/64;
 }
 }
}

user@host# show policy-options
policy-options {
 policy-statement reject-all {
 then reject;
 }
}

user@host# show routing-instances
routing-instances {
 inst1 {
 instance-type vrf;
 interface si-0/1/0.1;
 interface ge-5/0/0.0;
 route-distinguisher 1234:5678;
 vrf-import reject-all;
 vrf-export reject-all;
 routing-options {
 rib inst1.inet6.0 {
 static {
 route ::0/0 next-hop si-0/1/0.1;
 }
 }
 }
 }
}

user@host# show services
services {
 service-set ss_nptv6 {
 nat-rules ss_nptv6_rule;
 nat-options {
 nptv6 {
 icmpv6-error-messages;
 }
 }
 }
 nexthop-service {
 inside-service-interface si-0/1/0.1;
 outside-service-interface si-0/1/0.2;
 }
}
nat {
 pool ss_nptv6_pool {
Verification

To confirm that the configuration is working properly, perform the following:

- Verifying the NAT Pool Mappings on page 303
- Verifying the Inline NAT Pools and Statistics on page 304

Verifying the NAT Pool Mappings

Purpose
Verify the existing NAT address pools and mappings for IPv6 network prefix translation.

Action
From operational mode, use the `show services nat mappings nptv6` command:

```
user@host> show services nat mappings nptv6 internal 1111:2222:3333:aaaa:bbbb::1 Interface Service-set NAT-Pool Address Mapping
si-0/1/0 ss_nptv6 ss_nptv6_pool 1111:2222:3333:aaaa:bbbb::1 -> aaaa:bbbb:cccc:dddd:bbbb::1
```

```
user@host> show services nat mappings nptv6 external aaaa:bbbb:cccc:dddd:bbbb::1 Interface Service-set NAT-Pool Address Mapping
si-0/1/0 ss_nptv6 ss_nptv6_pool 1111:2222:3333:aaaa:bbbb::1 -> aaaa:bbbb:cccc:dddd:bbbb::1
```
Meaning The output shows the information about inline NAT address translations, such as the number of packets that are subject to NAT processing, the packets that are not translated, and the packets with translation errors for a specified service set and an si- interface.

Verifying the Inline NAT Pools and Statistics

Purpose Verify the inline NAT pools and statistics for IPv6 network prefix translation.

Action From operational mode, use the `show services inline nat` command:

```
user@host> show services inline nat statistics interfacesi-4/0/0

Service PIC Name :si-4/0/0

Control Plane Statistics
  ICMPv4 errors packets pass through :0
  ICMPv4 errors packets locally generated :0
  ICMPv6 errors packets pass through :0
  ICMPv6 errors packets locally generated :0
  Dropped packets :0

Data Plane Statistics
  NATed packets :0
  deNATed packets :0
  Errors :0

user@host> show services inline nat pool

Interface: si-0/1/0, Service set: ss_nptv6
  NAT pool: ss_nptv6_pool1, Translation type: NPTV6
  Address range: abcd:ef12:3456::/48
  NATed packets: 0, deNATed packets: 0, Errors: 0

  NAT pool: ss_nptv6_pool2, Translation type: NPTV6
  Address range: 1111:2222:3333::/48
  NATed packets: 0, deNATed packets: 0, Errors: 0

user@host> show services inline nat pool ss_nptv6_pool1

Interface: si-0/1/0, Service set: ss_nptv6
  NAT pool: ss_nptv6_pool1, Translation type: NPTV6
  Address range: abcd:ef12:3456::/48
  NATed packets: 0, deNATed packets: 0, Errors: 0

Meaning  The output shows the mapping between NAT addresses and ports for IPv6 stateless network prefix translation of external and internal addresses. The address and port details that are originally sent and converted using NAT are displayed.
CHAPTER 19

Monitoring NAT

- Configuring NAT Session Logs on page 305
- Monitoring NAT Pool Usage on page 306
- Using the Enterprise-Specific Utility MIB on page 307

Configuring NAT Session Logs

You can configure session logs for NAT from the CLI. By default, session open and close logs are produced. However, you can request that only one type of log be produced.

To configure NAT session logs:

1. Go to the [edit services service-set service-set-name syslog host class classname] hierarchy level.

   user@host# edit services service-set service-set-name syslog host class classname

2. Configure NAT logging using the nat-logs configuration statement.

   [edit services service-set service-set-name syslog host class classname]
   user@host# set nat-logs

3. Configure session logging using the session-logs statement. Open and close logs are produced by default. Specify open or close to produce only one type of log.

   [edit services service-set service-set-name syslog host class classname]
   user@host# set session-logs

   Or

   [edit services service-set service-set-name syslog host class classname]
   user@host# set session-logs open

   Or

   [edit services service-set service-set-name syslog host class classname]
   user@host# set session-logs close
4. For NAT sessions that use secured port block allocation (PBA), enter the `pba-interim-logging-interval` option.

```
[edit services service-set service-set-name syslog host class classname]
user@host# top
[edit]
user@host# set interfaces interface-name service-options pba-interim-logging-interval
```

5. Configure a /32 IP address under unit 0 of the service interface that is assigned to the service set. This is the source IP address for all syslog messages generated by the service set for the NAT session logs. If you do not configure the IP address, syslog messages are not generated.

```
[edit]
user@host# set interfaces interface-name unit 0 family inet address address
```

**NOTE:** If you use anything other than a /32 IP address, unwanted traffic might be sent to the service interface, which can eat up valuable CPU time on the service PIC.

### Related Documentation
- Configuring System Logging for Service Sets on page 33
- Interim Logging for Secured Port Block Allocation on page 234

## Monitoring NAT Pool Usage

**Purpose**
Use the `show services nat pool detail` command to find global NAT statistics related to pool usage. This command is frequently used in conjunction with the `show services stateful-firewall statistics` command.
Action

user@host# show services nat pool detail

<table>
<thead>
<tr>
<th>Interface: ms-1/0/0, Service set: s1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT pool: dest-pool, Translation type: DNAT-44</td>
</tr>
<tr>
<td>Address range: 10.10.10.2-10.10.10.2</td>
</tr>
<tr>
<td>NAT pool: napt-pool, Translation type: NAPT-44</td>
</tr>
<tr>
<td>Address range: 50.50.50.1-50.50.50.254</td>
</tr>
<tr>
<td>Port range: 1024-63487, Ports in use: 0, Out of port errors: 0, Max ports used: 0</td>
</tr>
<tr>
<td>NAT pool: source-dynamic-pool, Translation type: DYNAMIC NAT44</td>
</tr>
<tr>
<td>Address range: 40.40.40.1-40.40.40.254</td>
</tr>
<tr>
<td>Out of address errors: 0, Addresses in use: 0</td>
</tr>
<tr>
<td>NAT pool: source-static-pool, Translation type: BASIC NAT44</td>
</tr>
<tr>
<td>Address range: 30.30.30.1-30.30.30.254</td>
</tr>
</tbody>
</table>

Related Documentation

- Configuring Pools of Addresses and Ports for Network Address Translation Overview on page 82

Using the Enterprise-Specific Utility MIB

- Using the Enterprise-Specific Utility MIB on page 307
- Populating the Enterprise-Specific Utility MIB with Information on page 308
- Stopping the SLAX Script with the CLI on page 313
- Clearing the Utility MIB on page 314
- Recovering from an Abnormal SLAX Script Exit or a SLAX Script Exit with the CLI on page 314

Using the Enterprise-Specific Utility MIB

The enterprise-specific Utility MIB enables you to add SNMP-compliant applications information to the enterprise-specific Utility MIB. The application information includes:

- NAT mappings
- Carrier-grade NAT (CGNAT) pools
- Service set CPU utilization
- Service set memory usage
- Service set summary information
- Service set packet drop information
- Service set memory zone information
- Multiservices PIC CPU and memory utilization
- Stateful firewall flow counters
- Session application connection information
- Session analysis information
Subscriber analysis information

Traffic Load Balancer information

You use a delivered Stylesheet Language Alternative Syntax (SLAX) script to place applications information into the enterprise-specific Utility MIB. The script is invoked based on event policies (such as reboot of the router or switchover of Routing Engines) defined in an event script. The script can also be invoked from the command line as an op script. The script only runs on the master Routing Engine. After the script is invoked, it polls data from the specified components at regular intervals using the XML-RPC API and writes the converted data to the Utility MIB as SNMP variables. The script automatically restarts after a configured polling cycle elapses.

See Also

Populating the Enterprise-Specific Utility MIB with Information on page 308

Populating the Enterprise-Specific Utility MIB with Information

To use a SLAX script to populate the enterprise-specific Utility MIB with information:

1. Enable the `services-oids-slax` script.

   ```
 user@host# set system scripts op file services-oids.slax
   ```

2. Configure the maximum amount of memory for the data segment during the execution of the script.

   ```
 user@host# set event-options event-script max-database 512m
   ```

3. Enable the script.

   ```
 user@host# set event-options event-script file services-oids-ev-policy.slax
   ```

4. (Optional) Enable the `log-stats` argument to allow sys logging of stateful firewall rate statistics when the event-script is run.

   a. Display the event policies and the arguments that can be used.

   ```
 user@host> show event-options event-scripts policies
   ```

   ```
 event-options {
 policy services-oids-done {
 events system;
 attributes-match {
 system.message matches "Completed polling cycle normally. Exiting";
 }
 then {
 event-script services-oids.slax {
 arguments {
 max-polls 30;
 }}
   ```
The `log-stats` argument does not appear, so you must enable it.

b. Start the Linux shell.

```
user@host> start shell
```
c. Open the `/var/db/scripts/event/services-oids-eve-policy.slax` file for editing.

```xml
<event-options> {
/*
 * This policy detects when the services-oids.slax script ends, then
restarting it.
 */
<policy> {
 <name> "services-oids-done";
 <events> "system";
 <attributes-match> {
 <from-event-attribute> "system.message";
 <condition> "matches";
 <to-event-attribute-value> "Completed polling cycle normally. Exiting";
 }
 <then> {
 <event-script> {
 <name> "services-oids.slax";
 <arguments> {
 <name> "max-polls";
 <value> "30";
 }
 <arguments> {
 <name> "interval";
 <value> "120";
 }
 /*
 <arguments> {
 <name> "log-stats";
 <value> "yes";
 }
 */
 }
 }
 }
}

/*
 * This policy detects when the system has booted and kicks off the
services-oids.slax script.
 * This policy hooks the 'system started' event
 */
<policy> {
 <name> "system-started";
 <events> "system";
 <attributes-match> {
 <from-event-attribute> "system.message";
 <condition> "matches";
 <to-event-attribute-value> "Starting of initial processes complete";
 }
 <then> {
 <event-script> {
 <name> "services-oids.slax";
 <arguments> {
 <name> "max-polls";
 <value> "30";
 }
```
d. Remove the comment enclosures (/* and */) surrounding the `<arguments>` tags containing "log-stats".

e. Exit the Linux shell and return to the CLI.

```
% exit
```

f. Load the changes you made to the event script file.

```
user@host> request system scripts event-scripts reload
```

The `log-stats` argument is available the next time the event script restarts.

5. Set up the script logging file `services-oids.log`.

```
user@host# set system syslog file services-oids.log any info
user@host# set system syslog file services-oids.log match cscript
```

6. Synchronize scripts between Routing Engines so that when a switchover of Routing Engine occurs, the event policy starts on the new master.

- To synchronize on a per-commit basis:

```
user@host# commit synchronize scripts
```

- To synchronize scripts every time you execute a `commit synchronize`:

```
[edit system scripts]
user@host# set synchronize
user@host# commit synchronize
```

7. The script starts automatically at system boot, but you can manually start it with the CLI.

```
user@host> op services-oids arguments
```

Table 15 on page 312 describes the arguments that you can use.
Table 15: Arguments for services-oids.slax Script

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clean</td>
<td>A value of 1 clears all Utility MIB OIDs. Use this only to clean OID tables.</td>
</tr>
<tr>
<td>clear-semaphore</td>
<td>A value of 1 resets the semaphore in the Utility MIB to recover from an abnormal script exit or from a manual script exit.</td>
</tr>
<tr>
<td>debug</td>
<td>Prints debug messages on console.</td>
</tr>
<tr>
<td>detail</td>
<td>Displays detailed output.</td>
</tr>
<tr>
<td>interval</td>
<td>Sets the number of seconds between poll cycles (default is 120).</td>
</tr>
<tr>
<td>invoke-debugger</td>
<td>Invokes script in debugger mode.</td>
</tr>
<tr>
<td>log-stats</td>
<td>Yes value enables sys logging of stateful firewall rate statistics (default is no).</td>
</tr>
<tr>
<td>max-polls</td>
<td>Sets the number of poll cycles before exiting the script (default is 30).</td>
</tr>
<tr>
<td>one-cycle-only</td>
<td>Value of 1 quits after one cycle of polling. Event policy does not restart the script. Use this option for testing only. The default is 0.</td>
</tr>
<tr>
<td>signal-stop</td>
<td>A value of 1 stops the script and sets the semaphore, which causes the next iteration to exit.</td>
</tr>
<tr>
<td>silent</td>
<td>Prints trace messages on console if it is unset. Set it to zero-length string (&quot;&quot;) to unset it. Default is 1.</td>
</tr>
<tr>
<td></td>
<td>Pipes through a command.</td>
</tr>
</tbody>
</table>

8. Check the status of the script from the log file.

```
router> show /var/log/services-oids.log | no-more
```

```
Jun 27 19:51:47 wf-cheesypoofs cscript: services-oids.slax(v0.14):[info] processing traffic load-balance statistics
Jun 27 19:51:48 wf-cheesypoofs cscript: services-oids.slax(v0.14):[info] processing cgnat pool detail
Jun 27 19:51:48 wf-cheesypoofs cscript: services-oids.slax(v0.14):[info] processing cgnat mappings summary
Jun 27 19:51:48 wf-cheesypoofs cscript: services-oids.slax(v0.14):[info] processing service-sets summary
Jun 27 19:51:48 wf-cheesypoofs cscript: services-oids.slax(v0.14):[info] processing service-sets cpu-usage
Jun 27 19:51:48 wf-cheesypoofs cscript: services-oids.slax(v0.14):[info] processing service-sets mem-usage
Jun 27 19:51:49 wf-cheesypoofs cscript: services-oids.slax(v0.14):[info]
```
9. Verify that you are getting Utility MIB OID updates.

   router> show snmp mib walk jnxUtil ascii

   ...
   jnxUtilCounter64Value."services10tcp-errors09CGN-SET-1" = 0
   jnxUtilCounter64Value."services10tcp-errors09CGN-SET-2" = 0
   jnxUtilCounter64Value."services10tcp-errors09CGN-SET-3" = 0
   jnxUtilCounter64Value."services10udp-errors09CGN-SET-1" = 1119
   jnxUtilCounter64Value."services10udp-errors09CGN-SET-2" = 0
   ...

   To exclude the timestamp information, use

   router> show snmp mib walk jnxUtil ascii | match Value

See Also  
• Using the Enterprise-Specific Utility MIB on page 307

Stopping the SLAX Script with the CLI

To stop the SLAX script from the CLI:

• Issue the stop argument.

   user@host> op services-oids signal-stop 1

See Also  
• Populating the Enterprise-Specific Utility MIB with Information on page 308
• Using the Enterprise-Specific Utility MIB on page 307
Clearing the Utility MIB

To clear all the utility MIB OIDs:

- Issue the clean argument.

  ```
 user@host> op services-oids clean 1
  ```

See Also

- [Populating the Enterprise-Specific Utility MIB with Information](page308)
- [Using the Enterprise-Specific Utility MIB on page 307](page307)

Recovering from an Abnormal SLAX Script Exit or a SLAX Script Exit with the CLI

To recover from an abnormal SLAX script exit or an SLAX script exit with the CLI:

- Issue the clear semaphore argument.

  ```
 user@host> op services-oids clear-semaphore 1
  ```

See Also

- [Populating the Enterprise-Specific Utility MIB with Information](page308)
- [Using the Enterprise-Specific Utility MIB on page 307](page307)

Related Documentation

- [SLAX Overview](page307)
PART 3

Transitioning to IPv6 Using Softwires

- Softwires Overview on page 317
- Softwires Configuration Overview on page 323
- Transitioning to IPv6 Using 6to4 Softwires on page 327
- Transitioning to IPv6 Using DS-Lite Softwires on page 331
- Transitioning to IPv6 Using 6rd Softwires on page 353
- Transitioning to IPv6 Using Mapping of Address and Port with Encapsulation (MAP-E) on page 381
- Monitoring and Troubleshooting Softwires on page 393
CHAPTER 20

Softwires Overview

- Tunneling Services for IPv4-to-IPv6 Transition Overview on page 317

**Tunneling Services for IPv4-to-IPv6 Transition Overview**

Junos OS enables service providers to transition to IPv6 by using softwire encapsulation and decapsulation techniques. A softwire is a tunnel that is created between softwire customer premises equipment (CPE). A softwire CPE can share a unique common internal state for multiple softwires, making it a very light and scalable solution. When you use softwires, you need not maintain an interface infrastructure for each softwire, unlike a typical mesh of generic routing encapsulation (GRE) tunnels that requires you to do so. A softwire initiator at the customer end encapsulates native packets and tunnels them to a softwire concentrator at the service provider. The softwire concentrator decapsulates the packets and sends them to their destination. A softwire is created when a softwire concentrator receives the first tunneled packet of a flow and prepares the packet for flow processing. The softwire exists as long as the softwire concentrator is providing flows for routing. A flow counter is maintained; when the number of active flows is 0, the softwire is deleted. Statistics are kept for both flows and softwires.

Softwire addresses are not specifically configured under any physical or virtual interface. The number of established softwires does not affect throughput, and scalability is independent of the number of interfaces. Scalability is only limited to the number of flows that the services DPC or PIC can support.

This topic contains the following sections:

- 6to4 Overview on page 317
- DS-Lite Softwires—IPv4 over IPv6 on page 319
- 6rd Softwires—IPv6 over IPv4 on page 320

**6to4 Overview**

- Basic 6to4 on page 318
- 6to4 Anycast on page 318
- 6to4 Provider-Managed Tunnels on page 319
Basic 6to4

6to4 is an Internet transition mechanism for migrating from IPv4 to IPv6, a system that enables IPv6 packets to be transmitted over an IPv4 network (generally the IPv4 Internet) without the need to configure explicit tunnels. 6to4 is described in RFC 3056, *Connection of IPv6 Domains via IPv4 Clouds*. 6to4 is especially relevant during the initial phases of deployment to full, native IPv6 connectivity, because IPv6 is not required on nodes between the host and the destination. 6to4 is intended only as a transition mechanism and is not meant to be used permanently.

6to4 is supported on Multiservices 100, 400, and 500 PICs on M Series routers and on MX Series routers equipped with Multiservices DPCs. 6rd is not supported on MX Series routers with MS-MPCs or MS-MICs.

6to4 can be used by an individual host or by a local IPv6 network. When used by a host, 6to4 must have a global IPv4 address connected, and the host is responsible for the encapsulation of outgoing IPv6 packets and the decapsulation of incoming 6to4 packets. If the host is configured to forward packets for other clients, often a local network, it is then a router.

There are two kinds of 6to4 virtual routers: border routers and relay routers.

- A 6to4 border router is an IPv6 router supporting a 6to4 pseudointerface, and is normally the border router between an IPv6 site and a wide-area IPv4 network.
- A relay router is a 6to4 router configured to support transit routing between 6to4 addresses and pure native IPv6 addresses.

In order for a 6to4 host to communicate with the native IPv6 Internet, the host’s IPv6 default gateway must be set to a 6to4 address that contains the IPv4 address of a 6to4 relay router. To avoid the need for users to set this up manually, the Anycast address of 192.88.99.1 has been allocated to send packets to a 6to4 relay router. When processed by 6to4 with the subnet and hosts fields set to zero, this IPv4 address (192.88.99.1) becomes the IPv6 address 2002:c058:6301::. To ensure BGP routing propagation, a short prefix of 192.88.99.0/24 has been allocated for routes pointed at 6to4 relay routers that use this Anycast IP address. We recommend that providers who want to provide 6to4 service to their clients or peers advertise the Anycast prefix like any other IP prefix, and route the prefix to the provider’s 6to4 relay.

Packets from the IPv6 Internet to 6to4 systems must be sent to a 6to4 relay router by normal IPv6 routing methods. The specification states that such relay routers must only advertise 2002::/16 and not subdivisions of it to prevent the embedding of IPv4 routes into the routing tables of IPv6 routers. From the 6to4 relay router the packets can then be sent over the IPv4 Internet to the destination.

6to4 Anycast

Router 6to4 requires that 6to4 routers and relays are managed and configured cooperatively. In particular, 6to4 sites must configure a relay router to carry the outbound traffic, which becomes the default IPv6 router (except for 2002::/16). The objective of the Anycast variant, defined in RFC 3068, *An Anycast Prefix for 6to4 Relay Routers*, is to
avoid the need for such configuration. Removing this configuration makes the solution available for small or domestic users, even those with a single host or simple home gateway instead of a border router. Removing this configuration is achieved by defining 192.88.99.1 as the default IPv4 address for a 6to4 relay, and 2002:c058:6301:: as the default IPv6 router prefix (well-known prefix) for a 6to4 site.


### 6to4 Provider-Managed Tunnels

A solution to many problems associated with unmanaged Anycast 6to4 is presented in IETF informational draft draft-kuarsingh-v6ops-6to4-provider-managed-tunnel-02, *6to4 Provider-Managed Tunnels (PMT)*. That document, a work in progress, proposes a solution that providers can implement to exercise greater control over the routing of 6to4 traffic.

Anycast 6to4 implies a default configuration for the user site. It does not require any particular user action. It does require an IPv4 Anycast route to be in place to a relay at 192.88.99.1. Traffic does not necessarily return to the same 6to4 gateway because of the well-known 6to4 prefix used and advertised by all 6to4 traffic.

6to4 provider-managed tunnels (PMTs) facilitate the management of 6to4 tunnels using an Anycast configuration. 6to4 PMT enables service providers to improve 6to4 operation when network conditions provide suboptimal performance or break normal 6to4 operation. 6to4 PMT provides a stable provider prefix and forwarding environment by utilizing existing 6to4 relays with an added function of IPv6 prefix translation that controls the flow of return traffic.

The 6to4 managed tunnel model behaves like a standard 6to4 service between the customer IPv6 host or gateway and the 6to4 PMT relay (within the provider domain). The 6to4-PMT relay shares properties with 6rd (RFC5969) by decapsulating and forwarding embedded IPv6 flows, within an IPv4 packet, to the IPv6 Internet. The model provides an additional function that translates the source 6to4 prefix to a provider assigned prefix that is not found in 6rd (RFC5969) or traditional 6to4 operation. The 6to4-PMT relay provides a stateless (or stateful) mapping of the 6to4 prefix to a provider-supplied prefix by mapping the embedded IPv4 address in the 6to4 prefix to the provider prefix.

### DS-Lite Softwires—IPv4 over IPv6

When an ISP begins to allocate new subscriber home IPv6 addresses and IPv6-capable equipment, dual-stack lite (DS-Lite) provides a method for the private IPv4 addresses behind the IPv6 customer edge WAN equipment to reach the IPv4 network. DS-Lite enables IPv4 customers to continue to access the Internet using their current hardware by using a softwire initiator, referred to as a Basic Bridging Broadband (B4), at the customer edge to encapsulate IPv4 packets into IPv6 packets and tunnel them over an IPv6 network to a softwire concentrator, referred to as an Address Family Transition Router (AFTR), for decapsulation. DS-Lite creates the IPv6 softwires that terminate on
the services PIC. Packets coming out of the softwire can then have other services such as NAT applied on them.

DS-Lite is supported on MS-DPCs and MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS release 17.4R1, DS-Lite is supported on MX Series routers with MS-MPCs and MS-MICs. Starting in Junos OS release 18.2R1, DS-lite is supported on AMS interfaces. Starting in Junos OS release 19.2R1, DS-Lite is supported on MX Virtual Chassis and MX Broadband Network Gateway (BNG) routers.

NOTE: IPv6 Provider Edge, or MPLS-enabled IPv6, is available for ISPs with MPLS-enabled networks. These networks now can use Multiprotocol BGP (MP-BGP) to provide connectivity between the DS-Lite B4 and AFTR (or any two IPv6 nodes). DS-Lite properly handles encapsulation and decapsulation despite the presence of additional MPLS header information.

For more information on DS-Lite softwires, see the IETF draft Dual Stack Lite Broadband Deployments Following IPv4 Exhaustion.

NOTE: The most recent IETF draft documentation for DS-Lite uses new terminology:

- The term softwire initiator has been replaced by B4.
- The term softwire concentrator has been replaced by AFTR.

The Junos OS documentation generally uses the original terms when discussing configuration in order to be consistent with the command-line interface (CLI) statements used to configure DS-Lite.

6rd Softwires—IPv6 over IPv4

6rd softwire flow is shown in Figure 23 on page 320.

Figure 23: 6rd Softwire Flow

Junos OS supports a 6rd softwire concentrator on a services DPC or PIC to facilitate rapid deployment of IPv6 service to subscribers on native IPv4 customer edge WANs. IPv6 packets are encapsulated in IPv4 packets by a softwire initiator at the customer edge WAN. These packets are tunneled to a softwire concentrator residing on an MS-DPC (branch relay). A softwire is created when IPv4 packets containing IPv6 destination information are received at the softwire concentrator, which decapsulates IPv6 packets and forwards them for IPv6 routing. All of these functions are performed in a single pass of the services PIC.
In the reverse path, IPv6 packets are sent to the services DPC where they are encapsulated in IPv4 packets corresponding to the proper softwire and sent to the customer edge WAN.

The softwire concentrator creates softwires as the IPv4 packets are received from the customer edge WAN side or IPv6 packets are received from the Internet. A 6rd softwire on the Services DPC is identified by the 3-tuple containing the service set ID, customer edge softwire initiator IPv4 address, and softwire concentrator IPv4 address. IPv6 flows are also created for the encapsulated IPv6 payload, and are associated with the specific softwire that carried them in the first place. When the last IPv6 flow associated with a softwire ends, the softwire is deleted. This simplifies configuration and there is no need to create or manage tunnel interfaces.

6rd is supported on Multiservices 100, 400, and 500 PICs on M Series routers, and on MX Series routers equipped with Multiservices DPCs. 6rd is not supported on MX Series routers with MS-MPCs or MS-MICs.

Junos OS supports inline 6rd and 6to4 on Modular Port Concentrator (MPC) line cards.


### Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2R1</td>
<td>Starting in Junos OS release 19.2R1, DS-Lite is supported on MX Virtual Chassis and MX Broadband Network Gateway (BNG) routers.</td>
</tr>
<tr>
<td>18.2R1</td>
<td>Starting in Junos OS release 18.2R1, DS-lite is supported on AMS interfaces.</td>
</tr>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS release 17.4R1, DS-Lite is supported on MX Series routers with MS-MPCs and MS-MICs.</td>
</tr>
</tbody>
</table>

### Related Documentation

- Junos Address Aware Network Addressing Overview on page 61
- Configuring a 6rd Softwire Concentrator on page 353
- Configuring a DS-Lite Softwire Concentrator on page 331
- Configuring Softwire Rules on page 323
- Configuring Service Sets for Softwire on page 324
- Configuring Inline 6rd on page 367
CHAPTER 21

Softwires Configuration Overview

- Configuring Softwire Rules on page 323
- Configuring Service Sets for Softwire on page 324

Configuring Softwire Rules

You configure softwire rules to instruct the router how to direct traffic to the addresses specified for 6rd or DS-Lite softwire concentrators. Softwire rules do not perform any filtration of the traffic. They do not include a `from` statement, and the only option in the `then` statement is to specify the address of the 6rd or DS-Lite softwire concentrator.

Softwire rules are supported on Multiservices 100, 400, and 500 PICs on M Series routers, and on MX Series routers equipped with Multiservices DPCs. Starting in Junos OS release 17.4R1, softwire rules for DS-Lite are supported on MX Series routers with MS-MPCs and MS-MICs. Starting in Junos OS release 19.2R1, softwire rules for DS-Lite are supported on MX Virtual Chassis and MX Broadband Network Gateway (BNG) routers.

You can create a softwire rule consisting of one or more terms and associate a particular 6rd or DS-Lite softwire concentrator with each term. You can include the softwire rule in service sets along with other services rules.

To configure a softwire rule:

1. Assign a name to the rule.

   ```
 [edit services softwire]
 user@host# edit rule rule-name
   ```

2. Specify the match direction.

   ```
 [edit services softwire rule rule-name]
 user@host# set match-direction (input | output)
   ```

3. Assign a name for the first term.

   ```
 [edit services softwire rule rule-name]
 user@host# edit term term-name
   ```
4. Associate a 6rd or DS-Lite softwire concentrator with this term.

   [edit services softwire rule rule-name term term-name]
   user@host# set then ds-lite name

   Or

   user@host# set then v6rd v6rd-softwire-concentrator

5. Repeat Steps 3 and 4 for as many additional terms as needed.

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2R1</td>
<td>Starting in Junos OS release 19.2R1, softwire rules for DS-Lite are supported on MX Virtual Chassis and MX Broadband Network Gateway (BNG) routers.</td>
</tr>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS release 17.4R1, softwire rules for DS-Lite are supported on MX Series routers with MS-MPCs and MS-MICs.</td>
</tr>
</tbody>
</table>

**Related Documentation**

- Tunneling Services for IPv4-to-IPv6 Transition Overview on page 317
- Configuring a 6rd Softwire Concentrator on page 353
- Configuring a DS-Lite Softwire Concentrator on page 331
- Configuring IPv6 Multicast Interfaces on page 333
- Configuring Service Sets for Softwire on page 324

### Configuring Service Sets for Softwire

You must include softwire rules or a softwire rule set in a service set to enable softwire processing. You must include a stateful firewall rule for DS-Lite.

Softwire rules are supported on Multiservices 100, 400, and 500 PICs on M Series routers, and on MX Series routers equipped with Multiservices DPCs. Starting in Junos OS release 17.4R1, softwire rules for DS-Lite are supported on MX Series routers with MS-MPCs and MS-MICs. Starting in Junos OS release 19.2R1, softwire rules for DS-Lite are supported on MX Virtual Chassis and MX Broadband Network Gateway (BNG) routers.

To configure service sets for softwire:

1. Include a softwire rule or rule set in the service set.

   [edit services service-set service-set-name]
   user@host# set softwire-rules rule softwire-rule-name

2. When using a 6rd softwire, include a stateful-firewall rule.
3. You can include a NAT rule for flows originated by DS-Lite softwires.

NOTE:
Currently a NAT rule configuration is required with a DS-Lite softwire configuration when you use interface service set configurations; NAT is not required when using next-hop service set configurations. NAT processing from IPv4 to IPv6 address pools and vice versa is not currently supported. FTP, HTTP, and RSTP are supported.

NOTE: With a DS-Lite softwire concentrator, if you configure stateful firewall rules without configuring NAT rules, using an interface service set causes the ICMP echo reply messages to be not sent correctly to DS-Lite. This behavior occurs if you apply a service set to both inet and inet6 families. In such a scenario, the traffic that is not destined to the DS-Lite softwire concentrator is also processed by the service set and the packets might be dropped, although the service set must not process such packets.

To prevent the problem to incorrect processing of traffic applicable for DS-Lite, you must configure a next-hop style service set and not an interface style service set. This problem does not occur when you configure NAT rules with interface service sets for DS-Lite.

For further information, see “Configuring Service Rules” on page 20.”

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2R1</td>
<td>Starting in Junos OS release 19.2R1, softwire rules for DS-Lite are supported on MX Virtual Chassis and MX Broadband Network Gateway (BNG) routers.</td>
</tr>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS release 17.4R1, softwire rules for DS-Lite are supported on MX Series routers with MS-MPCs and MS-MICs.</td>
</tr>
</tbody>
</table>

Related Documentation
- Tunneling Services for IPv4-to-IPv6 Transition Overview on page 317
- Configuring Softwire Rules on page 323
- Example: Configuring DS-Lite and 6rd in the Same Service Set on page 340
CHAPTER 22

Transitioning to IPv6 Using 6to4 Softwires

- Configuring a 6to4 Provider-Managed Tunnel on page 327

Configuring a 6to4 Provider-Managed Tunnel

When configuring a 6to4 provider-managed tunnel (PMT), replace the Anycast destination with the address of a managed relay in the provider network.

6to4 tunnels are supported on Multiservices 100, 400, and 500 PICs on M Series routers, and on MX Series routers equipped with Multiservices DPCs. 6to4 tunnels are not supported on MX Series routers with MS-MPCs or MS-MICs.

To configure a 6to4 PMT:

1. Configure the ingress interface for 6to4 traffic. Include the name of the service set that identifies the rules for input and output service on this interface.

   [edit interfaces ge-0/2/1]
   user@host# set unit logical-unit-number family family service input service-set-name service-set-name
   user@host# set unit logical-unit-number family family service output service-set-name service-set-name
   user@host# set unit logical-unit-number family family address address

   For example:

   [edit interfaces ge-0/2/1]
   user@host# set unit 0 family inet service input service-set-name v6to4-pmt
   user@host# set unit 0 family inet service output service-set-name v6to4-pmt
   user@host# set unit 0 family inet address 130.130.130.1/24

2. Configure the egress interface.

   [edit interfaces ge-0/2/2]
   user@host# set unit logical-unit-number family family address address

   For example:

   [edit interfaces ge-0/2/2]
   user@host# set unit 0 family inet6 address 4ABC::1/16
3. Configure the service interface that contains the rules for processing incoming traffic. Include a syslog option and associate a logical unit.

```
[edit interfaces sp-2/0/0]
user@host# edit services-options syslog host host-name services any
user@host# edit unit logical-unit-number family family
user@host# edit unit 0 family family
```

For example:

```
[edit interfaces sp-2/0/0]
user@host# set services-options syslog host local services any
user@host# set unit 0 family inet
user@host# set unit 0 family inet6
```

4. Configure the softwire concentrator and softwire rule for 6to4. In the Junos OS, 6to4 PMT configuration uses the same options as 6rd.

```
[edit services softwire softwire-concentrator v6rd v6to4]
user@host# set softwire-address softwire-address
user@host# set ipv4-prefix ipv4-prefix
user@host# set v6rd-prefix v6rd-prefix
user@host# set mtu-v4 mtu-v4
```

For example:

```
[edit services softwire softwire-concentrator v6rd v6to4]
user@host# set softwire-address 192.88.99.1
user@host# set ipv4-prefix 130.130.130.2/32
user@host# set v6rd-prefix 2002::0/16
user@host# set mtu-v4 9192
```

5. Define the softwire rule that will process traffic on the ingress interface.

```
[edit services softwire rule v6to4-r1]
user@host# set match-direction input
user@host# set term term-name then v6rd softwire-concentrator
```

For example:

```
[edit services softwire rule v6to4-r1]
user@host# set match-direction input
user@host# set term t1 then v6rd v6to4
```

6. Define a stateful firewall rule that will accept all incoming traffic on the ingress interface.

```
[edit services stateful-firewall rule sfw-r1]
user@host# set match-direction direction
user@host# set term term-name then accept
user@host# set term term-name then syslog
```
For example:

```
[edit services stateful-firewall rule sfw-r1]
user@host# set match-direction input-output
user@host# set term t1 then accept
user@host# set term t1 then syslog
```

7. Define the NAT pool to be used for IPv6 NAT translation. This pool supports translation of the Anycast 6to4 relay addresses to addresses at the provider-managed relay.

```
[edit services nat pool v6to4-pmt]
user@host# set address address
user@host# port automatic
```

For example:

```
[edit services nat pool v6to4-pmt]
user@host# set address 3ABC::1/128
user@host# set port automatic
```

8. Define the NAT rule for translation.

```
[edit services nat rule rule-name]
user@host# set match-direction input
user@host# set term term-name then translated source-pool pool-name
user@host# set term t1 then translated translation-type translation-type
```

For example:

```
[edit services nat rule v6to4-pmt-r1]
user@host# set match-direction input
user@host# set term t1 then translated source-pool v6to4-pmt
user@host# set term t1 then translated translation-type napt-66
```

9. Define the service set that specifies the softwire rule and NAT rule.

```
[edit services service-set v6to4-pmt]
user@host# set softwire-rules rule-name
user@host# set stateful-firewall-rules rule-name
user@host# set nat-rules rule-name
user@host# set interface-service service-interface interface-name
```

For example:

```
[edit services service-set v6to4-pmt]
user@host# set softwire-rules v6to4-r1
user@host# set stateful-firewall-rules sfw-r1
user@host# set nat-rules v6to4-pmt-r1
user@host# set interface-service service-interface sp-2/0/0
```
CHAPTER 23

Transitioning to IPv6 Using DS-Lite Softwires

• Configuring a DS-Lite Softwire Concentrator on page 331
• Configuring IPv6 Multicast Interfaces on page 333
• Example: Basic DS-Lite Configuration on page 333
• Example: Configuring DS-Lite and 6rd in the Same Service Set on page 340
• Protecting CGN Devices Against Denial of Service (DOS) Attacks on page 349
• DS-Lite Subnet Limitation on page 349

Configuring a DS-Lite Softwire Concentrator

DS-Lite is supported on Multiservices 100, 400, and 500 PICs on M Series routers, and on MX Series routers equipped with Multiservices DPCs. Starting in Junos OS release 17.4R1, DS-Lite is supported on MX Series routers with MS-MPCs and MS-MICs. Starting in Junos OS release 19.2R1, DS-Lite is supported on MX Virtual Chassis and MX Broadband Network Gateway (BNG) routers.

To configure a DS-Lite softwire concentrator:

1. Assign a name to the DS-Lite software concentrator.

   ```
 [edit services softwire softwire-concentrator]
 user@host# edit ds-lite ds-lite-softwire-concentrator
   ```

2. Specify the address of the softwire tunnel.

   ```
 [edit services softwire softwire-concentrator ds-lite ds-lite-softwire-concentrator]
 user@host# set softwire-address address
   ```

3. Specify the MTU for the softwire tunnel.

   ```
 [edit services softwire softwire-concentrator ds-lite ds-lite-softwire-concentrator]
 user@host# set mtu-v6 bytes
   ```

Copyright © 2019, Juniper Networks, Inc.
NOTE: The mtu-v6 option is supported on MX Series routers equipped with MS-DPCs. Starting in Junos OS release 18.1R1, the mtu-v6 option is supported on MX Series routers with MS-MPCs or MS-MICs. This option sets the maximum transmission unit when encapsulating IPv4 packets into IPv6. If the final length is greater than the MTU, the IPv6 packet will be fragmented. This option is mandatory since it depends on other network parameters under administrator control.

4. To copy DSCP information from the IPv6 header into the decapsulated IPv4 header, include the `copy-dscp` statement. This statement is not supported on MS-MPCs and MS-MICs.

```
[edit services softwire software-concentrator ds-lite ds-lite-softwire-concentrator]
user@host# set copy-dscp
```

5. Specify the maximum number of flows for the softwire.

```
[edit services softwire software-concentrator ds-lite ds-lite-softwire-concentrator]
user@host# set flow-limit 1000
```

### Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2R1</td>
<td>Starting in Junos OS release 19.2R1, DS-Lite is supported on MX Virtual Chassis and MX Broadband Network Gateway (BNG) routers.</td>
</tr>
<tr>
<td>18.1R1</td>
<td>Starting in Junos OS release 18.1R1, the mtu-v6 option is supported on MX Series routers with MS-MPCs or MS-MICs.</td>
</tr>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS release 17.4R1, DS-Lite is supported on MX Series routers with MS-MPCs and MS-MICs.</td>
</tr>
</tbody>
</table>

### Related Documentation

- Tunneling Services for IPv4-to-IPv6 Transition Overview on page 317
- Configuring Softwire Rules on page 323
- Configuring IPv6 Multicast Interfaces on page 333
- Configuring Service Sets for Softwire on page 324
- Example: Basic DS-Lite Configuration on page 333
- Example: Configuring DS-Lite and 6rd in the Same Service Set on page 340
**Configuring IPv6 Multicast Interfaces**

Configure multicast filters on Ethernet interfaces when IPv6 NAT is used for neighbor discovery. This enables the router to process softwire-initiated flows in both directions.

To configure IPv6 multicast interfaces:

1. Access the softwire hierarchy.

   ```
 user@host# edit services softwire
   ```

2. Include the `ipv6-multicast-interfaces` statement for an individual interface.

   ```
 [edit services softwire]
 user@host# set ipv6-multicast-interfaces interface-name
   ```

   Or configure all softwire interfaces as IPv6 multicast.

   ```
 [edit services softwire]
 user@host# set ipv6-multicast-interfaces all
   ```

**Related Documentation**

- Tunneling Services for IPv4-to-IPv6 Transition Overview on page 317
- Configuring a 6rd Softwire Concentrator on page 353
- Configuring a DS-Lite Softwire Concentrator on page 331
- Configuring Softwire Rules on page 323

**Example: Basic DS-Lite Configuration**

DS-Lite employs IPv4-over-IPv6 tunnels to cross an IPv6 access network to reach a carrier-grade IPv4-IPv4 NAT. This facilitates the phased introduction of IPv6 on the Internet by providing backward compatibility with IPv4. See *Understanding IPv6 Dual-Stack Lite*.

- Requirements on page 333
- Configuration Overview and Topology on page 334
- Configuration on page 334

**Requirements**

The following hardware components can perform DS-Lite:

- M Series Multiservice Edge routers with Multiservices PICs.
- T Series Core routers with Multiservices PICs.
- MX Series 5G Universal Routing Platforms with Multiservices DPCs. Starting in Junos OS release 17.4R1, DS-Lite is supported on MX Series routers with MS-MPCs and
MS-MICs. Starting in Junos OS release 19.2R1, DS-Lite is supported on MX Virtual Chassis and MX Broadband Network Gateway (BNG) routers.

**Configuration Overview and Topology**

This example describes how configure an MX Series router with an MS-DPC as an AFTR to facilitate the flow shown in Figure 24 on page 334.

*Figure 24: DS-Lite Topology*

In this example, the DS-Lite softwire concentrator, or AFTR, is an MX Series router with two Gigabit interfaces and a Services DPC. The interface facing the B4 element is ge-3/1/5 and the interface facing the Internet is ge-3/1/0.

**Configuration**

- Chassis Configuration on page 334
- Interfaces Configuration on page 335
- Network Address and Port Translation Configuration on page 336
- Softwire Configuration on page 337
- Service Set Configuration on page 338

**Chassis Configuration**

**Step-by-Step Procedure**

To configure the service PIC (FPC 0 Slot 0) with the Layer 3 service package:

1. Enter the `edit chassis` hierarchy level.

   ```
 user@host# edit chassis
   ```

2. Configure the Layer 3 service package.
Interfaces Configuration

To configure interfaces facing the B4 (softwire initiator) and facing the Internet:

1. Go the [edit interfaces] edit hierarchy level for ge-3/1/0, which faces the Internet.
   ```
 host# edit interfaces ge-3/1/0
   ```

2. Define the interface.
   ```
 [edit interfaces ge-3/1/0]
 user@host# set description AFTR-Internet
 user@host# set unit 0 family inet address 128.0.0.2/24
   ```

3. Go to the [edit interfaces] hierarchy level for ge-3/1/5, which faces the B4.
   ```
 user@host# up 1
 [edit]
 user@host# edit interfaces ge-3/1/5
   ```

4. Define the interface.
   ```
 [edit interfaces ge-3/1/5]
 user@host# set description AFTR-B4
 user@host# set unit 0 family inet
 user@host# edit unit 0 family inet6
 [edit unit 0 family inet6]
 user@host# set service input service-set sset
 user@host# set service output service-set sset
 user@host# set address 2001:0:0:2::1/48
   ```

5. Go to the [edit interfaces] hierarchy level for sp-0/0/0, used to host the DS-Lite AFTR.
   ```
 [edit]
 user@host# edit interfaces sp-0/0/0
   ```

6. Define the interface.
   ```
 [edit interfaces sp-0/0/0]
 user@host# set description AFTR-B4
 user@host# set unit 0 family inet
 user@host# edit unit 0 family inet6
   ```
Step-by-Step Procedure

To configure NAPT:

1. Go to the [edit services nat] hierarchy level.

   user@host# edit services nat
   [edit services nat]

2. Define a NAT pool p1.

   user@host# set pool p1 address 129.0.0.1/32 port automatic

3. Define a NAT rule, beginning with the match direction.

   [edit services nat]
   user@host# set rule r1 match-direction input

4. Define a term for the rule, beginning with a from clause.
5. Define the desired translation in a then clause. In this case, use dynamic source translation.

```
[edit services nat]
user@host# set rule r1 term t1 from source-address 10.0.0.0/16
```

6. (Optional) Configure logging of translation information for the rule.

```
[edit services nat]
user@host# set rule r1 term t1 then translated source-pool p1 translation-type napt-44 syslog
```

### Results

```
user@host# show services nat

pool p1 {
 address 129.0.0.1/32;
 port {
 automatic;
 }
}
rule r1 {
 match-direction input;
 term t1 {
 from {
 source-address {
 10.0.0.0/16;
 }
 }
 then {
 translated {
 source-pool p1;
 translation-type {
 napt-44;
 }
 }
 syslog;
 }
 }
}
```

### Softwire Configuration

**Step-by-Step Procedure**

To configure the DS-Lite softwire concentrator and associated rules:

1. Go to the [edit services softwire] hierarchy level.

```
user@host# edit services softwire
```
2. Define the DS-Lite softwire concentrator.

    [edit services softwire]
    user@host# set softwire-concentrator ds-lite ds-1 softwire-address 1001::1 mtu-v6 1460

3. Define the softwire rule.

    [edit services softwire]
    user@host# set rule r1 match-direction input term t1 then ds-lite ds1.

Results

    user@host# show services softwire
    softwire-concentrator {
        ds-lite ds1 {
            softwire-address 1001::1;
            mtu-v6 1460;
        }
    }
    rule r1 {
        match-direction input;
        term t1 {
            then {
                ds-lite ds1;
            }
        }
    }

Service Set Configuration

Step-by-Step Procedure

Configure a service set that includes softwire and NAT rules and specifies either interface-service or next-hop service. This example uses a next-hop service.

1. Go to the [edit services service-set] hierarchy level, naming the service set.

    user@host# edit services service-set sset

2. Define the NAT rule to be used for IPv4-to-IPv4 translation.

    [edit services service-set sset]
    user@host# set nat-rules r1

3. Define the softwire rule to define the softwire tunnel.

    [edit services service-set sset]
    user@host# set softwire-rules r1

4. Define the interface service,
[edit services service-set sset]
user@host# set interface-service service-interface sp-0/0/0.0

TIP: In order to avoid or minimize IPv6 fragmentation, you can configure a TCP maximum segment size (MSS) for your service set.

5. (Optional) Define a TCP MSS.

[edit services service-set sset]
user@host# set tcp-mss 1024

Results
user@host# show services service-set
syslog {
  host local {
    services any;
  }
} softwire-rules r1;
nat-rules r1;
interface-service {
  service-interface sp-0/0/0;
}

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2R1</td>
<td>Starting in Junos OS release 19.2R1, DS-Lite is supported on MX Virtual Chassis and MX Broadband Network Gateway (BNG) routers.</td>
</tr>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS release 17.4R1, DS-Lite is supported on MX Series routers with MS-MPCs and MS-MICs.</td>
</tr>
</tbody>
</table>

Related Documentation
- Tunneling Services for IPv4-to-IPv6 Transition Overview on page 317
- Configuring a DS-Lite Softwire Concentrator on page 331
- Configuring Softwire Rules on page 323
- Configuring Service Sets for Softwire on page 324
- Example: Basic 6rd Configuration on page 355
- Example: Configuring DS-Lite and 6rd in the Same Service Set on page 340
Example: Configuring DS-Lite and 6rd in the Same Service Set

- Requirements on page 340
- Overview on page 340
- Configuration on page 340

Requirements

The following hardware components can perform DS-Lite:

- M Series Multiservice Edge routers with Multiservices PICs.
- T Series Core routers with Multiservices PICs.
- MX Series 5G Universal Routing Platforms with Multiservices DPCs. Starting in Junos OS release 17.4R1, DS-Lite is supported on MX Series routers with MS-MPCs and MS-MICs. Starting in Junos OS release 19.2R1, DS-Lite is supported on MX Virtual Chassis and MX Broadband Network Gateway (BNG) routers.

Overview

This example describes a software solution that includes DS-Lite and 6rd in the same service set.

Configuration

**Chassis Configuration**

**Step-by-Step Procedure**

To configure the chassis:

1. Configure the ingress interface.

   ```
 user@host# edit interfaces ge-1/2/0
 [edit interfaces ge-1/2/0]
 user@host# set unit 0 family inet service input service-set v6rd-dslite-service-set
 user@host# set unit 0 family inet service output service-set v6rd-dslite-service-set
 user@host# set unit 0 family inet address address 10.10.10.1/24
 user@host# set unit 0 family inet6 service input service-set v6rd-dslite-service-set
 user@host# set unit 0 family inet6 service output service-set v6rd-dslite-service-set
 user@host# set unit 0 family inet6 address address 2001::1/16
   ```

   Here the service set is applied on the inet (IPv4) and inet6 (IPv6) families of subunit 0. Both DS-Lite IPv6 traffic and 6rd IPv4 traffic hits the service filter and is sent to the services PIC.

2. Configure the egress interface (IPv6 Internet). The IPv4 server that the DS-Lite clients are trying to reach is at 200.200.200.24, and the IPv6 server is at 3ABC::2/16.

   ```
 user@host# edit interfaces ge-1/2/2
 [edit interfaces ge-1/2/2]
   ```
user@host# set unit 0 family inet address 200.200.200.1/24
user@host# set unit 0 family inet6 address 3ABC::1/16

3. Configure the services PIC.

    user@host# edit interfaces sp-3/0/0
    [edit interfaces sp-3/0/0]
    user@host# set unit 0 family inet
    user@host# set unit 0 family inet6
Results

```
[edit interfaces]
user@host# show
ge-1/2/0 {
 unit 0 {
 family inet {
 service {
 input {
 service-set v6rd-dslite-service-set;
 }
 output {
 service-set v6rd-dslite-service-set;
 }
 }
 address 10.10.10.1/24;
 }
 family inet6 {
 service {
 input {
 service-set v6rd-dslite-service-set;
 }
 output {
 service-set v6rd-dslite-service-set;
 }
 }
 address 2001::1/16;
 }
 }
}
ge-1/2/2 {
 unit 0 {
 family inet {
 address 200.200.200.1/24;
 }
 family inet6 {
 address 3ABC::1/16;
 }
 }
}
sp-3/0/0 {
 unit 0 {
 family inet;
 family inet6;
 }
}
```

Softwire Concentrator, Softwire Rule, Stateful Firewall Rule Configuration

Step-by-Step Procedure

To configure the softwire concentrator, softwire rule, and stateful firewall rule:

1. Configure the DS-Lite and 6rd softwire concentrators.

```
user@host# edit services softwire softwire-concentrator ds-lite dsl
[edit services softwire softwire-concentrator ds-lite dsl]
user@host# set softwire-address 1001::1
user@host# mtu-v6 9192
user@host# up 1
```
2. Configure the software rules.

user@host# edit services software rule v6rd-r1
[edit services software rule v6rd-r1]
user@host# set match-direction input
user@host# set term t1 then v6rd v6rd-dom1
user@host# up 1
user@host# edit services software
[edit services software]
user@host# edit rule ds-lite-r1
[edit services software rule ds-lite-r1]
user@host# set term ds-lite-t1 then ds-lite ds1

The following routes are added by the services PIC daemon on the Routing Engine:

user@host# run show route 30.30.30.1
inet.0: 43 destinations, 46 routes (42 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both
30.30.30.1/32 *[Static/786432] 00:24:11
Service to v6rd-dslite-service-set
[edit]
user@host# run show route 3040::0/16
inet6.0: 23 destinations, 33 routes (23 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
3040::/16 *[Static/786432] 00:24:39
Service to v6rd-dslite-service-set

user@host# run show route 1001::1
inet6.0: 33 destinations, 43 routes (33 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
1001::1/128 *[Static/1] 1w2d 22:05:41
Service to v6rd-dslite-service-set

3. Configure a stateful firewall rule.

user@host# edit services stateful-firewall rule r1
[edit services stateful-firewall rule r1]
user@host# set match-direction input-output
user@host# set term t1 then accept

[edit services stateful-firewall]
rule r1 {
  match-direction input-output;
  term t1 {
    then {
      accept;
    }
  }
}

Results

```plaintext
[edit services softwire]
user@host# show

softwire-concentrator {
 ds-lite ds1 {
 softwire-address 1001::1;
 mtu-v6 9192;
 }
 v6rd v6rd-dom1 {
 softwire-address 30.30.30.1;
 ipv4-prefix 10.10.10.0/24;
 v6rd-prefix 3040::0/16;
 mtu-v4 9192;
 }
}
rule v6rd-r1 {
 match-direction input;
 term t1 {
 then {
 v6rd v6rd-dom1;
 }
 }
}
rule dslite-r1 {
 match-direction input;
 term dslite-t1 {
 then {
 ds-lite ds1;
 }
 }
}
```

[edit services stateful-firewall]

```plaintext
user@host# show

rule r1 {
 match-direction input-output;
 term t1 {
 then {
 accept;
 }
 }
}
```

NAT Configuration for DS-Lite

Step-by-Step Procedure

To configure NAT for DS-Lite:

1. Configure a NAT pool for DS-Lite.

   ```plaintext
 user@host# edit services nat pool dslite-pool
 [edit services nat pool dslite-pool]
 user@host# set address-range low 33.33.33.1 high 33.33.33.32
 user@host# set port automatic
   ```
2. Configure a NAT rule.

```bash
user@host# up 1
[edit services nat rule dslite-nat-r1]
user@host# set match-direction input
user@host# set term dslite-nat-t1 from source-address 20.20.0.0/16 then translated translation-type napt-44
```
Results

[edit services nat]
user@host# show

pool dslite-pool {
    address-range low 33.33.33.1 high 33.33.33.32;
    port {
        automatic;
    }
}

rule dslite-nat-r1 {
    match-direction input;
    term dslite-nat-t1 {
        from {
            source-address {
                20.20.0.0/16;
            }
        }
        then {
            translated {
                source-pool dslite-pool;
                translation-type {
                    source dynamic;
                }
            }
        }
    }
}

Because of this NAT rule, the following NAT routes are installed for the reverse DS-Lite traffic:

user@host# run show route 33.33.33.0/24

inet.0: 48 destinations, 52 routes (47 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>Address</th>
<th>Status</th>
<th>Updated</th>
<th>Service Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.33.33.1/32</td>
<td>*[Static/1]</td>
<td>23:08:38</td>
<td>v6rd-dslite-service-set</td>
</tr>
<tr>
<td>33.33.33.2/31</td>
<td>*[Static/1]</td>
<td>23:08:38</td>
<td>v6rd-dslite-service-set</td>
</tr>
<tr>
<td>33.33.33.4/30</td>
<td>*[Static/1]</td>
<td>23:08:38</td>
<td>v6rd-dslite-service-set</td>
</tr>
<tr>
<td>33.33.33.8/29</td>
<td>*[Static/1]</td>
<td>23:08:38</td>
<td>v6rd-dslite-service-set</td>
</tr>
<tr>
<td>33.33.33.16/28</td>
<td>*[Static/1]</td>
<td>23:08:38</td>
<td>v6rd-dslite-service-set</td>
</tr>
<tr>
<td>33.33.33.32/32</td>
<td>*[Static/1]</td>
<td>23:08:38</td>
<td>v6rd-dslite-service-set</td>
</tr>
</tbody>
</table>

The NAT rule triggers address translation for the traffic coming from 20.20.0.0/16 to public address range 33.33.33.1 to 33.33.33.32.

Service Set Configuration

Step-by-Step Procedure
This service set has a stateful firewall rule and 6rd rule for 6rd service. The service set also includes a softwire rule for DS-Lite and a NAT rule to perform address translation for all DS-Lite traffic. The NAT rule performs NAPT translation in the forward direction on the source address and port of the DS-Lite traffic.

To configure the service set:

1. Define the service set.
   
   ```
 user@host# edit services service-set v6rd-dslite-service-set
   ```

2. Configure the service set rules.
   
   ```
 [edit services service-set v6rd-dslite-service-set]
 user@host# set softwire-rules dslite-r1
 user@host# set stateful-firewall-rules r1
 user@host# set nat-rules dslite-nat-r1
   ```

3. Configure the service set interface-service.
   
   ```
 [edit services service-set v6rd-dslite-service-set]
 user@host# set interface-service service-interface sp-3/0/0
   ```

**Results**

```
[edit services service-set]
user@host# show

v6rd-dslite-service-set {
 softwire-rules v6rd-r1;
 softwire-rules dslite-r1;
 stateful-firewall-rules r1;
 nat-rules dslite-nat-r1;
 interface-service {
 service-interface sp-3/0/0;
 }
```

**Release History Table**

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2R1</td>
<td>Starting in Junos OS release 19.2R1, DS-Lite is supported on MX Virtual Chassis and MX Broadband Network Gateway (BNG) routers.</td>
</tr>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS release 17.4R1, DS-Lite is supported on MX Series routers with MS-MPCs and MS-MICs.</td>
</tr>
</tbody>
</table>

**Related Documentation**

- Tunneling Services for IPv4-to-IPv6 Transition Overview on page 317
- Configuring Service Sets for Softwire on page 324
- Example: Basic DS-Lite Configuration on page 333
Protecting CGN Devices Against Denial of Service (DOS) Attacks

You can now choose configuration options that help prevent or minimize the effect of attempted denial of service (DOS) attacks.

- Mapping Refresh Behavior on page 349
- EIF Inbound Flow Limit on page 349

Mapping Refresh Behavior

Prior to the implementation of the new options for configuring NAT mapping refresh behavior, described in this topic, a conversation was kept alive when either inbound or outbound flows were active. This remains the default behavior. You can now also specify mapping refresh for only inbound flows or only outbound flows. To configure mapping refresh behavior, include the `mapping-refresh (inbound | outbound | inbound-outbound)` statement at the `[edit services nat rule rule-name term term-name then translated secure-nat-mapping]` hierarchy level.

EIF Inbound Flow Limit

Previously, the number of inbound connections on an EIF mapping was limited only by the maximum flows allowed on the system. You can now configure the number of inbound flows allowed for an EIF. To limit the number of inbound connections on an EIF mapping, include the `eif-flow-limit number-of-flows` statement at the `[edit services nat rule rule-name term term-name then translated secure-nat-mapping]` hierarchy level.

DS-Lite Subnet Limitation

- DS-Lite Per Subnet Limitation Overview on page 349
- Configuring DS-Lite Per Subnet Session Limitation to Prevent Denial of Service Attacks on page 350

DS-Lite Per Subnet Limitation Overview

Junos OS enables you to limit the number of softwire flows from a subscriber’s basic bridging broadband (B4) device at a given point in time, preventing subscribers from excessive use of addresses within the subnet. This limitation reduces the risk of denial-of-service (DoS) attacks. This limitation is supported on MX Series routers equipped with MS-DPCs. Starting in Junos OS Release 18.2R1, MS-MPCs and MS-MICs also support the subnet limitation feature. Starting in Junos OS Release 19.2R1, MX Virtual Chassis and MX Broadband Network Gateway (BNG) routers also support the subnet limitation feature.

A household using IPv6 with DS-Lite is a subnet, not just an individual IP address. The subnet limitation feature associates a subscriber and mapping with an IPv6 prefix instead of an IPv6 address. A subscriber can use any IPv6 addresses in that prefix as a DS-Lite B4 address and potentially exhaust carrier-grade NAT resources. The subnet limitation
feature enables greater control of resource utilization by identifying a subscriber with a prefix instead of a specific address.

The subnet limit provides the following features:

- Flows utilize the complete B4 address.
- Prefix length can be configured per service set under softwire-options for the individual service-set.
- Port blocks are allocated per prefix of the subscriber B4 device, and not on each B4 address (if the prefix length is less than 128). If the prefix length is 128, then each IPv6 address is treated as a B4. Port blocks are allocated per 128-bit V6 address.
- Session limit, defined under the DS-Lite softwire concentrator configuration, limits the number of IPv4 sessions for the prefix.
- EIM, EIF, and PCP mappings are created per softwire tunnel (full 128 bit IPv6 address). Stale mappings time out based on timeout values.
- If prefix length is configured, then PCP max-mappings-per-subscriber (configurable under pcp-server) is based on the prefix only, and not the full B4 address.
- SYSLOGS for PBA allocation and release contain the prefix portion of the address completed with all zeros. SYSLOGS for PCP alloc and release, Flow creation and deletion will still contain the complete IPv6 address.

The show services nat mappings address-pooling-paired operational command output now shows the mapping for the prefix. The mapping shows the address of the active B4.

The show services softwire statistics ds-lite output includes a new field that displays the number of times the session limit was exceeded for the MPC.

See Also
- show services nat mappings on page 1639
- show services softwire statistics on page 1721

Configuring DS-Lite Per Subnet Session Limitation to Prevent Denial of Service Attacks

You can configure the DS-Lite per subnet limitation on MX Series routers equipped with MS-DPCs. Starting in Junos OS Release 18.2R1, MS-MPCs and MS-MICs also support the subnet limitation feature.

Starting in Junos OS Release 19.2R1, MX Virtual Chassis and MX Broadband Network Gateway (BNG) routers also support the subnet limitation feature.

To configure DS-Lite per subnet session limitation:

1. Configure the size of the subnet prefix to which limiting is applied. Specify a prefix length of 56, 64, 96, or 128.

```bash
[edit]
user@host# set services service-set service-set-name softwire-options
dslite-ipv6-prefix-length dslite-ipv6-prefix-length
```
NOTE: Ensure that all mappings are cleared before changing the prefix length.

2. If you are using a next-hop service set on an AMS interface for DS-Lite, set the AMS inside interface’s IPv6 source prefix length to the same value you use for the subnet prefix in Step 1.

```
[edit interfaces interface-name unit interface-unit-number load-balancing-options hash-keys]
user@host# set ipv6-source-prefix-length ipv6-source-prefix-length
```

3. Configure the maximum number of subscriber sessions allowed per prefix. You can configure from 0 through 16,384 sessions.

```
[edit]
user@host# set services softwire softwire-concentrator dslite dslite-concentrator-name session-limit-per-prefix 12
```

NOTE: You cannot use flow-limit and session-limit-per-prefix in the same dslite configuration.

See Also
- DS-Lite Per Subnet Limitation Overview on page 349
- clear services nat mappings on page 1396
- softwire-options on page 1254
- ds-lite on page 1024
Transitioning to IPv6 Using 6rd Softwires

- Configuring a 6rd Softwire Concentrator on page 353
- Configuring Stateful Firewall Rules for 6rd Softwire on page 354
- Example: Basic 6rd Configuration on page 355
- High Availability and Load Balancing for 6rd Softwires on page 361
- Configuring Inline 6rd on page 367
- Inline 6rd and 6to4 Configuration Guidelines on page 372
- Examples: 6rd and 6to4 Configurations on page 373

Configuring a 6rd Softwire Concentrator

The 6rd feature is supported on Multiservices 100, 400, and 500 PICs on M Series routers, and on MX Series routers equipped with Multiservices DPCs. The 6rd feature is not supported on MX Series routers with MS-MPCs or MS-MICs.

To configure a 6rd softwire concentrator:

1. Assign a name to the 6rd softwire concentrator.

   [edit services softwire softwire-concentrator]
   user@host# edit v6rd v6rd-softwire-concentrator

2. Specify the address of the softwire tunnel.

   [edit services softwire softwire-concentrator v6rd v6rd-softwire-concentrator]
   user@host# set softwire-address address

3. Specify the MTU for the softwire tunnel.

   [edit services softwire softwire-concentrator v6rd v6rd-softwire-concentrator]
   user@host# set mtu-v4 mtu-v4

TIP: In this release there is no support for fragmentation and reassembly, therefore the MTUs on the IPv6 and IPv4 network must be properly configured by the administrator.
NOTE: Configuration changes to 6rd softwire concentrators do not become effective in the Packet Forwarding Engine. This is a known limitation. If you attempt to add the new configuration of softwire concentrators by overriding the existing configuration of 1024 softwire concentrators, which is the maximum limit of softwire concentrators that the system supports, the new configuration is not updated. To work around this limitation, you must delete the existing configuration and commit the settings, and then add the new configuration of softwire concentrators and commit the settings.

NOTE: For 6rd softwire concentrators, packet drops are observed and error messages logged on the virtual terminal session (VTY) console, if one inline services (si-) interface is replaced with another si- interface without stopping the traffic during the replacement of the interface. In a scenario in which an si- interface is associated with a service set that has a large number of softwire concentrators, replacing that interface without halting the traffic causes traffic disruption. You must stop the traffic and restart it during such a replacement of si- interfaces with 6rd softwire concentrators. The following error messages are displayed on the VTY console of the FPC:

packet discarded because no ifl or not SI ifl

Related Documentation
- Tunneling Services for IPv4-to-IPv6 Transition Overview on page 317
- Configuring Softwire Rules on page 323
- Configuring Stateful Firewall Rules for 6rd Softwire on page 354
- Configuring Service Sets for Softwire on page 324
- Example: Basic 6rd Configuration on page 355
- Example: Configuring DS-Lite and 6rd in the Same Service Set on page 340

Configuring Stateful Firewall Rules for 6rd Softwire

You must configure a stateful firewall rule for use with 6rd softwires. The stateful firewall service is used only to direct packets to the softwire, not for firewallsing purposes. The 6rd softwire service itself must be stateless. To support stateless processing, you must include an allow term in both directions of the stateful firewall policy.

The 6rd feature is supported on Multiservices 100, 400, and 500 PICs on M Series routers, and on MX Series routers equipped with Multiservices DPCs. The 6rd feature is not supported on MX Series routers with MS-MPCs or MS-MICs.

To include a stateful firewall rule for 6rd software processing:

1. Assign a name to the rule.
2. Specify the match direction.

   [edit services stateful-firewall rule-name]
   user@host# set match-direction input-output

3. Assign a name for the term.

   [edit services stateful-firewall rule-name]
   user@host# edit term term-name

4. Specify that all traffic in both directions should be accepted for the softwire process.

   [edit services stateful-firewall rule-name term term-name]
   user@host# set then accept

Related Documentation

- Tunneling Services for IPv4-to-IPv6 Transition Overview on page 317
- Configuring a 6rd Softwire Concentrator on page 353
- Configuring Softwire Rules on page 323
- Configuring Service Sets for Softwire on page 324
- Example: Basic 6rd Configuration on page 355
- Example: Configuring DS-Lite and 6rd in the Same Service Set on page 340

Example: Basic 6rd Configuration

- Requirements on page 355
- Overview on page 356
- Configuration on page 356

Requirements

NOTE: The 6rd feature is supported on Multiservices 100, 400, and 500 PICs on M Series routers, and on MX Series routers equipped with Multiservices DPCs. The 6rd feature is not supported on MX Series routers with MS-MPCs or MS-MICs.

This example describes how a 6rd concentrator can be configured for a 6rd domain, D1, to provide IPv6 Internet connectivity.
The following hardware components can perform 6rd:

- M Series Multiservice Edge routers with Multiservices PICs
- T Series Core routers with Multiservices PICs
- MX Series 5G Universal Routing Platforms with Multiservices DPCs

Overview

This configuration example describes how to configure a basic 6rd tunneling solution.

Configuration

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```conf
set interfaces ge-1/2/0 unit 0 family inet service input service-set v6rd-dom1-service-set
set interfaces ge-1/2/0 unit 0 family inet service output service-set v6rd-dom1-service-set
set interfaces ge-1/2/0 unit 0 family inet address 10.10.10.1/24
set interfaces ge-1/2/0 unit 0 family inet6 service input service-set v6rd-dom1-service-set
set interfaces ge-1/2/0 unit 0 family inet6 service output service-set v6rd-dom1-service-set
set interfaces ge-1/2/2 unit 0 family inet6 address 3abc::1/16
set interfaces sp-0/2/0 unit 0 family inet
set interfaces sp-0/2/0 unit 0 family inet6
set services softwire softwire-concentrator v6rd v6rd-dom1 softwire-address 30.30.30.1
data-set services softwire softwire-concentrator v6rd v6rd-dom1 ipv4-prefix 10.10.0.24
set services softwire softwire-concentrator v6rd v6rd-dom1 ipv6-prefix 3040:0/16
set services softwire softwire-concentrator v6rd v6rd-dom1 mtu-v4 9192
set services softwire rule v6rd-dom1 match-direction input
set services softwire rule v6rd-dom1 term t1 then v6rd v6rd-dom1
set services service-set v6rd-dom1-service-set softwire-rules v6rd-dom1
set services service-set v6rd-dom1-service-set stateful-firewall-rules r1
set services service-set v6rd-dom1-service-set interface-service service-interface sp-0/2/0
set services stateful-firewall rule r1 match-direction input-output
set services stateful-firewall rule r1 term t1 then accept
```

**Chassis Configuration**

To configure the chassis:

1. Define the ingress interface.

   ```conf
 user@host# edit interfaces ge-1/2/0
   ```

2. Configure the ingress interface logical unit and input/output service options.

   ```conf
 [edit interfaces ge-1/2/0]
 user@host# set unit 0 family inet service input service-set v6rd-dom1-service-set
 user@host# set unit 0 family inet service output service-set v6rd-dom1-service-set
   ```
3. Configure the address of the ingress interface.

   [edit interfaces ge-1/2/0]
   user@host# set unit 0 family inet address 10.10.10.1/24

4. Define the egress interface.

   user@host# up
   [edit interfaces]
   user@host# edit ge-1/2/2

5. Define the logical unit and address for the egress interface.

   [edit interfaces ge-1/2/2]
   user@host# set unit 0 family inet6 address 3ABC::1/16

6. Define the services PIC.

   [edit interfaces ge-1/2/2]
   user@host# up
   [edit interfaces]
   user@host# edit sp-0/2/0

7. Configure the logical unit for the services PIC.

   [edit interfaces sp-0/2/0]
   user@host# up
   [edit interfaces]
   user@host# set unit 0 family inet
   user@host# set unit 0 family inet6
Results

```
[edit interfaces]
user@host# show
sp-0/2/0 {
 unit 0 {
 family inet;
 family inet6;
 }
}
ge-1/2/0 {
 unit 0 {
 family inet {
 service {
 input {
 service-set v6rd-dom1-service-set;
 }
 output {
 service-set v6rd-dom1-service-set;
 }
 } address 10.10.10.1/24;
 }
 family inet6 {
 service {
 input {
 service-set v6rd-dom1-service-set;
 }
 output {
 service-set v6rd-dom1-service-set;
 }
 } address 3abc::1/16;
 }
 }
}
ge-1/2/2 {
 unit 0 {
 family inet6 {
 address 3abc::1/16;
 }
 }
}
```

Softwire Concentrator, Softwire Rule, and Stateful Firewall Rule Configuration

Step-by-Step Procedure

To configure the softwire concentrator, softwire rule, and stateful firewall rule:

1. Define the 6rd softwire concentrator.

   `user@host# top`
   `user@host# edit services softwire softwire-concentrator v6rd v6rd-dom1`

2. Configure the softwire concentrator properties. Here, softwire address 30.30.30.1 is the softwire concentrator IPv4 address, 10.10.10.0/24 is the IPv4 prefix of the CE WAN side, and 3040::0/16 is the IPv6 prefix of the 6rd domain D1.
3. Define the softwire rule.

```
[edit services softwire softwire-concentrator v6rd v6rd-dom1]
user@host# set softwire-address 30.30.30.1
user@host# set ipv4-prefix 10.10.10.0/24
user@host# set v6rd-prefix 3040::0/16
user@host# set mtu-v4 9192
```

4. Define a stateful firewall rule and properties. You must configure a stateful firewall rule that accepts all traffic in both the input and output direction in order for 6rd to work; however, this is not enforced through the CLI. This is because in IPv6, gratuitous IPv6 packets are expected (due to Anycast) and should not be dropped. The service PIC can handle reverse traffic without seeing all forward traffic. This can also happen with service PIC switchover in the middle of a session. By default, the stateful firewall on the service PIC will drop all traffic unless a rule is configured explicitly to allow it.

```
[edit services softwire softwire-concentrator v6rd v6rd-dom1]
user@host# up 2
[edit services softwire]
user@host# edit rule v6rd-dom1
[edit services softwire rule v6rd-dom1]
user@host# set match-direction input
[edit services softwire rule v6rd-dom1]
user@host# set term t1 then v6rd v6rd-dom1

[edit services stateful-firewall]
user@host# up 3
[edit services]
user@host# edit services stateful-firewall
[edit services stateful-firewall]
user@host# edit rule r1
[edit services stateful-firewall rule r1]
user@host# set match-direction input-output
user@host# set term t1 then accept
```
Results

[edit services softwire]
user@host# show

softwire-concentrator {
  v6rd v6rd-dom1 {
    softwire-address 30.30.30.1;
    ipv4-prefix 10.10.10.0/24;
    v6rd-prefix 3040::0/16;
    mtu-v4 9192;
  }
}
rule v6rd-dom1-r1 {
  match-direction input;
  term t1 {
    then {
      v6rd v6rd-dom1;
    }
  }
}

Service Set Configuration

Step-by-Step Procedure

To configure the service set:

1. Define the service set for 6rd processing.

   user@host# top
   user@host# edit services service-set v6rd-dom1-service-set

2. Define the softwire and stateful firewall rules for the service set.

   [edit services service-set v6rd-dom1-service-set]
   user@host# set softwire-rules v6rd-dom1
   user@host# set stateful-firewall-rules r1

3. Define the interface-service for the service set.

   [edit services service-set v6rd-dom1-service-set]
   user@host# set interface-service service-interface sp-0/2/0
Results

```
[edit service-set v6rd-dom1-service-set]
user@host# show
softwire-rules v6rd-dom1-r1
 interface-service {
 service-interface sp-0/2/0;
 }
```

Related Documentation

- Tunneling Services for IPv4-to-IPv6 Transition Overview on page 317
- Configuring a 6rd Softwire Concentrator on page 353
- Configuring Softwire Rules on page 323
- Configuring Stateful Firewall Rules for 6rd Softwire on page 354
- Configuring Service Sets for Softwire on page 324
- Example: Basic DS-Lite Configuration on page 333
- Example: Configuring DS-Lite and 6rd in the Same Service Set on page 340

High Availability and Load Balancing for 6rd Softwires

NOTE: The 6rd feature is supported on Multiservices 100, 400, and 500 PICs on M Series routers, and on MX Series routers equipped with Multiservices DPCs. The 6rd feature is not supported on MX Series routers with MS-MPCs or MS-MICs.

- Load Balancing a 6rd Domain Across Multiple Services PICs on page 361
- Example: Load Balancing a 6rd Domain Across Multiple Services PICs on page 361
- Configuring High Availability for 6rd Using 6rd Anycast on page 367

Load Balancing a 6rd Domain Across Multiple Services PICs

The 6rd domain is an IPv6 network, which can potentially be very large. A single PIC, or network processing unit (NPU) on a Multiservices DPC, might not be able to handle all the traffic for the 6rd domain. To alleviate load problems, you can load-balance the 6rd domain traffic across multiple PICs. To do so, assign the same softwire rule to different services sets that use different interfaces. Configure explicit routes and equal-cost multipath (ECMP) to load-balance the 6rd traffic.

Example: Load Balancing a 6rd Domain Across Multiple Services PICs

- Hardware and Software Requirements on page 362
- Overview on page 362
- Configuration on page 362
Hardware and Software Requirements

This example requires the following hardware:

- An MX Series 5G Universal Routing Platform with a services DPC with two available NPUs or an M Series Multiservice Edge router with two services PICs available for 6rd softwire concentrator processing
- A domain name server (DNS)

This example uses the following software:

- Junos OS Release 11.4 or higher

Overview

Because of anticipated volume, a provider needs to balance 6rd softwire traffic between two services PICs.

Configuration

- Chassis Configuration on page 362
- Softwire Concentrator and Softwire Rule Configuration on page 363
- Stateful Firewall Configuration on page 364
- Service Set Configuration on page 364
- Load-Balancing Configuration on page 365

Chassis Configuration

Step-by-Step Procedure

To configure the chassis:

1. Define the ingress interface and its properties.

   user@host# edit interfaces ge-1/2/0
   user@host# set unit 0 family inet address 10.10.10.1/16

2. Define the egress interface and its properties. In this example, the IPv6 clients try to reach the IPv6 server at 3abc::2/16.

   user@host# edit interfaces ge-1/2/2
   user@host# set unit 0 family inet6 address 3ABC::1/16

3. Define the services PICs for selection as softwire concentrators by the load-balancing process. This configuration uses two PICs/NPUs: sp-3/0/0 and sp-3/1/0. A next-hop style service set is configured (shown in the next section).

   user@host# edit interfaces sp-3/0/0
   [edit interfaces ge-3/0/0]
   user@host# set services-options syslog host local services any
   user@host# set unit 0 family inet
The software configuration is straightforward. In this example, the 6rd domain prefix is 3040::/16, the 6rd software concentrator IPv4 address is 30.30.30.1, and the customer IPv4 network is 10.10.0.0/16. In the customer premises equipment (CPE) network, all customer edge (CE) devices have addresses that belong to the 10.10.0.0/16 network. To configure the software:

1. Go to the [edit services softwire] hierarchy level.

   user@host# edit services softwire

2. Configure IPv6 multicast.

   [edit services softwire]
   user@host# set ipv6-multicast-interfaces all

3. Go to the softwire concentrator v6rd hierarchy level and name the softwire concentrator shenick01-rd1.

   [edit services softwire]
   user@host# edit softwire-concentrator v6rd shenick01-rd1

4. Configure the softwire concentrator properties.

   [edit services softwire softwire-concentrator v6rdshenick01-rd1]
   user@host# set softwire-address 30.30.30.1
   user@host# set ipv4-prefix 10.10.0.0/16
   user@host# set v6rd-prefix 3040::/16
   user@host# set mtu-v4 9192
5. Configure a softwire rule for incoming 6rd traffic.

    [edit services softwire softwire-concentrator v6rd shenick01-rd1 ]
    user@host# up 1
    [edit services softwire ]
    user@host# edit rule shenick01-r1
    [edit services softwire rule shenick01-r1] 
    user@host# set match-direction input
    user@host# set term t1 then v6rd shenick01-rd1

**Stateful Firewall Configuration**

**Step-by-Step Procedure**

To configure the stateful firewall rule:

1. Go to the stateful firewall hierarchy level and define a rule.

    user@host# edit services stateful-firewall rule r1

2. Set the match direction.

    [edit services stateful-firewall rule r1] 
    user@host# set match-direction input-output

3. Configure a term that accepts all traffic.

    [edit services stateful-firewall rule r1] 
    user@host# set term t1 then accept

**Service Set Configuration**

**Step-by-Step Procedure**

This configuration provides two service sets, each pointing to a different network processing unit (NPU). Both service sets use the same stateful firewall and softwire rules. Because they use the same softwire rule, they refer to same 6rd softwire concentrator. This results in the software concentrator being hosted on both the NPUs.

To configure the service set:

1. Define a service set for the first NPU.

    user@host# edit services service-set v6rd-sset1

2. Configure the softwire and stateful firewall rules for the first NPU.

    [edit services service-set v6rd-sset1] 
    user@host# set softwire-rules shenick01-r1
    user@host# set stateful-firewall-rules r1
3. Configure the inside and outside interfaces for the next-hop service.

   [edit services service-set v6rd-sset1]
   user@host# set next-hop-service inside-service-interface sp-3/0/0.1
   user@host# set next-hop-service outside-service-interface sp-3/0/0.2

4. Define a service set for the second NPU.

   user@host# edit services service-set v6rd-sset2

5. Configure the softwire and stateful firewall rules for the second NPU.

   [edit services service-set v6rd-sset2]
   user@host# set softwire-rules shenick01-r1
   user@host# set stateful-firewall-rules r1

6. Configure the inside and outside interfaces for the next-hop service.

   [edit services service-set v6rd-sset1]
   user@host# set next-hop-service inside-service-interface sp-3/1/0.1
   user@host# set next-hop-service outside-service-interface sp-3/1/0.2

Load-Balancing Configuration

Step-by-Step Procedure

To configure load balancing:

Configure explicit routes and ECMP to load-balance the 6rd traffic. Configure explicit routes for both the 6rd concentrator IPv4 address and the 6rd domain prefix, so that they point to both NPUs.

1. To configure static routes for the 6rd domain using the routing-table inet6.0, go to the [edit forwarding-options rib inet6.0 static] hierarchy level and set the routes for the 6rd domain and the 6rd concentrator IPv4 address.

   user@host edit forwarding-options rib inet6.0 static
   [edit forwarding-options rib inet6.0 static]
   user@host# set route 3040::0/16 next-hop [ sp-3/0/0.2 sp-3/1/0.2 ]
   user@host# set route 30.30.30.1/32 next-hop [ sp-3/0/0.1 sp-3/1/0.1 ]

The service PIC daemon (spd) also adds default routes to these addresses pointing to the NPUs. However, the routes added by the spd use different metrics, which are computed based on the FPC, PIC, slot numbers, and subunit of the services PIC if used in the service set configuration. The static routes configured in this sample configuration will have metrics of 5 and therefore a higher preference than the spd-added routes.

The explicitly configured routes are as follows:

   root@host# run show route 30.30.30.1
inet.0: 37 destinations, 40 routes (36 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

30.30.30.1/32      *[Static/5] 00:00:10
                   > via sp-3/0/0.1
                   > via sp-3/1/0.1
3040::/16          *[Static/5] 00:00:15
                   > via sp-3/0/0.2
                   > via sp-3/1/0.2

BEST PRACTICE: The spd-installed routes have higher metric values (hence a low preference) and the metrics are different. If the metrics are different and ECMP is not enabled, even though multiple routes exist for the same destination, only one of the routes is picked up all the time (based on the metric). For ECMP you must configure equal-cost routes, and hence a manual configuration of routes is needed as shown above.

2. Configure equal-cost multipath (ECMP) load balancing by configuring the hash key at the [edit forwarding-options hash-key] hierarchy level.

    user@host# forwarding-options hash-key
    [edit forwarding-options hash-key]
    user@host# set family inet layer-3 destination-address
    user@host# set family inet layer-3 source-address
    user@host# set family inet6 layer-3 destination-address
    user@host# set family inet6 layer-3 source-address

3. Verify your configuration by displaying forwarding-options.

    user@host# show forwarding-options

    hash-key { 
        family inet { <= IPv4 traffic from CEs uses this
                    layer-3 { 
                        destination-address; 
                        source-address; 
                    } 
    }
family inet6 {  
  **TIP:** Both IPv4 and IPv6 hash keys must be configured. The IPv4 hash key is used to distribute the traffic coming from CPE devices to the 6rd branch relay. The IPv6 hash key is used to distribute the traffic coming from the IPv6 Internet to the 6rd domain. Because the hash in the forward and reverse direction is for different families, different flows from the same session can reside on different NPUs. However, 6rd processing is stateless (as far as mapping IPv6 packets to softwires is concerned), so this should not be a problem.

---

**Configuring High Availability for 6rd Using 6rd Anycast**

You configure 6rd Anycast by defining two service sets that use the same softwire rule in both service sets, just as you do when you configure load balancing for 6rd. However, you do not configure ECMP, and as a result, the services PIC daemon (spd) installs two routes each for the softwire concentrator address and 6rd domain pointing to each service interface. The forwarding plane can select any route based on the priority, which is computed when the spd installs the routes. The priority is computed based on the FPC, PIC, slot numbers, and subunit number used on the sp- interface. *Only one PIC is used* based on the route priority, and that PIC gets all of the 6rd traffic. If the PIC goes down, the route pointing to it is also deleted and the forwarding plane automatically selects the alternate available PIC.

6rd Anycast is completely stateless. The spd installs the route and doesn’t run any state machine for the PIC. Because the routes are pre-installed and service sets are already on the PIC, there is no service delay if a failover occurs.

**Related Documentation**

- Tunneling Services for IPv4-to-IPv6 Transition Overview on page 317

---

**Configuring Inline 6rd**

Junos OS supports inline 6rd on all Modular Port Concentrator (MPC) line cards on MX Series routers. This saves customers the cost of using MS-DPCs for the required tunneling, encapsulation, and decapsulation processes. Anycast is supported for 6to4 (next-hop service interfaces only). Hairpinning is also supported for traffic between 6rd domains.
To implement the inline functionality, you configure service interfaces on the MPC as inline services interfaces (si-) rather than as multiServices (ms-) interfaces.

- Configuring the Bandwidth for Inline Services on page 368
- Configuring the Interfaces on page 368
- Configuring the Softwire Concentrator and Rule on page 370
- Configuring the Service Set on page 371
- Configuring the Routing Instance on page 371

**Configuring the Bandwidth for Inline Services**

You must provide bandwidth configuration for inline services on the modular port concentrator (MPC) used for inline 6rd processing.

To configure bandwidth:

- Specify the MPC and logical interface, and the desired bandwidth, 1g or 10g.

```
user@host# set chassis fpc mpc-number pic logical-interface-number inline-services bandwidth bandwidth
```

For example:

```
user@host# set chassis fpc 0 pic 0 inline-services bandwidth 10g
```

**Configuring the Interfaces**

Configure the si- interfaces for 6rd control and data. 6rd services must be configured on port 0.

To configure the si- interfaces:

1. Configure the 6rd services on port 0 and include units for IPv4 and IPv6.

```
user@host# set interfaces si-mpc-number/logical-interface-number/0 unit 0 family inet
user@host# set interfaces si-mpc-number/logical-interface-number/0 unit 0 family inet6
```

For example:

```
user@host# set interfaces si-0/0/0 unit 0 family inet
user@host# set interfaces si-0/0/0 unit 0 family inet6
```

2. Configure the media interfaces for the inside service domain.

```
user@host# set interfaces si-mpc-number/logical-interface-number/0 unit unit-number family inet
user@host# set interfaces si-mpc-number/logical-interface-number/0 unit unit-number family inet6
user@host# set interfaces si-0/0/0 unit unit-number service-domain inside
```
For example:

```bash
user@host# set interfaces si-0/0/0 unit 1 family inet
user@host# set interfaces si-0/0/0 unit 1 family inet6
user@host# set interfaces si-0/0/0 unit 1 service-domain inside

3. Configure the media interfaces for the outside service domain.

```bash
user@host# set interfaces si-mpc-number/logical-interface-number/0 unit unit-number family inet
user@host# set interfaces si-mpc-number/logical-interface-number/0 unit unit-number family inet6
user@host# set interfaces si-mpc-number/logical-interface-number/0 unit unit-number service-domain outside

For example:

```bash
user@host# set interfaces si-0/0/0 unit 2 family inet
user@host# set interfaces si-0/0/0 unit 2 family inet family inet6
user@host# set interfaces si-mpc-number/logical-interface-number/0 unit unit-number service-domain outside

4. Configure the IPv4-facing interface for use with an interface-style or next-hop service set.

- To configure for use with an interface-style service set, configure input and output service and specify the service set.

```bash
user@host# set interfaces ge-mpc-number/logical-interface-number/port unit unit-number family inet service input service-set service-set-name
user@host# set interfaces ge-mpc-number/logical-interface-number/port unit unit-number family inet service output service-set service-set-name
user@host# set interfaces ge-mpc-number/logical-interface-number/port unit unit-number family inet address ip-address

For example:

```bash
user@host# set interfaces ge-0/2/7 unit 0 family inet service input service-set vrf-intf-service-set
user@host# set interfaces ge-0/2/7 unit 0 family inet service output service-set vrf-intf-service-set
user@host# set interfaces ge-0/2/7 unit 0 family inet address 10.10.10.1/16

- To configure for use with a next-hop style service set, omit the service input and service output references.

```bash
user@host# set interfaces ge-mpc-number/logical-interface-number/port unit unit-number family inet
user@host# set interfaces ge-mpc-number/logical-interface-number/port unit unit-number family inet address ip-address

For example:
5. Configure the IPv6 facing interface.

user@host# set interfaces ge-0/2/7 unit 0 family inet
user@host# set interfaces ge-0/2/7 unit 0 family inet address 10.10.10.1/16

**Configuring the Softwire Concentrator and Rule**

Define the softwire concentrator and rule used for encapsulation and decapsulation of IPv6 over IPv4 packets for CE.

To define the softwire concentrator:

1. Specify a 6rd softwire concentrator and its address.

   user@host# set services softwire softwire-concentrator v6rd concentrator-name softwire-address ip-address

   For example:

   user@host# set services softwire softwire-concentrator v6rd swire01-rd1 softwire-address 30.30.30.1

2. Configure the IPv4 address prefix for the customer edge network and the IPv6 address prefix for the 6rd domain.

   user@host# set services softwire softwire-concentrator v6rd concentrator-name ipv4-prefix ipv4-prefix v6rd-prefix v6rd-prefix

   For example:

   user@host# set services softwire softwire-concentrator v6rd swire01-rd1 ipv4-prefix 10.10.0.0/16 v6rd-prefix 3040::0/16

3. Configure the size, in bytes, of the maximum transmission unit `mtu-ipv4` for IPv6 packets encapsulated in IPv4. Compute this as the maximum expected IPv4 packet size plus 20.

   user@host# set services softwire softwire-concentrator v6rd concentrator-name set mtu-ipv4 number-of-bytes

   For example:
To configure the software rule:

- Specify the software rule, specifying the direction of traffic to be tunneled and the 6rd softwire concentrator to be used.

```
user@host# set services softwire rule softwire-rule-name match-direction match-direction term rule-term-number then v6rd concentrator-name
```

For example:

```
user@host# set services softwire rule swire01-r1 match-direction input term t1 then v6rd swire01-rd1
```

### Configuring the Service Set

To configure an interface style or next-hop service set for 6rd processing:

- Specify an interface style service set.

```
user@host# set services service-set service-set-name softwire-rules softwire-rule-name service-interface interface-name
```

For example:

```
user@host# set services service-set vrf-intf-service-set softwire-rules swire01-r1 service-interface si-0/0/0.0
```

or

- Configure a next-hop service set.

```
user@host# set services service-set service-set-name softwire-rules softwire-rule-name
user@host# set services service-set service-set-name next-hop-service inside-service-interface inside-interface outside-service-interface outside-interface
```

```
user@host# set services service-set vrf-nh-service-set softwire-rules swire01-r1 inside-service-interface si-0/0/0.1 outside-service-interface si-0/0/0.2
```

### Configuring the Routing Instance

To configure the routing instance:

1. Specify the routing instance and each interface it serves.

```
user@host# set routing-instance routing-instance-name instance-type vrf interface interface-name
```
For example:

```
user@host# set routing-instance v6rd-vrf instance-type vrf interface si-0/0/0.1
user@host# set routing-instance v6rd-vrf instance-type vrf interface interface
ge-0/2/7.0
```

2. Specify the route distinguisher and vrf-target.

```
user@host# set routing-instance v6rd-vrf route-distinguisher 1.1.1.1:1
user@host# set routing-instance v6rd-vrf vrf-target target:100:100
```

**Related Documentation**

- Configuring a 6rd Softwire Concentrator on page 353
- Configuring Softwire Rules
- Configuring Inline 6rd on page 367

**Inline 6rd and 6to4 Configuration Guidelines**

Keep the following points in mind when you are configuring and using inline 6rd and 6to4.

- You can configure a maximum of 1024 softwire concentrators on a single line card.
- Reassembly of 6rd IPv4 packet from CE is not added as part of this release.
- 6rd multicast is not supported.
- Any ICMPv4 errors generated in the IPv4 access network (between CPE and border relays) are dropped on the border relay. They are not converted into IPv6 errors and forwarded to IPv6 side.
- 6rd/6to4 Anycast and load balancing can be configured only using next-hop style service-interface configuration, not interface style.
- The si-interface input features are not exercised for packets flowing to the 6rd tunnel.
- Bandwidth for traffic from the 6rd tunnel is limited by the available PFE bandwidth; bandwidth for traffic to the 6rd tunnel is limited by the internal VRF loopback bandwidth. SI-IFD loopback bandwidth configuration under the [edit chassis] hierarchy has no impact on the 6rd loopback bandwidth.
- If the packet length is more than Tunnel MTU for downlink packets after encapsulating with an IPv4 header, the packet is dropped as v4 MTU errors. For these packet drops an **ICMPv6 packet too big error** message is sent back to the sender. Typically 6rd Tunnel MTU is configured with a high value so if the packet size is larger than the configured value, fragmentation occurs at the egress interface (towards the IPv4 access network).
Examples: 6rd and 6to4 Configurations

NOTE: The 6rd and 6to4 features are supported on Multiservices 100, 400, and 500 PICs on M Series routers, and on MX Series routers equipped with Multiservices DPCs. The 6rd and 6to4 features are not supported on MX Series routers with MS-MPCs or MS-MICs.

- Example: 6rd with Interface-Style Service Set Configuration on page 373
- Example: 6rd with Next-Hop-Style Service Set Configuration on page 374
- Example: 6rd Anycast Configuration on page 376
- Example: Hairpinning Between 6rd Domains Configuration on page 377
- Example: 6to4 Configuration on page 379

Example: 6rd with Interface-Style Service Set Configuration

```conf
chassis {
 fpc 0 {
 pic 0 {
 inline-services {
 bandwidth 10g;
 }
 }
 }
}
services {
 service-set vrf-intf-service-set {
 softwire-rules swire01-r1;
 interface-service {
 service-interface si-0/0/0.0;
 }
 }
 softwire {
 softwire-concentrator {
 v6rd swire01-rd1 {
 softwire-address 30.30.30.1;
 ipv4-prefix 10.10.0.0/16;
 v6rd-prefix 3040::0/16;
 mtu-v4 9192;
 }
 }
 rule swire01-r1 {
 match-direction input;
 term t1 {
 then {
 v6rd swire01-rd1;
 }
 }
 }
 }
}
```
Example: 6rd with Next-Hop-Style Service Set Configuration

chassis {
  fpc 0 {
    pic 0 {
      inline-services {
        bandwidth 10g;
      }
    }
  }
}

services {
  service-set vrf-nh-service-set {
    softwire-rules swire01-r1;
    next-hop-service {
      
    }
  }
}

 routing-instances { 
  v6rd-vrf { 
    instance-type vrf; 
    interface si-0/0/0.1; 
    interface ge-0/2/7.0; 
    route-distinguisher 1.1.1.1; 
    vrf-target target:100:100; 
  } 
} 

ge-0/2/7 { 
  unit 0 [
    family inet { 
      address 10.10.10.1/16; 
    } 
  ] 
} 

ge-0/2/8 { 
  unit 0 [
    family inet6 { 
      address 3abc::1/16; 
    } 
  ] 
} 

interfaces { 
  si-0/0/0 { 
    unit 1 { 
      family inet; 
      family inet6; 
      service-domain inside; 
    } 
    unit 2 { 
      family inet; 
      family inet6; 
      service-domain outside; 
    } 
  } 
}
inside-service-interface si-0/0/0.1;
outside-service-interface si-0/0/0.2;
}
}
softwire {
  softwire-concentrator {
    v6rd swire01-rd1 {
      softwire-address 30.30.30.1;
      ipv4-prefix 10.10.0.0/16;
      v6rd-prefix 3040::0/16;
      mtu-v4 9192;
    }
  }
  rule swire01-r1 {
    match-direction input;
    term t1 {
      then {
        v6rd swire01-rd1;
      }
    }
  }
}
}
interfaces {
  si-0/0/0 {
    unit 1 {
      family inet;
      family inet6;
      service-domain inside;
    }
    unit 2 {
      family inet;
      family inet6;
      service-domain outside;
    }
  }
  ge-0/2/7 {
    unit 0 {
      family inet {
        address 10.10.10.1/16;
      }
    }
  }
  ge-0/2/8 {
    unit 0 {
      family inet6 {
        address 3abc::1/16;
      }
    }
  }
}
routing-instances {
  v6rd-vrf {
    instance-type vrf;
    interface si-0/0/0.1;
  }
}
Example: 6rd Anycast Configuration

```
chassis {
 fpc 0 {
 pic 0 {
 inline-services {
 bandwidth 10g;
 }
 }
 pic 2 {
 inline-services {
 bandwidth 1g;
 }
 }
 }
}

services {
 service-set anycast-nh-set1 {
 softwire-rules swire01-r1;
 next-hop-service {
 inside-service-interface si-0/0/0.1;
 outside-service-interface si-0/0/0.2;
 }
 }
 service-set anycast-nh-set2 {
 softwire-rules swire01-r1;
 next-hop-service {
 inside-service-interface si-0/2/0.1;
 outside-service-interface si-0/2/0.2;
 }
 }
}

softwire {
 softwire-concentrator {
 v6rd swire01-rd1 {
 softwire-address 30.30.30.1;
 ipv4-prefix 10.10.0.0/16;
 v6rd-prefix 3040::0/16;
 mtu-v4 9192;
 }
 }
 rule swire01-r1 {
 match-direction input;
 term t1 {
 then {
 v6rd swire01-rd1;
 }
 }
 }
}
```
Example: Hairpinning Between 6rd Domains Configuration

This example uses an interface service-set and a next-hop service set as hairpinning domains.
chassis {
  fpc 0 {
    pic 0 {
      inline-services {
        bandwidth 10g;
      }
    }
  }
} 
}
services {
  service-set hairpin-intf-service-set {
    softwire-rules swire01-r1;
    interface-service {
      service-interface si-0/0/0.0;
    }
  }
  service-set hairpin-nh-service-set {
    softwire-rules swire01-r2;
    next-hop-service {
      inside-service-interface si-0/0/0.1;
      outside-service-interface si-0/0/0.2;
    }
  }
  softwire {
    softwire-concentrator {
      v6rd swire01-rd1 {
        softwire-address 30.30.30.1;
        ipv4-prefix 10.10.0.0/16;
        v6rd-prefix 3040::0/16;
        mtu-v4 9192;
      }
      v6rd swire01-rd2 {
        softwire-address 60.60.60.1;
        ipv4-prefix 40.40.0.0/24;
        v6rd-prefix 3050::0/16;
        mtu-v4 9192;
      }
    }
    rule swire01-r1 {
      match-direction input;
      term t1 {
        then [v6rd swire01-rd1];
      }
    }
    rule swire01-r2 {
      match-direction input;
      term t1 {
        then [v6rd swire01-rd2];
      }
    }
  }
}
Example: 6to4 Configuration

chassis {
    fpc 0 {
        pic 0 {
            inline-services {
                bandwidth 10g;
            }
        }
    }
}

services {

}
service-set 6to4-intf-service-set {
    softwire-rules shenick01-r1;
    interface-service {
        service-interface si-0/0/0.0;
    }
}

interfaces {
    si-0/0/0 {
        unit 0 {
            family inet;
            family inet6;
        }
        unit 1 {
            family inet;
            family inet6;
            service-domain inside;
        }
        unit 2 {
            family inet;
            family inet6;
            service-domain outside;
        }
    }
    ge-0/2/7 {
        unit 0 {
            family inet {
                service {
                    input {
                        service-set 6to4-intf-service-set;
                    }
                    output {
                        service-set 6to4-intf-service-set;
                    }
                }
                address 10.10.10.1/16;
            }
        }
    }
    ge-0/2/8 {
        unit 0 {
            family inet6 {
                address 3abc::1/16;
            }
        }
    }
}

Related Documentation
• Configuring a 6to4 Provider-Managed Tunnel
CHAPTER 25

Transitioning to IPv6 Using Mapping of Address and Port with Encapsulation (MAP-E)

- Configuring Mapping of Address and Port with Encapsulation (MAP-E) on page 381
- Equal Cost Multiple Path (ECMP) support for Mapping of Address and Port with Encapsulation (MAP-E) on page 388

Configuring Mapping of Address and Port with Encapsulation (MAP-E)

- Understanding Mapping of Address and Port with Encapsulation (MAP-E) on page 381
- Configuring Mapping of Address and Port with Encapsulation (MAP-E) on page 384

Understanding Mapping of Address and Port with Encapsulation (MAP-E)

This topic provides an overview of Mapping of Address and Port with Encapsulation (MAP-E) feature and its benefit to service providers when used as an inline service on MX Series routers with MPC and MIC interfaces.

- Benefits of Mapping of Address and Port with Encapsulation (MAP-E) on page 381
- Mapping of Address and Port with Encapsulation (MAP-E) Terminology on page 382
- Mapping of Address and Port with Encapsulation (MAP-E) Functionality on page 382
- Mapping of Address and Port with Encapsulation (MAP-E) Supported and Unsupported Features on page 383

Benefits of Mapping of Address and Port with Encapsulation (MAP-E)

Reduces administrative overhead and creates a scalable network infrastructure that easily supports connectivity to a large number of IPv4 subscribers over the ISP's IPv6 access network.
Mapping of Address and Port with Encapsulation (MAP-E) Terminology

**Border Relay (BR)**—MAP-E-enabled provider edge device in a MAP domain. A BR device has at least an IPv6-enabled interface and an IPv4 interface connected to the native IPv4 network.

**MAP-E Customer Edge (CE)**—MAP-E-enabled customer edge device in a MAP deployment.

**MAP domain**—One or more MAP-CE devices and BR devices connected to the same virtual link.

**Port Set ID (PSID)**—Separate part of the transport layer port space that is denoted as port set ID.

**Embedded Address (EA) Bits**—EA-bits in the IPv6 address identify an IPv4 prefix or address or a shared IPv4 address and a port-set identifier.

**Softwire**—Tunnel between two IPv6 end-points to carry IPv4 packets or two IPv4 end-points to carry IPv6 packets.

**Softwire Initiator (SI)**—Softwire at the customer end that encapsulates native packets and tunnels them to a softwire concentrator at the service provider.

**Softwire Concentrator (SC)**—Softwire that decapsulates the packets received from a softwire initiator and sends them to their destination.

Mapping of Address and Port with Encapsulation (MAP-E) Functionality

Figure 25 on page 382 illustrates a simple MAP-E deployment scenario.

Figure 25: Sample MAP-E Deployment

In the MAP-E network topology, there are two MAP-E customer edge (CE) devices, each connected to a private IPv4 host. The MAP-E CE devices are dual stack and are capable of Network Address Port Translation (NAPT). The MAP-E CE devices connect to a MAP-E Border Relay (BR) device through an IPv6-only MAP-E network domain. The MAP-E BR device is dual stack and is connected to both a public IPv4 network and an IPv6 MAP-E network.
The MAP-E functionality is as follows:

1. The MAP-E CE devices are capable of NAPT. On receiving an IPv4 packet from the host, the MAP-E CE device performs NAT translation on the incoming IPv4 packets.

2. The NAT translated IPv4 packets are then encapsulated into IPv6 packets by the MAP-E CE device, and sent to the MAP-E BR device.

3. The IPv6 packet gets transported through the IPv6-only service provider network and reaches the MAP-E BR device.

4. On receiving the IPv6 packets, the incoming IPv6 packets are decapsulated by the MAP-E CE device and routed to the IPv4 public network.

In the reverse path, the incoming IPv4 packet is encapsulated into an IPv6 packet by the MAP-E BR device, and routed to the MAP-E CE devices.

### Mapping of Address and Port with Encapsulation (MAP-E) Supported and Unsupported Features

Junos OS supports the following MAP-E features and functionality:

- MAP-E implementation supports line card throughput of 100 Gigabits.
- Compliance with Internet draft draft-ietf-softwire-map-03 (expires on July 28, 2013), Mapping of Address and Port with Encapsulation (MAP).

**NOTE:** Section 8.2 of the draft — *BR must drop the packet and respond with an ICMPv6 Destination Unreachable, Source address failed ingress/egress policy (Type 1, Code 5)* — is not supported. Instead, spoof packets are silently dropped and the counter is incremented.

- Support chassis-wide scale of 250 shared MAP-E rules.
- Support the feature on all MPCs using service interfaces with 100 Gigabits.
- Ability to ping MAP-E BR IPv6 address.
- Support only next-hop style of configuration for MAP-E.
- Support reassembly of fragmented IPv4 traffic arriving from IPv4 network before encapsulating it into an IPv6 packet.
- Support fragmentation of inner IPv4 packet if the packet size after encapsulation exceeds the MAP-E maximum transmission unit (MTU).
- Packets having Internet Control Message Protocol (ICMP) payload with the following message types are accepted for MAP-E encapsulation and decapsulation:
  - Echo or Echo Reply Message of type 0 and 8
  - Timestamp or Timestamp Reply Message of type 13 and 14
• Information Request or Information Reply Message of type 15 and 16
• Border Relay (BR) anycast is supported.

The following features and functionality are not supported with the MAP-E feature:

• Anti-spoof check is not supported for fragmented IPv4 packets coming from a customer
edge (CE) device.
• Section 8.2 of the Internet draft draft-ietf-softwire-map-03 (expires on July 28, 2013),
Mapping of Address and Port with Encapsulation (MAP) is not supported. Instead of
responding with an ICMPv6 Destination Unreachable, Source address failed
ingress/egress policy (Type 1, Code 5) message, spoof packets are silently dropped
and the counter is incremented.
• IPv6 reassembly is not supported.
• ICMP v6-to-v4 translation at the BR is not supported.
• Inline MAP-E with virtual routing and forwarding (VRF) is not supported.
• Inline MAP-E with inline Network Address Translation (NAT) or dual stack (DS)-Lite
is not supported.
• Interface-style MAP-E configuration is not supported.

Configuring Mapping of Address and Port with Encapsulation (MAP-E)

This example shows you how to configure the MAP-E Border Relay (BR) solution using
a next hop-based style of configuration.

To configure MAP-E:

1. Create service interface on the device with 100g bandwidth support.

   [edit chassis]
   user@host# set fpc 0 pic 0 inline-services bandwidth 100g

2. Configure the dual stack service interface unit 0.

   [edit interfaces]
   user@host# set si-0/0/0 unit 0 family inet
   user@host# set si-0/0/0 unit 0 family inet6

3. Configure service interface inside the dual stack domain.

   [edit interfaces]
   user@host# set si-0/0/0 unit 1 family inet
   user@host# set si-0/0/0 unit 1 family inet family inet6
   user@host# set si-0/0/0 unit 1 service-domain inside

4. Configure service interface outside the dual stack domain.
5. Configure the IPv4-facing interface on BR.

```
[edit interfaces]
user@host# set ge-0/2/7 unit 0 family inet address 10.10.10.1/16
```

6. Configure the CPE-facing interface on BR.

```
[edit interfaces]
user@host# set ge-0/2/8 unit 0 family inet6 address 3abc::1/16
```

7. Configure the MAP-E softwire concentrator and associated parameters.

```
[edit services softwire softwire-concentrator]
user@host# set map-e swire01-rd1 version 03
user@host# set map-e swire01-rd1 softwire-address 2001:db8::ff::1
user@host# set map-e swire01-rd1 ipv4-prefix 10.10.0.0/16 mape-prefix 3040::0/16
user@host# set map-e swire01-rd1 ea-bits-len 16
user@host# set map-e swire01-rd1 psid-offset 6
user@host# set map-e swire01-rd1 psid-length 8
user@host# set map-e swire01-rd1
user@host# set mtu-ipv6 9192
user@host# set map-e swire01-rd1 v4-reassembly
```

---

**NOTE:**

When configuring the MAP-E softwire concentrator, take the following into consideration:

- Possible values for `ea-bits-len` is 0 through 48.
- Possible values for `v4-prefix-len` is 0 through 32.
- If `v4-prefix-len` is 0 then `ea-bits-len` must be non-zero, and vice versa.
- It is possible that `ea-bits-len` is equal to 0, but `psid-len` is non-zero.
- If the sum of `v4-prefix-len` and `ea-bits-len` is less than 32, then the `psid-len` must be equal to the difference between 32 and the sum total of `v4-prefix-len` and `ea-bits-len`.
- The MAP-E IPv4 and IPv6 prefix must be unique per softwire concentrator.
- MAP-E PSID offset has a default value of 4, and MAP-E tunnel maximum transmission unit (MTU) has a default value of 9192.
8. Configure a softwire rule to specify the direction of traffic to be tunneled and the MAP-E softwire concentrator to be used.

```
[edit services software]
user@host# set rule swire01-r1 match-direction input term t1 then map-e swire01-rd1
```

9. Configure the service set for MAP-E.

```
[edit services service-set]
user@host# set mape-nh-service-set softwire-rules swire01-r1
user@host# set mape-nh-service-set next-hop-service inside-service-interface si-0/0/0.1 outside-service-interface si-0/0/0.2
```

For example:

```
chassis {
 fpc 4 {
 pic 0 {
 inline-services {
 bandwidth 100g;
 }
 }
 }
 fpc 5 {
 pic 0 {
 inline-services {
 bandwidth 100g;
 }
 }
 }
}
services {
 service-set sset1 {
 softwire-rules sw-rule1;
 next-hop-service {
 inside-service-interface si-4/0/0.1;
 outside-service-interface si-4/0/0.2;
 }
 }
 service-set sset2 {
 softwire-rules sw-rule1;
 next-hop-service {
 inside-service-interface si-5/0/0.1;
 outside-service-interface si-5/0/0.2;
 }
 }
}
softwire {
 softwire-concentrator {
 map-e mape-domain-1 {
 softwire-address 2001:db8:ffff::1;
 ipv4-prefix 192.0.2.0/24;
 mape-prefix 2001:db8:1234:ab00::/56;
 }
 }
}
```
ea-bits-len 16;
psid-offset 4;
psid-length 8;
mtu-v6 9192;
version-03;
}
}
rule sw-rule1 {
  match-direction input;
term t1 {
    then {
      map-e mape-domain-1;
    }
  }
}
}
}

interfaces {
  xe-0/1/1 {
    unit 0 {
      family inet6 {
        address 2001:db8::1/32 {
          ndp 2001:db8:6434:0:00c0:0002:6400:3400 mac 00:11:22:33:44:55;
        }
      }
    }
  }
  xe-0/1/2 {
    unit 0 {
      family inet {
        address 100.1.1.1/24 {
          arp 100.1.1.2 mac 00:11:22:33:44:55;
        }
      }
    }
  }
  si-4/0/0 {
    unit 1 {
      family inet;
      family inet6;
      service-domain inside;
    }
    unit 2 {
      family inet;
      family inet6;
      service-domain outside;
    }
  }
  si-5/0/0 {
    unit 1 {
      family inet6;
      service-domain inside;
    }
    unit 2 {
      family inet;
Equal Cost Multiple Path (ECMP) support for Mapping of Address and Port with Encapsulation (MAP-E)

This topic provides an overview of Equal Cost Multiple Path (ECMP) support for Mapping of Address and Port with Encapsulation (MAP-E) feature and its benefit to service providers when used as an inline service on MX Series routers with MPC and MIC interfaces.

In a MAP-E network topology, in the reverse path, the border relay router receives IPv4 traffic and encapsulates it in a IPv6 packet. Longer routes are used for faster matching. However, they do not facilitate EMCP load balancing on the PIC, as the routes point to a single PIC. Starting in 19.3R1, you can disable auto-routes by configuring the disable-auto-route statement at the [edit services software software-concentrator map-e <domain-name>] hierarchy, and direct the static routes to an ECMP load balancer. Hence, the packets can be distributed among different inline service interfaces.

Benefits

Enable load-balancing by distributing packets among different inline service interfaces.

Disabling auto-routes to support ECMP with Mapping of Address and Port with Encapsulation (MAP-E)

This example shows you how to disable auto-routes on a MAP-E Border Relay (BR) solution to support ECMP.

1. Create service interface on the device with 100g bandwidth support.

   [edit chassis]
   user@host# set fpc 0 pic 0 inline-services bandwidth 100g

2. Configure the dual stack service interface unit 0.

   [edit interfaces]
user@host# set si-0/0/0 unit 0 family inet
user@host# set si-0/0/0 unit 0 family inet6

3. Configure service interface inside the dual stack domain.

[edit interfaces]
user@host# set si-0/0/0 unit 1 family inet
user@host# set si-0/0/0 unit 1 family inet family inet6
user@host# set si-0/0/0 unit 1 service-domain inside

4. Configure service interface outside the dual stack domain.

[edit interfaces]
user@host# set si-0/0/0 unit 2 family inet
user@host# set si-0/0/0 unit 2 family inet family inet6
user@host# set si-0/0/0 unit 2 service-domain outside

5. Configure the IPv4-facing interface on BR.

[edit interfaces]
user@host# set ge-0/2/7 unit 0 family inet address 10.10.10.1/16

6. Configure the CPE-facing interface on BR.

[edit interfaces]
user@host# set ge-0/2/8 unit 0 family inet6 address 3abc::1/16

7. Configure MAP-E domain 1 and associated parameters.

[edit services softwire softwire-concentrator]
user@host# set map-e mape-domain-1 version 03
user@host# set map-e mape-domain-1 softwire-address 2001:db8::fff:1
user@host# set map-e mape-domain-1 ipv4-prefix 192.0.2.0/24 mape-prefix 2001:db8::/32
user@host# set map-e mape-domain-1 ea-bits-len 16
user@host# set map-e mape-domain-1 psid-offset 4
user@host# set map-e mape-domain-1 psid-length 8
user@host# set map-e mape-domain-1 mtu-ipv6 9192
user@host# set map-e mape-domain-1 disable-auto-route

8. Configure MAP-E domain 2 and associated parameters.

[edit services softwire softwire-concentrator]
user@host# set map-e mape-domain-2 version 03
user@host# set map-e mape-domain-2 softwire-address 2001:db8::fff:1
user@host# set map-e mape-domain-2 ipv4-prefix 192.0.3.0/24 mape-prefix 2002:db8::/32
user@host# set map-e mape-domain-2 ea-bits-len 16
9. Configure a softwire rule for MAP-E domain-1 to specify the direction of traffic to be tunneled.

   [edit services softwire]
   user@host# set rule rule sw-rule1 match-direction input term t1 then map-e mape-domain-1

10. Configure a softwire rule for MAP-E domain-2 to specify the direction of traffic to be tunneled.

    [edit services softwire]
    user@host# set rule rule sw-rule2 match-direction input term t1 then map-e mape-domain-2

11. Configure a single rule-set to combine both the rules.

    [edit services softwire]
    user@host# set rule-set ecmp-rules rule sw-rule1
    user@host# set rule-set ecmp-rules rule sw-rule2

12. Configure the service set for MAP-E.

    [edit services service-set]
    user@host# set sset1 softwire-rule-sets ecmp-rules
    user@host# set sset1 next-hop-service inside-service-interface si-0/0/0.1
    user@host# set sset1 next-hop-service outside-service-interface si-0/0/0.2
    user@host# set sset2 softwire-rule-sets ecmp-rules
    user@host# set sset2 next-hop-service inside-service-interface si-0/1/0.1
    user@host# set sset2 next-hop-service outside-service-interface si-0/1/0.2

13. Configure static routes for MAP-E BR IPv6 address.

    [edit routing-options]
    user@host# set rib inet6.0 static route 2001:db8:ffff::1/128 next-hop si-0/0/0.1
    user@host# set rib inet6.0 static route 2001:db8:ffff::1/128 next-hop si-0/1/0.1
    user@host# set rib inet0 static route 192.0.2.0/24 next-hop si-0/0/0.2
    user@host# set rib inet0 static route 192.0.2.0/24 next-hop si-0/1/0.2
    user@host# set rib inet0 static route 192.0.3.0/24 next-hop si-0/0/0.2
    user@host# set rib inet0 static route 192.0.3.0/24 next-hop si-0/1/0.2


    [edit ]
user@host# set policy-options policy-statement LB then load-balance per-packet
user@host# set routing-options forwarding-table export LB

15. Verify the status of the routes.

[edit]
user@host# run show route 2001:db8:ffff::1
inet6.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2001:db8:ffff::1/128
  * [Static/5] 00:00:12
  > via si-1/0/0.1
  via si-1/1/0.1

The service sets of the PICs have ecmp-rules configured and they carry the MAP-E rules of domain-1 and domain-2. From the output, you can understand that when the disable-auto-route is enabled and ecmp-rules configured, instead of the longer auto routes, static routes are created.

Related Documentation
• map-e on page 1114
Ping and Traceroute for DS-Lite

With Junos OS Release 11.4, you can use the **ping** and **traceroute** commands to determine the status of the DS-Lite softwire tunnels:

- **IPv6 ping**—The softwire address endpoint on the DS-Lite softwire terminator (AFTR) is usually configured only at the [edit services softwire] hierarchy level; it need not be hosted on any interface. Previous releases of the Junos OS software did not provide replies to pings to the IPv6 softwire address when the AFTR was not configured on a specific interface or loopback. An IPv6 ping enables the softwire initiator (B4) to verify the softwire address of the AFTR before creating a tunnel.

- **IPv4 ping**—A special IPv4 address, 192.0.0.1, is reserved for the AFTR. Previous releases of the Junos OS did not respond to any pings sent to this address. A B4 and other IPv4 nodes can now ping to this address to determine whether the DS-Lite tunnel is working.

- **Traceroute**—The AFTR now generates and forwards traceroute packets over the DS-Lite tunnel.

**NOTE:** No additional CLI configuration is necessary to use the new functionality.

Monitoring Softwire Statistics

**Purpose**
You can review softwire global statistics by using the show services softwire or show services softwire statistics command.
### Action

- `user@host# show services softwire`

  Interface: sp-0/0/0, Service set: sset
  Softwire Direction Flow count
  2001:0:0:1::1 -> 1001::1 I 3

- `user@host# show services softwire statistics`

  DS-Lite Statistics:
  Service PIC Name: :sp-0/0/0
  Statistics
  --------------
  Softwires Created :2
  Softwires Deleted :1
  Softwires Flows Created :2
  Softwires Flows Deleted :1
  Slow Path Packets Processed :2
  Fast Path Packets Processed :274240
  Fast Path Packets Encapsulated :583337
  Rule Match Failed :0
  Rule Match Succeeded :2
  IPv6 Packets Fragmented :0
  Transient Errors
  ----------------
  Flow Creation Failed - Retry :0
  Slow Path Failed - Retry :0
  Errors
  ------
  Softwire Creation Failed :0
  Flow Creation Failed :0
  Slow Path Failed :0
  Packet not IPv4-in-IPv6 :0
  IPv6 Fragmentation Error :0
  Slow Path Failed - IPv6 Next Header Offset :0
  Decapsulated Packet not IPv4 :0
  Fast Path Failed - IPv6 Next Header Offset :0
  No Softwire ID :0
  No Flow Extension :0
  Flow Limit Exceeded :0
  6rd Statistics:
  Service PIC Name :sp-0/0/0
  Statistics
  --------------
  Softwires Created :0
  Softwires Deleted :0
  Softwires Flows Created :0
  Softwires Flows Deleted :0
  Slow Path Packets Processed :0
  Fast Path Packets Processed :0
  Fast Path Packets Encapsulated :0
  Rule Match Failed :0
  Rule Match Succeeded :0
  Transient Errors
  ----------------
  Flow Creation Failed - Retry :0
  Slow Path Failed - Retry :0
  Errors
  ------
  Softwire Creation Failed :0
  Flow Creation Failed :0
Monitoring CGN, Stateful Firewall, and Softwire Flows

Purpose

Use the following commands to check the creation of the softwires, pre-NAT flows, and post-NAT flows. Output can be filtered using more specific fields such as AFTR or B4 address or both for DS-Lite, and softwire-concentrator or softwire-initiator or both for 6rd.

- show services stateful-firewall flows
- show services softwire flows

Action

```
user@host# show services stateful-firewall flows
Interface: sp-0/1/0, Service set: dslite-svc-set2

<table>
<thead>
<tr>
<th>Flow</th>
<th>State</th>
<th>Dir</th>
<th>Frm</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>200.200.200.2:80 -> 44.44.44.1:1025</td>
<td>Forward O</td>
<td>219942</td>
<td></td>
</tr>
<tr>
<td>NAT dest</td>
<td>44.44.44.1:1025 -> 20.20.1.4:1025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softwire</td>
<td>2001::2 -> 1001::1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td>20.20.1.2:1025 -> 200.200.200.2:80</td>
<td>Forward I</td>
<td>110244</td>
<td></td>
</tr>
<tr>
<td>NAT source</td>
<td>20.20.1.2:1025 -> 44.44.44.1:1024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softwire</td>
<td>2001::2 -> 1001::1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td>200.200.200.2:80 -> 44.44.44.1:1024</td>
<td>Forward O</td>
<td>219140</td>
<td></td>
</tr>
<tr>
<td>NAT dest</td>
<td>44.44.44.1:1024 -> 20.20.1.2:1025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softwire</td>
<td>2001::2 -> 1001::1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS-LITE</td>
<td>2001::2 -> 1001::1</td>
<td>Forward I</td>
<td>988729</td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td>200.200.200.2:80 -> 44.44.44.1:1026</td>
<td>Forward O</td>
<td>218906</td>
<td></td>
</tr>
<tr>
<td>NAT dest</td>
<td>44.44.44.1:1026 -> 20.20.1.3:1025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softwire</td>
<td>2001::2 -> 1001::1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td>20.20.1.3:1025 -> 200.200.200.2:80</td>
<td>Forward I</td>
<td>110303</td>
<td></td>
</tr>
<tr>
<td>NAT source</td>
<td>20.20.1.3:1025 -> 44.44.44.1:1026</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softwire</td>
<td>2001::2 -> 1001::1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td>20.20.1.4:1025 -> 200.200.200.2:80</td>
<td>Forward I</td>
<td>110944</td>
<td></td>
</tr>
<tr>
<td>NAT source</td>
<td>20.20.1.4:1025 -> 44.44.44.1:1025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softwire</td>
<td>2001::2 -> 1001::1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Related Documentation

- Tunneling Services for IPv4-to-IPv6 Transition Overview on page 317
Enabling Traffic to Pass Securely Using ALGs

- ALG Overview on page 399
- ALGs Configuration Overview on page 431
CHAPTER 27

ALG Overview

- ALG Descriptions on page 399
- ALGs Available for Junos OS Address Aware NAT on page 424

ALG Descriptions

This topic describes the Application Layer Gateways (ALGs) supported by Junos OS. ALG support includes managing pinholes and parent-child relationships for the supported ALGs. This topic includes the following sections:

- Supported ALGs on page 399
- ALG Support Details on page 401
- Juniper Networks Defaults on page 412
- Examples: Referencing the Preset Statement from the Junos OS Default Group on page 422

Supported ALGs

Table 16 on page 399 lists ALGs supported by Junos OS. For information about which ALGs are supported on MS-DPCs, MS-MPCs, or MS-MICs, see “ALGs Available for Junos OS Address Aware NAT” on page 173.

Table 16: ALGs Supported by Junos OS

<table>
<thead>
<tr>
<th>ALGs Supported</th>
<th>v4 - v4</th>
<th>v6 - v4</th>
<th>v6 - v6</th>
<th>DS-Lite (Support for ALGs with DS-lite on MS-MPC and MS-MIC starts in Junos OS Release 18.1R1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic TCP ALG</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Basic UDP ALG</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>BOOTP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DCE RPC Services</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
## Table 16: ALGs Supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>ALGs Supported</th>
<th>v4 - v4</th>
<th>v6 - v4</th>
<th>v6 - v6</th>
<th>DS-Lite (Support for ALGs with DS-lite on MS-MPC and MS-MIC starts in Junos OS Release 18.1R1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>FTP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes (Starting in Junos OS Release 17.2R1)</td>
</tr>
<tr>
<td>Gatekeeper RAS</td>
<td>Yes (Starting in Junos OS Release 17.1R1)</td>
<td>Yes (Starting in Junos OS Release 17.2R1)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>H323</td>
<td>Yes</td>
<td>Yes (Starting in Junos OS Release 17.2R1)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ICMP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IKE ALG</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No (Starting in Junos OS Release 14.2R7, 15.1R5, 16.1R2, and 17.1R1)</td>
</tr>
<tr>
<td>IIOP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>IP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>NETBIOS</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>NETSHOW</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PPTP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>REALAUDIO</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sun RPC and RPC Port Map Services</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>RTSP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>SIP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>SIP supported for DS-Lite on MS-MPC and MS-MIC starting in Junos OS Release 18.2R1.</td>
</tr>
<tr>
<td>SNMP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SQLNET</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
### Table 16: ALGs Supported by Junos OS (continued)

<table>
<thead>
<tr>
<th>ALGs Supported</th>
<th>v4 - v4</th>
<th>v6 - v4</th>
<th>v6 - v6</th>
<th>DS-Lite (Support for ALGs with DS-lite on MS-MPC and MS-MIC starts in Junos OS Release 18.1R1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFTP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Traceroute</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Unix Remote Shell Service</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>WINFrame</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

### ALG Support Details

This section includes details about the ALGs. It includes the following:

- Basic TCP ALG on page 402
- Basic UDP ALG on page 402
- BOOTP on page 403
- DCE RPC Services on page 403
- DNS on page 403
- FTP on page 404
- Gatekeeper RAS on page 404
- H323 on page 405
- ICMP on page 405
- IIOP on page 405
- IKE ALG on page 406
- IP on page 406
- NetBIOS on page 406
- NetShow on page 406
- ONC RPC Services on page 407
- PPTP on page 407
- RealAudio on page 407
- Sun RPC and RPC Portmap Services on page 408
- RTSP on page 409
- SIP on page 409
- SNMP on page 410
- SQLNet on page 410
Basic TCP ALG

This ALG performs basic sanity checking on TCP packets. If it finds errors, it generates the following anomaly events and system log messages:

- TCP source or destination port zero
- TCP header length check failed
- TCP sequence number zero and no flags are set
- TCP sequence number zero and FIN/PSH/RST flags are set
- TCP FIN/RST or SYN(URG|FIN|RST) flags are set

The TCP ALG performs the following steps:

1. When the router receives a SYN packet, the ALG creates TCP forward and reverse flows and groups them in a conversation. It tracks the TCP three-way handshake.
2. The SYN-defense mechanism tracks the TCP connection establishment state. It expects the TCP session to be established within a small time interval (currently 4 seconds). If the TCP three-way handshake is not established in that period, the session is terminated.
3. A keepalive mechanism detects TCP sessions with nonresponsive endpoints.
4. ICMP errors are allowed only when a flow matches the selector information specified in the ICMP data.

Basic UDP ALG

This ALG performs basic sanity checking on UDP headers. If it finds errors, it generates the following anomaly events and system log messages:

- UDP source or destination port 0
- UDP header length check failed

The UDP ALG performs the following steps:

1. When it receives the first packet, the ALG creates bidirectional flows to accept forward and reverse UDP session traffic.
2. If the session is idle for more than the maximum allowed idle time (the default is 30 seconds), the flows are deleted.
3. ICMP errors are allowed only when a flow matches the selector information specified in the ICMP data.
**BOOTP**

The Bootstrap Protocol (BOOTP) client retrieves its networking information from a server across the network. It sends out a general broadcast message to request the information, which is returned by the BOOTP server. For the protocol specification, see ftp://ftp.isi.edu/in-notes/rfc951.txt.

Stateful firewall support requires that you configure the BOOTP ALG on UDP server port 67 and client port 68. If the client sends a broadcast message, you should configure the broadcast address in the from statement of the service rule. Network Address Translation (NAT) is not performed on the BOOTP traffic, even if the NAT rule matches the traffic. If the BOOTP relay feature is activated on the router, the remote BOOTP server is assumed to assign addresses for clients masked by NAT translation.

**DCE RPC Services**

Distributed Computing Environment (DCE) Remote Procedure Call (RPC) services are mainly used by Microsoft applications. The ALG uses well-known TCP port 135 for port mapping services, and uses the universal unique identifier (UUID) instead of the program number to identify protocols. The main application-based DCE RPC is the Microsoft Exchange Protocol.

Support for stateful firewall and NAT services requires that you configure the DCE RPC portmap ALG on TCP port 135. The DCE RPC ALG uses the TCP protocol with application-specific UUIDs.

**DNS**

The Domain Name System (DNS), which typically runs on port 53, handles the data associated with locating and translating domain names into IP addresses. The MX Series DNS ALG monitors the DNS query and reply packets, and supports UDP and TCP DNS traffic independently. The DNS ALG does not support payload translations for NAT, but an operator can use it to efficiently remove the NAT or stateful firewall DNS sessions from memory after the DNS server sends its response. The DNS ALG closes the session only when a reply is received or an idle timeout is reached.

There might be issues with TCP DNS traffic when the TCP-DNS-ALG is used if the DNS traffic is not just the standard request and reply type. For example, the TCP-DNS-ALG might break DNS server-to-server communication that uses TCP, such as DNS Replication or Zone transfers. This type of traffic might get dropped by the NAT or stateful firewall plugins because the TCP-DNS-ALG closes the session after the TCP handshake is complete and after each server has sent one packet to the other. In these instances do not use the TCP-DNS-ALG.

---

**NOTE:**

The TCP-DNS-ALG is not supported on the MS-DPC service cards.
FTP

FTP is the File Transfer Protocol, specified in RFC 959. In addition to the main control connection, data connections are also made for any data transfer between the client and the server, and the host, port, and direction are negotiated through the control channel.

For non-passive-mode FTP, Junos OS stateful firewall service scans the client-to-server application data for the PORT command, which provides the IP address and port number to which the server connects. For passive-mode FTP, Junos OS stateful firewall service scans the client-to-server application data for the PASV command and then scans the server-to-client responses for the 227 response, which contains the IP address and port number to which the client connects.

There is an additional complication: FTP represents these addresses and port numbers in ASCII. As a result, when addresses and ports are rewritten, the TCP sequence number might be changed, and thereafter the NAT service needs to maintain this delta in SEQ and ACK numbers by performing sequence NAT on all subsequent packets.

Support for stateful firewall and NAT services requires that you configure the FTP ALG on TCP port 21 to enable the FTP control protocol. The ALG performs the following tasks:

- Automatically allocates data ports and firewall permissions for dynamic data connection
- Creates flows for the dynamically negotiated data connection
- Monitors the control connection in both active and passive modes
- Rewrites the control packets with the appropriate NAT address and port information

On MS-MPCs and MS-MiCs, for passive FTP to work properly without FTP application layer gateway (ALG) enabled (by not specifying the application junos-ftp statement at the [edit services stateful-firewall rule rule-name term term-name from] and the [edit services nat rule rule-name term term-name from] hierarchy levels), you must enable the address pooling paired (APP) functionality enabled (by including the address-pooling statement at the [edit services nat rule rule-name term term-name then translated] hierarchy level). Such a configuration causes the data and control FTP sessions to receive the same NAT address.

Gatekeeper RAS

Starting in Junos OS Release 17.1R1, the gatekeeper registration, administration, and status (RAS) ALG allows full support of gatekeeper mode for H.323 calls. An endpoint registers to a gatekeeper and asks for its management. Before making a call, an endpoint asks its gatekeeper for permission to place the call. In both registration and admission phases, the RAS channel is used. Use the gatekeeper RAS ALG and the H323 ALG in IPv4 and IPv6 stateful-firewall rules or NAPT-44 rules. Starting in Junos OS Release 17.2R1, NAT-64 rules are also supported. The Junos default application set junos-h323-suite includes the H323 ALG and the gatekeeper RAS ALG.
H323

H323 is a suite of ITU protocols for audio and video conferencing and collaboration applications. H323 consists of H.225 call signaling protocols and H.245 control protocol for media communication. During H.225 negotiation, the endpoints create a call by exchanging call signaling messages on the control channel and negotiate a new control channel for H.245. A new control connection is created for H.245 messages. Messages are exchanged on the H.245 control channel to open media channels.

Stateful firewall monitors the H.225 control channel to open the H.245 control channel. After the H.245 channel is created, stateful firewall also monitors this channel for media channel information and allows the media traffic through the firewall.

H323 ALG supports static destination, static and dynamic source NAT by rewriting the appropriate addresses and ports in the H.225 and H.245 messages.

To support gatekeeper mode for H.323 calls, use the H323 ALG and the gatekeeper RAS ALG in IPv4 and IPv6 stateful-firewall rules or NAPT-44 rules. Starting in Junos OS Release 17.2R1, NAT-64 rules are also supported. The Junos default application set junos-h323-suite includes the H323 ALG and the gatekeeper RAS ALG.

ICMP

The Internet Control Message Protocol (ICMP) is defined in RFC 792. The Junos OS stateful firewall service allows ICMP messages to be filtered by specific type or specific type code value. ICMP error packets that lack a specifically configured type and code are matched against any existing flow in the opposite direction to check for the legitimacy of the error packet. ICMP error packets that pass the filter matching are subject to NAT translation.

The ICMP ALG always tracks ping traffic statefully using the ICMP sequence number. Each echo reply is forwarded only if there is an echo request with the corresponding sequence number. For any ping flow, only 20 echo requests can be forwarded without receiving an echo reply. When you configure dynamic NAT, the PING packet identifier is translated to allow additional hosts in the NAT pool to use the same identifier.

Support for stateful firewall and NAT services requires that you configure the ICMP ALG if the protocol is needed. You can configure the ICMP type and code for additional filtering.

IIOP

The Oracle Application Server Name Server Internet Inter-ORB Protocol (IIOP). This ALG is used in Common Object Request Broker Architecture (CORBA) based on distributed computing. Even though CORBA and IIOP are Object Management Group (OMG) standards, no fixed port is assigned for IIOP. Each vendor implementing CORBA chooses a port. Java Virtual machine uses port 1975 by default, while ORBIX uses port 3075 as a default.

Stateful firewall and NAT require ALG IIOP be configured for TCP port 1975 for Java VM IIOP, and 3075 for CORBA applications ORBIX, a CORBA framework from Iona Technologies.
IKE ALG

Before Junos OS Release 17.4R1, Network Address Translation-Traversal (NAT-T) is not supported for the Junos VPN Site Secure suite of IPsec features on the MX Series routers. Starting in Junos OS Release 14.2R7, 15.1R5, 16.1R2, and 17.1R1, the IKE ALG enables the passing of IKEv1 and IPsec packets through NAPT-44 and NAT64 rules between IPsec peers that are not NAT-T compliant. This ALG supports only ESP tunnel mode.

Use this ALG in NAT rules and specify the UDP protocol and port 500.

This ALG performs the following:

- Tracks IKEv1 connection-initiation requests to determine whether NAT processing is required.
- Performs NAT translation on outgoing and incoming IKEv1 requests and creates IKE sessions.
- Identifies IPsec packets related to the established IKE session and establishes security association between peers.
- Performs NAT translation on IPsec packets.

IP

The IP ALG is used to create unidirectional flows only. In case of TCP traffic, it does not check the 3-way handshake process. This ALG is useful in case of stateful firewall only service sets, where it allows traffic to flow unidirectionally only. When configuring in conjunction with match-direction input-output it allows the return traffic to flow through the stateful firewall as well. Typical scenarios are static NAT, destination NAT or scenarios where traffic is expected to traverse the stateful firewall in the presence of asymmetric routing. The Junos IP ALG is not intended for use with NAPT, which causes matching traffic to be discarded through the creation of a drop flow.

NetBIOS

A NetBIOS ALG translates NetBIOS IP addresses and port numbers when NAT is used.

NetBIOS supports the TCP and UDP transport protocols. Support for stateful firewall and NAT services requires that you configure the NetBIOS ALG on UDP port 138 and TCP port 139.

NetShow

The Microsoft protocol ms-streaming is used by NetShow, the Microsoft media server. This protocol supports several transport protocols: TCP, UDP, and HTTP. The client starts a TCP connection on port 1755 and sends the PORT command to the server. The server then starts UDP on that port to the client. Support for stateful firewall and NAT services requires that you configure the NetShow ALG on UDP port 1755.
**ONC RPC Services**

Open Networks Computing (ONC) RPC services function similarly to DCE RCP services. However, the ONC RPC ALG uses TCP/UDP port 111 for port mapping services, and uses the program number to identify protocols rather than the UUID.

Support for stateful firewall and NAT services requires that you configure the ONC RPC portmap ALG on TCP port 111. The ONC RPC ALG uses the TCP protocol with application-specific program numbers.

**PPTP**

The Point-to-Point Tunneling Protocol (PPTP) ALG is a TCP-based ALG. PPTP allows the Point-to-Point Protocol (PPP) to be tunneled through an IP network. PPTP defines a client-server architecture, a PPTP Network Server, and a PPTP Access Concentrator. The PPTP ALG requires a control connection and a data tunnel. The control connection uses TCP to establish and disconnect PPP sessions, and runs on port 1723. The data tunnel carries PPP traffic in generic routing encapsulated (GRE) packets that are carried over IP.

**RealAudio**

Real Networks PNA protocol RealVideo is not a separate service. It is part of the RealPlayer and most likely uses another channel for video. The RealPlayer versions G2, 7, and 8 use PNA and RTSP. For this version to work, the ALG must allow both PNA (7070) and RTSP (554). For the media, the server selects from a range of UDP ports (6970 through 7170), or TCP port 7071, or HTTP. The client can be configured to use a particular port. The RealPlayer versions 4.0 and 5.0 use control channel 7070 media UDP ports 6970 through 7170, or TCP port 7071, or HTTP. RealAudio player version 3.0 uses control channel 7070 media, UDP ports 6770–7170, or TCP port 7071.

Real products use the ports and ranges of ports shown in Table 17 on page 407.

### Table 17: RealAudio Product Port Usage

<table>
<thead>
<tr>
<th>Real Product</th>
<th>Port Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0 and 5.0 Servers/Players</td>
<td>Control channel (bidirectional) on TCP port 7070. Data channel from server to player on TCP port 7070 or UDP port 6970–7170.</td>
</tr>
<tr>
<td>4.0 and 5.0 Servers/Encoders</td>
<td>Control channel (bidirectional) on TCP port 7070. Data channel from encoder or server on TCP port 7070.</td>
</tr>
<tr>
<td>G2 Servers/Players</td>
<td>Control channel (bidirectional) on TCP port 80, 554, 7070, or 8080. Data channel from server to player on TCP port 80, 554, 7070, 8080 or UDP port 6970–32,000.</td>
</tr>
<tr>
<td>G2 Server/3.1, and 5.x Encoders</td>
<td>Control channel (bidirectional) on TCP port 7070. Data channel from encoder to server on TCP port 7070.</td>
</tr>
<tr>
<td>G2 Server/G2 Producer</td>
<td>Control channel (bidirectional) on TCP port 4040. Data channel from encoder to server on TCP port 4040 and UDP port 6970–32,000.</td>
</tr>
</tbody>
</table>
Table 17: RealAudio Product Port Usage (continued)

<table>
<thead>
<tr>
<th>Real Product</th>
<th>Port Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Server/G2 Producer (TCP ONLY)</td>
<td>Control channel (bidirectional) on TCP port 4040 Data channel from encoder to server on TCP port 4040. Note: TCP-ONLY option available in version 6.1 or above.</td>
</tr>
</tbody>
</table>

**NOTE:** RealAudio was the original protocol by RealPlayers. Newer versions of RealPlayer use RTSP. Stateful firewall and NAT require ALG RealAudio to be programmed on TCP port 7070.

Sun RPC and RPC Portmap Services

The Remote Procedure Call (RPC) ALG uses well-known ports TCP 111 and UDP 111 for port mapping, which dynamically assigns and opens ports for RPC services. The RPC Portmap ALG keeps track of port requests and dynamically opens the firewall for these requested ports. The RPC ALG can further restrict the RPC protocol by specifying allowed program numbers.

The ALG includes the RPC services listed in Table 18 on page 408.

Table 18: Supported RPC Services

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpc-mountd</td>
<td>Network File Server (NFS) mount daemon; for details, see the UNIX man page for rpc.mountd(8).</td>
<td>The base support is RPC v2 and the port mapper service on port 111 (see RFC 1050).</td>
</tr>
<tr>
<td>rpc-nfsprog</td>
<td>Used as part of NFS. For details, see RFC 1094. See also RFC1813 for NFS v3.</td>
<td>The base support is RPC v2 and the port mapper service on port 111 (see RFC 1050).</td>
</tr>
<tr>
<td>rpc-nisplus</td>
<td>Network Information Service Plus (NIS+), designed to replace NIS; it is a default naming service for Sun Solaris and is not related to the old NIS. No protocol information is available.</td>
<td>The base support is RPC v2 and the port mapper service on port 111 (see RFC 1050).</td>
</tr>
<tr>
<td>rpc-nlockmgr</td>
<td>Network lock manager.</td>
<td>The base support is RPC v2 and the port mapper service on port 111 (see RFC 1050). Once the RPC program table is built, rpc-nlockmgr service can be allowed or blocked based on RPC program 100021.</td>
</tr>
<tr>
<td>rpc-pcnfsd</td>
<td>Kernel statistics server. For details, see the UNIX man pages for rstatd and rpc.rstatd.</td>
<td>The base support is RPC v2 and the port mapper service on port 111 (see RFC 1050). Once the RPC program table is built, rpc-rstat service can be allowed or blocked based on RPC program 150001.</td>
</tr>
<tr>
<td>rpc-rwall</td>
<td>Used to write a message to users; for details, see the UNIX man page for rpc.rwalld.</td>
<td>The base support is RPC v2 and the port mapper service on port 111 (see RFC 1050). Once the RPC program table is built, rpc-rwall service can be allowed or blocked based on RPC program 150008.</td>
</tr>
</tbody>
</table>
Table 18: Supported RPC Services (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpc-ypbind</td>
<td>NIS binding process. For details, see the UNIX man page for ypbind.</td>
<td>The base support is RPC v2 and the port mapper service on port 111 (see RFC 1050). Once the RPC program table is built, rpc-ypbind service can be allowed or blocked based on RPC program 100007.</td>
</tr>
<tr>
<td>rpc-yppasswd</td>
<td>NIS password server. For details, see the UNIX man page for yppasswd.</td>
<td>The base support is RPC v2 and the port mapper service on port 111 (see RFC 1050). Once the RPC program table is built, rpc-yppasswd service can be allowed or blocked based on RPC program 100009.</td>
</tr>
<tr>
<td>rpc-ypserv</td>
<td>NIS server. For details, see the UNIX man page for ypserv.</td>
<td>The base support is RPC v2 and the port mapper service on port 111 (see RFC 1050). Once the RPC program table is built, rpc-ypserv service can be allowed or blocked based on RPC program 100004.</td>
</tr>
<tr>
<td>rpc-ypupdated</td>
<td>Network updating tool.</td>
<td>The base support is RPC v2 and the port mapper service on port 111 (see RFC 1050). Once the RPC program table is built, rpc-ypupdated service can be allowed or blocked based on RPC program 100028.</td>
</tr>
<tr>
<td>rpc-ypxfrd</td>
<td>NIS map transfer server. For details, see the UNIX man page for rpc.ypxfrd.</td>
<td>The base support is RPC v2 and the port mapper service on port 111 (see RFC 1050). Once the RPC program table is built, rpc-ypxfrd service can be allowed or blocked based on RPC program 100069.</td>
</tr>
</tbody>
</table>

Support for stateful firewall and NAT services that use port mapping requires that you configure the RPC portmap ALG on TCP/UDP destination port 111 and the RPC ALG for both TCP and UDP. You can specify one or more rpc-program-number values to further restrict allowed RPC protocols.

**RTSP**

The Real-Time Streaming Protocol (RTSP) controls the delivery of data with real-time properties such as audio and video. The streams controlled by RTSP can use RTP, but it is not required. Media can be transmitted on the same RTSP control stream. This is an HTTP-like text-based protocol, but client and server maintain session information. A session is established using the SETUP message and terminated using the TEARDOWN message. The transport (the media protocol, address, and port numbers) is negotiated in the setup and the setup-response.

Support for stateful firewall and NAT services requires that you configure the RTSP ALG for TCP port 554.

The ALG monitors the control connection, opens flows dynamically for media (RTP/RTSP) streams, and performs NAT address and port rewrites.

**SIP**

The Session Initiation Protocol (SIP) is an application layer protocol that can establish, maintain, and terminate media sessions. It is a widely used voice over IP (VoIP) signaling protocol.
The SIP ALG monitors SIP traffic and dynamically creates and manages pinholes on the signaling and media paths. The ALG only allows packets with the correct permissions. The SIP ALG also performs the following functions:

- Manages parent-child session relationships.
- Enforces security policies.
- Manages pinholes for VoIP traffic.

The SIP ALG supports the following features:

- Stateful firewall
- Static source NAT
- Dynamic address only source NAT
- Network Address Port Translation (NAPT)

**NOTE:** SIP sessions are limited to 12 hours (720 minutes) for NAT processing on the MS-MIC and MS-MPC interface cards. SIP sessions on the MS-DPC have no time limit.

**SNMP**

SNMP is a communication protocol for managing TCP/IP networks, including both individual network devices and aggregated devices. The protocol is defined by RFC 1157. SNMP runs on top of UDP.

The Junos OS stateful firewall service implements the SNMP ALG to inspect the SNMP type. SNMP does not enforce stateful flow. Each SNMP type needs to be specifically enabled. Full SNMP support of stateful firewall services requires that you configure the SNMP ALG on UDP port 161. This enables the SNMP `get` and `get-next` commands, as well as their response traffic in the reverse direction: UDP port 161 enables the SNMP `get-response` command. If SNMP traps are permitted, you can configure them on UDP port 162, enabling the SNMP `trap` command.

**SQLNet**

The SQLNet protocol is used by Oracle SQL servers to execute SQL commands from clients, including load balancing and application-specific services.

Support of stateful firewall and NAT services requires that you configure the SQLNet ALG for TCP port 1521.

The ALG monitors the control packets, opens flows dynamically for data traffic, and performs NAT address and port rewrites.

**TFTP**

The Trivial File Transfer Protocol (TFTP) is specified in RFC 1350. The initial TFTP requests are sent to UDP destination port 69. Additional flows can be created to `get` or `put` individual
files. Support of stateful firewall and NAT services requires that you configure the TFTP ALG for UDP destination port 69.

**Traceroute**

Traceroute is a tool for displaying the route that packets take to a network host. It uses the IP time-to-live (TTL) field to trigger ICMP time-exceeded messages from routers or gateways. It sends UDP datagrams to destination ports that are believed to be not in use; destination ports are numbered using the formula: \( n \times \text{hops} - 1 \). The default base port is 33434. To support traceroute through the firewall, two types of traffic must be passed through:

1. UDP probe packets (UDP destination port > 33000, IP TTL < 30)
2. ICMP response packets (ICMP type time-exceeded)

When NAT is applied, the IP address and port within the ICMP error packet also must be changed.

Support of stateful firewall and NAT services requires you to configure the Traceroute ALG for UDP destination port 33434 to 33450. In addition, you can configure the TTL threshold to prevent UDP flood attacks with large TTL values.

**UNIX Remote-Shell Services**

Three protocols form the basis for UNIX remote-shell services:

- **Exec**—Remote command execution; enables a user on the client system to execute a command on the remote system. The first command from client (rcmd) to server (rshd) uses well-known TCP port 512. A second TCP connection can be opened at the request of rcmd. The client port number for the second connection is sent to the server as an ASCII string.

- **Login**—Better known as rlogin; uses well-known TCP port 513. For details, see RFC 1282. No special firewall processing is required.

- **Shell**—Remote command execution; enables a user on the client system to execute a command on the remote system. The first command from client (rcmd) to server (rshd) uses well-known TCP port 514. A second TCP connection can be opened at the request of rcmd. The client port number for the second connection is sent to the server as an ASCII string.

Support of stateful firewall services requires that you configure the Exec ALG on TCP port 512, the Login ALG on TCP port 513, and the Shell ALG on TCP port 514. NAT remote-shell services require that any dynamic source port assigned be within the port range 512 to 1023. If you configure a NAT pool, this port range is reserved exclusively for remote shell applications.

**Winframe**

WinFrame application server software provides access to virtually any Windows application, across any type of network connection to any type of client.

This protocol is mainly used by Citrix Windows applications.
Stateful firewall and NAT require the ALG Winframe to be configured on TCP destination port 1494 and UDP port 1604.

**Juniper Networks Defaults**

The Junos OS provides a default, hidden configuration group called `junos-defaults` that is automatically applied to the configuration of your router. The `junos-defaults` group contains preconfigured statements that contain predefined values for common applications. Some of the statements must be referenced to take effect, such as applications like FTP or Telnet. Other statements are applied automatically, such as terminal settings. All of the preconfigured statements begin with the reserved name `junos-`

**NOTE:** You can override the Junos OS default configuration values, but you cannot delete or edit them. If you delete a configuration, the defaults return when a new configuration is added.

You cannot use the `apply-groups` statement with the Junos OS defaults group.

To view the full set of available preset statements from the Junos OS default group, issue the `show groups junos-defaults` configuration mode command. The following example displays the list of Junos OS default groups that use application protocols (ALGs):

```plaintext
user@host# show groups junos-defaults
applications {
 *
 # File Transfer Protocol
 #
 application junos-ftp {
 application-protocol ftp;
 protocol tcp;
 destination-port 21;
 }
 *
 # Trivial File Transfer Protocol
 #
 application junos-tftp {
 application-protocol tftp;
 protocol udp;
 destination-port 69;
 }
 *
 # RPC portmapper on TCP
 #
 application junos-rpc-portmap-tcp {
 application-protocol rpc-portmap;
 protocol tcp;
 destination-port 111;
 }
 *
 # RPC portmapper on UDP
```
# application junos-rpc-portmap-udp {
  application-protocol rpc-portmap;
  protocol udp;
  destination-port 111;
}
#
# SNMP get
#
application junos-snmp-get {
  application-protocol snmp;
  protocol udp;
  destination-port 161;
  snmp-command get;
}
#
# SNMP get next
#
application junos-snmp-get-next {
  application-protocol snmp;
  protocol udp;
  destination-port 161;
  snmp-command get-next;
}
#
# SNMP response
#
application junos-snmp-response {
  application-protocol snmp;
  protocol udp;
  source-port 161;
  snmp-command get-response;
}
#
# SNMP trap
#
application junos-snmp-trap {
  application-protocol snmp;
  protocol udp;
  destination-port 162;
  snmp-command trap;
}
#
# remote exec
#
application junos-rexec {
  application-protocol exec;
  protocol tcp;
  destination-port 512;
}
#
# remote login
#
application junos-rlogin {
  application-protocol shell;
protocol tcp;
destination-port 513;
}
#
# remote shell
#
application junos-rsh {
  application-protocol shell;
  protocol tcp;
  destination-port 514;
}
#
# Real Time Streaming Protocol
#
application junos-rtsp {
  application-protocol rtsp;
  protocol tcp;
  destination-port 554;
}
#
# Citrix windows application server protocol
# windows applications remotely on windows/non-windows clients
#
# citrix needs udp 1604 to be open
#
application junos-citrix-winframe {
  application-protocol winframe;
  protocol tcp;
  destination-port 1494;
}
application junos-citrix-winframe-udp {
  protocol udp;
  destination-port 1604;
}
#
# Oracle SQL servers use this protocol to execute sql commands
# from clients, load balance, use application-specific servers, etc
#
application junos-sqlnet {
  application-protocol sqlnet;
  protocol tcp;
  destination-port 1521;
}
#
# H.323 Protocol for audio/video conferencing
#
application junos-h323 {
  application-protocol h323;
  protocol tcp;
  destination-port 1720;
}
application junos-h323-ras {
  application-protocol ras;
  protocol udp;
  destination-port 1719;
Internet Inter-ORB Protocol - used for CORBA applications

The ORB protocol in Java virtual machines uses port 1975 as default

application junos-iio-java {
    application-protocol iio;
    protocol tcp;
    destination-port 1975;
}

Internet Inter-ORB Protocol - used for CORBA applications

ORBIX is a CORBA framework from Iona Technologies that uses port 3075 as default

application junos-iio-orbix {
    application-protocol iio;
    protocol tcp;
    destination-port 3075;
}

Real players use this protocol for real time streaming

This was the original protocol for real players.

RTSP is more widely used by real players

but they still support realaudio.

application junos-realaudio {
    application-protocol realaudio;
    protocol tcp;
    destination-port 7070;
}

traceroute application.

traceroute application.

application junos-traceroute {
    application-protocol traceroute;
    protocol udp;
    destination-port 33435-33450;
    ttl-threshold 30;
}

The full range of known RPC programs using UDP

The program numbers can be more specific to certain applications.

application junos-rpc-services-udp {
    application-protocol rpc;
    protocol udp;
    rpc-program-number 100000-400000;
}

The full range of known RPC programs using TCP

The program numbers can be more specific to certain applications.

application junos-rpc-services-tcp {
    application-protocol rpc;
protocol tcp;
rpc-program-number 100000-400000;
}
#
# All ICMP traffic
# This can be made to be more restrictive by specifying ICMP type
# and code.
#
application junos-icmp-all {
  application-protocol icmp;
}
#
# Protocol used by Windows media server and windows media player
#
application junos-netshow {
  application-protocol netshow;
  protocol tcp;
  destination-port 1755;
}
#
# NetBIOS - networking protocol used on
# Windows networks name service port, both UDP and TCP
#
application junos-netbios-name-udp {
  application-protocol netbios;
  protocol udp;
  destination-port 137;
}
application junos-netbios-name-tcp {
  protocol tcp;
  destination-port 137;
}
#
# NetBIOS - networking protocol used on
# Windows networks datagram service port
#
application junos-netbios-datagram {
  application-protocol netbios;
  protocol udp;
  destination-port 138;
}
#
# NetBIOS - networking protocol used on
# Windows networks session service port
#
application junos-netbios-session {
  protocol tcp;
  destination-port 139;
}
#
# DCE-RPC portmapper on TCP
#
application junos-dce-rpc-portmap {
  application-protocol dce-rpc-portmap;
  protocol tcp;
destination-port 135;
}
#
# DCE-RPC application on TCP sample UUID
# This application requires user to specify the UUID value
#
# application junos-dcerpc
# application-protocol dce-rpc;
# protocol tcp;
#
# UUID also needs to be defined as shown below
# UUID 11223344 22334455 33445566 44556677;
#
#
#
# ms-exchange needs these 3 UUIDs
#
application junos-dcerpc-endpoint-mapper-service
# application-protocol dce-rpc;
protocol tcp;
uuid e1af8308-5d1f-11c9-91a4-08002b14a0fa;
}
application junos-dcerpc-msexchange-directory-rfr
# application-protocol dce-rpc;
protocol tcp;
uuid 1544f5e0-613c-11d1-93df-00c04fd7bd09;
}
application junos-dcerpc-msexchange-information-store
# application-protocol dce-rpc;
protocol tcp;
uuid a4f1db00-ca47-1067-b31f-00dd010662da;
}
application junos-ssh
# protocol tcp;
destination-port 22;
}
application junos-telnet
# protocol tcp;
destination-port 23;
}
application junos-smtp
# protocol tcp;
destination-port 25;
}
application junos-dns-udp
# protocol udp;
destination-port 53;
}
application junos-dns-tcp
# protocol tcp;
destination-port 53;
}
application junos-tacacs
# protocol tcp;
destination-port 49;
# TACACS Database Service

application junos-tacacs-ds {
    protocol tcp;
    destination-port 65;
}

application junos-dhcp-client {
    protocol udp;
    destination-port 68;
}

application junos-dhcp-server {
    protocol udp;
    destination-port 67;
}

application junos-bootpc {
    protocol udp;
    destination-port 68;
}

application junos-bootps {
    protocol udp;
    destination-port 67;
}

application junos-finger {
    protocol tcp;
    destination-port 79;
}

application junos-http {
    protocol tcp;
    destination-port 80;
}

application junos-https {
    protocol tcp;
    destination-port 443;
}

application junos-pop3 {
    protocol tcp;
    destination-port 110;
}

application junos-ident {
    protocol tcp;
    destination-port 113;
}

application junos-nntp {
    protocol tcp;
    destination-port 119;
}

application junos-ntp {
    protocol udp;
    destination-port 123;
}

application junos-imap {
    protocol tcp;
    destination-port 143;
}

application junos-imaps {
protocol tcp;
destination-port 993;
}
application junos-bgp {
    protocol tcp;
destination-port 179;
}
application junos-ldap {
    protocol tcp;
destination-port 389;
}
application junos-snmp {
    protocol tcp;
destination-port 444;
}
application junos-biff {
    protocol udp;
destination-port 512;
}

# UNIX who
application junos-who {
    protocol udp;
destination-port 513;
}
application junos-syslog {
    protocol udp;
destination-port 514;
}

# line printer daemon, printer, spooler
application junos-printer {
    protocol tcp;
destination-port 515;
}

# UNIX talk
application junos-talk-tcp {
    protocol tcp;
destination-port 517;
}
application junos-talk-udp {
    protocol udp;
destination-port 517;
}
application junos-ntalk {
    protocol udp;
destination-port 518;
}
application junos-rip {
    protocol udp;
destination-port 520;
}
# INA sanctioned RADIUS port numbers
application junos-radius {
    protocol udp;
destination-port 1812;
}
application junos-radaacct {
    protocol udp;
    destination-port 1813;
}
application junos-nfsd-tcp {
    protocol tcp;
    destination-port 2049;
}
application junos-nfsd-udp {
    protocol udp;
    destination-port 2049;
}
application junos-cvspsrver {
    protocol tcp;
    destination-port 2401;
}
#
# Label Distribution Protocol
#
application junos-ldp-tcp {
    protocol tcp;
    destination-port 646;
}
application junos-ldp-udp {
    protocol udp;
    destination-port 646;
}
#
# JUNOScript and JUNOScope management
#
application junos-xnm-ssl {
    protocol tcp;
    destination-port 3220;
}
application junos-xnm-clear-text {
    protocol tcp;
    destination-port 3221;
}
#
# IPsec tunnel
#
application junos-ipsec-esp {
    protocol esp;
}
#
#IKE application for IPSec VPN
#
application junos-ike {
    application-protocol ike-esp-nat;
    protocol udp;
    destination-port 500;
}
#
# 'junos-algs-outbound' defines a set of all applications
# requiring an ALG. Useful for defining rule to the the public
# internet allowing private network users to use all JUNOS OS
# supported ALGs initiated from the private network.
#
# NOTE: the contents of this set might grow in future JUNOS OS versions.
#
application-set junos-algs-outbound {
    application junos-ftp;
    application junos-tftp;
    application junos-rpc-portmap-tcp;
    application junos-rpc-portmap-udp;
    application junos-snmp-get;
    application junos-snmp-get-next;
    application junos-snmp-response;
    application junos-snmp-trap;
    application junos-rlogin;
    application junos-rsh;
    application junos-rexec;
    application junos-rtsp;
    application junos-citrix-winframe;
    application junos-citrix-winframe-udp;
    application junos-sqlnet;
    application junos-h323;
    application junos-iiopt-java;
    application junos-iiopt-orbix;
    application junos-realaudio;
    application junos-traceroute;
    application junos-rpc-services-udp;
    application junos-rpc-services-tcp;
    application junos-icmp-all;
    application junos-netshow;
    application junos-netbios-name-udp;
    application junos-netbios-datagram;
    application junos-dcerpc-endpoint-mapper-service;
    application junos-dcerpc-msexchange-directory-rfr;
    application junos-dcerpc-msexchange-information-store;
}
#
# 'junos-management-inbound' represents the group of applications
# that might need access the router from public network for
# management purposes.
#
# Set is intended for a UI to display management choices.
#
# NOTE: It is not recommended the user to use the entire set
# directly in a firewall rule and open up firewall to all
# of these applications. Also, the user should always
# specify the source and destination prefixes when using
# each application.
#
# NOTE: the contents of this set may grow in future JUNOS versions.
#
application-set junos-management-inbound {
    application junos-snmp-get;
    application junos-snmp-get-next;
    application junos-snmp-response;
application junos-snmp-trap;
application junos-ssh;
application junos-telnet;
application junos-http;
application junos-https;
application junos-xnm-ssl;
application junos-xnm-clear-text;
}
#
# 'junos-routing-inbound' represents routing protocols that might
# need to access the router from public network.
#
# Set is intended for a UI to display routing involvement choices.
#
# NOTE: It is not recommended the user to use the entire set
# directly in a firewall rule and open up firewall to all
# of these applications. Also, the user should always
# specify the source and destination prefixes when using
# each application.
#
# NOTE: the contents of this set might grow in future JUNOS OS versions.
#
application-set junos-routing-inbound {
    application junos-bgp;
    application junos-rip;
    application junos-idp-tcp;
    application junos-idp-udp;
}
application-set junos-h323-suite {
    application junos-h323-ras,
    application junos-h323;
}
}

To reference statements available from the junos-defaults group, include the selected
junos-default-name statement at the applicable hierarchy level. To configure application
protocols, see "Configuring Application Properties" on page 431; for details about a specific
protocol, see "ALG Descriptions" on page 399.

Examples: Referencing the Preset Statement from the Junos OS Default Group

The following example is a preset statement from the Junos OS default groups that is
available for FTP in a stateful firewall:

```
[edit]
groups {
 junos-defaults {
 applications {
 application junos-ftp { # Use FTP default configuration
 application-protocol ftp;
 protocol tcp;
 destination-port 21;
 } }
 }
 }
```
To reference a preset Junos OS default statement from the Junos OS default groups, include the `junos-default-name` statement at the applicable hierarchy level. For example, to reference the Junos OS default statement for FTP in a stateful firewall, include the `junos-ftp` statement at the `[edit services stateful-firewall rule rule-name term term-name from applications]` hierarchy level.

```
[edit]
services {
 stateful-firewall {
 rule my-rule {
 term my-term {
 from {
 applications junos-ftp; #Reference predefined statement, junos-ftp,
 }
 }
 }
 }
}
```

The following example shows configuration of the default Junos IP ALG:

```
[edit]
services {
 stateful-firewall {
 rule rl {
 match-direction input;
 term tl {
 from {
 applications junos-ip;
 }
 then {
 accept;
 syslog;
 }
 }
 }
 }
}
```

If you configure the IP ALG in the stateful firewall rule, it is matched by any IP traffic, but when any other more specific application matches the same traffic, the IP ALG is not matched. For example, in the following configuration, both the ICMP ALG and the IP ALG are configured, but traffic is matched for ICMP packets, because it is the more specific match.

```
[edit]
services {
 stateful-firewall {
 rule rl {
 match-direction input;
```
term t1 {
    from {
        applications [junos-ip junos-icmp-all];
    }
    then {
        accept;
        syslog;
    }
}

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.2R1</td>
<td>SIP supported for DS-Lite on MS-MPC and MS-MIC starting in Junos OS Release 18.2R1.</td>
</tr>
<tr>
<td>18.1R1</td>
<td>Support for ALGs with DS-lite on MS-MPC and MS-MIC starts in Junos OS Release 18.1R1</td>
</tr>
<tr>
<td>17.2R1</td>
<td>(Starting in Junos OS Release 17.2R1)</td>
</tr>
<tr>
<td>17.2R1</td>
<td>(Starting in Junos OS Release 17.2R1)</td>
</tr>
<tr>
<td>17.2R1</td>
<td>Starting in Junos OS Release 17.2R1, NAT-64 rules are also supported.</td>
</tr>
<tr>
<td>17.2R1</td>
<td>Starting in Junos OS Release 17.2R1, NAT-64 rules are also supported.</td>
</tr>
<tr>
<td>17.1R1</td>
<td>(Starting in Junos OS Release 17.1R1)</td>
</tr>
<tr>
<td>17.1R1</td>
<td>Starting in Junos OS Release 17.1R1, the gatekeeper registration, administration, and status (RAS) ALG allows full support of gatekeeper mode for H.323 calls.</td>
</tr>
<tr>
<td>14.2R7</td>
<td>IKE ALG (Starting in Junos OS Release 14.2R7, 15.1R5, 16.1R2, and 17.1R1)</td>
</tr>
<tr>
<td>14.2R7</td>
<td>Starting in Junos OS Release 14.2R7, 15.1R5, 16.1R2, and 17.1R1, the IKE ALG enables the passing of IKEv1 and IPSec packets through NAPT-44 and NAT64 rules between IPsec peers that are not NAT-T compliant.</td>
</tr>
</tbody>
</table>

**Related Documentation**
- Configuring Application Sets on page 431
- Configuring Application Properties on page 431

**ALGs Available for Junos OS Address Aware NAT**

The following Application Level Gateways (ALGs) listed in Table 13 on page 174 are supported for NAT processing on the listed platforms.
To view the implementation details (port, protocol, and so on) for these Junos OS default applications, locate the Junos OS Default ALG Name in the table and then look up the listed name in the groups. For example, for details about TFTP, look up `junos-tftp` as shown.

**TIP:** The Junos OS provides the `junos-alg`, which enables other ALGs to function by handling ALG registrations, causing slow path packets to flow through registered ALGs, and transferring ALG events to the ALG plug-ins. The `junos-alg` ALG is automatically available on the MS-MPC and MS-MIC platforms, as well as on the MX-SPC3 services card for Next Gen Services on the MX240, MX480, and MX960 and does not require further configuration.

**NOTE:** The remote shell (RSH) and remote login (rlogin) application layer gateways (ALGs) are not supported with network address port translation (NAPT) on MX Series routers with MS-MICs and MS-MPCs.

```bash
user@host# show groups junos-defaults applications application junos-tftp
application-protocol tftp;
protocol udp;
destination-port 69;
```

Table 13 on page 174 summarizes the ALGs available for Junos OS Address Aware NAT for services interfaces cards.

### Table 19: ALGs Available for NAT by Type of Interface Card

<table>
<thead>
<tr>
<th>ALG</th>
<th>MS-DPC</th>
<th>MS-MPC, MS-MIC</th>
<th>MX-SPC3 Services Card</th>
<th>Junos OS Default ALG Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic TCP ALG</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic UDP ALG</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**NOTE:** Specific Junos OS ALGs are not supported. However, a feature called TCP tracker, available by default, performs segment ordering and retransmit and connection tracking, validations for TCP connections.

**NOTE:** TCP tracker performs limited integrity and validation checks for UDP.
### Table 19: ALGs Available for NAT by Type of Interface Card (continued)

<table>
<thead>
<tr>
<th>ALG</th>
<th>MS-DPC</th>
<th>MS-MPC, MS-MIC</th>
<th>MX-SPC3 Services Card</th>
<th>JunosOS Default ALG Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOTP</td>
<td>yes</td>
<td>no</td>
<td></td>
<td>• junos-bootpc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• junos-bootps</td>
</tr>
<tr>
<td>DCE RPC</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>• junos-dce-rpc-portmap</td>
</tr>
<tr>
<td>Services</td>
<td></td>
<td></td>
<td></td>
<td>• junos-dcerpc-endpoint-mapper-service</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• junos-dcerpc-msexchange-directory-nsp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• junos-dcerpc-msexchange-directory-rfr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• junos-dcerpc-msexchange-information-store</td>
</tr>
<tr>
<td>DNS</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>• junos-dns-udp</td>
</tr>
<tr>
<td>DNS</td>
<td>no</td>
<td>no</td>
<td></td>
<td>• junos-dns-tcp</td>
</tr>
<tr>
<td>FTP</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>• junos-ftp</td>
</tr>
<tr>
<td>Gatekeeper</td>
<td>no</td>
<td>yes</td>
<td></td>
<td>• junos-h323-ras</td>
</tr>
<tr>
<td>RAS</td>
<td></td>
<td></td>
<td></td>
<td>(Starting in Junos OS Release 17.1R1)</td>
</tr>
<tr>
<td>H323</td>
<td>no</td>
<td>yes</td>
<td></td>
<td>• junos-h323</td>
</tr>
<tr>
<td>ICMP</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>• junos-icmp-all</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• junos-icmp-ping</td>
</tr>
<tr>
<td>NOTE: In Junos OS Release 14.1 and earlier, ICMP messages are handled by default, but PING ALG support is not provided. Starting in Junos OS 14.2, ICMP messages are handled by default and PING ALG support is provided.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIOP</td>
<td>yes</td>
<td>no</td>
<td></td>
<td>• junos-iiop-java</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• junos-iiop-orbix</td>
</tr>
<tr>
<td>ALG</td>
<td>MS-DPC</td>
<td>MS-MPC, MS-MIC</td>
<td>MX-SPC3 Services Card</td>
<td>Junos OS Default ALG Name</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>----------------</td>
<td>------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>IKE ALG</td>
<td>no</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· junos-ike</td>
</tr>
<tr>
<td><strong>NOTE:</strong> Starting in Junos OS Release 14.2R7, 15.1R5, 16.1R2, and 17.1R1, the IKE ALG ALG is supported on MS-MPCs and MS-MICs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td>yes</td>
<td></td>
<td></td>
<td>· junos-ip</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NETBIOS</td>
<td>yes</td>
<td>no</td>
<td></td>
<td>· junos-netbios-datagram</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· junos-netbios-name-tcp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· junos-netbios-name-udp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· junos-netbios-session</td>
</tr>
<tr>
<td>NETSHOW</td>
<td>yes</td>
<td>no</td>
<td></td>
<td>· junos-netshow</td>
</tr>
<tr>
<td>PPTP</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>· junos-pptp</td>
</tr>
<tr>
<td>REALAUDIO</td>
<td>yes</td>
<td>no</td>
<td></td>
<td>· junos-realaudio</td>
</tr>
<tr>
<td>Sun RPC and RPC Port Map Services</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>· junos-rpc-pomap-tcp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· junos-rpc-pomap-udp</td>
</tr>
<tr>
<td>RTSP</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>· junos-rtsp</td>
</tr>
</tbody>
</table>
Table 19: ALGs Available for NAT by Type of Interface Card (continued)

<table>
<thead>
<tr>
<th>ALG</th>
<th>MS-DPC</th>
<th>MS-MPC, MS-MIC</th>
<th>MX-SPC3 Services Card</th>
<th>JunosOS Default ALG Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIP</td>
<td>yes</td>
<td>Yes</td>
<td></td>
<td>• junos-sip</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The SIP callid is not translated in register messages.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>NOTE:</strong> SIP sessions are limited to 12 hours (720 minutes) for NAT processing on the MS-MIC and MS-MPC interface cards. SIP sessions on the MS-DPC have no time limits.</td>
</tr>
<tr>
<td>SNMP</td>
<td>yes</td>
<td>No</td>
<td></td>
<td>• junos-snmp-get</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• junos-snmp-get-next</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• junos-snmp-response</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• junos-snmp-trap</td>
</tr>
<tr>
<td>SQLNET</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>• junos-sqlnet</td>
</tr>
<tr>
<td>TFTP</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>• junos-tftp</td>
</tr>
<tr>
<td>Traceroute</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>• junos-traceroute</td>
</tr>
<tr>
<td>Unix Remote Shell</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>• junos-rsh</td>
</tr>
<tr>
<td>Shell Service</td>
<td></td>
<td></td>
<td></td>
<td><strong>NOTE:</strong> Remote Shell (RSH) ALG is not supported for network address port translation (NAPT).</td>
</tr>
<tr>
<td>WINFrame</td>
<td>yes</td>
<td>No</td>
<td></td>
<td>• junos-dbiwринarfme</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• junos-dbiwринarfme.udp</td>
</tr>
<tr>
<td>TALK-UDP</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td>• junos-talk-udp</td>
</tr>
<tr>
<td>MS RPC</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td>• junos-rpc-pathmap-tcp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• junos-rpc-pathmap-udp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• junos-rpc-services-tcp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• junos-rpc-services-udp</td>
</tr>
</tbody>
</table>
### Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1R1</td>
<td>Gatekeeper RAS (Starting in Junos OS Release 17.1R1)</td>
</tr>
<tr>
<td>14.2R7</td>
<td>Starting in Junos OS Release 14.2R7, 15.1R5, 16.1R2, and 17.1R1, the IKE ALG ALG is supported on MS-MPCs and MS-MICs.</td>
</tr>
<tr>
<td>14.2</td>
<td>Starting In Junos OS 14.2, ICMP messages are handled by default and PING ALG support is provided.</td>
</tr>
</tbody>
</table>

#### Related Documentation
- ALG Descriptions on page 399
CHAPTER 28

ALGs Configuration Overview

- Configuring Application Sets on page 431
- Configuring Application Properties on page 431
- Examples: Configuring Application Protocols on page 450
- Verifying the Output of ALG Sessions on page 451
- ICMP, Ping, and Traceroute ALGs for MS-MICs and MS-MPCs on page 458
- Monitoring Port Control Protocol Operations on page 459

Configuring Application Sets

You can group the applications you have defined into a named object by including the application-set statement at the [edit applications] hierarchy level with an application statement for each application:

```
[edit applications]
 application-set application-set-name {
 application application;
 }
```

For an example of a typical application set, see “Examples: Configuring Application Protocols” on page 450.

Related Documentation
- ALG Descriptions on page 399
- Configuring Application Properties on page 431
- Examples: Configuring Application Protocols on page 450
- Verifying the Output of ALG Sessions on page 451

Configuring Application Properties

To configure application properties, include the application statement at the [edit applications] hierarchy level:

```
[edit applications]
 application application-name {
```
application-protocol protocol-name;
child-inactivity-timeout seconds;
destination-port port-number;
gate-timeout seconds;
icmp-code value;
icmp-type value;
inactivity-timeout value;
protocol type;
rpc-program-number number;
snmp-command command;
snmp-source-port port-number;
ttl-threshold value;
uuid hex-value;
}

You can group application objects by configuring the application-set statement; for more information, see "Configuring Application Sets" on page 431.

This section includes the following tasks for configuring applications:

- Configuring an Application Protocol on page 432
- Configuring the Network Protocol on page 434
- Configuring the ICMP Code and Type on page 436
- Configuring Source and Destination Ports on page 437
- Configuring the Inactivity Timeout Period on page 440
- Configuring an IKE ALG Application on page 440
- Configuring SIP on page 441
- Configuring an SNMP Command for Packet Matching on page 449
- Configuring an RPC Program Number on page 449
- Configuring the TTL Threshold on page 450
- Configuring a Universal Unique Identifier on page 450

**Configuring an Application Protocol**

The application-protocol statement allows you to specify which of the supported application protocols (ALGs) to configure and include in an application set for service processing. To configure application protocols, include the application-protocol statement at the [edit applications application application-name] hierarchy level:

```plaintext
[edit applications application application-name]
application-protocol protocol-name;
```

Table 20 on page 433 shows the list of supported protocols. For more information about specific protocols, see "ALG Descriptions" on page 399.
**Table 20: Application Protocols Supported by Services Interfaces**

<table>
<thead>
<tr>
<th>Protocol Name</th>
<th>CLI Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bootstrap protocol (BOOTP)</td>
<td>bootp</td>
<td>Supports BOOTP and dynamic host configuration protocol (DHCP).</td>
</tr>
<tr>
<td>Distributed Computing Environment (DCE) remote procedure call (RPC)</td>
<td>dce-rpc</td>
<td>Requires the <strong>protocol</strong> statement to have the value <strong>udp</strong> or <strong>tcp</strong>. Requires a <strong>uuid</strong> value. You cannot specify <strong>destination-port</strong> or <strong>source-port</strong> values.</td>
</tr>
<tr>
<td>DCE RPC portmap</td>
<td>dce-rpc-portmap</td>
<td>Requires the <strong>protocol</strong> statement to have the value <strong>udp</strong> or <strong>tcp</strong>. Requires a <strong>destination-port</strong> value.</td>
</tr>
<tr>
<td>Domain Name System (DNS)</td>
<td>dns</td>
<td>Requires the <strong>protocol</strong> statement to have the value <strong>udp</strong>. This application protocol closes the DNS flow as soon as the DNS response is received.</td>
</tr>
<tr>
<td>Exec</td>
<td>exec</td>
<td>Requires the <strong>protocol</strong> statement to have the value <strong>tcp</strong> or to be unspecified. Requires a <strong>destination-port</strong> value.</td>
</tr>
<tr>
<td>FTP</td>
<td>ftp</td>
<td>Requires the <strong>protocol</strong> statement to have the value <strong>tcp</strong> or to be unspecified. Requires a <strong>destination-port</strong> value.</td>
</tr>
<tr>
<td>H.323</td>
<td>h323</td>
<td>–</td>
</tr>
<tr>
<td>IKE ALG</td>
<td>ike-esp-nat</td>
<td>Requires the <strong>protocol</strong> statement to have the value <strong>udp</strong> and requires the <strong>destination-port</strong> value to be 500.</td>
</tr>
<tr>
<td>Internet Control Message Protocol (ICMP)</td>
<td>icmp</td>
<td>Requires the <strong>protocol</strong> statement to have the value <strong>icmp</strong> or to be unspecified.</td>
</tr>
<tr>
<td>Internet Inter-ORB Protocol</td>
<td>liop</td>
<td>–</td>
</tr>
<tr>
<td>IP</td>
<td>ip</td>
<td>–</td>
</tr>
<tr>
<td>Login</td>
<td>login</td>
<td>–</td>
</tr>
<tr>
<td>NetBIOS</td>
<td>netbios</td>
<td>Requires the <strong>protocol</strong> statement to have the value <strong>udp</strong> or to be unspecified. Requires a <strong>destination-port</strong> value.</td>
</tr>
<tr>
<td>NetShow</td>
<td>netshow</td>
<td>Requires the <strong>protocol</strong> statement to have the value <strong>tcp</strong> or to be unspecified. Requires a <strong>destination-port</strong> value.</td>
</tr>
<tr>
<td>Point-to-Point Tunneling Protocol</td>
<td>pptp</td>
<td>–</td>
</tr>
<tr>
<td>RealAudio</td>
<td>realaudio</td>
<td>–</td>
</tr>
<tr>
<td>Real-Time Streaming Protocol (RTSP)</td>
<td>rtsp</td>
<td>Requires the <strong>protocol</strong> statement to have the value <strong>tcp</strong> or to be unspecified. Requires a <strong>destination-port</strong> value.</td>
</tr>
<tr>
<td>RPC User Datagram Protocol (UDP) or TCP</td>
<td>rpc</td>
<td>Requires the <strong>protocol</strong> statement to have the value <strong>udp</strong> or <strong>tcp</strong>. Requires a <strong>rpc-program-number</strong> value. You cannot specify <strong>destination-port</strong> or <strong>source-port</strong> values.</td>
</tr>
</tbody>
</table>
Table 20: Application Protocols Supported by Services Interfaces (continued)

<table>
<thead>
<tr>
<th>Protocol Name</th>
<th>CLI Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPC port mapping</td>
<td>rpc-portmap</td>
<td>Requires the protocol statement to have the value udp or tcp. Requires a destination-port value.</td>
</tr>
<tr>
<td>Shell</td>
<td>shell</td>
<td>Requires the protocol statement to have the value tcp or to be unspecified. Requires a destination-port value.</td>
</tr>
<tr>
<td>Session Initiation Protocol</td>
<td>sip</td>
<td>--</td>
</tr>
<tr>
<td>SNMP</td>
<td>snmp</td>
<td>Requires the protocol statement to have the value udp or to be unspecified. Requires a destination-port value.</td>
</tr>
<tr>
<td>SQLNet</td>
<td>sqlnet</td>
<td>Requires the protocol statement to have the value tcp or to be unspecified. Requires a destination-port or source-port value.</td>
</tr>
<tr>
<td>Talk Program</td>
<td>talk</td>
<td></td>
</tr>
<tr>
<td>Trace route</td>
<td>traceroute</td>
<td>Requires the protocol statement to have the value udp or to be unspecified. Requires a destination-port value.</td>
</tr>
<tr>
<td>Trivial FTP (TFTP)</td>
<td>tftp</td>
<td>Requires the protocol statement to have the value udp or to be unspecified. Requires a destination-port value.</td>
</tr>
<tr>
<td>WinFrame</td>
<td>winframe</td>
<td>--</td>
</tr>
</tbody>
</table>

**NOTE:** You can configure application-level gateways (ALGs) for ICMP and trace route under stateful firewall, NAT, or CoS rules when twice NAT is configured in the same service set. These ALGs cannot be applied to flows created by the Packet Gateway Controller Protocol (PGCP). Twice NAT does not support any other ALGs. NAT applies only the IP address and TCP or UDP headers, but not the payload.

For more information about configuring twice NAT, see “Junos Address Aware Network Addressing Overview” on page 61.

**Related Documentation**

- ALGs Available for Junos OS Address Aware NAT on page 173

**Configuring the Network Protocol**

The protocol statement allows you to specify which of the supported network protocols to match in an application definition. To configure network protocols, include the protocol statement at the [edit applications application application-name] hierarchy level:

```
[edit applications application application-name]
protocol type;
```
You specify the protocol type as a numeric value; for the more commonly used protocols, text names are also supported in the command-line interface (CLI). Table 21 on page 435 shows the list of the supported protocols.

**Table 21: Network Protocols Supported by Services Interfaces**

<table>
<thead>
<tr>
<th>Network Protocol Type</th>
<th>CLI Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Security (IPsec) authentication header (AH)</td>
<td>ah</td>
<td>–</td>
</tr>
<tr>
<td>External Gateway Protocol (EGP)</td>
<td>egp</td>
<td>–</td>
</tr>
<tr>
<td>IPSec Encapsulating Security Payload (ESP)</td>
<td>esp</td>
<td>–</td>
</tr>
<tr>
<td>Generic routing encapsulation (GR)</td>
<td>gre</td>
<td>–</td>
</tr>
<tr>
<td>ICMP</td>
<td>icmp</td>
<td>Requires an application-protocol value of icmp.</td>
</tr>
<tr>
<td>ICMPv6</td>
<td>icmp6</td>
<td>Requires an application-protocol value of icmp.</td>
</tr>
<tr>
<td>Internet Group Management Protocol (IGMP)</td>
<td>igmp</td>
<td>–</td>
</tr>
<tr>
<td>IP in IP</td>
<td>iplp</td>
<td>–</td>
</tr>
<tr>
<td>OSPF</td>
<td>ospf</td>
<td>–</td>
</tr>
<tr>
<td>Protocol Independent Multicast (PIM)</td>
<td>pim</td>
<td>–</td>
</tr>
<tr>
<td>Resource Reservation Protocol (RSVP)</td>
<td>rsvp</td>
<td>–</td>
</tr>
<tr>
<td>TCP</td>
<td>tcp</td>
<td>Requires a destination-port or source-port value unless you specify application-protocol rcp or dce-rcp.</td>
</tr>
<tr>
<td>UDP</td>
<td>udp</td>
<td>Requires a destination-port or source-port value unless you specify application-protocol rcp or dce-rcp.</td>
</tr>
</tbody>
</table>

For a complete list of possible numeric values, see RFC 1700, *Assigned Numbers (for the Internet Protocol Suite)*.

**NOTE:** IP version 6 (IPv6) is not supported as a network protocol in application definitions.

By default, the twice NAT feature can affect IP, TCP, and UDP headers embedded in the payload of ICMP error messages. You can include the protocol tcp and protocol udp statements with the application statement for twice NAT configurations. For more information about configuring twice NAT, see “Junos Address Aware Network Addressing Overview” on page 61.
Configuring the ICMP Code and Type

The ICMP code and type provide additional specification, in conjunction with the network protocol, for packet matching in an application definition. To configure ICMP settings, include the `icmp-code` and `icmp-type` statements at the `[edit applications application <application-name>]` hierarchy level:

```plaintext
[edit applications application <application-name>]
 icmp-code value;
 icmp-type value;
```

You can include only one ICMP code and type value. The `application-protocol` statement must have the value `icmp`. Table 22 on page 436 shows the list of supported ICMP values.

### Table 22: ICMP Codes and Types Supported by Services Interfaces

<table>
<thead>
<tr>
<th>CLI Statement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>icmp-code</code></td>
<td>This value or keyword provides more specific information than <code>icmp-type</code>. Because the value’s meaning depends upon the associated <code>icmp-type</code> value, you must specify <code>icmp-type</code> along with <code>icmp-code</code>. For more information, see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.</td>
</tr>
<tr>
<td><code>icmp-type</code></td>
<td>Normally, you specify this match in conjunction with the <code>protocol</code> match statement to determine which protocol is being used on the port. For more information, see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.</td>
</tr>
</tbody>
</table>

In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed). The keywords are grouped by the ICMP type with which they are associated:

- **Parameter Problem**: `ip-header-bad` (0), `required-option-missing` (1)
- **Redirect**: `redirect-for-host` (1), `redirect-for-network` (0), `redirect-for-tos-and-host` (3), `redirect-for-tos-and-net` (2)
- **Time Exceeded**: `ttl-eq-zero-during-reassembly` (1), `ttl-eq-zero-during-transit` (0)
- **Unreachable**: `communication-prohibited-by-filtering` (13), `destination-host-prohibited` (10), `destination-host-unknown` (7), `destination-network-prohibited` (9), `destination-network-unknown` (6), `fragmentation-needed` (4), `host-precedence-violation` (14), `host-unreachable` (1), `host-unreachable-for-TOS` (12), `network-unreachable` (0), `network-unreachable-for-TOS` (11), `port-unreachable` (3), `precedence-cutoff-in-effect` (15), `protocol-unreachable` (2), `source-host-isolated` (8), `source-route-failed` (5)
NOTE: If you configure an interface with an input firewall filter that includes a reject action and with a service set that includes stateful firewall rules, the router executes the input firewall filter before the stateful firewall rules are run on the packet. As a result, when the Packet Forwarding Engine sends an ICMP error message out through the interface, the stateful firewall rules might drop the packet because it was not seen in the input direction.

Possible workarounds are to include a forwarding-table filter to perform the reject action, because this type of filter is executed after the stateful firewall in the input direction, or to include an output service filter to prevent the locally generated ICMP packets from going to the stateful firewall service.

Configuring Source and Destination Ports

The TCP or UDP source and destination port provide additional specification, in conjunction with the network protocol, for packet matching in an application definition. To configure ports, include the destination-port and source-port statements at the [edit applications application application-name] hierarchy level:

```
[edit applications application application-name]
destination-port value;
source-port value;
```

You must define one source or destination port. Normally, you specify this match in conjunction with the protocol match statement to determine which protocol is being used on the port; for constraints, see Table 20 on page 433.

You can specify either a numeric value or one of the text synonyms listed in Table 23 on page 437.

**Table 23: Port Names Supported by Services Interfaces**

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Corresponding Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>afs</td>
<td>1483</td>
</tr>
<tr>
<td>bgp</td>
<td>179</td>
</tr>
<tr>
<td>biff</td>
<td>512</td>
</tr>
<tr>
<td>bootpc</td>
<td>68</td>
</tr>
<tr>
<td>bootps</td>
<td>67</td>
</tr>
<tr>
<td>cmd</td>
<td>514</td>
</tr>
<tr>
<td>cvspserver</td>
<td>2401</td>
</tr>
<tr>
<td>dhcp</td>
<td>67</td>
</tr>
</tbody>
</table>
### Table 23: Port Names Supported by Services Interfaces (continued)

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Corresponding Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>53</td>
</tr>
<tr>
<td>eklogin</td>
<td>2105</td>
</tr>
<tr>
<td>ekshell</td>
<td>2106</td>
</tr>
<tr>
<td>exec</td>
<td>512</td>
</tr>
<tr>
<td>finger</td>
<td>79</td>
</tr>
<tr>
<td>ftp</td>
<td>21</td>
</tr>
<tr>
<td>ftp-data</td>
<td>20</td>
</tr>
<tr>
<td>http</td>
<td>80</td>
</tr>
<tr>
<td>https</td>
<td>443</td>
</tr>
<tr>
<td>ident</td>
<td>113</td>
</tr>
<tr>
<td>imap</td>
<td>143</td>
</tr>
<tr>
<td>kerberos-sec</td>
<td>88</td>
</tr>
<tr>
<td>klogin</td>
<td>543</td>
</tr>
<tr>
<td>kpasswd</td>
<td>761</td>
</tr>
<tr>
<td>krb-prop</td>
<td>754</td>
</tr>
<tr>
<td>krbupdate</td>
<td>760</td>
</tr>
<tr>
<td>kshell</td>
<td>544</td>
</tr>
<tr>
<td>ldap</td>
<td>389</td>
</tr>
<tr>
<td>login</td>
<td>513</td>
</tr>
<tr>
<td>mobileip-agent</td>
<td>434</td>
</tr>
<tr>
<td>mobilip-mn</td>
<td>435</td>
</tr>
<tr>
<td>msdp</td>
<td>639</td>
</tr>
<tr>
<td>netbios-dgm</td>
<td>138</td>
</tr>
<tr>
<td>netbios-ns</td>
<td>137</td>
</tr>
</tbody>
</table>
Table 23: Port Names Supported by Services Interfaces (continued)

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Corresponding Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>netbios-ssn</td>
<td>139</td>
</tr>
<tr>
<td>nfsd</td>
<td>2049</td>
</tr>
<tr>
<td>nntp</td>
<td>119</td>
</tr>
<tr>
<td>ntalk</td>
<td>518</td>
</tr>
<tr>
<td>ntp</td>
<td>123</td>
</tr>
<tr>
<td>pop3</td>
<td>110</td>
</tr>
<tr>
<td>pptp</td>
<td>1723</td>
</tr>
<tr>
<td>printer</td>
<td>515</td>
</tr>
<tr>
<td>radacct</td>
<td>1813</td>
</tr>
<tr>
<td>radius</td>
<td>1812</td>
</tr>
<tr>
<td>rip</td>
<td>520</td>
</tr>
<tr>
<td>rkinic</td>
<td>2108</td>
</tr>
<tr>
<td>smtp</td>
<td>25</td>
</tr>
<tr>
<td>snmp</td>
<td>161</td>
</tr>
<tr>
<td>snmptrap</td>
<td>162</td>
</tr>
<tr>
<td>snpp</td>
<td>444</td>
</tr>
<tr>
<td>socks</td>
<td>1080</td>
</tr>
<tr>
<td>ssh</td>
<td>22</td>
</tr>
<tr>
<td>sunrpc</td>
<td>111</td>
</tr>
<tr>
<td>syslog</td>
<td>514</td>
</tr>
<tr>
<td>tacacs-ds</td>
<td>65</td>
</tr>
<tr>
<td>talk</td>
<td>517</td>
</tr>
<tr>
<td>telnet</td>
<td>23</td>
</tr>
<tr>
<td>tftp</td>
<td>69</td>
</tr>
</tbody>
</table>
Table 23: Port Names Supported by Services Interfaces (continued)

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Corresponding Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>timed</td>
<td>525</td>
</tr>
<tr>
<td>who</td>
<td>513</td>
</tr>
<tr>
<td>xdmcp</td>
<td>177</td>
</tr>
<tr>
<td>zephyr-clt</td>
<td>2103</td>
</tr>
<tr>
<td>zephyr-hm</td>
<td>2104</td>
</tr>
</tbody>
</table>

For more information about matching criteria, see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.

**Configuring the Inactivity Timeout Period**

You can specify a timeout period for application inactivity. If the software has not detected any activity during the duration, the flow becomes invalid when the timer expires. To configure a timeout period, include the `inactivity-timeout` statement at the `[edit applications application application-name]` hierarchy level:

```plaintext
[edit applications application application-name]
inactivity-timeout seconds;
```

The default value is 14,400 seconds. The value you configure for an application overrides any global value configured at the `[edit interfaces interface-name service-options]` hierarchy level; for more information, see Configuring Default Timeout Settings for Services Interfaces.

**Configuring an IKE ALG Application**

Before Junos OS Release 17.4R1, Network Address Translation-Traversal (NAT-T) is not supported for the Junos VPN Site Secure suite of IPsec features on the MX Series routers. The IKE ALG enables the passing of IKEv1 and IPsec packets through NAPT-44 and NAT64 filters between IPsec peers that are not NAT-T compliant. This ALG supports only ESP tunnel mode. You can use the predefined IKE ALG application `junos-ike`, which has predefined values for the destination port (500), inactivity timeout (14,400 seconds), gate timeout (120 seconds), and ESP session idle timeout (800 seconds). If you want to use the IKE ALG with values different from the predefined `junos-ike` application, you need to configure a new IKE ALG application.

To configure an IKE ALG application:

1. Specify a name for the application.

```plaintext
[edit applications]
user@host# set application application-name
```

2. Specify the IKE ALG.
3. Specify the UDP protocol.

   [edit applications application application-name]
   user@host# set protocol udp

4. Specify 500 for the destination port.

   [edit applications application application-name]
   user@host# set destination-port 500

5. Specify the number of seconds that the IKE session is inactive before it is deleted. The default is 14,400 seconds.

   [edit applications application application-name]
   user@host# set inactivity-timeout seconds

6. Specify the number of seconds that can pass after IKE establishes the security association between the IPsec client and server and before the ESP traffic starts in both directions. If the ESP traffic has not started before this timeout value, the ESP gates are deleted and the ESP traffic is blocked. The default is 120 seconds.

   [edit applications application application-name]
   user@host# set gate-timeout seconds

7. Specify the ESP session (IPsec data traffic) idle timeout in seconds. If no IPsec data traffic is passed on the ESP session in this time, the session is deleted. The default is 800 seconds.

   [edit applications application application-name]
   user@host# set child-inactivity-timeout seconds

### Configuring SIP

The Session Initiation Protocol (SIP) is a generalized protocol for communication between endpoints involved in Internet services such as telephony, fax, video conferencing, instant messaging, and file exchange.

The Junos OS provides ALG services in accordance with the standard described in RFC 3261, *SIP: Session Initiation Protocol*. SIP flows under the Junos OS are as described in RFC 3665, *Session Initiation Protocol (SIP) Basic Call Flow Examples*. 
NOTE: Before implementing the Junos OS SIP ALG, you should be familiar with certain limitations, discussed in “Junos OS SIP ALG Limitations” on page 448.

The use of NAT in conjunction with the SIP ALG results in changes in SIP header fields due to address translation. For an explanation of these translations, refer to “SIP ALG Interaction with Network Address Translation” on page 443.

To implement SIP on adaptive services interfaces, you configure the application-protocol statement at the [edit applications application application-name] hierarchy level with the value sip. For more information about this statement, see “Configuring an Application Protocol” on page 432. In addition, there are two other statements you can configure to modify how SIP is implemented:

- You can enable the router to accept any incoming SIP calls for the endpoint devices that are behind the NAT firewall. When a device behind the firewall registers with the proxy that is outside the firewall, the AS or Multiservices PCG maintains the registration state. When the learn-sip-register statement is enabled, the router can use this information to accept inbound calls. If this statement is not configured, no inbound calls are accepted; only the devices behind the firewall can call devices outside the firewall.

  To configure SIP registration, include the learn-sip-register statement at the [edit applications application application-name] hierarchy level:

  [edit applications application application-name]
  learn-sip-register;

  You can also manually inspect the SIP register by issuing the show services stateful-firewall sip-register command; for more information, see the Junos OS System Basics and Services Command Reference.

- You can specify a timeout period for the duration of SIP calls that are placed on hold. When a call is put on hold, there is no activity and flows might time out after the configured inactivity-timeout period expires, resulting in call state teardown. To avoid this, when a call is put on hold, the flow timer is reset to the sip-call-hold-timeout cycle to preserve the call state and flows for longer than the inactivity-timeout period.

  To configure a timeout period, include the sip-call-hold-timeout statement at the [edit applications application application-name] hierarchy level:

  [edit applications application application-name]
  sip-call-hold-timeout seconds;

  The default value is 7200 seconds and the range is from 0 through 36,000 seconds (10 hours).
SIP ALG Interaction with Network Address Translation

The Network Address Translation (NAT) protocol enables multiple hosts in a private subnet to share a single public IP address to access the Internet. For outgoing traffic, NAT replaces the private IP address of the host in the private subnet with the public IP address. For incoming traffic, the public IP address is converted back into the private address, and the message is routed to the appropriate host in the private subnet.

Using NAT with the Session Initiation Protocol (SIP) service is more complicated because SIP messages contain IP addresses in the SIP headers as well as in the SIP body. When using NAT with the SIP service, the SIP headers contain information about the caller and the receiver, and the device translates this information to hide it from the outside network. The SIP body contains the Session Description Protocol (SDP) information, which includes IP addresses and port numbers for transmission of the media. The device translates SDP information for allocating resources to send and receive the media.

How IP addresses and port numbers in SIP messages are replaced depends on the direction of the message. For an outgoing message, the private IP address and port number of the client are replaced with the public IP address and port number of the Juniper Networks firewall. For an incoming message, the public address of the firewall is replaced with the private address of the client.

When an INVITE message is sent out across the firewall, the SIP Application Layer Gateway (ALG) collects information from the message header into a call table, which it uses to forward subsequent messages to the correct endpoint. When a new message arrives, for example an ACK or 200 OK, the ALG compares the “From:, To:, and Call-ID:” fields against the call table to identify the call context of the message. If a new INVITE message arrives that matches the existing call, the ALG processes it as a REINVITE.

When a message containing SDP information arrives, the ALG allocates ports and creates a NAT mapping between them and the ports in the SDP. Because the SDP requires sequential ports for the Real-Time Transport Protocol (RTP) and Real-Time Control Protocol (RTCP) channels, the ALG provides consecutive even-odd ports. If it is unable to find a pair of ports, it discards the SIP message.

This topic contains the following sections:

- Outgoing Calls on page 444
- Incoming Calls on page 444
- Forwarded Calls on page 444
- Call Termination on page 445
- Call Re-INVITE Messages on page 445
- Call Session Timers on page 445
- Call Cancellation on page 445
- Forking on page 445
- SIP Messages on page 446
Outgoing Calls

When a SIP call is initiated with a SIP request message from the internal to the external network, NAT replaces the IP addresses and port numbers in the SDP and binds the IP addresses and port numbers to the Juniper Networks firewall. Via, Contact, Route, and Record-Route SIP header fields, if present, are also bound to the firewall IP address. The ALG stores these mappings for use in retransmissions and for SIP response messages.

The SIP ALG then opens pinholes in the firewall to allow media through the device on the dynamically assigned ports negotiated based on information in the SDP and the Via, Contact, and Record-Route header fields. The pinholes also allow incoming packets to reach the Contact, Via, and Record-Route IP addresses and ports. When processing return traffic, the ALG inserts the original Contact, Via, Route, and Record-Route SIP fields back into packets.

Incoming Calls

Incoming calls are initiated from the public network to public static NAT addresses or to interface IP addresses on the device. Static NATs are statically configured IP addresses that point to internal hosts; interface IP addresses are dynamically recorded by the ALG as it monitors REGISTER messages sent by internal hosts to the SIP registrar. When the device receives an incoming SIP packet, it sets up a session and forwards the payload of the packet to the SIP ALG.

The ALG examines the SIP request message (initially an INVITE) and, based on information in the SDP, opens gates for outgoing media. When a 200 OK response message arrives, the SIP ALG performs NAT on the IP addresses and ports and opens pinholes in the outbound direction. (The opened gates have a short time-to-live, and they time out if a 200 OK response message is not received quickly.)

When a 200 OK response arrives, the SIP proxy examines the SDP information and reads the IP addresses and port numbers for each media session. The SIP ALG on the device performs NAT on the addresses and port numbers, opens pinholes for outbound traffic, and refreshes the timeout for gates in the inbound direction.

When the ACK arrives for the 200 OK, it also passes through the SIP ALG. If the message contains SDP information, the SIP ALG ensures that the IP addresses and port numbers are not changed from the previous INVITE—if they are, the ALG deletes old pinholes and creates new pinholes to allow media to pass through. The ALG also monitors the Via, Contact, and Record-Route SIP fields and opens new pinholes if it determines that these fields have changed.

Forwarded Calls

A forwarded call is when, for example, user A outside the network calls user B inside the network, and user B forwards the call to user C outside the network. The SIP ALG processes the INVITE from user A as a normal incoming call. But when the ALG examines the forwarded call from B to C outside the network and notices that B and C are reached using the same interface, it does not open pinholes in the firewall, because media will flow directly between user A and user C.
**Call Termination**

The BYE message terminates a call. When the device receives a BYE message, it translates the header fields just as it does for any other message. But because a BYE message must be acknowledged by the receiver with a 200 OK, the ALG delays call teardown for five seconds to allow time for transmission of the 200 OK.

**Call Re-INVITE Messages**

Re-INVITE messages add new media sessions to a call and remove existing media sessions. When new media sessions are added to a call, new pinholes are opened in the firewall and new address bindings are created. The process is identical to the original call setup. When one or more media sessions are removed from a call, pinholes are closed and bindings released just as with a BYE message.

**Call Session Timers**

The SIP ALG uses the Session-Expires value to time out a session if a Re-INVITE or UPDATE message is not received. The ALG gets the Session-Expires value, if present, from the 200 OK response to the INVITE and uses this value for signaling timeout. If the ALG receives another INVITE before the session times out, it resets all timeout values to this new INVITE or to default values, and the process is repeated.

As a precautionary measure, the SIP ALG uses hard timeout values to set the maximum amount of time a call can exist. This ensures that the device is protected should one of the following events occur:

- End systems crash during a call and a BYE message is not received.
- Malicious users never send a BYE in an attempt to attack a SIP ALG.
- Poor implementations of SIP proxy fail to process Record-Route and never send a BYE message.
- Network failures prevent a BYE message from being received.

**Call Cancellation**

Either party can cancel a call by sending a CANCEL message. Upon receiving a CANCEL message, the SIP ALG closes pinholes through the firewall—if any have been opened—and releases address bindings. Before releasing the resources, the ALG delays the control channel age-out for approximately five seconds to allow time for the final 200 OK to pass through. The call is terminated when the five second timeout expires, regardless of whether a 487 or non-200 response arrives.

**Forking**

Forking enables a SIP proxy to send a single INVITE message to multiple destinations simultaneously. When the multiple 200 OK response messages arrive for the single call, the SIP ALG parses but updates call information with the first 200 OK messages it receives.
**SIP Messages**

The SIP message format consists of a SIP header section and the SIP body. In request messages, the first line of the header section is the request line, which includes the method type, request-URI, and protocol version. In response messages, the first line is the status line, which contains a status code. SIP headers contain IP addresses and port numbers used for signaling. The SIP body, separated from the header section by a blank line, is reserved for session description information, which is optional. Junos OS currently supports the SDP only. The SIP body contains IP addresses and port numbers used to transport the media.

**SIP Headers**

In the following sample SIP request message, NAT replaces the IP addresses in the header fields to hide them from the outside network.

```
INVITE bob@10.150.20.5 SIP/2.0
Via: SIP/2.0/UDP 10.150.20.3:5434
From: alice@10.150.20.3
To: bob@10.150.20.5
Call-ID: a12abcde@10.150.20.3
Contact: alice@10.150.20.3:5434
Route: <sip:netscreen@10.150.20.3:5060>
Record-Route: <sip:netscreen@10.150.20.3:5060>
```

How IP address translation is performed depends on the type and direction of the message. A message can be any of the following:

- Inbound request
- Outbound response
- Outbound request
- Inbound response

Table 24 on page 447 shows how NAT is performed in each of these cases. Note that for several of the header fields the ALG determine more than just whether the messages comes from inside or outside the network. It must also determine what client initiated the call, and whether the message is a request or response.
<table>
<thead>
<tr>
<th>Request Type</th>
<th>To:</th>
<th>From:</th>
<th>Call-ID:</th>
<th>Via:</th>
<th>Request-URI:</th>
<th>Contact:</th>
<th>Record-Route:</th>
<th>Route:</th>
</tr>
</thead>
</table>
| **Inbound Request**  
(from public to private) | Replace domain with local address | None | None | None | Replace ALG address with local address | None | None | None |
| **Outbound Response**  
(from private to public) | Replace ALG address with local address | None | None | None | N/A | Replace local address with ALG address | Replace local address with ALG address | None |
| **Outbound Request**  
(from private to public) | None | Replace local address with ALG address | None | Replace local address with ALG address | None | Replace local address with ALG address | Replace local address with ALG address | Replace ALG address with local address |
Table 24: Requesting Messages with NAT Table (continued)

<table>
<thead>
<tr>
<th>Outbound Response (from public to private)</th>
<th>To:</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>From:</td>
<td>Replace ALG address with local address</td>
</tr>
<tr>
<td></td>
<td>Call-ID:</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Via:</td>
<td>Replace ALG address with local address</td>
</tr>
<tr>
<td></td>
<td>Request-URI:</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Contact:</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Record-Route:</td>
<td>Replace ALG address with local address</td>
</tr>
<tr>
<td></td>
<td>Route:</td>
<td>Replace ALG address with local address</td>
</tr>
</tbody>
</table>

**SIP Body**

The SDP information in the SIP body includes IP addresses the ALG uses to create channels for the media stream. Translation of the SDP section also allocates resources, that is, port numbers to send and receive the media.

The following excerpt from a sample SDP section shows the fields that are translated for resource allocation.

```plaintext
o=user 2344234 552344344 IN IP4 10.150.20.3
c=IN IP4 10.150.20.3
m=audio 43249 RTP/AVP 0
```

SIP messages can contain more than one media stream. The concept is similar to attaching multiple files to an e-mail message. For example, an INVITE message sent from a SIP client to a SIP server might have the following fields:

```plaintext
c=IN IP4 10.123.33.4
m=audio 33445 RTP/AVP 0
c=IN IP4 10.123.33.4
m=audio 33447 RTP/AVP 0
c=IN IP4 10.123.33.4
m=audio 33449 RTP/AVP 0
```

Junos OS supports up to 6 SDP channels negotiated for each direction, for a total of 12 channels per call.

**Junos OS SIP ALG Limitations**

The following limitations apply to configuration of the SIP ALG:

- Only the methods described in RFC 3261 are supported.
- Only SIP version 2 is supported.
- TCP is not supported as a transport mechanism for signaling messages.
- Do not configure the SIP ALG when using STUN. If clients use STUN/TURN to detect the firewall or NAT devices between the caller and responder or proxy, the client attempts to best-guess the NAT device behavior and act accordingly to place the call.
- Do not use the endpoint-independent mapping NAT pool option in conjunction with the SIP ALG. Errors will result.
- IPv6 signaling data is not supported.
- Authentication is not supported.
- Encrypted messages are not supported.
- SIP fragmentation is not supported.
- The maximum UDP packet size containing a SIP message is assumed to be 4 KB. SIP messages larger than this are not supported.
- The maximum number of media channels in a SIP message is assumed to be six.
- Fully qualified domain names (FQDNs) are not supported in critical fields.
- QoS is not supported.
- High availability is not supported, except for warm standby.
- A timeout setting of never is not supported on SIP or NAT.
- Multicast (forking proxy) is not supported.

Configuring an SNMP Command for Packet Matching

You can specify an SNMP command setting for packet matching. To configure SNMP, include the `snmp-command` statement at the `[edit applications application application-name]` hierarchy level:

```
[edit applications application application-name]
snmp-command value;
```

The supported values are `get`, `get-next`, `set`, and `trap`. You can configure only one value for matching. The `application-protocol` statement at the `[edit applications application application-name]` hierarchy level must have the value `snmp`. For information about specifying the application protocol, see “Configuring an Application Protocol” on page 432.

Configuring an RPC Program Number

You can specify an RPC program number for packet matching. To configure an RPC program number, include the `rpc-program-number` statement at the `[edit applications application application-name]` hierarchy level:

```
[edit applications application application-name]
rpc-program-number number;
```

The range of values used for DCE or RPC is from 100,000 through 400,000. The `application-protocol` statement at the `[edit applications application application-name]`
hierarchy level must have the value rpc. For information about specifying the application protocol, see “Configuring an Application Protocol” on page 432.

**Configuring the TTL Threshold**

You can specify a trace route time-to-live (TTL) threshold value, which controls the acceptable level of network penetration for trace routing. To configure a TTL value, include the ttl-threshold statement at the [edit applications application application-name] hierarchy level:

```
[edit applications application application-name]
 ttl-threshold value;
```

The application-protocol statement at the [edit applications application application-name] hierarchy level must have the value traceroute. For information about specifying the application protocol, see “Configuring an Application Protocol” on page 432.

**Configuring a Universal Unique Identifier**

You can specify a Universal Unique Identifier (UUID) for DCE RPC objects. To configure a UUID value, include the uuid statement at the [edit applications application application-name] hierarchy level:

```
[edit applications application application-name]
 uuid hex-value;
```

The uuid value is in hexadecimal notation. The application-protocol statement at the [edit applications application application-name] hierarchy level must have the value dce-rpc. For information about specifying the application protocol, see “Configuring an Application Protocol” on page 432. For more information on UUID numbers, see [http://www.opengroup.org/onlinepubs/9629399/apdxa.htm](http://www.opengroup.org/onlinepubs/9629399/apdxa.htm).

**Examples: Configuring Application Protocols**

The following example shows an application protocol definition describing a special FTP application running on port 78:

```
[edit applications]
application my-ftp-app {
 application-protocol ftp;
 protocol tcp;
 destination-port 78;
 timeout 100; # inactivity timeout for FTP service
}
```

The following example shows a special ICMP protocol (application-protocol icmp) of type 8 (ICMP echo):

```
[edit applications]
application icmp-app {
 application-protocol icmp;
```
The following example shows a possible application set:

```
[edit applications]
application-set basic {
 http;
 ftp;
 telnet;
 nfs;
 icmp;
}
```

The software includes a predefined set of well-known application protocols. The set includes applications for which the TCP and UDP destination ports are already recognized by stateless firewall filters.

### Related Documentation
- ALG Descriptions on page 399
- Configuring Application Sets on page 431
- Configuring Application Properties on page 431
- Verifying the Output of ALG Sessions on page 451

### Verifying the Output of ALG Sessions

This section contains examples of successful output from ALG sessions and information on system log configuration. You can compare the results of your sessions to check whether the configurations are functioning correctly.

- FTP Example on page 451
- RTSP ALG Example on page 454
- System Log Messages on page 456

### FTP Example

This example analyzes the output during an active FTP session. It consists of four different flows; two are control flows and two are data flows. The example consists of the following parts:

- Sample Output on page 452
- FTP System Log Messages on page 452
- Analysis on page 453
- Troubleshooting Questions on page 453
Sample Output

The following is a complete sample output from the `show services stateful-firewall conversations application-protocol ftp` operational mode command:

```
user@host> show services stateful-firewall conversations application-protocol ftp
Interface: ms-1/3/0, Service set: CLBJI1-AAF001
Conversation: ALG protocol: ftp
 Number of initiators: 2, Number of responders: 2

<table>
<thead>
<tr>
<th>Flow</th>
<th>State</th>
<th>Dir</th>
<th>Frm count</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>Watch</td>
<td>I</td>
<td>13</td>
</tr>
<tr>
<td>NAT source</td>
<td>1.1.79.2:14083 -> 194.250.1.237:50118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td>Forward</td>
<td>O</td>
<td>3</td>
</tr>
<tr>
<td>NAT source</td>
<td>1.1.79.2:14104 -> 194.250.1.237:50119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td>Watch</td>
<td>O</td>
<td>12</td>
</tr>
<tr>
<td>NAT dest</td>
<td>194.250.1.237:50118 -> 1.1.79.2:14083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td>Forward</td>
<td>O</td>
<td>5</td>
</tr>
<tr>
<td>NAT dest</td>
<td>194.250.1.237:50119 -> 1.1.79.2:14104</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

For each flow, the first line shows flow information, including protocol (TCP), source address, source port, destination address, destination port, flow state, direction, and frame count.

- The state of a flow can be **Watch, Forward, or Drop**:
  - A **Watch** flow state indicates that the control flow is monitored by the ALG for information in the payload. NAT processing is performed on the header and payload as needed.
  - A **Forward** flow forwards the packets without monitoring the payload. NAT is performed on the header as needed.
  - A **Drop** flow drops any packet that matches the 5 tuple.

- The frame count (**Frm count**) shows the number of packets that were processed on that flow.

The second line shows the NAT information.

- **source** indicates source NAT.
- **dest** indicates destination NAT.
- The first address and port in the NAT line are the original address and port being translated for that flow.
- The second address and port in the NAT line are the translated address and port for that flow.

**FTP System Log Messages**

System log messages are generated during an FTP session. For more information about system logs, see “System Log Messages” on page 456.
The following system log messages are generated during creation of the FTP control flow:

- **Rule Accept system log:**
  

- **Create Accept Flow system log:**
  
  Oct 27 11:42:54 (FPC Slot 1, PIC Slot 1) [ss_ftp][FWMAT]:  
  ASP_SFW_CREATE_ACCEPT_FLOW: proto 6 (TCP) application: ftp, fe-3/3/3.0:1.2.2:4450 -> 2.2.2.2:21, creating forward or watch flow

- **System log for data flow creation:**
  
  Oct 27 11:43:30 (FPC Slot 1, PIC Slot 1) [ss_ftp][FWMAT]:  
  ASP_SFW_FTP_ACTIVE_ACCEPT: proto 6 (TCP) application: ftp, so-2/1/2.0:2.2.2.2:20 -> 1.1.2:50726, Creating FTP active mode forward flow

**Analysis**

**Control Flows**

The control flows are established after the three-way handshake is complete.

- Control flow from FTP client to FTP server. TCP destination port is 21.

<table>
<thead>
<tr>
<th>TCP</th>
<th>1.1.79.2:14083 → 2.2.2.2:21</th>
<th>Watch</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT source</td>
<td>1.1.79.2:14083 → 194.250.1.237:50118</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Control flow from FTP server to FTP client. TCP source port is 21.

<table>
<thead>
<tr>
<th>TCP</th>
<th>2.2.2.2:21 → 194.250.1.237:50118</th>
<th>Watch</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT dest</td>
<td>194.250.1.237:50118 → 1.1.79.2:14083</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Data Flows**

Data port of 20 is negotiated for data transfer during the course of the FTP control protocol. These two flows are data flows between the FTP client and the FTP server:

<table>
<thead>
<tr>
<th>TCP</th>
<th>1.1.79.2:14104 → 2.2.2.2:20</th>
<th>Forward</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT source</td>
<td>1.1.79.2:14104 → 194.250.1.237:50119</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TCP</th>
<th>2.2.2.2:20 → 194.250.1.237:50119</th>
<th>Forward</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT dest</td>
<td>194.250.1.237:50119 → 1.1.79.2:14104</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Troubleshooting Questions**

1. How do I know if the FTP ALG is active?
The ALG protocol field in the conversation should display `ftp`.

There should be a valid frame count (`Frm count`) in the control flows.

A valid frame count in the data flows indicates that data transfer has taken place.

2. What do I need to check if the FTP connection is established but data transfer does not take place?

   - Most probably, the control connection is up, but the data connection is down.
   - Check the conversations output to determine whether both the control and data flows are present.

3. How do I interpret each flow? What does each flow mean?

   - FTP control flow initiator flow—Flow with destination port 21
   - FTP control flow responder flow—Flow with source port 21
   - FTP data flow initiator flow—Flow with destination port 20
   - FTP data flow responder flow—Flow with source port 20

RTSP ALG Example

The following is an example of an RTSP conversation. The application uses the RTSP protocol for control connection. Once the connection is set up, the media is sent using UDP protocol (RTP).

This example consists of the following:

- Sample Output on page 454
- Analysis on page 455
- Troubleshooting Questions on page 455

Sample Output

Here is the output from the `show services stateful-firewall conversations` operational mode command:

```
user@host# show services stateful-firewall conversations

Interface: ms-3/2/0, Service set: svc_set
Conversation: ALG protocol: rtsp
 Number of initiators: 5, Number of responders: 5

<table>
<thead>
<tr>
<th>Flow</th>
<th>State</th>
<th>Dir</th>
<th>Frm count</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>1.1.1.3:58795 -> 2.2.2.2:554</td>
<td>Watch</td>
<td>I</td>
</tr>
<tr>
<td>UDP</td>
<td>1.1.1.3:1028 -> 2.2.2.2:1028</td>
<td>Forward</td>
<td>I</td>
</tr>
<tr>
<td>UDP</td>
<td>1.1.1.3:1029 -> 2.2.2.2:1029</td>
<td>Forward</td>
<td>I</td>
</tr>
<tr>
<td>UDP</td>
<td>1.1.1.3:1030 -> 2.2.2.2:1030</td>
<td>Forward</td>
<td>I</td>
</tr>
<tr>
<td>UDP</td>
<td>1.1.1.3:1031 -> 2.2.2.2:1031</td>
<td>Forward</td>
<td>I</td>
</tr>
<tr>
<td>TCP</td>
<td>2.2.2.2:554 -> 1.1.1.3:58795</td>
<td>Watch</td>
<td>O</td>
</tr>
<tr>
<td>UDP</td>
<td>2.2.2.2:1028 -> 1.1.1.3:1028</td>
<td>Forward</td>
<td>O</td>
</tr>
<tr>
<td>UDP</td>
<td>2.2.2.2:1029 -> 1.1.1.3:1029</td>
<td>Forward</td>
<td>O</td>
</tr>
<tr>
<td>UDP</td>
<td>2.2.2.2:1030 -> 1.1.1.3:1030</td>
<td>Forward</td>
<td>O</td>
</tr>
<tr>
<td>UDP</td>
<td>2.2.2.2:1031 -> 1.1.1.3:1031</td>
<td>Forward</td>
<td>O</td>
</tr>
</tbody>
</table>
```
Analysis

An RTSP conversation should consist of TCP flows corresponding to the RTSP control connection. There should be two flows, one in each direction, from client to server and from server to client:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Source Port</th>
<th>Destination Port</th>
<th>State</th>
<th>Direction</th>
<th>State</th>
<th>Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>1.1.1.3:58795</td>
<td>2.2.2.2:554</td>
<td>Watch</td>
<td>I</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td>2.2.2.2:554</td>
<td>1.1.1.3:58795</td>
<td>Watch</td>
<td>O</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

- The RTSP control connection for the initiator flow is sent from destination port 554.
- The RTSP control connection for the responder flow is sent from source port 554.

The UDP flows correspond to RTP media sent over the RTSP connection.

Troubleshooting Questions

1. Media does not work when the RTSP ALG is configured. What do I do?
   - Check RTSP conversations to see whether both TCP and UDP flows exist.
   - The ALG protocol should be displayed as `rtsp`.

   **NOTE:** The state of the flow is displayed as `Watch`, because the ALG processing is taking place and the client is essentially “watching” or processing payload corresponding to the application. For FTP and RTSP ALG flows, the control connections are always `Watch` flows.

2. How do I check for ALG errors?
   - You can check for errors by issuing the following command. Each ALG has a separate field for ALG packet errors.

```
user@host# show services stateful-firewall statistics extensive
```

Interface: ms-3/2/0
Service set: svc_set
- New flows:
  - Accepts: 1347, Discards: 0, Rejects: 0
- Existing flows:
  - Accepts: 144187, Discards: 0, Rejects: 0
- Drops:
  - IP option: 0, TCP SYN defense: 0
  - NAT ports exhausted: 0
- Errors:
  - IP: 0, TCP: 276
  - UDP: 0, ICMP: 0
  - Non-IP packets: 0, ALG: 0
- IP errors:
  - IP packet length inconsistencies: 0
  - Minimum IP header length check failures: 0
  - Reassembled packet exceeds maximum IP length: 0
  - Illegal source address: 0
  - Illegal destination address: 0
System Log Messages

Enabling system log generation and checking the system log are also helpful for ALG flow analysis. This section contains the following:

- System Log Configuration on page 456
- System Log Output on page 457

System Log Configuration

You can configure the enabling of system log messages at a number of different levels in the Junos OS CLI. As shown in the following sample configurations, the choice of level depends on how specific you want the event logging to be and what options you want to include. For details on the configuration options, see the Junos OS Administration Library (system level) or the Junos OS Services Interfaces Library for Routing Devices (all other levels).

1. At the topmost global level:

```bash
user@host# show system syslog
```
any any;
}

2. At the service set level:

```bash
class user@host# show services service-set svc_set
syslog {
 host local {
 services any;
 }
}
stateful-firewall-rules allow_rtsp;
interface-service {
 service-interface ms-3/2/0;
}
```

3. At the service rule level:

```bash
class user@host# show services stateful-firewall rule allow_rtsp
match-direction input-output;
term 0 {
 from {
 applications junos-rtsp;
 }
 then {
 accept;
 syslog;
 }
}
```

**System Log Output**

System log messages are generated during flow creation, as shown in the following examples:

The following system log message indicates that the ASP matched an accept rule:

```
Oct 25 16:11:37 (FPC Slot 3, PIC Slot 2) [svc_set][FWNAT]: ASP_SFW_RULE_ACCEPT:
proto 6 (TCP) application: rtsp, ge-2/0/1.0:1.1.2:35595 -> 2.2.2.2:554, Match SFW accept
rule-set: , rule: allow_rtsp, term: 0
```

For a complete listing of system log messages, see the System Log Explorer.

**Related Documentation**

- ALG Descriptions on page 399
- Configuring Application Sets on page 431
- Configuring Application Properties on page 431
- Examples: Configuring Application Protocols on page 450
ICMP, Ping, and Traceroute ALGs for MS-MICs and MS-MPCs

Starting with Junos OS Release 14.2, Junos OS extension-provider packages that are preinstalled and preconfigured on the MS-MIC and MS-MPC offer support for ping, traceroute, and ICMP ALGs in a consistent manner that is identical to the support that the uKernel service provides. Parity and uniformity of support is established for these ALGs between MS-MICs/MS-MPCs and the uKernel service. Until Junos OS Release 14.1, ICMP ALGs, ping ALGs, and traceroute ALGs were not entirely supported on MX Series routers with MS-MICs and MS-MPCs in comparison with the uKernel service that enables Network Address Translation (NAT) with stateful firewall (SFW) on the uKernel PIC. Support was available for handling of ICMP error response packets that match any existing flow in the opposite direction and NAT processing of ICMP packets with NAT processing of ping packets.

On MX Series routers with MS-MICs and MS-MPCs, tracking of ping traffic states wholly using the ICMP sequence numbers (for example, forwarding an echo reply only if the echo request with the corresponding sequence number is identified) is supported. ICMP application layer gateway (ALG) is enhanced to provide detailed logging information. Also, the traceroute ALGs enable UDP probe packets to be processed with the UDP destination port number greater than 33000 and the IP time-to-live (TTL) is less than 30 seconds. Traceroute ALGs enable ICMP response packets for which the ICMP type is time-exceeded to be processed and support a traceroute TTL threshold value, which controls the acceptable level of network penetration for trace routing.

You can configure ICMP and ping messages with the application junos-icmp-all, application junos-icmp-ping, and application icmp-code statements at the [edit services stateful-firewall rule rule-name term term-name from] and the [edit services nat rule rule-name term term-name from] hierarchy levels to define the match condition for the stateful firewall and NAT rules. Until Junos OS Release 14.1, a restriction or a validation on the applications that you could define for ICMP messages was not present. MS-MICs and MS-MPCs function the same way as the uKernel service, which causes the ping traffic to be tracked statefully using the ICMP sequence numbers (an echo reply is forwarded only if echo request with the corresponding sequence number matches). Also, MS-MICs and MS-MPCs impose a limit on the outstanding ping requests and drop the subsequent ping requests when the limit is reached.

Similarly, for traceroute messages, you can configure the application junos-traceroute and application junos-traceroute-ttl-1 statements at the [edit services stateful-firewall rule rule-name term term-name from] and the [edit services nat rule rule-name term term-name from] hierarchy levels to define the match condition for traceroute messages for the stateful firewall and NAT rules.

Traceroute and ICMP messages are supported for both IPv4 and IPv6 packets. For the traceroute functionality to work, you only need to ensure that the user-defined applications are working as expected with the inactivity timeout period and the TTL threshold values are configured to be the same period of time as configured by using the session-timeout seconds statement at the [edit services application-identification application application-name] hierarchy level. During the logging of ICMP messages, the ALG information for ping and ICMP utilities is displayed in the output of the relevant show
Commands, such as `show sessions` and `show conversations`, in the same manner as displayed for uKernel logging.

**Related Documentation**

- ALG Descriptions on page 399

---

**Monitoring Port Control Protocol Operations**

You can monitor Port Control Protocol (PCP) operations with the following operational commands:

- `show services nat mappings pcp`
- `show services nat mappings endpoint-independent`
- `show services pcp statistics protocol`

The following are examples of the output of these commands.

```
user@host> show services nat mappings pcp
Interface: sp-0/0/0, Service set: in

NAT pool: p
PCP Client : 10.1.1.2 PCP lifetime : 995
Mapping : 10.1.1.2 : 9000 --> 8.8.8.8 : 1025
Session Count : 1
Mapping State : Active

DS-LITE output:
===============
PCP Client : 2222::1 PCP lifetime : 106
Mapping : 88.1.0.47 : 47 --> 70.70.70.1 :41972
Session Count : 1
Mapping State : Active
B4 Address : 2222::1

user@host> show services nat mappings endpoint-independent
Interface: sp-0/0/0, Service set: in

NAT pool: p
Mapping : 10.1.1.2 :57400 --> 8.8.8.8 : 1024
Session Count : 0
Mapping State : Timeout
PCP Client : 10.1.1.2 PCP lifetime : 991
Mapping : 10.1.1.2 : 9000 --> 8.8.8.8 : 1025
Session Count : 1
Mapping State : Active
B4 Address : 2222::1

DS-LITE output:
===============
PCP Client : 2222::1 PCP lifetime : 190
Mapping : 88.1.1.3 : 4001 --> 70.70.70.2 :58989
Session Count : 1
Mapping State : Active
B4 Address : 2222::1
```
user@host> show services pcp statistics protocol

Protocol Statistics:

Operational Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map request received</td>
<td>0</td>
</tr>
<tr>
<td>Peer request received</td>
<td>0</td>
</tr>
<tr>
<td>Other operational counters</td>
<td>0</td>
</tr>
</tbody>
</table>

Option Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unprocessed requests received</td>
<td>0</td>
</tr>
<tr>
<td>Third party requests received</td>
<td>0</td>
</tr>
<tr>
<td>Prefer fail option received</td>
<td>0</td>
</tr>
<tr>
<td>Filter option received</td>
<td>0</td>
</tr>
<tr>
<td>Other options counters</td>
<td>0</td>
</tr>
<tr>
<td>Option optional received</td>
<td>0</td>
</tr>
</tbody>
</table>

Result Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCP success</td>
<td>0</td>
</tr>
<tr>
<td>PCP unsupported version</td>
<td>0</td>
</tr>
<tr>
<td>Not authorized</td>
<td>0</td>
</tr>
<tr>
<td>Bad requests</td>
<td>0</td>
</tr>
<tr>
<td>Unsupported opcode</td>
<td>0</td>
</tr>
<tr>
<td>Unsupported option</td>
<td>0</td>
</tr>
<tr>
<td>Bad option</td>
<td>0</td>
</tr>
<tr>
<td>Network failure</td>
<td>0</td>
</tr>
<tr>
<td>Out of resources</td>
<td>0</td>
</tr>
<tr>
<td>Unsupported protocol</td>
<td>0</td>
</tr>
<tr>
<td>User exceeded quota</td>
<td>0</td>
</tr>
<tr>
<td>Cannot provide external</td>
<td>0</td>
</tr>
<tr>
<td>Address mismatch</td>
<td>0</td>
</tr>
<tr>
<td>Excessive number of remote peers</td>
<td>0</td>
</tr>
<tr>
<td>Processing error</td>
<td>0</td>
</tr>
<tr>
<td>Other result counters</td>
<td>0</td>
</tr>
</tbody>
</table>
PART 5

Securing Content Using Junos Network Secure and IDS

- Junos Network Secure Overview on page 463
- Junos Network Secure Configuration Overview on page 467
- IDS Configuration on MS-DPC Overview on page 497
- IDS Configuration on MS-MPC for Network Attack Protection on page 511
- Monitoring Junos Network Secure on page 527
CHAPTER 29

Junos Network Secure Overview

- Junos Network Secure Overview on page 463

Junos Network Secure Overview

Routers use firewalls to track and control the flow of traffic. Adaptive Services and MultiServices PICs employ a type of firewall called a stateful firewall. Contrasted with a stateless firewall that inspects packets in isolation, a stateful firewall provides an extra layer of security by using state information derived from past communications and other applications to make dynamic control decisions for new communication attempts.

NOTE: On ACX Series routers, the stateful firewall configuration is supported only on the ACX500 indoor routers.

Stateful firewalls group relevant flows into conversations. A flow is identified by the following five properties:

- Source address
- Source port
- Destination address
- Destination port
- Protocol

A typical Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) conversation consists of two flows: the initiation flow and the responder flow. However, some conversations, such as an FTP conversation, might consist of two control flows and many data flows.

Firewall rules govern whether the conversation is allowed to be established. If a conversation is allowed, all flows within the conversation are permitted, including flows that are created during the life cycle of the conversation.

You configure stateful firewalls using a powerful rule-driven conversation handling path. A rule consists of direction, source address, source port, destination address, destination port, IP protocol value, and application protocol or service. In addition to the specific values you configure, you can assign the value any to rule objects, addresses, or ports,
which allows them to match any input value. Finally, you can optionally negate the rule objects, which negates the result of the type-specific match.

Firewall rules are directional. For each new conversation, the router software checks the initiation flow matching the direction specified by the rule.

Firewall rules are ordered. The software checks the rules in the order in which you include them in the configuration. The first time the firewall discovers a match, the router implements the action specified by that rule. Rules still unchecked are ignored.

NOTE: Starting in Junos OS Release 14.2, MS-MPC and MS-MIC interface cards support IPv6 traffic for Junos Network Secure Stateful Firewall.

For more information, see “Configuring Stateful Firewall Rules” on page 467.

Stateful Firewall Support for Application Protocols

By inspecting the application protocol data, the AS or MultiServices PIC firewall can intelligently enforce security policies and allow only the minimal required packet traffic to flow through the firewall.

The firewall rules are configured in relation to an interface. By default, the stateful firewall allows all sessions initiated from the hosts behind the interface to pass through the router.

NOTE: Stateful firewall ALGs are not supported on ACX500 routers.

Stateful Firewall Anomaly Checking

The stateful firewall recognizes the following events as anomalies and sends them to the IDS software for processing:

- IP anomalies:
  - IP version is not correct.
  - IP header length field is too small.
  - IP header length is set larger than the entire packet.
  - Bad header checksum.
  - IP total length field is shorter than header length.
  - Packet has incorrect IP options.
  - Internet Control Message Protocol (ICMP) packet length error.
  - Time-to-live (TTL) equals 0.
- IP address anomalies:
  - IP packet source is a broadcast or multicast.
• Land attack (source IP equals destination IP).

• IP fragmentation anomalies:
  • IP fragment overlap.
  • IP fragment missed.
  • IP fragment length error.
  • IP packet length is more than 64 kilobytes (KB).
  • Tiny fragment attack.

• TCP anomalies:
  • TCP port 0.
  • TCP sequence number 0 and flags 0.
  • TCP sequence number 0 and FIN/PSH/RST flags set.
  • TCP flags with wrong combination (TCP FIN/RST or SYN/(URG|FIN|RST)).
  • Bad TCP checksum.

• UDP anomalies:
  • UDP source or destination port 0.
  • UDP header length check failed.
  • Bad UDP checksum.

• Anomalies found through stateful TCP or UDP checks:
  • SYN followed by SYN-ACK packets without ACK from initiator.
  • SYN followed by RST packets.
  • SYN without SYN-ACK.
  • Non-SYN first flow packet.
  • ICMP unreachable errors for SYN packets.
  • ICMP unreachable errors for UDP packets.

• Packets dropped according to stateful firewall rules.

NOTE: ACX500 routers do not support IP fragmentation anomalies.

If you employ stateful anomaly detection in conjunction with stateless detection, IDS can provide early warning for a wide range of attacks, including these:

• TCP or UDP network probes and port scanning
• SYN flood attacks
• IP fragmentation-based attacks such as teardrop, bonk, and boink
Starting in Junos OS Release 14.2, MS-MPC and MS-MIC interface cards support IPv6 traffic for Junos Network Secure Stateful Firewall.
CHAPTER 30

Junos Network Secure Configuration Overview

- Configuring Stateful Firewall Rules on page 467
- Configuring Stateful Firewall Rule Sets on page 473
- Examples: Configuring Stateful Firewall Rules on page 473
- Example: BOOTP and Broadcast Addresses on page 477
- Example: Configuring Layer 3 Services and the Services SDK on Two PICs on page 478
- Example: Virtual Routing and Forwarding (VRF) and Service Configuration on page 494

Configuring Stateful Firewall Rules

To configure a stateful firewall rule, include the rule rule-name statement at the [edit services stateful-firewall] hierarchy level:

```
[edit services stateful-firewall]
rule rule-name {
 match-direction (input | output | input-output);
 term term-name {
 from {
 application-sets set-name;
 applications [application-names];
 destination-address (address | any-ipv4 | any-ipv6 | any-unicast) <except>;
 destination-address-range low minimum-value high maximum-value <except>;
 destination-prefix-list list-name <except>;
 source-address (address | any-ipv4 | any-ipv6 | any-unicast) <except>;
 source-address-range low minimum-value high maximum-value <except>;
 source-prefix-list list-name <except>;
 }
 then {
 (accept <skip-ids>| discard | reject);
 allow-ip-options [values];
 syslog;
 }
 }
}
```
NOTE: ACX500 routers do not support applications and application-sets at the [edit services stateful-firewall rule rule-name term term-name from] hierarchy level.

NOTE: On ACX500 routers, to enable syslog, include the stateful-firewall-logs CLI statement at the [edit services service-set service-set-name syslog host local class] hierarchy level.

Each stateful firewall rule consists of a set of terms, similar to a filter configured at the [edit firewall] hierarchy level. A term consists of the following:

- **from** statement—Specifies the match conditions and applications that are included and excluded. The **from** statement is optional in stateful firewall rules.
- **then** statement—Specifies the actions and action modifiers to be performed by the router software. The **then** statement is mandatory in stateful firewall rules.

ACX500 Series routers do not support the following while configuring stateful firewall rules:

- **match-direction** (output | input-output)
- **post-service-filter** at the interface service input hierarchy level.
- IPv6 source address and destination address.
- **application-sets**, **application**, **allow-ip-options** at the [edit services stateful-firewall] hierarchy level.
- Application Layer Gateways (ALGs).
- Chaining of services within Multiservices Modular Interfaces Card (MS-MIC) and with inline-services (-si).
- Class of service.
- The following **show services stateful-firewall** CLI commands are not supported:
  - **show services stateful-firewall conversations**—Show conversations
  - **show services stateful-firewall flow-analysis**—Show flow table entries
  - **show services stateful-firewall redundancy-statistics**—Show redundancy statistics
  - **show services stateful-firewall sip-call**—Show SIP call information
  - **show services stateful-firewall sip-register**—Show SIP register information
  - **show services stateful-firewall subscriber-analysis**—Show subscriber table entries
The following sections explain how to configure the components of stateful firewall rules:

- Configuring Match Direction for Stateful Firewall Rules on page 469
- Configuring Match Conditions in Stateful Firewall Rules on page 469
- Configuring Actions in Stateful Firewall Rules on page 471

### Configuring Match Direction for Stateful Firewall Rules

Each rule must include a `match-direction` statement that specifies the direction in which the rule match is applied. To configure where the match is applied, include the `match-direction` statement at the `[edit services stateful-firewall rule rule-name]` hierarchy level:

```markdown
[edit services stateful-firewall rule rule-name]
match-direction (input | output | input-output);
```

**NOTE:** ACX500 Series routers do not support match-direction (output | input-output).

If you configure `match-direction input-output`, sessions initiated from both directions might match this rule.

The match direction is used with respect to the traffic flow through the AS or Multiservices PIC. When a packet is sent to the PIC, direction information is carried along with it.

With an interface service set, packet direction is determined by whether a packet is entering or leaving the interface on which the service set is applied.

With a next-hop service set, packet direction is determined by the interface used to route the packet to the AS or Multiservices PIC. If the inside interface is used to route the packet, the packet direction is input. If the outside interface is used to direct the packet to the PIC, the packet direction is output. For more information on inside and outside interfaces, see “Configuring Service Sets to be Applied to Services Interfaces” on page 9.

On the PIC, a flow lookup is performed. If no flow is found, rule processing is performed. Rules in this service set are considered in sequence until a match is found. During rule processing, the packet direction is compared against rule directions. Only rules with direction information that matches the packet direction are considered. Most packets result in the creation of bidirectional flows.

### Configuring Match Conditions in Stateful Firewall Rules

To configure stateful firewall match conditions, include the `from` statement at the `[edit services stateful-firewall rule rule-name term term-name]` hierarchy level:

```markdown
[edit services stateful-firewall rule rule-name term term-name]
from {
 application-sets set-name;
```
applications [application-names ];
destination-address (address | any-ipv4 | any-ipv6 | any-unicast) <except>;
destination-address-range low minimum-value high maximum-value <except>;
destination-prefix-list list-name <except>;
source-address (address | any-ipv4 | any-ipv6 | any-unicast) <except>;
source-address-range low minimum-value high maximum-value <except>;
source-prefix-list list-name <except>;
}

NOTE: ACX500 routers do not support applications and application-sets at the [edit services stateful-firewall rule rule-name term term-name from] hierarchy level.

The source address and destination address can be either IPv4 or IPv6.

You can use either the source address or the destination address as a match condition, in the same way that you would configure a firewall filter; for more information, see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide. You can use the wildcard values any-unicast, which denotes matching all unicast addresses, any-ipv4, which denotes matching all IPv4 addresses, or any-ipv6, which denotes matching all IPv6 addresses.

Alternatively, you can specify a list of source or destination prefixes by configuring the prefix-list statement at the [edit policy-options] hierarchy level and then including either the destination-prefix-list or the source-prefix-list statement in the stateful firewall rule. For an example, see “Examples: Configuring Stateful Firewall Rules” on page 473.

If you omit the from term, the stateful firewall accepts all traffic and the default protocol handlers take effect:

- User Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Internet Control Message Protocol (ICMP) create a bidirectional flow with a predicted reverse flow.
- IP creates a unidirectional flow.

You can also include application protocol definitions you have configured at the [edit applications] hierarchy level; for more information, see “Configuring Application Properties” on page 431.

- To apply one or more specific application protocol definitions, include the applications statement at the [edit services stateful-firewall rule rule-name term term-name from] hierarchy level.
- To apply one or more sets of application protocol definitions you have defined, include the application-sets statement at the [edit services stateful-firewall rule rule-name term term-name from] hierarchy level.
NOTE: If you include one of the statements that specifies application protocols, the router derives port and protocol information from the corresponding configuration at the [edit applications] hierarchy level; you cannot specify these properties as match conditions.

Configuring Actions in Stateful Firewall Rules

To configure stateful firewall actions, include the then statement at the [edit services stateful-firewall rule rule-name term term-name] hierarchy level:

```
[edit services stateful-firewall rule rule-name term term-name]
then {
 (accept | discard | reject);
 allow-ip-options [values];
 syslog;
}
```

You must include one of the following actions:

- **accept**—The packet is accepted and sent on to its destination.
- **accept skip-ids**—The packet is accepted and sent on to its destination, but IDS rule processing configured on an MS-MPC is skipped.
- **discard**—The packet is not accepted and is not processed further.
- **reject**—The packet is not accepted and a rejection message is returned; UDP sends an ICMP unreachable code and TCP sends RST. Rejected packets can be logged or sampled.

NOTE: The ACX500 indoor routers do not support the action accept skip-ids.

You can optionally configure the firewall to record information in the system logging facility by including the syslog statement at the [edit services stateful-firewall rule rule-name term term-name then] hierarchy level. This statement overrides any syslog setting included in the service set or interface default configuration.

Configuring IP Option Handling

You can optionally configure the firewall to inspect IP header information by including the allow-ip-options statement at the [edit services stateful-firewall rule rule-name term term-name then] hierarchy level. When you configure this statement, all packets that match the criteria specified in the from statement are subjected to additional matching criteria. A packet is accepted only when all of its IP option types are configured as values in the allow-ip-options statement. If you do not configure allow-ip-options, only packets without IP header options are accepted.
NOTE: ACX500 indoor routers do not support the configuration of allow-ip-options statement.

The additional IP header option inspection applies only to the accept and reject stateful firewall actions. This configuration has no effect on the discard action. When the IP header inspection fails, reject frames are not sent; in this case, the reject action has the same effect as discard.

If an IP option packet is accepted by the stateful firewall, Network Address Translation (NAT) and intrusion detection service (IDS) are applied in the same way as to packets without IP option headers. The IP option configuration appears only in the stateful firewall rules; NAT applies to packets with or without IP options.

When a packet is dropped because it fails the IP option inspection, this exception event generates both IDS event and system log messages. The event type depends on the first IP option field rejected.

Table 25 on page 472 lists the possible values for the allow-ip-options statement. You can include a range or set of numeric values, or one or more of the predefined IP option settings. You can enter either the option name or its numeric equivalent. For more information, refer to http://www.iana.org/assignments/ip-parameters.

Table 25: IP Option Values

<table>
<thead>
<tr>
<th>IP Option Name</th>
<th>Numeric Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>0</td>
<td>Any IP option</td>
</tr>
<tr>
<td>ip-security</td>
<td>130</td>
<td>–</td>
</tr>
<tr>
<td>ip-stream</td>
<td>136</td>
<td>–</td>
</tr>
<tr>
<td>loose-source-route</td>
<td>131</td>
<td>–</td>
</tr>
<tr>
<td>route-record</td>
<td>7</td>
<td>–</td>
</tr>
<tr>
<td>router-alert</td>
<td>148</td>
<td>–</td>
</tr>
<tr>
<td>strict-source-route</td>
<td>137</td>
<td>–</td>
</tr>
<tr>
<td>timestamp</td>
<td>68</td>
<td>–</td>
</tr>
</tbody>
</table>
Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1</td>
<td><strong>accept skip-ids</strong>—The packet is accepted and sent on to its destination, but IDS rule processing configured on an MS-MPC is skipped.</td>
</tr>
</tbody>
</table>

Related Documentation
- Junos Network Secure Overview on page 463
- Configuring Protection Against Network Attacks on an MS-MPC on page 515

Configuring Stateful Firewall Rule Sets

The **rule-set** statement defines a collection of stateful firewall rules that determine what actions the router software performs on packets in the data stream. You define each rule by specifying a rule name and configuring terms. Then, you specify the order of the rules by including the **rule-set** statement at the [edit services stateful-firewall] hierarchy level with a **rule** statement for each rule:

```
[edit services stateful-firewall]
rule-set rule-set-name {
 rule rule-name;
}
```

The router software processes the rules in the order in which you specify them in the configuration. If a term in a rule matches the packet, the router performs the corresponding action and the rule processing stops. If no term in a rule matches the packet, processing continues to the next rule in the rule set. If none of the rules matches the packet, the packet is dropped by default.

Examples: Configuring Stateful Firewall Rules

The following example show a stateful firewall configuration containing two rules, one for input matching on a specified application set and the other for output matching on a specified source address:

```
[edit services]
stateful-firewall {
 rule Rule1 {
 match-direction input;
 term 1 {
 from {
 application-sets Applications;
 }
 then {
 accept;
 }
 }
 term accept {
 then {
 accept;
 }
 }
 }
}```
The following example has a single rule with two terms. The first term rejects all traffic in my-application-group that originates from the specified source address, and provides a detailed system log record of the rejected packets. The second term accepts Hypertext Transfer Protocol (HTTP) traffic from anyone to the specified destination address.

```
[edit services stateful-firewall]
rule my-firewall-rule {
    match-direction input-output;
    term term1 {
        from {
            source-address 10.1.3.2/32;
            application-sets my-application-group;
        }
        then {
            reject;
            syslog;
        }
    }
    term term2 {
        from {
            destination-address 10.2.3.2/32;
            applications http;
        }
        then {
            accept;
        }
    }
}
```

The following example shows use of source and destination prefix lists. This requires two separate configuration items.

You configure the prefix list at the [edit policy-options] hierarchy level:

```
[edit]
```
policy-options {
 prefix-list p1 {
 1.1.1.1/32;
 2.2.2.0/24;
 }
 prefix-list p2 {
 3.3.3.3/32;
 4.4.4.0/24;
 }
}

You reference the configured prefix list in the stateful firewall rule:

[edit]
services {
 stateful-firewall {
 rule r1 {
 match-direction input;
 term t1 {
 from {
 source-prefix-list {
 p1;
 }
 }
 destination-prefix-list {
 p2;
 }
 then {
 accept;
 }
 }
 }
 }
}

This is equivalent to the following configuration:

[edit]
services {
 stateful-firewall {
 rule r1 {
 match-direction input;
 term t1 {
 from {
 source-address { 1.1.1.1/32;
 2.2.2.0/24;
 }
 destination-address { 3.3.3.3/32;
 4.4.4.0/24;
 }
 then [

You can use the `except` qualifier with the prefix lists, as in the following example. In this case, the `except` qualifier applies to all prefixes included in prefix list `p2`.

```
[edit]
services {
    stateful-firewall {
        rule r1 {
            match-direction input;
            term t1 {
                from {
                    source-prefix-list {
                        p1;
                    }
                    destination-prefix-list {
                        p2 except;
                    }
                }
                then {
                    accept;
                }
            }
        }
    }
}
```

For additional examples that combine stateful firewall configuration with other services and with virtual private network (VPN) routing and forwarding (VRF) tables, see the configuration examples.

NOTE: You can define the service-set and assign it either as interface style or next-hop style.

Related Documentation
- Example: BOOTP and Broadcast Addresses on page 477
- Example: Dynamic Source NAT as a Next-Hop Service on page 161
- Example: Virtual Routing and Forwarding (VRF) and Service Configuration on page 494
- Example: Service Interfaces Configuration
- Configuring Service Sets to be Applied to Services Interfaces on page 9
- Example: Configuring Layer 3 Services and the Services SDK on Two PICs on page 478
Example: BOOTP and Broadcast Addresses

The following example supports Bootstrap Protocol (BOOTP) and broadcast addresses:

[edit applications]
application bootp {
 application-protocol bootp;
 protocol udp;
 destination-port 67;
}
[edit services]
stateful-firewall bootp-support {
 rule bootp-allow {
 direction input;
 term bootp-allow {
 from {
 destination-address {
 any-unicast;
 255.255.255.255;
 }
 application bootp;
 }
 then {
 accept;
 }
 }
 }
}
Example: Configuring Layer 3 Services and the Services SDK on Two PICs

You can configure the Layer 3 service package and the Services SDK on two PICs. For this example, you must configure an FTP or HTTP client and a server. In this configuration, the client side of the router interface is ge-1/2/2.1 and the server side of the router interface is ge-1/1/0.48. This configuration enables Network Address Translation (NAT) with stateful firewall (SFW) on the uKernel PIC and application identification (APPID), application-aware access list (AAACL), and intrusion detection and prevention (IDP) on the Services SDK PIC for FTP or HTTP traffic.

NOTE: The Services SDK does not support NAT yet. When NAT is required, you can configure the Layer 3 service package to deploy NAT along with the Services SDK such as APPID, AAACL, or IDP.

NOTE: The IDP functionality is deprecated for the MX Series for Junos OS release 17.1R1 and above.

To deploy the Layer 3 service package and the Services SDK on two PICs:

1. In configuration mode, go to the following hierarchy level:

 [edit services]
 user@host# edit stateful-firewall

2. In the hierarchy level, configure the conditions for the stateful firewall rule r1.

 [edit services stateful-firewall]
 user@host# set rule rule-name match-direction input-output term term from applications application-name
 user@host# set rule rule-name match-direction input-output term term then accept syslog

 In this example, the stateful firewall term is ALLOWED-SERVICES. Enclose the application names—junos-ftp, junos-http, and junos-icmp-ping—in brackets for application-name.

 [edit services stateful-firewall]
 user@host# set rule r1 match-direction input-output term ALLOWED-SERVICES from applications [junos-ftp junos-http junos-icmp-ping]
 user@host# set rule r1 match-direction input-output term ALLOWED-SERVICES then accept syslog

3. Configure the conditions for the stateful firewall rule r2.
In this example, the stateful firewall term is `term1`.

4. Go to the following hierarchy level and verify the configuration:

```
[edit services stateful-firewall]
user@host# show
rule r1 {
    match-direction input-output;
    term ALLOWED-SERVICES {
        from {
            applications [ junos-ftp junos-http junos-icmp-ping ];
        }
        then {
            accept;
            syslog;
        }
    }
}
rule r2 {
    match-direction input-output;
    term term1 {
        then {
            discard;
            syslog;
        }
    }
}
```

5. Go to the following hierarchy level:

```
[edit services]
user@host# edit nat
```

6. In the hierarchy level, configure the NAT pool.

```
[edit services nat]
user@host# set pool pool-name address ip-address
user@host# set pool pool-name port automatic
```
In this example, the NAT pool is **OUTBOUND-SERVICES** and the IP address is 10.48.0.2/32.

```
[edit services nat]
user@host# set pool OUTBOUND-SERVICES address 10.48.0.2/32
user@host# set pool OUTBOUND-SERVICES port automatic
```

7. Configure the NAT rule.

```
[edit services nat]
user@host# set rule rule-name match-direction output term term from applications application-name
user@host# set rule rule-name match-direction output term term then translated source-pool source-pool translation-type source dynamic
```

In this example, the NAT rule is **SET-MSR-ADDR**, the NAT term is **TRANSLATE-SOURCE-ADDR**, and the source pool is **OUTBOUND-SERVICES**. Enclose the application names—junos-ftp, junos-http, and junos-icmp-ping—in parentheses for **application-name**.

```
[edit services nat]
user@host# set rule SET-MSR-ADDR match-direction output term TRANSLATE-SOURCE-ADDR from applications [junos-ftp junos-http junos-icmp-ping]
user@host# set rule SET-MSR-ADDR match-direction output term TRANSLATE-SOURCE-ADDR then translated source-pool OUTBOUND-SERVICES translation-type source dynamic
```

8. Go to the following hierarchy level and verify the configuration:

```
[edit services nat]
user@host# show
pool OUTBOUND-SERVICES {
    address 11.48.0.2/32;
    port {
        automatic;
    }
}
rule SET-MSR-ADDR {
    match-direction output;
    term TRANSLATE-SOURCE-ADDR {
        from {
            applications [junos-ftp junos-http junos-icmp-ping];
        }
        then {
            translated {
                source-pool OUTBOUND-SERVICES;
                translation-type {
                    source dynamic;
                }
            }
        }
    }
}
```
9. Go to the following hierarchy level:

```
[edit security]
user@host# edit idp
```

NOTE: The [edit security idp] statements are deprecated for the MX Series for Junos OS release 17.1R1 and above.

10. In the hierarchy level, configure the IDP policy.

```
[edit security idp]
user@host# set idp-policy policy-name rulebase-ips rule rule-name match application
default attacks predefined-attacks attack-name
user@host# set idp-policy policy-name rulebase-ips rule rule-name match application
default attacks predefined-attack-groups attack-group--name
user@host# set idp-policy policy-name rulebase-ips rule rule-name then action
    no-action
user@host# set idp-policy policy-name rulebase-ips rule rule-name then notification
    log-attacks alert
```

In this example, the IDP policy is `test1`, the rule is `r1`, the predefined attack is `FTP:USER:ROOT`, and the predefined attack group is "Recommended Attacks".

```
[edit security idp]
user@host# set idp-policy test1 rulebase-ips rule r1 match application default attacks
    predefined-attacks FTP:USER:ROOT
user@host# set idp-policy test1 rulebase-ips rule r1 match application default attacks
    predefined-attack-groups [ "Recommended Attacks" ]
user@host# set idp-policy test1 rulebase-ips rule r1 then action no-action
user@host# set idp-policy test1 rulebase-ips rule r1 then notification log-attacks alert
```

11. Configure the trace options for IDP services.

```
[edit security idp]
user@host# set traceoptions file filename
user@host# set traceoptions flag all
user@host# set traceoptions level all
```

In this example, the log file name is `idp-demo.log`.

```
[edit security idp]
user@host# set traceoptions file idp-demo.log
```
user@host# set traceoptions flag all
user@host# set traceoptions level all

12. Go to the following hierarchy level and verify the configuration:

```
[edit security idp]
user@host# show
idp-policy test1 {
  rulebase-ips {
    rule r1 {
      match {
        application default;
        attacks {
          predefined-attacks FTP:USER:ROOT;
          predefined-attack-groups "Recommended Attacks";
        }
      }
      then {
        action {
          no-action;
        }
        notification {
          log-attacks {
            alert;
          }
        }
      }
    }
  }
}
traceoptions {
  file idp-demo.log;
  flag all;
  level all;
}
```

13. Go to the following hierarchy level:

```
[edit services]
user@host# edit aacl
```

14. In the hierarchy level, configure the AAACL rules.

```
[edit services aacl]
user@host# set rule rule-name match-direction input-output term term from application-group-any
user@host# set rule rule-name match-direction input-output term term then count application accept
```

In this example, the AAACL rule is **app-aware** and the term is **t1**.

```
[edit services aacl]
```
15. Go to the following hierarchy level and verify the configuration:

```
[edit services aacl]
user@host# show
rule app-aware {
    match-direction input-output;
    term t1 {
        from {
            application-group-any;
        }
        then {
            count application;
            accept;
        }
    }
}
```

16. Go to the following hierarchy level:

```
[edit services]
user@host# edit service-set App-Aware-Set
```

17. Configure the APPID profile.

```
[edit services service-set App-Aware-Set]
user@host# set application-identification-profile application-identification-profile
```

In this example, the APPID profile is `dummy-profile`.

```
[edit services service-set App-Aware-Set]
user@host# set application-identification-profile dummy-profile
```

18. Configure the IDP profile.

```
[edit services service-set App-Aware-Set]
user@host# set idp-profile idp-profile
```

In this example, the IDP profile is `test1`.

```
[edit services service-set App-Aware-Set]
user@host# set idp-profile test1
```
19. Configure the policy decision statistics profile.

```
[edit services service-set App-Aware-Set]
user@host# set policy-decision-statistics-profile profile-name
```

In this example, the policy decision statistics profile is `lpdf-stats`.

```
[edit services service-set App-Aware-Set]
user@host# set policy-decision-statistics-profile lpdf-stats
```

20. Configure the AAACL rules.

```
[edit services service-set App-Aware-Set]
user@host# set acl-rules rule-name
```

In this example, the AAACL rule name is `app-aware`.

```
[edit services service-set App-Aware-Set]
user@host# set acl-rules app-aware
```


```
[edit services service-set App-Aware-Set]
user@host# set stateful-firewall-rules rule-name
user@host# set stateful-firewall-rules rule-name
```

In this example, the first rule is `r1` and the second rule is `r2`.

```
[edit services service-set App-Aware-Set]
user@host# set stateful-firewall-rules r1
user@host# set stateful-firewall-rules r2
```

22. In the hierarchy level, configure the service set to bypass traffic on service PIC failure.

```
[edit services service-set App-Aware-Set]
user@host# set service-set-options bypass-traffic-on-pic-failure
```

23. Configure interface-specific service set options.

```
[edit services service-set App-Aware-Set]
user@host# set interface-service service-interface service-interface
```
In this example, the services interface is `ms-0/1/0`.

```
[edit services service-set App-Aware-Set]
user@host# set interface-service service-interface ms-0/1/0
```

24. Go to the following hierarchy level and verify the configuration:

```
[edit services service-set App-Aware-Set]
user@host# show
application-identification-profile dummy-profile;
idp-profile test1;
policy-decision-statistics-profile {
  lpdf-stats;
} aacl-rules app-aware;
stateful-firewall-rules r1;
stateful-firewall-rules r2;
service-set-options {
  bypass-traffic-on-pic-failure;
}
interface-service {
  service-interface ms-0/1/0;
}
```

25. Go to the following hierarchy level:

```
[edit services]
user@host# edit service-set NAT-SFW-SET
```

26. In the hierarchy level, configure optional notification parameters for the services interface. Note that it is required only for debugging.

```
[edit services service-set NAT-SFW-SET]
user@host# set syslog host host-name services any
```

In this example, the host to notify is `local`.

```
[edit services service-set NAT-SFW-SET]
user@host# set services-options syslog host local services any
```

27. Configure two stateful firewall rules.

```
[edit services service-set NAT-SFW-SET]
user@host# set stateful-firewall-rules rule-name
user@host# set stateful-firewall-rules rule-name
```
In this example, the first rule is r1 and the second rule is r2.

```
[edit services service-set NAT-SFW-SET]
user@host# set stateful-firewall-rules r1
user@host# set stateful-firewall-rules r2
```

28. Configure NAT rules.

```
[edit services service-set NAT-SFW-SET]
user@host# set nat-rules rule-name
```

In this example, the NAT rule is SET-MSR-ADDR.

```
[edit services service-set NAT-SFW-SET]
user@host# set nat-rules SET-MSR-ADDR
```

29. Configure interface-specific service set options.

```
[edit services service-set NAT-SFW-SET]
user@host# set interface-service service-interface service-interface
```

In this example, the services interface is sp-3/1/0.

```
[edit services service-set NAT-SFW-SET]
user@host# set interface-service service-interface sp-3/1/0
```

30. Go to the following hierarchy level and verify the configuration:

```
[edit services service-set NAT-SFW-SET]
user@host# show
syslog {
    host local {
        services any;
    }
}
stateful-firewall-rules r1;
stateful-firewall-rules r2;
interface-service {
    service-interface sp-3/1/0;
}
```

31. Go to the following hierarchy level:

```
user@host# edit interfaces
```

32. In the hierarchy level, configure the interface.
[edit interfaces]
user@host# set interface

In this example, the interface is ge-1/2/2.1.

[edit interfaces]
user@host# set ge-1/2/2.1

33. Go to the following hierarchy level:

[edit interfaces]
user@host# edit ge-1/2/2.1

34. In the hierarchy level, configure the service set for received packets.

[edit interfaces ge-1/2/2 unit 1]
user@host# set family inet service input service-set service-set-name

In this example, the input service set is App-Aware-Set.

[edit interfaces ge-1/2/2 unit 1]
user@host# set family inet service input service-set App-Aware-Set

35. Configure the service set for transmitted packets.

[edit interfaces ge-1/2/2 unit 1]
user@host# set family inet service output service-set service-set-name

In this example, the output service set is App-Aware-Set.

[edit interfaces ge-1/2/2 unit 1]
user@host# set family inet service output service-set App-Aware-Set

36. Go to the following hierarchy level:

[edit interfaces ge-1/2/2 unit 1]
user@host# edit family inet

37. In the hierarchy level, configure the interface address.

[edit interfaces ge-1/2/2 unit 1 family inet]
user@host# set address source
In this example, the interface address is 10.10.9.10/30.

```
[edit interfaces]
user@host# set address 10.10.9.10/30
```

38. Go to the following hierarchy level and verify the configuration:

```
[edit interfaces ge-1/2/2 unit 1]
user@host# show
family inet {
  service {
    input {
      service-set App-Aware-Set;
    }
    output {
      service-set App-Aware-Set;
    }
  }
  address 10.10.9.10/30;
}
```

39. Go to the following hierarchy level:

```
user@host# edit interfaces
```

40. In the hierarchy level, configure the interface.

```
[edit interfaces]
user@host# set interface
```

In this example, the interface is ge-1/1/0.48.

```
[edit interfaces]
user@host# set ge-1/1/0.48
```

41. Go to the following hierarchy level:

```
[edit interfaces]
user@host# edit ge-1/1/0.48
```

42. In the hierarchy level, configure the service set for received packets.

```
[edit interfaces ge-1/1/0 unit 48]
user@host# set family inet service input service-set service-set-name
```

In this example, the service set is NAT-SFW-SET.

```
[edit interfaces ge-1/1/0 unit 48]
user@host# set family inet service input service-set NAT-SFW-SET
```
43. Configure the service set for transmitted packets.

 [edit interfaces ge-1/1/0 unit 48]
 user@host# set family inet service output service-set service-set-name

In this example, the service set is **NAT-SFW-SET**.

 [edit interfaces ge-1/1/0 unit 48]
 user@host# set family inet service output service-set NAT-SFW-SET

44. Go to the following hierarchy level:

 [edit interfaces ge-1/1/0 unit 48]
 user@host# edit family inet

45. Configure the interface address.

 [edit interfaces ge-1/1/0 unit 48 family inet]
 user@host# set address source

In this example, the interface address is **10.48.0.1/31**.

 [edit interfaces ge-1/1/0 unit 48 family inet]
 user@host# set address 10.48.0.1/31

46. Go to the following hierarchy level and verify the configuration:

 [edit interfaces ge-1/1/0 unit 48]
 user@host# show family inet {
 service {
 input {
 service-set NAT-SFW-SET;
 }
 output {
 service-set NAT-SFW-SET;
 }
 address 10.48.0.1/31;
 }
 }

47. Go to the following hierarchy level:

 user@host# edit interfaces

48. In the hierarchy level, configure the interface.

 [edit interfaces]
 set interface
In this example, the interface is **ms-0/1/0.0**.

```mermaid
[edit interfaces]
user@host# set ms-0/1/0.0
```

49. Go to the following hierarchy level:

```mermaid
[edit interfaces]
user@host# edit ms-0/1/0.0
```

50. In the hierarchy level, configure the protocol family.

```mermaid
[edit interfaces ms-0/1/0 unit 0]
user@host# set family inet
```

51. Go to the following hierarchy level and verify the configuration:

```mermaid
[edit interfaces ms-0/1/0]
user@host# show
unit 0 {  
  family inet;
}
```

52. Go to the following hierarchy level:

```mermaid
user@host# edit interfaces
```

53. In the hierarchy level, configure the interface.

```mermaid
[edit interfaces]
set interface
```

In this example, the interface is **sp-3/1/0.0**.

```mermaid
[edit interfaces]
user@host# set sp-3/1/0.0
```

54. Go to the following hierarchy level:

```mermaid
[edit interfaces]
user@host# edit sp-3/1/0
```

55. In the hierarchy level, configure optional notification parameters for the services interface. Note that it is required only for debugging.

```mermaid
[edit interfaces sp-3/1/0]
user@host# set services-options syslog host host-name services any
```
In this example, the host to notify is local.

[edit interfaces sp-3/1/0]
user@host# set services-options syslog host local services any

56. Go to the following hierarchy level:

[edit interfaces]
user@host# edit sp-3/1/0.0

57. In the hierarchy level, configure the protocol family.

[edit interfaces sp-3/1/0 unit 0]
user@host# set family inet

58. Go to the following hierarchy level and verify the configuration:

[edit interfaces sp-3/1/0]
user@host# show services-options {
 syslog {
 host local {
 services any;
 }
 }
 unit 0 {
 family inet;
 }
}

59. Go to the following hierarchy level:

[edit chassis]

60. In the hierarchy level, configure the redundancy settings.

[edit chassis]
user@host# set no-service-pic-restart-on-failover
user@host# set redundancy graceful-switchover

61. Configure the FPC and PIC.

[edit chassis]
user@host# edit fpc slot pic slot
In this example, the FPC is in slot 0 and the PIC is in slot 1.

[edit chassis]
user@host# edit fpc 0 pic 1

62. Configure the number of cores dedicated to run control functionality.

[edit chassis fpc slot pic slot]
user@host# set adaptive-services service-package extension-provider control-cores control-cores

In this example, the number of control cores is 1.

[edit chassis fpc 1 pic 0]
user@host# set adaptive-services service-package extension-provider control-cores 1

63. Configure the number of processing cores dedicated to data.

[edit chassis fpc slot pic slot]
user@host# set adaptive-services service-package extension-provider data-cores data-cores

In this example, the number of data cores is 7.

[edit chassis fpc 1 pic 0]
user@host# set adaptive-services service-package extension-provider data-cores 7

64. Configure the size of the object cache in megabytes. Only values in increments of 128 MB are allowed and the maximum value of object cache can be 1280 MB. On MS-100, the value is 512 MB.

[edit chassis fpc slot pic slot]
user@host# set adaptive-services service-package extension-provider object-cache-size object-cache-size

In this example, the size of the object cache is 1280 MB.

[edit chassis fpc 1 pic 0]
user@host# set adaptive-services service-package extension-provider object-cache-size 1280

65. Configure the size of the policy database in megabytes.
In this example, the size of the policy database is 64 MB.

```
[edit chassis fpc slot pic slot]
user@host# set adaptive-services service-package extension-provider policy-db-size
policy-db-size
```

66. Configure the packages.

```
[edit chassis fpc slot pic slot]
user@host# set adaptive-services service-package extension-provider package
```

In this example, the first package is `jservices-appid`, the second package is `jservices-aacl`, the third package is `jservices-llpdf`, the fourth package is `jservices-idp`, and the fifth package is `jservices-sfw`. `jservices-sfw` is available only in Junos OS Release 10.1 and later.

```
[edit chassis fpc 1 pic 0]
user@host# set adaptive-services service-package extension-provider package
jservices-appid
user@host# set adaptive-services service-package extension-provider package
jservices-aacl
user@host# set adaptive-services service-package extension-provider package
jservices-llpdf
user@host# set adaptive-services service-package extension-provider package
jservices-idp
user@host# set adaptive-services service-package extension-provider package
jservices-sfw
```

67. Configure the IP network services.

```
[edit chassis]
user@host# set network-services ip
```

68. Go to the following hierarchy level and verify the configuration:

```
[edit chassis]
user@host# show chassis
no-service-pic-restart-on-failover;
filter-memory-enhanced;
redundancy {
    graceful-switchover;
}
fpc 0 {
```
The IDP functionality is deprecated for the MX Series for Junos OS release 17.1R1 and above.

The [edit security idp] statements are deprecated for the MX Series for Junos OS release 17.1R1 and above.

Example: Virtual Routing and Forwarding (VRF) and Service Configuration

The following example combines virtual routing and forwarding (VRF) and services configuration:

```
[edit policy-options]
policy-statement test-policy {
  term t1 {
    then reject;
  }
}
[edit routing-instances]
test {
  interface ge-0/2/0.0;
  interface sp-1/3/0.20;
  instance-type vrf;
  route-distinguisher 10.58.255.1:37;
  vrf-import test-policy;
  vrf-export test-policy;
  routing-options {
    static {
      route 0.0.0.0/0 next-table inet.0;
    }
  }
```
[edit interfaces]
ge-0/2/0 {
 unit 0 {
 family inet {
 service {
 input service-set nat-me;
 output service-set nat-me;
 }
 }
 }
}

sp-1/3/0 {
 unit 0 {
 family inet;
 }
 unit 20 {
 family inet;
 service-domain inside;
 }
 unit 21 {
 family inet;
 service-domain outside;
 }
}

[edit services]
stateful-firewall {
 rule allow-any-input {
 match-direction input;
 term t1 {
 then accept;
 }
 }
}

nat {
 pool hide-pool {
 address 10.58.16.100;
 port automatic;
 }
 rule hide-all-input {
 match-direction input;
 term t1 {
 then {
 translated {
 source-pool hide-pool;
 translation-type source napt-44;
 }
 }
 }
 }
}

service-set nat-me {
 stateful-firewall-rules allow-any-input;
 nat-rules hide-all-input;
 interface-service {
 service-interface sp-1/3/0.20;
 }
}
Understanding SYN Cookie Protection on an MS-DPC

SYN cookie is a stateless SYN proxy mechanism you can use in conjunction with other defenses against a SYN flood attack. SYN cookie is supported on the MS-DPC multiservices card.

As with traditional SYN proxying, SYN cookie is activated when the SYN flood attack threshold is exceeded. However, because SYN cookie is stateless, it does not set up a session or policy and route lookups upon receipt of a SYN segment, and it maintains no connection request queues. This dramatically reduces CPU and memory usage and is the primary advantage of using SYN cookie over the traditional SYN proxying mechanism.

When SYN cookie is enabled on Junos OS and becomes the TCP-negotiating proxy for the destination server, it replies to each incoming SYN segment with a SYN/ACK containing an encrypted cookie as its initial sequence number (ISN). The cookie is an MD5 hash of the original source address and port number, destination address and port number, and ISN from the original SYN packet. After sending the cookie, Junos OS drops the original SYN packet and deletes the calculated cookie from memory. If there is no response to the packet containing the cookie, the attack is noted as an active SYN attack and is effectively stopped.

If the initiating host responds with a TCP packet containing the cookie +1 in the TCP ACK field, Junos OS extracts the cookie, subtracts 1 from the value, and recomputes the cookie to validate that it is a legitimate ACK. If it is legitimate, Junos OS starts the TCP proxy process by setting up a session and sending a SYN to the server containing the source information from the original SYN. When Junos OS receives a SYN/ACK from the server, it sends ACKs to the server and to the initiation host. At this point the connection is established and the host and server are able to communicate directly.
NOTE: The use of SYN cookie or SYN proxy enables the router device to protect the TCP servers behind it from SYN flood attacks in IPv6 flows.

Related Documentation
- Configuring IDS Rule Sets on an MS-DPC on page 506

Configuring IDS Rules on an MS-DPC

IDS rules configured with an MS-DPC identify traffic for which you want the router software to count events. Because IDS is based on stateful firewall properties, you must configure at least one stateful firewall rule and include it in the service set with the IDS rules; for more information, see “Configuring Stateful Firewall Rules” on page 467.

NOTE: To configure network attack protection with an MS-MPC, see “Configuring Protection Against Network Attacks on an MS-MPC” on page 515.

To configure an IDS rule, include the rule rule-name statement at the [edit services ids] hierarchy level:

```plaintext
[edit services ids]
rule rule-name {
    match-direction (input | output | input-output);
    term term-name {
        from {
            application-sets set-name;
            applications [ application-names ];
            destination-address (address | any-unicast) <except>;
            destination-address-range low minimum-value high maximum-value <except>;
            destination-prefix-list list-name <except>;
            source-address (address | any-unicast) <except>;
            source-address-range low minimum-value high maximum-value <except>;
            source-prefix-list list-name <except>;
        }
        then {
            aggregation (IDS) {
                destination-prefix prefix-value | destination-prefix-ipv6 prefix-value;
                source-prefix prefix-value | source-prefix-ipv6 prefix-value;
            }
            (force-entry | ignore-entry);
            logging {
                syslog;
                threshold rate;
            }
            session-limit {
                by-destination (IDS MS-DPC) {
                    hold-time seconds;
                    maximum number;
                    packets number;
                }
            }
        }
    }
}
```

Copyright © 2019, Juniper Networks, Inc.
Each IDS rule consists of a set of terms, similar to a filter configured at the [edit firewall] hierarchy level. A term consists of the following:

- **from** statement—Specifies the match conditions and applications that are included and excluded.
- **then** statement—Specifies the actions and action modifiers to be performed by the router software.

The following sections describe IDS rule content in more detail:

- Configuring Match Direction for IDS Rules on page 499
- Configuring Match Conditions in IDS Rules on page 500
- Configuring Actions in IDS Rules on page 501

Configuring Match Direction for IDS Rules

Each rule must include a **match-direction** statement that specifies whether the match is applied on the input or output side of the interface. To configure where the match is applied, include the **match-direction** (input | input-output | output) statement at the [edit services ids rule rule-name] hierarchy level:

```
[edit services ids rule rule-name]
match-direction (input | output | input-output);
```

If you configure **match-direction input-output**, bidirectional rule creation is enabled.

The match direction is used with respect to the traffic flow through the AS or Multiservices PIC. When a packet is sent to the PIC, direction information is carried along with it.
With an interface service set, packet direction is determined by whether a packet is entering or leaving the interface on which the service set is applied.

With a next-hop service set, packet direction is determined by the interface used to route the packet to the AS or Multiservices PIC. If the inside interface is used to route the packet, the packet direction is input. If the outside interface is used to direct the packet to the PIC, the packet direction is output. For more information on inside and outside interfaces, see “Configuring Service Sets to be Applied to Services Interfaces” on page 9.

On the AS or Multiservices PIC, a flow lookup is performed. If no flow is found, rule processing is performed. All rules in the service set are considered. During rule processing, the packet direction is compared against rule directions. Only rules with direction information that match the packet direction are considered.

Configuring Match Conditions in IDS Rules

To configure IDS match conditions, include the from statement at the [edit services ids rule rule-name term term-name] hierarchy level:

```plaintext
[edit services ids rule rule-name term term-name]
from {
    application-sets set-name;
    applications [ application-names ];
    destination-address (address | any-unicast) <except>;
    destination-address-range low minimum-value high maximum-value <except>;
    destination-prefix-list list-name <except>;
    source-address (address | any-unicast) <except>;
    source-address-range low minimum-value high maximum-value <except>;
    source-prefix-list list-name <except>;
}
```

If you omit the from statement, the software accepts all events and places them in the IDS cache for processing.

The source address and destination address can be either IPv4 or IPv6. You can use the destination address, a range of destination addresses, a source address, or a range of source addresses as a match condition, in the same way that you would configure a firewall filter; for more information, see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.

Alternatively, you can specify a list of source or destination prefixes by including the prefix-list statement at the [edit policy-options] hierarchy level and then including either the destination-prefix-list or source-prefix-list statement in the IDS rule. For an example, see “Examples: Configuring Stateful Firewall Rules” on page 473.

You can also include application protocol definitions that you have configured at the [edit applications] hierarchy level; for more information, see “Configuring Application Properties” on page 431.

- To apply one or more specific application protocol definitions, include the applications statement at the [edit services ids rule rule-name term term-name from] hierarchy level.
- To apply one or more sets of application protocol definitions that you have defined, include the `application-sets` statement at the `[edit services ids rule rule-name term term-name from]` hierarchy level.

NOTE: If you include one of the statements that specifies application protocols, the router derives port and protocol information from the corresponding configuration at the `[edit applications]` hierarchy level; you cannot specify these properties as match conditions.

If a match occurs on an application, the application protocol is displayed separately in the `show services ids` command output. For more information, see the CLI Explorer.

Configuring Actions in IDS Rules

To configure IDS actions, include the `then` statement at the `[edit services ids rule rule-name term term-name]` hierarchy level:

```
[edit services ids rule rule-name term term-name]
then {
  aggregation (IDS) {
    destination-prefix prefix-value | destination-prefix-ipv6 prefix-value;
    source-prefix prefix-value | source-prefix-ipv6 prefix-value;
  }
  (force-entry | ignore-entry);
  logging {
    syslog;
    threshold rate;
  }
  session-limit {
    by-destination (IDS MS-DPC) {
      hold-time seconds;
      maximum number;
      packets number;
      rate number;
    }
    by-pair (IDS MS-DPC) {
      hold-time seconds;
      maximum number;
      packets number;
      rate number;
    }
    by-source (IDS MS-DPC) {
      hold-time seconds;
      maximum number;
      packets number;
      rate number;
    }
  }
  syn-cookie {
    mss value;
    threshold rate;
  }
}
```
You can configure the following possible actions:

- **aggregation**—The router aggregates traffic labeled with the specified source or destination prefixes before passing the events to IDS processing. This is helpful if you want to examine all the traffic connected with a particular source or destination host. To collect traffic with some other marker, such as a particular application or port, configure that value in the match conditions.

To configure aggregation prefixes, include the aggregation statement at the [edit services ids rule rule-name term term-name then] hierarchy level and specify values for source-prefix, destination-prefix source-prefix-ipv6, or destination-prefix-ipv6:

```plaintext
[edit services ids rule rule-name term term-name then]
  aggregation (IDS) { 
    destination-prefix prefix-value | destination-prefix-ipv6 prefix-value; 
    source-prefix prefix-value | source-prefix-ipv6 prefix-value;
  }
```

The value of source-prefix and destination-prefix must be an integer between 1 and 32. The value of source-prefix-ipv6 and destination-prefix-ipv6 must be an integer between 1 and 128.

- **(force-entry | ignore-entry)**—force-entry provides a permanent spot in IDS caches for subsequent events after one event is registered. By default, the IDS software does not record information about “good” packets that do not exhibit suspicious behavior. You can use the force-entry statement to record all traffic from a suspect host, even traffic that would not otherwise be counted.

ignore-entry ensures that all IDS events are ignored. You can use this statement to disregard all traffic from a host you trust, including any temporary anomalies that IDS would otherwise count as events.

To configure an entry behavior different from the default, include the force-entry or ignore-entry statement at the [edit services ids rule rule-name term term-name then] hierarchy level:

```plaintext
[edit services ids rule rule-name term term-name then]
  (force-entry | ignore-entry);
```

- **logging**—The event is logged in the system log file.

To configure logging, include the logging statement at the [edit services ids rule rule-name term term-name then] hierarchy level:

```plaintext
[edit services ids rule rule-name term term-name then]
  logging { 
    syslog; 
    threshold rate; 
  }
```

You can optionally include a threshold rate to trigger the generation of system log messages. The threshold rate is specified in events per second. IDS logs are generated
once every 60 seconds for each anomaly that is reported. The logs are generated as long as the events continue.

- **session-limit**—The router limits open sessions when the specified threshold is reached.

To configure a threshold, include the `session-limit` statement at the `[edit services ids rule rule-name term term-name then]` hierarchy level:

```
[edit services ids rule rule-name term term-name then]
session-limit {
  by-destination (IDS MS-DPC) {
    hold-time seconds;
    maximum number;
    packets number;
    rate number;
  }
  by-pair (IDS MS-DPC) {
    hold-time seconds;
    maximum number;
    packets number;
    rate number;
  }
  by-source (IDS MS-DPC) {
    hold-time seconds;
    maximum number;
    packets number;
    rate number;
  }
}
```

You configure the thresholds for flow limitation based on traffic direction:

- To limit the number of outgoing sessions from one internal host or subnet, configure the `by-source` statement.
- To limit the number of sessions between a pair of IP addresses, subnets, or applications, configure the `by-pair` statement.
- To limit the number of incoming sessions to one external public IP address or subnet, configure the `by-destination` statement.

For each direction, you can configure the following threshold values:

- **hold-time seconds**—When the `rate` or `packets` measurement reaches the threshold value, stop all new flows for the specified number of seconds. Once `hold-time` is in effect, the traffic is blocked for the specified time even if the rate subsides below the specified limit. By default, `hold-time` has a value of 0; the range is 0 through 60 seconds.
- **maximum number**—Maximum number of open sessions per IP address or subnet per application. The range is 1 through 32,767.
- **packets number**—Maximum number of packets per second (pps) per IP address or subnet per application. The range is 4 through 2,147,483,647.
• **rate number**—Maximum number of sessions per second per IP address or subnet per application. The range is 4 through 32,767.

If you include more than one source address in the match conditions configured at the [edit services ids rule rule-name term term-name from] hierarchy level, limits are applied for each source address independently. For example, the following configuration allows 20 connections from each source address (10.1.1.1 and 10.1.1.2), not 20 connections total. The same logic applies to the applications and destination-address match conditions.

```
[edit services ids rule rule-name term term-name]
from {
    source-address 10.1.1.1;
    source-address 10.1.1.2;
}
then {
    session-limit by-source {
        maximum 20;
    }
}
```

NOTE: IDS limits are applied to packets that are accepted by stateful firewall rules. They are not applied to packets discarded or rejected by stateful firewall rules. For example, if the stateful firewall accepts 75 percent of the incoming traffic and the remaining 25 percent is rejected or discarded, the IDS limit applies only to 75 percent of the traffic.

• **syn-cookie**—The router activates SYN-cookie defensive mechanisms.

To configure SYN-cookie values, include the *syn-cookie* statement at the [edit services ids rule rule-name term term-name] hierarchy level:

```
[edit services ids rule rule-name term term-name]
syn-cookie {
    mss value;
    threshold rate;
}
```

If you enable SYN-cookie defenses, you must include both a threshold rate to trigger SYN-cookie activity and a Transmission Control Protocol (TCP) maximum segment size (MSS) value for TCP delayed binding. The threshold rate is specified in SYN attacks per second. By default, the TCP MSS value is 1500; the range is from 128 through 8192.

Handling of SYN Flood Attacks and SYN Cookie Protection

The main purpose of a SYN flood attack is to consume all new network connections at a site and thereby prevent authorized and legitimate users from being able to connect to network resources. The SYN (synchronize sequence number) packet is the first request to connect sent to a system. The SYN packet contains an ID to which the receiver is required to respond. If the packet contains an illegal ID, the receiving system does receive a connection acknowledgment when it responds to the intended connection initiator. Eventually, this half-open connection times out and the incoming channel on the receiver
becomes available again to normally handle another request. A SYN flood attack sends so many such requests that all incoming connections are continuously tied up waiting for acknowledgments that are never received. This condition causes the server to be unavailable to legal users (except in cases where a user session is established when it is exactly at the moment when one of the tied-up connections times out). A SYN flood attack is a connectionless attack. It does not require a real source IP addresses and, because it uses legitimate destination IP or port addresses, is practically impossible to distinguish from legitimate packets. Therefore, it is very difficult to prevent this type of attack by using only filters or stateful firewall rules. Basically, there are only three methods to protect from this type of attack:

- **Intercept (delayed binding)**—The firewall intercepts incoming TCP synchronization requests and establishes a connection with the client on the server’s behalf, and with the server on the client's behalf. If both connections are successful, the firewall transparently merges the two connections. The firewall usually has aggressive timeouts to prevent its own resources from being consumed by a SYN attack. This is the most intensive solution in terms of processing and memory requirements.

- **Watch (SYN defense)**—The firewall passively watches half-open connections and actively closes connections on the server after a configurable length of time.

- **SYN cookie**—SYN cookies are particular choices for the initial TCP sequence number chosen by the TCP server. A host requesting a connection must answer with the cookie to connect to an open TCP socket while a SYN-flood has been detected as in progress by the IDS.

Juniper Networks routers support the combination of stateful firewall and IDS mechanisms to support the SYN cookie and watch (SYN defense) methods. The key to the SYN flood attack is the filling of the SYN queue of the victim or the attacked network element. The SYN cookie defense method enables the victim to continue accepting connection requests when the SYN queue is full or, in the case of the firewall or IDS applications, when a certain threshold has been reached. After the threshold is reached, a cryptographic cookie (a 32-bit number) is created from information in the SYN segment and the SYN segment is dropped. The cookie is used as the initial sequence number in the SYN-ACK sent to the client. The cookie (plus one) is returned to the firewall or IDS application as the acknowledgment number in the ACK from a legitimate client. The returned cookie can be validated and the most important parts of the SYN segment can be reconstructed from the cookie, thereby allowing a connection to be established. Because the spoofed clients of the SYN flood never send ACKs, no resources are allocated for them in any state when SYN cookies are in use. It is preferred that you use SYN flood countermeasures only for hosts under attack. The anomaly table can be used for reliable attack recognition or they can be enabled within the stateful firewall. Such a type of configuration also helps prevent the depletion of system resources (especially the flow table) in case of attacks.

When combining multiple services, the general path is an important factor for consideration in the forward and reverse directions. This is especially true when NAT is deployed to determine whether the pre-NAT or post-NAT address must be used to match a rule. In the forward path from a LAN interface to a WAN interface, IDS and stateful firewall are performed first, then NAT, and finally IPSec. This sequence of processing of services denotes that the stateful firewall must match on a pre-NAT address, whereas the IPSec tunnel matches on the post-NAT address. In the return path, the IPSec packet
is processed first, then NAT, and finally the stateful firewall. This order of processing still allows IPSec to match a public address and the stateful firewall to match on a private address. You must separately configure the firewall, NAT, and IDS services. The processing of packets becomes much more complicated when IPSec over GRE is implemented in the router with other services turned on. This behavior occurs because Junos OS treats GRE packets in a unique fashion after GRE encapsulation. After a packet is encapsulated in a GRE packet, it is marked with an input interface as the next-hop outgoing interface. This method of marking causes GRE packets to be blocked if any input filters or input services are that do not allow for this service.

Junos OS services support a limited set of IDS rules to help detect attacks such as port scanning and anomalies in traffic patterns. It also supports some attack prevention by limiting the number of flows, sessions, and rates. In addition, it protects against SYN attacks by implementing a SYN cookie mechanism. Because the intrusion detection and prevention (IDP) service does not support higher-layer application signatures, an effective approach against attacks is that protection against a SYN attack can be configured. The IDP solution is largely a monitoring tool and not an essential prevention tool. To prevent a SYN attack, the router will operate as a type of SYN “proxy” and utilizes cookie values. When this feature is turned on, the router responds to the initial SYN packet with a SYN-ACK packet that contains a unique cookie value in the sequence number field. If the initiator responds with the same cookie in the sequence field, the TCP flow is accepted; if the responder does not respond or if it responds with the wrong cookie, the flow is dropped. To trigger this defense, you must configure a SYN cookie threshold. To enable the SYN cookie defense, an IDS rule action must contain a threshold that indicates when the feature should be enabled and an MSS value to avoid having the router manage segmented fragments when acting as a SYN proxy:

[edit]
user@host# set services ids rule simple-ids term 1 then syn-cookie

Related Documentation

- Configuring IDS Rule Sets on an MS-DPC on page 506
- Examples: Configuring IDS Rules on an MS-DPC on page 507
- Configuring Protection Against Network Attacks on an MS-MPC on page 515

Configuring IDS Rule Sets on an MS-DPC

You can use **rule-set** statement to define a collection of IDS rules that determine what actions the router software performs on packets in the data stream. This is supported on the MS-DPC multiservices card. (To configure network attack protection with an MS-MPC, see “Configuring Protection Against Network Attacks on an MS-MPC” on page 515.)

You define each rule by specifying a rule name and configuring terms. Then, you specify the order of the rules by including the **rule-set** statement at the [edit services ids] hierarchy level with a **rule** statement for each rule:
The router software processes the rules in the order in which you specify them in the configuration. If a term in a rule matches the packet, the router performs the corresponding action and the rule processing stops. If no term in a rule matches the packet, processing continues to the next rule in the rule set. If none of the rules matches the packet, the packet is dropped by default.

Related Documentation
- Configuring IDS Rules on an MS-DPC on page 498
- Examples: Configuring IDS Rules on an MS-DPC on page 507

Examples: Configuring IDS Rules on an MS-DPC

The following configuration adds a permanent entry to the IDS anomaly table when it encounters a flow with the destination address 10.410.6.2. This example is supported on the MS-DPC multiservices card. (To configure network attack protection with an MS-MPC, see “Configuring Protection Against Network Attacks on an MS-MPC” on page 515.)

```
[edit services ids]
rule-set simple_ids {
  term1 {
    from {
      destination-address 10.410.6.2/32;
    }
    then {
      force-entry;
      logging {
        threshold 1;
        syslog;
      }
    }
  }
  term default {
    then {
      aggregation {
        source-prefix 24;
      }
    }
    match-direction input;
  }
}
```

The IDS configuration works in conjunction with the stateful firewall mechanism and relies heavily on the anomalies reported by the stateful firewall. The following configuration example shows this relationship:

```
[edit services ids]
```
rule simple_ids {
 term 1 {
 from {
 source-address 10.30.20.2/32;
 destination-address {
 10.30.10.2/32;
 10.30.1.2/32 except;
 }
 applications appl-ftp;
 }
 then {
 force-entry;
 logging {
 threshold 5;
 syslog;
 }
 syn-cookie {
 threshold 10;
 }
 }
 }
 match-direction input;
}

[edit services stateful-firewall]
rule my-firewall-rule {
 match-direction input-output;
 term term1 {
 from {
 source-address 10.30.20.2/32;
 applications appl-ftp;
 destination-address {
 10.30.10.2/32;
 10.30.1.2/32 except;
 }
 }
 then {
 accept;
 syslog;
 }
 }
}

The stateful firewall or NAT service is used to generate the input data for the IDS application. When you enable and configure an IDS service, you must also enable stateful firewall with at least one rule (accept or discard all traffic). When the system is under an attack, the stateful firewall sends the correct and complete list of attack events to the IDS system. In your network environment, you can ensure that the system is wholly protected against a whole range of attacks so that the IDS system reports all such attacks. You must exercise caution when you configure the system to be protected from all attacks and unauthenticated access scenarios so that the traffic bandwidth that the system handles is not burdened. It is also important to verify the correlation between the firewall syslog messages corresponding to the attacks and IDS tables. The IDS tables must have
the same or slightly less number of anomalies or errors compared to the firewall-based syslog messages. You can use the appropriate show commands are used to display the IDS tables.

A default stateful firewall rule can be as simple as only allowing connection initiation from the inside interface to the outside interface and discarding all other packets. However, in a real-world network environment, rules are generally more complex, such as configuring only a certain tributary unit ports to be opened, using application layer gateways (ALGs) for complicated protocols, and using NAT for both outgoing connections and inside hosts such as HTTP servers. Therefore, it is necessary to also configure the system as needed to interwork with simple and complicated rules. For example, if a SYN attack is directed towards an inside address that is simply discarded, no anomalies need to be reported to the IDS system. But if the SYN attack is directed towards the real HTTP server, anomalies must be reported. The IDS system can mitigate SYN attacks by using the TCP SYN cookie defense capability. You can enable the SYN cookie protection methodology by setting a threshold for SYNs per second for a given host and also a maximum segment size (MSS). Because the IDS system uses the stateful firewall, a firewall rule must be defined in the service-set. If you do not configure the from statement in a stateful firewall (rule term match condition) at the [edit services service-set service-set-name stateful-firewall-rules rule-name term term-name] hierarchy level, it signifies that all events are placed into the IDS cache.

The following example shows configuration of flow limits:

```
[edit services ids]
rule ids-all {
  match-direction input;
  term t1 {
    from {
      application-sets alg-set;
    }
    then {
      aggregation {
        destination-prefix 30; /* IDS action aggregation */
      }
      logging {
        threshold 10;
      }
    session-limit {
      by-destination {
        hold-time 0;
        maximum 10;
        packets 200;
        rate 100;
      }
      by-pair {
        hold-time 0;
        maximum 10;
        packets 200;
        rate 100;
      }
      by-source {
    ```
hold-time 5;
maximum 10;
packets 200;
rate 100;
}
}
}
}

Related Documentation

- Configuring IDS Rules on an MS-DPC on page 498
- Configuring IDS Rule Sets on an MS-DPC on page 506
IDS Configuration on MS-MPC for Network Attack Protection

Understanding IDS on an MS-MPC

- Intrusion Detection Services on page 511
- Benefits on page 512
- Session Limits on page 512
- Suspicious Packet Patterns on page 513
- Header Anomaly Attacks on page 514

Intrusion Detection Services

Intrusion detection services (IDS) rules on an MS-MPC give you a way to identify and drop traffic that is part of a network attack.

IDS rules provide a more granular level of filtering than firewall filters and policers, which can stop illegal TCP flags and other bad flag combinations, and can enforce general rate limiting (see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide). You can use firewall filters and policers along with IDS to reduce the traffic that needs to be processed by an IDS rule.

In an IDS rule, you can specify:

- Limits on the sessions that originate from individual sources or that terminate at individual destinations. This protects against network probing and flooding attacks.
- Types of suspicious packets to drop.

To protect against header anomaly attacks, a header integrity check is automatically performed if you configure an IDS rule, stateful firewall rule, or a NAT rule and apply it to the service set. You can also explicitly configure a header integrity check for the service set if you do not assign the service set an IDS rule, stateful firewall rule, or a NAT rule.
Benefits

- Provides protection against several types of network attacks.

Session Limits

You can use IDS rules to set session limits for traffic from an individual source or to an individual destination. This protects against network probing and flooding attacks. Traffic that exceeds the session limits is dropped. You can specify session limits either for traffic with a particular IP protocol, such as ICMP, or for traffic in general.

You decide whether the limits apply to individual addresses or to an aggregation of traffic from individual subnets of a particular prefix length. For example, if you aggregate limits for IPv4 subnets with a prefix length of 24, traffic from 192.0.2.2 and 192.0.2.3 is counted against the limits for the 192.0.2.0/24 subnet.

Some common network probing and flooding attacks that session limits protect against include:

ICMP Address Sweep—The attacker sends ICMP request probes (pings) to multiple targets. If a target machine replies, the attacker receives the IP address of the target.

ICMP Flood—The attacker floods a target machine by sending a large number of ICMP packets from one or more source IP addresses. The target machine uses up its resources as it attempts to process those ICMP packets, and can no longer process valid traffic.

TCP Port Scan—The attacker sends TCP SYN packets from one source to multiple destination ports of the target machine. If the target replies with a SYN-ACK from one or more destination ports, the attacker learns which ports are open on the target.

TCP SYN Flood—The attacker floods a target machine by sending a large number of TCP SYN packets from one or more source IP addresses. The attacker might use real source IP addresses, which results in a completed TCP connection, or might use fake source IP addresses, resulting in the TCP connection not being completed. The target creates states for all the completed and uncompleted TCP connections. The target uses up its resources as it attempts to manage the connection states, and can no longer process valid traffic.

UDP Flood—The attacker floods a target machine by sending a large number of UDP packets from one or more source IP addresses. The target machine uses up its resources as it attempts to process those UDP packets, and can no longer process valid traffic.

Session limits for traffic from a source or to a destination include:

- maximum number of concurrent sessions
- maximum number of packets per second
- maximum number of connections per second
IDS also installs a dynamic filter on the PFEs of line cards for suspicious activity when the following conditions occur:

- Either the packets per second or the number of connections per second for an individual source or destination address (not for a subnet) exceeds four times the session limit in the IDS rule. This session limit is the general source or destination limit for the IDS rule, not the limit specified for a particular protocol.

- The services card CPU utilization percentage exceeds a configured value (default value is 90 percent).

The dynamic filter drops the suspicious traffic at the PFE, and the traffic is not sent to the MS-MPC to be processed by the IDS rule. When the packet or connection rate no longer exceeds four times the limit in the IDS rule, the dynamic filter is removed.

Suspicious Packet Patterns

You can use IDS rules to identify and drop traffic with a suspicious packet pattern. This protects against attackers that craft unusual packets to launch denial-of-service attacks.

Suspicious packet patterns and attacks that you can specify in an IDS rule are:

- **ICMP fragmentation attack**—The attacker sends the target ICMP packets that are IP fragments. These are considered suspicious packets because ICMP packets are usually short. When the target receives these packets, the results can range from processing packets incorrectly to crashing the entire system.

- **ICMP large packet attack**—The attacker sends the target ICMP frames with an IP length greater than 1024 bytes. These are considered suspicious packets because most ICMP messages are small.

- **ICMP Ping of death attack**—The attacker sends the target ICMP ping packets whose IP datagram length (ip_len) exceeds the maximum legal length (65,535 bytes) for IP packets, and the packet is fragmented. When the target attempts to reassemble the IP packets, a buffer overflow might occur, resulting in a system crashing, freezing, and restarting.

- **IP Bad option attack**—The attacker sends the target packets with incorrectly formatted IPv4 options or IPv6 extension headers. This can cause unpredictable issues, depending on the IP stack implementation of routers and the target.

- **IPv4 options**—Attackers can maliciously use IPv4 options for denial-of-service attacks.

- **IPv6 extension headers**—Attackers can maliciously use extension headers for denial-of-service attacks or to bypass filters.

- **IP teardrop attack**—The attacker sends the target fragmented IP packets that overlap. The target machine uses up its resources as it attempts to reassemble the packets, and can no longer process valid traffic.

- **IP unknown protocol attack**—The attacker sends the target packets with protocol numbers greater than 137 for IPv4 and 139 for IPv6. An unknown protocol might be malicious.
Land attack—The attacker sends the target spoofed SYN packets that contain the target’s IP address as both the destination and the source IP address. The target uses up its resources as it repeatedly replies to itself. In another variation of the land attack, the SYN packets also contain the same source and destination ports.

SYN fragment attack—The attacker sends the target SYN packet fragments. The target caches SYN fragments, waiting for the remaining fragments to arrive so it can reassemble them and complete the connection. A flood of SYN fragments eventually fills the host’s memory buffer, preventing valid traffic connections.

TCP FIN No ACK attack—The attacker sends the target TCP packets that have the Fin bit set but have the ACK bit unset. This can allow the attacker to identify the operating system of the target or to identify open ports on the target.

TCP no flag attack—The attacker sends the target TCP packets containing no flags. This can cause unpredictable behavior on the target, depending on its TCP stack implementation.

TCP SYN FIN attack—The attacker sends the target TCP packets that have both the SYN and the Fin bits set. This can cause unpredictable behavior on the target, depending on its TCP stack implementation.

TCP WinNuke attack—The attacker sends a TCP segment with the urgent (URG) flag set and destined for port 139 of a target running Windows. This might cause the target machine to crash.

Header Anomaly Attacks

To protect against header anomaly attacks, a header integrity check is automatically performed if you configure an IDS rule, a stateful firewall rule, or a NAT rule and apply it to the service set. You can also explicitly configure a header integrity check for the service set if you do not assign the service set an IDS rule, stateful firewall rule, or a NAT rule.

The header integrity check provides protection against the following header anomaly attacks:

ICMP Ping of death attack—The attacker sends the target ICMP ping packets whose IP datagram length (ip_len) exceeds the maximum legal length (65,535 bytes) for IP packets, and the packet is fragmented. When the target attempts to reassemble the IP packets, a buffer overflow might occur, resulting in a system crashing, freezing, and restarting.

IP unknown protocol attack—The attacker sends the target packets with protocol numbers greater than 137 for IPv4 and 139 for IPv6. An unknown protocol might be malicious.

TCP no flag attack—The attacker sends the target TCP packets containing no flags. This can cause unpredictable behavior on the target, depending on its TCP stack implementation.
TCP SYN FIN attack—The attacker sends the target TCP packets that have both the SYN and the FIN bits set. This can cause unpredictable behavior on the target, depending on its TCP stack implementation.

TCP FIN No ACK attack—The attacker sends the target TCP packets that have the FIN bit set but have the ACK bit unset. This can allow the attacker to identify the operating system of the target or to identify open ports on the target.

Related Documentation

- Configuring Protection Against Network Attacks on an MS-MPC on page 515

Configuring Protection Against Network Attacks on an MS-MPC

This topic includes the following tasks, which describe how to protect against network attacks when using an MS-MPC:

- Configuring Protection Against Network Probing, Network Flooding, and Suspicious Pattern Attacks on page 515
- Configuring Protection Against Header Anomaly Attacks on page 524

Configuring Protection Against Network Probing, Network Flooding, and Suspicious Pattern Attacks

You configure protection against network probing attacks, network flooding attacks, and suspicious pattern attacks by configuring an intrusion detection service (IDS) rule, and then applying that rule to a service set that is on an MS-MPC. Only the first term of an IDS rule is used, and only the first IDS input rule and the first IDS output rule for a service set are used.

Configuring protection against network probing, network flooding, and suspicious pattern attacks includes:

- Configuring IDS Rule Name and Direction on page 516
- Configuring Session Limits for Subnets on page 516
- Configuring Session Limits Independent of the Protocol on page 517
- Configuring ICMP Address Sweep Protection on page 518
- Configuring TCP Port Scanner Protection on page 519
- Configuring ICMP Flooding Protection on page 519
- Configuring UDP Flooding Protection on page 520
- Configuring TCP SYN Flooding Protection on page 520
- Configuring ICMP Fragmentation Protection on page 522
- Configuring ICMP Large Packet Protection on page 522
- Configuring IP Bad Options Protection on page 522
- Configuring Land Attack Protection on page 523
- Configuring TCP SYN Fragment Protection on page 523
Configuring WinNuke Protection on page 523
• Configuring the Service Set on page 523

Configuring IDS Rule Name and Direction

For each IDS rule, you must configure a name and the direction of traffic to which it is applied.

To configure the IDS rule name and direction:

1. Specify a name for the IDS rule.

 [edit services ids]
 user@host# set rule rule-name

2. Specify whether the IDS rule is applied to input traffic, output traffic, or both.

 [edit services ids rule rule-name]
 user@host# set match-direction (input | input-output | output)

Configuring Session Limits for Subnets

If you want to apply session limits to an aggregation of all attacks to or from individual destination or source subnets rather than for individual addresses, configure aggregation.

To configure subnet aggregation:

• If you want to apply session limits to an aggregation of all attacks from within an individual IPv4 subnet, specify the subnet prefix length. The range is from 1 through 32.

 [edit services ids rule rule-name term term-name then]
 user@host# set aggregation source-prefix prefix-value

 For example, the following statement configures an IPv4 prefix length of 24, and attacks from 10.1.1.2 and 10.1.1.3 are counted as attacks from the 10.1.1/24 subnet.

 [edit services ids rule rule1 term term1 then]
 user@host# set aggregation source-prefix 24

 However, if a single host on a subnet generates a large number of network probing or flooding attacks, the flows for the entire subnet might be stopped.

• If you want to apply session limits to an aggregation of all attacks from within an individual IPv6 subnet, specify the subnet prefix length. The range is from 1 through 128.

 [edit services ids rule rule-name term term-name then]
 user@host# set aggregation source-prefix-ipv6 prefix-value
For example, the following statement configures an IPv6 prefix length of 64, and attacks from 2001:db8:1234:72a2::2 and 2001:db8:1234:72a2::3 are counted as attacks from the 2001:db8:1234:72a2::/64 subnet.

```
[edit services ids rule rule1 term term1 then]
user@host# set aggregation source-prefix-ipv6 64
```

However, if a single host on a subnet generates a large number of network probing or flooding attacks, the flows for the entire subnet might be stopped.

- If you want to apply session limits to an aggregation of all attacks to an individual IPv4 subnet, specify the subnet prefix length. The range is from 1 through 32.

```
[edit services ids rule rule-name term term-name then]
user@host# set aggregation destination-prefix prefix-value
```

For example, the following statement configures an IPv4 prefix length of 24, and attacks to 10.1.1.2 and 10.1.1.3 are counted as attacks to the 10.1.1/24 subnet.

```
[edit services ids rule rule1 term term1 then]
user@host# set aggregation destination-prefix 24
```

- If you want to apply session limits to an aggregation of all attacks to an individual IPv6 subnet, specify the subnet prefix length. The range is from 1 through 128.

```
[edit services ids rule rule-name term term-name then]
user@host# set aggregation destination-prefix-ipv6 prefix-value
```

For example, the following statement configures an IPv6 prefix length of 64, and attacks to 2001:db8:1234:72a2::2 and 2001:db8:1234:72a2::3 are counted as attacks to the 2001:db8:1234:72a2::/64 subnet.

```
[edit services ids rule rule1 term term1 then]
user@host# set aggregation destination-prefix-ipv6 64
```

Configuring Session Limits Independent of the Protocol

If you want to configure session limits for traffic to an individual destination or from an individual source independent of the protocol, then perform one or more of the following tasks:

- To configure session limits for source IP addresses or subnets independent of a protocol:
 - Configure the maximum number of concurrent sessions allowed from an individual source IP address or subnet.

```
[edit services ids rule rule-name term term-name then]
user@host# set session-limit by-source maximum number
```
• Configure the maximum number of packets per second allowed from an individual source IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-source packets number

• Configure the maximum number of connections per second allowed from an individual source IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-source rate number

• To configure session limits for destination IP addresses or subnets independent of a protocol:

 • Configure the maximum number of concurrent sessions allowed for an individual destination IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-destination maximum number

 • Configure the maximum number of packets per second allowed for an individual destination IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-destination packets number

 • Configure the maximum number of connections per second allowed for an individual destination IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-destination rate number

Configuring ICMP Address Sweep Protection

To configure protection against ICMP address sweeps, configure any combination of the maximum allowed ICMP concurrent sessions, packets per second, and connections per second for a source:

• Configure the maximum number of concurrent ICMP sessions allowed from an individual source IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-source by-protocol icmp maximum number

• Configure the maximum number of ICMP packets per second allowed from an individual source IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-source by-protocol icmp packets number
• Configure the maximum number of ICMP connections per second allowed from an individual source IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-source by-protocol icmp rate number

Configuring TCP Port Scanner Protection

To configure protection against TCP port scanner attacks, configure any combination of the maximum allowed TCP concurrent sessions and connections per second for a source or destination:

• Configure the maximum number of concurrent TCP sessions allowed from an individual source IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-source by-protocol tcp maximum number

• Configure the maximum number of TCP connections per second allowed for an individual source IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-source by-protocol tcp rate number

• Configure the maximum number of TCP sessions allowed for an individual destination IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-destination by-protocol tcp maximum number

• Configure the maximum number of TCP connections per second allowed for an individual destination IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-destination by-protocol tcp rate number

Configuring ICMP Flooding Protection

To configure protection against ICMP flooding attacks, configure any combination of the maximum allowed ICMP concurrent sessions, packets per second, and number of connections per second for a destination:

• Configure the maximum number of concurrent ICMP sessions allowed for an individual destination IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-destination by-protocol icmp maximum number
• Configure the maximum number of ICMP packets per second allowed for an individual destination IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-destination by-protocol icmp packets number

• Configure the maximum number of ICMP connections per second allowed for an individual destination IP address or subnet for ICMP.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-destination by-protocol icmp rate number

Configuring UDP Flooding Protection

To configure protection against UDP flooding attacks, configure any combination of the maximum allowed UDP concurrent sessions, packets per second, and connections per second for a destination:

• Configure the maximum number of concurrent UDP sessions allowed for an individual destination IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-destination by-protocol udp maximum number

• Configure the maximum number of UDP packets per second allowed for an individual destination IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-destination by-protocol udp packets number

• Configure the maximum number of UDP connections per second allowed for an individual destination IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-destination by-protocol udp rate number

Configuring TCP SYN Flooding Protection

To configure protection against TCP SYNflooding attacks, configure any combination of the maximum allowed TCP concurrent sessions, packets per second, and connections per second for a source or destination. You can also configure the closing of unestablished TCP connections after a timeout:

• Configure the maximum number of concurrent TCP sessions allowed from an individual source IP address or subnet.

 [edit services ids rule rule-name term term-name then]
 user@host# set session-limit by-source by-protocol tcp maximum number
• Configure the maximum number of TCP packets per second allowed from an individual source IP address or subnet.

[edit services ids rule rule-name term term-name then]
user@host# set session-limit by-source by-protocol tcp packets number

• Configure the maximum number of TCP connections per second allowed from an individual source IP address or subnet.

[edit services ids rule rule-name term term-name then]
user@host# set session-limit by-source by-protocol tcp rate number

• Configure the maximum number of concurrent TCP sessions allowed for an individual destination IP address or subnet.

[edit services ids rule rule-name term term-name then]
user@host# set session-limit by-destination by-protocol tcp maximum number

• Configure the maximum number of TCP connections per second allowed for an individual destination IP address or subnet.

[edit services ids rule rule-name term term-name then]
user@host# set session-limit by-destination by-protocol tcp rate number

• Configure the maximum number of TCP packets per second allowed for an individual destination IP address or subnet.

[edit services ids rule rule-name term term-name then]
user@host# set session-limit by-destination by-protocol tcp packets number

• Configure the closing of unestablished TCP connections and the delivery of a TCP RST to the end host to clear the TCP states on it when the open-timeout value at the [edit interfaces interface-name service-options] hierarchy level expires.

[edit services ids rule rule-name term term-name then]
user@host# set tcp-syn-defense
Configuring ICMP Fragmentation Protection

To protect against ICMP fragmentation attacks:

- Configure the identification and dropping of ICMP packets that are IP fragments.

```
[edit services ids rule rule-name term term-name then]
user@host# set icmp-fragment-check
```

Configuring ICMP Large Packet Protection

To protect against ICMP large packet attacks:

- Configure the identification and dropping of ICMP packets that are larger than 1024 bytes.

```
[edit services ids rule rule-name term term-name then]
user@host# set icmp-large-packet-check
```

Configuring IP Bad Options Protection

To protect against bad IPv4 options or IPv6 extension header attacks:

1. Configure the type of IPv4 options that the packet can include. If the packet includes an option that is not configured, then the packet is blocked. If the packet includes a configured option whose length is an illegal value, then the packet is dropped. Specifying any allows all options.

```
[edit services ids rule rule-name term term-name then]
user@host# set allow-ip-options [ip-options]
```

The IPv4 options supported are any, loose-source-route, route-record, security, stream-id, strict-source-route, and timestamp.

If you do not include the allow-ip-options statement in the IDS rule, packets with any type of IPv4 option are blocked.

2. Configure the type of IPv6 extension headers that the packet can include. If the packet includes an extension header that is not configured, then the packet is blocked. If the packet includes configured extension headers that are incorrect, then the packet is dropped. Specifying any allows all extension headers.

```
[edit services ids rule rule-name term term-name then]
user@host# set allow-ipv6-extension-header extension-header
```

The IPv6 extension headers supported are any, ah, dstopts, esp, fragment, hop-by-hop, mobility, and routing.

If you do not include the allow-ipv6-extension-header statement in the IDS rule, packets with any type of extension header are dropped.
Configuring Land Attack Protection

To protect against land attacks:

- Configure the identification and dropping of SYN packets that have the same source and destination IP address or the same source and destination IP address and port.

```
[edit services ids rule rule-name term term-name then]
user@host# set land-attack-check (ip-only | ip-port)
```

To specify that the packets have the same source and destination IP address, use the `ip-only` option; to specify that the packets have the same source and destination IP address and port, use the `ip-port` option.

Configuring TCP SYN Fragment Protection

To protect against TCP SYN fragment attacks:

- Configure the identification and dropping of TCP SYN packets that are IP fragments:

```
[edit services ids rule rule-name term term-name then]
user@host# set tcp-syn-fragment-check
```

Configuring WinNuke Protection

To protect against WinNuke attacks:

- Configure the identification and dropping of TCP segments that are destined for port 139 and have the urgent (URG) flag set.

```
[edit services ids rule rule-name term term-name then]
user@host# set tcp-winnuke-check
```

Configuring the Service Set

To apply the IDS rule actions to a service set:

1. Assign the IDS rule to a service set that is on an MS-MPC.

```
[edit services]
user@host# set service-set service-set-name ids-rules rule-name
```

If the service set is associated with an AMS interface, then the session limits you configure are applicable to each member interface.

2. Limit the packets that the IDS rule processes by configuring a stateful firewall rule (see "Configuring Stateful Firewall Rules" on page 467). The stateful firewall rule can identify either the traffic that should undergo IDS processing or the traffic that should skip IDS processing:
To allow IDS processing on the traffic that matches the stateful firewall rule, include `accept` at the `[edit services stateful-firewall rule rule-name term term-name then]` hierarchy level.

To skip IDS processing on the traffic that matches the stateful firewall rule, include `accept skip-ids` at the `[edit services stateful-firewall rule rule-name term term-name then]` hierarchy level.

3. Assign the stateful firewall rule to the service set.

```plaintext
[edit services]
user@host# set service-set service-set-name stateful-firewall-rules rule-name
```

Configuring Protection Against Header Anomaly Attacks

Protect against header anomaly attacks by using either of the following methods to enable a header integrity check, which drops any packets with header anomalies:

- Configure a stateful firewall rule, a NAT rule, or an IDS rule and apply it to the service set that is on an MS-MPC. A header integrity check is automatically enabled.

- Configure a header integrity check for the service set that is on an MS-MPC.

```plaintext
[edit services]
user@host# set service-set service-set-name service-set-options
header-integrity-check enable-all
```

Related Documentation

- Understanding IDS on an MS-MPC on page 511
- Configuring Logging of Network Attack Protection Packet Drops on an MS-MPC on page 524

Configuring Logging of Network Attack Protection Packet Drops on an MS-MPC

To configure the logging of packet drops resulting from header integrity, suspicious packet pattern, and session limit checks performed by an MS-MPC:

1. Configure the logging of packet drops resulting from header integrity failures and suspicious packet patterns.

```plaintext
[edit services set service-set service-set-name syslog host hostname class]
user@host# set packet-logs
```

2. Configure the logging of packet drops resulting from session limit violations.

```plaintext
[edit services set service-set service-set-name syslog host hostname class]
user@host# set ids-log
```
Related Documentation

- Configuring Protection Against Network Attacks on an MS-MPC on page 515
CHAPTER 33

Monitoring Junos Network Secure

- Monitoring Stateful Firewall Conversations on page 527
- Monitoring CGN, Stateful Firewall, and Softwire Flows on page 527
- Monitoring Global Stateful Firewall Statistics on page 528

Monitoring Stateful Firewall Conversations

Purpose
Use the `show services stateful-firewall conversations` command to show conversations, or collections of related flows.

Action
```
user@host# show services stateful-firewall conversations
```
```
Interface: sp-0/0/0, Service set: sset
Conversation: ALG protocol: tcp
Number of initiators: 1, Number of responders: 1
Flow State Dir Frm count
TCP 10.0.0.1:1025 -> 128.0.0.1:80 Forward I 372755
NAT source 10.0.0.1:1025 -> 129.0.0.1:1024
Softwire 2001:0:0:1::1 -> 1001::1
TCP 128.0.0.1:80 -> 129.0.0.1:1024 Forward O 794083
NAT dest 129.0.0.1:1024 -> 10.0.0.1:1025
Softwire 2001:0:0:1::1 -> 1001::1
```

Monitoring CGN, Stateful Firewall, and Softwire Flows

Purpose
Use the following commands to check the creation of the softwires, pre-NAT flows, and post-NAT flows. Output can be filtered using more specific fields such as AFTR or B4 address or both for DS-Lite, and softwire-concentrator or softwire-initiator or both for 6rd.

- `show services stateful-firewall flows`
- `show services softwire flows`
Action

```
user@host# show services stateful-firewall flows
```

<table>
<thead>
<tr>
<th>Flow</th>
<th>State</th>
<th>Dir</th>
<th>Frm count</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td></td>
<td>200.200.200.2:80 -> 44.44.44.1:1025</td>
<td>Forward O</td>
</tr>
<tr>
<td>NAT dest</td>
<td>44.44.44.1:1025 -> 20.20.1.4:1025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softwire</td>
<td>2001::2 -> 1001::1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td></td>
<td>20.20.1.2:1025 -> 200.200.200.2:80</td>
<td>Forward I</td>
</tr>
<tr>
<td>NAT source</td>
<td>20.20.1.2:1025 -> 44.44.44.1:1024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softwire</td>
<td>2001::2 -> 1001::1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td></td>
<td>200.200.200.2:80 -> 44.44.44.1:1024</td>
<td>Forward O</td>
</tr>
<tr>
<td>NAT dest</td>
<td>44.44.44.1:1024 -> 20.20.1.2:1025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softwire</td>
<td>2001::2 -> 1001::1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS-LITE</td>
<td></td>
<td>2001::2 -> 1001::1</td>
<td>Forward I</td>
</tr>
<tr>
<td>TCP</td>
<td></td>
<td>200.200.200.2:80 -> 44.44.44.1:1026</td>
<td>Forward O</td>
</tr>
<tr>
<td>NAT dest</td>
<td>44.44.44.1:1026 -> 20.20.1.3:1025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softwire</td>
<td>2001::2 -> 1001::1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td></td>
<td>20.20.1.3:1025 -> 200.200.200.2:80</td>
<td>Forward I</td>
</tr>
<tr>
<td>NAT source</td>
<td>20.20.1.3:1025 -> 44.44.44.1:1026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softwire</td>
<td>2001::2 -> 1001::1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td></td>
<td>20.20.1.4:1025 -> 200.200.200.2:80</td>
<td>Forward I</td>
</tr>
<tr>
<td>NAT source</td>
<td>20.20.1.4:1025 -> 44.44.44.1:1025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softwire</td>
<td>2001::2 -> 1001::1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related Documentation

- Tunneling Services for IPv4-to-IPv6 Transition Overview on page 317

Monitoring Global Stateful Firewall Statistics

Purpose

Use the `show services stateful-firewall statistics` command to observe statistics for service sets containing softwire rules.

Action

```
user@host# show services stateful-firewall statistics
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Service set</th>
<th>Accept</th>
<th>Discard</th>
<th>Reject</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp-0/0/0</td>
<td>dslite-svc-set2</td>
<td>118991296</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sp-0/1/0</td>
<td>dslite-svc-set1</td>
<td>237615030</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
PART 6

Creating Secure Tunnels Using Junos VPN Site Secure

- Junos VPN Site Secure Overview on page 531
- Junos VPN Site Secure Configuration Overview on page 545
- Enhancing Security with Static IPSec over VRF on page 639
- Dynamically Assigning Tunnels Using Junos VPN Site Secure on page 647
Junos VPN Site Secure Overview

- Understanding Junos VPN Site Secure on page 531
- Authentication Algorithms on page 534
- Encryption Algorithms on page 535
- IPsec Protocols on page 537
- IPsec Multipath Forwarding with UDP Encapsulation on page 539
- Supported IPsec and IKE Standards on page 540
- IPSec Terms and Acronyms on page 542

Understanding Junos VPN Site Secure

Junos VPN Site Secure is a suite of IPsec features supported on multiservices line cards (MS-DPC, MS-MPC, and MS-MIC), and was referred to as IPsec services in Junos releases earlier than 13.2. In Junos OS Release 13.2 and later, the term IPsec features is used exclusively to refer to the IPsec implementation on Adaptive Services and Encryption Services PICs. This topic provides you an overview of Junos VPN Site Secure, and has the following sections:

- IPsec on page 531
- Security Associations on page 532
- IKE on page 532
- Non-Support for NAT-T on page 533
- Comparison of IPsec on ES PICs and Junos VPN Site Secure on Multiservices Line Cards on page 533

IPsec

The IPsec architecture provides a security suite for the IP version 4 (IPv4) and IP version 6 (IPv6) network layers. The suite provides such functionality as authentication of origin, data integrity, confidentiality, replay protection, and nonrepudiation of source. In addition to IPsec, the Junos OS also supports the Internet Key Exchange (IKE), which defines mechanisms for key generation and exchange, and manages security associations (SAs).

IPsec also defines a security association and key management framework that can be used with any network-layer protocol. The SA specifies what protection policy to apply to traffic between two IP-layer entities. IPsec provides secure tunnels between two peers.
Security Associations

To use IPsec security services, you create SAs between hosts. An SA is a simplex connection that enables two hosts to communicate with each other securely by means of IPsec. There are two types of SAs:

- **Manual SAs** require no negotiation; all values, including the keys, are static and specified in the configuration. Manual SAs statically define the security parameter index (SPI) values, algorithms, and keys to be used, and require matching configurations on both ends of the tunnel. Each peer must have the same configured options for communication to take place.

- **Dynamic SAs** require additional configuration. With dynamic SAs, you configure IKE first and then the SA. IKE creates dynamic security associations; it negotiates SAs for IPsec. The IKE configuration defines the algorithms and keys used to establish the secure IKE connection with the peer security gateway. This connection is then used to dynamically agree upon keys and other data used by the dynamic IPsec SA. The IKE SA is negotiated first and then used to protect the negotiations that determine the dynamic IPsec SAs.

IKE

IKE is a key management protocol that creates dynamic SAs; it negotiates SAs for IPsec. An IKE configuration defines the algorithms and keys used to establish a secure connection with a peer security gateway.

IKE performs the following tasks:

- Negotiates and manages IKE and IPsec parameters.
- Authenticates secure key exchange.
- Provides mutual peer authentication by means of shared secrets (not passwords) and public keys.
- Provides identity protection (in main mode).

Two versions of the IKE protocol (IKEv1 and IKEv2) are supported now. IKE negotiates security attributes and establishes shared secrets to form the bidirectional IKE SA. In IKE, inbound and outbound IPsec SAs are established and the IKE SA secures the exchanges. Starting with Junos OS Release 11.4, both IKEv1 and IKEv2 are supported by default on all M Series, MX Series, and T Series routers. IKE also generates keying material, provides Perfect Forward Secrecy, and exchanges identities.

Starting in Junos OS Release 18.2R1, you can configure an MX Series router with MS-MPCs or MS-MICs to act only as an IKE responder. In this responder-only mode, the MX Series router does not initiate IKE negotiations, it only responds to IKE negotiations initiated by the peer gateway. This might be required when inter-operating with other vendor’s equipment, such as Cisco devices. Because the MX Series does not support the protocol and port values in the traffic selector, it cannot initiate an IPsec tunnel to another vendor’s peer gateway that expects these values. By configuring the response-only mode on the
MX Series, the MX can accept the traffic selector in the IKE negotiation initiated from the peer gateway.

Starting in Junos OS Release 18.2R1, you can configure the MX Series router with MS-MPCs or MS-MICs to send only the end-entity certificate for certificate-based IKE authentication instead of the full certificate chain. This avoids IKE fragmentation.

Starting with Junos OS Release 19.1R1, distinguished name support is added to the IKE identification (IKE ID) that is used for validation of VPN peer devices during IKE negotiation. The IKE ID received by an MX Series router from a remote peer can be an IPv4 or an IPv6 address, a hostname, a fully qualified domain name (FQDN), or a distinguished name (DN). The IKE ID sent by the remote peer needs to match what is expected by the MX Series router. Otherwise, IKE ID validation fails and the VPN is not established.

Non-Support for NAT-T

Before Junos OS Release 17.4R1, Network Address Translation—Traversal (NAT-T) is not supported for the Junos VPN Site Secure suite of IPsec features on the MX Series routers, and you must disable NAT-T on the MX Series router to avoid running unsupported NAT-T (see “Disabling NAT-T on MX Series Routers for Handling NAT with IPsec-Protected Packets” on page 609). NAT-T is a method for getting around IP address translation issues encountered when data protected by IPsec passes through a NAT device for address translation.

Comparison of IPsec on ES PICs and Junos VPN Site Secure on Multiservices Line Cards

Table 26 on page 533 compares the top-level configuration of IPsec features on the ES PIC interfaces, and IPsec on the Adaptive Services PICs and Junos VPN Site Secure on Multiservices Line Cards.

Table 26: Statement Equivalents for ES and AS Interfaces

<table>
<thead>
<tr>
<th>ES PIC Configuration</th>
<th>AS and MultiServices Line Cards Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>[edit security ipsec] proposal [...]</td>
<td>[edit services ipsec-vpn ipsec] proposal [...]</td>
</tr>
<tr>
<td>[edit security ipsec] policy [...]</td>
<td>[edit services ipsec-vpn ipsec] policy [...]</td>
</tr>
<tr>
<td>[edit security ipsec] security-association sa-dynamic [...]</td>
<td>[edit services ipsec-vpn rule rule-name] term term-name match-conditions [...] then dynamic [...]</td>
</tr>
<tr>
<td>[edit security ipsec] security-association sa-manual [...]</td>
<td>[edit services ipsec-vpn rule rule-name] term term-name match-conditions [...] then manual [...]</td>
</tr>
<tr>
<td>[edit security ike] proposal [...]</td>
<td>[edit services ipsec-vpn ike] proposal [...]</td>
</tr>
<tr>
<td>[edit security ike] policy [...]</td>
<td>[edit services ipsec-vpn ike] policy [...]</td>
</tr>
</tbody>
</table>
Table 26: Statement Equivalents for ES and AS Interfaces (continued)

<table>
<thead>
<tr>
<th>ES PIC Configuration</th>
<th>AS and MultiServices Line Cards Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not available</td>
<td>[edit services ipsec-vpn]</td>
</tr>
<tr>
<td></td>
<td>rule-set {...}</td>
</tr>
<tr>
<td>Not available</td>
<td>[edit services ipsec-vpn]</td>
</tr>
<tr>
<td></td>
<td>service-set {...}</td>
</tr>
<tr>
<td></td>
<td>[edit interfaces es-fpc/pic/port]</td>
</tr>
<tr>
<td></td>
<td>tunnel source address</td>
</tr>
<tr>
<td></td>
<td>[edit services ipsec-vpn service-set set-name</td>
</tr>
<tr>
<td></td>
<td>ipsec-vpn local-gateway address]</td>
</tr>
<tr>
<td></td>
<td>[edit interfaces es-fpc/pic/port]</td>
</tr>
<tr>
<td></td>
<td>tunnel destination address</td>
</tr>
<tr>
<td></td>
<td>[edit services ipsec-vpn rule rule-name]</td>
</tr>
<tr>
<td></td>
<td>remote-gateway address</td>
</tr>
</tbody>
</table>

NOTE: Although many of the same statements and properties are valid on both platforms (MultiServices and ES), the configurations are not interchangeable. You must commit a complete configuration for the PIC type that is installed in your router.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.2R1</td>
<td>Starting in Junos OS Release 18.2R1, you can configure an MX Series router with MS-MPCs or MS-MICs to act only as an IKE responder.</td>
</tr>
<tr>
<td>18.2R1</td>
<td>Starting in Junos OS Release 18.2R1, you can configure the MX Series router with MS-MPCs or MS-MICs to send only the end-entity certificate for certificate-based IKE authentication instead of the full certificate chain.</td>
</tr>
</tbody>
</table>

Related Documentation
- Authentication Algorithms on page 534
- Encryption Algorithms on page 535
- IPsec Protocols on page 537
- Service Sets on page 600
- Configuring Security Associations on page 549

Authentication Algorithms

Authentication is the process of verifying the identity of the sender. Authentication algorithms use a shared key to verify the authenticity of the IPsec devices. The Junos OS uses the following authentication algorithms:

- Message Digest 5 (MD5) uses a one-way hash function to convert a message of arbitrary length to a fixed-length message digest of 128 bits. Because of the conversion process, it is mathematically infeasible to calculate the original message by computing it
backwards from the resulting message digest. Likewise, a change to a single character in the message will cause it to generate a very different message digest number.

To verify that the message has not been tampered with, the Junos OS compares the calculated message digest against a message digest that is decrypted with a shared key. The Junos OS uses the MD5 hashed message authentication code (HMAC) variant that provides an additional level of hashing. MD5 can be used with authentication header (AH), Encapsulating Security Payload (ESP), and Internet Key Exchange (IKE).

• Secure Hash Algorithm 1 (SHA-1) uses a stronger algorithm than MD5. SHA-1 takes a message of less than 264 bits in length and produces a 160-bit message digest. The large message digest ensures that the data has not been changed and that it originates from the correct source. The Junos OS uses the SHA-1 HMAC variant that provides an additional level of hashing. SHA-1 can be used with AH, ESP, and IKE.

• SHA-256, SHA-384, and SHA-512 (sometimes grouped under the name SHA-2) are variants of SHA-1 and use longer message digests. The Junos OS supports the SHA-256 version of SHA-2, which can process all versions of Advanced Encryption Standard (AES), Data Encryption Standard (DES), and Triple DES (3DES) encryption.

Encryption Algorithms

Encryption encodes data into a secure format so that it cannot be deciphered by unauthorized users. Like authentication algorithms, a shared key is used with encryption algorithms to verify the authenticity of the IPSec devices. The Junos OS uses the following encryption algorithms:

• Data Encryption Standard cipher-block chaining (DES-CBC) is a symmetric secret-key block algorithm. DES uses a key size of 64 bits, where 8 bits are used for error detection and the remaining 56 bits provide encryption. DES performs a series of simple logical operations on the shared key, including permutations and substitutions. CBC takes the first block of 64 bits of output from DES, combines this block with the second block, feeds this back into the DES algorithm, and repeats this process for all subsequent blocks.

• Triple DES-CBC (3DES-CBC) is an encryption algorithm that is similar to DES-CBC, but provides a much stronger encryption result because it uses three keys for 168-bit (3 x 56-bit) encryption. 3DES works by using the first key to encrypt the blocks, the second key to decrypt the blocks, and the third key to re-encrypt the blocks.

• Advanced Encryption Standard (AES) is a next-generation encryption method based on the Rijndael algorithm developed by Belgian cryptographers Dr. Joan Daemen and Dr. Vincent Rijmen. It uses a 128-bit block and three different key sizes (128, 192, and 256 bits). Depending on the key size, the algorithm performs a series of computations (10, 12, or 14 rounds) that include byte substitution, column mixing, row shifting, and
key addition. The use of AES in conjunction with IPsec is defined in RFC 3602, *The AES-CBC Cipher Algorithm and Its Use with IPsec*.

- Starting in Junos OS Release 17.3R1, Advanced Encryption Standard in Galois/Counter Mode (AES-GCM) is supported for MS-MPCs and MS-MICs. However, in Junos FIPS mode, AES-GCM is not supported in Junos OS Release 17.3R1. Starting in Junos OS Release 17.4R1, AES-GCM is supported in Junos FIPS mode. AES-GCM is an authenticated encryption algorithm designed to provide both authentication and privacy. AES-GCM uses universal hashing over a binary Galois field to provide authenticated encryption and allows authenticated encryption at data rates of tens of Gbps.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS Release 17.4R1, AES-GCM is supported in Junos FIPS mode.</td>
</tr>
<tr>
<td>17.3R1</td>
<td>Starting in Junos OS Release 17.3R1, Advanced Encryption Standard in Galois/Counter Mode (AES-GCM) is supported for MS-MPCs and MS-MICs.</td>
</tr>
</tbody>
</table>

Related Documentation

- Understanding Junos VPN Site Secure on page 531
- Configuring IKE Proposals on page 571
- Configuring IPsec Proposals on page 584
IPsec Protocols

IPsec protocols determine the type of authentication and encryption applied to packets that are secured by the router. The Junos OS supports the following IPsec protocols:

- **AH**—Defined in RFC 2402, AH provides connectionless integrity and data origin authentication for IPv4 and IPv6 packets. It also provides protection against replays. AH authenticates as much of the IP header as possible, as well as the upper-level protocol data. However, some IP header fields might change in transit. Because the value of these fields might not be predictable by the sender, they cannot be protected by AH. In an IP header, AH can be identified with a value of 51 in the Protocol field of an IPv4 packet and the Next Header field of an IPv6 packet. An example of the IPsec protection offered by AH is shown in Figure 26 on page 537.

NOTE: AH is not supported on the T Series, M120, and M320 routers.

Figure 26: AH Protocol

Header format

<table>
<thead>
<tr>
<th>Byte 0</th>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next header</td>
<td>Payload length</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>Security Parameters Index (SPI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authentication data (variable)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Original IPv4 packet before AH is applied

| Original IP header | TCP header | Data |

IPv4 packet after AH transport mode is applied

| Original IP header | AH header | TCP header | Data |

IPV4 packet after AH tunnel mode is applied

| New IP header | AH header | Original IP header | TCP header | Data | Authenticated |

Copyright © 2019, Juniper Networks, Inc.
ESP—Defined in RFC 2406, ESP can provide encryption and limited traffic flow confidentiality, or connectionless integrity, data origin authentication, and an anti-replay service. In an IP header, ESP can be identified a value of 50 in the Protocol field of an IPv4 packet and the Next Header field of an IPv6 packet. An example of the IPsec protection offered by ESP is shown in Figure 27 on page 538.

Figure 27: ESP Protocol

- Bundle—When you compare AH with ESP, there are some benefits and shortcomings in both protocols. ESP provides a decent level of authentication and encryption, but does so only for part of the IP packet. Conversely, although AH does not provide encryption, it does provide authentication for the entire IP packet. Because of this, the Junos OS offers a third form of IPsec protocol called a protocol bundle. The bundle option offers a hybrid combination of AH authentication with ESP encryption.

Related Documentation
- Understanding Junos VPN Site Secure on page 531
- Configuring IPsec Proposals on page 584
- Configuring Security Associations on page 549
- protocol (IPsec) on page 1186
IPsec Multipath Forwarding with UDP Encapsulation

IPsec provides secure tunnels between two peers, and IPsec encapsulated packets have IP headers that contain tunnel endpoint IPs that do not change. This results in the selection of a single forwarding path between the peers, as shown in Figure 28 on page 539. When IPsec traffic is flowing between data centers with thousands of hosts, this single path selection limits the throughput.

Figure 28: IPsec with One Forwarding Path

You can overcome this problem by enabling UDP encapsulation of the IPsec packets, which appends a UDP header after the ESP header, as shown in Figure 29 on page 539. This provides Layer 3 and 4 information to the intermediate routers, and the IPsec packets are forwarded over multiple paths, as shown in Figure 30 on page 540. You enable UDP encapsulation for the service set.

Figure 29: Appended UDP Header
You can configure the UDP destination port or use the default value of 4565. You cannot configure 4500 as the destination port because it is a well-known port for NAT traversals.

Junos OS generates the source UDP port through a hash function that operates on the following data:

- Source IP address
- Destination IP address
- Transport protocol
- Transport source port
- Transport destination port
- A random number

Only the last two bytes of the resulting hash are used, so the internal IP header details are hidden.

When NAT-T is detected, only NAT-T UDP encapsulation occurs, not the UDP encapsulation for IPsec packets.

Related Documentation
- Configuring IPsec Service Sets on page 600

Supported IPsec and IKE Standards

On routers equipped with one or more MS-MPCs, MS-MICs, or DPCs, the Canada and U.S. version of Junos OS substantially supports the following RFCs, which define standards for IP Security (IPsec) and Internet Key Exchange (IKE).

- RFC 2085, HMAC-MD5 IP Authentication with Replay Prevention
- RFC 2401, Security Architecture for the Internet Protocol (obsoleted by RFC 4301)
- RFC 2402, IP Authentication Header (obsoleted by RFC 4302)
- RFC 2403, The Use of HMAC-MD5-96 within ESP and AH
- RFC 2404, The Use of HMAC-SHA-1-96 within ESP and AH (obsoleted by RFC 4305)
- RFC 2405, The ESP DES-CBC Cipher Algorithm With Explicit IV
- RFC 2406, IP Encapsulating Security Payload (ESP) (obsoleted by RFC 4303 and RFC 4305)
- RFC 2407, The Internet IP Security Domain of Interpretation for ISAKMP (obsoleted by RFC 4306)
- RFC 2408, Internet Security Association and Key Management Protocol (ISAKMP) (obsoleted by RFC 4306)
- RFC 2409, The Internet Key Exchange (IKE) (obsoleted by RFC 4306)
- RFC 2410, The NULL Encryption Algorithm and Its Use With IPsec
- RFC 2451, The ESP CBC-Mode Cipher Algorithms
- RFC 2460, Internet Protocol, Version 6 (IPv6)
- RFC 2560, X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP
- RFC 3193, Securing L2TP using IPsec
- RFC 3280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile
- RFC 3602, The AES-CBC Cipher Algorithm and Its Use with IPsec
- RFC 3948, UDP Encapsulation of IPsec ESP Packets
- RFC 4106, The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP)
- RFC 4210, Internet X.509 Public Key Infrastructure Certificate Management Protocol (CMP)
- RFC 4211, Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF)
- RFC 4301, Security Architecture for the Internet Protocol
- RFC 4302, IP Authentication Header
- RFC 4303, IP Encapsulating Security Payload (ESP)
- RFC 4305, Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)
- RFC 4306, Internet Key Exchange (IKEv2) Protocol
- RFC 4307, Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)
- RFC 4308, Cryptographic Suites for IPsec
NOTE: Only Suite VPN-A is supported in Junos OS.

- RFC 4754, IKE and IKEv2 Authentication Using the Elliptic Curve Digital Signature Algorithm (ECDSA)
- RFC 4835, Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)
- RFC 5996, Internet Key Exchange Protocol Version 2 (IKEv2)

Junos OS partially supports the following RFCs for IPsec and IKE:

- RFC 3526, More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE)
- RFC 5114, Additional Diffie-Hellman Groups for Use with IETF Standards
- RFC 5903, Elliptic Curve Groups modulo a Prime (ECP Groups) for IKE and IKEv2

The following RFCs and Internet draft do not define standards, but provide information about IPsec, IKE, and related technologies. The IETF classifies them as “Informational.”

- RFC 2104, HMAC: Keyed-Hashing for Message Authentication
- RFC 2412, The OAKLEY Key Determination Protocol
- RFC 3706, A Traffic-Based Method of Detecting Dead Internet Key Exchange (IKE) Peers

IP**S**ec **T**erms and **A**cronyms

A

Adaptive Services PIC
A next-generation Physical Interface Card (PIC) that provides IPsec services and other services, such as Network Address Translation (NAT) and stateful firewall, on M Series and T Series platforms.

Advanced Encryption Standard (AES)
A next-generation encryption method that is based on the Rijndael algorithm and uses a 128-bit block, three different key sizes (128, 192, and 256 bits), and multiple rounds of processing to encrypt data.

authentication header (AH)
A component of the IPsec protocol used to verify that the contents of a packet have not changed (data integrity), and to validate the identity of the sender (data source authentication). For more information about AH, see RFC 2402.
<table>
<thead>
<tr>
<th>C</th>
<th>Certificate Authority (CA)</th>
<th>A trusted third-party organization that generates, enrolls, validates, and revokes digital certificates. The CA guarantees the identity of a user and issues public and private keys for message encryption and decryption.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Certificate Revocation List (CRL)</td>
<td>A list of digital certificates that have been invalidated before their expiration date, including the reasons for their revocation and the names of the entities that have issued them. A CRL prevents usage of digital certificates and signatures that have been compromised.</td>
</tr>
<tr>
<td></td>
<td>Cipher Block Chaining (CBC)</td>
<td>A cryptographic method that encrypts blocks of ciphertext by using the encryption result of one block to encrypt the next block. Upon decryption, the validity of each block of ciphertext depends on the validity of all the preceding ciphertext blocks. For more information on how to use CBC with DES and ESP to provide confidentiality, see RFC 2405.</td>
</tr>
<tr>
<td>D</td>
<td>Data Encryption Standard (DES)</td>
<td>An encryption algorithm that encrypts and decrypts packet data by processing the data with a single shared key. DES operates in increments of 64-bit blocks and provides 56-bit encryption.</td>
</tr>
<tr>
<td></td>
<td>Digital Certificate</td>
<td>Electronic file that uses private and public key technology to verify the identity of a certificate creator and distribute keys to peers.</td>
</tr>
<tr>
<td>E</td>
<td>Encapsulating Security Payload (ESP)</td>
<td>A component of the IPsec protocol used to encrypt data in an IPv4 or IPv6 packet, provide data integrity, and ensure data source authentication. For more information about ESP, see RFC 2406.</td>
</tr>
<tr>
<td></td>
<td>ESP PIC</td>
<td>A PIC that provides first-generation encryption services and software support for IPsec on M Series and T Series platforms.</td>
</tr>
<tr>
<td>H</td>
<td>Hashed Message Authentication Code (HMAC)</td>
<td>A mechanism for message authentication using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash function, such as MD5 or SHA-1, in combination with a secret shared key. For more information on HMAC, see RFC 2104.</td>
</tr>
<tr>
<td>I</td>
<td>Internet Key Exchange (IKE)</td>
<td>Establishes shared security parameters for any hosts or routers using IPsec. IKE establishes the SAs for IPsec. For more information about IKE, see RFC 2407.</td>
</tr>
<tr>
<td>M</td>
<td>Message Digest 5 (MD5)</td>
<td>An authentication algorithm that takes a data message of arbitrary length and produces a 128-bit message digest. For more information, see RFC 1321.</td>
</tr>
<tr>
<td>P</td>
<td>Perfect Forward Secrecy (PFS)</td>
<td>Provides additional security by means of a Diffie-Hellman shared secret value. With PFS, if one key is compromised, previous and subsequent keys are secure because they are not derived from previous keys.</td>
</tr>
</tbody>
</table>
public key infrastructure (PKI) A trust hierarchy that enables users of a public network to securely and privately exchange data through the use of public and private cryptographic key pairs that are obtained and shared with peers through a trusted authority.

R
registration authority (RA) A trusted third-party organization that acts on behalf of a CA to guarantee the identity of a user.

Routing Engine A PCI-based architectural portion of a Junos OS-based router that handles the routing protocol process, the interface process, some of the chassis components, system management, and user access.

S
Secure Hash Algorithm 1 (SHA-1) An authentication algorithm that takes a data message of less than 264 bits in length and produces a 160-bit message digest. For more information on SHA-1, see RFC 3174.

Secure Hash Algorithm 2 (SHA-2) A successor to the SHA-1 authentication algorithm that includes a group of SHA-1 variants (SHA-224, SHA-256, SHA-384, and SHA-512). SHA-2 algorithms use larger hash sizes and are designed to work with enhanced encryption algorithms such as AES.

security association (SA) Specifications that must be agreed upon between two network devices before IKE or IPsec are allowed to function. SAs primarily specify protocol, authentication, and encryption options.

Security Association Database (SADB) A database where all SAs are stored, monitored, and processed by IPsec.

Security Parameter Index (SPI) An identifier that is used to uniquely identify an SA at a network host or router.

Security Policy Database (SPD) A database that works with the SADB to ensure maximum packet security. For inbound packets, IPsec checks the SPD to verify if the incoming packet matches the security configured for a particular policy. For outbound packets, IPsec checks the SPD to see if the packet needs to be secured.

Simple Certificate Enrollment Protocol (SCEP) A protocol that supports CA and registration authority (RA) public key distribution, certificate enrollment, certificate revocation, certificate queries, and certificate revocation list (CRL) queries.

T
Triple Data Encryption Standard (3DES) An enhanced DES algorithm that provides 168-bit encryption by processing data three times with three different keys.
CHAPTER 35

Junos VPN Site Secure Configuration Overview

- IPsec for ACX Series Overview on page 545
- Minimum Security Association Configurations on page 547
- Configuring Security Associations on page 549
- Example: Configuring Manual SAs on page 555
- Configuring IKE Proposals on page 571
- Configuring IKE Policies on page 576
- Configuring IKE Activation Time on page 583
- Configuring IPsec Proposals on page 584
- Configuring IPsec Policies on page 588
- Configuring IPsec Rules on page 592
- Configuring IPsec Rule Sets on page 599
- Service Sets on page 600
- Configuring IPsec Service Sets on page 600
- Tracing IPsec Operations on page 608
- Disabling NAT-T on MX Series Routers for Handling NAT with IPsec-Protected Packets on page 609
- Tracing Junos VPN Site Secure Operations on page 610
- Multitask Example: Configuring IPsec Services on page 613
- Example: Configuring Junos VPN Site Secure on MS-MIC and MS-MPC on page 621
- Example: Configuring a Route-based IPsec Tunnel from an ACX device to an SRX device on page 633

IPsec for ACX Series Overview

The Juniper Networks Junos operating system (Junos OS) supports IPsec. This topic includes the following sections, which provide background information about configuring IPsec on ACX Series Universal Metro Routers.
NOTE: IPsec is supported only on the ACX1100 AC-powered router and ACX500 routers. Service chaining (GRE, NAT, and IPSec) on ACX1100-AC and ACX500 routers is not supported.

NOTE: ACX5048 and ACX5096 routers do not support IPsec configurations.

For a list of the IPsec and IKE standards supported by Junos OS, see the Junos OS Hierarchy and RFC Reference.

- IPsec on page 546
- Security Associations on page 546
- IKE on page 547

IPsec

The IPsec architecture provides a security suite for the IP version 4 (IPv4) network layer. The suite provides functionality such as authentication of origin, data integrity, confidentiality, replay protection, and nonrepudiation of source. In addition to IPsec, Junos OS also supports the Internet Key Exchange (IKE), which defines mechanisms for key generation and exchange, and manages security associations.

IPsec also defines a security association and key management framework that can be used with any transport layer protocol. The security association specifies what protection policy to apply to traffic between two IP-layer entities. IPsec provides secure tunnels between two peers.

Security Associations

To use IPsec security services, you create security associations between hosts. A security association is a simplex connection that allows two hosts to communicate with each other securely by means of IPsec. There are two types of security associations:

- Manual security associations require no negotiation; all values, including the keys, are static and specified in the configuration. Manual security associations statically define the security parameter index (SPI) values, algorithms, and keys to be used, and require matching configurations on both ends of the tunnel. Each peer must have the same configured options for communication to take place.

- Dynamic security associations require additional configuration. With dynamic security associations, you configure IKE first and then the security association. IKE creates dynamic security associations; it negotiates security associations for IPsec. The IKE configuration defines the algorithms and keys used to establish the secure IKE connection with the peer security gateway. This connection is then used to dynamically agree upon keys and other data used by the dynamic IPsec security association. The IKE security association is negotiated first and then used to protect the negotiations that determine the dynamic IPsec security associations.
IKE

IKE is a key management protocol that creates dynamic security associations; it negotiates security associations for IPsec. An IKE configuration defines the algorithms and keys used to establish a secure connection with a peer security gateway.

IKE performs the following tasks:

• Negotiates and manages IKE and IPsec parameters.
• Authenticates secure key exchange.
• Provides mutual peer authentication by means of shared secrets (not passwords) and public keys.
• Provides identity protection (in main mode).

Related Documentation
• Enabling Inline Services Interface on ACX Series on page 93

Minimum Security Association Configurations

The following sections show the minimum configurations necessary to set up security associations (SAs) for IPsec services:

• Minimum Manual SA Configuration on page 547
• Minimum Dynamic SA Configuration on page 547

Minimum Manual SA Configuration

To define a manual SA configuration, you must include at least the following statements at the [edit services ipsec-vpn rule rule-name term term-name then manual] hierarchy level:

```
[edit services ipsec-vpn rule rule-name term term-name then manual]
direction { inbound | outbound | bidirectional }
authentication { 
    algorithm (hmac-md5-96 | hmac-sha1-96);
    key (ascii-text key | hexadecimal key);
}
encryption { 
    algorithm algorithm;
    key (ascii-text key | hexadecimal key);
}
protocol (ah | esp | bundle);
spi spi-value;
```

Minimum Dynamic SA Configuration

To define a dynamic SA configuration, you must include at least the following statements at the [edit services ipsec-vpn] hierarchy level:
[edit services ipsec-vpn]
ike {
 proposal proposal-name {
 authentication-algorithm (md5 | sha1 | sha-256);
 authentication-method pre-shared-keys;
 dh-group (group1 | group2 | group5 | group14 | group15 | group16 | group19 | group20 |
 group24);
 encryption-algorithm algorithm;
 }
 policy policy-name {
 proposals [ike-proposal-names];
 pre-shared-key (ascii-text key | hexadecimal key);
 version (1 | 2);
 mode (aggressive | main);
 }
}
ipsec {
 policy policy-name {
 proposals [ipsec-proposal-names];
 }
 proposal proposal-name {
 authentication-algorithm (hmac-md5-96 | hmac-sha1-96);
 encryption-algorithm algorithm;
 protocol (ah | esp | bundle);
 }
}

NOTE:

- Starting with Junos OS Release 11.4, both IKEv1 and IKEv2 are supported by default on all M Series, MX Series, and T Series routers. The version statement at the [edit services ipsec-vpn ike policy name] hierarchy level allows you to configure the specific IKE version to be supported.
- The mode statement at the [edit services ipsec-vpn ike policy name] hierarchy level is required only if the version option is set to 1.

You must also include the ipsec-policy statement at the [edit services ipsec-vpn rule rule-name term term-name then dynamic] hierarchy level.

Related Documentation
- Understanding Junos VPN Site Secure on page 531
- Configuring Security Associations on page 549
- Configuring IKE Proposals on page 571
- Configuring IKE Policies on page 576
- Configuring IPsec Proposals on page 584
- Configuring IPsec Policies on page 588
Configuring Security Associations

To use IPsec services, you create a security association (SA) between hosts. An SA is a simplex connection that enables two hosts to communicate with each other securely using IPsec.

NOTE: Both OSPFv2 and OSPFv3 support IPsec authentication. However, dynamic or tunnel mode IPsec SAs are not supported for OSPFv3. If you add SAs into OSPFv3 by including the ipsec-sa statement at the [edit protocols ospf3 area area-number interface interface-name] hierarchy level, your configuration commit fails. For more information about OSPF authentication and other OSPF properties, see the Junos OS Routing Protocols Library.

You can configure two types of SAs:

- **Manual**—Requires no negotiation; all values, including the keys, are static and specified in the configuration. As a result, each peer must have the same configured options for communication to take place.

- **Dynamic**—Specifies proposals to be negotiated with the tunnel peer. The keys are generated as part of the negotiation and therefore do not need to be specified in the configuration. The dynamic SA includes one or more proposal statements that prioritizes a list of protocols and algorithms to be negotiated with the peer.

This section includes the following topics:

- Configuring Manual Security Associations on page 549
- Configuring Dynamic Security Associations on page 554
- Clearing Security Associations on page 554

Configuring Manual Security Associations

Manual SAs require no negotiation; all values, including the keys, are static and specified in the configuration. As a result, each peer must have the same configured options for communication to take place. Manual SAs are best suited for small, static networks where the distribution, maintenance, and tracking of keys are not difficult.

To configure a manual IPsec security association, include the following statements at the [edit services ipsec-vpn rule rule-name term term-name then manual] hierarchy level:

```
[edit services ipsec-vpn rule rule-name term term-name then manual]
direction (inbound | outbound | bidirectional) {
  authentication {
    algorithm (hmac-md5-96 | hmac-sha-256-128 | hmac-sha1-96);
    key (ascii-text key | hexadecimal key);
  }
  auxiliary-spi auxiliary-spi-value;
  encryption {
    algorithm (3des-cbc | aes-128-cbc | aes-192-cbc | aes-256-cbc | des-cbc);
  }
```

key (ascii-text key | hexadecimal key);
}
protocol (ah | esp | bundle);
spi spi-value;
}

To configure manual SA statements, do the following:

- Configuring the Direction for IPsec Processing on page 550
- Configuring the Protocol for a Manual IPsec SA on page 551
- Configuring the Security Parameter Index on page 551
- Configuring the Auxiliary Security Parameter Index on page 552
- Configuring Authentication for a Manual IPsec SA on page 552
- Configuring Encryption for a Manual IPsec SA on page 552

Configuring the Direction for IPsec Processing

The `direction` statement specifies inbound or outbound IPsec processing. If you want to define different algorithms, keys, or security parameter index (SPI) values for each direction, you configure the `inbound` and `outbound` options. If you want the same attributes in both directions, use the `bidirectional` option.

To configure the direction of IPsec processing, include the `direction` statement at the `[edit services ipsec-vpn rule rule-name term term-name then manual]` hierarchy level:

```
[edit services ipsec-vpn rule rule-name term term-name then manual]
  direction (inbound | outbound | bidirectional) {
    ...
  }
```

The following two examples illustrate this:

- Example: Using Different Configuration for the Inbound and Outbound Directions
 Define different algorithms, keys, and security parameter index values for each direction:

```
[edit services ipsec-vpn rule rule-name term term-name then manual]
  direction bidirectional {
    protocol ah;
    spi 20001;
    authentication {
      algorithm hmac-md5-96;
      key ascii-text 123456789012abcd;
    }
  }
  direction outbound {
    protocol esp;
    spi 24576;
    encryption {
      algorithm 3des-cbc;
      key ascii-text 12345678901234567890abcd;
    }
  }
```
Example: Using the Same Configuration for the Inbound and Outbound Directions

Define one set of algorithms, keys, and security parameter index values that is valid in both directions:

```junos
[edit services ipsec-vpn rule rule-name term term-name then manual]
direction bidirectional {
    protocol ah;
    spi 20001;
    authentication {
        algorithm hmac-md5-96;
        key ascii-text 123456789012abcd;
    }
}
```

Configuring the Protocol for a Manual IPsec SA

IPsec uses two protocols to protect IP traffic: Encapsulating Security Payload (ESP) and authentication header (AH). The AH protocol is used for strong authentication. A third option, bundle, uses AH authentication and ESP encryption; it does not use ESP authentication because AH provides stronger authentication of IP packets.

To configure the IPsec protocol, include the `protocol` statement and specify the `ah`, `esp`, or `bundle` option at the `[edit services ipsec-vpn rule rule-name term term-name then manual direction direction]` hierarchy level:

```junos
[edit services ipsec-vpn rule rule-name term term-name then manual direction direction]
protocol (ah | bundle | esp);
```

Configuring the Security Parameter Index

An SPI is an arbitrary value that uniquely identifies which SA to use at the receiving host. The sending host uses the SPI to identify and select which SA to use to secure every packet. The receiving host uses the SPI to identify and select the encryption algorithm and key used to decrypt packets.

NOTE: Each manual SA must have a unique SPI and protocol combination. Use the auxiliary SPI when you configure the protocol statement to use the bundle option.

To configure the SPI, include the `spi` statement and specify a value (from 256 through 16,639) at the `[edit services ipsec-vpn rule rule-name term term-name then manual direction direction]` hierarchy level:

```junos
[edit services ipsec-vpn rule rule-name term term-name then manual direction direction]
spi spi-value;
```
Configuring the Auxiliary Security Parameter Index

Use the auxiliary SPI when you configure the protocol statement to use the bundle option.

NOTE: Each manual SA must have a unique SPI and protocol combination.

To configure the auxiliary SPI, include the auxiliary-spi statement and specify a value (from 256 through 16,639) at the [edit services ipsec-vpn rule rule-name term term-name then manual direction direction] hierarchy level:

[edit services ipsec-vpn rule rule-name term term-name then manual direction direction]
auxiliary-spi auxiliary-spi-value;

Configuring Authentication for a Manual IPsec SA

To configure an authentication algorithm, include the authentication statement and specify an authentication algorithm and a key at the [edit services ipsec-vpn rule rule-name term term-name then manual direction direction] hierarchy level:

[edit services ipsec-vpn rule rule-name term term-name then manual direction direction]
authentication {
 algorithm (hmac-md5-96 | hmac-sha1-96 | hmac-sha-256-128)
 key (ascii-text | hexadecimal key);
}

The algorithm can be one of the following:

- **hmac-md5-96**—Hash algorithm that authenticates packet data. It produces a 128-bit authenticator value and a 96-bit digest.
- **hmac-sha1-96**—Hash algorithm that authenticates packet data. It produces a 160-bit authenticator value and a 96-bit digest.
- **hmac-sha-256-128**—Hash algorithm that authenticates packet data. It produces a 256-bit authenticator value 256-bit digest, truncated to 128 bits.

The key can be one of the following:

- **ascii-text**—ASCII text key. With the hmac-md5-96 option, the key contains 16 ASCII characters. With the hmac-sha1-96 option, the key contains 20 ASCII characters.
- **hexadecimal**—Hexadecimal key. With the hmac-md5-96 option, the key contains 32 hexadecimal characters. With the hmac-sha1-96 option, the key contains 40 hexadecimal characters.

Configuring Encryption for a Manual IPsec SA

To configure IPsec encryption, include the encryption statement and specify an algorithm and key at the [edit services ipsec-vpn rule rule-name term term-name then manual direction direction] hierarchy level:
[edit services ipsec-vpn rule rule-name term term-name then manual direction direction] encryption {
 algorithm algorithm;
 key (ascii-text key | hexadecimal key);
}

The algorithm can be one of the following:

- **des-cbc**—Encryption algorithm that has a block size of 8 bytes; its key size is 64 bits long.
- **3des-cbc**—Encryption algorithm that has a block size of 24 bytes; its key size is 192 bits long.
- **aes-128-cbc**—Advanced Encryption Standard (AES) 128-bit encryption algorithm.
- **aes-192-cbc**—Advanced Encryption Standard (AES) 192-bit encryption algorithm.
- **aes-256-cbc**—Advanced Encryption Standard (AES) 256-bit encryption algorithm.

NOTE: For a list of Data Encryption Standard (DES) encryption algorithm weak and semiweak keys, see RFC 2409, *The Internet Key Exchange (IKE)*. The AES encryption algorithms use a software implementation that has much lower throughput, so DES remains the recommended option. For reference information on AES encryption, see RFC 3602, *The AES-CBC Cipher Algorithm and Its Use with IPsec*.

For 3des-cbc, the first 8 bytes should differ from the second 8 bytes, and the second 8 bytes should be the same as the third 8 bytes.

If you configure an authentication proposal but do not include the encryption statement, the result is NULL encryption. Certain applications expect this result. If you configure no specific authentication or encryption values, the Junos OS uses the default values of sha1 for the authentication and 3des-cbc for the encryption.

The key can be one of the following:

- **ascii-text**—ASCII text key. With the **des-cbc** option, the key contains 8 ASCII characters. With the **3des-cbc** option, the key contains 24 ASCII characters.
- **hexadecimal**—Hexadecimal key. With the **des-cbc** option, the key contains 16 hexadecimal characters. With the **3des-cbc** option, the key contains 48 hexadecimal characters.

NOTE: You cannot configure encryption when you use the AH protocol.
Configuring Dynamic Security Associations

You configure dynamic SAs with a set of proposals that are negotiated by the security gateways. The keys are generated as part of the negotiation and therefore do not need to be specified in the configuration. The dynamic SA includes one or more proposals, which allow you to prioritize a list of protocols and algorithms to be negotiated with the peer.

To enable a dynamic SA, follow these steps:

1. Configure Internet Key Exchange (IKE) proposals and IKE policies associated with these proposals.
2. Configure IPsec proposals and an IPsec policy associated with these proposals.
3. Associate an SA with an IPsec policy by configuring the dynamic statement.

To configure a dynamic SA, include the dynamic statement and specify an IPsec policy name at the \[edit services ipsec-vpn rule rule-name term term-name then\] hierarchy level. The \[ike-policy\] statement is optional unless you use the preshared key authentication method.

```junos
[edit services ipsec-vpn rule rule-name term term-name then]
dynamic {
    ike-policy policy-name;
    ipsec-policy policy-name;
}
```

NOTE: If you want to establish a dynamic SA, the attributes in at least one configured IPsec and IKE proposal must match those of its peer.

Clearing Security Associations

You can set up the router software to clear IKE or IPsec SAs automatically when the corresponding services PIC restarts or is taken offline. To configure this property, include the \[clear-ike-sas-on-pic-restart\] or \[clear-ipsec-sas-on-pic-restart\] statement at the \[edit services ipsec-vpn\] hierarchy level:

```junos
[edit services ipsec-vpn]
clear-ike-sas-on-pic-restart;
clear-ipsec-sas-on-pic-restart;
```

After you add this statement to the configuration, all the IKE or IPsec SAs corresponding to the tunnels in the PIC will be cleared when the PIC restarts or goes offline.

Starting in Junos OS Release 17.2R1, you can enable the cleanup of IKE triggers and IKE and IPsec SAs when an IPsec tunnel’s local gateway IP address goes down or the MS-MIC or MS-MPC being used in the tunnel’s service set goes down. This reduces dropped traffic and unnecessary IKE triggers. To enable this feature, include the \[gw-interface\] statement at the \[edit services service set service-set-name ipsec-vpn-options local-gateway address\]
hierarchy level. If the local gateway IP address for an IPsec tunnel's service set goes down or the MS-MIC or MS-MPC that is being used in the service set goes down, the service set no longer sends IKE triggers.

In addition, when the local gateway IP address goes down, the IKE and IPsec SAs are cleared for next-hop service sets, and go to the Not Installed state for interface-style service sets. The SAs that have the Not Installed state are deleted when the local gateway IP address comes back up. If the local gateway IP address that goes down for a next-hop service set is for the responder peer, then you need to clear the IKE and IPsec SAs on the initiator peer so that the IPsec tunnel comes back up once the local gateway IP address comes back up. You can either manually clear the IKE and IPsec SAs on the initiator peer or enable dead peer detection on the initiator peer.

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2R1</td>
<td>Starting in Junos OS Release 17.2R1, you can enable the cleanup of IKE triggers and IKE and IPsec SAs when an IPsec tunnel's local gateway IP address goes down or the MS-MIC or MS-MPC being used in the tunnel's service set goes down.</td>
</tr>
</tbody>
</table>

Related Documentation
- Configuring IPsec Policies on page 588
- Configuring IPsec Proposals on page 584
- Configuring IKE Policies on page 576
- Configuring IKE Proposals on page 571

Example: Configuring Manual SAs

This example shows how to create an IPsec tunnel by using manual security associations (SAs), and contains the following sections:

- Requirements on page 555
- Overview and Topology on page 556
- Configuration on page 556
- Verification on page 569

Requirements

This example uses the following hardware and software components:

- Four M Series, MX Series, or T Series routers with multiservices interfaces installed in them.
- Junos OS Release 9.4 and later.

No special configuration beyond device initialization is required before you can configure this feature.
Overview and Topology

A security association (SA) is a simplex connection that enables two hosts to securely communicate with each other by means of IPsec. There are two types of SAs: manual SA and dynamic SA. This example explains a manual SA configuration.

Manual SAs require no negotiation; all values, including the keys, are static and specified in the configuration. Manual SAs use statically defined security parameter index (SPI) values, algorithms, and keys, and require matching configurations on both ends of the tunnel. Each peer must have the same configured options for communication to take place.

Manual SAs are best suited for small, static networks where the distribution, maintenance, and tracking of keys are not difficult.

Figure 31 on page 556 shows an IPsec topology that contains a group of four routers: Routers 1, 2, 3, and 4.

Figure 31: Manual SA Topology

Routers 2 and 3 establish an IPsec tunnel by using a multiservices PIC and manual SA settings. Routers 1 and 4 provide basic connectivity and are used to verify that the IPsec tunnel is operational.

Configuration

This example uses four routers, and involves the following configurations:

- Routers 1 and 4 are configured for basic OSPF connectivity with Routers 2 and 3 respectively.

- Routers 2 and 3 are configured for OSPF connectivity with Routers 1 and 4 respectively. Routers 2 and 3 are also configured to create an IPsec tunnel by using manual SAs between these two routers. To direct traffic to the IPsec tunnel through the multiservices interface, next-hop style service sets are configured on Routers 2 and 3, and the multiservices interfaces that are configured as the IPsec inside interface are added to the OSPF configuration on the respective routers.
NOTE: The interface types shown in this example are for indicative purpose only. For example, you can use so- interfaces instead of ge- and sp- instead of ms-.

This section contains:

- Configuring Router 1 on page 557
- Configuring Router 2 on page 558
- Configuring Router 3 on page 563
- Configuring Router 4 on page 567

Configuring Router 1

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI, at the [edit] hierarchy level, of Router 1.

```
set interfaces ge-1/0/1 description "to R2 ge-1/0/1"
set interfaces ge-1/0/1 unit 0 family inet address 10.1.12.1/30
set interfaces lo0 unit 0 family inet address 10.0.0.1/32
set protocols ospf area 0.0.0.0 interface ge-1/0/1.0
set protocols ospf area 0.0.0.0 interface lo0.0
set routing-options router-id 10.0.0.1
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure Router 1 for OSPF connectivity with Router 2:

1. Configure an Ethernet interface and loopback interface.

 [edit interfaces]
   ```
   user@router1# set ge-1/0/1 description "to R2 ge-1/0/1"
   user@router1# set ge-1/0/1 unit 0 family inet address 10.1.12.1/30
   user@router1# set lo0 unit 0 family inet address 10.0.0.1/32
   ```

2. Specify the OSPF area and associate the interfaces with the OSPF area.

 [edit protocols]
   ```
   user@router1# set ospf area 0.0.0.0 interface ge-1/0/1.0
   user@router1# set ospf area 0.0.0.0 interface lo0.0
   ```

3. Configure the router ID.

 [edit routing-options]
user@router1# set router-id 10.0.0.1

Results From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols ospf`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@router1# show interfaces
interfaces {
    ...
    ge-1/0/1 {
        description "to R2 ge-1/0/1";
        unit 0 {
            family inet {
                address 10.1.12.1/30;
            }
        }
    }
    lo0 {
        unit 0 {
            family inet {
                address 10.0.0.1/32;
            }
        }
    }
    ...
}

user@router1# show protocols ospf
ospf {
    area 0.0.0.0 {
        interface ge-1/0/1.0;
        interface lo0.0;
    }
}

user@router1# show routing-options
routing-options {
    router-id 10.0.0.1;
}
```

Configuring Router 2

CLI Quick Configuration To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI, at the [edit] hierarchy level, of Router 2.

```
set interfaces ge-1/0/0 unit 0 description "to R3 ge-1/0/0"
```

Configuring Interfaces and OSPF Connectivity
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure OSPF connectivity and IPsec tunnel parameters on Router 2:

1. Configure interface properties. In this step, you configure two Ethernet interfaces (ge-1/0/0 and ge-1/0/1), a loopback interface, and a multiservices interface (ms-1/2/0).

```plaintext
[edit interfaces]
user@router2# set ge-1/0/0 unit 0 description "to R3 ge-1/0/0"
user@router2# set ge-1/0/0 unit 0 family inet address 10.1.15.1/30
user@router2# set ge-1/0/1 unit 0 description "to R1 ge-1/0/0"
user@router2# set ge-1/0/1 unit 0 family inet address 10.1.12.2/30
user@router2# set ms-1/2/0 unit 2 family inet
user@router2# set ms-1/2/0 unit 1 service-domain inside
user@router2# set ms-1/2/0 unit 2 service-domain outside
user@router2# set protocols ospf area 0.0.0.0 interface ge-1/0/1.0
user@router2# set protocols ospf area 0.0.0.0 interface lo0.0
user@router2# set protocols ospf area 0.0.0.0 interface ms-1/2/0.1
user@router2# set services ipsec-vpn rule demo-rule-r1-manual-sa term demo-term-manual-sa then remote-gateway 10.1.15.2
user@router2# set services ipsec-vpn rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional protocol esp
user@router2# set services ipsec-vpn rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional spi 261
user@router2# set services ipsec-vpn rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional authentication algorithm hmac-sha1-96
user@router2# set services ipsec-vpn rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional authentication key ascii-text demokeyipsecmanuals
user@router2# set services ipsec-vpn rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional encryption algorithm des-cbc
user@router2# set services ipsec-vpn rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional encryption key ascii-text manualsa
user@router2# set services ipsec-vpn rule demo-rule-r1-manual-sa match-direction input
user@router2# set services service-set demo-ss-manual-sa next-hop-service inside-service-interface ms-1/2/0.1
user@router2# set services service-set demo-ss-manual-sa next-hop-service outside-service-interface ms-1/2/0.2
user@router2# set services service-set demo-ss-manual-sa ipsec-vpn-options local-gateway 10.1.15.1
user@router2# set services service-set demo-ss-manual-sa ipsec-vpn-rules demo-rule-r1-manual-sa
```
user@router2# set ms-1/2/0 unit 2 service-domain outside
user@router2# set lo0 unit 0 family inet address 10.0.0.2/32

2. Specify the OSPF area and associate the interfaces with the OSPF area.

 [edit protocols]
 user@router2# set ospf area 0.0.0.0 interface ge-1/0/1.0
 user@router2# set ospf area 0.0.0.0 interface lo0.0
 user@router2# set ospf area 0.0.0.0 interface ms-1/2/0.1

3. Configure the router ID.

 [edit routing-options]
 user@router2# set router-ID 10.0.0.2

4. Configure an IPsec rule. In this step, you configure an IPsec rule and specify manual SA parameters, such as the remote-gateway address, authentication and encryption properties, and so on.

 [edit services ipsec-vpn]
 user@router2# set rule demo-rule-r1-manual-sa term demo-term-manual-sa then remote-gateway 10.1.15.2
 user@router2# set rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional protocol esp
 user@router2# set rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional spi 261
 user@router2# set rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional authentication algorithm hmac-sha1-96
 user@router2# set rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional authentication key ascii-text demokeyipsecmanualsa
 user@router2# set rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional encryption algorithm des-cbc
 user@router2# set rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional encryption key ascii-text manualsa
 user@router2# set rule demo-rule-r1-manual-sa match-direction input

5. Configure a next-hop style service set, specify the local-gateway address, and associate the IPsec VPN rule with the service set.

 [edit services]
 user@router2# set service-set demo-ss-manual-sa next-hop-service inside-service-interface ms-1/2/0.1
 user@router2# set service-set demo-ss-manual-sa next-hop-service outside-service-interface ms-1/2/0.2
 user@router2# set service-set demo-ss-manual-sa ipsec-vpn-options local-gateway 10.1.15.1
 user@router2# set service-set demo-ss-manual-sa ipsec-vpn-rules demo-rule-r1-manual-sa
6. Commit the configuration.

[edit]
user@router2# commit

Results From configuration mode, confirm your configuration by entering the show interfaces, show protocols ospf, show routing-options, and show services commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@router1# show interfaces
interfaces {
 ...
 ge-1/0/0 {
 unit 0 {
 description "to R3 ge-1/0/0";
 family inet {
 address 10.1.15.1/30;
 }
 }
 }
 ge-1/0/1 {
 unit 0 {
 description "to R1 ge-1/0/1";
 family inet {
 address 10.1.12.2/30;
 }
 }
 }
 ms-1/2/0 {
 unit 0 {
 family inet;
 }
 unit 1 {
 family inet;
 service-domain inside;
 }
 unit 2 {
 family inet;
 service-domain outside;
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.0.0.2/32;
 }
 }
 }
 ...
}
user@router2# show protocols ospf
protocols {
 ospf {
 area 0.0.0.0 {
 interfaces ge-1/0/1.0;
 interface lo0;
 interface ms-1/2/0;
 }
 }
}

user@router2# show routing-options
routing-options {
 router-id 10.0.0.2;
}

user@router2# show services
services {
 ipsec-vpn {
 rule demo-rule-r1-manual-sa {
 term demo-term-manual-sa {
 then {
 remote-gateway 10.1.15.2;
 manual {
 direction bidirectional {
 protocol esp;
 spi 261;
 authentication {
 algorithm hmac-sha-96;
 key ascii-text "$ABC1223";## SECRET-DATA
 }
 encryption {
 algorithm des-cbc;
 key ascii-text "$ABC123";## SECRET-DATA
 }
 }
 match-direction input;
 }
 }
 }
 }
 service-set demo-ss-manual-sa {
 next-hop-service {
 inside-service-interface ms-1/2/0.1;
 outside-service-interface ms-1/2/0.2;
 }
 ipsec-vpn-options {
 local-gateway 10.1.15.1;
 }
 ipsec-vpn-rules demo-rule-r1-manual-sa;
}
}
Configuring Router 3

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI, at the [edit] hierarchy level, of Router 3.

```plaintext
set interfaces ge-1/0/1 unit 0 description "to R4 ge-1/0/1"
set interfaces ge-1/0/0 unit 0 family inet address 10.1.56.1/30
set interfaces ge-1/0/0 unit 0 description "to R2 ge-1/0/0"
set interfaces ge-1/0/0 unit 0 family inet address 10.1.15.2/30
set interfaces ms-1/2/0 unit 0 family inet
set interfaces ms-1/2/0 unit 1 family inet
set interfaces ms-1/2/0 unit 1 service-domain inside
set interfaces ms-1/2/0 unit 2 family inet
set interfaces ms-1/2/0 unit 2 service-domain outside
set interfaces lo0 unit 0 family inet address 10.0.0.3/32
set protocols ospf area 0.0.0.0 interface ge-1/0/1.0
set protocols ospf area 0.0.0.0 interface lo0.0
set protocols ospf area 0.0.0.0 interface ms-1/2/0.1
set routing-options router-id 10.0.0.3
set services ipsec-vpn rule demo-rule-r1-manual-sa term demo-term-manual-sa then remote-gateway 10.1.15.1
set services ipsec-vpn rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional protocol esp
set services ipsec-vpn rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional spi 261
set services ipsec-vpn rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional authentication algorithm hmac-shal-96
set services ipsec-vpn rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional authentication key ascii-text demokeyipsecmanualsa
set services ipsec-vpn rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional encryption algorithm des-cbc
set services ipsec-vpn rule demo-rule-r1-manual-sa term demo-term-manual-sa then manual direction bidirectional encryption key ascii-text manualsa
set services ipsec-vpn rule demo-rule-r1-manual-sa term demo-term-manual-sa then match-direction input
set services service-set demo-ss-manual-sa next-hop-service inside-service-interface ms-1/2/0.1
set services service-set demo-ss-manual-sa next-hop-service outside-service-interface ms-1/2/0.2
set services service-set demo-ss-manual-sa ipsec-vpn-options local-gateway 10.1.15.2
set services service-set demo-ss-manual-sa ipsec-vpn-options local-gateway 10.1.15.2
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure OSPF connectivity and IPsec tunnel parameters on Router 3:

1. Configure interface properties. In this step, you configure two Ethernet interfaces (ge-1/0/0 and ge-1/0/1), a loopback interface, and a multiservices interface (ms-1/2/0).
2. Specify the OSPF area and associate the interfaces with the OSPF area.

 [edit protocols]
 user@router3# set ospf area 0.0.0.0 interface ge-1/0/1.0
 user@router3# set ospf area 0.0.0.0 interface lo0.0
 user@router3# set ospf area 0.0.0.0 interface ms-1/2/0.1

3. Configure a router ID.

 [edit routing-options]
 user@router3# set router-id 10.0.0.3

4. Configure an IPsec rule. In this step, you configure an IPsec rule and specify manual SA parameters, such as the remote-gateway address, authentication and encryption properties, and so on.

 [edit services ipsec-vpn]
 user@router3# set rule demo-rule-r1-manual-sa term demo-term-manual-sa then
 remote-gateway 10.1.15.1
 user@router3# set rule demo-rule-r1-manual-sa term demo-term-manual-sa then
 manual direction bidirectional protocol esp
 user@router3# set rule demo-rule-r1-manual-sa term demo-term-manual-sa then
 manual direction bidirectional authentication key ascii-text
demokeyipsecmanualsa
 user@router3# set rule demo-rule-r1-manual-sa term demo-term-manual-sa then
 manual direction bidirectional encryption algorithm des-cbc
 user@router3# set rule demo-rule-r1-manual-sa term demo-term-manual-sa then
 manual direction bidirectional encryption key ascii-text manualsa
 user@router3# set rule demo-rule-r1-manual-sa match-direction input

5. Configure a next-hop style service set, specify the local-gateway address, and associate the IPsec VPN rule with the service set.

 [edit services]
user@router3# set service-set demo-ss-manual-sa next-hop-service inside-service-interface ms-1/2/0.1
user@router3# set service-set demo-ss-manual-sa next-hop-service outside-service-interface ms-1/2/0.2
user@router3# set service-set demo-ss-manual-sa ipsec-vpn-options local-gateway 10.1.15.2
user@router3# set service-set demo-ss-manual-sa ipsec-vpn-rules demo-rule-r1-manual-sa

6. Commit the configuration.

[edit]
user@router3# commit

Results From configuration mode, confirm your configuration by entering the show interfaces, show protocols ospf, show routing-options, and show services commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration

user@router3# show interfaces
interfaces {
 ge-1/0/1 {
 unit 0 {
 description "to R4 ge-1/0/1";
 family inet {
 address 10.1.56.1/30;
 }
 }
 }
 ge-1/0/0 {
 unit 0 {
 description "to R2 ge-1/0/0";
 family inet {
 address 10.1.15.2/30;
 }
 }
 }
 ms-1/2/0 {
 unit 0 {
 family inet;
 unit 1 {
 family inet;
 service-domain inside;
 }
 unit 2 {
 family inet;
 service-domain outside;
 }
 }
 }
 lo0 {
}
unit 0 {
 family inet {
 address 10.0.0.3/32;
 }
}

user@router3# show protocols ospf
protocols {
 ospf {
 area 0.0.0.0 {
 interface ge-1/0/1.0;
 interface lo0.0;
 interface ms-1/2/0.1;
 }
 }
}

user@router3# show routing-options
routing-options {
 router-id 10.0.0.3;
}

user@router3# show services
services {
 ipsec-vpn {
 rule demo-rule-r1-manual-sa {
 term demo-term-manual-sa {
 then {
 remote-gateway 10.1.15.1;
 manual {
 direction bidirectional {
 protocol esp;
 spi 261;
 authentication {
 algorithm hmac-sha-96;
 key ascii-text "$ABC123"; ## SECRET-DATA
 }
 encryption {
 algorithm des-cbc;
 key ascii-text "$ABC123"; ## SECRET-DATA
 }
 }
 }
 match-direction input;
 }
 }
 service-set demo-ss-manual-sa {
 next-hop-service {
 inside-service-interface ms-1/2/0.1;
 }
 }
 }
 }
}
outside-service-interface ms-1/2/0.2;
}
ipsev-p-vpn-options {
 local-gateway 10.1.15.2;
}
ipsev-p-vpn-rules demo-rule-r1-manual-sa;
}
}

Configuring Router 4

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI, at the [edit] hierarchy level, of Router 4.

```plaintext
set interfaces ge-1/0/1 description "to R3 ge-1/0/1"
set interfaces ge-1/0/1 unit 0 family inet address 10.1.56.2/30
set interfaces lo0 unit 0 family inet address 10.0.0.4/32
set protocols ospf area 0.0.0.0 interface ge-1/0/1.0
set protocols ospf area 0.0.0.0 interface lo0.0
set routing-options router-id 10.0.0.4
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To set up OSPF connectivity with Router 3

1. Configure the interfaces. In this step, you configure an Ethernet interface (ge-1/0/1) and a loopback interface.

   ```plaintext
   user@router4# set interfaces ge-1/0/1 description "to R3 ge-1/0/1"
   user@router4# set interfaces ge-1/0/1 unit 0 family inet address 10.1.56.2/30
   user@router4# set interfaces lo0 unit 0 family inet address 10.0.0.4/32
   ```

2. Specify the OSPF area and associate the interfaces with the OSPF area.

   ```plaintext
   user@router4# set protocols ospf area 0.0.0.0 interface ge-1/0/1.0
   user@router4# set protocols ospf area 0.0.0.0 interface lo0.0
   ```

3. Configure the router ID.

   ```plaintext
   [edit routing-options]
   user@router4# set router-id 10.0.0.4
   ```

4. Commit the configuration.
Results From configuration mode, confirm your configuration by entering the show interfaces, show protocols ospf, and show routing-options commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@router4# show interfaces
interfaces {
 ge-1/0/1 {
 description "to R3 ge-1/0/1";
 unit 0 {
 family inet {
 address 10.1.56.2/30;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.0.0.4/32;
 }
 }
 }
}

user@router4# show routing-options
routing-options {
 router-id 10.0.0.4;
}

user@router4# show protocols ospf
protocols {
 ospf {
 area 0.0.0.0 {
 interface lo0.0;
 interface ge-1/0/1.0;
 }
 }
}

[edit]
user@router4# commit
Verification

To confirm that the manual SA configuration is working properly, perform the following tasks:

- Verifying Traffic Flow Through the IPsec Tunnel on page 569
- Verifying the Security Associations on Router 2 on page 569
- Verifying the Security Associations on Router 3 on page 570

Verifying Traffic Flow Through the IPsec Tunnel

Purpose Verify that the IPsec tunnel carries traffic between Router 1 and Router 4.

Action Issue a `ping` command from Router 1 to lo0 on Router 4.

```
user@router1> ping 10.0.0.4
PING 10.0.0.4 (10.0.0.4): 56 data bytes
64 bytes from 10.0.0.4: icmp_seq=0 ttl=254 time=1.375 ms
64 bytes from 10.0.0.4: icmp_seq=1 ttl=254 time=18.375 ms
64 bytes from 10.0.0.4: icmp_seq=2 ttl=254 time=1.120 ms
^C
--- 10.0.0.4 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.120/6.957/18.375/8.075 ms
```

Meaning The output shows that Router 1 is able to reach Router 4 over the IPsec tunnel.

Verifying the Security Associations on Router 2

Purpose Verify that the security associations are active on Router 2 and that the traffic is flowing over the IPsec tunnel.

Action To verify that the security associations are active, issue `show services ipsec-vpn ipsec security-associations detail` on Router 2.

```
user@router2> show services ipsec-vpn ipsec security-associations detail
Service set: demo-ss-manual-sa
Rule: demo-rule-r1-manual-sa, Term: demo-term-manual-sa,
Tunnel index: 1
Local gateway: 10.1.15.1, Remote gateway: 10.1.15.2
Local identity: ipv4_subnet(any:0,[0..7]=10.0.0.0/8)
Remote identity: ipv4_subnet(any:0,[0..7]=0.0.0.0/0)
Direction: inbound, SPI: 261, AUX-SPI: 0
Mode: tunnel, Type: manual, State: Installed
Anti-replay service: Disabled
Direction: outbound, SPI: 261, AUX-SPI: 0
Mode: tunnel, Type: manual, State: Installed
```
Anti-replay service: Disabled

- To verify that traffic is traveling over the bidirectional IPsec tunnel, issue `show services ipsec-vpn ipsec statistics` on Router 2.

```
user@router2> show services ipsec-vpn ipsec statistics
PIC: ms-1/2/0, Service set: demo-ss-manual-sa
sESP Statistics:
Encrypted bytes: 1616
Decrypted bytes: 1560
Encrypted packets: 20
Decrypted packets: 19
AH Statistics:
Input bytes: 0
Output bytes: 0
Input packets: 0
Output packets: 0
Errors:
AH authentication failures: 0, Replay errors: 0
ESP authentication failures: 0, ESP decryption failures: 0
Bad headers: 0, Bad trailers: 0
```

Meaning
The `show services ipsec-vpn ipsec security-associations detail` command output shows the SA properties that you configured.

The `show services ipsec-vpn ipsec statistics` command output shows the traffic flow over the IPsec tunnel.

Verifying the Security Associations on Router 3

Purpose
Verify the security associations and flow of traffic over the IPsec tunnel.

Action
- To verify that the security associations are active, issue `show services ipsec-vpn ipsec security-associations detail` on Router 3.

```
user@router3> show services ipsec-vpn ipsec security-associations detail
Service set: demo-ss-manual-sa
Rule: demo-rule-r1-manual-sa, Term: demo-term-manual-sa,
Tunnel index: 1
Local gateway: 10.1.15.2, Remote gateway: 10.1.15.1
Local identity: ipv4_subnet(any:0,[0..7]=10.0.0.0/8)
Remote identity: ipv4_subnet(any:0,[0..7]=0.0.0.0/0)
Direction: inbound, SPI: 261, AUX-SPI: 0
Mode: tunnel, Type: manual, State: Installed
Anti-replay service: Disabled
Direction: outbound, SPI: 261, AUX-SPI: 0
Mode: tunnel, Type: manual, State: Installed
Anti-replay service: Disabled
```
To verify that traffic is traveling over the bidirectional IPsec tunnel, issue `show services ipsec-vpn ipsec statistics` on Router 3.

```
user@router3> show services ipsec-vpn ipsec statistics
PIC: ms-1/2/0, Service set: demo-ss-manual-sa
ESP Statistics:
Encrypted bytes: 1560
Decrypted bytes: 1616
Encrypted packets: 19
Decrypted packets: 20
AH Statistics:
Input bytes: 0
Output bytes: 0
Input packets: 0
Output packets: 0
Errors:
AH authentication failures: 0, Replay errors: 0
ESP authentication failures: 0, ESP decryption failures: 0
Bad headers: 0, Bad trailers: 0
```

Meaning

The `show services ipsec-vpn ipsec security-associations detail` command output shows the SA properties that you configured.

The `show services ipsec-vpn ipsec statistics` command output shows the traffic flow over the IPsec tunnel.

Related Documentation

- Understanding Junos VPN Site Secure on page 531
- Configuring Security Associations on page 549
- Example: Configuring IKE Dynamic SAs on page 663

Configuring IKE Proposals

Dynamic security associations (SAs) require IKE configuration. With dynamic SAs, you configure IKE first, and then the SA. IKE creates the dynamic SAs and negotiates them for IPsec. The IKE configuration defines the algorithms and keys used to establish the secure IKE connection with the peer security gateway.

You can configure one or more IKE proposals. Each proposal is a list of IKE attributes to protect the IKE connection between the IKE host and its peer.

To configure an IKE proposal, include the `proposal` statement and specify a name at the `[edit services ipsec-vpn ike]` hierarchy level:

```
[edit services ipsec-vpn ike]
proposal proposal-name {
  authentication-algorithm (md5 | sha | sha-256);
  authentication-method (ecdsa-signatures-256 | ecdsa-signatures-384 | pre-shared-keys | rsa-signatures);
```

Copyright © 2019, Juniper Networks, Inc.
Configuring the Authentication Algorithm for an IKE Proposal

To configure the authentication algorithm for an IKE proposal, include the `authentication-algorithm` statement at the `[edit services ipsec-vpn ike proposal proposal-name]` hierarchy level:

```
[edit services ipsec-vpn ike proposal proposal-name]
authentication-algorithm (md5 | sha1 | sha-256);
```

The authentication algorithm can be one of the following:

- **md5** — Produces a 128-bit digest.
- **sha1** — Produces a 160-bit digest.
- **sha-256** — Produces a 256-bit digest.

NOTE: For reference information on Secure Hash Algorithms (SHAs), see Internet draft draft-eastlake-sha2-02.txt, Secure Hash Algorithms (SHA and HMAC-SHA) (expires July 2006).

Configuring the Authentication Method for an IKE Proposal

To configure the authentication method for an IKE proposal, include the `authentication-method` statement at the `[edit services ipsec-vpn ike proposal proposal-name]` hierarchy level:
[edit services ipsec-vpn ike proposal proposal-name]
authentication-method (ecdsa-signatures-256 | ecdsa-signatures-384 | pre-shared-keys | rsa-signatures);

NOTE: In IKEv1, the authentication method for SAs is negotiated with the remote peer based on the type of authentication method configured in the IKE proposal. In IKEv2, such a negotiation is not performed with the remote peer. Instead, each IKE peer uses the authentication method that is locally configured for them.

For SAs in IKEv2, the authentication method is the default value as IKEv1 if an authentication method is not configured in the IKE proposal. If you are configuring an authentication method for IKEv2, you must have the same authentication method configured for all proposals referenced in the policy.

The authentication method can be one of the following:

NOTE: In Junos FIPS mode, ECDSA is not supported for the authentication method in Junos OS Release 17.3R1. Starting in Junos OS Release 17.4R1, ECDSA is supported in Junos FIPS mode.

- **ecdsa-signatures-256**—Starting in Junos OS Release 17.3R1 for MS-MPCs and MS-MICs, Elliptic Curve Digital Signature Algorithm (ECDSA) for 256-bit moduli.
- **ecdsa-signatures-384**—Starting in Junos OS Release 17.3R1 for MS-MPCs and MS-MICs, Elliptic Curve Digital Signature Algorithm (ECDSA) for 384-bit moduli.
- **pre-shared-keys**—A key derived from an out-of-band mechanism; the key authenticates the exchanges.
- **rsa-signatures**—Public key algorithm (supports encryption and digital signatures).

Configuring the Diffie-Hellman Group for an IKE Proposal

Diffie-Hellman is a public-key cryptography scheme that allows two parties to establish a shared secret over an insecure communications channel. It is also used within IKE to establish session keys.

To configure the Diffie-Hellman group for an IKE proposal, include the `dh-group` statement at the [edit services ipsec-vpn ike proposal proposal-name] hierarchy level:

[edit services ipsec-vpn ike proposal proposal-name]
dh-group (group1 | group2 | group5 | group14 | group15 | group16 | group19 | group20 | group24);
The group can be one of the following:

- **group1**—Specifies that IKE uses the 768-bit Diffie-Hellman prime modulus group when performing the new Diffie-Hellman exchange.
- **group2**—Specifies that IKE uses the 1024-bit Diffie-Hellman prime modulus group when performing the new Diffie-Hellman exchange.
- **group5**—Specifies that IKE uses the 1536-bit Diffie-Hellman prime modulus group when performing the new Diffie-Hellman exchange.
- **group14**—Specifies that IKE uses the 2048-bit Diffie-Hellman prime modulus group when performing the new Diffie-Hellman exchange.
- **group19**—Specifies that IKE uses the 256-bit random Elliptic Curve Diffie-Hellman Group when performing the new Diffie-Hellman exchange.
- **group20**—Specifies that IKE uses the 384-bit random Elliptic Curve Diffie-Hellman Group when performing the new Diffie-Hellman exchange.

Starting in Junos OS release 17.4R1, group15, group16, and group 24 can also be used:

- **group15**—Specifies that IKE use the 3072-bit Diffie-Hellman prime modulus group when performing the new Diffie-Hellman exchange.
- **group16**—Specifies that IKE use the 4096-bit Diffie-Hellman prime modulus group when performing the new Diffie-Hellman exchange.
- **group24**—Specifies that IKE use the 2048-bit Diffie-Hellman prime modulus group with 256-bit Prime Order Subgroup when performing the new Diffie-Hellman exchange.

Using a Diffie-Hellman group based on a greater number of bits results in a more secure IKE tunnel than using a group based on fewer bits. However, this additional security might require additional processing time.

Configuring the Encryption Algorithm for an IKE Proposal

To configure the encryption algorithm for an IKE proposal, include the `encryption-algorithm` statement at the `[edit services ipsec-vpn ike proposal proposal-name]` hierarchy level:

```
[edit services ipsec-vpn ike proposal proposal-name]
encryption-algorithm algorithm;
```

The encryption algorithm can be one of the following:

- **3des-cbc**—Cipher block chaining encryption algorithm with a key size of 24 bytes; its key size is 192 bits long.
- **des-cbc**—Cipher block chaining encryption algorithm with a key size of 8 bytes; its key size is 56 bits long.
- **aes-128-cbc**—Advanced Encryption Standard (AES) 128-bit encryption algorithm.
- **aes-192-cbc**—Advanced Encryption Standard (AES) 192-bit encryption algorithm.
- **aes-256-cbc**—Advanced Encryption Standard (AES) 256-bit encryption algorithm.
NOTE: For a list of Data Encryption Standard (DES) encryption algorithm weak and semiweak keys, see RFC 2409, *The Internet Key Exchange (IKE)*. The AES encryption algorithms use a software implementation that has much lower throughput, so DES remains the recommended option.

For 3des-cbc, the first 8 bytes should differ from the second 8 bytes, and the second 8 bytes should be the same as the third 8 bytes.

If you configure an authentication proposal but do not include the encryption statement, the result is NULL encryption. Certain applications expect this result. If you configure no specific authentication or encryption values, the Junos OS uses the default values of sha1 for the authentication and 3des-cbc for the encryption.

Configuring the Lifetime for an IKE SA

The **lifetime-seconds** statement sets the lifetime of an IKE SA. When the IKE SA expires, it is replaced by a new SA (and SPI) or the IPsec connection is terminated.

To configure the lifetime for an IKE SA, include the **lifetime-seconds** statement at the [edit services ipsec-vpn ike proposal **proposal-name**] hierarchy level:

```
[edit services ipsec-vpn ike proposal **proposal-name**]
lifetime-seconds **seconds**;
```

By default, the IKE SA lifetime is 3600 seconds. The range is from 180 through 86,400 seconds.

NOTE: In IKEv1, the lifetime for SAs is negotiated with the remote peer based on the type of lifetime configured in the IKE proposal. In IKEv2, such a negotiation is not performed with the remote peer. Instead, each IKE peer uses the lifetime that is locally configured for them.

For SAs in IKEv2, the lifetime is either the default value as IKEv1 (if another lifetime is not configured in the IKE proposal) or all IKEv2 proposals in the IKE policy must be configured with the same lifetime value.

NOTE: For IKE proposals, there is only one SA lifetime value, specified by the Junos OS. IPsec proposals use a different mechanism.

Example: Configuring an IKE Proposal

Configure an IKE proposal:

```
[edit services ipsec-vpn ike]
proposal ike-proposal {
```
An IKE policy defines a combination of security parameters (IKE proposals) to be used during IKE negotiation. It defines a peer address and the proposals needed for that connection. Depending on which authentication method is used, it defines the preshared key for the given peer or the local certificate. During the IKE negotiation, IKE looks for an IKE policy that is the same on both peers. The peer that initiates the negotiation sends all its policies to the remote peer, and the remote peer tries to find a match.

A match is made when both policies from the two peers have a proposal that contains the same configured attributes. If the lifetimes are not identical, the shorter lifetime between the two policies (from the host and peer) is used. The configured preshared key must also match its peer.

Starting with Junos OS Release 11.4, both IKEv1 and IKEv2 are supported by default on all M Series, MX Series, and T Series routers. You can configure the specific IKE phase to be supported for the negotiation. However, if only IKEv1 is supported, the Junos OS rejects IKEv2 negotiations. Similarly, if only IKEv2 is supported, the Junos OS rejects all IKEv1 negotiations.
The key management process (kmd) daemon determines which version of IKE is used in a negotiation. If kmd is the IKE initiator, it uses IKEv1 by default and retains the configured version for negotiations. If kmd is the IKE responder, it accepts connections from both IKEv1 and IKEv2.

You can create multiple, prioritized proposals at each peer to ensure that at least one proposal matches a remote peer’s proposal.

First, you configure one or more IKE proposals; then you associate these proposals with an IKE policy. You can also prioritize a list of proposals used by IKE in the policy statement by listing the proposals you want to use, from first to last.

To configure an IKE policy, include the policy statement and specify a policy name at the [edit services ipsec-vpn ike] hierarchy level:

```
[edit services ipsec-vpn ike]
policy policy-name {
  description description;
  local-certificate identifier;
  local-id (ipv4_addr ipv4-address | ipv6-addr ipv6-address | key-id identifier);
  version (1 | 2);
  mode (aggressive | main);
  pre-shared-key (ascii-text key | hexadecimal key);
  proposals [ proposal-names ];
  remote-id {
    any-remote-id;
    ipv4_addr [ values ];
    ipv6_addr [ values ];
    key_id [ values ];
  }
  respond-bad-spi max-responses;
}
```

This section includes the following topics:

- Configuring the IKE Phase on page 577
- Configuring the Mode for an IKE Policy on page 578
- Configuring the Proposals in an IKE Policy on page 578
- Configuring the Preshared Key for an IKE Policy on page 579
- Configuring the Local Certificate for an IKE Policy on page 579
- Configuring the Description for an IKE Policy on page 580
- Configuring Local and Remote IDs for IKE Phase 1 Negotiation on page 580
- Enabling Invalid SPI Recovery on page 581
- Example: Configuring an IKE Policy on page 582

Configuring the IKE Phase

Starting with Junos OS Release 11.4, both IKEv1 and IKEv2 are supported by default on all M Series, MX Series, and T Series routers. You can configure the specific IKE phase to be supported for the negotiation. However, if only IKEv1 is supported, the Junos OS rejects
IKEv2 negotiations. Similarly, if only IKEv2 is supported, the Junos OS rejects all IKEv1 negotiations.

To configure the IKE phase used, include the version statement at the [edit services ipsec-vpn ike policy policy-name] hierarchy level:

```
[edit services ipsec-vpn ike policy policy-name]
version (1 | 2);
```

See Also

- Related documentation link #1
- Related documentation link #2

Configuring the Mode for an IKE Policy

IKE policy has two modes: aggressive and main. By default, main mode is enabled. Main mode uses six messages, in three exchanges, to establish the IKE SA. (These three steps are IKE SA negotiation, a Diffie-Hellman exchange, and authentication of the peer.) Main mode also allows a peer to hide its identity.

Aggressive mode also establishes an authenticated IKE SA and keys. However, aggressive mode uses half the number of messages, has less negotiation power, and does not provide identity protection. The peer can use the aggressive or main mode to start IKE negotiation; the remote peer accepts the mode sent by the peer.

```
NOTE: The mode configuration is required only if the version option is set to 1.
```

To configure the mode for an IKE policy, include the mode statement and specify aggressive or main at the [edit services ipsec-vpn ike policy policy-name] hierarchy level:

```
[edit services ipsec-vpn ike policy policy-name]
mode (aggressive | main);
```

See Also

- Related documentation link #1
- Related documentation link #2

Configuring the Proposals in an IKE Policy

The IKE policy includes a list of one or more proposals associated with an IKE policy.

To configure the proposals in an IKE policy, include the proposals statement and specify one or more proposal names at the [edit services ipsec-vpn ike policy policy-name] hierarchy level:

```
[edit services ipsec-vpn ike policy policy-name]
proposals { proposal-names };
```
Configuring the Preshared Key for an IKE Policy

When you include the `authentication-method pre-shared-keys` statement at the `[edit services ipsec-vpnike proposal proposal-name]` hierarchy level, IKE policy preshared keys authenticate peers. You must manually configure a preshared key, which must match that of its peer. The preshared key can be an ASCII text (alphanumeric) key or a hexadecimal key.

To configure the preshared key in an IKE policy, include the `pre-shared-key` statement and a key at the `[edit services ipsec-vpnike policy policy-name]` hierarchy level:

```
[edit services ipsec-vpn ike policy policy-name]
pre-shared-key (ascii-text key | hexadecimal key);
```

The key can be one of the following:

- **ascii-text**—ASCII text key. With the `des-cbc` option, the key contains 8 ASCII characters. With the `3des-cbc` option, the key contains 24 ASCII characters.
- **hexadecimal**—Hexadecimal key. With the `des-cbc` option, the key contains 16 hexadecimal characters. With the `3des-cbc` option, the key contains 48 hexadecimal characters.

Configuring the Local Certificate for an IKE Policy

When you include the `authentication-method rsa-signatures` statement at the `[edit services ipsec-vpnike proposal proposal-name]` hierarchy level, public key infrastructure (PKI) digital certificates authenticate peers. You must identify a local certificate that is sent to the peer during the IKE authentication phase.

To configure the local certificate for an IKE policy, include the `local-certificate` statement at the `[edit services ipsec-vpnike policy policy-name]` hierarchy level:

```
[edit services ipsec-vpn ike policy policy-name]
local-certificate identifier;
```

The `local-certificate` statement specifies the identifier used to obtain the end entity's certificate from the certification authority. Configuring it in an IKE policy allows you the flexibility of using a separate certificate with each remote peer if that is needed. You must also specify the identity of the certification authority by configuring the `ca-profile` statement at the `[edit security pki]` hierarchy level.

You can use the configured profiles to establish a set of trusted certification authorities for use with a particular service set. This enables you to configure separate service sets for individual clients to whom you are providing IP services; the distinct service sets provide logical separation of one set of IKE sessions from another, using different local gateway addresses, or virtualization. To configure the set of trusted certification authorities, include the `trusted-ca` statement at the `[edit services service-set service-set-name ipsec-vpn-options]` hierarchy level:
See the following to configure a certificate revocation list:

- Configuring a Certificate Revocation List on page 580

Configuring a Certificate Revocation List

A certificate revocation list (CRL) contains a list of digital certificates that have been cancelled before their expiration date. When a participating peer uses a digital certificate, it checks the certificate signature and validity. It also acquires the most recently issued CRL and checks that the certificate serial number is not on that CRL.

NOTE: By default, certificate revocation list verification is enabled. You can disable CRL verification by including the `disable` statement at the `[edit security pki ca-profile ca-profile-name revocation-check]` hierarchy level.

By default, if the router either cannot access the Lightweight Directory Access Protocol (LDAP) URL or retrieve a valid certificate revocation list, certificate verification fails and the IPsec tunnel is not established. To override this behavior and permit the authentication of the IPsec peer when the CRL is not downloaded, include the `disable on-download-failure` statement at the `[edit security pki ca-profile ca-profile-name revocation-check crl]` hierarchy level.

To use the CA certificate revocation list, you include statements at the `[edit security pki ca-profile ca-profile-name revocation-check]` hierarchy level. For details, see the Junos OS System Basics Configuration Guide.

Configuring the Description for an IKE Policy

To specify an optional text description for an IKE policy, include the `description` statement at the `[edit services ipsec-vpn ike policy policy-name]` hierarchy level:

```
[edit services ipsec-vpn ike policy policy-name]
description description;
```

Configuring Local and Remote IDs for IKE Phase 1 Negotiation

You can optionally specify local identifiers for use in IKE phase 1 negotiation. If the `local-id` statement is omitted, the local gateway address is used.

Starting with Junos OS Release 19.1R1, you can configure one of the local id type as distinguished name and you can configure one of the remote id type as distinguished name. The distinguished name field can be a container with container string values or wildcard with wildcard string values.

A distinguished name is a name used with digital certificates to uniquely identify a user. For example a distinguished name can be:
- CN=user
- DC=example
- DC=com

For the container string, the order of the fields and their values must exactly match the distinguished name in the peer’s digital certificate. Example: container ["C=US, ST=CA, L=Sunnyvale, O=Juniper, CN=local_neg, CN=test@juniper.net, OU=QA" "cn=admin, ou=eng, o=example, dc=net"];

For the wildcard string, the configured field and value must match the distinguished name in the peer’s digital certificate but the order of the fields in the DN does not matter. Example: wildcard ["L=Sunnyvale, O=Juniper" "C=US, ST=CA"];

To specify one or more local IDs, include the **local-id** statement at the [edit services ipsec-vpn ike policy *policy-name*] hierarchy level:

[edit services ipsec-vpn ike policy *policy-name*]
local-id (distinguished-name container container-string-values |wildcard wildcard-string-values fqdn fqdn-name ipv4_addr ipv4-address | ipv6_addr ipv6-address | key-id identifier);

You can also specify remote gateway identifiers for which the IKE policy is used. The remote gateway address in which this policy is defined is added by default.

To specify one or more remote IDs, include the **remote-id** statement at the [edit services ipsec-vpn ike policy *policy-name*] hierarchy level:

[edit services ipsec-vpn ike policy *policy-name*]
remote-id {
distinguished-name container container-string-values |wildcard wildcard-string-values fqdn fqdn-name any-remote-id; ipv4_addr [values]; ipv6_addr [values]; key_id [values];
}

The any-remote-id option allows any remote address to connect. This option is supported only in dynamic endpoints configurations and cannot be configured along with specific values.

Enabling Invalid SPI Recovery

When peers in a security association (SA) become unsynchronized, packets with invalid security parameter index (SPI) values can be sent out, and the receiving peer drops these packets. For example, this could occur when one of the peers reboots. Starting in Junos OS Release 14.2, you can enable the device to recover when packets with invalid SPIs are received by resynchronizing the SAs.

To enable recovery from invalid SPI values, include the **respond-bad-spi** statement at the [edit services ipsec-vpn ike policy *policy-name*] hierarchy level:
Example: Configuring an IKE Policy

Define two IKE policies: policy 10.1.1.2 and policy 10.1.1.1. Each policy is associated with proposal-1 and proposal-2. The following configuration uses only IKEv1 for negotiation.

```
[edit services ipsec-vpn]
ike {
    proposal proposal-1 {
        authentication-method pre-shared-keys;
        dh-group group1;
        authentication-algorithm sha1;
        encryption-algorithm 3des-cbc;
        lifetime-seconds 1000;
    }
    proposal proposal-2 {
        authentication-method pre-shared-keys;
        dh-group group2;
        authentication-algorithm md5;
        encryption-algorithm des-cbc;
        lifetime-seconds 10000;
    }
    proposal proposal-3 {
        authentication-method rsa-signatures;
        dh-group group2;
        authentication-algorithm md5;
        encryption-algorithm des-cbc;
        lifetime-seconds 10000;
    }
    policy 10.1.1.2 {
        mode main;
        proposals [ proposal-1 proposal-2 ];
        pre-shared-key ascii-text example-pre-shared-key;
    }
    policy 10.1.1.1 {
        local-certificate certificate-file-name;
        local-key-pair private-public-key-file;
        mode aggressive;
        proposals [ proposal-2 proposal-3 ]
        pre-shared-key hexadecimal 0102030abbcd;
    }
}
```

NOTE: Updates to the current IKE proposal and policy configuration are not applied to the current IKE SA; updates are applied to new IKE SAs. If you want the new updates to take immediate effect, you must clear the existing IKE security associations so that they will be reestablished with the changed configuration. For information about how to clear the current IKE security association, see `clear services ipsec-vpn ike security-associations`.
Starting in Junos OS Release 14.2, you can enable the device to recover when packets with invalid SPIs are received by resynchronizing the SAs.

Related Documentation
- Configuring Dynamic Endpoints for IPsec Tunnels on page 647
- Configuring IKE Proposals on page 571
- Configuring IPsec Policies on page 588
- Configuring IPsec Proposals on page 584
- Configuring Security Associations on page 549

Configuring IKE Activation Time

You can choose the time at which IKE is activated.

To choose the time at which IKE is activated:

- Configure the `establish-tunnels` value.

  ```
  [edit services ipsec-vpn]
  user@host set establish-tunnels (immediately | on-traffic | responder-only)
  ```

 The following describes each option:

 - **immediately**—Activate IKE immediately after VPN information is configured and configuration changes are committed.
 - **on-traffic**—Activate IKE only when data flows. IKE needs to be negotiated with the peer gateway.
 - **responder-only**—Starting in Junos OS Release 18.2R1, only respond to IKE negotiations initiated by the peer gateway. Do not initiate IKE negotiations. This option is required when another vendor’s peer gateway expects the protocol and port values in the traffic selector from the initiating gateway, which the MX Series does not provide.

Starting in Junos OS Release 18.2R1, only respond to IKE negotiations initiated by the peer gateway.
Configuring IPsec Proposals

An IPsec proposal lists protocols and algorithms (security services) to be negotiated with the remote IPsec peer.

To configure an IPsec proposal, include the proposal statement and specify an IPsec proposal name at the [edit services ipsec-vpn ipsec] hierarchy level:

```
[edit services ipsec-vpn ipsec]
proposal proposal-name {
  authentication-algorithm (hmac-md5-96 | hmac-sha1-96);
  description description;
  encryption-algorithm algorithm;
  lifetime-seconds seconds;
  protocol (ah | esp | bundle);
}
```

This section discusses the following topics:

- Configuring the Authentication Algorithm for an IPsec Proposal on page 584
- Configuring the Description for an IPsec Proposal on page 586
- Configuring the Encryption Algorithm for an IPsec Proposal on page 586
- Configuring the Lifetime for an IPsec SA on page 587
- Configuring the Protocol for a Dynamic SA on page 588

Configuring the Authentication Algorithm for an IPsec Proposal

To configure the authentication algorithm for an IPsec proposal, include the authentication-algorithm statement at the [edit services ipsec-vpn ipsec proposal proposal-name] hierarchy level:

```
[edit services ipsec-vpn ipsec proposal proposal-name]
authentication-algorithm (hmac-md5-96 | hmac-sha1-96);
```

The authentication algorithm can be one of the following:

- **hmac-md5-96**—Hash algorithm that authenticates packet data. It produces a 128-bit digest. Only 96 bits are used for authentication.
- **hmac-sha1-96**—Hash algorithm that authenticates packet data. It produces a 160-bit digest. Only 96 bits are used for authentication.
- **hmac-sha-256-128**—Hash algorithm that authenticates packet data. Produces a 256-bit authenticator value.
NOTE: Keep the following points in mind when you configure the authentication algorithm in an IPSec proposal:

- When both ends of an IPSec VPN tunnel contain the same IKE proposal but different IPSec proposals, an error occurs and the tunnel is not established in this scenario. For example, if one end of the tunnel contains router 1 configured with the authentication algorithm as hmac-sha-256-128 and the other end of the tunnel contains router 2 configured with the authentication algorithm as hmac-md5-96, the VPN tunnel is not established.

- When both ends of an IPSec VPN tunnel contain the same IKE proposal but different IPSec proposals, and when one end of the tunnel contains two IPSec proposals to check whether a less secure algorithm is selected or not, an error occurs and the tunnel is not established. For example, if you configure two authentication algorithms for an IPSec proposal as hmac-sha-256-128 and hmac-md5-96 on one end of the tunnel, router 1, and if you configure the algorithm for an IPSec proposal as hmac-md5-96 on the other end of the tunnel, router 2, the tunnel is not established and the number of proposals mismatch.

- When you configure two IPSec proposals at both ends of a tunnel, such as the authentication-algorithm hmac-sha-256-128 and authentication-algorithm hmac-md5-96 statements at the [edit services ipsec-vpn ipsec proposal <proposal-name>] hierarchy level on one of the tunnel, router 1 (with the algorithms in two successive statements to specify the order), and the authentication-algorithm hmac-md5-96 and authentication-algorithm hmac-sha-256-128 statements at the [edit services ipsec-vpn ipsec proposal <proposal-name>] hierarchy level on one of the tunnel, router 2 (with the algorithms in two successive statements to specify the order, which is the reverse order of router 1), the tunnel is established in this combination as expected because the number of proposals is the same on both ends and they contain the same set of algorithms. However, the authentication algorithm selected is hmac-md5-96 and not the stronger algorithm of hmac-sha-256-128. This method of selection of the algorithm occurs because the first matching proposal is selected. Also, for a default proposal, regardless of whether the router supports the Advanced Encryption Standard (AES) encryption algorithm, the 3des-cbc algorithm is chosen and not the aes-cfb algorithm, which is because of the first algorithm in the default proposal being selected. In the sample scenario described here, on router 2, if you reverse the order of the algorithm configuration in the proposal so that it is the same order as the one specified on router 1, hmac-sha-256-128 is selected as the authentication method.

- You must be aware of the order of proposals in an IPSec policy at the time of configuration if you want the matching of proposals to happen in a certain order of preference, such as the strongest algorithm to be considered first when a match is made when both policies from the two peers have a proposal.
Configuring the Description for an IPsec Proposal

To specify an optional text description for an IPsec proposal, include the `description` statement at the `[edit services ipsec-vpn ipsec proposal proposal-name]` hierarchy level:

```
[edit services ipsec-vpn ipsec proposal proposal-name]
description description;
```

Configuring the Encryption Algorithm for an IPsec Proposal

To configure encryption algorithm for an IPsec proposal, include the `encryption-algorithm` statement at the `[edit services ipsec-vpn ipsec proposal proposal-name]` hierarchy level:

```
[edit services ipsec-vpn ipsec proposal proposal-name]
enryption-algorithm algorithm;
```

The encryption algorithm can be one of the following:

- **3des-cbc**—Encryption algorithm that has a block size of 24 bytes; its key size is 192 bits long.
- **aes-128-cbc**—Advanced Encryption Standard (AES) 128-bit encryption algorithm.
- **aes-192-cbc**—Advanced Encryption Standard (AES) 192-bit encryption algorithm.
- **aes-256-cbc**—Advanced Encryption Standard (AES) 256-bit encryption algorithm.

NOTE: In Junos FIPS mode, AES-GCM is not supported in Junos OS Release 17.3R1. Starting in Junos OS Release 17.4R1, AES-GCM is supported in Junos FIPS mode.

- **aes-128-gcm**—Starting in Junos OS Release 17.3R1 for MS-MPCs and MS-MICs, Advanced Encryption Standard in Galois/Counter Mode (AES-GCM) 128-bit encryption algorithm with a 16 octet integrity check value (ICV).
- **aes-192-gcm**—Starting in Junos OS Release 17.3R1 for MS-MPCs and MS-MICs, Advanced Encryption Standard in Galois/Counter Mode (AES-GCM) 192-bit encryption algorithm with a 16 octet integrity check value ICV.
- **aes-256-gcm**—Starting in Junos OS Release 17.3R1 for MS-MPCs and MS-MICs, Advanced Encryption Standard in Galois/Counter Mode (AES-GCM) 256-bit encryption algorithm with a 16 octet integrity check value ICV.
- **des-cbc**—Encryption algorithm that has a block size of 8 bytes; its key size is 48 bits long.
NOTE: For a list of Data Encryption Standard (DES) encryption algorithm weak and semiweak keys, see RFC 2409, The Internet Key Exchange (IKE). The AES encryption algorithms use a software implementation that has much lower throughput, so DES remains the recommended option.

For 3des-cbc, the first 8 bytes should differ from the second 8 bytes, and the second 8 bytes should be the same as the third 8 bytes.

If you do not configure specific authentication or encryption settings, Junos OS uses the default values of sha1 for the authentication and 3des-cbc for the encryption. For NULL encryption to be effective, you must always specify the Encapsulating Security Payload (ESP) protocol for the NULL encryption algorithm by including the protocol esp statement at the [edit services ipsec-vpn ipsec proposal proposal-name] hierarchy level, regardless of other system configurations.

Configuring the Lifetime for an IPsec SA

When a dynamic IPsec SA is created, two types of lifetimes are used: hard and soft. The hard lifetime specifies the lifetime of the SA. The soft lifetime, which is derived from the hard lifetime, informs the IPsec key management system that the SA is about to expire. This allows the key management system to negotiate a new SA before the hard lifetime expires.

NOTE: In IKEv1, the lifetime for SAs is negotiated with the remote peer based on the type of lifetime configured in the IPsec proposal. In IKEv2, such a negotiation is not performed with the remote peer. Instead, each IKE peer uses the lifetime that is locally configured for them.

For SAs in IKEv2, the lifetime is either the default value as IKEv1 (if another lifetime is not configured in the IPsec proposal) or all IKEv2 proposals in the IPsec policy must be configured with the same lifetime value.

To configure the hard lifetime value, include the `lifetime-seconds` statement and specify the number of seconds at the [edit services ipsec-vpn ipsec proposal proposal-name] hierarchy level:

```
[edit services ipsec-vpn ipsec proposal proposal-name]
lifetime-seconds seconds;
```

The default lifetime is 28,800 seconds. The range is from 180 through 86,400 seconds. The soft lifetime values are as follows:

- Responder: Soft lifetime = Hard lifetime – 90 seconds.
Configuring the Protocol for a Dynamic SA

The `protocol` statement sets the protocol for a dynamic SA. IPsec uses two protocols to protect IP traffic: ESP and AH. The ESP protocol can support authentication, encryption, or both. The AH protocol is used for strong authentication. AH also authenticates the IP packet. The `bundle` option uses AH authentication and ESP encryption; it does not use ESP authentication because AH provides stronger authentication of IP packets.

To configure the protocol for a dynamic SA, include the `protocol` statement and specify the `ah`, `esp`, or `bundle` option at the `[edit services ipsec-vpn ipsec proposal proposal-name]` hierarchy level:

```
[edit services ipsec-vpn ipsec proposal proposal-name]
  protocol (ah | esp | bundle);
```

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS Release 17.4R1, AES-GCM is supported in Junos FIPS mode.</td>
</tr>
<tr>
<td>17.3R1</td>
<td>Starting In Junos OS Release 17.3R1 for MS-MPCs and MS-MICs, Advanced Encryption Standard in Galois/Counter Mode (AES-GCM) 128-bit encryption algorithm with a 16 octet integrity check value (ICV).</td>
</tr>
<tr>
<td>17.3R1</td>
<td>Starting In Junos OS Release 17.3R1 for MS-MPCs and MS-MICs, Advanced Encryption Standard in Galois/Counter Mode (AES-GCM) 192-bit encryption algorithm with a 16 octet integrity check value ICV.</td>
</tr>
<tr>
<td>17.3R1</td>
<td>Starting In Junos OS Release 17.3R1 for MS-MPCs and MS-MICs, Advanced Encryption Standard in Galois/Counter Mode (AES-GCM) 256-bit encryption algorithm with a 16 octet integrity check value ICV.</td>
</tr>
</tbody>
</table>

Related Documentation

- Configuring IPsec Policies on page 588
- Configuring IKE Proposals on page 571
- Configuring IKE Policies on page 576
- Configuring Security Associations on page 549

Configuring IPsec Policies

An IPsec policy defines a combination of security parameters (IPsec proposals) used during IPsec negotiation. It defines Perfect Forward Secrecy (PFS) and the proposals needed for the connection. During the IPsec negotiation, IPsec looks for a proposal that is the same on both peers. The peer that initiates the negotiation sends all its policies to the remote peer, and the remote peer tries to find a match.
A match is made when both policies from the two peers have a proposal that contains the same configured attributes. If the lifetimes are not identical, the shorter lifetime between the two policies (from the host and peer) is used.

You can create multiple, prioritized IPsec proposals at each peer to ensure that at least one proposal matches a remote peer’s proposal.

First, you configure one or more IPsec proposals; then you associate these proposals with an IPsec policy. You can prioritize a list of proposals used by IPsec in the policy statement by listing the proposals you want to use, from first to last.

To configure an IPsec policy, include the `policy` statement, and specify the policy name and one or more proposals to associate with the policy, at the `[edit services ipsec-vpn ipsec]` hierarchy level:

```
[edit services ipsec-vpn ipsec]
policy policy-name {
    description description;
    perfect-forward-secrecy {
        keys (group1 | group2 | group5 | group14 | group15 | group16 | group24);
    }
    proposals [ proposal-names ];
}
```

This section includes the following topics related to configuring an IPsec policy:

- Configuring the Description for an IPsec Policy on page 589
- Configuring Perfect Forward Secrecy on page 589
- Configuring the Proposals in an IPsec Policy on page 590
- IPsec Policy for Dynamic Endpoints on page 590
- Example: Configuring an IPsec Policy on page 591

Configuring the Description for an IPsec Policy

To specify an optional text description for an IPsec policy, include the `description` statement at the `[edit services ipsec-vpn ipsec policy policy-name]` hierarchy level:

```
[edit services ipsec-vpn ipsec policy policy-name]
description description;
```

Configuring Perfect Forward Secrecy

Perfect Forward Secrecy (PFS) provides additional security by means of a Diffie-Hellman shared secret value. With PFS, if one key is compromised, previous and subsequent keys are secure because they are not derived from previous keys. This statement is optional.

To configure PFS, include the `perfect-forward-secrecy` statement and specify a Diffie-Hellman group at the `[edit services ipsec-vpn ipsec policy policy-name]` hierarchy level:
The key can be one of the following:

- **group1**—Specifies that IKE use the 768-bit Diffie-Hellman prime modulus group when performing the new Diffie-Hellman exchange.
- **group2**—Specifies that IKE use the 1024-bit Diffie-Hellman prime modulus group when performing the new Diffie-Hellman exchange.
- **group5**—Specifies that IKE use the 1536-bit Diffie-Hellman prime modulus group when performing the new Diffie-Hellman exchange.
- **group14**—Specifies that IKE use the 2048-bit Diffie-Hellman prime modulus group when performing the new Diffie-Hellman exchange.
- **group15**—Specifies that IKE use the 3072-bit Diffie-Hellman prime modulus group when performing the new Diffie-Hellman exchange.
- **group16**—Specifies that IKE use the 4096-bit Diffie-Hellman prime modulus group when performing the new Diffie-Hellman exchange.
- **group24**—Specifies that IKE use the 2048-bit Diffie-Hellman prime modulus group with 256-bit Prime Order Subgroup when performing the new Diffie-Hellman exchange.

Starting in Junos OS release 17.4R1, group15, group16, and group 24 can also be used for the key:

- **group15**—Specifies that IKE use the 3072-bit Diffie-Hellman prime modulus group when performing the new Diffie-Hellman exchange.
- **group16**—Specifies that IKE use the 4096-bit Diffie-Hellman prime modulus group when performing the new Diffie-Hellman exchange.
- **group24**—Specifies that IKE use the 2048-bit Diffie-Hellman prime modulus group with 256-bit Prime Order Subgroup when performing the new Diffie-Hellman exchange.

The higher numbered groups provide more security than the lowered numbered groups, but require more processing time.

Configuring the Proposals in an IPsec Policy

The IPsec policy includes a list of one or more proposals associated with an IPsec policy.

To configure the proposals in an IPsec policy, include the `proposals` statement and specify one or more proposal names at the `[edit services ipsec-vpn ipsec policy policy-name]` hierarchy level:

```text
[edit services ipsec-vpn ipsec policy policy-name]
proposals [ proposal-names ];
```

IPsec Policy for Dynamic Endpoints

An IPsec policy for dynamic endpoints defines a combination of security parameters (IPsec proposals) used during IPsec negotiation between dynamic peer security gateways, in which the remote ends of tunnels do not have a statically assigned IP address. During the IPsec negotiation, the IPsec policy looks for an IPsec proposal that is the same on both peers. The peer that initiates the negotiation sends all its policies to the remote peer, and the remote peer tries to find a match. A match is made when the policies from the two peers have a proposal that contains the same configured attributes. If the lifetimes
are not identical, the shorter lifetime between the two policies (from the host and peer) is used.

If no policy is set, any policy proposed by the dynamic peer is accepted.

Example: Configuring an IPsec Policy

Define an IPsec policy, `dynamic policy-1`, that is associated with two proposals (`dynamic-1` and `dynamic-2`):

```
[edit services ipsec-vpn ipsec]
proposal dynamic-1 {
    protocol esp;
    authentication-algorithm hmac-md5-96;
    encryption-algorithm 3des-cbc;
    lifetime-seconds 6000;
}
proposal dynamic-2 {
    protocol esp;
    authentication-algorithm hmac-sha1-96;
    encryption-algorithm 3des-cbc;
    lifetime-seconds 6000;
}
policy dynamic-policy-1 {
    perfect-forward-secrecy {
        keys group1;
    }
    proposals [dynamic-1 dynamic-2];
}
```

NOTE: Updates to the current IPsec proposal and policy configuration are not applied to the current IPsec SA; updates are applied to new IPsec SAs.

If you want the new updates to take immediate effect, you must clear the existing IPsec security associations so that they will be reestablished with the changed configuration. For information about how to clear the current IPsec security association, see the Junos OS System Basics and Services Command Reference.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS release 17.4R1, group15, group16, and group 24 can also be used for the key</td>
</tr>
</tbody>
</table>

Related Documentation

- Configuring IPsec Proposals on page 584
- Configuring IKE Proposals on page 571
- Configuring IKE Policies on page 576
Configuring Security Associations on page 549

Configuring IPsec Rules

To configure an IPsec rule, include the rule statement and specify a rule name at the [edit services ipsec-vpn] hierarchy level:

```
[edit services ipsec-vpn]
rule rule-name {
    match-direction (input | output);
    term term-name {
        from {
            destination-address address;
            ipsec-inside-interface interface-name;
            source-address address;
        }
        then {
            anti-replay-window-size bits;
            backup-remote-gateway address;
            clear-dont-fragment-bit;
            dynamic {
                ike-policy policy-name;
                ipsec-policy policy-name;
            }
            initiate-dead-peer-detection;
            dead-peer-detection {
                interval seconds;
                threshold number;
            }
            manual {
                direction (inbound | outbound | bidirectional) {
                    authentication {
                        algorithm (hmac-md5-96 | hmac-sha1-96);
                        key (ascii-text key | hexadecimal key);
                    }
                    auxiliary-spi spi-value;
                    encryption {
                        algorithm algorithm;
                        key (ascii-text key | hexadecimal key);
                    }
                    protocol (ah | bundle | esp);
                    spi spi-value;
                }
            }
            no-anti-replay;
            remote-gateway address;
            syslog;
            tunnel-mtu bytes;
        }
    }
}
```

Each IPsec rule consists of a set of terms, similar to a firewall filter.
A term consists of the following:

- **from** statement—Specifies the match conditions and applications that are included and excluded.

- **then** statement—Specifies the actions and action modifiers to be performed by the router software.

The following sections explain how to configure the components of IPsec rules:

- Configuring Match Direction for IPsec Rules on page 593
- Configuring Match Conditions in IPsec Rules on page 593
- Configuring Actions in IPsec Rules on page 595

Configuring Match Direction for IPsec Rules

Each rule must include a **match-direction** statement that specifies whether the match is applied on the input or output side of the interface. To configure where the match is applied, include the **match-direction** *(input | output)* statement at the [edit services ipsec-vpn rule rule-name] hierarchy level:

```
[edit services ipsec-vpn rule rule-name]
match-direction (input | output);
```

NOTE: ACX Series routers do not support match-direction as output.

The match direction is used with respect to the traffic flow through the AS or Multiservices PIC. When a packet is sent to the PIC, direction information is carried along with it.

With an interface service set, packet direction is determined by whether a packet is entering or leaving the interface on which the service set is applied.

With a next-hop service set, packet direction is determined by the interface used to route the packet to the AS or Multiservices PIC. If the inside interface is used to route the packet, the packet direction is input. If the outside interface is used to direct the packet to the PIC, the packet direction is output.

On the AS or Multiservices PIC, a flow lookup is performed. If no flow is found, rule processing is performed. All rules in the service set are considered. During rule processing, the packet direction is compared against rule directions. Only rules with direction information that matches the packet direction are considered.

Configuring Match Conditions in IPsec Rules

To configure the match conditions in an IPsec rule, include the **from** statement at the [edit services ipsec-vpn rule rule-name term term-name] hierarchy level:

```
[edit services ipsec-vpn rule rule-name term term-name]
from {
    destination-address address;
```
You can use either the source address or the destination address as a match condition, in the same way that you would configure a firewall filter; for more information, see the Junos OS Routing Protocols Library.

IPsec services support both IPv4 and IPv6 address formats. If you do not specifically configure either the source address or destination address, the default value 0.0.0.0/0 (IPv4 ANY) is used. To use IPv6 ANY (0::0/128) as either the source or destination address, you must configure it explicitly.

NOTE: IPsec services on ACX series support IPv4 address formats. If you do not specifically configure either the source address or destination address, the default value 0.0.0.0/0 (IPv4 ANY) is used.

For next-hop-style service sets only, the `ipsec-inside-interface` statement allows you to assign a logical interface to the tunnels established as a result of this match condition. The `inside-service-interface` statement that you can configure at the `[edit services service-set name next-hop-service]` hierarchy level allows you to specify .1 and .2 as inside and outside interfaces. However, you can configure multiple adaptive services logical interfaces with the `service-domain inside` statement and use one of them to configure the `ipsec-inside-interface` statement.

The Junos OS evaluates the criteria you configure in the `from` statement. If multiple link-type tunnels are configured within the same next-hop-style service set, the `ipsec-inside-interface` value enables the rule lookup module to distinguish a particular tunnel from other tunnels in case the source and destination addresses for all of them are 0.0.0.0/0 (ANY-ANY).

NOTE: When you configure the `ipsec-inside-interface` statement, interface-style service sets are not supported.

A special situation is provided by a term containing an “any-any” match condition (usually because the `from` statement is omitted). If there is an any-any match in a tunnel, a flow is not needed, because all flows within this tunnel use the same security association (SA) and packet selectors do not play a significant role. As a result, these tunnels will use packet-based IPsec. This strategy saves some flow resources on the PIC, which can be used for other tunnels that need a flow-based service.

The following configuration example shows an any-any tunnel configuration with no `from` statement in `term-1`. Missing selectors in the `from` clause result in a packet-based IPsec service.
Flowless IPsec service is provided to link-type tunnels with an any-any matching, as well as to dynamic tunnels with any-any matching in both dedicated and shared mode. For link-type tunnels, a mixture of flowless and flow-based IPsec is supported within a service set. If a service set includes some terms with any-any matching and some terms with selectors in the **from** clause, packet-based service is provided for the any-any tunnels and flow-based service is provided for the other tunnels with selectors. For non link-type tunnels, if a service set contains both any-any terms and selector-based terms, flow-based service is provided to all the tunnels.

Configuring Actions in IPsec Rules

To configure actions in an IPsec rule, include the **then** statement at the **[edit services ipsec-vpn rule rule-name term term-name]** hierarchy level:

```plaintext
[edit services ipsec-vpn rule rule-name term term-name]
then {
    anti-replay-window-size bits;
    backup-remote-gateway address;
    clear-dont-fragment-bit;
    dynamic {
        ike-policy policy-name;
        ipsec-policy policy-name;
    }
    initiate-dead-peer-detection;
    dead-peer-detection {
        interval seconds;
        threshold number;
    }
    manual {
        direction (inbound | outbound | bidirectional) {
            authentication {
                algorithm (hmac-md5-96 | hmac-sha1-96);
                key (ascii-text key | hexadecimal key);
            }
            auxiliary-spi spi-value;
            encryption {
                algorithm algorithm;
            }
        }
    }
}
```
key (ascii-text key | hexadecimal key);
}
protocol (ah | bundle | esp);
spi spi-value;
}
}
no-anti-replay;
remote-gateway address;
syslog;
tunnel-mtu bytes;
}

The principal IPsec actions are to configure a dynamic or manual SA:

- You configure a dynamic SA by including the dynamic statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level and referencing policies you have configured at the [edit services ipsec-vpn ipsec] and [edit services ipsec-vpn ike] hierarchy levels.

- You configure a manual SA by including the manual statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level.

You can configure the following additional properties:

- Enabling IPsec Packet Fragmentation on page 596
- Configuring Destination Addresses for Dead Peer Detection on page 596
- Configuring or Disabling IPsec Anti-Replay on page 598
- Enabling System Log Messages on page 598
- Specifying the MTU for IPsec Tunnels on page 599

Enabling IPsec Packet Fragmentation

To enable fragmentation of IP version 4 (IPv4) packets in IPsec tunnels, include the clear-dont-fragment-bit statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level:

```
[edit services ipsec-vpn rule rule-name term term-name then]
clear-dont-fragment-bit;
```

Setting the clear-dont-fragment-bit statement clears the Don’t Fragment (DF) bit in the packet header, regardless of the packet size. If the packet size exceeds the tunnel maximum transmission unit (MTU) value, the packet is fragmented before encapsulation. For IPsec tunnels, the default MTU value is 1500 regardless of the interface MTU setting.

Configuring Destination Addresses for Dead Peer Detection

To specify the remote address to which the IPsec traffic is directed, include the remote-gateway statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level:

```
[edit services ipsec-vpn rule rule-name term term-name then]
```
remote-gateway address;

To specify a backup remote address, include the backup-remote-gateway statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level:

[edit services ipsec-vpn rule rule-name term term-name then]
backup-remote-gateway address;

These two statements support both IPv4 and IPv6 address formats.

Configuring the backup-remote-gateway statement enables the dead peer detection (DPD) protocol, which monitors the tunnel state and remote peer availability. When the primary tunnel defined by the remote-gateway statement is active, the backup tunnel is in standby mode. If the DPD protocol determines that the primary remote gateway address is no longer reachable, a new tunnel is established to the backup address.

If there is no incoming traffic from a peer during a defined interval of 10 seconds, the router detects a tunnel as inactive. A global timer polls all tunnels every 10 seconds and the Adaptive Services (AS) or Multiservices Physical Interface Card (PIC) sends a message listing any inactive tunnels. If a tunnel becomes inactive, the router takes the following steps to fail over to the backup address:

1. The adaptive services message triggers the DPD protocol to send a hello message to the peer.
2. If no acknowledgment is received, two retries are sent at 2-second intervals, and then the tunnel is declared dead.
3. Failover takes place if the tunnel is declared dead or there is an IPsec Phase 1 negotiation timeout. The primary tunnel is put in standby mode and the backup becomes active.
4. If the negotiation to the backup tunnel times out, the router switches back to the primary tunnel. If both peers are down, it tries the failover six times. It then stops failing over and reverts to the original configuration, with the primary tunnel active and the backup in standby mode.

You can also enable triggering of DPD hello messages without configuring a backup remote gateway by including the initiate-dead-peer-detection statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level:

[edit services ipsec-vpn rule rule-name term term-name then]
initiate-dead-peer-detection;

dead-peer-detection {
 interval seconds;
 threshold number;
};

In addition, for IKEv1 SAs you can set interval and threshold options under the dead-peer-detection statement when using the initiate-dead-peer-detection statement. Starting in Junos OS Release 17.2R1, the interval and threshold options are also applicable to IKEv2 SAs. In Junos OS Release 17.1 and earlier, the interval and threshold options are
not applicable to IKEv2 SAs, which use the default values. The interval is the amount of
time that the peer waits for traffic from its destination peer before sending a DPD request
packet, and the threshold is the maximum number of unsuccessful DPD requests to be
sent before the peer is considered unavailable.

The monitoring behavior is the same as described for the backup-remote-gateway
statement. This configuration enables the router to initiate DPD hellos when a backup
IPsec gateway does not exist, and clean up the IKE and IPsec SAs in case the IKE peer is
not reachable.

If the DPD protocol determines that the primary remote gateway address is no longer
reachable, a new tunnel is established to the backup address. However, when you
configure initiate-dead-peer-detection without a backup remote gateway address and
the DPD protocol determines that the primary remote gateway address is no longer
reachable, the tunnel is declared dead and IKE and IPsec SAs are cleaned up.

For more information on the DPD protocol, see RFC 3706, A Traffic-Based Method of
Detecting Dead Internet Key Exchange (IKE) Peers.

Configuring or Disabling IPsec Anti-Replay

To configure the size of the IPsec antireplay window, include the anti-replay-window-size
statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy
level:

[edit services ipsec-vpn rule rule-name term term-name then]
 anti-replay-window-size bits;

anti-replay-window-size can take values in the range from 64 through 4096 bits. The
default value is 64 bits for AS PICs and 128 bits for Multiservices PICs and DPCs. AS PICs
can support a maximum replay window size of 1024 bits, whereas Multiservices PICs and
DPCs can support a maximum replay window size of 4096 bits. When the software is
committing an IPsec configuration, the key management process (kmd) is unable to
differentiate between the service interface types. As a result, if the maximum antireplay
window size exceeds 1024 for AS PICs, the commit succeeds and no error message is
produced. However, the software internally sets the antireplay window size for AS PICs
to 1024 bits even if the configured value of the anti-replay-window-size is larger.

To disable the IPsec antireplay feature, include the no-anti-replay statement at the [edit
services ipsec-vpn rule rule-name term term-name then] hierarchy level:

[edit services ipsec-vpn rule rule-name term term-name then]
 no-anti-replay;

By default, antireplay service is enabled. Occasionally this can cause interoperability
issues with other vendors’ equipment.

Enabling System Log Messages

To record an alert in the system logging facility, include the syslog statement at the [edit
services ipsec-vpn rule rule-name term term-name then] hierarchy level:
Specifying the MTU for IPsec Tunnels

To configure a specific maximum transmission unit (MTU) value for IPsec tunnels, include the `tunnel-mtu` statement at the `edit services ipsec-vpn rule rule-name term term-name then` hierarchy level:

```
[edit services ipsec-vpn rule rule-name term term-name then]
tunnel-mtu bytes;
```

NOTE: The `tunnel-mtu` setting is the only place you need to configure an MTU value for IPsec tunnels. Inclusion of an `mtu` setting at the `edit interfaces sp-fpc/pic/port unit logical-unit-number family inet` hierarchy level is not supported.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2R1</td>
<td>Starting in Junos OS Release 17.2R1, the interval and threshold options are also applicable to IKEv2 SAs.</td>
</tr>
</tbody>
</table>

Related Documentation

- Configuring IPsec Rule Sets on page 599
- Configuring Security Associations on page 549

Configuring IPsec Rule Sets

The `rule-set` statement defines a collection of IPsec rules that determine what actions the router software performs on packets in the data stream. You define each rule by specifying a rule name and configuring terms. Then, you specify the order of the rules by including the `rule-set` statement at the `edit services ipsec-vpn` hierarchy level with a `rule` statement for each rule:

```
[edit services ipsec-vpn]
rule-set rule-set-name {
    rule rule-name;
}
```

The router software processes the rules in the order in which you specify them in the configuration. If a term in a rule matches the packet, the router performs the corresponding action and the rule processing stops. If no term in a rule matches the packet, processing continues to the next rule in the rule set. If none of the rules match the packet, the packet is dropped by default.
Service Sets

The Adaptive Services PIC supports two types of service sets when you configure IPSec tunnels. Because they are used for different purposes, it is important to know the differences between these service set types.

- **Next-hop service set**—Supports multicast and multicast-style dynamic routing protocols (such as OSPF) over IPSec. Next-hop service sets allow you to use inside and outside logical interfaces on the Adaptive Services PIC to connect with multiple routing instances. They also allow the use of Network Address Translation (NAT) and stateful firewall capabilities. However, next-hop service sets do not monitor Routing Engine traffic by default and require configuration of multiple service sets to support traffic from multiple interfaces.

- **Interface service set**—Applied to a physical interface and similar to a stateless firewall filter. They are easy to configure, can support traffic from multiple interfaces, and can monitor Routing Engine traffic by default. However, they cannot support dynamic routing protocols or multicast traffic over the IPSec tunnel.

In general, we recommend that you use next-hop service sets because they support routing protocols and multicast over the IPSec tunnel, they are easier to understand, and the routing table makes forwarding decisions without administrative intervention.

Related Documentation
- Configuring IPsec Rules on page 592
- Configuring Security Associations on page 549

Configuring IPsec Service Sets

IPsec service sets require additional specifications that you configure at the [edit services service-set service-set-name ipsec-vpn-options] hierarchy level:

```
[edit services service-set service-set-name ipsec-vpn-options]
anti-replay-window-size bits;
clear-dont-fragment-bit;
copy-dont-fragment-bit
set-dont-fragment-bit
ike-access-profile profile-name;
local-gateway address <gw-interface interface-name.logical-unit-number>;
no-anti-replay;
no-certificate-chain-in-ike;
passive-mode-tunneling;
trusted-ca [ ca-profile-names ];
tunnel-mtu bytes;
```

Copyright © 2019, Juniper Networks, Inc.
Configuration of these statements is described in the following sections:

- Configuring the Local Gateway Address for IPsec Service Sets on page 601
- Configuring IKE Access Profiles for IPsec Service Sets on page 603
- Configuring Certification Authorities for IPsec Service Sets on page 603
- Configuring or Disabling Antireplay Service on page 604
- Clearing the Do Not Fragment Bit on page 605
- Configuring Passive-Mode Tunneling on page 605
- Configuring the Tunnel MTU Value on page 606
- Configuring IPsec Multipath Forwarding with UDP Encapsulation on page 607

Configuring the Local Gateway Address for IPsec Service Sets

If you configure an IPsec service set, you must also configure a local IPv4 or IPv6 address by including the `local-gateway` statement:

- If the Internet Key Exchange (IKE) gateway IP address is in inet.0 (the default situation), you configure the following statement:

  ```
  local-gateway address;
  ```

- If the IKE gateway IP address is in a VPN routing and forwarding (VRF) instance, you configure the following statement:

  ```
  local-gateway address routing-instance instance-name;
  ```

You can configure all the link-type tunnels that share the same local gateway address in a single next-hop-style service set. You must specify a value for the `inside-service-interface` statement at the `[edit services service-set service-set-name]` hierarchy level that matches the `ipsec-inside-interface` value, which you configure at the `[edit services ipsec-vpn rule rule-name term term-name from]` hierarchy level. For more information about IPsec configuration, see “Configuring IPsec Rules” on page 592.

NOTE: Starting in Junos OS Release 15.1, to configure link-type tunnels, you can configure AMS logical interfaces as the IPsec internal interfaces by using the `ipsec-inside-interface interface-name` statement at the `[edit services ipsec-vpn rule rule-name term term-name from]` hierarchy level.

IKE Addresses in VRF Instances

You can configure Internet Key Exchange (IKE) gateway IP addresses that are present in a VPN routing and forwarding (VRF) instance as long as the peer is reachable through the VRF instance.

For next-hop service sets, the key management process (kmd) places the IKE packets in the routing instance that contains the `outside-service-interface` value you specify, as in this example:
Routing Instances

```
routing-instances vrf-nxthop {
    instance-type vrf;
    interface sp-1/1/0.2;
    ...
}
services service-set service-set-1 {
    next-hop-service {
        inside-service-interface sp-1/1/0.1;
        outside-service-interface sp-1/1/0.2;
    }
    ...
}
```

For interface service sets, the `service-interface` statement determines the VRF, as in this example:

```
routing-instances vrf-intf {
    instance-type vrf;
    interface sp-1/1/0.3;
    interface ge-1/2/0.1; # interface on which service set is applied
    ...
}
services service-set service-set-2 {
    interface-service {
        service-interface sp-1/1/0.3;
    }
    ...
}
```

Clearing SAs When Local Gateway Address or MS-MPC or MS-MIC Goes Down

Starting in Junos OS Release 17.2R1, you can use the `gw-interface` statement to enable the cleanup of IKE triggers and IKE and IPsec SAs when an IPsec tunnel's local gateway IP address goes down, or the MS-MIC or MS-MPC being used in the tunnel's service set goes down.

```
local-gateway address <gw-interface interface-name.logical-unit-number>;
```

The `interface-name` and `logical-unit-number` must match the interface and logical unit on which the local gateway IP address is configured.

If the local gateway IP address for an IPsec tunnel's service set goes down or the MS-MIC or MS-MPC that is being used in the service set goes down, the service set no longer sends IKE triggers. In addition, when the local gateway IP address goes down, the IKE and IPsec SAs are cleared for next-hop service sets, and go to the Not Installed state for interface-style service sets. The SAs that have the Not Installed state are deleted when the local gateway IP address comes back up.

If the local gateway IP address that goes down for a next-hop service set is for the responder peer, then you need to clear the IKE and IPsec SAs on the initiator peer so that the IPsec tunnel comes back up once the local gateway IP address comes back up. You can either manually clear the IKE and IPsec SAs on the initiator peer (see `clear services...`
ipsec-vpn ike security-associations and clear services ipsec-vpn ipsec
security-associations) or enable dead peer detection on the initiator peer (see
“Configuring Stateful Firewall Rules” on page 467).

Configuring IKE Access Profiles for IPsec Service Sets

For dynamic endpoint tunneling only, you need to reference the IKE access profile
configured at the [edit access] hierarchy level. To do this, include the ike-access-profile
statement at the [edit services service-set service-set-name ipsec-vpn-options] hierarchy
level:

[edit services service-set service-set-name ipsec-vpn-options]
ike-access-profile profile-name;

The ike-access-profile statement must reference the same name as the profile
statement you configured for IKE access at the [edit access] hierarchy level. You can reference only
one access profile in each service set. This profile is used to negotiate IKE and IPsec
security associations with dynamic peers only.

NOTE: If you configure an IKE access profile in a service set, no other service
set can share the same local-gateway address.

Also, you must configure a separate service set for each VRF. All interfaces
referenced by the ipsec-inside-interface statement within a service set must
belong to the same VRF.

Configuring Certification Authorities for IPsec Service Sets

You can specify one or more trusted certification authorities by including the trusted-ca
statement:

trusted-ca [ca-profile-names];

When you configure public key infrastructure (PKI) digital certificates in the IPsec
configuration, each service set can have its own set of trusted certification authorities.
The names you specify for the trusted-ca statement must match profiles configured at
the [edit security pki] hierarchy level; for more information, see the Junos OS Administration
Library. For more information about IPsec digital certificate configuration, see “Configuring
IPsec Rules” on page 592.

Starting in Junos OS Release 18.2R1, you can configure the MX Series router with MS-MPCs
or MS-MICs to send only the end-entity certificate for certificate-based IKE authentication
instead of the full certificate chain. This avoids IKE fragmentation. To configure this
feature, include the no-certificate-chain-in-ike statement:

[edit services service-set service-set-name ipsec-vpn-options]
no-certificate-chain-in-ike;
Configuring or Disabling Antireplay Service

You can include the `anti-replay-window-size` statement at the `[edit services service-set service-set-name ipsec-vpn-options]` hierarchy level to specify the size of the antireplay window.

```
anti-replay-window-size bits;
```

This statement is useful for dynamic endpoint tunnels for which you cannot configure the `anti-replay-window-size` statement at the `[edit services ipsec-vpn rule rule-name term term-name then]` hierarchy level.

For static IPsec tunnels, this statement sets the antireplay window size for all the static tunnels within this service set. If a particular tunnel needs a specific value for antireplay window size, set the `anti-replay-window-size` statement at the `[edit services ipsec-vpn rule rule-name term term-name then]` hierarchy level. If antireplay check has to be disabled for a particular tunnel in this service set, set the `no-anti-replay` statement at the `[edit services ipsec-vpn rule rule-name term term-name then]` hierarchy level.

NOTE: The `anti-replay-window-size` and `no-anti-replay` settings at the `[edit services ipsec-vpn rule rule-name term term-name then]` hierarchy level override the settings specified at the `[edit services service-set service-set-name ipsec-vpn-options]` hierarchy level.

You can also include the `no-anti-replay` statement at the `[edit services service-set service-set-name ipsec-vpn-options]` hierarchy level to disable IPsec antireplay service. It occasionally causes interoperability issues for security associations.

```
no-anti-replay;
```

This statement is useful for dynamic endpoint tunnels for which you cannot configure the `no-anti-replay` statement at the `[edit services ipsec-vpn rule rule-name term term-name then]` hierarchy level.

For static IPsec tunnels, this statement disables the antireplay check for all the tunnels within this service set. If antireplay check has to be enabled for a particular tunnel, then set the `anti-replay-window-size` statement at the `[edit services ipsec-vpn rule rule-name term term-name then]` hierarchy level.

NOTE: Setting the `anti-replay-window-size` and `no-anti-replay` statements at the `[edit services ipsec-vpn rule rule-name term term-name then]` hierarchy level overrides the settings specified at the `[edit services service-set service-set-name ipsec-vpn-options]` hierarchy level.
Clearing the Do Not Fragment Bit

You can include the `clear-dont-fragment-bit` statement at the `[edit services service-set service-set-name ipsec-vpn-options]` hierarchy level to clear the do not fragment (DF) bit on all IP version 4 (IPv4) packets entering the IPsec tunnel. If the encapsulated packet size exceeds the tunnel maximum transmission unit (MTU), the packet is fragmented before encapsulation.

`clear-dont-fragment-bit;`

This statement is useful for dynamic endpoint tunnels for which you cannot configure the `clear-dont-fragment-bit` statement at the `[edit services ipsec-vpn rule rule-name term term-name then]` hierarchy level.

For static IPsec tunnels, setting this statement clears the DF bit on packets entering all the static tunnels within this service set. If you want to clear the DF bit on packets entering a specific tunnel, set the `clear-dont-fragment-bit` statement at the `[edit services ipsec-vpn rule rule-name term term-name then]` hierarchy level.

Starting in Junos OS Release 14.1, in packets that are transmitted through dynamic endpoint IPsec tunnels, you can enable the value set in the DF bit of the packet entering the tunnel to be copied only to the outer header of the IPsec packet and to not cause any modification to the DF bit in the inner header of the IPsec packet. If the packet size exceeds the tunnel maximum transmission unit (MTU) value, the packet is fragmented before encapsulation. For IPsec tunnels, the default MTU value is 1500 regardless of the interface MTU setting. To copy the DF bit value to only the outer header and not modify the inner header, use the `copy-dont-fragment-bit` statement at the `[edit services service-set service-set-name ipsec-vpn-options]` hierarchy level. You can also configure the DF bit to be set only in the outer IPv4 header of the IPsec packet and not be defined in the inner IPv4 header. To configure the DF bit in only the outer header of the IPsec packet and to leave the inner header unmodified, include the `set-dont-fragment-bit` statement at the `[edit services service-set service-set-name ipsec-vpn-options]` hierarchy level. These settings apply for dynamic endpoint tunnels and not for static tunnels, for which you need to include the `copy-dont-fragment-bit` and `set-dont-fragment-bit` statements at the `[edit services ipsec-vpn rule rule-name term term-name then]` hierarchy level to clear the DF bit in the IPv4 packets that enter the static tunnel. These functionalities are supported on MX Series routers with MS-MICs and MS-MPCs.

Configuring Passive-Mode Tunneling

You can include the `passive-mode-tunneling` statement at the `[edit services service-set service-set-name ipsec-vpn-options]` hierarchy level to enable the service set to tunnel malformed packets.

```
[edit services service-set service-set-name ipsec-vpn-options]
passive-mode-tunneling;
```

This functionality bypasses the active IP checks, such as version, TTL, protocol, options, address and other land attack checks, and tunnels the packets as is. If this statement is not configured, packets failing the IP checks are dropped in the PIC. In passive mode, the
inner packet is not touched; an ICMP error is not generated if the packet size exceeds the tunnel MTU value.

The IPsec tunnel is not treated as a next hop and TTL is not decremented. Because an ICMP error is not generated if the packet size exceeds the tunnel MTU value, the packet is tunneled even if it crosses the tunnel MTU threshold.

NOTE: This functionality is similar to that provided by the no-ipsec-tunnel-in-traceroute statement, described in “Tracing Junos VPN Site Secure Operations” on page 610. Starting in Junos OS Release 14.2, passive mode tunneling is supported on MS-MICs and MS-MPCs.

NOTE: Starting in Junos OS Release 14.2, the header-integrity-check option that is supported on MS-MICs and MS-MPCs to verify the packet header for anomalies in IP, TCP, UDP, and ICMP information and flag such anomalies and errors has a functionality that is opposite to the functionality caused by passive mode tunneling. If you configure both the header-integrity-check statement and the passive-mode tunneling statement on MS-MICs and MS-MPCs, and attempt to commit such a configuration, an error is displayed during commit.

The passive mode tunneling functionality (by including the passive-mode-tunnel-in statement at the [edit services service-set service-set-name ipsec-vpn-options] hierarchy level) is a superset of the capability to disable IPsec tunnel endpoint in the traceroute output (by including no-ipsec-tunnel-in-traceroute statement at the [edit services ipsec-vpn] hierarchy level). Passive mode tunneling also bypasses the active IP checks and tunnel MTU check in addition to not treating an IPsec tunnel as a next-hop as configured by the no-ipsec-tunnel-in-traceroute statement.

Configuring the Tunnel MTU Value

You can include the tunnel-mtu statement at the [edit services service-set service-set-name ipsec-vpn-options] hierarchy level to set the maximum transmission unit (MTU) value for IPsec tunnels.

 tunnel-mtu bytes;

This statement is useful for dynamic endpoint tunnels for which you cannot configure the tunnel-mtu statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level.

For static IPsec tunnels, this statement sets the tunnel MTU value for all the tunnels within this service set. If you need a specific value for a particular tunnel, then set the tunnel-mtu statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level.
Configuring IPsec Multipath Forwarding with UDP Encapsulation

Starting in Junos OS Release 16.1, you can enable multipath forwarding of IPsec traffic by configuring UDP encapsulation in the service set, which adds a UDP header to the IPsec encapsulation of packets. This results in the forwarding of IPsec traffic over multiple paths, increasing the throughput of IPsec traffic. If you do not enable UDP encapsulation, all the IPsec traffic follows a single forwarding path.

When NAT-T is detected, only NAT-T UDP encapsulation occurs, not the UDP encapsulation for IPsec packets.

To enable UDP encapsulation:

1. Enable UDP encapsulation.

   ```
   [edit services service-set service-set-name ipsec-vpn-options]
   user@host set udp-encapsulation
   ```

2. (Optional) Specify the UDP destination port number.

   ```
   [edit services service-set service-set-name ipsec-vpn-options udp-encapsulation]
   user@host set udp-dest-port destination-port
   ```

 Use a destination port number from 1025 through 65536, but do not use 4500. If you do not specify a port number, the default destination port is 4565.

NOTE: The tunnel-mtu setting at the `[edit services ipsec-vpn rule rule-name term term-name then]` hierarchy level overrides the value specified at the `[edit services service-set service-set-name ipsec-vpn-options]` hierarchy level.
Starting in Junos OS Release 18.2R1, you can configure the MX Series router with MS-MPCs or MS-MICs to send only the end-entity certificate for certificate-based IKE authentication instead of the full certificate chain.

Starting in Junos OS Release 17.2R1, you can use the gw-interface statement to enable the cleanup of IKE triggers and IKE and IPsec SAs when an IPsec tunnel’s local gateway IP address goes down, or the MS-MIC or MS-MPC being used in the tunnel’s service set goes down.

Starting in Junos OS Release 16.1, you can enable multipath forwarding of IPsec traffic by configuring UDP encapsulation in the service set, which adds a UDP header to the IPsec encapsulation of packets.

Starting in Junos OS Release 15.1, to configure link-type tunnels, you can configure AMS logical interfaces as the IPsec internal interfaces by using the ipsec-inside-interface interface-name statement at the [edit services ipsec-vpn rule rule-name term term-name from] hierarchy level.

Starting in Junos OS Release 14.2, passive mode tunneling is supported on MS-MICs and MS-MPCs.

Starting in Junos OS Release 14.2, the header-integrity-check option that is supported on MS-MICs and MS-MPCs to verify the packet header for anomalies in IP, TCP, UDP, and ICMP information and flag such anomalies and errors has a functionality that is opposite to the functionality caused by passive mode tunneling.

Starting in Junos OS Release 14.1, in packets that are transmitted through dynamic endpoint IPsec tunnels, you can enable the value set in the DF bit of the packet entering the tunnel to be copied only to the outer header of the IPsec packet and to not cause any modification to the DF bit in the inner header of the IPsec packet.

- Understanding Service Sets on page 7
- Configuring Service Sets to be Applied to Services Interfaces on page 9
- Configuring Service Set Limitations on page 21
- Configuring System Logging for Service Sets on page 33

Tracing IPsec Operations

Trace operations track IPsec events and record them in a log file in the /var/log directory. By default, this file is named /var/log/kmd.

To trace IPsec operations, include the traceoptions statement at the [edit services ipsec-vpn] hierarchy level:

```plaintext
[edit services ipsec-vpn]
traceoptions { }
```
You can specify the following IPsec tracing flags:

- **all**—Trace everything.
- **certificates**—Trace certificates events.
- **database**—Trace security associations database events.
- **general**—Trace general events.
- **ike**—Trace IKE module processing.
- **parse**—Trace configuration processing.
- **policy-manager**—Trace policy manager processing.
- **routing-socket**—Trace routing socket messages.
- **snmp**—Trace SNMP operations.
- **timer**—Trace internal timer events.

The **level** statement sets the key management process (kmd) tracing level. The following values are supported:

- **all**—Match all levels.
- **error**—Match error conditions.
- **info**—Match informational messages.
- **notice**—Match conditions that should be handled specially.
- **verbose**—Match verbose messages.
- **warning**—Match warning messages.

Disabling NAT-T on MX Series Routers for Handling NAT with IPsec-Protected Packets

Before Junos OS Release 17.4R1, Network Address Translation-Traversal (NAT-T) is not supported for the Junos VPN Site Secure suite of IPsec features on the MX Series routers. By default, Junos OS detects whether either one of the IPsec tunnels is behind a NAT device and automatically switches to using NAT-T for the protected traffic. To avoid running unsupported NAT-T in Junos OS releases before 17.4R1, you must disable NAT-T by including the **disable-natt** statement at the [edit services ipsec-vpn] hierarchy level. When you disable NAT-T, the NAT-T functionality is globally switched off. When you disable NAT-T and a NAT device is present between the two IPsec gateways, ISAKMP messages are negotiated using UDP port 500 and data packets are encapsulated with Encapsulating Security Payload (ESP).
Network Address Translation-Traversal (NAT-T) is a method for getting around IP address translation issues encountered when data protected by IPsec passes through a NAT device for address translation. Any changes to the IP addressing, which is the function of NAT, causes IKE to discard packets. After detecting one or more NAT devices along the data path during Phase 1 exchanges, NAT-T adds a layer of User Datagram Protocol (UDP) encapsulation to IPsec packets so they are not discarded after address translation. NAT-T encapsulates both IKE and ESP traffic within UDP with port 4500 used as both the source and destination port. Because NAT devices age out stale UDP translations, keepalive messages are required between the peers.

The location of a NAT device can be such that:

- Only the IKEv1 or IKEv2 initiator is behind a NAT device. Multiple initiators can be behind separate NAT devices. Initiators can also connect to the responder through multiple NAT devices.
- Only the IKEv1 or IKEv2 responder is behind a NAT device.
- Both the IKEv1 or IKEv2 initiator and the responder are behind a NAT device.

Dynamic endpoint VPN covers the situation where the initiator’s IKE external address is not fixed and is therefore not known by the responder. This can occur when the initiator’s address is dynamically assigned by an ISP or when the initiator’s connection crosses a dynamic NAT device that allocates addresses from a dynamic address pool.

Configuration examples for NAT-T are provided for the topology in which only the responder is behind a NAT device and the topology in which both the initiator and responder are behind a NAT device. Site-to-site IKE gateway configuration for NAT-T is supported on both the initiator and responder. A remote IKE ID is used to validate a peer’s local IKE ID during Phase 1 of IKE tunnel negotiation. Both the initiator and responder require a local identify and remote identity string.

Related Documentation
- disable-natt on page 1015

Tracing Junos VPN Site Secure Operations

NOTE: Junos VPN Site Secure is a suite of IPsec features supported on multiservices line cards (MS-DPC, MS-MPC, and MS-MIC), and was previously referred to as IPsec services.

Trace operations track IPsec events and record them in a log file in the /var/log directory. By default, this file is named /var/log/kmd.

To trace IPsec operations, include the traceoptions statement at the [edit services ipsec-vpn] hierarchy level:

[edit services ipsec-vpn]
traceoptions {
 file <filename> <files number> <match regular-expression> <size bytes> <world-readable> no-world-readable>;
 flag flag;
 level level;
 no-remote-trace;
}

You can specify the following IPsec tracing flags:

- **all**—Trace everything.
- **certificates**—Trace certificates events.
- **database**—Trace security associations database events.
- **general**—Trace general events.
- **ike**—Trace IKE module processing.
- **parse**—Trace configuration processing.
- **policy-manager**—Trace policy manager processing.
- **routing-socket**—Trace routing socket messages.
- **snmp**—Trace SNMP operations.
- **timer**—Trace internal timer events.

The **level** statement sets the key management process (kmd) tracing level. The following values are supported:

- **all**—Match all levels.
- **error**—Match error conditions.
- **info**—Match informational messages.
- **notice**—Match conditions that should be handled specially.
- **verbose**—Match verbose messages.
- **warning**—Match warning messages.

This section includes the following topics:

- Disabling IPsec Tunnel Endpoint in Traceroute on page 611
- Tracing IPsec PKI Operations on page 612

Disabling IPsec Tunnel Endpoint in Traceroute

If you include the **no-ipsec-tunnel-in-traceroute** statement at the [edit services ipsec-vpn] hierarchy level, the IPsec tunnel is not treated as a next hop and the time to live (TTL) is not decremented. Also, if the TTL reaches zero, an ICMP time exceeded message is not generated.

[edit services ipsec-vpn]
no-ipsec-tunnel-in-traceroute;

NOTE: This functionality is also provided by the passive-mode-tunneling statement. You can use the no-ipsec-tunnel-in-traceroute statement in specific scenarios in which the IPsec tunnel should not be treated as a next hop and passive mode is not desired.

Tracing IPsec PKI Operations

Trace operations track IPsec PKI events and record them in a log file in the /var/log directory. By default, this file is named /var/log/pkid.

To trace IPsec PKI operations, include the traceoptions statement at the [edit security pki] hierarchy level:

[edit security pki]
traceoptions {
 file filename <files number> <match regular-expression> <size maximum-file-size>
 <world-readable|no-world-readable>;
 flag flag (all | certificate-verification | enrollment | online-crl-check);
}

You can specify the following PKI tracing flags:

- **all**—Trace everything.
- **certificates**—Trace certificates events.
- **database**—Trace security associations database events.
- **general**—Trace general events.
- **ike**—Trace IKE module processing.
- **parse**—Trace configuration processing.
- **policy-manager**—Trace policy manager processing.
- **routing-socket**—Trace routing socket messages.
- **snmp**—Trace SNMP operations.
- **timer**—Trace internal timer events.

Related Documentation

- Configuring IKE Policies on page 576
- Configuring IKE Proposals on page 571
Multitask Example: Configuring IPsec Services

The following example-based instructions show how to configure IPsec services. The configuration involves defining an IKE policy, an IPsec policy, IPsec rules, trace options, and service sets.

This topic includes the following tasks:

1. Configuring the IKE Proposal on page 613
2. Configuring the IKE Policy (and Referencing the IKE Proposal) on page 614
3. Configuring the IPsec Proposal on page 615
4. Configuring the IPsec Policy (and Referencing the IPsec Proposal) on page 616
5. Configuring the IPsec Rule (and Referencing the IKE and IPsec Policies) on page 617
6. Configuring IPsec Trace Options on page 618
7. Configuring the Access Profile (and Referencing the IKE and IPsec Policies) on page 619
8. Configuring the Service Set (and Referencing the IKE Profile and the IPsec Rule) on page 620

Configuring the IKE Proposal

The IKE proposal configuration defines the algorithms and keys used to establish the secure IKE connection with the peer security gateway. For more information about IKE proposals, see “Configuring IKE Proposals” on page 571.

To define the IKE proposal:

1. In configuration mode, go to the following hierarchy level:

 user@host# edit services ipsec-vpn

2. Configure the authentication method, which is pre-shared keys in this example:

 [edit services ipsec-vpn]
 user@host# set ike proposal test-IKE-proposal authentication-method pre-shared-keys

3. Configure the Diffie-Hellman Group and specify a name—for example, group1:

 [edit services ipsec-vpn]
 user@host# set ike proposal test-IKE-proposal dh-group group1

4. Configure the authentication algorithm, which is sha1 in this example:

 [edit services ipsec-vpn]
 user@host# set ike proposal test-IKE-proposal authentication-algorithm sha1

5. Configure the encryption algorithm, which is aes-256-cbc in this example:
The following sample output shows the configuration of the IKE proposal:

```
[edit services ipsec-vpn]
user@host# show ike
proposal test-IKE-proposal {
    authentication-method pre-shared-keys;
    dh-group group1;
    authentication-algorithm sha1;
    encryption-algorithm aes-256-cbc;
}
```

See Also
• Configuring IKE Proposals on page 571

Configuring the IKE Policy (and Referencing the IKE Proposal)

The IKE policy configuration defines the proposal, mode, addresses, and other security parameters used during IKE negotiation. For more information about IKE policies, see “Configuring IKE Policies” on page 576.

To define the IKE policy and reference the IKE proposal:

1. In configuration mode, go to the following hierarchy level:

 user@host# edit services ipsec-vpn

2. Configure the IKE first phase mode—for example, main:

   ```
   [edit services ipsec-vpn]
   user@host# set ike policy test-IKE-policy mode main
   ```

3. Configure the proposal, which is test-IKE-proposal in this example:

   ```
   [edit services ipsec-vpn]
   user@host# set ike policy test-IKE-policy proposals test-IKE-proposal
   ```

4. Configure the local identification with an IPv4 address—for example, 192.168.255.2:

   ```
   [edit services ipsec-vpn]
   user@host# set ike policy test-IKE-policy local-id ipv4_addr 192.168.255.2
   ```

5. Configure the preshared key in ASCII text format, which is TEST in this example:

   ```
   [edit services ipsec-vpn]
   ```
The following sample output shows the configuration of the IKE policy:

```
[edit services ipsec-vpn]
user@host# show ike policy test-IKE-policy {
    mode main;
    proposals test-IKE-proposal;
    local-id ipv4_addr 192.168.255.2;
    pre-shared-key ascii-text TEST;
}
```

See Also
- Configuring IKE Policies on page 576

Configuring the IPsec Proposal

The IPsec proposal configuration defines the protocols and algorithms (security services) that are required to negotiate with the remote IPsec peer. For more information about IPsec proposals, see “Configuring IPsec Proposals” on page 584.

To define the IPsec proposal:

1. In configuration mode, go to the following hierarchy level:

   ```
   user@host# edit services ipsec-vpn
   ```

2. Configure the IPsec protocol for the proposal—for example, esp:

   ```
   [edit services ipsec-vpn]
   user@host# set ipsec proposal test-IPsec-proposal protocol esp
   ```

3. Configure the authentication algorithm for the proposal, which is `hmac-sha-96` in this example:

   ```
   [edit services ipsec-vpn]
   user@host# set ipsec proposal test-IPsec-proposal authentication-algorithm hmac-sha-96
   ```

4. Configure the encryption algorithm for the proposal, which is `aes-256-cbc` in this example:

   ```
   [edit services ipsec-vpn]
   user@host# set ipsec proposal test-IPsec-proposal encryption-algorithm aes-256-cbc
   ```

The following sample output shows the configuration of the IPsec proposal:
[edit services ipsec-vpn]
user@host# show ike
proposal test-IPsec-proposal {
 protocol esp;
 authentication-algorithm hmac-sha1-96;
 encryption-algorithm aes-256-cbc;
}

See Also • Configuring IPsec Proposals on page 584

Configuring the IPsec Policy (and Referencing the IPsec Proposal)

The IPsec policy configuration defines a combination of security parameters (IPsec proposals) used during IPsec negotiation. It defines PFS and the proposals needed for the connection. For more information about IPsec policies, see “Configuring IPsec Policies” on page 588.

To define the IPsec policy and reference the IPsec proposal:

1. In configuration mode, go to the following hierarchy level:

 user@host# edit services ipsec-vpn

2. Configure the keys for perfect forward secrecy in the IPsec policy—for example, group1:

 [edit services ipsec-vpn]
 user@host# set ipsec policy test-IPsec-policy perfect-forward-secrecy keys group1

3. Configure a set of IPsec proposals in the IPsec policy—for example, test-IPsec-proposal:

 [edit services ipsec-vpn]
 user@host# set ipsec policy test-IPsec-policy proposals test-IPsec-proposal

The following sample output shows the configuration of the IPsec policy:

[edit services ipsec-vpn]
user@host# show ipsec policy test-IPsec-policy
perfect-forward-secrecy {
 keys group1;
}
proposals test-IPsec-proposal;

See Also • Configuring IPsec Policies on page 588
Configuring the IPsec Rule (and Referencing the IKE and IPsec Policies)

The IPsec rule configuration defines the direction that specifies whether the match is applied on the input or output side of the interface. The configuration also consists of a set of terms that specify the match conditions and applications that are included and excluded and also specify the actions and action modifiers to be performed by the router software. For more information about IPsec rules, see “Configuring IPsec Rules” on page 592.

To define the IPsec rule and reference the IKE and IPsec policies:

1. In configuration mode, go to the following hierarchy level:

   ```
   user@host# edit services ipsec-vpn
   ```

2. Configure the IP destination address for the IPsec term in the IPsec rule—for example, 192.168.255.2/32:

   ```
   [edit services ipsec-vpn]
   user@host# set rule test-IPsec-rule term 10 from destination-address 192.168.255.2/32
   ```

3. Configure the remote gateway address for the IPsec term in the IPsec rule—for example, 0.0.0.0:

   ```
   [edit services ipsec-vpn]
   user@host# set rule test-IPsec-rule term 10 then remote-gateway 0.0.0.0
   ```

4. Configure a dynamic security association for IKE policy for the IPsec term in the IPsec rule, which is `test-IKE-policy` in this example:

   ```
   [edit services ipsec-vpn]
   user@host# set rule test-IPsec-rule term 10 then dynamic ike-policy test-IKE-policy
   ```

5. Configure a dynamic security association for IKE proposal for the IPsec term in the IPsec rule, which is `test-IPsec-proposal` in this example:

   ```
   [edit services ipsec-vpn]
   user@host# set rule test-IPsec-rule term 10 then dynamic ipsec-policy test-IPsec-policy
   ```

6. Configure a direction for which the rule match is being applied in the IPsec rule—for example, `input`:

   ```
   [edit services ipsec-vpn]
   user@host# set rule test-IPsec-rule match-direction input
   ```

The following sample output shows the configuration of the IPsec rule:
See Also • Configuring IPsec Rules on page 592

Configuring IPsec Trace Options

The IPsec trace options configuration tracks IPsec events and records them in a log file in the /var/log directory. By default, this file is named /var/log/kmd. For more information about IPsec rules, see “Tracing Junos VPN Site Secure Operations” on page 610.

To define the IPsec trace options:

1. In configuration mode, go to the following hierarchy level:

 user@host# edit services ipsec-vpn

2. Configure the trace file, which is ipsec.log in this example:

 [edit services ipsec-vpn]
 user@host# set traceoptions file ipsec.log

3. Configure all the tracing parameters with the option all in this example:

 [edit services ipsec-vpn]
 user@host# set traceoptions flag all

The following sample output shows the configuration of the IPsec trace options:

[edit services ipsec-vpn]
user@host# show traceoptions
file ipsec.log;
flag all;
Configuring the Access Profile (and Referencing the IKE and IPsec Policies)

The access profile configuration defines the access profile and references the IKE and IPsec policies. For more information about access profile, see Configuring an IKE Access Profile.

To define the access profile and reference the IKE and IPsec policies:

1. In configuration mode, go to the following hierarchy level:

 user@host# [edit access]

2. Configure the list of local and remote proxy identity pairs with the allowed-proxy-pair option. In this example, 10.0.0.0/24 is the IP address for local proxy identity and 10.0.1.0/24 is the IP address for remote proxy identity:

 [edit access]
 user@host# set profile IKE-profile-TEST client * ike allowed-proxy-pair local 10.0.0.0/24 remote 10.0.1.0/24

3. Configure the IKE policy—for example, test-IKE-policy:

 [edit access]
 user@host# set profile IKE-profile-TEST client * ike ike-policy test-IKE-policy

4. Configure the IPsec policy—for example, test-IPsec-policy:

 [edit access]
 user@host# set profile IKE-profile-TEST client * ike ipsec-policy test-IPsec-policy

5. Configure the identity of logical service interface pool, which is TEST-intf in this example:

 [edit access]
 user@host# set profile IKE-profile-TEST client * ike interface-id TEST-intf

The following sample output shows the configuration of the access profile:

```
[edit access]
user@host# show profile IKE-profile-TEST { 
  client * { 
    ike { 
      allowed-proxy-pair local 10.0.0.0/24 remote 10.0.1.0/24; 
      ike-policy test-IKE-policy; 
      ipsec-policy test-IPsec-policy; # new statement
    }
  }
```
See Also
- Configuring an IKE Access Profile

Configuring the Service Set (and Referencing the IKE Profile and the IPsec Rule)

The service set configuration defines IPsec service sets that require additional specifications and references the IKE profile and the IPsec rule. For more information about IPsec service sets, see "Configuring IPsec Service Sets" on page 600.

To define the service set configuration with the next-hop service sets and IPsec VPN options:

1. In configuration mode, go to the following hierarchy level:

```bash
user@host# [edit services]
```

2. Configure a service set with parameters for next hop service interfaces for the inside network—for example, sp-1/2/0.1:

```bash
[edit services]
user@host# set service-set TEST next-hop-service inside-service-interface sp-1/2/0.1
```

3. Configure a service set with parameters for next hop service interfaces for the outside network—for example, sp-1/2/0.2:

```bash
[edit services]
user@host# set service-set TEST next-hop-service outside-service-interface sp-1/2/0.2
```

4. Configure the IPsec VPN options with the address and routing instance for the local gateway—for example, 192.168.255.2:

```bash
[edit services]
user@host# set service-set TEST ipsec-vpn-options local-gateway 192.168.255.2
```

5. Configure the IPsec VPN options with the IKE access profile for dynamic peers, which is IKE-profile-TEST in this example:

```bash
[edit services]
user@host# set service-set TEST ipsec-vpn-options ike-access-profile IKE-profile-TEST
```

6. Configure a service set with IPsec VPN rules, which is test-IPsec-rule in this example:
The following sample output shows the configuration of the service set configuration referencing the IKE profile and the IPsec rule:

```
[edit services]
user@host# set service-set TEST ipsec-vpn-rules test-IPsec-rule
```

See Also
- Configuring IPsec Service Sets on page 600

Related Documentation
- Configuring IKE Proposals on page 571
- Configuring IKE Policies on page 576
- Configuring IPsec Proposals on page 584
- Configuring IPsec Policies on page 588
- Configuring IPsec Rules on page 592
- Tracing Junos VPN Site Secure Operations on page 610
- Configuring an IKE Access Profile
- Configuring IPsec Service Sets on page 600

Example: Configuring Junos VPN Site Secure on MS-MIC and MS-MPC

NOTE: You can follow the same procedure and use the same configuration given in this example, to configure Junos VPN Site Secure (previously known as IPsec features) on MS-MPCs.

This example contains the following sections:

- Requirements on page 622
- Overview on page 622
- Configuration on page 623
- Verification on page 631
Requirements

This example uses the following hardware and software components:

- Two MX Series routers with MS-MICs
- Junos OS Release 13.2 or later

Overview

Junos OS Release 13.2, extends support for Junos VPN Site Secure (formerly known as IPsec features) to the newly-introduced Multiservices MIC and MPC (MS-MIC and MS-MPC) on MX Series routers. The Junos OS extension-provider packages come preinstalled and preconfigured on the MS-MIC and MS-MPC.

The following Junos VPN Site Secure features are supported on the MS-MIC and MS-MPC in Release 13.2:

- Dynamic End Points (DEP)
- Encapsulating Security Payload (ESP) protocol
- Dead Peer Detection (DPD) trigger messages
- Sequence Number Rollover notifications
- Static IPsec tunnels with next-hop-style and interface-style service sets

However, in Junos OS Release 13.2, the Junos VPN Site Secure support on the MS-MIC and MS-MPC is limited to IPv4 traffic. Passive module tunneling is not supported on MS-MICs and MS-MPCs.

Figure 32 on page 622 shows the IPsec VPN tunnel topology.

Figure 32: IPsec VPN Tunnel Topology

This example shows configuration of two routers, Router 1 and Router 2, that have an IPsec VPN tunnel configured between them.

While configuring the routers, note the following points:

- The IP address you configure for source-address under the [edit services ipsec-vpn rule name term term from] hierarchy level on Router 1 must be the same as the IP address you configure for destination-address under the same hierarchy on Router 2, and vice versa.
- The IP address of the remote-gateway you configure under the [edit services ipsec-vpn rule name term term then] hierarchy level should match the IP address of the
local-gateway you configure under the [edit services service-set name ipsec-vpn-options] hierarchy level of Router 2, and vice versa.

Configuration

This section contains:

- Configuring Router 1 on page 625
- Configuring Router 2 on page 628

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Configuring Interfaces on Router 1

```text
set interfaces ms-4/0/0 unit 0 family inet
set interfaces ms-4/0/0 unit 1 family inet
set interfaces ms-4/0/0 unit 1 family inet6
set interfaces ms-4/0/0 unit 1 service-domain inside
set interfaces ms-4/0/0 unit 2 family inet
set interfaces ms-4/0/0 unit 2 family inet6
set interfaces ms-4/0/0 unit 2 service-domain outside
set interfaces xe-0/2/0 unit 0 family inet address 10.0.1.1/30
```

Configuring IPsec VPN Service on Router 1

```text
set services ipsec-vpn rule vpn_rule_ms_4_0_01 term term11 from source-address 172.16.0.0/16
set services ipsec-vpn rule vpn_rule_ms_4_0_01 term term11 from destination-address 192.168.0.0/16
set services ipsec-vpn rule vpn_rule_ms_4_0_01 term term11 then remote-gateway 10.0.1.2
set services ipsec-vpn rule vpn_rule_ms_4_0_01 term term11 then dynamic ike-policy ike_policy_ms_4_0_0
set services ipsec-vpn rule vpn_rule_ms_4_0_01 term term11 then dynamic ipsec-policy ipsec_policy_ms_4_0_0
set services ipsec-vpn rule vpn_rule_ms_4_0_01 term term11 then anti-replay-window-size 4096
set services ipsec-vpn rule vpn_rule_ms_4_0_01 term term11 then anti-replay-window-size 4096
set services ipsec-vpn rule vpn_rule_ms_4_0_01 match-direction input
set services ipsec-vpn ipsec proposal ipsec_proposal_ms_4_0_0 protocol esp
set services ipsec-vpn ipsec proposal ipsec_proposal_ms_4_0_0 authentication-algorithm hmac-sha1-96
set services ipsec-vpn ipsec proposal ipsec_proposal_ms_4_0_0 encryption-algorithm 3des-cbc
set services ipsec-vpn ipsec policy ipsec_policy_ms_4_0_0 perfect-forward-secrecy keys group2
set services ipsec-vpn ipsec policy ipsec_policy_ms_4_0_0 proposals ipsec_proposal_ms_4_0_0
set services ipsec-vpn ike proposal ike_proposal_ms_4_0_0 authentication-method pre-shared-keys
set services ipsec-vpn ike proposal ike_proposal_ms_4_0_0 dh-group group2
set services ipsec-vpn ike policy ike_policy_ms_4_0_0 version 2
set services ipsec-vpn ike policy ike_policy_ms_4_0_0 proposals ike_proposal_ms_4_0_0
set services ipsec-vpn ike policy ike_policy_ms_4_0_0 pre-shared-key ascii-text secret-data
```
Configuring a Service on Router 1

set services service-set ipsec_ss_ms_4_0_01 next-hop-service inside-service-interface ms-4/0/0.1
set services service-set ipsec_ss_ms_4_0_01 next-hop-service outside-service-interface ms-4/0/0.2
set services service-set ipsec_ss_ms_4_0_01 ipsec-vpn-options local-gateway 10.0.1.1
set services service-set ipsec_ss_ms_4_0_01 ipsec-vpn-rules vpn_rule_ms_4_0_01

set routing-options static route 192.168.0.0/16 next-hop ms-4/0/0.1

Configuring Routing Options on Router 1

Configuring Interfaces on Router 2

set interfaces ms-1/0/0 unit 0 family inet
set interfaces ms-1/0/0 unit 1 family inet
set interfaces ms-1/0/0 unit 1 family inet6
set interfaces ms-1/0/0 unit 1 service-domain inside
set interfaces ms-1/0/0 unit 2 family inet
set interfaces ms-1/0/0 unit 2 family inet6
set interfaces ms-1/0/0 unit 2 service-domain outside
set interfaces ge-2/0/0 unit 0 family inet address 10.0.1.2/30

Configuring IPsec VPN Service on Router 2

set services ipsec-vpn rule vpn_rule_ms_5_2_01 term term11 from source-address 192.168.0.0/16
set services ipsec-vpn rule vpn_rule_ms_5_2_01 term term11 from destination-address 172.16.0.0/16
set services ipsec-vpn rule vpn_rule_ms_5_2_01 term term11 then remote-gateway 10.0.1.1
set services ipsec-vpn rule vpn_rule_ms_5_2_01 term term11 then dynamic ike-policy ike_policy_ms_5_2_0
set services ipsec-vpn rule vpn_rule_ms_5_2_01 term term11 then dynamic ipsec-policy ipsec_policy_ms_5_2_0
set services ipsec-vpn rule vpn_rule_ms_5_2_01 term term11 then anti-replay-window-size 4096
set services ipsec-vpn rule vpn_rule_ms_5_2_01 match-direction input
set services ipsec-vpn ipsec proposal ipsec_proposal_ms_5_2_0 protocol esp
set services ipsec-vpn ipsec proposal ipsec_proposal_ms_5_2_0 authentication-algorithm hmac-sha1-96
set services ipsec-vpn ipsec proposal ipsec_proposal_ms_5_2_0 encryption-algorithm 3des-cbc
set services ipsec-vpn ipsec policy ipsec_policy_ms_5_2_0 perfect-forward-secrecy keys group2
set services ipsec-vpn ipsec policy ipsec_policy_ms_5_2_0 proposals ipsec_proposal_ms_5_2_0
set services ipsec-vpn ike proposal ike_proposal_ms_5_2_0 authentication-method pre-shared-keys
set services ipsec-vpn ike proposal ike_proposal_ms_5_2_0 dh-group group2
set services ipsec-vpn ike policy ike_policy_ms_5_2_0 version 2
set services ipsec-vpn ike policy ike_policy_ms_5_2_0 proposals ike_proposal_ms_5_2_0
set services ipsec-vpn ike policy ike_policy_ms_5_2_0 pre-shared-key ascii-text secret-data
set services ipsec-vpn establish-tunnels immediately

Configuring a Service on Router 2

set services service-set ipsec_ss_ms_5_2_01 next-hop-service inside-service-interface ms-1/0/0.1
set services service-set ipsec_ss_ms_5_2_01 next-hop-service outside-service-interface ms-1/0/0.2
set services service-set ipsec_ss_ms_5_2_01 ipsec-vpn-options local-gateway 10.0.1.2
set services service-set ipsec_ss_ms_5_2_01 ipsec-vpn-rules vpn_rule_ms_5_2_01

set routing-options static route 172.16.0.0/16 next-hop ms-1/0/0.1

Configuring Routing Options on Router 2

Configuring Router 1

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

![CLI User Guide](https://www.juniper.net/support/documentation/Tutorialский/CLI%20User%20Guide.png)

NOTE: Starting with Release 13.2, the Junos OS extension-provider packages come preinstalled on multiservices MICs and MPCs (MS-MICs and MS-MPCs). The adaptive-services configuration at the [edit chassis fpc number pic number] hierarchy level is preconfigured on these cards.

1. Configure the interface properties such as family, service-domain, and unit.

```bsh
user@router1# set interfaces ms-4/0/0 unit 0 family inet
user@router1# set interfaces ms-4/0/0 unit 1 family inet
user@router1# set interfaces ms-4/0/0 unit 1 family inet6
user@router1# set interfaces ms-4/0/0 unit 1 service-domain inside
user@router1# set interfaces ms-4/0/0 unit 2 family inet
user@router1# set interfaces ms-4/0/0 unit 2 family inet6
user@router1# set interfaces ms-4/0/0 unit 2 service-domain outside
user@router1# set interfaces xe-0/2/0 unit 0 family inet address 10.0.1.1/30
```

2. Configure IPsec properties such as address, remote-gateway, policies, match-direction, protocol, replay window size, algorithm details, secrecy keys, proposal, authentication method, groups, and version.

```bsh
user@router1# set services ipsec-vpn rule vpn_rule_ms_4_0_01 term term11 from source-address 172.16.0.0/16
user@router1# set services ipsec-vpn rule vpn_rule_ms_4_0_01 term term11 from destination-address 192.168.0.0/16
user@router1# set services ipsec-vpn rule vpn_rule_ms_4_0_01 term term11 then remote-gateway 10.0.1.2
user@router1# set services ipsec-vpn rule vpn_rule_ms_4_0_01 term term11 then dynamic ike-policy ike_policy_ms_4_0_0
user@router1# set services ipsec-vpn rule vpn_rule_ms_4_0_01 term term11 then dynamic ipsec-policy ipsec_policy_ms_4_0_0
user@router1# set services ipsec-vpn rule vpn_rule_ms_4_0_01 term term11 then anti-replay-window-size 4096
user@router1# set services ipsec-vpn rule vpn_rule_ms_4_0_01 match-direction input
```
user@router1# set services ipsec-vpn ipsecProposal ipsec_proposal_ms_4_0_0 protocol esp
user@router1# set services ipsec-vpn ipsecProposal ipsec_proposal_ms_4_0_0 authentication-algorithm hmac-sha1-96
user@router1# set services ipsec-vpn ipsecProposal ipsec_proposal_ms_4_0_0 encryption-algorithm 3des-cbc
user@router1# set services ipsec-vpn ipsecPolicy ipsec_policy_ms_4_0_0 perfect-forward-secrecy keys group2
user@router1# set services ipsec-vpn ipsecPolicy ipsec_policy_ms_4_0_0 proposals ipsec_proposal_ms_4_0_0
user@router1# set services ipsec-vpn ikeProposal ike_proposal_ms_4_0_0 authentication-method pre-shared-keys
user@router1# set services ipsec-vpn ikeProposal ike_proposal_ms_4_0_0 dh-group group2
user@router1# set services ipsec-vpn ikePolicy ike_policy_ms_4_0_0 version 2
user@router1# set services ipsec-vpn ikePolicy ike_policy_ms_4_0_0 proposals ike_proposal_ms_4_0_0
user@router1# set services ipsec-vpn ikePolicy ike_policy_ms_4_0_0 pre-shared-key ascii-text secret-key

3. Configure a service set, the ipsec-vpn options, and rules.

user@router1# set services service-set ipsec_ss_ms_4_0_01 next-hop-service inside-service-interface ms-4/0/0.1
user@router1# set services service-set ipsec_ss_ms_4_0_01 next-hop-service outside-service-interface ms-4/0/0.2
user@router1# set services service-set ipsec_ss_ms_4_0_01 ipsec-vpn-options local-gateway 10.0.1.1
user@router1# set services service-set ipsec_ss_ms_4_0_01 ipsec-vpn-rules vpn_rule_ms_4_0_01

4. Configure routing options static route and next hop.

user@router1# set routing-options static route 192.168.0.0/16 next-hop ms-4/0/0.1

Results From the configuration mode of Router 1, confirm your configuration by entering the show interfaces, show services ipsec-vpn, and show services service-set commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@router1# show interfaces ms-4/0/0.1
unit 0 {
 family inet;
}
unit 1 {
 family inet;
 family inet6;
 service-domain inside;
}
unit 2 {
 family inet;
 family inet6;
 service-domain outside;
}
}
xe-0/2/0 {
 unit 0 {
 family inet {
 address 10.0.1.1/30;
 }
 }
}

user@router1# show services ipsec-vpn
rule vpn_rule_ms_4_0_01 {
 term term11 {
 from {
 source-address [172.16.0.0/16;]
 destination-address [192.168.0.0/16;]
 }
 then {
 remote-gateway 10.0.1.2;
 dynamic {
 ike-policy ike_policy_ms_4_0_0;
 ipsec-policy ipsec_policy_ms_4_0_0;
 }
 anti-replay-window-size 4096;
 }
 }
 match-direction input;
}

ipsec {
 proposal ipsec_proposal_ms_4_0_0 {
 protocol esp;
 authentication-algorithm hmac-sha1-96;
 encryption-algorithm 3des-cbc;
 }
 policy ipsec_policy_ms_4_0_0 {
 perfect-forward-secrecy {
 keys group2;
 }
 proposals ipsec_proposal_ms_4_0_0;
 }
}
ike {
 proposal ike_proposal_ms_4_0_0 {
 authentication-method pre-shared-keys;
 dh-group group2;
 }
Configuring Router 2

1. Configure the interface properties such as family, service-domain, and unit.

   ```
   user@router2# set interfaces ms-1/0/0 services-options inactivity-non-tcp-timeout 600
   user@router2# set interfaces ms-1/0/0 unit 0 family inet
   user@router2# set interfaces ms-1/0/0 unit 1 family inet
   user@router2# set interfaces ms-1/0/0 unit 1 family inet6
   user@router2# set interfaces ms-1/0/0 unit 1 service-domain inside
   user@router2# set interfaces ms-1/0/0 unit 2 family inet
   user@router2# set interfaces ms-1/0/0 unit 2 family inet6
   user@router2# set interfaces ge-2/0/0 unit 0 family inet adddress 10.0.1.2/30
   ```

2. Configure IPsec properties such as address, remote-gateway, policies, match-direction, protocol, replay window size, algorithm details, secrecy keys, proposal, authentication method, groups, and version.

   ```
   user@router2# set services ipsec-vpn rule vpn_rule_ms_5_2_01 term term11 from source-address 192.168.0.0/16
   user@router2# set services ipsec-vpn rule vpn_rule_ms_5_2_01 term term11 from destination-address 172.16.0.0/16
   user@router2# set services ipsec-vpn rule vpn_rule_ms_5_2_01 term term11 then remote-gateway 10.0.1.1
   user@router2# set services ipsec-vpn rule vpn_rule_ms_5_2_01 term term11 then dynamic ike-policy ike_policy_ms_5_2_0
   user@router2# set services ipsec-vpn rule vpn_rule_ms_5_2_01 term term11 then dynamic ipsec-policy ipsec_policy_ms_5_2_0
   user@router2# set services ipsec-vpn rule vpn_rule_ms_5_2_01 term term11 then anti-replay-window-size 4096
   user@router2# set services ipsec-vpn rule vpn_rule_ms_5_2_01 match-direction input
   ```
3. Configure a service set such as next-hop-service, and the ipsec-vpn-options.

 user@router2# set services service-set ipsec_ss_ms_5_2_0 next-hop-service inside-service-interface ms-1/0/0.1
 user@router2# set services service-set ipsec_ss_ms_5_2_0 next-hop-service outside-service-interface ms-1/0/0.2
 user@router2# set services service-set ipsec_ss_ms_5_2_0 ipsec-vpn-options local-gateway 10.0.1.2
 user@router2# set services service-set ipsec_ss_ms_5_2_0 ipsec-vpn-rules vpn_rule_ms_5_2_0

4. Configure routing options static route and the next hop.

 user@router2# set routing-options static route 172.16.0.0/16 next-hop ms-1/0/0.1

Results

From the configuration mode of Router 2, confirm your configuration by entering the show interfaces, show services ipsec-vpn, and show services service-set commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.
}
unit 2 {
 family inet;
 family inet6;
 service-domain outside;
}
}
ge-2/0/0 {
 unit 0 {
 family inet {
 address 10.0.1.2/30;
 }
 }
}

user@router2# show services ipsec-vpn
rule vpn_rule_ms_5_2_01 {
 term term11 {
 from {
 source-address [
 192.168.0.0/16;
]
 destination-address [
 172.16.0.0/16;
]
 }
 then {
 remote-gateway 10.0.1.1;
 dynamic {
 ike-policy ike_policy_ms_5_2_0;
 ipsec-policy ipsec_policy_ms_5_2_0;
 }
 anti-replay-window-size 4096;
 }
 }
 match-direction input;
}

ipsec {
 proposal ipsec_proposal_ms_5_2_0 {
 protocol esp;
 authentication-algorithm hmac-sha1-96;
 encryption-algorithm 3des-cbc;
 }
 policy ipsec_policy_ms_5_2_0 {
 perfect-forward-secrecy {
 keys group2;
 }
 proposals ipsec_proposal_ms_5_2_0;
 }
}
ike {
 proposal ike_proposal_ms_5_2_0 {
 authentication-method pre-shared-keys;
 dh-group group2;
 }
}
policy ike_policy_ms_5_2_0 {
 version 2;
 proposals ike_proposal_ms_5_2_0;
 pre-shared-key ascii-text "$9ABC123"; ##SECRET-DATA
}
}
establish-tunnels immediately;

user@router2# show services service-set ipsec_ss_ms_5_2_01 {
 next-hop-service {
 inside-service-interface ms-1/0/0.1;
 outside-service-interface ms-1/0/0.2;
 }
 ipsec-vpn-options {
 local-gateway 10.0.1.2;
 }
 ipsec-vpn-rules vpn_rule_ms_5_2_01;
}

user@router2# show routing-options static {
 route 172.16.0.0/16 next-hop ms-1/0/0.1;
}

Verification

- Verifying Tunnel Creation on page 631
- Verifying Traffic Flow Through the DEP Tunnel on page 632
- Verifying IPsec Security Associations for the Service Set on page 633

Verifying Tunnel Creation

Purpose Verify that Dynamic End Points are created.
Meaning The output shows that the IPSec SAs are up on the router with their state as Installed. The IPSec tunnel is up and ready to send traffic over the tunnel.

Verifying Traffic Flow Through the DEP Tunnel

Purpose Verify traffic flow across the newly-created DEP tunnel.

Action Run the following command on Router 2:

```
user@router2> show services ipsec-vpn ipsec statistics
```

```
PIC: ms-1/0/0, Service set: ipsec_ss_ms_5_2_01

ESP Statistics:
Encrypted bytes: 153328
Decrypted bytes: 131424
Encrypted packets: 2738
Decrypted packets: 2738

AH Statistics:
Input bytes: 0
Output bytes: 0
Input packets: 0
Output packets: 0
Errors:
AH authentication failures: 0
ESP authentication failures: 0
ESP decryption failures: 0
```
Verifying IPsec Security Associations for the Service Set

Purpose
Verify that the security associations configured for the service set are functioning correctly.

Action
Run the following command on Router 2:

```
user@router2> show services ipsec-vpn ipsec security-associations ipsec_ss_ms_5_2_01
```

```
Service set: ipsec_ss_ms_5_2_01, IKE Routing-instance: default

Rule: vpn_rule_ms_5_2_01, Term: term11, Tunnel index: 1
Local gateway: 10.0.1.2, Remote gateway: 10.0.1.1
IPSec inside interface: ms-1/0/0.1, Tunnel MTU: 1500
Direction SPI     AUX-SPI     Mode     Type     Protocol
inbound 1612447024 0 tunnel     dynamic  ESP
outbound 1824720964 0 tunnel     dynamic  ESP
```

Example: Configuring a Route-based IPSec Tunnel from an ACX device to an SRX device

This example shows how to configure a route-based IPsec tunnel on ACX devices, and contains the following sections:

- Requirements on page 633
- Overview on page 633
- Configuration on page 634

Requirements

This example uses the following hardware and software components:

- ACX1100-AC router
- SRX Series device
- Junos OS Release 15.1X54-D50 and later.

Overview

Junos OS enables you to configure route-based IPsec tunnel between two private networks. In this example, you configure a route-based IPsec tunnel between two private networks with ACX1100-AC router on one end and a SRX Series device on the other end.
This example only describes the required CLI configurations for configuring IPsec tunnel on an ACX1100-AC router.

For configuring IPsec tunnel on a SRX Series device, see Example: Configuring a Route-Based VPN and VPN Feature Guide for Security Devices.

Figure 33 on page 634 shows an example of a route-based IPsec tunnel topology.

Figure 33: Route-based IPsec Tunnel Topology

Configuration

- Configure IPsec Tunnel on ACX1100-AC Router, on page 634

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set chassis fpc 0 pic 0 tunnel-services bandwidth 1g
set chassis fpc 0 service-package bundle-nat-ipsec
set interfaces si-0/0/0 unit 0 family inet
set interfaces si-0/0/0 unit 1 family inet
set interfaces si-0/0/0 unit 1 service-domain inside
set interfaces si-0/0/0 unit 2 family inet
set interfaces si-0/0/0 unit 2 service-domain outside
set services ipsec-vpn ike proposal ike_standard authentication-method pre-shared-keys
set services ipsec-vpn ike proposal ike_standard dh-group group2
set services ipsec-vpn ike proposal ike_standard authentication-algorithm sha1
set services ipsec-vpn ike proposal ike_standard encryption-algorithm 3des-cbc
set services ipsec-vpn ike proposal ike_standard lifetime-seconds 3600
set services ipsec-vpn ike policy CORE_policy proposals ike_standard
set services ipsec-vpn ike policy CORE_policy pre-shared-key ascii-text "$9S0xJZIEyM87s2alK2aZU.mO1R"*
set services ipsec-vpn ipsec proposal ipsec_standard protocol esp
set services ipsec-vpn ipsec proposal ipsec_standard authentication-algorithm hmac-sha1-96
set services ipsec-vpn ipsec proposal ipsec_standard encryption-algorithm aes-128-cbc
set services ipsec-vpn ipsec proposal ipsec_standard lifetime-seconds 600
set services ipsec-vpn ipsec policy ipsec_standard perfect-forward-secrecy keys group2
set services ipsec-vpn ipsec policy ipsec_standard proposals ipsec_standard
set services service-set ss-rule-1 next-hop-service inside-service-interface si-0/0/0.1
set services service-set ss-rule-1 next-hop-service outside-service-interface si-0/0/0.2
set services service-set ss-rule-1 ipsec-vpn-options local-gateway 10.5.5.5
set services service-set ss-rule-1 ipsec-vpn-rules ipsec-rule-1
set services ipsec-vpn rule ipsec-rule-1 term 1 from source-address 0.0.0.0/0
```
set services ipsec-vpn rule ipsec-rule-1 term 1 from destination-address 0.0.0.0/0
set services ipsec-vpn rule ipsec-rule-1 term 1 then remote-gateway 10.6.6.6
set services ipsec-vpn rule ipsec-rule-1 term 1 then dynamic ike-policy CORE_policy
set services ipsec-vpn rule ipsec-rule-1 term 1 then dynamic ipsec-policy ipsec_standard
set services ipsec-vpn rule ipsec-rule-1 match-direction input
set services ipsec-vpn establish-tunnels immediately
set routing-options static route 10.2.2.0/24 next-hop si-0/0/0.1
set interfaces ge-0/0/0 description Unused
set interfaces ge-0/0/1 unit 0 family inet address 10.1.1.254/24
set interfaces ge-0/0/1 description Unused
set interfaces ge-0/0/1/1 description Unused
set interfaces ge-0/0/1/2 description Unused
set interfaces ge-0/0/1/3 description to_Internet
set interfaces ge-0/0/1/3 mtu 1514
set interfaces ge-0/0/1/3 unit 0 family inet address 10.5.5.5/24

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure IPsec tunnel on an ACX1100-AC router, you need to:

1. Create and configure a service interface.

 [edit]
 user@host# set chassis fpc 0 pic 0 tunnel-services bandwidth 1g
 user@host# set chassis fpc 0 service-package bundle-nat-ipsec
 user@host# set interfaces si-0/0/0 unit 0 family inet
 user@host# set interfaces si-0/0/0 unit 0 family inet
 user@host# set interfaces si-0/0/0 unit 1 service-domain inside
 user@host# set interfaces si-0/0/0 unit 2 family inet
 user@host# set interfaces si-0/0/0 unit 2 service-domain outside

2. Create IPsec and IKE security associations.

 [edit]
 user@host# set services ipsec-vpnike proposalike_standard authentication-method pre-shared-keys
 user@host# set services ipsec-vpnike proposalike_standard dh-group group2
 user@host# set services ipsec-vpnike proposalike_standard authentication-algorithm sha1
 user@host# set services ipsec-vpnike proposalike_standard encryption-algorithm 3des-cbc
 user@host# set services ipsec-vpnike proposalike_standard lifetime-seconds 3600
 user@host# set services ipsec-vpnike policy CORE_policy proposals like_standard
 user@host# set services ipsec-vpnike policy CORE_policy pre-shared-key ascii-text
 “$9$0xJZ1EyM87s2alK2aZU.mOIR”
 user@host# set services ipsec-vpnike proposalike_standard protocol esp
 user@host# set services ipsec-vpnike proposalike_standard authentication-algorithm hmac-shal-96
 user@host# set services ipsec-vpnike proposalike_standard encryption-algorithm aes-128-cbc
user@host# set services ipsec-vpn ipsec proposal ipsec_standard lifetime-seconds 600
user@host# set services ipsec-vpn ipsec policy ipsec_standard
 perfect-forward-secrecy keys group2
user@host# set services ipsec-vpn ipsec policy ipsec_standard proposals
 ipsec_standard

3. Create a service set to define a selected traffic.

 [edit]
 user@host# set services service-set ss-rule-1 next-hop-service
 inside-service-interface si-0/0/0.1
 user@host# set services service-set ss-rule-1 next-hop-service
 outside-service-interface si-0/0/0.2
 user@host# set services service-set ss-rule-1 ipsec-vpn-options local-gateway
 10.5.5.5
 user@host# set services service-set ss-rule-1 ipsec-vpn-rules ipsec-rule-1
 user@host# set services ipsec-vpn rule ipsec-rule-1 term 1 from source-address
 0.0.0.0/0
 user@host# set services ipsec-vpn rule ipsec-rule-1 term 1 from destination-address
 0.0.0.0/0
 user@host# set services ipsec-vpn rule ipsec-rule-1 term 1 then remote-gateway
 10.6.6.6
 user@host# set services ipsec-vpn rule ipsec-rule-1 term 1 then dynamic ike-policy
 CORE_policy
 user@host# set services ipsec-vpn rule ipsec-rule-1 term 1 then dynamic ipsec-policy
 ipsec_standard
 user@host# set services ipsec-vpn rule ipsec-rule-1 match-direction input
 user@host# set services ipsec-vpn establish-tunnels immediately

4. Establish routes to send traffic to a service plane.

 [edit]
 user@host# set routing-options static route 10.2.2.0/24 next-hop si-0/0/0.1

5. Create network interfaces.

 [edit]
 user@host# set interfaces ge-0/0/0 description Unused
 user@host# set interfaces ge-0/0/1 unit 0 family inet address 10.1.1.254/24
 user@host# set interfaces ge-0/1/0 description Unused
 user@host# set interfaces ge-0/1/1 description Unused
 user@host# set interfaces ge-0/1/2 description Unused
 user@host# set interfaces ge-0/1/3 description to Internet
 user@host# set interfaces ge-0/1/3 mtu 1514
 user@host# set interfaces ge-0/1/3 unit 0 family inet address 10.5.5.5/24

6. Commit the configuration.

 [edit]
user@host# commit

Related Documentation

- IPsec for ACX Series Overview on page 545
- Configuring Security Associations on page 549
- Configuring IPsec Proposals on page 584
- Configuring IKE Proposals on page 571
- Service Sets on page 600
- Configuring IPsec Service Sets on page 600
Enhancing Security with Static IPsec over VRF

Example: Configuring Statically Assigned IPsec Tunnels over a VRF Instance

This example shows how to configure a statically assigned IPsec tunnel over a VRF instance, and contains the following sections:

- Requirements on page 639
- Overview on page 639
- Configuration on page 639

Requirements

This example uses the following hardware and software components:

- M Series, MX Series, or T Series router that is configured as a provider edge router.
- Junos OS Release 9.4 and later.

No special configuration beyond device initialization is required before you can configure this feature.

Overview

Junos OS enables you to configure statically assigned IPsec tunnels on Virtual Routing and Forwarding (VRF) instances. Ability to configure IPsec tunnels on VRF instances enhances network segmentation and security. You can have multiple customer tunnels configured on the same PE router over VRF instances. Each VRF instance acts as logical router with an exclusive routing table.

Configuration

This example shows the configuration of an IPsec tunnel over a VRF instance on a provider edge router, and provides step-by-step instructions for completing the required configuration.
This section contains:

- Configuring the Provider Edge Router on page 640
- Results on page 643

Configuring the Provider Edge Router

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```plaintext
set interfaces ge-0/3/0 unit 0 family inet address 10.6.6.6/32
set interfaces ge-1/1/0 description "teller ge-0/1/0"
set interfaces ge-1/1/0 unit 0 family inet address 10.21.1/16
set interfaces ms-1/2/0 unit 0 family inet address 10.7.7.7/32
set interfaces ms-1/2/0 unit 1 family inet
set interfaces ms-1/2/0 unit 1 service-domain inside
set interfaces ms-1/2/0 unit 2 family inet
set interfaces ms-1/2/0 unit 2 service-domain outside
set policy-options policy-statement vpn-export then community add vpn-community
set policy-options policy-statement vpn-export then accept
set policy-options policy-statement vpn-import term a from community vpn-community
set policy-options policy-statement vpn-import term a then accept
set policy-options community vpn-community members target:100:20
set routing-instances vrf instance-type vrf
set routing-instances vrf interface ge-0/3/0.0
set routing-instances vrf interface ms-1/2/0.1
set routing-instances vrf route-distinguisher 192.168.0.1:1
set routing-instances vrf import vpn-import
set routing-instances vrf export vpn-export
set routing-instances vrf routing-options static route 10.0.0.0/0 next-hop ge-0/3/0.0
set routing-instances vrf routing-options static route 10.11.111/32 next-hop ge-0/3/0.0
set routing-instances vrf routing-options static route 10.8.8.1/32 next-hop ms-1/2/0.1
set services ipsec-vpn ipsec proposal demo_ipsec_proposal protocol esp
set services ipsec-vpn ipsec proposal demo_ipsec_proposal authentication-algorithm hmac-sha1-96
set services ipsec-vpn ipsec proposal demo_ipsec_proposal encryption-algorithm 3des-cbc
set services ipsec-vpn ipsec policy demo_ipsec_policy perfect-forward-secrecy keys group2
set services ipsec-vpn ipsec policy demo_ipsec_policy proposals demo_ipsec_proposal pre-shared-keys
set services ipsec-vpn ike proposal demo_ikey_proposal authentication-method pre-shared-keys
set services ipsec-vpn ike proposal demo_ikey_proposal dh-group group2
set services ipsec-vpn ike policy demo_ikey_policy proposals demo_ikey_policy
set services ipsec-vpn rule demo-rule term demo-term then remote-gateway 10.21.2.1
set services ipsec-vpn rule demo-rule term demo-term then dynamic ike-policy demo_ikey_policy
set services ipsec-vpn rule demo-rule match-direction input
set services service-set demo-service-set next-hop-service inside-service-interface ms-1/2/0.1
set services service-set demo-service-set next-hop-service outside-service-interface ms-1/2/0.2
```
set services service-set demo-service-set ipsec-vpn-options local-gateway 10.21.1.1
set services service-set demo-service-set ipsec-vpn-rules demo-rule

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To configure a statically assigned IPsec tunnel on a VRF instance:

1. Configure the interfaces. In this step, you configure two Ethernet (*ge*) interfaces, one services interface (*ms-*), and also the service-domain properties for the logical interfaces of the services interface. Note that the logical interface that is marked as the inside interface applies the configured service on the traffic, whereas the one that is marked as the outside interface acts as the egress point for the traffic on which the inside interface has applied the service.

   ```
   [edit interfaces]
   user@PE1# set ge-0/3/0 unit 0 family inet address 10.6.6.6/32
   user@PE1# set ge-1/1/0 description "teller ge-0/1/0"
   user@PE1# set ge-1/1/0 unit 0 family inet address 10.21.1.1/16
   user@PE1# set ms-1/2/0 unit 0 family inet address 10.7.7.7/32
   user@PE1# set ms-1/2/0 unit 1 family inet
   user@PE1# set ms-1/2/0 unit 1 service-domain inside
   user@PE1# set ms-1/2/0 unit 2 family inet
   user@PE1# set ms-1/2/0 unit 2 service-domain outside
   ```

2. Configure a routing policy to specify route import and export criteria for the VRF instance. The import and export policies defined in this step are referenced from the routing-instance configuration in the next step.

   ```
   [edit policy-options]
   user@PE1# set policy-statement vpn-export then community add vpn-community
   user@PE1# set policy-statement vpn-export then accept
   user@PE1# set policy-statement vpn-import term a from community vpn-community
   user@PE1# set policy-statement vpn-import term a then accept
   user@PE1# set community vpn-community members target:100:20
   ```

3. Configure a routing instance and specify the routing-instance type as *vrf*. Apply the import and export policies defined in the previous step to the routing instance, and specify a static route to send the IPsec traffic to the inside interface (*ms-1/2/0.1*) configured in the first step.

   ```
   [edit routing-instance]
   user@PE1# set vrf instance-type vrf
   user@PE1# set vrf interface ge-0/3/0.0
   user@PE1# set vrf interface ms-1/2/0.1
   user@PE1# set vrf route-distinguisher 192.168.0.1:1
   user@PE1# set vrf import vpn-import
   user@PE1# set vrf export vpn-export
   user@PE1# set vrf routing-options static route 10.0.0.0/0 next-hop ge-0/3/0.0
   ```
4. Configure IKE and IPsec proposals and policies, and a rule to apply the IKE policy on the incoming traffic.

 NOTE: By default, Junos OS uses IKE policy version 1.0. Junos OS Release 11.4 and later also support IKE policy version 2.0 which you must configure at [edit services ipsec-vpn ike policy policy-name pre-shared].

 [edit services]
 user@PE1# set ipsec-vpn ipsec proposal demo_ipsec_proposal protocol esp
 user@PE1# set ipsec-vpn ipsec proposal demo_ipsec_proposal authentication-algorithm hmac-sha1-96
 user@PE1# set ipsec-vpn ipsec proposal demo_ipsec_proposal encryption-algorithm 3des-cbc
 user@PE1# set ipsec-vpn ipsec policy demo_ipsec_policy perfect-forward-secrecy keys group2
 user@PE1# set ipsec-vpn ipsec policy demo_ipsec_policy proposals demo_ipsec_proposal
 user@PE1# set ipsec-vpn ike proposal demo_ike_proposal authentication-method pre-shared-keys
 user@PE1# set ipsec-vpn ike proposal demo_ike_proposal dh-group group2
 user@PE1# set ipsec-vpn ike policy demo_ike_policy proposals demo_ike_proposal
 user@PE1# set ipsec-vpn ike policy demo_ike_policy pre-shared-key ascii-text juniperkey
 user@PE1# set ipsec-vpn rule demo-rule term demo-term then remote-gateway 10.21.2.1
 user@PE1# set ipsec-vpn rule demo-rule term demo-term then dynamic ike-policy demo_ike_policy
 user@PE1# set ipsec-vpn rule demo-rule match-direction input

5. Configure a next-hop style service set. Note that you must configure the inside and outside interfaces that you configured in the first step as the inside-service-interface and outside-service-interface respectively.

 [edit services]
 user@PE1# set service-set demo-service-set next-hop-service inside-service-interface ms-1/2/0.1
 user@PE1# set service-set demo-service-set next-hop-service outside-service-interface ms-1/2/0.2
 user@PE1# set service-set demo-service-set ipsec-vpn-options local-gateway 10.21.1.1
 user@PE1# set service-set demo-service-set ipsec-vpn-rules demo-rule

6. Commit the configuration.

 [edit]
Results

From the configuration mode of Router 1, confirm your configuration by entering the `show interfaces`, `show policy-options`, `show routing-instances`, `show services ipsec-vpn`, and `show services service-set` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@PE1# show interfaces
...
  ms-1/2/0 {
      unit 0 {
        family inet {
          address 10.7.7.7/32;
        }
      }
      unit 1 {
        family inet;
        service-domain inside;
      }
      unit 2 {
        family inet;
        service-domain outside;
      }
    }
  ge-0/3/0 {
    unit 0 {
      family inet {
        address 10.6.6.6/32;
      }
    }
  }
  ge-1/1/0 {
    description "teller ge-0/1/0";
    unit 0 {
      family inet {
        address 10.21.1.1/16;
      }
    }
  }
...
```

```
user@PE1# show policy-options
policy-statement vpn-export {
  then {
    community add vpn-community;
    accept;
  }
}
policy-statement vpn-import {
```
term a {
 from community vpn-community;
 then accept;
}
}
community vpn-community members target:100:20;

user@PE1# show routing-instances
vrf {
 instance-type vrf;
 interface ge-0/3/0.0;
 interface ms-1/2/0.1;
 route-distinguisher 192.168.0.0:1;
 vrf-import vpn-import;
 vrf-export vpn-export;
 routing-options {
 static {
 route 10.0.0.0/0 next-hop ge-0/3/0.0;
 route 10.11.11.0/32 next-hop ge-0/3/0.0;
 route 10.8.8.1/32 next-hop ms-1/2/0.1;
 }
 }
}

user@PE1# show services ipsec-vpn
ipsec-vpn {
 rule demo-rule {
 term demo-term {
 then {
 remote-gateway 10.21.2.1;
 dynamic {
 ike-policy demo_ike_policy;
 }
 }
 }
 match-direction input;
}
ipsec {
 proposal demo_ipsec_proposal {
 protocol esp;
 authentication-algorithm hmac-sha1-96;
 encryption-algorithm 3des-cbc;
 }
 policy demo_ipsec_policy {
 perfect-forward-secrecy {
 keys group2;
 }
 proposals demo_ipsec_proposal;
 }
}
ike {
 proposal demo_ike_proposal {
 authentication-method pre-shared-keys;
 dh-group group2;
 }
}
policy demo_iike_policy {
 proposals demo_iike_proposal;
 pre-shared-key ascii-text "$ABC123"; ##SECRET-DATA
}
}
}

user@PE1# show services service-set demo-service-set
 next-hop-service {
 inside-service-interface ms-1/2/0.1;
 outside-service-interface ms-1/2/0.2;
 }
 ipsec-vpn-options {
 local-gateway 10.21.1.1;
 }
 ipsec-vpn-rules demo-rule;

Related Documentation
• Understanding Junos VPN Site Secure on page 531
• Configuring Security Associations on page 549
• Configuring IPsec Proposals on page 584
• Configuring IKE Proposals on page 571
CHAPTER 37

Dynamically Assigning Tunnels Using Junos VPN Site Secure

- Configuring Dynamic Endpoints for IPsec Tunnels on page 647
- Requesting for and Installing a Digital Certificates on Your Router on page 654
- Example: Configuring Dynamically Assigned Policy Based Tunnels on page 656
- Example: Configuring IKE Dynamic SAs on page 663
- Example: IKE Dynamic SA Configuration with Digital Certificates on page 681

Configuring Dynamic Endpoints for IPsec Tunnels

IPsec tunnels can also be established using dynamic peer security gateways, in which the remote ends of tunnels do not have a statically assigned IP address. Since the remote address is not known and might be pulled from an address pool each time the remote host reboots, establishment of the tunnel relies on using IKE main mode with either preshared global keys or digital certificates that accept any remote identification value. Both policy-based and link-type tunnels are supported:

- Policy-based tunnels used shared mode.
- Link-type or routed tunnels use dedicated mode. Each tunnel allocates a services interface from a pool of interfaces configured for the dynamic peers. Routing protocols can be configured to run on these services interfaces to learn routes over the IPsec tunnel that is used as a link in this scenario.

This section includes the following topics:

- Authentication Process on page 648
- Implicit Dynamic Rules on page 648
- Reverse Route Insertion on page 649
- Configuring an IKE Access Profile on page 649
- Referencing the IKE Access Profile in a Service Set on page 651
- Configuring the Interface Identifier on page 651
- Default IKE and IPsec Proposals on page 652
- Distributing Endpoint IPsec Tunnels Among Services Interfaces on page 652
Authentication Process

The remote (dynamic peer) initiates the negotiations with the local (Juniper Networks) router. The local router uses the default IKE and IPsec policies to match the proposals sent by the remote peer to negotiate the security association (SA) values. Implicit proposals contain a list of all the supported transforms that the local router expects from all the dynamic peers.

If preshared key authentication is used, the preshared key is global for a service set. When seeking the preshared key for the peer, the local router matches the peer’s source address against any explicitly configured preshared keys in that service set. If a match is not found, the local router uses the global preshared key for authentication.

Phase 2 of the authentication matches the proxy identities of the protected hosts and networks sent by the peer against a list of configured proxy identities. The accepted proxy identity is used to create the dynamic rules for encrypting the traffic. You can configure proxy identities by including the `allowed-proxy-pair` statement in the IKE access profile. If no entry matches, the negotiation is rejected.

If you do not configure the `allowed-proxy-pair` statement, the default value `ANY(0.0.0.0/0)-ANY` is applied, and the local router accepts any proxy identities sent by the peer. Both IPv4 and IPv6 addresses are accepted, but you must configure all IPv6 addresses manually.

Once the phase 2 negotiation completes successfully, the router builds the dynamic rules and inserts the reverse route into the routing table using the accepted proxy identity.

Implicit Dynamic Rules

After successful negotiation with the dynamic peer, the key management process (kmd) creates a dynamic rule for the accepted phase 2 proxy and applies it on the local AS or Multiservices PIC. The source and destination addresses are specified by the accepted proxy. This rule is used to encrypt traffic directed to one of the end hosts in the phase 2 proxy identity.

The dynamic rule includes an `ipsec-inside-interface` value, which is the interface name assigned to the dynamic tunnel. The `source-address` and `destination-address` values are accepted from the proxy ID. The `match-direction` value is `input` for next-hop-style service sets.

NOTE: You do not configure this rule; it is created by the key management process (kmd).

Rule lookup for static tunnels is unaffected by the presence of a dynamic rule; it is performed in the order configured. When a packet is received for a service set, static rules are always matched first.

Dynamic rules are matched after the rule match for static rules has failed.
Response to dead peer detection (DPD) hello messages takes place the same way with dynamic peers as with static peers. Initiating DPD hello messages from dynamic peers is not supported.

Reverse Route Insertion

Static routes are automatically inserted into the route table for those networks and hosts protected by a remote tunnel endpoint. These protected hosts and networks are known as remote proxy identities.

Each route is created based on the remote proxy network and mask sent by the peer and is inserted in the relevant route table after successful phase 1 and phase 2 negotiations.

The route preference for each static reverse route is 1. This value is necessary to avoid conflict with similar routes that might be added by the routing protocol process (rpd).

No routes are added if the accepted remote proxy address is the default (0.0.0.0/0). In this case you can run routing protocols over the IPsec tunnel to learn routes and add static routes for the traffic you want to be protected over this tunnel.

For next-hop-style service sets, the reverse routes include next hops pointing to the locations specified by the `inside-service-interface` statement.

The route table in which to insert these routes depends on where the `inside-service-interface` location is listed. If these interfaces are present in a VPN routing and forwarding (VRF) instance, then routes are added to the corresponding VRF table; otherwise, the routes are added to `inet.0`.

NOTE: Reverse route insertion takes place only for tunnels to dynamic peers. These routes are added only for next-hop-style service sets.

Configuring an IKE Access Profile

You can configure only one tunnel profile per service set for all dynamic peers. The configured preshared key in the profile is used for IKE authentication of all dynamic peers terminating in that service set. Alternatively, you can include the `ike-policy` statement to reference an IKE policy you define with either specific identification values or a wildcard (the `any-remote-id` option). You configure the IKE policy at the `[edit services ipsec-vpn ike]` hierarchy level.

The IKE tunnel profile specifies all the information needed to complete the IKE negotiation. Each protocol has its own statement hierarchy within the client statement to configure protocol-specific attribute value pairs, but only one client configuration is allowed for each profile. The following is the configuration at the `[edit access]` hierarchy level; for more information on access profiles, see the *Junos OS Administration Library*.

```
[edit access]
 profile profile-name {
    client * {
        ike {
```
NOTE: For dynamic peers, the Junos OS supports the IKE main mode with either the preshared key method of authentication or an IKE access profile that uses a local digital certificate.

- In preshared key mode, the IP address is used to identify a tunnel peer to get the preshared key information. The client value * (wildcard) means that configuration within this profile is valid for all dynamic peers terminating within the service set accessing this profile.
- In digital certificate mode, the IKE policy defines which remote identification values are allowed.

The following statements make up the IKE profile:

- **allowed-proxy-pair**—During phase 2 IKE negotiation, the remote peer supplies its network address (remote) and its peer’s network address (local). Since multiple dynamic tunnels are authenticated through the same mechanism, this statement must include the list of possible combinations. If the dynamic peer does not present a valid combination, the phase 2 IKE negotiation fails.

 By default, remote 0.0.0.0/0 local 0.0.0.0/0 is used if no values are configured. Both IPv4 and IPv6 address formats are supported in this configuration, but there are no default IPv6 addresses. You must specify even 0:0/0.

- **pre-shared-key**—Key used to authenticate the dynamic peer during IKE phase 1 negotiation. This key is known to both ends through an out-of-band secure mechanism. You can configure the value either in hexadecimal or ascii-text format. It is a mandatory value.

- **ike-policy**—Policy that defines the remote identification values corresponding to the allowed dynamic peers; can contain a wildcard value any-remote-id for use in dynamic endpoint configurations only.

- **interface-id**—Interface identifier, a mandatory attribute used to derive the logical services interface information for the session.

- **ipsec-policy**—Name of the IPsec policy that defines the IPsec policy information for the session. You define the IPsec policy at the [edit services ipsec-vpn ipsec policy policy-name] hierarchy level. If no policy is set, any policy proposed by the dynamic peer is accepted.
Referencing the IKE Access Profile in a Service Set

To complete the configuration, you need to reference the IKE access profile configured at the [edit access] hierarchy level. To do this, include the `ike-access-profile` statement at the [edit services service-set name ipsec-vpn-options] hierarchy level:

```
[edit services service-set name]  
ipsec-vpn-options {  
  local-gateway address;  
  ike-access-profile profile-name;  
}  
next-hop-service {  
  inside-service-interface interface-name;  
  outside-service-interface interface-name;  
}
```

The `ike-access-profile` statement must reference the same name as the `profile` statement you configured for IKE access at the [edit access] hierarchy level. You can reference only one access profile in each service set. This profile is used to negotiate IKE and IPsec security associations with dynamic peers only.

All interfaces referenced by the `inside-service-interface` statement within a service set must belong to the same VRF instance.

Configuring the Interface Identifier

You can configure an interface identifier for a group of dynamic peers, which specifies which adaptive services logical interface(s) take part in the dynamic IPsec negotiation. By assigning the same interface identifier to multiple logical interfaces, you can create a pool of interfaces for this purpose. To configure an interface identifier, include the `ipsec-interface-id` statement and the `dedicated` or `shared` statement at the [edit interfaces interface-name unit logical-unit-number dial-options] hierarchy level:

```
[edit interfaces interface-name unit logical-unit-number dial-options]  
ipsec-interface-id identifier;  
(dedicated | shared);  
```

Specifying the interface identifier in the `dial-options` statement makes this logical interface part of the pool identified by the `ipsec-interface-id` statement.

NOTE: Only one interface identifier can be specified at a time. You can include the `ipsec-interface-id` statement or the `l2tp-interface-id` statement, but not both.

If you configure `shared` mode, it enables one logical interface to be shared across multiple tunnels. The `dedicated` statement specifies that the logical interface is used in a dedicated mode, which is necessary when you are configuring an IPsec link-type tunnel. You must include the `dedicated` statement when you specify an `ipsec-interface-id` value.
Default IKE and IPsec Proposals

The software includes implicit default IKE and IPsec proposals to match the proposals sent by the dynamic peers. The values are shown in Table 27 on page 652; if more than one value is shown, the first value is the default.

NOTE: RSA certificates are not supported with dynamic endpoint configuration.

Table 27: Default IKE and IPsec Proposals for Dynamic Negotiations

<table>
<thead>
<tr>
<th>Statement Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit IKE Proposal</td>
<td></td>
</tr>
<tr>
<td>authentication-method</td>
<td>pre-shared keys</td>
</tr>
<tr>
<td>dh-group</td>
<td>group1, group2, group5, group14</td>
</tr>
<tr>
<td>authentication-algorithm</td>
<td>sha1, md5, sha-256</td>
</tr>
<tr>
<td>encryption-algorithm</td>
<td>3des-cbc, des-cbc, aes-128, aes-192, aes-256</td>
</tr>
<tr>
<td>lifetime-seconds</td>
<td>3600 seconds</td>
</tr>
<tr>
<td>Implicit IPsec Proposal</td>
<td></td>
</tr>
<tr>
<td>protocol</td>
<td>esp, ah, bundle</td>
</tr>
<tr>
<td>authentication-algorithm</td>
<td>hmac-sha1-96, hmac-md5-96</td>
</tr>
<tr>
<td>encryption-algorithm</td>
<td>3des-cbc, des-cbc, aes-128, aes-192, aes-256</td>
</tr>
<tr>
<td>lifetime-seconds</td>
<td>28,800 seconds (8 hours)</td>
</tr>
</tbody>
</table>

Distributing Endpoint IPsec Tunnels Among Services Interfaces

Starting in Junos OS Release 16.2R1, you can distribute IPsec tunnels with dynamic endpoints among multiple MS-MICs or among multiple service PICs of an MS-MPC. You configure tunnel distribution by configuring a next-hop IPsec service set for each service PIC's multiservices (ms-) interface. Starting in Junos OS Release 17.1R1, you can also distribute IPsec tunnels with dynamic endpoints among aggregated multiservices (AMS) interfaces of MS-MICs or MS-MPCs by configuring a next-hop IPsec service set for each AMS interface.

You can later add service PIC hardware to the MX Series router and include the service PIC in the tunnel distribution by simply adding another service set, without needing to change the configuration of the IPsec peers.
To configure tunnel distribution, perform the following steps when configuring dynamic endpoint IPsec tunnels:

- Configure a next-hop IPsec service set for each services interface or AMS interface used by the dynamic endpoint IPsec tunnel (see "Referencing the IKE Access Profile in a Service Set" on page 651). All of the service sets must:
 - Use the same type of services interface—either multiservices (ms-) interfaces or AMS (ams-) interfaces.
 - Have an interface in the outside-service statement that is in the same VPN routing and forwarding (VRF) instance as the interfaces in the other service sets.
 - Have the same local-gateway IP address.
 - Have the same ike-access-profile name.

- When configuring the interface identifier (see "Configuring the Interface Identifier" on page 651), the ipsec-interface-id identifier must be configured:
 - Only under interfaces that appear in the inside-service-set statements of the service sets.
 - With dedicated for all the interfaces, or with shared for all the interfaces.
 - Under no more than one shared unit of an interface.
 - Only under interfaces configured with service-domain inside.
 - Only under interfaces that are in the same VRF.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1</td>
<td>Starting in Junos OS Release 17.1R1, you can also distribute IPsec tunnels with dynamic endpoints among aggregated multiservices (AMS) interfaces of MS-MICs or MS-MPCs by configuring a next-hop IPsec service set for each AMS interface.</td>
</tr>
<tr>
<td>16.2</td>
<td>Starting in Junos OS Release 16.2R1, you can distribute IPsec tunnels with dynamic endpoints among multiple MS-MICs or among multiple service PICs of an MS-MPC. You configure tunnel distribution by configuring a next-hop IPsec service set for each service PIC’s multiservices (ms-) interface.</td>
</tr>
</tbody>
</table>

Related Documentation
- Configuring IKE Policies on page 576
- Configuring IPsec Rules on page 592
- Configuring IKE Proposals on page 571
- Configuring IPsec Proposals on page 584
- Configuring Security Associations on page 549
Requesting for and Installing a Digital Certificates on Your Router

A digital certificate is an electronic means for verifying your identity through a trusted third party, known as a certificate authority (CA). Alternatively, you can use a self-signed certificate to attest to your identity. The CA server you use can be owned and operated by an independent CA or by your own organization, in which case you become your own CA. If you use an independent CA, you must contact them for the addresses of their CA and certificate revocation list (CRL) servers (for obtaining certificates and CRLs) and for the information they require when submitting personal certificate requests. When you are your own CA, you determine this information yourself. The Public Key Infrastructure (PKI) provides an infrastructure for digital certificate management.

Requesting a Digital Certificate—Manual Process

To obtain digital certificates manually, you must configure a CA profile, generate a private-public key pair, create a local certificate, and load the certificates on the router. After loading the certificates, they can be referenced in your IPsec-VPN configuration.

This procedure shows how you can configure a CA profile:

1. Configure a CA profile:

 user@R2# set security pki ca-profile entrust ca-identity entrust enrollment url http://ca-1.example.com/cgi-bin/pkiclient.exe

 After you commit this configuration. The configuration on Router 2 must contain the following:

 [edit]
 security {
 pki {
 ca-profile entrust {
 ca-identity entrust;
 enrollment {
 url http://ca-1.example.com/cgi-bin/pkiclient.exe;
 }
 }
 }
 }

2. Certificate revocation list (CRL) verification is enabled by default. You can optionally specify the Lightweight Access Directory (LDAP) server where the CA stores the CRL. The certificate typically includes a certificate distribution point (CDP), which contains information about how to retrieve the CRL for the certificate. The router uses this information to download the CRL automatically. In this example, the LDAP URL is specified, which overrides the location provided in the certificate:
3. After you configure the CA profile, request a CA certificate from the trusted CA. In this example, the certificate is enrolled online and installed into the router automatically.

```
user@R2> request security pki ca-certificate enroll ca-profile entrust
Received following certificates:
Certificate: C=us, O=juniper
Certificate: C=us, O=juniper, CN=First Officer
Certificate: C=us, O=juniper, CN=First Officer
Do you want to load the above CA certificate? [yes,no] (no) yes
```

NOTE: If you obtain the CA certificate directly from the CA (for example, as an e-mail attachment or website download), you can install it with the `request security pki ca-certificate load` command.

4. Next, you must generate a private-public key pair before you can create a local certificate.

```
user@R2> request security pki generate-key-pair certificate-id local-entrust2
Generated key pair local-entrust2, key size 1024 bits
```

When the key pair is available, generate a local certificate request and send it to the CA for processing.

```
user@R2> request security pki generate-certificate-request
Certificate-id local-entrust2 domain-name router2.example.com
Filename entrust-req2 subject cn=router2.example.com
Generated certificate request
--------BEGIN CERTIFICATE REQUEST--------
MIIB0QCCAuOEAgEBAlIBAowQgYMBQGCCsGCSqGSIb3DQEBCwUGCCsGCSqGSIb3DQENBQTds
qGSIb3DQENBQTdsqGSIb3DQENBDQEBTCAeNBYAgIEhvc3QgdGVzdC1hcHBsaW5lLmNvbSBJ
bGQgdGVzdC1hdi0tcmVuY3Rpb24uY29tLzIwMjAwMjExMA0GCSqGSIb3DQEBCwUAA4GBAAbR
AwIBAgIUB3d3dy5jb2xkYmF0aW9uLmNvbTCHalZwYXl0Y29tcGx1b3Jyb29tb29tb29tb29t
MA0GCSqGSIb3DQEBCwUCAwEBMA0GCSqGSIb3DQEBCwUCAwEBMA0GCSqGSIb3DQEBCwUCAwEB
MA0GCSqGSIb3DQEBCwUCAwEBMA0GCSqGSIb3DQEBCwUCAwEBMA0GCSqGSIb3DQEBCwYCAwEA
...
H+1BPnBcXnNWyrrnSyVYyDbFj8o0Xyqog8ACDFVLzJBWrPNBYy7img/K9soDBbAs6ShZqoxfIAQABeCwcRqYJKoZIHwCAQgKOMTvgyWjAOgNVH58Af8EBAMCB4AwJAYDVR0RAQH/BBowGIlwH4xLmVz2XxhYi5qdw5pcGVyLm51dDANBkgkhFlG9wOBAQ5FAAO8gB8c2rqi55QQXh7Lcb/FdqlAL8ZMGoAN5d6cGwq4bB6a7QQGtohH40ygG3G3iH0Fz4xM3B3YuCd1dkgvcDoH3AgTiLkn7wi3x5H2qeQvss9Bv4P5nEZLNDENMoHwtoIZCIZ71F09Fe9cXtH5Qs1UtXt5pQ3y2x1e1M.5n==
-----END CERTIFICATE REQUEST-----

Fingerprint:

NOTE: You can request the creation and installation of a local certificate online with the request security pki local-certificate enroll command.

5. The trusted CA digitally signs the local certificate and returns it to you. Copy the certificate file into the router and load the certificate.

   user@R2> request security pki local-certificate load filename /tmp/router2-cert certificate-id local-entrust2

Local certificate local-entrust2 loaded successfully

NOTE: The name of the file sent to you by the CA might not match the name of the certificate identifier. However, the certificate-id name must always match the name of the key pair you generated for the router.

Related Documentation
- Example: IKE Dynamic SA Configuration with Digital Certificates on page 681

Example: Configuring Dynamically Assigned Policy Based Tunnels

This example shows how to configure dynamically assigned policy-based tunnels and contains the following sections.

- Requirements on page 656
- Overview and Topology on page 657
- Configuration on page 657
- Verification on page 662

Requirements

This example uses the following hardware and software components:

- Three M Series, MX Series or T Series routers.
- Junos OS Release 9.4 or later.
Overview and Topology

An IPsec policy for dynamic endpoints defines a combination of security parameters (IPsec proposals) used during IPsec negotiation between dynamic peer security gateways, in which the remote ends of tunnels do not have a statically assigned IP address.

A policy based VPN is a configuration with a specific VPN tunnel referenced in a policy which acts as a Tunnel. You use a Policy-based VPN if the remote VPN device is a non-Juniper device and if you must access only one subnet or one network at the remote site, across the VPN.

This example explains the IPsec dynamic endpoint tunneling topology as shown in Figure 34 on page 657.

Before you configure dynamically assigned tunnels, be sure you have:

- A local network N-1 connected to a security gateway SG-1. The exit points must have a Juniper Networks router to terminate the static and dynamic peer endpoints. The tunnel termination address on SG-1 is 10.1.1.1 and the local network address is 172.16.1.0/24.

- Two remote peer routers that obtain addresses from an ISP pool and run an RFC-compliant IKE. The remote network N-2 has the address 172.16.2.0/24 and is connected to the security gateway SG-2 with the tunnel termination address 10.2.2.2. The remote network N-3 has the address 172.16.3.0/24 and is connected to the security gateway SG-3 with the tunnel termination address 10.3.3.3.

Figure 34: IPsec Dynamic Endpoint Tunneling Topology

Configuration

To configure dynamically assigned policy based tunnels, perform these tasks:
NOTE: The interface types shown in this example are for indicative purpose only. For example, you can use so- interfaces instead of ge- and sp- instead of ms-.

- Configuring a Next-Hop SG1 Service-Set on page 659
- Results on page 660

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI, at the [edit] hierarchy level, of SG1 router.

Configuring Interfaces

set interfaces ms-0/0/0 unit 0 family inet
set interfaces ms-0/0/0 unit 1 family inet
set interfaces ms-0/0/0 unit 1 service-domain inside
set interfaces ms-0/0/0 unit 1 dial-options ipsec-interface-id demo-ipsec-interface-id
set interfaces ms-0/0/0 unit 1 dial-options mode shared
set interfaces ms-0/0/0 unit 2 family inet
set interfaces ms-0/0/0 unit 2 service-domain outside

Configuring Access Profile

set access profile demo-access-profile client * ike allowed-proxy-pair remote 172.16.2.0/24 local 172.16.1.0/24
set access profile demo-access-profile client * ike allowed-proxy-pair remote 172.16.3.0/24 local 172.16.1.0/24
set access profile demo-access-profile client * ascii-text keyfordynamicpeers
set access profile demo-access-profile client * interface-id demo-ipsec-interface-id

Configuring Service Set

set services service-set demo-service-set next-hop-service inside-service-interface ms-0/0/0.1
set services service-set demo-service-set next-hop-service outside-service-interface ms-0/0/0.2

Configuring IPsec Properties

set services ipsec-vpn ipsec proposal ipsec_proposal_demo1 protocol esp
set services ipsec-vpn ipsec proposal ipsec_proposal_demo1 authentication-algorithm hmac-sha1-96
set services ipsec-vpn ipsec proposal ipsec_proposal_demo1 encryption-algorithm 3des-cbc
set services ipsec-vpn ipsec policy demo2 perfect-forward-secrecy keys group2
set services ipsec-vpn ipsec policy demo2 proposals ipsec_proposal_demo1
set services ipsec-vpn ike proposal ike_proposal_demo1 authentication-method pre-shared-keys
set services ipsec-vpn ike proposal ike_proposal_demo1 dh-group group2
set services ipsec-vpn ike policy ike_policy_demo1 version 2
set services ipsec-vpn ike policy ike_policy_demo1 proposals ike_proposal_demo1
set services ipsec-vpn ike policy ike_policy_demo1 pre-shared-key ascii-text keyfordemo1
Configuring Routing Instances

set routing-instances demo-vrf instance-type vrf
set routing-instances demo-vrf ms-0/0/0.1
set routing-instances demo-vrf ms-0/0/0.2

Configuring a Next-Hop SG1 Service-Set

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy.

1. Configure the interfaces.

   [edit interfaces]
   user@router1# set interfaces ms-0/0/0 unit 0 family inet
   user@router1# set interfaces ms-0/0/0 unit 1 family inet
   user@router1# set interfaces ms-0/0/0 unit 1 service-domain inside
   user@router1# set interfaces ms-0/0/0 unit 1 dial-options ipsec-interface-id demo-ipsec-interface-id
   user@router1# set interfaces ms-0/0/0 unit 1 dial-options mode shared
   user@router1# set interfaces ms-0/0/0 unit 2 family inet
   user@router1# set interfaces ms-0/0/0 unit 2 service-domain outside

2. Configure the access profile.

   [edit access]
   user@router1# set profile demo-access-profile client * ike allowed-proxy-pair remote 172.16.2.0/24 local 172.16.1.0/24
   user@router1# set profile demo-access-profile client * ike ascii-text keyfordynamicpeers
   user@router1# set profile demo-access-profile client * ike interface-id demo-ipsec-interface-id

3. Configure the services set.

   [edit services]
   user@router1# set service-set demo-service-set next-hop-service inside-service-interface ms-0/0/0.1
   user@router1# set service-set demo-service-set next-hop-service outside-service-interface ms-0/0/0.2

4. Configure the IPsec properties.

   [edit services ipsec-vpn]
   user@router1# set ipsec proposal ipsec_proposal_demo1 protocol esp
   user@router1# set ipsec proposal ipsec_proposal_demo1 authentication-algorithm hmac-sha1-96
   user@router1# set ipsec proposal ipsec_proposal_demo1 encryption-algorithm 3des-cbc
   user@router1# set ipsec policy demo2 perfect-forward-secrecy keys group2
   user@router1# set ipsec policy demo2 proposals ipsec_proposal_demo1

Copyright © 2019, Juniper Networks, Inc. 659
5. Configure the routing instances.

```
[edit routing-instances]
user@router1# set demo-vrf instance-type vrf
user@router1# set demo-vrf ms-0/0/0.1
user@router1# set demo-vrf ms-0/0/0.2
```

## Results

From configuration mode of Router 1, confirm your configuration by entering the `show interfaces`, `show access`, and `show services` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
interfaces {
 ms-0/0/0 {
 unit 0 {
 family inet;
 }
 unit 1 {
 family inet;
 service-domain inside;
 dial-options {
 ipsec-interface-id demo-ipsec-interface-id;
 mode shared;
 }
 }
 unit 2 {
 family inet;
 service-domain outside;
 }
 }
}
access {
 profile demo-access-profile client * {
 ike {
 allowed-proxy-pair {
 remote 172.16.2.0/24 local 172.16.1.0/24; # Set for Network 2 connected to Network 1
 remote 172.16.3.0/24 local 172.16.1.0/24; # Set for Network 3 connected to Network 1
 }
 pre-shared-key {
 ascii-text keyfordynamicpeers;
 }
 }
 }
```


interface-id demo-ipsec-interface-id;
}
}
}
services {
  service-set demo-service-set {
    next-hop-service {
      inside-service-interface ms-0/0/0.1;
      outside-service-interface ms-0/0/0.2;
    }
    ipsec-vpn-options {
      local-gateway 1.1.1.1;
      ike-access-profile demo-access-profile;
    }
  }
  ipsec-vpn {
    ipsec {
      proposal ipsec_proposal_demo1 {
        protocol esp;
        authentication-algorithm hmac-sha1-96;
        encryption-algorithm 3des-cbc;
      }
      policy demo2 {
        perfect-forward-secrecy {
          keys group2;
        }
        proposals ipsec_proposal_demo1;
      }
    }
    ike {
      proposal ike_proposal_demo1 {
        authentication-method pre-shared-keys;
        dh-group group2;
      }
      policy ike_policy_demo1 {
        version 2;
        proposals ike_proposal_demo1;
        pre-shared-key ascii-text "$ABC123"; ##SECRET-DATA
      }
    }
  }
}
}
}

routing-instances {
  demo-vrf {
    instance-type vrf;
    interface ms-0/0/0.1;
    interface ms-0/0/0.2;
  }
}
}
Verification

Verifying That the Next-Hop SG1 Service Set with Policy-Based Tunnels Is Created

Purpose
Verify that the next-hop SG1 service set with policy-based tunnels is created.

Action
From operational mode, enter the `show route` command.

```
user@router1> show route
demo-vrf.inet.0: # Routing instance
172.11.0.0/24 *[Static/1]..
 > via ms-0/0/0.1
172.12.0.0/24 *[Static/1]..
 > via ms-0/0/0.1
```

From operational mode, enter the `show services ipsec-vpn ipsec security-associations detail` command.

```
user@router1> show services ipsec-vpn ipsec security-associations detail
rule: junos-dynamic-rule-0
term: term-0
local-gateway-address : 10.1.1.1 #Tunnel termination address on SG-1
remote-gateway-address: 10.2.2.2 #Tunnel termination address on SG-2
source-address : 0.0.0.0/0
destination-address : 0.0.0.0/0
ipsec-inside-interface: ms-0/0/0.1
term: term-1
local-gateway-address : 10.1.1.1 #Tunnel termination address on SG-1
remote-gateway-address: 10.3.3.3 #Tunnel termination address on SG-3
source-address : 0.0.0.0/0
destination-address : 0.0.0.0/0
IPSec Properties
ipsec-inside-interface: ms-0/0/0.1
match-direction: input
```

Meaning
The `show services ipsec-vpn ipsec security-associations detail` command output shows the properties that you configured.

Related Documentation
- Understanding Junos VPN Site Secure on page 531
- Configuring Security Associations on page 549
- Configuring IPsec Policies on page 588
- Configuring IKE Policies on page 576
- Tracing Junos VPN Site Secure Operations on page 610
Example: Configuring IKE Dynamic SAs

This example shows how to configure IKE dynamic SAs and contains the following sections.

- Requirements on page 663
- Overview and Topology on page 663
- Configuration on page 664
- Verification on page 677

Requirements

This example uses the following hardware and software components:

- Four M Series, MX Series, or T Series routers with multiservices interfaces installed in them.
- Junos OS Release 9.4 or later.

No special configuration beyond device initiation is required before you can configure this feature.

Overview and Topology

A security association (SA) is a simplex connection that enables two hosts to securely communicate with each other by means of IPsec.

Dynamic SAs are best suited for large-scale, geographically distributed networks where manual distribution, maintenance, and tracking of keys are difficult tasks. Dynamic SAs are configured with a set of proposals that are negotiated by the security gateways. The keys are generated as part of the negotiation and do not need to be specified in the configuration. A dynamic SA includes one or more proposals that allow you to prioritize a list of protocols and algorithms to be negotiated with the peer.

Figure 35 on page 663 shows an IPsec topology that contains a group of four routers. This configuration requires Routers 2 and 3 to establish an IPsec tunnel by using an IKE dynamic SA, enhanced authentication, and encryption. Routers 1 and 4 provide basic connectivity and are used to verify that the IPsec tunnel is operational.

Figure 35: IKE Dynamic SAs
NOTE: When you do not specify an IKE proposal, an IPsec proposal, and an IPsec policy on a MultiServices PIC, the Junos OS defaults to the highest level of encryption and authentication. As a result, the default authentication protocol is ESP, the default authentication mode is HMAC-SHA1-96, and the default encryption mode is 3DES-CBC.

Configuration

To configure IKE dynamic SA, perform these tasks:

NOTE: The interface types shown in this example are for indicative purpose only. For example, you can use so-interfaces instead of ge- and sp- instead of ms-.

- Configuring Router 1 on page 664
- Configuring Router 2 on page 666
- Configuring Router 3 on page 671
- Configuring Router 4 on page 675

Configuring Router 1

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI, at the [edit] hierarchy level, of Router 1.

```
set interfaces ge-0/0/0 description "to R2 ge-0/0/0"
set interfaces ge-0/0/0 unit 0 family inet address 10.1.12.2/30
set interfaces lo0 unit 0 family inet address 10.0.0.1/32
set routing-options router-id 10.0.0.1
set protocols ospf area 0.0.0.0 interface ge-0/0/0
set protocols ospf area 0.0.0.0 interface lo0.0
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure Router 1 for OSPF connectivity with Router 2:

1. Configure an Ethernet interface and a loopback interface.

```
[edit interfaces]
user@router1# set ge-0/0/0 description "to R2 ge-0/0/0"
user@router1# set ge-0/0/0 unit 0 family inet address 10.1.12.2/30
user@router1# set lo0 unit 0 family inet address 10.0.0.1/32
```
2. Specify the OSPF area and associate the interfaces with the OSPF area.

```text
[edit interfaces]
user@router1# set ospf area 0.0.0.0 interface ge-0/0/0.0
user@router1# set ospf area 0.0.0.0 interface lo0.0
```

3. Configure the router ID.

```text
[edit routing-options]
user@router1# set router-id 10.0.0.1
```

4. Commit the configuration.

```text
[edit]
user@router1# commit
```

**Results**  From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols ospf`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```text
user@router1# show interfaces
interfaces {
 ge-0/0/0 {
 description "To R2 ge-0/0/0";
 unit 0 {
 family inet {
 address 10.1.1.2/30;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.0.0.1/32;
 }
 }
 }
}

user@router1# show protocols ospf
protocols {
 ospf {
 area 0.0.0.0 {
 interface ge-0/0/0.0;
 interface lo0.0;
 }
 }
}
```
user@router1# show routing-options
routing-options {
    router-id 10.0.0.1;
}

Configuring Router 2

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI, at the [edit] hierarchy level, of Router 2.

```
set interfaces ge-0/0/0 description "to R1 ge-0/0/0"
set interfaces ge-0/0/0 unit 0 family inet address 10.1.12.1/30
set interfaces ge-0/0/1 description "to R3 ge-0/0/1"
set interfaces ge-0/0/1 unit 0 family inet address 10.1.15.1/30
set interfaces ms-1/2/0 services-options syslog host local services info
set interfaces ms-1/2/0 unit 0 family inet
set interfaces ms-1/2/0 unit 1 family inet
set interfaces ms-1/2/0 unit 2 service-domain inside
set interfaces ms-1/2/0 unit 2 service-domain outside
set interfaces lo0 unit 0 family inet address 10.0.0.2/32
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0
set protocols ospf area 0.0.0.0 interface lo0.0
set protocols ospf area 0.0.0.0 interface ms-1/2/0.1
set routing-options router-id 10.0.0.2
set services ipsec-vpn rule rule-ike term term-ike then remote-gateway 10.1.15.2
set services ipsec-vpn rule rule-ike term term-ike then dynamic ike-policy ike-demo-policy
set services ipsec-vpn rule rule-ike term term-ike then dynamic ipsec-policy
 ipsec-demo-policy
set services ipsec-vpn rule match-direction input
set services ipsec-vpn ike proposal ike-demo-proposal authentication-method
 pre-shared-keys
set services ipsec-vpn ike proposal ike-demo-proposal dh-group group2
set services ipsec-vpn ike policy ike-demo-policy pre-shared proposals demo-proposal
set services ipsec-vpn ike policy ike-demo-policy pre-shared pre-shared-key ascll-text
 keyfordemo
set services ipsec-vpn ipsec proposal ipsec-demo-proposal protocol esp
set services ipsec-vpn ipsec proposal ipsec-demo-proposal authentication-algorithm
 hmac-sha1-96
set services ipsec-vpn ipsec proposal ipsec-demo-proposal encryption-algorithm 3des-cbc
set services ipsec-vpn ipsec policy ipsec-demo-policy perfect-forward-secrecy keys
 group2
set services ipsec-vpn ipsec proposals ipsec-demo-proposal
set services service-set demo-service-set next-hop-service inside-service-interface
 ms-1/2/0.1
set services service-set demo-service-set next-hop-service outside-service-interface
 ms-1/2/0.2
set services service-set demo-service-set ipsec-vpn-options local-gateway 10.1.15.1
set services service-set demo-service-set ipsec-vpn-rules rule-ike
```
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure OSPF connectivity and IPsec tunnel parameters on Router 2:

1. Configure interface properties. In this step, you configure two Ethernet interfaces (ge-1/0/0 and ge-1/0/1), a loopback interface, and a multiservices interface (ms-1/2/0).

   ```
 [edit interfaces]
 user@router2# set ge-0/0/0 description "to R1 ge-0/0/0"
 user@router2# set ge-0/0/0 unit 0 family inet address 10.1.12.1/30
 user@router2# set ge-0/0/1 description "to R3 ge-0/0/1"
 user@router2# set ge-0/0/1 unit 0 family inet address 10.1.15.1/30
 user@router2# set ms-1/2/0 services-options syslog host local services info
 user@router2# set ms-1/2/0 unit 0 family inet
 user@router2# set ms-1/2/0 unit 1 family inet
 user@router2# set ms-1/2/0 unit 1 service-domain inside
 user@router2# set ms-1/2/0 unit 2 family inet
 user@router2# set ms-1/2/0 unit 2 service-domain outside
 user@router2# set lo0 unit 0 family inet address 10.0.0.2/32
   ```

2. Specify the OSPF area and associate the interfaces with the OSPF area.

   ```
 [edit protocols]
 user@router2# set ospf area 0.0.0.0 interface ge-0/0/0.0
 user@router2# set ospf area 0.0.0.0 interface lo0.0
 user@router2# set ospf area 0.0.0.0 interface ms-1/2/0.1
   ```

3. Configure the router ID.

   ```
 [edit routing-options]
 user@router2# set router-ID 10.0.0.2
   ```

4. Configure an IPsec rule. In this step, you configure an IPsec rule, specify manual SA parameters, such as the remote gateway address, authentication and encryption properties, and so on.

   ```
 [edit services ipsec-vpn]
 user@router2# set rule rule-ike term term-ike then remote-gateway 10.1.15.2
 user@router2# set rule rule-ike term term-ike then dynamic ike-policy
   ```

NOTE: By default, Junos OS uses IKE policy version 1.0. Junos OS Release 11.4 and later also support IKE policy version 2.0 which you must configure at [edit services ipsec-vpn ike policy policy-name pre-shared].
5. Configure a next-hop style service set, specify the local-gateway address, and associate the IPsec VPN rule with the service set.

[edit services]
user@router2# set service-set demo-service-set next-hop-service
   inside-service-interface ms-1/2/0.1
user@router2# set service-set demo-service-set next-hop-service
   outside-service-interface ms-1/2/0.2
user@router2# set service-set demo-service-set ipsec-vpn-options local-gateway
   10.1.15.1
user@router2# set service-set demo-service-set ipsec-vpn-rules rule-ike

6. Commit the configuration.

[edit]
user@router2# commit

Results  From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols ospf`, `show routing-options`, and `show services` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@router1# show interfaces
interfaces {
  ge-0/0/0 {
    description "To R1 ge-0/0/0";
    unit 0 {
      family inet {
        address 10.1.12.1/30;
      }
    }
  }
}
ge-0/0/1 {  
  description "To R3 ge-0/0/1";  
  unit 0 {  
    family inet {  
      address 10.1.15.1/30;  
    }  
  }  
}  
ms-1/2/0 {  
  services-options {  
    syslog {  
      host local {  
        services info;  
      }  
    }  
  }  
  unit 0 {  
    family inet;  
  }  
  unit 1 {  
    family inet;  
    service-domain inside;  
  }  
  unit 2 {  
    family inet;  
    service-domain outside;  
  }  
}  
lo0 {  
  unit 0 {  
    family inet {  
      address 10.0.0.2/32;  
    }  
  }  
}  

user@router2# show protocols ospf  
protocols {  
  ospf {  
    area 0.0.0.0 {  
      interface ge-0/0/0.0;  
      interface lo0.0;  
      interface ms-1/2/0.1;  
    }  
  }  
}  

user@router2# show routing-options  
routing-options {  
  router-id 10.0.0.2;  
}
user@router2# show services
services {
  ipsec-vpn {
    rule rule-ike {
      term term-ike {
        then {
          remote-gateway 10.1.15.2;
          dynamic {
            ike-policy ike-demo-policy;
            ipsec-policy ipsec-demo-policy;
            }
          }
        }
      }
      match-direction input;
    }
  }
  proposal ike-demo-proposal {
    authentication-method pre-shared-keys;
    dh-group group2;
  }
  policy ike-demo-policy {
    proposals demo-proposal;
    pre-shared-key ascii-text "$ABC123"; 
    }
  }
  proposal ipsec-demo-proposal {
    protocol esp;
    authentication-algorithm hmac-sha1-96;
    encryption-algorithm 3des-cbc;
  }
  policy ipsec-demo-policy {
    perfect-forward-secrecy {
      keys group2;
    }
    proposals ipsec-demo-proposal;
  }
}
service-set demo-service-set {
  next-hop-service {
    inside-service-interface ms-1/2/0.1;
    outside-service-interface ms-1/2/0.2;
  }
  ipsec-vpn-options {
    local-gateway 10.1.15.1;
  }
  ipsec-vpn-rules rule-ike;
}
service-set demo-service-set {
  next-hop-service {
    inside-service-interface ms-1/2/0.1;
    outside-service-interface ms-1/2/0.2;
  }
  ipsec-vpn-options {

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI, at the [edit] hierarchy level, of Router 3.

```
set interfaces ge-0/0/0 description "to R4 ge-0/0/0"
set interfaces ge-0/0/0 unit 0 family inet address 10.1.56.1/30
set interfaces ge-0/0/1 description "to R2 ge-0/0/1"
set interfaces ge-0/0/1 unit 0 family inet address 10.1.15.2/30
set interfaces ms-1/2/0 services-options syslog host local services info
set interfaces ms-1/2/0 unit 0 family inet
set interfaces ms-1/2/0 unit 1 family inet
set interfaces ms-1/2/0 unit 2 service-domain inside
set interfaces ms-1/2/0 unit 2 service-domain outside
set interfaces lo0 unit 0 family inet address 10.0.0.3/32
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0
set protocols ospf area 0.0.0.0 interface lo0.0
set protocols ospf area 0.0.0.0 interface ms-1/2/0.1
set routing-options router-id 10.0.0.3
set services ipsec-vpn rule rule-ike term term-ike then remote-gateway 10.1.15.1
set services ipsec-vpn rule rule-ike term term-ike then dynamic ike-policy ike-demo-policy
set services ipsec-vpn rule rule-ike term term-ike then dynamic ipsec-policy
 ipsec-demo-policy
set services ipsec-vpn rule match-direction input
set services ipsec-vpn ipsec proposal ike-demo-proposal authentication-method pre-shared-keys
set services ipsec-vpn ike proposal ike-demo-proposal dh-group group2
set services ipsec-vpn ike policy ike-demo-policy pre-shared proposals demo-proposal
set services ipsec-vpn ike policy ike-demo-policy pre-shared pre-shared-key ascii-text keyfordemo
set services ipsec-vpn ipsec proposal ipsec-demo-proposal protocol esp
set services ipsec-vpn ipsec proposal ipsec-demo-proposal authentication-algorithm hmac-sha1-96
set services ipsec-vpn ipsec proposal ipsec-demo-proposal encryption-algorithm 3des-cbc
set services ipsec-vpn ipsec policy ipsec-demo-policy perfect-forward-secrecy keys group2
set services ipsec-vpn ipsec proposals ipsec-demo-proposal
set services service-set demo-service-set next-hop-service inside-service-interface ms-1/2/0.1
set services service-set demo-service-set next-hop-service outside-service-interface ms-1/2/0.2
set services service-set demo-service-set ipsec-vpn-options local-gateway 10.1.15.2
set services service-set demo-service-set ipsec-vpn-rules rule-ike
```
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure OSPF connectivity and IPsec tunnel parameters on Router 3:

1. Configure interface properties. In this step, you configure two Ethernet interfaces (ge-1/0/0 and ge-1/0/1), a loopback interface, and a multiservices interface (ms-1/2/0).

   [edit interfaces]
   user@router3# set ge-0/0/0 description "to R4 ge-0/0/0"
   user@router3# set ge-0/0/0 unit 0 family inet address 10.1.56.1/30
   user@router3# set ge-0/0/1 description "to R2 ge-0/0/1"
   user@router3# set ge-0/0/1 unit 0 family inet address 10.1.15.2/30
   user@router3# set ms-1/2/0 services-options syslog host local services info
   user@router3# set ms-1/2/0 unit 0 family inet
   user@router3# set ms-1/2/0 unit 1 family inet
   user@router3# set ms-1/2/0 unit 1 service-domain inside
   user@router3# set ms-1/2/0 unit 2 family inet
   user@router3# set ms-1/2/0 unit 2 service-domain outside
   user@router3# set lo0 unit 0 family inet address 10.0.0.3/32

2. Specify the OSPF area and associate the interfaces with the OSPF area.

   [edit protocols]
   user@router3# set ospf area 0.0.0.0 interface ge-0/0/0.0
   user@router3# set ospf area 0.0.0.0 interface lo0.0
   user@router3# set ospf area 0.0.0.0 interface ms-1/2/0.1

3. Configure a router ID.

   [edit routing-options]
   user@router3# set router-id 10.0.0.3

4. Configure an IPsec rule. In this step, you configure an IPsec rule and specify manual SA parameters, such as the remote gateway address, authentication and encryption properties, and so on.

   [edit services ipsec-vpn]
   user@router3# set rule rule-iike term-iike then remote-gateway 10.1.15.1
   user@router3# set rule rule-iike term-iike then dynamic ike-policy
   ike-demo-policy
   user@router3# set rule rule-iike term-iike then dynamic ipsec-policy
   ipsec-demo-policy
   user@router3# set rule match-direction input
   user@router3# set ike proposal ike-demo-proposal authentication-method
   pre-shared-keys
   user@router3# set ike proposal ike-demo-proposal dh-group group2
   user@router3# set ike policy ike-demo-policy pre-shared proposals demo-proposal
user@router3# set ike policy ike-demo-policy pre-shared pre-shared-key ascii-text
    keyfordemo
user@router3# set ipsec proposal ipsec-demo-proposal protocol esp
user@router3# set ipsec proposal ipsec-demo-proposal authentication-algorithm
    hmac-sha1-96
user@router3# set ipsec proposal ipsec-demo-proposal encryption-algorithm
    3des-cbc
user@router3# set ipsec policy ipsec-demo-policy perfect-forward-secrecy keys
    group2
user@router3# set ipsec proposals ipsec-demo-proposal

5. Configure a next-hop style service set, specify the local-gateway address, and
   associate the IPsec VPN rule with the service set.

[edit services]
user@router3# set service-set demo-service-set next-hop-service
    inside-service-interface ms-1/2/0.1
user@router3# set service-set demo-service-set next-hop-service
    outside-service-interface ms-1/2/0.2
user@router3# set service-set demo-service-set ipsec-vpn-options local-gateway
    10.1.15.2
user@router3# set service-set demo-service-set ipsec-vpn-rules rule-ike

6. Commit the configuration.

[edit]
user@router3# commit

Results  From configuration mode, confirm your configuration by entering the show interfaces,
show protocols ospf, show routing-options, and show services commands. If the output
does not display the intended configuration, repeat the instructions in this example to
correct the configuration

user@router3# show interfaces
interfaces [  
ge-0/0/0 [  
    description "To R4 ge-0/0/0";  
    unit 0 [  
        family inet [  
            address 10.1.56.1/30;  
        ]  
    ]  
  ]  
ge-0/0/1 [  
    description "To R2 ge-0/0/1";  
    unit 0 [  
        family inet [  
            address 10.1.15.2/30;  
        ]  
    ]  
]
```
services-options {
 syslog {
 host local {
 services info;
 }
 }
}

unit 0 {
 family inet {
 }
}
unit 1 {
 family inet;
 service-domain inside;
}
unit 2 {
 family inet;
 service-domain outside;
}
lo0 {
 unit 0 {
 family inet {
 address 10.0.0.3/32;
 }
 }
}

user@router3# show protocols ospf
protocols {
 ospf {
 area 0.0.0.0 {
 interface ge-0/0/0.0;
 interface lo0.0;
 interface ms-1/2/0.1;
 }
 }
}

user@router3# show routing-options
routing-options {
 router-id 10.0.0.3;
}

user@router3# show services
services {
 ipsec-vpn {
 rule rule-like {
 term term-like {
```
then {
    remote-gateway 10.1.15.1;
    dynamic {
        ike-policy ike-demo-policy;
        ipsec-policy ipsec-demo-policy;
    }
}
}
match-direction input;
}
ike {
    proposal ike-demo-proposal {
        authentication-method pre-shared-keys;
        dh-group group2;
    }
    policy ike-demo-policy {
        proposals demo-proposal;
        pre-shared-key ascii-text "$ABC123"; ## SECRET-DATA
    }
}
ipsec {
    proposal ipsec-demo-proposal {
        protocol esp;
        authentication-algorithm hmac-sha1-96;
        encryption-algorithm 3des-cbc;
    }
    policy ipsec-demo-policy {
        perfect-forward-secrecy {
            keys group2;
        }
        proposals ipsec-demo-proposal;
    }
}
}

Configuring Router 4

**CLI Quick Configuration**  
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI, at the [edit] hierarchy level, of Router 4.

```bash
set interfaces ge-0/0/0 description "to R3 ge-0/0/0"
set interfaces ge-0/0/0 unit 0 family inet address 10.1.56.2/30
set interfaces lo0 unit 0 family inet address 10.0.0.4/32
set protocols ospf area 0.0.0.0 interface ge-0/0/0/0
set protocols ospf area 0.0.0.0 interface lo0.0
set routing-options router-id 10.0.0.4
```
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To set up OSPF connectivity with Router 4:

1. Configure the interfaces. In this step, you configure an Ethernet interface (ge-0/0/1) and a loopback interface.

   user@router4# set interfaces ge-0/0/0 description "To R3 ge-0/0/0"
   user@router4# set interfaces ge-0/0/0 unit 0 family inet address 10.1.56.2/30
   user@router4# set interfaces lo0 unit 0 family inet address 10.0.0.4/32

2. Specify the OSPF area and associate the interfaces with the OSPF area.

   user@router4# set protocols ospf area 0.0.0.0 interface ge-0/0/0
   user@router4# set protocols ospf area 0.0.0.0 interface lo0.0

3. Configure the router ID.

   [edit routing-options]
   user@router4# set router-id 10.0.0.4

Results

From configuration mode, confirm your configuration by entering the show interfaces, show protocols ospf, and show routing-options commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration:

   user@router4# show interfaces
   interfaces {
     ge-0/0/0 {
       description "To R3 ge-0/0/0";
       unit 0 {
         family inet {
           address 10.1.56.2/30;
         }
       }
     }
   }
   lo0 {
     unit 0 {
       family inet {
         address 10.0.0.4/32;
       }
     }
   }

   user@router4# show protocols ospf
   protocols {

ospf {
  area 0.0.0.0 {
    interface ge-0/0/0.0;
    interface lo0.0;
  }
}

user@router4# show routing-options
routing-options {
  router-id 10.0.0.4;
}

Verification

Verifying Your Work on Router 1

Purpose
Verify proper operation of Router 1.

Action
From operational mode, enter `ping 10.1.56.2` command to the ge-0/0/0 interface on Router 4 to send traffic across the IPsec tunnel.

user@router1> ping 10.1.56.2
PING 10.1.56.2 (10.1.56.2): 56 data bytes
64 bytes from 10.1.56.2: icmp_seq=0 ttl=254 time=1.351 ms
64 bytes from 10.1.56.2: icmp_seq=1 ttl=254 time=1.187 ms
64 bytes from 10.1.56.2: icmp_seq=2 ttl=254 time=1.172 ms
64 bytes from 10.1.56.2: icmp_seq=3 ttl=254 time=1.154 ms
64 bytes from 10.1.56.2: icmp_seq=4 ttl=254 time=1.156 ms
^C
--- 10.1.56.2 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.154/1.204/1.351/0.074 ms

Meaning
The output shows that Router 1 is able to reach Router 4 over the IPsec tunnel.

Verifying Your Work on Router 2

Purpose
Verify that the IKE SA negotiation is successful.

Action
From operational mode, enter the `show services ipsec-vpn ike security-associations` command.

user@router2> show services ipsec-vpn ike security-associations
Remote Address State Initiator cookie Responder cookie Exchange type
10.1.15.2 Matured 0307bd3a0000003 4bff26a5c7000003 Main
To verify that the IPsec security association is active, issue the `show services ipsec-vpn ipsec security-associations detail` command. Notice that the SA contains the default settings inherent in the MultiServices PIC, such as ESP for the protocol and HMAC-SHA1-96 for the authentication algorithm.

From operational mode, enter the `show services ipsec-vpn ipsec security-associations detail` command.

```
user@router2> show services ipsec-vpn ipsec security-associations detail
```

```
Service set: demo-service-set
Rule: rule-ike, Term: term-ike, Tunnel index: 1
Local gateway: 10.1.15.1, Remote gateway: 10.1.15.2
Local identity: ipv4_subnet(any:0,[0..7]=10.1.12.0/24)
Remote identity: ipv4_subnet(any:0,[0..7]=10.1.56.0/24)
Direction: inbound, SPI: 266626758, AUX-SPI: 0
Mode: tunnel, Type: dynamic, State: Installed
Soft lifetime: Expires in 26863 seconds
Hard lifetime: Expires in 26998 seconds
Anti-replay service: Enabled, Replay window size: 64
Direction: outbound, SPI: 684772754, AUX-SPI: 0
Mode: tunnel, Type: dynamic, State: Installed
Soft lifetime: Expires in 26863 seconds
Hard lifetime: Expires in 26998 seconds
Anti-replay service: Enabled, Replay window size: 64
```

To verify that traffic is traveling through the bidirectional IPsec tunnel, issue the `show services ipsec-vpn statistics` command:

From operational mode, enter the `show services ipsec-vpn statistics` command.

```
user@router2> show services ipsec-vpn statistics
```

```
PIC: ms-1/2/0, Service set: demo-service-set
ESP Statistics:
Encrypted bytes: 2248
Decrypted bytes: 2120
Encrypted packets: 27
Decrypted packets: 25
AH Statistics:
Input bytes: 0
Output bytes: 0
Input packets: 0
Output packets: 0
Errors:
AH authentication failures: 0, Replay errors: 0
ESP authentication failures: 0, ESP decryption failures: 0
Bad headers: 0, Bad trailers: 0
```

**Meaning**  The `show services ipsec-vpn ipsec security-associations detail` command output shows the SA properties that you configured.
The `show services ipsec-vpn ipsec statistics` command output shows the traffic flow over the IPsec tunnel.

**Verifying Your Work on Router 3**

**Purpose**
Verify that the IKE SA negotiation is successful on Router 3.

**Action**
From operational mode, enter the `show services ipsec-vpn ike security-associations` command. To be successful, the SA on Router 3 must contain the same settings you specified on Router 2.

```
user@router3> show services ipsec-vpn ike security-associations
```

To verify that the IPsec SA is active, issue the `show services ipsec-vpn ipsec security-associations detail` command. To be successful, the SA on Router 3 must contain the same settings you specified on Router 2.

From operational mode, enter the `show services ipsec-vpn ipsec security-associations detail` command.

```
user@router3> show services ipsec-vpn ipsec security-associations detail
```

```
Service set: demo-service-set
Rule: rule-ike, Term: term-ike, Tunnel index: 1
Local gateway: 10.1.15.2, Remote gateway: 10.1.15.1
Local identity: ipv4_subnet(any:0,[0..7]=10.1.56.0/24)
Remote identity: ipv4_subnet(any:0,[0..7]=10.1.12.0/24)
Direction: inbound, SPI: 684772754, AUX-SPI: 0
Mode: tunnel, Type: dynamic, State: Installed
Soft lifetime: Expires in 26598 seconds
Hard lifetime: Expires in 26688 seconds
Anti-replay service: Enabled, Replay window size: 64
Direction: outbound, SPI: 2666326758, AUX-SPI: 0
Mode: tunnel, Type: dynamic, State: Installed
Soft lifetime: Expires in 26598 seconds
Hard lifetime: Expires in 26688 seconds
Anti-replay service: Enabled, Replay window size: 64
```

To verify that traffic is traveling through the bidirectional IPsec tunnel, issue the `show services ipsec-vpn statistics` command:

From operational mode, enter the `show services ipsec-vpn ike security-associations` command.

```
user@router3> show services ipsec-vpn statistics
```

```
PIC: ms-1/2/0, Service set: demo-service-set
ESP Statistics:
Encrypted bytes: 2120
```
Decrypted bytes: 2248
Encrypted packets: 25
Decrypted packets: 27

AH Statistics:
Input bytes: 0
Output bytes: 0
Input packets: 0
Output packets: 0

Errors:
AH authentication failures: 0, Replay errors: 0
ESP authentication failures: 0, ESP decryption failures: 0
Bad headers: 0, Bad trailers: 0

Meaning
The `show services ipsec-vpn ipsec security-associations detail` command output shows the SA properties that you configured.

The `show services ipsec-vpn ipsec statistics` command output shows the traffic flow over the IPsec tunnel.

**Verifying Your Work on Router 4**

**Purpose**
Verify that the IKE SA negotiation is successful.

**Action**
From operational mode, enter `ping 10.1.12.2` command to the ge-0/0/0 interface on Router 1 to send traffic across the IPsec tunnel.

```bash
user@router4> ping 10.1.12.2
PING 10.1.12.2 (10.1.12.2): 56 data bytes
64 bytes from 10.1.12.2: icmp_seq=0 ttl=254 time=1.350 ms
64 bytes from 10.1.12.2: icmp_seq=1 ttl=254 time=1.161 ms
64 bytes from 10.1.12.2: icmp_seq=2 ttl=254 time=1.124 ms
64 bytes from 10.1.12.2: icmp_seq=3 ttl=254 time=1.142 ms
64 bytes from 10.1.12.2: icmp_seq=4 ttl=254 time=1.139 ms
64 bytes from 10.1.12.2: icmp_seq=5 ttl=254 time=1.116 ms
^C
--- 10.1.12.2 ping statistics ---
6 packets transmitted, 6 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.116/1.172/1.350/0.081 ms
```

To confirm that traffic travels through the IPsec tunnel, issue the `traceroute` command to the ge-0/0/0 interface on Router 1. Notice that the physical interface between Routers 2 and 3 is not referenced in the path; traffic enters the IPsec tunnel through the adaptive services IPsec inside interface on Router 3, passes through the loopback interface on Router 2, and ends at the ge-0/0/0 interface on Router 1.

From operational mode, enter the `traceroute 10.1.12.2`.

```bash
user@router4> traceroute 10.1.12.2
traceroute to 10.1.12.2 (10.1.12.2), 30 hops max, 40 byte packets
1 10.1.15.2 (10.1.15.2) 0.987 ms 0.630 ms 0.563 ms
```
Meaning

The ping 10.1.12.2 output shows that Router 4 is able to reach Router 1 over the IPsec tunnel.

The traceroute 10.1.12.2 output shows that traffic travels the IPsec tunnel.

Related Documentation

- Understanding Junos VPN Site Secure on page 531
- Configuring Security Associations on page 549
- Configuring IKE Proposals on page 571
- Configuring IKE Policies on page 576
- Example: Configuring Manual SAs on page 555

Example: IKE Dynamic SA Configuration with Digital Certificates

This example shows how to configure IKE dynamic SA with digital certificates and contains the following sections.

- Requirements on page 681
- Overview on page 681
- Configuration on page 682
- Verification on page 697

Requirements

This example uses the following hardware and software components:

- Four M Series, MX Series, or T Series routers with multiservices interfaces installed in them.
- Junos OS Release 9.4 or later.

Before you configure this example you must request a CA certificate, create a local certificate, and load these digital certificates into the router. For details, see “Requesting for and Installing a Digital Certificates on Your Router” on page 654

Overview

A security association (SA) is a simplex connection that enables two hosts to securely communicate with each other using IPsec. This example explains IKE dynamic SA configuration with digital certificates. The use of digital certificates provides additional security to your IKE tunnel. Using default values in the Services PIC, you do not need to configure an IPsec proposal or IPsec policy. However, you must configure an IKE proposal...
that specifies the use of digital certificates, reference the IKE proposal and local certificate in an IKE policy, and apply the CA profile to the service set.

Figure 36 on page 682 shows an IPsec topology containing a group of four routers. This configuration requires Routers 2 and 3 to establish an IKE-based IPsec tunnel by using digital certificates in place of preshared keys. Routers 1 and 4 provide basic connectivity and are used to verify that the IPsec tunnel is operational.

Topology

Figure 36: MS PIC IKE Dynamic SA Topology Diagram

Configuration

To configure IKE dynamic SA with digital certificates, perform these tasks:

NOTE: The interface types shown in this example are for indicative purpose only. For example, you can use so- interfaces instead of ge- and sp- instead of ms-.

- Configuring Router 1 on page 682
- Configuring Router 2 on page 684
- Configuring Router 3 on page 689
- Configuring Router 4 on page 695

Configuring Router 1

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI, at the [edit] hierarchy level, of Router 1.

```
set interfaces ge-0/0/0 description "to R2 ge-0/0/0"
set interfaces ge-0/0/0 unit 0 family inet address 10.122.0.30/30
set interfaces lo0 unit 0 family inet address 10.0.0.1/32
set routing-options router-id 10.0.0.1
set protocols ospf area 0.0.0.0 interface ge-0/0/0
set protocols ospf area 0.0.0.0 interface lo0.0
```
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure Router 1 for OSPF connectivity with Router 2:

1. Configure an Ethernet interface and the loopback interface.

```
[edit interfaces]
user@router1# set ge-0/0/0 description "to R2 ge-0/0/0"
user@router1# set ge-0/0/0 unit 0 family inet address 10.1.12.2/30
user@router1# set lo0 unit 0 family inet address 10.0.0.1/32
```

2. Specify the OSPF area and associate the interfaces with the OSPF area.

```
[edit protocols]
user@router1# set ospf area 0.0.0.0 interface ge-0/0/0.0
user@router1# set ospf area 0.0.0.0 interface lo0.0
```

3. Configure the router ID.

```
[edit routing-options]
user@router1# set router-id 10.0.0.1
```

4. Commit the configuration.

```
[edit]
user@router1# commit
```

Results

From the configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols ospf`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@router1# show interfaces
interfaces {
 ge-0/0/0 {
 description "To R2 ge-0/0/0";
 unit 0 {
 family inet {
 address 10.1.12.2/30;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.0.0.1/32;
 }
 }
 }
}
```

null
set services ipsec-vpn ike policy ike-digital-certificates remote-id fqdn router3.example.com
set services ipsec-vpn ipsec proposal ipsec-demo-proposal protocol esp
set services ipsec-vpn ipsec proposal ipsec-demo-proposal authentication-algorithm hmac-sha1-96
set services ipsec-vpn ipsec proposal ipsec-demo-proposal encryption-algorithm 3des-cbc
set services ipsec-vpn ipsec policy ipsec-demo-policy perfect-forward-secrecy keys group2
set services ipsec-vpn ipsec proposals ipsec-demo-proposal
set services ipsec-vpn establish-tunnels immediately
set services service-set demo-service-set next-hop-service inside-service-interface ms-1/2/0.1
set services service-set demo-service-set next-hop-service outside-service-interface ms-1/2/0.2
set services service-set demo-service-set ipsec-vpn-options trusted-ca entrust
set services service-set demo-service-set ipsec-vpn-options local-gateway 10.1.15.1
set services service-set demo-service-set ipsec-vpn-rules rule-ike

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the CLI User Guide.

To configure OSPF connectivity and IPsec tunnel parameters on Router 2:

1. Configure interface properties. In this step, you configure two Ethernet interfaces (ge-1/0/0 and ge-1/0/1), the loopback interface and a multiservices interface (ms-1/2/0).

   ```
 [edit interfaces]
 user@router2# set ge-0/0/0 description "to R1 ge-0/0/0"
 user@router2# set ge-0/0/0 unit 0 family inet address 10.1.12.1/30
 user@router2# set ge-0/0/1 description "to R3 ge-0/0/1"
 user@router2# set ge-0/0/1 unit 0 family inet address 10.1.15.1/30
 user@router2# set ms-1/2/0 services-options syslog host local services info
 user@router2# set ms-1/2/0 unit 0 family inet
 user@router2# set ms-1/2/0 unit 1 family inet
 user@router2# set ms-1/2/0 unit 1 service-domain inside
 user@router2# set ms-1/2/0 unit 2 family inet
 user@router2# set ms-1/2/0 unit 2 service-domain outside
 user@router2# set lo0 unit 0 family inet address 10.0.0.2/32
   ```

2. Specify the OSPF area and associate the interfaces with the OSPF area.

   ```
 [edit protocols]
 user@router2# set ospf area 0.0.0.0 interface ge-0/0/0/0
 user@router2# set ospf area 0.0.0.0 interface lo0.0
 user@router2# set ospf area 0.0.0.0 interface ms-1/2/0.1
   ```

3. Configure the router ID.

   ```
 [edit routing-options]
   ```
4. Configure an IKE proposal and policy. To enable an IKE proposal for digital certificates, include the `rsa-signatures` statement at the `[edit services ipsec-vpn ike proposal proposal-name authentication-method]` hierarchy level. To reference the local certificate in the IKE policy, include the `local-certificate` statement at the `[edit services ipsec-vpn ike policy policy-name]` hierarchy level. To identify the CA or RA in the service set, include the `trusted-ca` statement at the `[edit services service-set service-set-name ipsec-vpn-options]` hierarchy level.

```
user@router2# set ike proposal ike-demo-proposal authentication-method rsa-signatures
user@router2# set ike policy ike-demo-proposal proposals ike-demo-proposal
user@router2# set ike policy ike-demo-proposal local-certificate local-entrust2
user@router2# set ike policy ike-demo-proposal remote-id fqdn router3.example.com
```

```
user@router2# set rule rule-iike term-iike then remote-gateway 10.1.15.2
user@router2# set rule rule-iike term-iike then dynamic ike-policy ike-digital-certificates
user@router2# set rule rule-iike term-iike then dynamic ipsec-policy ipsec-demo-policy
user@router2# set rule match-direction input
```

**NOTE:** For information about creating and installing digital certificates, see “Requesting for and Installing a Digital Certificates on Your Router” on page 654

5. Configure an IPsec proposal and policy. Also, set the `established-tunnels` knob to immediately.

```
user@router2# set ipsec proposal ipsec-demo-proposal protocol esp
user@router2# set ipsec proposal ipsec-demo-proposal authentication-algorithm hmac-sha1-96
user@router2# set ipsec proposal ipsec-demo-proposal encryption-algorithm 3des-cbc
user@router2# set ipsec policy ipsec-demo-policy perfect-forward-secrecy keys group2
user@router2# set ipsec proposals ipsec-demo-proposal
user@router2# set establish-tunnels immediately
```

6. Configure an IPsec rule.

```
user@router2# set rule rule-iike term-iike then remote-gateway 10.1.15.2
user@router2# set rule rule-iike term-iike then dynamic ike-policy ike-digital-certificates
user@router2# set rule rule-iike term-iike then dynamic ipsec-policy ipsec-demo-policy
user@router2# set rule match-direction input
```
7. Configure a next-hop style service set, specify the local-gateway address, and associate the IPsec VPN rule with the service set.

    [edit services]
    user@router2# set service-set demo-service-set next-hop-service
    inside-service-interface ms-1/2/0/1
    user@router2# set service-set demo-service-set next-hop-service
    outside-service-interface ms-1/2/0/2
    user@router2# set service-set demo-service-set ipsec-vpn-options trusted-ca
    entrust
    user@router2# set service-set demo-service-set ipsec-vpn-options local-gateway
    10.1.15.1
    user@router2# set service-set demo-service-set ipsec-vpn-rules rule-ike

8. Commit the configuration.

    [edit]
    user@router2# commit

Results  From the configuration mode, confirm your configuration by entering the show interfaces, show protocols ospf, show routing-options, and show services commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration

    user@router2# show interfaces
    interfaces {
    ge-0/0/0 {
        description "To R1 ge-0/0/0";
        unit 0 {
            family inet {
                address 10.1.12.1/30;
            }
        }
    }
    ge-0/0/1 {
        description "To R3 ge-0/0/1";
        unit 0 {
            family inet {
                address 10.1.15.1/30;
            }
        }
    }
    ms-1/2/0 {
        services-options {
            syslog {
                host local {
                    services info;
                }
            }
        }
        unit 0 {
family inet;
}
unit 1 {
  family inet;
  service-domain inside;
}
unit 2 {
  family inet;
  service-domain outside;
}
lo0 {
  unit 0 {
    family inet {
      address 10.0.0.2/32;
    }
  }
}

user@router2# show protocols ospf
protocols {
  ospf {
    area 0.0.0.0 {
      interface ge-0/0/0.0;
      interface lo0.0;
      interface ms-1/2/0.1;
    }
  }
}

user@router2# show routing-options
routing-options {
  router-id 10.0.0.2;
}

user@router2# show services
services {
  ipsec-vpn {
    rule rule-ike {
      term term-ike {
        then {
          remote-gateway 10.1.15.2;
          dynamic {
            ike-policy ike-digital-certificates;
            ipsec-policy ipsec-demo-policy
          }
        }
      }
    }
    match-direction input;
  }
  ike {
    proposal ike-demo-proposal {
Configuring Router 3

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI, at the [edit] hierarchy level, of Router 3.

```plaintext
set interfaces ge-0/0/0 description "to R4 ge-0/0/0"
set interfaces ge-0/0/0/0 unit 0 family inet address 10.1.56.1/30
set interfaces ge-0/0/1 description "to R2 ge-0/0/1"
set interfaces ge-0/0/1 unit 0 family inet address 10.1.15.1/30
set interfaces ms-1/2/0 services-options syslog host local services info
set interfaces ms-1/2/0/0 unit 0 family inet
set interfaces ms-1/2/0 unit 1 family inet
set interfaces ms-1/2/0 unit 1 service-domain inside
set interfaces ms-1/2/0/0 unit 2 family inet
```
set interfaces ms-1/2/0 unit 2 service-domain outside
set interfaces lo0 unit 0 family inet address 10.0.0.3/32
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0
set protocols ospf area 0.0.0.0 interface lo0.0
set protocols ospf area 0.0.0.0 interface ms-1/2/0.1
set routing-options router-id 10.0.0.3
set services ipsec-vpn rule rule-ike term term-ike then remote-gateway 10.1.15.1
set services ipsec-vpn rule rule-ike term term-ike then dynamic ike-policy
  ike-digital-certificates
set services ipsec-vpn rule rule-ike term term-ike then dynamic ipsec-policy
  ipsec-demo-policy
set services ipsec-vpn rule match-direction input
set services ipsec-vpn ike proposal ipsec-demo-proposal authentication-method
  rsa-signatures
set services ipsec-vpn ike policy ike-digital-certificates proposals ipsec-demo-proposal
set services ipsec-vpn ike policy ike-digital-certificates local-id fqdn router3.example.com
set services ipsec-vpn ike policy ike-digital-certificates local-certificate local-entrust3
set services ipsec-vpn ike policy ike-digital-certificates remote-id fqdn router2.example.com
set services ipsec-vpn ipsec proposal ipsec-demo-proposal protocol esp
set services ipsec-vpn ipsec proposal ipsec-demo-proposal authentication-algorithm
  hmac-sha1-96
set services ipsec-vpn ipsec proposal ipsec-demo-proposal encryption-algorithm 3des-cbc
set services ipsec-vpn ipsec policy ipsec-demo-policy perfect-forward-secrecy keys
  group2
set services ipsec-vpn ipsec proposals ipsec-demo-proposal
set services ipsec-vpn establish-tunnels immediately
set services service-set demo-service-set next-hop-service inside-service-interface
  ms-1/2/0.1
set services service-set demo-service-set next-hop-service outside-service-interface
  ms-1/2/0.2
set services service-set demo-service-set ipsec-vpn-options trusted-ca entrust
set services service-set demo-service-set ipsec-vpn-options local-gateway 10.1.15.2
set services service-set demo-service-set ipsec-vpn-rules rule-ike
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

NOTE: If the IPsec peers do not have a symmetrical configuration containing all the necessary components, they cannot establish a peering relationship. You need to request a CA certificate, create a local certificate, load these digital certificates into the router, and reference them in your IPsec configuration. For information about digital certification, see “Requesting for and Installing a Digital Certificates on Your Router” on page 654

To configure OSPF connectivity and IPsec tunnel parameters on Router 3:

1. Configure interface properties. In this step, you configure two Ethernet interfaces (ge-1/0/0 and ge-1/0/1), the loopback interface, and a multiservices interface (ms-1/2/0).

   ```
 [edit interfaces]
 user@router3# set ge-0/0/0 description "to R4 ge-0/0/0"
 user@router3# set ge-0/0/0 unit 0 family inet address 10.1.56.1/30
 user@router3# set ge-0/0/1 description "to R2 ge-0/0/1"
 user@router3# set ge-0/0/1 unit 0 family inet address 10.1.15.2/30
 user@router3# set ms-1/2/0 services-options syslog host local services info
 user@router3# set ms-1/2/0 unit 0 family inet
 user@router3# set ms-1/2/0 unit 1 family inet
 user@router3# set ms-1/2/0 unit 1 service-domain inside
 user@router3# set ms-1/2/0 unit 2 family inet
 user@router3# set ms-1/2/0 unit 2 service-domain outside
 user@router3# set lo0 unit 0 family inet address 10.0.0.3/32
   ```

2. Specify the OSPF area, associate the interfaces with the OSPF area.

   ```
 [edit protocols]
 user@router3# set ospf area 0.0.0.0 interface ge-0/0/0
 user@router3# set ospf area 0.0.0.0 interface lo0.0
 user@router3# set ospf area 0.0.0.0 interface ms-1/2/0.1
   ```

3. Configure a router ID.

   ```
 [edit routing-options]
 user@router3# set router-id 10.0.0.3
   ```

4. Configure an IKE proposal and policy. To enable an IKE proposal for digital certificates, include the rsa-signatures statement at the [edit services ipsec-vpn ike proposal proposal-name authentication-method] hierarchy level. To reference the local certificate in the IKE policy, include the local-certificate statement at the [edit services ipsec-vpn ike policy policy-name] hierarchy level. To identify the CA or RA
in the service set, include the trusted-ca statement at the [edit services service-set service-set-name ipsec-vpn-options] hierarchy level.

NOTE: For information about creating and installing digital certificates, see “Requesting for and Installing a Digital Certificates on Your Router” on page 654

5. Configure an IPsec proposal. Also, set the established-tunnels knob to immediately.

6. Configure an IPsec rule.

7. Configure a next-hop style service set, specify the local-gateway address, and associate the IPsec VPN rule with the service set.
user@router3# set service-set demo-service-set ipsec-vpn-options trusted-ca entrust
user@router3# set service-set demo-service-set ipsec-vpn-options local-gateway 10.1.15.2
user@router3# set service-set demo-service-set ipsec-vpn-rules rule-ike

a. Commit the configuration.

    [edit]
    user@router3# commit

Results  From the configuration mode, confirm your configuration by entering the show interfaces, show protocols ospf, show routing-options, and show services commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@router3# show interfaces
interfaces {
    ge-0/0/0 {
        description "To R4 ge-0/0/0";
        unit 0 {
            family inet {
                address 10.1.56.1/30;
            }
        }
    }
    ge-0/0/1 {
        description "To R2 ge-0/0/1";
        unit 0 {
            family inet {
                address 10.1.15.2/30;
            }
        }
    }
    ms-1/2/0 {
        services-options {
            syslog {
                host local {
                    services info;
                }
            }
        }
        unit 0 {
            family inet {
            }
        }
        unit 1 {
            family inet;
            service-domain inside;
        }
        unit 2 {
            family inet;
        }
    }
}
service-domain outside;
}
]
lo0 {
  unit 0 {
    family inet {
      address 10.0.0.3/32;
    }
  }
}
}
}

user@router3# show protocols ospf
protocols {
  ospf {
    area 0.0.0.0 {
      interface ge-0/0/0.0;
      interface lo0.0;
      interface ms-1/2/0.1;
    }
  }
}

user@router3# show routing-options
routing-options {
  router-id 10.0.0.3;
}

user@router3# show services
services {
  ipsec-vpn {
    rule rule-ike {
      term term-ike {
        then {
          remote-gateway 10.1.15.1;
          dynamic {
            ike-policy ike-digital-certificates;
            ipsec-policy ipsec-demo-policy
          }
        }
      }
    }
  }
  match-direction input;
}
ike {
  proposal ike-demo-proposal {
    authentication-method rsa-signatures;
  }
  policy ike-digital-certificates {
    proposals ike-demo-proposal;
    local-id fqdn router3.example.com;
    local-certificate local-entrust3;
    remote-id fqdn router2.example.com;
  }
}
Configuring Router 4

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI, at the [edit] hierarchy level, of Router 4.

```
set interfaces ge-0/0/0 description "to R3 ge-0/0/0"
set interfaces ge-0/0/0 unit 0 family inet address 10.1.56.2/30
set interfaces lo0 unit 0 family inet address 10.0.0.4/32
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0
set protocols ospf area 0.0.0.0 interface lo0.0
set routing-options router-id 10.0.0.4
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To set up OSPF connectivity with Router 4

1. Configure the interfaces. In this step, you configure an Ethernet interface (ge-1/0/1) and the loopback interface.
[edit interfaces]
user@router4# set ge-0/0/0 description "to R3 ge-0/0/0"
user@router4# set ge-0/0/0 unit 0 family inet address 10.1.56.2/30
user@router4# set lo0 unit 0 family inet address 10.0.0.4/32

2. Specify the OSPF area and associate the interfaces with the OSPF area.

[edit protocols]
user@router4# set ospf area 0.0.0.0 interface ge-0/0/0
user@router4# set ospf area 0.0.0.0 interface lo0.0

3. Configure the router ID.

[edit routing-options]
user@router4# set router-id 10.0.0.4

Results: From the configuration mode, confirm your configuration by entering the show interfaces, show protocols ospf, and show routing-options commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@router4# show interfaces
interfaces { 
  ge-0/0/0 { 
    description "To R3 ge-0/0/0";
    unit 0 { 
      family inet { 
        address 10.1.56.2/30;
      }
    }
  } 
  lo0 { 
    unit 0 { 
      family inet { 
        address 10.0.0.4/32;
      }
    }
  }
}

user@router4# show protocols ospf
protocols { 
  ospf { 
    area 0.0.0.0 { 
      interface ge-0/0/0.0;
      interface lo0.0;
    }
  }
}
user@router4# show routing-options
routing-options {
    router-id 10.0.0.4;
}

Verification

Verifying Your Work on Router 1

Purpose  On Router 1, verify ping command to the so-0/0/0 interface on Router 4 to send traffic across the IPsec tunnel.

Action  From operational mode, enter `ping 10.1.56.2`.

```
user@router1> ping 10.1.56.2
PING 10.1.56.2 (10.1.56.2): 56 data bytes
64 bytes from 10.1.56.2: icmp_seq=0 ttl=254 time=1.351 ms
64 bytes from 10.1.56.2: icmp_seq=1 ttl=254 time=1.187 ms
64 bytes from 10.1.56.2: icmp_seq=2 ttl=254 time=1.172 ms
64 bytes from 10.1.56.2: icmp_seq=3 ttl=254 time=1.154 ms
64 bytes from 10.1.56.2: icmp_seq=4 ttl=254 time=1.156 ms
^C
--- 10.1.56.2 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.154/1.204/1.351/0.074 ms
```

If you ping the loopback address of Router 4, the operation succeeds because the address is part of the OSPF network configured on Router 4.

```
user@router1> ping 10.0.0.4
PING 10.0.0.4 (10.0.0.4): 56 data bytes
64 bytes from 10.0.0.4: icmp_seq=0 ttl=62 time=1.318 ms
64 bytes from 10.0.0.4: icmp_seq=1 ttl=62 time=1.084 ms
64 bytes from 10.0.0.4: icmp_seq=2 ttl=62 time=3.260 ms
^C
--- 10.0.0.4 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.084/1.887/3.260/0.975 ms
```

Verifying Your Work on Router 2

Purpose  To verify that matched traffic is being diverted to the bidirectional IPsec tunnel, view the IPsec statistics:

Action  From operational mode, enter the `show services ipsec-vpn ipsec statistics`.

```
user@router2> show services ipsec-vpn ipsec statistics
```
PIC: sp-1/2/0, Service set: service-set-dynamic-demo-service-set

ESP Statistics:
- Encrypted bytes: 162056
- Decrypted bytes: 161896
- Encrypted packets: 2215
- Decrypted packets: 2216

AH Statistics:
- Input bytes: 0
- Output bytes: 0
- Input packets: 0
- Output packets: 0
- Errors:
  - AH authentication failures: 0
  - Replay errors: 0
  - ESP authentication failures: 0
  - ESP decryption failures: 0
  - Bad headers: 0
  - Bad trailers: 0

To verify that the IKE SA negotiation is successful, issue the `show services ipsec-vpn ike security-associations` command:

From operational mode, enter the `show services ipsec-vpn ike security-associations`

```
user@router2> show services ipsec-vpn ike security-associations
```

Remote Address	State	Initiator cookie	Responder cookie	Exchange type
10.1.15.2      | Matured | d82610c59114fd37 | ec4391f76783ef28 | Main |

To verify that the IPsec security association is active, issue the `show services ipsec-vpn ipsec security-associations detail` command. Notice that the SA contains the default settings inherent in the Services PIC, such as ESP for the protocol and HMAC-SHA1-96 for the authentication algorithm.

From operational mode, enter the `show services ipsec-vpn ipsec security-associations detail`

```
user@router2> show services ipsec-vpn ipsec security-associations detail
```

Service set: service-set-dynamic-demo-service-set
Rule: rule-ike, Term: term-ike, Tunnel index: 1
Local gateway: 10.1.15.1, Remote gateway: 10.1.15.2
IPsec inside interface: sp-1/2/0.1
Local identity: ipv4_subnet(any:0,[0..7]=0.0.0.0/0)
Remote identity: ipv4_subnet(any:0,[0..7]=0.0.0.0/0)
Direction: inbound, SPI: 857451461, AUX-SPI: 0
Mode: tunnel, Type: dynamic, State: Installed
Soft lifetime: Expires in 9052 seconds
Hard lifetime: Expires in 9187 seconds
Anti-replay service: Enabled, Replay window size: 64
Direction: outbound, SPI: 1272330309, AUX-SPI: 0
Mode: tunnel, Type: dynamic, State: Installed
Soft lifetime: Expires in 9052 seconds
Hard lifetime: Expires in 9187 seconds
Anti-replay service: Enabled, Replay window size: 64
To display the digital certificates that are used to establish the IPsec tunnel, issue the show services ipsec-vpn certificates command:

From operational mode, enter the `show services ipsec-vpn certificates`

```
user@router2> show services ipsec-vpn certificates
```

Service set: service-set-dynamic-demo-service-set, Total entries: 3
Certificate cache entry: 3
Flags: Non-root Trusted
Issued to: router3.example.com, Issued by: juniper
Alternate subject: router3.example.com
Validity:
Not after: 2008 Nov 22nd, 00:03:58 GMT
Certificate cache entry: 2
Flags: Non-root Trusted
Issued to: router2.example.com, Issued by: juniper
Alternate subject: router2.example.com
Validity:
Not after: 2008 Nov 21st, 23:58:22 GMT
Certificate cache entry: 1
Flags: Root Trusted
Issued to: juniper, Issued by: juniper
Validity:
Not before: 2005 Oct 18th, 23:54:22 GMT
Not after: 2025 Oct 19th, 00:24:22 GMT

To display the CA certificate, issue the show security pki ca-certificate detail command. Notice that there are three separate certificates: one for certificate signing, one for key encipherment, and one for the CA's digital signature.

From operational mode, enter the `show security pki ca-certificate detail`

```
user@router2> show security pki ca-certificate detail
```

Certificate identifier: entrust
Certificate version: 3
Serial number: 4355 9235
Issuer:
Organization: juniper, Country: us
Subject:
Organization: juniper, Country: us
Validity:
Not before: 2005 Oct 18th, 23:54:22 GMT
Not after: 2025 Oct 19th, 00:24:22 GMT
Public key algorithm: rsaEncryption(1024 bits)
Signature algorithm: sha1WithRSAEncryption
Fingerprint:
Distribution CRL:
C=us, O=juniper, CN=CRL1
http://CA-1/CRL/juniper_us_crlfile.crl
Use for key: CRL signing, Certificate signing
Certificate identifier: entrust
Certificate version: 3
Serial number: 4355 925c
Issuer:
Organization: juniper, Country: us
Subject:
Organization: juniper, Country: us, Common name: First Officer
Validity:
Not after: 2008 Oct 19th, 00:25:59 GMT
Public key algorithm: rsaEncryption (1024 bits)
dae:eb:10:27:bd:46:34:33
Signature algorithm: sha1WithRSAEncryption
Fingerprint: 
Distribution CRL:
C=us, O=juniper, CN=CRL1
http://CA-1/CRL/juniper_us_crlfile.crl
Use for key: Key encipherment
Certificate identifier: entrust
Certificate version: 3
Serial number: 4355 925b
Issuer:
Organization: juniper, Country: us
Subject:
Organization: juniper, Country: us, Common name: First Officer
Validity:
Not after: 2008 Oct 19th, 00:25:59 GMT
Public key algorithm: rsaEncryption (1024 bits)
Signature algorithm: sha1WithRSAEncryption
Fingerprint: 
Distribution CRL:
C=us, O=juniper, CN=CRL1
http://CA-1/CRL/juniper_us_crlfile.crl
Use for key: Digital signature
To display the local certificate request, issue the show security pki certificate-request command:

From operational mode, enter the `show security pki certificate-request`

```
user@router2> show security pki certificate-request
Certificate identifier: local-entrust2
Issued to: router2.example.com
Public key algorithm: rsaEncryption(1024 bits)
Public key verification status: Passed
```

To display the local certificate, issue the show security pki local-certificate command:

From operational mode, enter the `show security pki local-certificate`

```
user@router2> show security pki local-certificate
Certificate identifier: local-entrust2
Issued to: router2.example.com, Issued by: juniper
Validity:
Not after: 2008 Nov 21st, 23:58:22 GMT
Public key algorithm: rsaEncryption(1024 bits)
Public key verification status: Passed
```

### Verifying Your Work on Router 3

**Purpose** To verify that matched traffic is being diverted to the bidirectional IPsec tunnel, view the IPsec statistics:

**Action** From operational mode, enter the `show services ipsec-vpn ipsec statistics`

```
user@router3> show services ipsec-vpn ipsec statistics
PIC: sp-1/2/0, Service set: service-set-dynamic-demo-service-set
ESP Statistics:
Encrypted bytes: 161896
Decrypted bytes: 162056
Encrypted packets: 2216
Decrypted packets: 2215
AH Statistics:
Input bytes: 0
Output bytes: 0
Input packets: 0
Output packets: 0
Errors:
AH authentication failures: 0, Replay errors: 0
ESP authentication failures: 0, ESP decryption failures: 0
Bad headers: 0, Bad trailers: 0
```

To verify that the IKE SA negotiation is successful, issue the `show services ipsec-vpn ike security-associations` command. To be successful, the SA on Router 3 must contain the same settings you specified on Router 2.
From operational mode, enter the `show services ipsec-vpn ike security-associations`.

```
user@router3>show services ipsec-vpn ike security-associations
```

Remote Address  State  Initiator cookie  Responder cookie  Exchange type
10.1.15.1       Matured  d82610c59114fd37  ec4391f76783ef28  Main

To verify that the IPsec SA is active, issue the `show services ipsec-vpn ipsec security-associations detail` command. To be successful, the SA on Router 3 must contain the same settings you specified on Router 2.

From operational mode, enter the `show services ipsec-vpn ipsec security-associations detail`.

```
user@router3>show services ipsec-vpn ipsec security-associations detail
```

Service set: service-set-dynamic-demo-service-set
Rule: rule-ike, Term: term-ike, Tunnel index: 1
Local gateway: 10.1.15.2, Remote gateway: 10.1.15.1
IPsec inside interface: sp-1/2/0.1
Local identity: ipv4_subnet(any:0,[0..7]=0.0.0.0/0)
Remote identity: ipv4_subnet(any:0,[0..7]=0.0.0.0/0)
Direction: inbound, SPI: 1272330309, AUX-SPI: 0
Mode: tunnel, Type: dynamic, State: Installed
Soft lifetime: Expires in 7219 seconds
Hard lifetime: Expires in 7309 seconds
Anti-replay service: Enabled, Replay window size: 64
Direction: outbound, SPI: 857451461, AUX-SPI: 0
Mode: tunnel, Type: dynamic, State: Installed
Soft lifetime: Expires in 7219 seconds
Hard lifetime: Expires in 7309 seconds
Anti-replay service: Enabled, Replay window size: 64

To display the digital certificates that are used to establish the IPsec tunnel, issue the `show services ipsec-vpn certificates` command:

From operational mode, enter the `show services ipsec-vpn certificates`.

```
user@router3>show services ipsec-vpn certificates
```

Service set: service-set-dynamic-demo-service-set, Total entries: 3
Certificate cache entry: 3
Flags: Non-root Trusted
Issued to: router3.example.com, Issued by: juniper
Alternate subject: router3.example.com
Validity:
Not after: 2008 Nov 22nd, 00:03:58 GMT
Certificate cache entry: 2
Flags: Non-root Trusted
Issued to: router2.example.com, Issued by: juniper
Alternate subject: router2.example.com
Validity:
Not after: 2008 Nov 21st, 23:58:22 GMT

```
Copyright © 2019, Juniper Networks, Inc.
```
Certificate cache entry: 1
Flags: Root Trusted
Issued to: juniper, Issued by: juniper
Validity:
Not before: 2005 Oct 18th, 23:54:22 GMT
Not after: 2025 Oct 19th, 00:24:22 GMT

To display the CA certificate, issue the show security pki ca-certificate detail command. Notice that there are three separate certificates: one for certificate signing, one for key encipherment, and one for the CA's digital signature.

From operational mode, enter the `show security pki ca-certificate detail`.

```
user@router3> show security pki ca-certificate detail
Certificate identifier: entrust
Certificate version: 3
Serial number: 4355 9235
Issuer:
Organization: juniper, Country: us
Subject:
Organization: juniper, Country: us
Validity:
Not before: 2005 Oct 18th, 23:54:22 GMT
Not after: 2025 Oct 19th, 00:24:22 GMT
Public key algorithm: rsaEncryption(1024 bits)
Signature algorithm: sha1WithRSAEncryption
Fingerprint:
Distribution CRL:
C=us, O=juniper, CN=CRL1
http://CA-1/CRL/juniper_us_crlfile.crl
Use for key: CRL signing, Certificate signing
Certificate identifier: entrust
Certificate version: 3
Serial number: 4355 925c
Issuer:
Organization: juniper, Country: us
Subject:
Organization: juniper, Country: us, Common name: First Officer
Validity:
Not after: 2008 Oct 19th, 00:25:59 GMT
Public key algorithm: rsaEncryption(1024 bits)
```
From operational mode, enter the show security pki certificate-request command:

```
user@router3> show security pki certificate-request
```

To display the local certificate request, issue the show security pki certificate-request command:

```
user@router3> show security pki certificate-request
Certificate identifier: local-entrust3
Issued to: router3.example.com
Public key algorithm: rsaEncryption(1024 bits)
Public key verification status: Passed
```

To display the local certificate, issue the show security pki local-certificate command:

```
user@router3> show security pki local-certificate
Certificate identifier: local-entrust3
Issued to: router3.example.com, Issued by: juniper
Validity:
```
Verifying Your Work on Router 4

**Purpose**
On Router 4, issue a ping command to the so-0/0/0 interface on Router 1 to send traffic across the IPsec tunnel.

**Action**
From operational mode, enter `ping 10.1.12.2`.

```
user@router4> ping 10.1.12.2
PING 10.1.12.2 (10.1.12.2): 56 data bytes
64 bytes from 10.1.12.2: icmp_seq=0 ttl=254 time=1.350 ms
64 bytes from 10.1.12.2: icmp_seq=1 ttl=254 time=1.161 ms
64 bytes from 10.1.12.2: icmp_seq=2 ttl=254 time=1.124 ms
64 bytes from 10.1.12.2: icmp_seq=5 ttl=254 time=1.116 ms
^C
--- 10.1.12.2 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.116/1.172/1.350/0.081 ms
```

The final way you can confirm that traffic travels over the IPsec tunnel is by issuing the traceroute command to the so-0/0/0 interface on Router 1. Notice that the physical interface between Routers 2 and 3 is not referenced in the path; traffic enters the IPsec tunnel through the adaptive services IPsec inside interface on Router 3, passes through the loopback interface on Router 2, and ends at the so-0/0/0 interface on Router 1.

From operational mode, enter the `traceroute 10.1.12.2`.

```
user@router4> traceroute 10.1.12.2
traceroute to 10.1.12.2 (10.1.12.2), 30 hops max, 40 byte packets
1 10.1.15.2 (10.1.15.2) 0.987 ms 0.630 ms 0.563 ms
2 10.0.0.2 (10.0.0.2) 1.194 ms 1.058 ms 1.033 ms
3 10.1.12.2 (10.1.12.2) 1.073 ms 0.949 ms 0.932 ms
```

**Related Documentation**
- Understanding Junos VPN Site Secure on page 531
- Configuring Security Associations on page 549
- Configuring IKE Proposals on page 571
- Configuring IKE Policies on page 576
- Example: Configuring IKE Dynamic SAs on page 663
- Example: Configuring Manual SAs on page 555
- Requesting for and Installing a Digital Certificates on Your Router on page 654
PART 7

Alleviating Congestion and Controlling Service Using CoS

- Class of Service Overview on page 709
- Class of Service Configuration Overview on page 711
- Configuring Class of Service on LSQ Interfaces on page 721
CHAPTER 38

Class of Service Overview

- Class of Service Overview on page 709

Class of Service Overview

The CoS configuration available for the M Series and MX Series-based service cards enables you to configure Differentiated Services (DiffServ) code point (DSCP) marking and forwarding-class assignment for packets transiting the service cards-service PICs. The M Series and MX Series-based service cards include Multiservices PIC, MS-MIC, MS-MPC, MS-DPC, and Adaptive Services PIC. You can configure the CoS service alongside the stateful firewall and NAT services, using a similar rule structure. The component structures are described in detail in the Class of Service Feature Guide (Routers and EX9200 Switches).

Standards for Differentiated Services are described in the following documents:

- RFC 2474, Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers
- RFC 2475, An Architecture for Differentiated Services

NOTE: CoS BA classification is not supported on services interfaces. The CoS configuration is available only for NAT and stateful firewall services. The CoS configuration does not work with other services that run on the service cards such as IPsec.

Related Documentation

- Restrictions and Cautions for CoS Configuration on Services Interfaces on page 711
- Configuring CoS Rules on page 712
- Configuring CoS Rule Sets on page 718
- Examples: Configuring CoS on Services Interfaces on page 718
Class of Service Configuration Overview

- Restrictions and Cautions for CoS Configuration on Services Interfaces on page 711
- Configuring CoS Rules on page 712
- Configuring CoS Rule Sets on page 718
- Examples: Configuring CoS on Services Interfaces on page 718

Restrictions and Cautions for CoS Configuration on Services Interfaces

The following restrictions and cautions apply to CoS configuration on services interfaces:

- You must configure at least one stateful firewall rule or NAT rule on the service set. Otherwise, CoS does not work.
- The services interfaces do not support scheduling, only DiffServ marking and queue assignment. You must configure scheduling at the [edit class-of-service] hierarchy level on the output interface or fabric.
- In the default configuration, queues 1 and 2 receive 0 percent bandwidth. If packets will be assigned to these queues, you must configure a scheduling map.
- You must issue a commit full command before using custom forwarding-class names in the configuration.
- Only the Junos standard DiffServ names can be used in the configuration. Custom names are not recognized.
- On M Series routers, you can configure rewrite rules that change packet headers and attach the rules to output interfaces. These rules might overwrite the DSCP marking configured on a MultiServices PIC. It is important to keep this adverse effect in mind and use care when creating system-wide configurations.

For example, knowing that the MultiServices PIC can mark packets with any ToS or DSCP value and the output interface is restricted to only eight DSCP values, rewrite rules on the output interface condense the mapping from 64 to 8 values with overall loss of granularity. In this case, you have the following options:

- Remove the rewrite rules from the output interface.
- Configure the output interface to include the most important mappings.
Configuring CoS Rules

To configure a CoS rule, include the `rule rule-name` statement at the [edit services cos] hierarchy level:

```
[edit services cos]
rule rule-name {
 match-direction (input | output | input-output);
 term term-name {
 from {
 application-sets set-name;
 applications [application-names];
 destination-address address;
 destination-prefix-list list-name <except>;
 source-address address;
 source-prefix-list list-name <except>;
 }
 then {
 application-profile profile-name;
 dscp (alias | bits);
 forwarding-class class-name;
 syslog;
 reflexive; | revert; | reverse {
 application-profile profile-name;
 dscp (alias | bits);
 forwarding-class class-name;
 syslog;
 }
 }
 }
}
```

Each CoS rule consists of a set of terms, similar to a filter configured at the [edit firewall] hierarchy level. A term consists of the following:

- `from` statement—Specifies the match conditions and applications that are included and excluded.
- `then` statement—Specifies the actions and action modifiers to be performed by the router software.

Apply the CoS rule to a service set at the [edit services] hierarchy level:

```
[edit services]
service-set service-set-name {
```
cos-rules [cos-rule-name];
}

The following sections explain how to configure the components of CoS rules:

- Configuring Match Direction for CoS Rules on page 713
- Configuring Match Conditions In CoS Rules on page 713
- Configuring Actions in CoS Rules on page 714
- Configuring CoS Session Creation When Packet Received in Non-Matching Direction on page 717
- Example: Configuring CoS Rules on page 717

**Configuring Match Direction for CoS Rules**

Each rule must include a `match-direction` statement that specifies the direction in which the rule match is applied. To configure where the match is applied, include the `match-direction` statement at the `[edit services cos rule rule-name]` hierarchy level:

```
match-direction (input | output | input-output);
```

If you configure `match-direction input-output`, bidirectional rule creation is allowed.

The match direction is used with respect to the traffic flow through the Multiservices PIC, MS-MIC, or MS-MPC. When a packet is sent to the PIC, direction information is carried along with it.

With an interface service set, packet direction is determined by whether a packet is entering or leaving the interface on which the service set is applied.

With a next-hop service set, packet direction is determined by the interface used to route the packet to the Multiservices PIC, MS-MIC, or MS-MPC. If the inside interface is used to route the packet, the packet direction is input. If the outside interface is used to direct the packet to the Multiservices PIC, MS-MIC, or MS-MPC, the packet direction is output. For more information on inside and outside interfaces, see “Configuring Service Sets to be Applied to Services Interfaces” on page 9.

On the Multiservices PIC, MS-MIC, or MS-MPC, a flow lookup is performed. If no flow is found, rule processing is performed. All rules in the service set are considered. During rule processing, the packet direction is compared against rule directions. Only rules with direction information that matches the packet direction are considered.

**Configuring Match Conditions In CoS Rules**

To configure CoS match conditions, include the `from` statement at the `[edit services cos rule rule-name term term-name]` hierarchy level:

```
from {
 application-sets set-name;
 applications [application-names];
 destination-address address;
```
destination-prefix-list list-name <except>;
source-address address;
source-prefix-list list-name <except>;
}

The source address and destination address can be either IPv4 or IPv6. You can use either the source address or the destination address as a match condition, in the same way that you would configure a firewall filter; for more information, see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.

Alternatively, you can specify a list of source or destination prefixes by configuring the prefix-list statement at the [edit policy-options] hierarchy level and then including either the destination-prefix-list or source-prefix-list statement in the CoS rule. For an example, see “Examples: Configuring Stateful Firewall Rules” on page 473.

If you omit the from term, the router accepts all traffic and the default protocol handlers take effect:

- User Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Internet Control Message Protocol (ICMP) create a bidirectional flow with a predicted reverse flow.
- IP creates a unidirectional flow.

You can also include application protocol definitions you have configured at the [edit applications] hierarchy level; for more information, see “Configuring Application Properties” on page 431.

- To apply one or more specific application protocol definitions, include the applications statement at the [edit services cos rule rule-name term term-name from] hierarchy level.
- To apply one or more sets of application protocol definitions you have defined, include the application-sets statement at the [edit services cos rule rule-name term term-name from] hierarchy level.

NOTE: If you include one of the statements that specifies application protocols, the router derives port and protocol information from the corresponding configuration at the [edit applications] hierarchy level; you cannot specify these properties as match conditions.

Configuring Actions in CoS Rules

To configure CoS actions, include the then statement at the [edit services cos rule rule-name term term-name] hierarchy level:

[edit services cos rule rule-name term term-name]
then {
   application-profile profile-name;
   dscp (alias | bits);
   forwarding-class class-name;
syslog;
reflexive; | revert; | reverse {
  application-profile profile-name;
dscp (alias | bits);
forwarding-class class-name;
syslog;
}
}

The principal CoS actions are as follows:

- **dscp**—Causes the packet to be marked with the specified DiffServ code point (DSCP) value or alias.
- **forwarding-class**—Causes the packet to be assigned to the specified forwarding class.

For detailed information about DSCP values and forwarding classes, see "Examples: Configuring CoS on Services Interfaces" on page 718 or the Class of Service Feature Guide (Routers and EX9200 Switches).

You can optionally set the configuration to record information in the system logging facility by including the syslog statement at the [edit services cos rule rule-name term term-name then] hierarchy level. This statement overrides any syslog setting included in the service set or interface default configuration.

For information about some additional CoS actions, see the following sections:

- Configuring Application Profiles for Use as CoS Rule Actions on page 715
- Configuring Reflexive, Revert, and Reverse CoS Rule Actions on page 716

### Configuring Application Profiles for Use as CoS Rule Actions

You can optionally define one or more application profiles for inclusion in CoS actions.

To configure application profiles, include the application-profile statement at the [edit services cos] hierarchy level:

```
[edit services cos]
application-profile profile-name {
 ftp {
 data {
 dscp (alias | bits);
 forwarding-class class-name;
 }
 }
 sip {
 video {
 dscp (alias | bits);
 forwarding-class class-name;
 }
 }
 voice {
 dscp (alias | bits);
 forwarding-class class-name;
 }
}
```
The `application-profile` statement includes two main components and three traffic types: `ftp` with the `data` traffic type and `sip` with the `video` and `voice` traffic types. You can set the appropriate `dscp` and `forwarding-class` values for each component within the application profile.

NOTE: The `ftp` and `sip` statements are not supported on Juniper Network MX Series 3D Universal Edge Routers.

You can apply the application profile to a CoS configuration by including it at the `[edit services cos rule rule-name term term-name then]` hierarchy level.

### Configuring Reflexive, Revert, and Reverse CoS Rule Actions

CoS services are unidirectional. It might be necessary to specify different treatments for flows in opposite directions.

Regardless of whether a packet matches the input, output or input-output direction, flows in both directions are created. A forward, reverse, or forward-and-reverse CoS action is associated with each flow. Bear in mind that the flow in the reverse direction might end up having a CoS action associated with it that you have not specifically configured.

To control the direction in which service is applied, as distinct from the direction in which the rule match is applied, you can configure the (`reflexive | revert | reverse`) statement at the `[edit services cos rule rule-name term term-name then]` hierarchy level:

```plaintext
[edit services cos rule rule-name term term-name then]
reflexive; | revert; | reverse {
 application-profile profile-name;
 dscp (alias | bits);
 forwarding-class class-name;
 syslog;
}
```

The three actions are mutually exclusive:

- **reflexive** causes the CoS rule actions to be applied to flows in the reverse direction as well as to flows in the matching direction.
- Starting with Junos OS Release 16.1R5 and Junos OS Release 17.4R1, **revert** stores the DSCP and forwarding class of a packet that is received in the match direction of the rule and then applies that DSCP and forwarding class to packets that are received in the reverse direction of the same session.
- **reverse** allows you to define the CoS behavior for flows in the reverse direction.

If you omit the statement, data flows inherit the CoS behavior of the forward control flow.
Configuring CoS Session Creation When Packet Received in Non-Matching Direction

Starting with Junos OS Release 16.1R5 and Junos OS Release 17.4R1, you can configure a service set to create a CoS session even if a packet is first received in the wrong match direction for a CoS rule that is assigned to the service set. This results in the CoS rule values being applied as soon as a packet in the correct match direction is received. To configure this capability, include the **match-rules-on-reverse-flow** at the **[edit services service-set service-set-name cos-options]** hierarchy level:

```
[edit services service-set service-set-name cos-options]
match-rules-on-reverse-flow;
```

Example: Configuring CoS Rules

The following example shows a CoS configuration containing two rules, one for input matching on a specified application set and the other for output matching on a specified source address:

```
[edit services]
cos {
 rule my-cos-rule {
 match-direction input-output;
 term term1 {
 from {
 source-address 10.1.3.2/32;
 application-set sip;
 }
 then {
 dscp ef;
 syslog;
 }
 }
 term term2 {
 from {
 destination-address 10.2.3.2;
 application http;
 }
 then {
 dscp af21;
 }
 }
 }
}
```
Starting with Junos OS Release 16.1R5 and Junos OS Release 17.4R1, revert stores the DSCP and forwarding class of a packet that is received in the match direction of the rule and then applies that DSCP and forwarding class to packets that are received in the reverse direction of the same session.

Starting with Junos OS Release 16.1R5 and Junos OS Release 17.4R1, you can configure a service set to create a CoS session even if a packet is first received in the wrong match direction for a CoS rule that is assigned to the service set.

### Configuring CoS Rule Sets

The rule-set statement defines a collection of CoS rules that determine what actions the router software performs on packets in the data stream. You define each rule by specifying a rule name and configuring terms. Then you specify the order of the rules by including the rule-set statement at the [edit services cos] hierarchy level with a rule statement for each rule:

```junos
rule-set rule-set-name {
 rule rule-name;
}
```

The router software processes the rules in the order in which you specify them in the configuration. If a term in a rule matches the packet, the router performs the corresponding action and the rule processing stops. If no term in a rule matches the packet, processing continues to the next rule in the rule set. If none of the rules matches the packet, the packet is dropped by default.

### Examples: Configuring CoS on Services Interfaces

To make settings consistent across Juniper Networks routers, you configure many CoS settings at the [edit class-of-service] hierarchy level to be used on services interfaces. When you commit this configuration along with what you configure at the [edit services
tag] hierarchy level.
cos] hierarchy level, these properties are applied to the Multiservices PIC, MS-MIC, or MS-MPC.

The following configuration examples at the [edit class-of-service] hierarchy level can be applied on services interfaces. For more information, see the Class of Service Feature Guide (Routers and EX9200 Switches).

NOTE: The first two configurations, mapping forwarding-class name to forwarding-class ID and mapping forwarding-class name to queue number, are mutually exclusive.

<table>
<thead>
<tr>
<th>Mapping Forwarding-Class Name to Forwarding-Class ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map forwarding-class names to forwarding-class IDs:</td>
</tr>
<tr>
<td>[edit class-of-service]</td>
</tr>
<tr>
<td>forwarding-classes {</td>
</tr>
<tr>
<td>forwarding-class fc0 0;</td>
</tr>
<tr>
<td>forwarding-class fc1 0;</td>
</tr>
<tr>
<td>forwarding-class fc2 1;</td>
</tr>
<tr>
<td>forwarding-class fc3 1;</td>
</tr>
<tr>
<td>forwarding-class fc4 2;</td>
</tr>
<tr>
<td>forwarding-class fc5 2;</td>
</tr>
<tr>
<td>forwarding-class fc6 3;</td>
</tr>
<tr>
<td>forwarding-class fc7 3;</td>
</tr>
<tr>
<td>forwarding-class fc8 4;</td>
</tr>
<tr>
<td>forwarding-class fc9 4;</td>
</tr>
<tr>
<td>forwarding-class fc10 5;</td>
</tr>
<tr>
<td>forwarding-class fc11 5;</td>
</tr>
<tr>
<td>forwarding-class fc12 6;</td>
</tr>
<tr>
<td>forwarding-class fc13 6;</td>
</tr>
<tr>
<td>forwarding-class fc14 7;</td>
</tr>
<tr>
<td>forwarding-class fc15 7;</td>
</tr>
<tr>
<td>}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mapping Forwarding-Class Name to Queue Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map forwarding-class names to queue numbers:</td>
</tr>
<tr>
<td>[edit class-of-service]</td>
</tr>
<tr>
<td>forwarding-classes {</td>
</tr>
<tr>
<td>queue 0 be;</td>
</tr>
<tr>
<td>queue 1 ef;</td>
</tr>
<tr>
<td>queue 2 af;</td>
</tr>
<tr>
<td>queue 3 nc;</td>
</tr>
<tr>
<td>queue 4 ef1;</td>
</tr>
<tr>
<td>queue 5 ef2;</td>
</tr>
<tr>
<td>queue 6 af1;</td>
</tr>
<tr>
<td>queue 7 ncl;</td>
</tr>
</tbody>
</table>
|}
Mapping Diffserv Code Point Aliases to DSCP Bits

Map alias names to DSCP bit values. The aliases then can be used instead of the DSCP bits in adaptive services configurations.

```
[edit class-of-service]
code-point-aliases {
 (dscp | dscp-ipv6 | exp | ieee-802.1 | inet-precedence) {
 alias | bits;
 }
}
```

Here is an example:

```
code-point-aliases {
 dscp {
 my1 110001;
 my2 101110;
 be 000001;
 cs7 110000;
 }
}
```

Related Documentation

- Class of Service Overview on page 709
- Restrictions and Cautions for CoS Configuration on Services Interfaces on page 711
- Configuring CoS Rules on page 712
- Configuring CoS Rule Sets on page 718
CHAPTER 40

Configuring Class of Service on LSQ Interfaces

- Link Services Configuration for Junos Interfaces on page 721
- Configuring CoS Scheduling Queues on Logical LSQ Interfaces on page 722
- Configuring CoS Fragmentation by Forwarding Class on LSQ Interfaces on page 726
- Configuring Link Services and CoS on Services PICs on page 728
- Oversubscribing Interface Bandwidth on LSQ Interfaces on page 731
- Configuring Guaranteed Minimum Rate on LSQ Interfaces on page 737

Link Services Configuration for Junos Interfaces

This topic provides links to topics explaining link services configuration for the following interface types:

- For information about configuring LSQ interface redundancy across multiple routers using SONET APS interfaces, see “Configuring LSQ Interface Redundancy Across Multiple Routers Using SONET APS” on page 787
- For information about configuring LSQ interface redundancy in a single router using SONET APS interfaces, see “Configuring LSQ Interface Redundancy in a Single Router Using SONET APS” on page 790
- For information about configuring LSQ interface redundancy in a single router using Virtual Interfaces, see “Configuring LSQ Interface Redundancy in a Single Router Using Virtual Interfaces” on page 790
- For information about configuring CoS scheduling queues on Logical LSQ interfaces, see “Configuring CoS Scheduling Queues on Logical LSQ Interfaces” on page 722
- For information about configuring CoS fragmentation by forwarding class on LSQ interfaces, see “Configuring CoS Fragmentation by Forwarding Class on LSQ Interfaces” on page 726
- For information about reserving bundle bandwidth for Link-Layer overhead on LSQ interfaces, see “Reserving Bundle Bandwidth for Link-Layer Overhead on LSQ Interfaces” on page 803
For information about configuring multiclass MLPPP on LSQ interfaces, see “Configuring Multiclass MLPPP on LSQ Interfaces” on page 804.

For information about oversubscribing interface bandwidth on LSQ interfaces, see “Oversubscribing Interface Bandwidth on LSQ Interfaces” on page 731.

For information about configuring guaranteed minimum rate on LSQ interfaces, see “Configuring Guaranteed Minimum Rate on LSQ Interfaces” on page 737.

For information about configuring link services and CoS on services PICs, see “Configuring Link Services and CoS on Services PICs” on page 728.

For information about configuring LSQ interfaces as NxT1 or NxE1 bundles using MLPPP, see “Configuring LSQ Interfaces as NxT1 or NxE1 Bundles Using MLPPP” on page 808.

For information about configuring LSQ interfaces as NxT1 or NxE1 bundles using FRF.16, see “Configuring LSQ Interfaces as NxT1 or NxE1 Bundles Using FRF.16” on page 814.

For information about configuring LSQ interfaces for single fractional T1 or E1 interfaces using MLPPP and LFI, see “Configuring LSQ Interfaces for Single Fractional T1 or E1 Interfaces Using MLPPP and LFI” on page 821.

For information about configuring LSQ interfaces for single fractional T1 or E1 interfaces using FRF.12, see “Configuring LSQ Interfaces for Single Fractional T1 or E1 Interfaces Using FRF.12” on page 826.

For information about configuring LSQ interfaces as NxT1 or NxE1 bundles using FRF.15, see “Configuring LSQ Interfaces as NxT1 or NxE1 Bundles Using FRF.15” on page 820.

For information about configuring LSQ interfaces for T3 links configured for compressed RTP over MLPPP, see “Configuring LSQ Interfaces for T3 Links Configured for Compressed RTP over MLPPP” on page 833.

For information about configuring LSQ interfaces as T3 or OC3 bundles using FRF.12, see “Configuring LSQ Interfaces as T3 or OC3 Bundles Using FRF.12” on page 835.

For information about configuring LSQ interfaces for ATM2 IQ interfaces using MLPPP, see “Configuring LSQ Interfaces for ATM2 IQ Interfaces Using MLPPP” on page 837.

Related Documentation

Layer 2 Service Package Capabilities and Interfaces on page 785

### Configuring CoS Scheduling Queues on Logical LSQ Interfaces

For link services IQ (lsq-) interfaces, you can specify a scheduler map for each logical unit. A logical unit represents either an MLPPP bundle or a DLCI configured on a FRF.16 bundle. The scheduler is applied to the traffic sent to an AS or Multiservices PIC running the Layer 2 link services package.

If you configure a scheduler map on a bundle, you must include the `per-unit-scheduler` statement at the [edit interfaces lsq-fpc/pic/port] hierarchy level. If you configure a scheduler map on an FRF.16 DLCI, you must include the `per-unit-scheduler` statement at the [edit interfaces lsq-fpc/pic/port/channel] hierarchy level. For more information, see the Class of Service Feature Guide (Routers and EX9200 Switches).
If you need latency guarantees for multiclass or LFI traffic, you must use channelized IQ PICs for the constituent links. With non-IQ PICs, because queuing is not done at the channelized interface level on the constituent links, latency-sensitive traffic might not receive the type of service that it should. Constituent links from the following PICs support latency guarantees:

- Channelized E1 IQ PIC
- Channelized OC3 IQ PIC
- Channelized OC12 IQ PIC
- Channelized STM1 IQ PIC
- Channelized T3 IQ PIC

For scheduling queues on a logical interface, you can configure the following scheduler map properties at the [edit class-of-service schedulers] hierarchy level:

- buffer-size—The queue size; for more information, see “Configuring Scheduler Buffer Size” on page 724.
- priority—The transmit priority (low, high, strict-high); for more information, see “Configuring Scheduler Priority” on page 724.
- shaping-rate—The subscribed transmit rate; for more information, see “Configuring Scheduler Shaping Rate” on page 724.
- drop-profile-map—The random early detection (RED) drop profile; for more information, see “Configuring Drop Profiles” on page 725.

When you configure MLPPP and FRF.12 on M Series and T Series routers, you should configure a single scheduler with non-zero percent transmission rates and buffer sizes for queues 0 through 3, and assign this scheduler to the link services IQ interface (lsq) and to each constituent link.

When you configure FRF.16 on M Series and T Series routers, you can assign a single scheduler map to the link services IQ interface (lsq) and to each link services IQ DLCI, or you can assign different scheduler maps to the various DLCIs of the bundle, as shown in “Example: Configuring an LSQ Interface as an NxT1 Bundle Using FRF.16” on page 817. For the constituent links of an FRF.16 bundle, you do not need to configure a custom scheduler. Because LFI and multiclass are not supported for FRF.16, the traffic from each constituent link is transmitted from queue 0. This means you should allow most of the bandwidth to be used by queue 0. The default scheduler transmission rate and buffer size percentages for queues 0 through 3 are 95, 0, 0, and 5 percent, respectively. This default scheduler sends all user traffic to queue 0 and all network-control traffic to queue 3, and therefore it is well suited to the behavior of FRF.16. You can configure a custom scheduler that explicitly replicates the 95, 0, 0, and 5 percent queuing behaviors, and apply it to the constituent links.

**NOTE:** On T Series and M320 routers, the default scheduler transmission rate and buffer size percentages for queues 0 through 7 are 95, 0, 0, 5, 0, 0, 0, and 0 percent.
For link services IQ interfaces (lsq), these scheduling properties work as they do in other PICs, except as noted in the following sections.

NOTE: On T Series and M320 routers, lsq interfaces do not support DiffServ code point (DSCP) and DSCP-IPv6 rewrite markers.

Configuring Scheduler Buffer Size

You can configure the scheduler buffer size in three ways: as a temporal value, as a percentage, and as a remainder. On a single logical interface (MLPPP or a FRF.16 DLCI), each queue can have a different buffer size.

If you specify a temporal value, the queuing algorithm starts dropping packets when it queues more than a computed number of bytes. This number is computed by multiplying logical interface speed by the temporal value. For MLPPP bundles, logical interface speed is equal to the bundle bandwidth, which is the sum of constituent link speeds minus link-layer overhead. For MLFR FRF.16 DLCIs, logical interface speed is equal to bundle bandwidth multiplied by the DLCI shaping rate. In all cases, the maximum temporal value is limited to 200 milliseconds.

Buffer size percentages are implicitly converted into temporal values by multiplying the percentage by 200 milliseconds. For example, buffer size specified as `buffer-size percent 20` is the same as a 40-millisecond temporal delay. The link services IQ implementation guarantees 200 milliseconds of buffer delay for all interfaces with T1 and higher speeds. For slower interfaces, it guarantees one second of buffer delay.

The queueing algorithm evenly distributes leftover bandwidth among all queues that are configured with the `buffer-size remainder` statement. The queuing algorithm guarantees enough space in the transmit buffer for two MTU-sized packets.

Configuring Scheduler Priority

The transmit priority of each queue is determined by the scheduler and the forwarding class. Each queue receives a guaranteed amount of bandwidth specified with the scheduler `transmit-rate` statement.

Configuring Scheduler Shaping Rate

You use the shaping rate to set the percentage of total bundle bandwidth that is dedicated to a DLCI. For link services IQ DLCIs, only percentages are accepted, which allows adjustments in response to dynamic changes in bundle bandwidth—for example, when a link goes up or down. This means that absolute shaping rates are not supported on FRF.16 bundles. Absolute shaping rates are allowed for MLPPP and MLFR bundles only.

For scheduling between DLCIs in a MLFR FRF.16 bundle, you can configure a shaping rate for each DLCI. A shaping rate is expressed as a percentage of the aggregate bundle bandwidth. Shaping rate percentages for all DLCIs within a bundle can add up to 100 percent or less. Leftover bandwidth is distributed equally to DLCIs that do not have the `shaping-rate` statement included at the [edit class-of-service interfaces lsq-fpc/pic/port:channel unit logical-unit-number] hierarchy level. If none of the DLCIs in
an MLFR FRF.16 bundle specify a DLCI scheduler, the total bandwidth is evenly divided across all DLCIs.

NOTE: For FRF.16 bundles on link services IQ interfaces, only shaping rates based on percentage are supported.

Configuring Drop Profiles

You can configure random early detection (RED) on LSQ interfaces as in other CoS scenarios. To configure RED, include one or more drop profiles and attach them to a scheduler for a particular forwarding class. For more information about RED profiles, see the Class of Service Feature Guide (Routers and EX9200 Switches).

The LSQ implementation performs tail RED. It supports a maximum of 256 drop profiles per PIC. Drop profiles are configurable on a per-queue, per-loss-priority, and per-TCP-bit basis.

You can attach scheduler maps with configured RED drop profiles to any LSQ logical interface: an MLPPP bundle, an FRF.15 bundle, or an FRF.16 DLCI. Different queues (forwarding classes) on the same logical interface can have different associated drop profiles.

The following example shows how to configure a RED profile on an LSQ interface:

```
[edit]
class-of-service {
 drop-profiles {
 drop-low {
 # Configure suitable drop profile for low loss priority
 ...
 }
 drop-high {
 # Configure suitable drop profile for high loss priority
 ...
 }
 }
 scheduler-maps {
 schedmap {
 # Best-effort queue will use be-scheduler
 # Other queues may use different schedulers
 forwarding-class be scheduler be-scheduler;
 ...
 }
 }
 schedulers {
 be-scheduler {
 # Configure two drop profiles for low and high loss priority
 drop-profile-map loss-priority low protocol any drop-profile drop-low;
 drop-profile-map loss-priority high protocol any drop-profile drop-high;
 # Other scheduler parameters (buffer-size, priority,
 # and transmit-rate) are already supported.
 }
 }
}
```
For link services IQ (lsq-) interfaces, you can specify fragmentation properties for specific forwarding classes. Traffic on each forwarding class can be either multilink encapsulated (fragmented and sequenced) or nonencapsulated (hashed with no fragmentation). By default, traffic in all forwarding classes is multilink encapsulated.

When you do not configure fragmentation properties for the queues on MLPPP interfaces, the fragmentation threshold you set at the [edit interfaces interface-name unit logical-unit-number fragment-threshold] hierarchy level is the fragmentation threshold for all forwarding classes within the MLPPP interface. For MLFR FRF.16 interfaces, the fragmentation threshold you set at the [edit interfaces interface-name mlfr-uni-nni-bundle-options fragment-threshold] hierarchy level is the fragmentation threshold for all forwarding classes within the MLFR FRF.16 interface.

If you do not set a maximum fragment size anywhere in the configuration, packets are still fragmented if they exceed the smallest maximum transmission unit (MTU) or maximum received reconstructed unit (MRRU) of all the links in the bundle. A nonencapsulated flow uses only one link. If the flow exceeds a single link, then the forwarding class must be multilink encapsulated, unless the packet size exceeds the MTU/MRRU.

Even if you do not set a maximum fragment size anywhere in the configuration, you can configure the MRRU by including the mrru statement at the [edit interfaces lsq-fpc/pic/port unit logical-unit-number] or [edit interfaces interface-name mlfr-uni-nni-bundle-options] hierarchy level. The MRRU is similar to the MTU, but is specific to link services interfaces.

NOTE: The RED profiles should be applied only on the LSQ bundles and not on the egress links that constitute the bundle.
By default the MRRU size is 1500 bytes, and you can configure it to be from 1500 through 4500 bytes. For more information, see Configuring MRRU on Multilink and Link Services Logical Interfaces.

To configure fragmentation properties on a queue, include the `fragmentation-maps` statement at the `[edit class-of-service]` hierarchy level:

```plaintext
[edit class-of-service]
fragmentation-maps {
 map-name {
 forwarding-class class-name {
 (fragment-threshold bytes | no-fragmentation);
 multilink-class number;
 }
 }
}
```

To set a per-forwarding class fragmentation threshold, include the `fragment-threshold` statement in the fragmentation map. This statement sets the maximum size of each multilink fragment.

To set traffic on a queue to be nonencapsulated rather than multilink encapsulated, include the `no-fragmentation` statement in the fragmentation map. This statement specifies that an extra fragmentation header is not prepended to the packets received on this queue and that static link load balancing is used to ensure in-order packet delivery.

For a given forwarding class, you can include either the `fragment-threshold` or `no-fragmentation` statement; they are mutually exclusive.

You use the `multilink-class` statement to map a forwarding class into a multiclass MLPPP (MCML). For a given forwarding class, you can include either the `multilink-class` or `no-fragmentation` statement; they are mutually exclusive. For more information about MCML, see “Configuring Multiclass MLPPP on LSQ Interfaces” on page 804.

To associate a fragmentation map with a multilink PPP interface or MLFR FRF.16 DLCI, include the `fragmentation-map` statement at the `[edit class-of-service interfaces interface-name unit logical-unit-number]` hierarchy level:

```plaintext
[edit class-of-service interfaces]
lsq-fpc/pic/port {
 unit logical-unit-number { # Multilink PPP
 fragmentation-map map-name;
 }
 lsq-fpc/pic/port:channel { # MLFR FRF.16
 unit logical-unit-number {
 fragmentation-map map-name;
 }
 }
}
```

For configuration examples, see the following topics:

- Configuring LSQ Interfaces as NxT1 or NxE1 Bundles Using MLPPP on page 808
- Configuring LSQ Interfaces as NxT1 or NxE1 Bundles Using FRF.16 on page 814
• Configuring LSQ Interfaces for Single Fractional T1 or E1 Interfaces Using MLPPP and LFI on page 821
• Configuring LSQ Interfaces for Single Fractional T1 or E1 Interfaces Using FRF.12 on page 826
• Configuring LSQ Interfaces as NxT1 or NxE1 Bundles Using FRF.15 on page 820
• Configuring LSQ Interfaces for T3 Links Configured for Compressed RTP over MLPPP on page 833
• Configuring LSQ Interfaces as T3 or OC3 Bundles Using FRF.12 on page 835
• Configuring LSQ Interfaces for ATM2 IQ Interfaces Using MLPPP on page 837

For Link Services PIC link services (ls-) interfaces, fragmentation maps are not supported. Instead, you enable LFI by including the `interleave-fragments` statement at the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level. For more information, see Configuring Delay-Sensitive Packet Interleaving on Link Services Logical Interfaces.

---

**Related Documentation**

• Layer 2 Service Package Capabilities and Interfaces on page 785
• Configuring Link Services and CoS on Services PICs on page 728
• Configuring CoS Scheduling Queues on Logical LSQ Interfaces on page 722
• Link Services Configuration for Junos Interfaces on page 721

---

### Configuring Link Services and CoS on Services PICs

To configure link services and CoS on an AS or Multiservices PIC, you must perform the following steps:

1. Enable the Layer 2 service package. You enable service packages per PIC, not per port. When you enable the Layer 2 service package, the entire PIC uses the configured package. To enable the Layer 2 service package, include the `service-package` statement at the `[edit chassis fpc slot-number pic pic-number adaptive-services]` hierarchy level, and specify `layer-2`:

   ```
 [edit chassis fpc slot-number pic pic-number adaptive-services]
 service-package layer-2;
   ```

   For more information about AS or Multiservices PIC service packages, see Enabling Service Packages and “Layer 2 Service Package Capabilities and Interfaces” on page 785.

2. Configure a multilink PPP or FRF.16 bundle by combining constituent links into a virtual link, or bundle.

   To configure an MLPPP bundle, configure constituent links and bundle properties by including the following statements in the configuration:

   ```
 [edit interfaces interface-name unit logical-unit-number]
 encapsulation ppp;
   ```
family mllppp {
    bundle lsq-fpc/pic/port logical-unit-number;
}

[edit interfaces lsq-fpc/pic/port unit logical-unit-number]
drop-timeout milliseconds;
encapsulation multilink-ppp;
fragment-threshold bytes;
link-layer-overhead percent;
minimum-links number;
mrru bytes;
short-sequence;
family inet {
    address address;
}

For more information about these statements, see the Link and Multilink Services Interfaces Feature Guide for Routing Devices.

To configure an MLFR FRF.16 bundle, configure constituent links and bundle properties by including the following statements in the configuration:

[edit chassis fpc slot-number pic slot-number]
mlfr-uni-nni-bundles number;
[edit interfaces interface-name ]
encapsulation multilink-frame-relay-uni-nni;
unit logical-unit-number {
    family mlfr-uni-nni {
        bundle lsq-fpc/pic/port:channel;
    }
}

For more information about the mlfr-uni-nni-bundles statement, see the Junos OS Administration Library. MLFR FRF.16 uses channels as logical units.

For MLFR FRF.16, you must configure one end as data circuit-terminating equipment (DCE) by including the following statements at the [edit interfaces lsq-fpc/pic/port:channel] hierarchy level.

capsulation multilink-frame-relay-uni-nni;
dce;
mlfr-uni-nni-options {
    acknowledge-retries number;
    acknowledge-timer milliseconds;
    action-red-differential-delay (disable-tx | remove-link);
    drop-timeout milliseconds;
    fragment-threshold bytes;
    hello-timer milliseconds;
    link-layer-overhead percent;
    lmi-type (ansi | itu);
    minimum-links number;
    mrru bytes;
    n391 number;
    n392 number;
n393 number;
red-differential-delay milliseconds;
t391 number;
t392 number;
yellow-differential-delay milliseconds;
}
unit logical-unit-number {
dlc dlc-identifier;
family inet {
  address address;
}
}

For more information about MLFR UNI NNI properties, see Link and Multilink Services Interfaces Feature Guide for Routing Devices.

3. To configure CoS components for each multilink bundle, enable per-unit scheduling on the interface, configure a scheduler map, apply the scheduler to each queue, configure a fragmentation map, and apply the fragmentation map to each bundle. Include the following statements:

```mxml
[edit interfaces]
lsq-fpc/pic/port {
 per-unit-scheduler; # Enables per-unit scheduling on the bundle
}
[edit class-of-service]
interfaces {
 lsq-fpc/pic/port { # Multilink PPP
 unit logical-unit-number {
 scheduler-map map-name; # Applies scheduler map to each queue
 }
 }
 lsq-fpc/pic/port:channel { # MLFR FRF.16
 unit logical-unit-number {
 # Scheduler map provides scheduling information for
 # the queues within a single DLCI.
 scheduler-map map-name;
 shaping-rate percent percent;
 }
 forwarding-classes {
 queue queue-number class-name priority (high | low);
 }
 scheduler-maps {
 map-name {
 forwarding-class class-name scheduler scheduler-name;
 }
 }
 schedulers {
 scheduler-name {
 buffer-size (percent percentage | remainder | temporal microseconds);
 priority priority-level;
 transmit-rate (percent percentage | rate | remainder <exact>);
 }
 }
 }
```

Copyright © 2019, Juniper Networks, Inc.
fragmentation-maps {
    map-name {
        forwarding-class class-name {
            fragment-threshold bytes;
            no-fragmentation;
        }
    }
}

Associate a fragmentation map with a multilink PPP interface or MLFR FRF.16 DLCI by including the following statements at the [edit class-of-service] hierarchy level:

interfaces {
    lsq-fpc/pic/port {
        unit logical-unit-number { # Multilink PPP
            fragmentation-map map-name;
        }
    }
    lsq-fpc/pic/portchannel { # MLFR FRF.16
        unit logical-unit-number {
            fragmentation-map map-name;
        }
    }
}

Related Documentation
- Layer 2 Service Package Capabilities and Interfaces on page 785
- Configuring LSQ Interface Redundancy Across Multiple Routers Using SONET APS on page 787
- Configuring LSQ Interface Redundancy in a Single Router Using SONET APS on page 790
- Configuring LSQ Interface Redundancy in a Single Router Using Virtual Interfaces on page 790
- Link Services Configuration for Junos Interfaces on page 721

Oversubscribing Interface Bandwidth on LSQ Interfaces

The term oversubscribing interface bandwidth means configuring shaping rates (peak information rates [PIRs]) so that their sum exceeds the interface bandwidth.

On Channelized IQ PICs, Gigabit Ethernet IQ PICs, and FRF.16 link services IQ (lsq-) interfaces on AS and Multiservices PICs, you can oversubscribe interface bandwidth. The logical interfaces (and DLCIs within an FRF.16 bundle) can be oversubscribed when there is leftover bandwidth. The oversubscription is limited to the configured PIR. Any unused bandwidth is distributed equally among oversubscribed logical interfaces or DLCIs.

For networks that are not likely to experience congestion, oversubscribing interface bandwidth improves network utilization, thereby allowing more customers to be provisioned on a single interface. If the actual data traffic does not exceed the interface bandwidth, oversubscription allows you to sell more bandwidth than the interface can support.
We recommend avoiding oversubscription in networks that are likely to experience congestion. Be careful not to oversubscribe a service by too much, because this can cause degradation in the performance of the router during congestion. When you configure oversubscription, some output queues can be starved if the actual data traffic exceeds the physical interface bandwidth. You can prevent degradation by using statistical multiplexing to ensure that the actual data traffic does not exceed the interface bandwidth.

**NOTE:** You cannot oversubscribe interface bandwidth when you configure traffic shaping using the method described in *Applying Scheduler Maps and Shaping Rate to DLCIs and VLANs.*

When configuring oversubscription for FRF.16 bundle interfaces, you can assign traffic control profiles that apply on a physical interface basis. When you apply traffic control profiles to FRF.16 bundles at the logical interface level, member link interface bandwidth is underutilized when there is a small proportion of traffic or no traffic at all on an individual DLCI. Support for traffic control features on the FRF.16 bundle physical interface level addresses this limitation.

To configure oversubscription of an interface, perform the following steps:

1. Include the `shaping-rate` statement at the `[edit class-of-service traffic-control-profiles profile-name]` hierarchy level:

   ```
 [edit class-of-service traffic-control-profiles profile-name]
 shaping-rate (percent percentage | rate);
   ```

   **NOTE:** When configuring oversubscription for FRF.16 bundle interfaces on a physical interface basis, you must specify shaping-rate as a percentage.

   On LSQ interfaces, you can configure the shaping rate as a percentage.

   On IQ and IQ2 interfaces, you can configure the shaping rate as an absolute rate from 1000 through 6,400,000,000,000 bits per second.

   Alternatively, you can configure a shaping rate for a logical interface and oversubscribe the physical interface by including the `shaping-rate` statement at the `[edit class-of-service interfaces interface-name unit logical-unit-number]` hierarchy level. However, with this configuration approach, you cannot independently control the delay-buffer rate, as described in Step 2.
For channelized and Gigabit Ethernet IQ interfaces, the shaping-rate and guaranteed-rate statements are mutually exclusive. You cannot configure some logical interfaces to use a shaping rate and others to use a guaranteed rate. This means there are no service guarantees when you configure a PIR. For these interfaces, you can configure either a PIR or a committed information rate (CIR), but not both.

This restriction does not apply to Gigabit Ethernet IQ2 PICs or link services IQ (LSQ) interfaces on AS or Multiservices PICs. For LSQ and Gigabit Ethernet IQ2 interfaces, you can configure both a PIR and a CIR on an interface. For more information about CIRs, see “Configuring Guaranteed Minimum Rate on LSQ Interfaces” on page 737.

2. Optionally, you can base the delay buffer calculation on a delay-buffer rate. To do this, include the delay-buffer-rate statement at the [edit class-of-service traffic-control-profiles profile-name] hierarchy level:

```
[edit class-of-service traffic-control-profiles profile-name]
delay-buffer-rate (percent percentage | rate);
```

The delay-buffer rate overrides the shaping rate as the basis for the delay-buffer calculation. In other words, the shaping rate or scaled shaping rate is used for delay-buffer calculations only when the delay-buffer rate is not configured.

For LSQ interfaces, if you do not configure a delay-buffer rate, the guaranteed rate (CIR) is used to assign buffers. If you do not configure a guaranteed rate, the shaping rate (PIR) is used in the undersubscribed case, and the scaled shaping rate is used in the oversubscribed case.

On LSQ interfaces, you can configure the delay-buffer rate as a percentage.

On IQ and IQ2 interfaces, you can configure the delay-buffer rate as an absolute rate from 1000 through 6,400,000,000,000 bits per second.

The actual delay buffer is based on the calculations described in the Class of Service Feature Guide (Routers and EX9200 Switches). For an example showing how the delay-buffer rates are applied, see “Examples: Oversubscribing an LSQ Interface” on page 735.

Configuring large buffers on relatively low-speed links can cause packet aging. To help prevent this problem, the software requires that the sum of the delay-buffer rates be less than or equal to the port speed.

This restriction does not eliminate the possibility of packet aging, so you should be cautious when using the delay-buffer-rate statement. Though some amount of extra...
buffering might be desirable for burst absorption, delay-buffer rates should not far exceed the service rate of the logical interface.

If you configure delay-buffer rates so that the sum exceeds the port speed, the configured delay-buffer rate is not implemented for the last logical interface that you configure. Instead, that logical interface receives a delay-buffer rate of zero, and a warning message is displayed in the CLI. If bandwidth becomes available (because another logical interface is deleted or deactivated, or the port speed is increased), the configured delay-buffer-rate is reevaluated and implemented if possible.

If you do not configure a delay-buffer rate or a guaranteed rate, the logical interface receives a delay-buffer rate in proportion to the shaping rate and the remaining delay-buffer rate available. In other words, the delay-buffer rate for each logical interface with no configured delay-buffer rate is equal to:

\[
\text{(remaining delay-buffer rate} \times \text{shaping rate}) \div \text{(sum of shaping rates)}
\]

The remaining delay-buffer rate is equal to:

\[
\text{(Interface speed)} \div \text{(sum of configured delay-buffer rates)}
\]

3. To assign a scheduler map to the logical interface, include the scheduler-map statement at the [edit class-of-service traffic-control-profiles profile-name] hierarchy level:

   [edit class-of-service traffic-control-profiles profile-name]
   scheduler-map map-name;

   For information about configuring schedulers and scheduler maps, see the Class of Service Feature Guide (Routers and EX9200 Switches).

4. Optionally, you can enable large buffer sizes to be configured. To do this, include the q-pic-large-buffer statement at the [edit chassis fpc slot-number pic pic-number] hierarchy level:

   [edit chassis fpc slot-number pic pic-number]
   q-pic-large-buffer;

   If you do not include this statement, the delay-buffer size is more restricted. We recommend restricted buffers for delay-sensitive traffic, such as voice traffic. For more information, see the Class of Service Feature Guide (Routers and EX9200 Switches).

5. To enable scheduling on logical interfaces, include the per-unit-scheduler statement at the [edit interfaces interface-name] hierarchy level:

   [edit interfaces interface-name]
   per-unit-scheduler;

   When you include this statement, the maximum number of VLANs supported is 768 on a single-port Gigabit Ethernet IQ PIC. On a two-port Gigabit Ethernet IQ PIC, the maximum number is 384.
6. To enable scheduling for FRF.16 bundles physical interfaces, include the no-per-unit-scheduler statement at the [edit interfaces interface-name] hierarchy level:

   [edit interfaces interface-name]
   no-per-unit-scheduler;

7. To apply the traffic-scheduling profile to the logical interface, include the output-traffic-control-profile statement at the [edit class-of-service interfaces interface-name unit logical-unit-number] hierarchy level:

   [edit class-of-service interfaces interface-name unit logical-unit-number]
   output-traffic-control-profile profile-name;

You cannot include the output-traffic-control-profile statement in the configuration if any of the following statements are included in the logical interface configuration: scheduler-map, shaping-rate, adaptive-shaper, or virtual-channel-group.

For a table that shows how the bandwidth and delay buffer are allocated in various configurations, see the Class of Service Feature Guide (Routers and EX9200 Switches).

Examples: Oversubscribing an LSQ Interface

**Oversubscribing an LSQ Interface with Scheduling Based on the Logical Interface**

Apply a traffic-control profile to a logical interface representing a DLCI on an FRF.16 bundle.

```plaintext
interfaces {
 lsq-1/3/0:0 {
 per-unit-scheduler;
 unit 0 {
 dcli 100;
 }
 unit 1 {
 dcli 200;
 }
 }
}
class-of-service {
 traffic-control-profiles {
 tc_0 {
 shaping-rate percent 100;
 guaranteed-rate percent 60;
 delay-buffer-rate percent 80;
 }
 tc_1 {
 shaping-rate percent 80;
 guaranteed-rate percent 40;
 }
 }
}
```

```plaintext
interfaces {
 lsq-1/3/0 {
 unit 0 {
 output-traffic-control-profile tc_0;
 }
 }
```
Oversubscribing an LSQ Interface with Scheduling Based on the Physical Interface

Apply a traffic-control profile to the physical interface representing an FRF.16 bundle:

```plaintext
interfaces {
 lsq-0/2/0:0 {
 no-per-unit-scheduler;
 encapsulation multilink-frame-relay-uni-nni;
 unit 0 {
 dlci 100;
 family inet {
 address 18.18.18.2/24;
 }
 }
 }
}
class-of-service {
 traffic-control-profiles {
 rlsq_tc {
 scheduler-map rlsq;
 shaping-rate percent 60;
 delay-buffer-rate percent 10;
 }
 }
}
```

```plaintext
interfaces {
 lsq-0/2/0:0 {
 output-traffic-control-profile rlsq_tc;
 }
}
scheduler-maps {
 rlsq {
 forwarding-class best-effort scheduler rlsq_scheduler;
 forwarding-class expedited-forwarding scheduler rlsq_scheduler1;
 }
}
schedulers {
 rlsq_scheduler {
 transmit-rate percent 20;
 priority low;
 }
 rlsq_scheduler1 {
 transmit-rate percent 40;
 priority high;
 }
}
```
Configuring Guaranteed Minimum Rate on LSQ Interfaces

On Gigabit Ethernet IQ PICs, Channelized IQ PICs, and FRF.16 link services IQ (LSQ) interfaces on AS and Multiservices PICs, you can configure guaranteed bandwidth, also known as a committed information rate (CIR). This allows you to specify a guaranteed rate for each logical interface. The guaranteed rate is a minimum. If excess physical interface bandwidth is available for use, the logical interface receives more than the guaranteed rate provisioned for the interface.

You cannot provision the sum of the guaranteed rates to be more than the physical interface bandwidth, or the bundle bandwidth for LSQ interfaces. If the sum of the guaranteed rates exceeds the interface or bundle bandwidth, the commit operation does not fail, but the software automatically decreases the rates so that the sum of the guaranteed rates is equal to the available bundle bandwidth.

To configure a guaranteed minimum rate, perform the following steps:

1. Include the `guaranteed-rate` statement at the `[edit class-of-service traffic-control-profiles profile-name]` hierarchy level:

   ```
 [edit class-of-service traffic-control-profiles profile-name]
 guaranteed-rate (percent percentage | rate);
   ```

   On LSQ interfaces, you can configure the guaranteed rate as a percentage.

   On IQ and IQ2 interfaces, you can configure the guaranteed rate as an absolute rate from 1000 through 160,000,000,000 bits per second.

   **NOTE:** For channelized and Gigabit Ethernet IQ interfaces, the shaping-rate and guaranteed-rate statements are mutually exclusive. You cannot configure some logical interfaces to use a shaping rate and others to use a guaranteed rate. This means there are no service guarantees when you configure a PIR. For these interfaces, you can configure either a PIR or a committed information rate (CIR), but not both.

   This restriction does not apply to Gigabit Ethernet IQ2 PICs or link services IQ (LSQ) interfaces on AS or Multiservices PICs. For LSQ and Gigabit Ethernet IQ2 interfaces, you can configure both a PIR and a CIR on an interface. For more information about CIRs, see the Class of Service Feature Guide (Routers and EX9200 Switches).
2. Optionally, you can base the delay buffer calculation on a delay-buffer rate. To do this, include the `delay-buffer-rate` statement at the `[edit class-of-service traffic-control-profiles profile-name]` hierarchy level:

```
[edit class-of-service traffic-control-profiles profile-name]
delay-buffer-rate (percent percentage | rate);
```

On LSQ interfaces, you can configure the delay-buffer rate as a percentage.

On IQ and IQ2 interfaces, you can configure the delay-buffer rate as an absolute rate from 1000 through 160,000,000,000 bits per second.

The actual delay buffer is based on the calculations described in tables in the Class of Service Feature Guide (Routers and EX9200 Switches). For an example showing how the delay-buffer rates are applied, see “Example: Configuring Guaranteed Minimum Rate” on page 739.

If you do not include the `delay-buffer-rate` statement, the delay-buffer calculation is based on the guaranteed rate, the shaping rate if no guaranteed rate is configured, or the scaled shaping rate if the interface is oversubscribed.

If you do not specify a shaping rate or a guaranteed rate, the logical interface receives a minimal delay-buffer rate and minimal bandwidth equal to 4 MTU-sized packets.

You can configure a rate for the delay buffer that is higher than the guaranteed rate. This can be useful when the traffic flow might not require much bandwidth in general, but in some cases can be bursty and therefore needs a large buffer.

Configuring large buffers on relatively low-speed links can cause packet aging. To help prevent this problem, the software requires that the sum of the delay-buffer rates be less than or equal to the port speed. This restriction does not eliminate the possibility of packet aging, so you should be cautious when using the `delay-buffer-rate` statement. Though some amount of extra buffering might be desirable for burst absorption, delay-buffer rates should not far exceed the service rate of the logical interface.

If you configure delay-buffer rates so that the sum exceeds the port speed, the configured delay-buffer rate is not implemented for the last logical interface that you configure. Instead, that logical interface receives a delay-buffer rate of 0, and a warning message is displayed in the CLI. If bandwidth becomes available (because another logical interface is deleted or deactivated, or the port speed is increased), the configured delay-buffer-rate is reevaluated and implemented if possible.

If the guaranteed rate of a logical interface cannot be implemented, that logical interface receives a delay-buffer rate of 0, even if the configured delay-buffer rate is within the interface speed. If at a later time the guaranteed rate of the logical interface can be met, the configured delay-buffer rate is reevaluated and if the delay-buffer rate is within the remaining bandwidth, it is implemented.

If any logical interface has a configured guaranteed rate, all other logical interfaces on that port that do not have a guaranteed rate configured receive a delay-buffer rate of 0. This is because the absence of a guaranteed rate configuration corresponds to a guaranteed rate of 0 and, consequently, a delay-buffer rate of 0.
3. To assign a scheduler map to the logical interface, include the `scheduler-map` statement at the `[edit class-of-service traffic-control-profiles profile-name]` hierarchy level:

```
[edit class-of-service traffic-control-profiles profile-name]
 scheduler-map map-name;
```

For information about configuring schedulers and scheduler maps, see the *Class of Service Feature Guide (Routers and EX9200 Switches)*.

4. To enable large buffer sizes to be configured, include the `q-pic-large-buffer` statement at the `[edit chassis fpc slot-number pic pic-number]` hierarchy level:

```
[edit chassis fpc slot-number pic pic-number]
 q-pic-large-buffer;
```

If you do not include this statement, the delay-buffer size is more restricted. For more information, see the *Class of Service Feature Guide (Routers and EX9200 Switches)*.

5. To enable scheduling on logical interfaces, include the `per-unit-scheduler` statement at the `[edit interfaces interface-name]` hierarchy level:

```
[edit interfaces interface-name]
 per-unit-scheduler;
```

When you include this statement, the maximum number of VLANs supported is 767 on a single-port Gigabit Ethernet IQPIC. On a two-port Gigabit Ethernet IQPIC, the maximum number is 383.

6. To apply the traffic-scheduling profile to the logical interface, include the output-traffic-control-profile statement at the `[edit class-of-service interfaces interface-name unit logical-unit-number]` hierarchy level:

```
[edit class-of-service interfaces interface-name unit logical-unit-number]
 output-traffic-control-profile profile-name;
```

**Example: Configuring Guaranteed Minimum Rate**

Two logical interface units, 0 and 1, are provisioned with a guaranteed minimum of 750 Kbps and 500 Kbps, respectively. For logical unit 1, the delay buffer is based on the guaranteed rate setting. For logical unit 0, a delay-buffer rate of 500 Kbps is specified. The actual delay buffers allocated to each logical interface are 2 seconds of 500 Kbps. The 2-second value is based on the following calculation:

```
delay-buffer-rate < (8 x 64 Kbps)): 2 seconds of delay-buffer-rate
```

For more information about this calculation, see the *Class of Service Feature Guide (Routers and EX9200 Switches)*.
q-pic-large-buffer;
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

interfaces {
    t1-3/0/1 {
        per-unit-scheduler;
    }
}

class-of-service {
    traffic-control-profiles {
        tc-profile3 {
            guaranteed-rate 750k;
            scheduler-map sched-map3;
            delay-buffer-rate 500k; # 500 Kbps is less than 8 x 64 Kbps
        }
        tc-profile4 {
            guaranteed-rate 500k; # 500 Kbps is less than 8 x 64 Kbps
            scheduler-map sched-map4;
        }
    }
}

interface t1-3/0/1 {
    unit 0 {
        output-traffic-control-profile tc-profile3;
    }
    unit 1 {
        output-traffic-control-profile tc-profile4;
    }
}

Related Documentation

- Layer 2 Service Package Capabilities and Interfaces on page 785
- Reserving Bundle Bandwidth for Link-Layer Overhead on LSQ Interfaces on page 803
- Oversubscribing Interface Bandwidth on LSQ Interfaces on page 731
- Link Services Configuration for Junos Interfaces on page 721
PART 8

Configuring Inter-Chassis MS-MPC and MS-MIC Redundancy for NAT and Stateful Firewall

- Configuring Inter-Chassis MS-MPC and MS-MIC Redundancy for NAT and Stateful Firewall (Release 16.1 and later) on page 743
- Configuring Inter-Chassis Stateful Synchronization for NAT and Stateful Firewall (Release 15.1 and earlier) on page 769
Configuring Inter-Chassis MS-MPC and MS-MIC Redundancy for NAT and Stateful Firewall (Release 16.1 and later)

- Configuring Inter-chassis MS-MPC and MS-MIC Redundancy for NAT and Stateful Firewall Overview (Release 16.1 and later) on page 743
- Inter-Chassis Stateful Synchronization for Long Lived NAT and Stateful Firewall Flows (MS-MPC, MS-MIC) Overview (Release 16.1 and later) on page 744
- Configuring Inter-Chassis Stateful Synchronization for Long Lived NAT and Stateful Firewall Flows (MS-MPC, MS-MIC) (Release 16.1 and later) on page 745
- Example: Inter-Chassis Stateful Synchronization for Long-Lived NAT and Stateful Firewall Flows (MS-MIC, MS-MPC) (Release 16.1 and later) on page 747
- Service Redundancy Daemon Overview on page 757
- Configuring the Service Redundancy Daemon on page 760
- Using Service Redundancy Daemon Scripts to View and Change the Status of a Gateway on page 766

Configuring Inter-chassis MS-MPC and MS-MIC Redundancy for NAT and Stateful Firewall Overview (Release 16.1 and later)

NOTE: This topic applies to Junos OS release 16.1 and higher. (For Junos OS release 15.1 and earlier, see “Inter-Chassis High Availability for MS-MIC and MS-MPC (Release 15.1 and earlier)” on page 769).

Carrier-grade NAT (CGN) and stateful firewall deployments can use a dual-chassis implementation to provide a redundant data path and redundancy for key components in the router. Although intra-chassis high availability can be used in an MX Series device by employing the AMS interfaces, this method only deals locally with service PIC and full MS-MPC or MS-MIC card failures. If for any reason traffic is switched to a backup router due to some other failure in the router, the session state from the Service PICs is lost. Inter-chassis high availability offers a more robust solution by preserving the session state of NAT and stateful firewalls from the services PICs. This technology is a primary-secondary model, not an active-active cluster. Traffic to be serviced by the
services PICs that are configured for inter-chassis high availability only flows through the MX Series device that is currently the master in the pair.

To configure inter-chassis redundancy for NAT and stateful firewall, you configure:

1. Stateful synchronization, which replicates the session state from the services PICs on the master chassis to the backup chassis. For more information, see “Inter-Chassis Stateful Synchronization for Long Lived NAT and Stateful Firewall Flows (MS-MPC, MS-MIC) Overview (Release 16.1 and later)” on page 744.

2. The service redundancy daemon, which allows mastership switchover to occur based on a monitored event. Most operators would not want to employ stateful synchronization without also implementing the service redundancy daemon. For more information, see “Service Redundancy Daemon Overview” on page 757

Inter-Chassis Stateful Synchronization for Long Lived NAT and Stateful Firewall Flows (MS-MPC, MS-MIC) Overview (Release 16.1 and later)

NOTE: This topic applies to Junos OS release 16.1 and higher. (For Junos OS release 15.1 and earlier, see “Inter-Chassis High Availability for MS-MIC and MS-MPC (Release 15.1 and earlier)” on page 769).

Stateful synchronization synchronizes long-lived sessions between the master and backup MX Series chassis in the high availability pair. By default, long lived sessions are NAT and stateful firewall sessions that have been active on the services PIC for 180 seconds and longer, though you can configure this to a higher value. The services PICs do not start replicating state until the CLI command request services redundancy (synchronize | no-synchronize) is issued to start or stop state replication. Stateful firewall sessions, NAPT44 sessions, and NAT Address Pooling-Paired (APP) mappings are the state information that is synchronized.

Inter-chassis high availability works with ms- service interfaces configured on MS-MIC or MS-MPC interface cards. An ms- interface unit other than unit 0 must be configured with the ip-address-owner service-plane option.

The following restrictions apply:

- NAPT44 is the only translation type supported.
- Replicating state information for the port block allocation (PBA), endpoint-independent mapping (EIM), or endpoint-independent filters (EIF) features is not supported.
- When configuring a service set for NAT or stateful firewall that belongs to a stateful synchronization setup, you must use a next-hop service set, and the NAT and stateful firewall configurations for the service set must be identical on both MX Series devices.

Figure 37 on page 745 shows the inter-chassis high availability topology.
Configuring Inter-Chassis Stateful Synchronization for Long Lived NAT and Stateful Firewall Flows (MS-MPC, MS-MIC) (Release 16.1 and later)

NOTE: This topic applies to Junos OS release 16.1 and higher. (For Junos OS release 15.1 and earlier, see “Inter-Chassis High Availability for MS-MIC and MS-MPC (Release 15.1 and earlier)” on page 769).
To configure stateful synchronization inter-chassis high availability for stateful firewall and NAPT44 on MS-MIC or MS-MPC service PICs, perform the following configuration steps on each chassis of the high availability pair.

1. Configure the services ms-interface.
   a. Specify the IPv4 address of the local services card. This address is used by the TCP channel between the HA pairs.

   ```
 [edit interfaces interface-name redundancy-options]
 user@host# set redundancy-local data-address address
   ```

   When you configure the other chassis, this is the address you use for the `redundancy-peer ipaddress`.

   b. Specify the IPv4 address of the remote services card. This address is used by the TCP channel between the HA pairs.

   ```
 [edit interfaces interface-name redundancy-options]
 user@host# set redundancy-peer ipaddress address
   ```

   When you configure the other chassis, this is the address you use for the `redundancy-local data-address`.

   c. Configure the length of time that the flow remains active for replication, in seconds.

   ```
 [edit interfaces interface-name redundancy-options]
 user@host# set replication-threshold seconds
   ```

d. Configure a unit other than 0 with the `ip-address-owner service-plane` option.

   ```
 [edit interfaces interface-name]
 user@host# set unit logical-unit-number ip-address-owner service-plane
   ```

e. For the unit configured with the `ip-address-owner service-plane` option, assign the IPv4 address of the local services card that you configured with the `redundancy-local data-address` option.

   ```
 [edit interfaces interface-name unit logical-unit-number]
 user@host# set family inet address address
   ```

f. Configure the inside and outside interface units, which are used by the next-hop service set. Use different unit numbers for the inside and outside units, and do not use 0 or the unit number used with the `ip-address-owner service-plane` option.

   ```
 [edit]
 user@host# set interfaces interface-name unit logical-unit-number family inet
 user@host# set interfaces interface-name unit logical-unit-number service-domain inside
 user@host# set interfaces interface-name unit logical-unit-number family inet
 user@host# set interfaces interface-name unit logical-unit-number service-domain outside
   ```

2. Configure the next-hop service set that contains the NAT rules or stateful firewall
rules. The service set must be configured identically on each chassis of the high availability pair. The NAT rules and stateful firewall rules must also be configured identically on each chassis.

3. For ease of management, we recommend you create a special routing instance with instance-type vrf to host the HA synchronization traffic between the MX Series high availability pair. Then specify the name of the special routing instance to apply to the HA synchronization traffic between the high availability pair.

```
[edit interfaces interface-name redundancy-options]
user@host# set routing-instance instance-name
```

4. Repeat these steps for the other chassis of the high availability pair.

**Related Documentation**

- Inter-Chassis Stateful Synchronization for Long Lived NAT and Stateful Firewall Flows (MS-MPC, MS-MIC) Overview (Release 16.1 and later) on page 744

**Example: Inter-Chassis Stateful Synchronization for Long-Lived NAT and Stateful Firewall Flows (MS-MIC, MS-MPC) (Release 16.1 and later)**

This example shows how to configure inter-chassis high availability for NAT services.

- Requirements on page 747
- Overview on page 747
- Configuration on page 747

**Requirements**

This example uses the following hardware and software components:

- Two MX480 routers with MS-MPC line cards
- Junos OS Release 16.1 or later

**Overview**

Two MX Series routers are identically configured to facilitate stateful failover for NAT services in case of a chassis failure.

**Configuration**

To configure inter-chassis high availability for this example, perform these tasks:

- Configuring Interfaces for Chassis 1 on page 750
- Configure Routing Information for HA Synchronization Traffic Between MX Series Routers for Chassis 1 on page 751
- Configuring NAT for Chassis 1 on page 752
- Configuring the Service Set on page 753

Copyright © 2019, Juniper Networks, Inc.
To quickly configure this example on the routers, copy the following commands and paste them into the router terminal window after removing line breaks and substituting interface information specific to your site.

NOTE: The following configuration is for chassis 1.

```
[edit]
set interfaces ms-4/0/0 redundancy-options redundancy-peer ipaddress 5.5.5.2
set interfaces ms-4/0/0 redundancy-options redundancy-local data-address 5.5.5.1
set interfaces ms-4/0/0 redundancy-options routing-instance HA
set interfaces ms-4/0/0 redundancy-options replication-threshold 180
set interfaces ms-4/0/0 unit 10 ip-address-owner service-plane
set interfaces ms-4/0/0 unit 10 family inet address 5.5.5.1/32
set interfaces ms-4/0/0 unit 20 family inet
set interfaces ms-4/0/0 unit 20 service-domain inside
set interfaces ms-4/0/0 unit 30 family inet
set interfaces ms-4/0/0 unit 30 service-domain outside
set interfaces ge-2/0/0 vlan-tagging
set interfaces ge-2/0/0 unit 0 vlan-id 100 family inet address 20.1.1.1/24
set policy-options policy-statement dummy term 1 then reject
set routing-instances HA instance-type vrf
set routing-instances HA interface ge-2/0/0.0
set routing-instances HA interface ms-4/0/0.10
set routing-instances HA route-distinguisher 1:1
set routing-instances HA vrf-import dummy
set routing-instances HA vrf-export dummy
set routing-instances HA routing-options static route route 5.5.5.1/32 next-hop ms-4/0/0.10
set routing-instances HA routing-options static route route 5.5.5.2/32 next-hop 20.1.1.2
set routing-options static-route 100.100.100.0/24 next-hop ms-4/0/0.20
set services nat pool p2 address 32.0.0.0/24
set services nat pool p2 port automatic random-allocation
set services nat pool p2 address-allocation round-robin
set services nat rule r2 match-direction input
set services nat rule r2 term t1 from source-address 129.0.0.0/8
set services nat rule r2 term t1 from source-address 128.0.0.0/8
set services nat rule r2 term t1 then translated source-pool p2
set services nat rule r2 term t1 then translated translation-type napt-44
set services nat rule r2 term t1 then translated address-pooling paired
set services nat rule r2 term t1 then syslog
set services service-set ss2 nat-rules r2
set services service-set ss2 next-hop-service inside-service-interface ms-4/0/0.20
set services service-set ss2 next-hop-service outside-service-interface ms-4/0/0.30
set services service-set ss2 syslog host local class session-logs
set services service-set ss2 syslog host local class nat-logs
```
NOTE: The following configuration is for chassis 2. NAT and service set information must be identical for chassis 1 and 2.

```
set interfaces ms-4/0/0 redundancy-options redundancy-peer ipaddress 5.5.5.1
set interfaces ms-4/0/0 redundancy-options redundancy-local data-address 5.5.5.2
set interfaces ms-4/0/0 redundancy-options routing-instance HA
set interfaces ms-4/0/0 redundancy-options replication-threshold 180
set interfaces ms-4/0/0 unit 10 ip-address-owner service-plane
set interfaces ms-4/0/0 unit 10 family inet address 5.5.5.2/32
set interfaces ms-4/0/0 unit 20 family inet
set interfaces ms-4/0/0 unit 20 service-domain inside
set interfaces ms-4/0/0 unit 30 family inet
set interfaces ms-4/0/0 unit 30 service-domain outside
set interfaces ge-2/0/0 vlan-tagging
set interfaces ge-2/0/0 unit 0 vlan-id 100 family inet address 20.1.1.24
set policy-options policy-statement dummy term 1 then reject
set routing-instances HA instance-type vrf
set routing-instances HA interface ge-2/0/0.0
set routing-instances HA interface ms-4/0/0.10
set routing-instances HA route-distinguisher 1:1
set routing-instances HA vrf-import dummy
set routing-instances HA vrf-export dummy
set routing-instances HA routing-options static route 5.5.5.2/32 next-hop ms-4/0/0.10
set routing-instances HA routing-options static route 5.5.5.1/32 next-hop 20.1.1.1
set routing-instances HA static-route 100.100.100.0/24 next-hop ms-4/0/0.20
set services nat pool p2 address 32.0.0.0/24
set services nat pool p2 port automatic random-allocation
set services nat pool p2 address-allocation round-robin
set services nat rule r2 match-direction input
set services nat rule r2 term t1 from source-address 129.0.0.0/8
set services nat rule r2 term t1 from source-address 128.0.0.0/8
set services nat rule r2 term t1 then translated source-pool p2
set services nat rule r2 term t1 then translated translation-type napt-44
set services nat rule r2 term t1 then translated address-pooling paired
set services nat rule r2 term t1 then syslog
set services service-set ss2 nat-rules r2
set services service-set ss2 next-hop-service inside-service-interface ms-4/0/0.20
set services service-set ss2 next-hop-service outside-service-interface ms-4/0/0.30
set services service-set ss2 syslog host local class session-logs
set services service-set ss2 syslog host local class nat-logs
```
Configuring Interfaces for Chassis 1

Step-by-Step Procedure

The interfaces for each of the HA pair of routers are configured identically with the exception of the following service PIC options:

- The `redundancy-options redundancy-peer ipaddress address` must be different on each chassis and must point to the `redundancy-options redundancy-local data-address data-address` on the peer chassis.

- The unit `unit-number family inet address address` of a unit, other than 0, that contains the `ip-address-owner service-plane` option must be different on each chassis.

To configure interfaces:

1. Configure the redundant service PIC on chassis 1.

   ```
 [edit interfaces]
 user@host# set interfaces ms-4/0/0 redundancy-options redundancy-peer ipaddress 5.5.5.2
 user@host# set interfaces ms-4/0/0 redundancy-options redundancy-local data-address 5.5.5.1
 user@host# set interfaces ms-4/0/0 redundancy-options routing-instance HA
 user@host# set interfaces ms-4/0/0 redundancy-options replication-threshold 180
 user@host# set interfaces ms-4/0/0 unit 10 ip-address-owner service-plane
 user@host# set interfaces ms-4/0/0 unit 10 family inet address 5.5.5.1/32
 user@host# set interfaces ms-4/0/0 unit 20 family inet
 user@host# set interfaces ms-4/0/0 unit 20 service-domain inside
 user@host# set interfaces ms-4/0/0 unit 30 family inet
 user@host# set interfaces ms-4/0/0 unit 30 service-domain outside
   ```

2. Configure the interfaces for chassis 1 that are used as interchassis links for synchronization traffic.

   ```
 user@host# set interfaces ge-2/0/0 vlan-tagging
 user@host# set interfaces ge-2/0/0 unit 0 vlan-id 100 family inet address 20.1.1.1/24
   ```

3. Configure remaining interfaces as needed.
Results

```
user@host# show interfaces

ge-2/0/0 {
vlan-tagging;
 unit 0 {
 vlan-id 100;
 family inet {
 address 20.1.1.1/24;
 }
 }
 }
}
m-4/0/0 {
 redundancy-options {
 redundancy-peer {
 address 5.5.5.2;
 }
 redundancy-local {
 data-address 5.5.5.1;
 }
 routing-instance HA;
 }
 unit 10 {
 ip-address-owner service-plane;
 family inet {
 address 5.5.5.1/32;
 }
 }
 unit 20 {
 family inet;
 family inet6;
 service-domain inside;
 }
 unit 30 {
 family inet;
 family inet6;
 service-domain outside;
 }
}
```

Configure Routing Information for HA Synchronization Traffic Between MX Series Routers for Chassis 1

**Step-by-Step Procedure**

Detailed routing configuration is not included for this example. A routing instance is required for the HA synchronization traffic between the chassis as follows:

To configure the routing instances for chassis 1:

1. Specify a dummy policy statement. This statement is referenced in the routing instance configuration.

   ```
 user@host# set policy-options policy-statement dummy term 1 then reject
   ```

2. Specify the options for the routing instance.
user@host# set routing-instances HA instance-type vrf
user@host# set routing-instances HA interface ge-2/0/0.0
user@host# set routing-instances HA interface ms-4/0/0.10
user@host# set routing-instances HA route-distinguisher 1:1
user@host# set policy-options policy-statement dummy term 1 then reject
user@host# set routing-instances HA vrf-import dummy
user@host# set routing-instances HA vrf-export dummy
@user@host# set routing-instances HA routing-options static route 5.5.5.1/32	next-hop ms-4/0/0.10
user@host# set routing-instances HA routing-options static route 5.5.5.2/32 next-hop
20.1.1.2

3. Specify the next-hop traffic to which the service set is applied.

user@host# set routing-options static-route 100.100.100.0/24 next-hop
ms-4/0/0.20

Results  

```
@user@host# show routing-instances
HA {
 instance-type vrf;
 interface ge-2/0/0.0;
 interface ms-4/0/0.10;
 route-distinguisher 1:1;
 vrf-import dummy;
 vrf-export dummy;
 routing-options {
 static {
 route 5.5.5.1/32 next-hop ms-4/0/0.10;
 route 5.5.5.2/32 next-hop 20.1.1.2;
 }
 }
}
```

Configuring NAT for Chassis 1

Step-by-Step Procedure

Configure NAT identically on both routers.

To configure NAT:

1. Specify NAT pool and rule information.

```
user@host# set services nat pool p2 address 32.0.0.0/24
user@host# set services nat pool p2 port automatic random-allocation
user@host# set services nat pool p2 address-allocation round-robin
user@host# set services nat rule r2 match-direction input
user@host# set services nat rule r2 term t1 from source-address 129.0.0.0/8
user@host# set services nat rule r2 term t1 from source-address 128.0.0.0/8
user@host# set services nat rule r2 term t1 then translated source-pool p2
user@host# set services nat rule r2 term t1 then translated translation-type napt-44
user@host# set services nat rule r2 term t1 then translated address-pooling paired
```
user@host# set services nat rule r2 term t1 then syslog

Results
user@host# show services nat

nat {
  pool p2 {
    address 32.0.0.0/24;
    port {
      automatic {
        random-allocation;
      }
    }
    address-allocation round-robin;
  }
  rule r2 {
    match-direction input;
    term t1 {
      from {
        source-address {
          129.0.0.0/8;
          128.0.0.0/8;
        }
      }
      then {
        translated {
          source-pool p2;
          translation-type {
            napt-44;
          }
          address-pooling paired;
        }
        syslog;
      }
    }
  }
}

Configuring the Service Set

Step-by-Step Procedure
Configure the service set identically on both routers. To configure the service set:

1. (Optional) Service sets are replicated by default. To exclude a service set from replication using the following option.

   user@host# set services service-set ss2 replicate-services disable-replication-capability

2. Configure references to NAT rules for the service set.

   user@host# set services service-set ss2 nat-rules r2
3. Configure next-hop service interface on the MS-PIC.

    user@host# set services service-set ss2 next-hop-service inside-service-interface ms-4/0/0.20
    user@host# set services service-set ss2 next-hop-service outside-service-interface ms-4/0/0.30

4. Configure desired logging options.

    user@host# set services service-set ss2 syslog host local class session-logs
    user@host# set services service-set ss2 syslog host local class nat-logs

Results

    user@host# show services service-set ss2
    syslog {
        host local {
            class {
                session-logs;
                inactive:
                nat-logs;
            }
        }
        replicate-services {
            replication-threshold 180;
            inactive: disable-replication-capability;
        }
        nat-rules r2;
        next-hop-service {
            inside-service-interface ms-3/0/0.20;
            outside-service-interface ms-3/0/0.30;
        }
    }

Configuring Interfaces for Chassis 2

Step-by-Step Procedure

The interfaces for each of the HA pair of routers are configured identically with the exception of the following service PIC options:

- **redundancy-options redundancy-peer ipaddress address**
- **unit unit-number family inet address address** of a unit, other than 0, that contains the **ip-address-owner service-plane** option

1. Configure the redundant service PIC on chassis 2.

   The **redundancy-peer ipaddress** points to the address of the unit (unit 10) on ms-4/0/0 on chassis on chassis 1 that contains the **ip-address-owner service-plane** statement.

   [edit interfaces]
   set interfaces ms-4/0/0 redundancy-options redundancy-peer ipaddress 5.5.5.1
2. Configure the interfaces for chassis 2 that are used as interchassis links for synchronization traffic

   user@host# set interfaces ge-2/0/0 vlan-tagging
   user@host# set interfaces ge-2/0/0 unit 0 vlan-id 100 family inet address 20.1.1.2/24

3. Configure remaining interfaces for chassis 2 as needed.
Configure Routing Information for HA Synchronization Traffic Between MX Series Routers for Chassis 2

Detailed routing configuration is not included for this example. A routing instance is required for the HA synchronization traffic between the two chassis and is included here.

- Configure routing instances for chassis 2.

```
user@host# set routing-instances HA instance-type vrf
user@host# set routing-instances HA interface ge-2/0/0.0
user@host# set routing-instances HA interface ms-4/0/0.10
user@host# set routing-instances HA route-distinguisher 1:1
user@host# set policy-options policy-statement dummy term 1 then reject
user@host# set routing-instances HA vrf-import dummy
user@host# set routing-instances HA vrf-export dummy
user@host# set routing-instances HA routing-options static route 5.5.5.2/32 next-hop ms-4/0/0.10
```
user@host# set routing-instances HA routing-options static route 5.5.5.1/32 next-hop 20.1.1.1
user@host# set routing-options static-route 100.100.100.0/24 next-hop ms-4/0/0.20

NOTE: The following configuration steps are identical to the steps shown for chassis 1.

• Configuring NAT
• Configuring the Service Set

Results  

@user@host# show services routing-instances

| HA | instance-type vrf;  
|    | interface xe-2/2/0.0;  
|    | interface ms-4/0/0.10;  
|    | route-distinguisher 1:1;  
|    | vrf-import dummy;  
|    | vrf-export dummy;  
|    | routing-options {  
|    | static {  
|    | route 5.5.5.2/32 next-hop ms-4/0/0.10;  
|    | route 5.5.5.1/32 next-hop 20.1.1.1;  
|    | }  
|    | }  

Related Documentation

• Inter-Chassis Stateful Synchronization for Long Lived NAT and Stateful Firewall Flows (MS-MPC, MS-MIC) Overview (Release 16.1 and later) on page 744

Service Redundancy Daemon Overview

• Introduction to the Service Redundancy Daemon on page 757
• Service Redundancy Daemon Components on page 758
• Service Redundancy Daemon Constraints on page 758
• Service Redundancy Daemon Operation on page 759

Introduction to the Service Redundancy Daemon

• The service redundancy daemon (srd) provides configurable events that can decide when redundancy occurs across multiple gateways on MX Series routers with MS-MPCs and MS-MICs. This enables you to manage mastership switchovers based on a monitored event. You can configure redundancy based on monitored events, including:
• Link down events.
• FPC and PIC reboots.
• Routing protocol daemon (rpd) aborts and restarts.
• Peer gateway events, including requests to acquire or release mastership, or to broadcast warnings.

Service Redundancy Daemon Components

The following configurable components control srd processing:

• **Redundancy Event**—A monitored critical event that triggers the srd to acquire or release mastership for redundancy peers, or to trigger warning-only events, and to add or delete signal routes. Monitored events include interface or link down events, rpd events, and acquire or release mastership events from peers.

• **Redundancy Policy**—A policy that defines the set of actions taken when a redundancy event occurs. Available actions include acquisition or release of mastership, and addition or deletion of signal routes.

• **Redundancy Set**—A collection of one or more service sets with a common redundancy policy or policies. A redundancy set applies to two or more system gateways. Only one of the gateways is master and the peer or peers are standby at any time. Redundancy policies define the actions to be taken for a redundancy set when the srd detects a triggering event.

• **Redundancy Group**—A one-to-one relationship exists between a redundancy set and a redundancy group. One redundancy set can be part of only one redundancy group.

• **Signal routes**—Static routes that are added or deleted by the srd based on mastership state changes.

• **Routing Policies**—Policies that are configured to advertise routes based on the existence or non-existence of signal routes using the `if-route-exists` condition.

• **VRRP (Virtual Router Redundancy Protocol) route tracking**—A standard Junos OS VRRP feature, but optional srd component, that tracks whether a reachable route exists in the routing table of the routing instance included in the configuration and dynamically changes the priority of the VRRP group based on the reachability of the tracked route, triggering a new master router election. The route to be tracked is a signal route.

Service Redundancy Daemon Constraints

The following constraints apply to srd processing configurations:

• A one-to-one relationship exists between a redundancy set and a redundancy group. One redundancy set can be part of only one redundancy group.

• One redundancy policy can be part of only one redundancy set, but one redundancy set can have multiple redundancy policies. For example, redundancy set RS1 can include redundancy policies RP1 and RP2. Redundancy policies RP1 and RP2 cannot be included in redundancy sets other than RS1.
• One redundancy event can be part of only one redundancy policy, but one redundancy policy can have multiple redundancy events. For example, redundancy policy RP1 can include redundancy events RE1 and RE2. Redundancy events RE1 and RE2 cannot be included in redundancy policies other than RP1.

• One monitored interface or link can be part of only one redundancy event, but one redundancy event can have multiple monitored interfaces.

• One service set can be part of only one redundancy set, but one redundancy set may have multiple service sets.

• If gateway 1, the chassis that is configured with the lower IP address, is the master chassis and you deactivate SRD on it, a switchover to gateway 2 occurs. If gateway 2, the chassis that is configured with the higher IP address, is the master chassis and you deactivate SRD on it, a switchover does not occur.

• A particular redundancy-set can be active on only one gateway, but not all redundancy sets have to be active on the same gateway. For example, redundancy set A can be active on gateway 1 while redundancy set B is active on gateway 2.

Service Redundancy Daemon Operation

The srd operates as follows:

1. The srd runs on the Routing Engine. It continuously monitors configured redundancy events.

2. When a redundancy event is detected, the srd:
   a. Adds or removes signal routes specified in the redundancy policy.
   b. Switches services to the next preferred standby gateway.
   c. Updates stateful sync roles as needed.

3. Resulting route changes cause:
   a. The routing policy connected to this route to advertise routes differently.
   b. VRRP to change advertised priorities.

To summarize the switchover process:

1. A critical event occurs.
2. srd adds or removes a signal route.
3. A routing policy advertises routes differently. VRRP changes advertised priorities.
4. Services switch over to the next preferred standby gateway.
5. Stateful synchronization is updated accordingly.

NOTE: The order of routing priorities must match the order of services mastership.
Configuring the Service Redundancy Daemon

Before you configure srd processing, we recommend that you be familiar with Configuring ICCP for MC-LAG, which explains peer relationships between gateways that are enabled to exchange master and standby roles.

You use the following configuration statements:

- **redundancy-policy** at the [edit policy-options] hierarchy level
- **redundancy-event** at the [edit event-options] hierarchy level
- **redundancy-set** at the [edit services] hierarchy level

The actions to be performed when configured redundancy events occur are defined in redundancy policies. Redundancy polices are associated with redundancy sets; they are analogous to rules associated with service sets. Redundancy sets are associated to redundancy groups by redundancy group IDs. Redundancy group details are defined by the underlying Inter-Chassis Communication Protocol daemon (iccpd) configuration. Service sets and redundancy sets are associated through the **redundancy-sets** statement in service sets configuration.

In the procedures that follow, redundancy events that are configured and associated with a redundancy policy. The redundancy policy is associated with a redundancy set to take appropriate action of mastership-release or mastership-acquire. If an event is associated with a policy that takes the mastership-release action, srd checks whether the redundancy peer’s state is ready or warned. If the standby is in a warned state, then the mastership-release action fails. You can restore the health check and manually execute the release-mastership action.

To release mastership in any case, you can either configure the policy action as **release-mastership-force** or use the **request services redundancy-set redundancy-set redundancy-event redundancy-event trigger force** command in the operational CLI. Even if your configuration specifies the **release-mastership-force** option, using the **request services redundancy-set redundancy-set redundancy-event redundancy-event trigger force** CLI command takes precedence and mastership is released. Similarly, if a redundancy event is configured with a policy with an acquire-mastership action, then srd checks the local redundancy set state. In the case of a wait state, the action fails unless you use the **request services redundancy-set redundancy-set redundancy-event redundancy-event trigger force** CLI command. We recommend that you determine why health checks fail and take action to correct the failure. After that, when the redundancy set state returns to STANDBY, then this mastership change action succeeds.

A particular redundancy-set can be active on only one gateway, but not all redundancy sets have to be active on the same gateway. For example, redundancy set A can be active on gateway 1 while redundancy set B is active on gateway 2.
To configure srd, perform the following configuration tasks in the recommended sequence. Configurations are shown for two gateways for which mastership may change.

- Configuring Redundancy Events on page 761
- Configuring Redundancy Policies on page 762
- Configuring Redundancy Set and Group on page 764
- Configuring Routing Policies Supporting Redundancy on page 765
- Configuring Service Sets on page 766

**Configuring Redundancy Events**

To configure redundancy events:

1. Configure any link-down redundancy events for the master gateway.

   ```
 [edit services]
 user@gateway1# set event-options redundancy-event event-name monitor link-down interface-name
   ```

   For example:

   ```
 [edit services]
 user@gateway1# set event-options redundancy-event RELS_MSHIP_CRIT_EV monitor link-down ms-2/3/0.0
 user@gateway1# set event-options redundancy-event RELS_MSHIP_CRIT_EV monitor link-down xe-3/0/0.0
   ```

2. Configure any process redundancy events for the master gateway.

   ```
 [edit services]
 user@gateway1# set event-options redundancy-event event-name monitor process routing restart
   ```

   For example:

   ```
 [edit services]
 user@gateway1# set event-options redundancy-event RELS_MSHIP_CRIT_EV monitor process routing restart
   ```

3. Configure any link-down redundancy events for the standby gateway.

   ```
 [edit services]
 user@gateway2# set event-options redundancy-event event-name monitor link-down interface-name
   ```

   For example:

   ```
 [edit services]
 user@gateway2# set event-options redundancy-event WARN_EV monitor link-down ms-2/3/0.0
   ```
4. Configure any process redundancy events for the standby gateway.

```
[edit services]
user@gateway2# set event-options redundancy-event event-name monitor process routing restart
```

For example:

```
[edit services]
user@gateway2# set event-options redundancy-event WARN_EV monitor process routing restart
```

5. Configure any peer redundancy events for the standby gateway.

```
[edit services]
user@gateway2# set event-options redundancy-event event-name monitor peer (mastership-acquire | mastership-release)
```

For example:

```
[edit services]
user@gateway2# set event-options redundancy-event PEER_MSHIP_ACQU_EV monitor peer mastership-acquire
user@gateway2# set event-options redundancy-event PEER_MSHIP_RELS_EV monitor peer mastership-release
```

Configuring Redundancy Policies

Service redundancy policies specify actions triggered by monitored redundancy events.

To configure redundancy policies:

1. Specify a redundancy policy and redundancy event for the master gateway. Follow the same steps for the standby gateway.

```
user@gateway1# edit policy-options redundancy-policy policy-name redundancy-events [event-list] then
```

2. Specify an action of acquiring or releasing mastership.

```
[edit policy-options redundancy-policy policy-name redundancy-events [event-list then]
user@gateway1# set acquire-mastership
```

or
3. (Optional) Specify an action of adding a static route.

   [edit policy-options redundancy-policy policy-name redundancy-events [event-list then]
   user@gateway1# set (release-mastership | release-mastership-force)

   routing-instance routing-instance

   BEST PRACTICE: We recommend using the receive option.

4. (Optional) Specify an action of deleting a static route.

   [edit policy-options redundancy-policy policy-name redundancy-events [event-list then]
   user@gateway1# set delete-static-route destination (receive | next-hop next-hop)
   routing-instance routing-instance

The following example demonstrates configuring redundancy policies for two peer gateways:

   user@gateway1# edit policy-options redundancy-policy ACQU_MSHIP_POL
   redundancy-events ACQU_MSHIP_MANUAL_EV then

   [edit policy-options redundancy-policy ACQU_MSHIP_POL redundancy-event
   ACQU_MSHIP_MANUAL_EV then]
   user@gateway1# set acquire-mastership add-static-route 10.45.45.0/24 receive
   routing-instance SGI-PRIVATE

   user@gateway1# top
   user@gateway1# edit policy-options redundancy-policy RELS_MSHIP_POL
   redundancy-events PEER_MSHIP_ACQU_EV then

   [edit policy-options redundancy-policy RELS_MSHIP_POL redundancy-events
   PEER_MSHIP_ACQU_EV then]
   user@gateway1# set release-mastership-force delete-static-route 10.45.45.0/24 receive
   routing-instance SGI-PRIVATE

   user@gateway2# edit policy-options redundancy-policy RELS_MSHIP_POL
   redundancy-events PEER_MSHIP_ACQU_EV then

   [edit policy-options redundancy-policy ACQU_MSHIP_POL redundancy-events
   ACQU_MSHIP_MANUAL_EV then]
   user@gateway2# set release-mastership-force add-static-route 10.45.45.0/24 receive
   routing-instance SGI-PRIVATE
   user@gateway2# top
user@gateway2# edit policy-options redundancy-policy ACQU_MSHIP_POL redundancy-events PEER_MSHIP_RELS_EV then

[edit policy-options redundancy-policy ACQU_MSHIP_POL redundancy-events PEER_MSHIP_RELS_EV then]
user@gateway2# set acquire-mastership delete-static-route 10.45.45.0/24 receive routing-instance SGI-PRIVATE
user@gateway2# top
user@gateway2# edit policy-options redundancy-policy WARN_POL redundancy-events WARN_EV then

[edit policy-options redundancy-policy WARN_POL redundancy-events WARN_EV then]
user@gateway2# set broadcast-warning

Configuring Redundancy Set and Group

The redundancy group IDs that srd uses are associated with those configured for the ICCP daemon (iccpd) through the existing ICCP configuration hierarchy by using the same redundancy group ID in the configuration of the services redundancy group.

```plaintext
iccp {
 local-ip-addr 1.1.1.1;
 peer 2.2.2.2 {
 redundancy-group-id-list 1;
 liveness-detection {
 minimum-interval 1000;
 }
 }
}
```

To configure redundancy sets:

1. Specify redundancy set and group for the master gateway.

   [edit services]
   user@gateway1# set redundancy-set redundancy-set redundancy-group redundancy-group

   For example:

   [edit services]
   user@gateway1# set redundancy-set 1 redundancy-group 1

2. Specify redundancy policies for the redundancy set.

   [edit services]
   user@gateway1# set redundancy-set redundancy-set redundancy-policy
   [redundancy-policy-list]

   For example:
3. Specify redundancy set and group for the peer gateway.

[edit services]
user@gateway2# set redundancy-set redundancy-group

For example:

user@gateway2# set redundancy-set redundancy-group

4. Specify redundancy policies for the redundancy set.

[edit services]
user@gateway2# set redundancy-set redundancy-policy [redundancy-policy-list]

For example:

[edit services]
user@gateway1# set redundancy-policy [ACQU_MSHIP_POL RELS_MSHIP_POL WARN_POL]

Configuring Routing Policies Supporting Redundancy

To configure routing policies that support redundancy:

1. At the [edit policy-options condition] hierarchy level, use the if-route-exists configuration statement to set a condition based on the existence of signal routes that requires redundancy-related routing changes. Specify the routing table that is used.

[edit policy-options condition condition-name]
user@gateway# set if-route-exists signal-route table routing-table

For example:

[edit policy-options condition switchover-route-exists]
user@gateway# set if-route-exists 10.45.45.0/24 table bgpl_table

2. At the [edit policy-options policy-statement statement-name] hierarchy level, specify routing changes based on the condition indicating the existence of the signal route. For BGP, routing changes typically include change to local-preference and as-path-prepend values.

a. To change local-preference, specify local-preference in the then clause of the policy statement.
[edit policy-options policy-statement policy-name]
user@gateway# set term term from protocol [protocol variables] prefix-list prefix-list condition condition-name then local-preference preference-value accept

For example:

[edit policy-options policy-statement ha-export-v6-policy]
user@gateway# set term update-local-pref from protocol static bgp prefix-list ipv4-default-route condition switchover-route-exists then local-preference 350 accept

b. To change **as-path-prepend** values, specify **as-path-prepend** in the **then** clause of the policy statement.

[edit policy-options policy-statement policy-name]
user@gateway# set term term from prefix-list prefix-list condition condition-name then as-path-prepend [as-prepend-values] next-hop self accept

For example:

[edit policy-options policy-statement ha-export-v6-policy]
user@gateway# set term update-as-prepend prefix-list ipv6-default-route condition switchover-route-exists then as-path-prepend "64674 64674 64674 64674" next-hop self accept

### Configuring Service Sets

Specify stateful synchronization of services for a service set.

1. Specify the service set and redundancy set.

   [edit]
   user@gateway1# set services service-set service-set-name redundancy-set-id redundancy-set

   For example:

   [edit]
   user@gateway1# set services service-set CGN4_SP-7-0-0 redundancy-set-id 1

### Related Documentation

- Service Redundancy Daemon Overview on page 757

### Using Service Redundancy Daemon Scripts to View and Change the Status of a Gateway

You can determine the status of a gateway, disable or enable all the interfaces on the gateway, or pull services-related MIB information from the gateway by running service redundancy daemon (srd) scripts.

Before you can use these scripts, you must enable them:
• Enable the srd scripts.

[edit]
user@host# set system scripts op file sdg-inservice.slax
user@host# set system scripts op file sdg-oos.slax
user@host# set system scripts op file services-oids.slax
user@host# set system scripts op file srd-status.slax
user@host# set system scripts op max-datasize 512m

Use the srd scripts as the root user:

• Disable all the interfaces on the MX series router and power off the MS-MPC cards.
  a. Ensure that all local redundancy sets are in standby mode.

    root@host> show services redundancy-group

  b. Run the sdg-oos script.

    root@host> op sdg-oos

• Enable all the interfaces on the MX series router and power on the MS-MPC cards.

    root@host> op sdg-inservice

• Check the service state of a gateway.

    root@host> op srd-status

• Pull services-related MIB information from the gateway.

    root@host> op services-oids

Related Documentation

  • Service Redundancy Daemon Overview on page 757
CHAPTER 42

Configuring Inter-Chassis Stateful Synchronization for NAT and Stateful Firewall (Release 15.1 and earlier)

- Inter-Chassis High Availability for MS-MIC and MS-MPC (Release 15.1 and earlier) on page 769

Inter-Chassis High Availability for MS-MIC and MS-MPC (Release 15.1 and earlier)

NOTE: This topic applies to Junos OS release 15.1 and earlier. (For Junos OS release 16.1 and higher, see “Inter-Chassis Stateful Synchronization for Long Lived NAT and Stateful Firewall Flows (MS-MPC, MS-MIC) Overview (Release 16.1 and later)” on page 744.)

Inter-chassis high availability supports stateful synchronization of services using a switchover to a backup services PIC on a different chassis. This topic applies to Junos OS release 15.1 and earlier. (For Junos OS release 16.1 and higher, see “Inter-Chassis Stateful Synchronization for Long Lived NAT and Stateful Firewall Flows (MS-MPC, MS-MIC) Overview (Release 16.1 and later)” on page 744.) The feature is described in the following topics:

- Inter-Chassis High Availability for Stateful Firewall and NAPT44 Overview (MS-MIC, MS-MPC) on page 769
- Configuring Inter-Chassis High Availability for Stateful Firewall and NAPT44 (MS-MPC, MS-MIC) on page 771
- Example: Inter-Chassis Stateful High Availability for NAT and Stateful Firewall (MS-MIC, MS-MPC) on page 772

Inter-Chassis High Availability for Stateful Firewall and NAPT44 Overview (MS-MIC, MS-MPC)

Carrier-grade NAT (CGN) deployments can use dual-chassis implementations to provide a redundant data path and redundancy for key components in the router. Although intra-chassis high availability can be used in dual-chassis environments, it deals only with service PIC failures. If traffic is switched to a backup router due to some other failure in the router, state is lost. Inter-chassis high availability preserves state and provides
redundancy using fewer service PICs than intra-chassis high availability. Only long-lived flows are synchronized between the master and backup chassis in the high availability pair. The service PICs do not replicate state until an explicit CLI command, `request services redundancy (synchronize | no-synchronize)`, is issued to start or stop the state replication. Stateful firewall, NAPT44, and APP state information can be synchronized.

**NOTE:** When both the master and backup PICs are up, replication starts immediately when the request services redundancy command is issued.

In order to use Inter-chassis high availability, you must use service sets configured for next-hop service interfaces. Inter-chassis high availability works with ms-service interfaces configured on MS-MIC or MS-MPC interface cards. A unit other than unit 0 must be configured with the `ip-address-owner service-plane` option.

The following restrictions apply:

- NAPT44 is the only translation type supported.
- Checkpointing is not supported for ALGs, PBA port block allocation (PBA), endpoint-independent mapping (EIM), or endpoint-independent filters (EIF).

Figure 38 on page 770 shows the inter-chassis high availability topology.

*Figure 38: Inter-Chassis High Availability Topology*

See Also

- Configuring Inter-Chassis High Availability for Stateful Firewall and NAPT44 (MS-MPC, MS-MIC) on page 771
Configuring Inter-Chassis High Availability for Stateful Firewall and NAPT44 (MS-MPC, MS-MIC)

To configure inter-chassis availability for stateful firewall and NAPT44 on MS-MIC or MS-MPC service PICS, perform the following configuration steps on each chassis of the high availability pair:

1. At the [edit interfaces interface-name redundancy-options] hierarchy level, set the ipaddress for the redundancy-peer. This IPv4 address specifies one of the hosted IP addresses of the remote PIC. This address is used by the TCP channel between the HA pairs.

   [edit interfaces interface-name redundancy-options]
   user@host# set redundancy-peer ipaddress ipaddress

   **NOTE:** When you enable or disable high availability of MS-MICs or MS-MPCs by configuring or removing the primary and backup adaptive services PICs by using the redundancy-options redundancy-peer ipaddress address statement at the [edit interfaces interface-name] hierarchy level, the configuration change is treated as a catastrophic event for each service-set that refers to the affected interface at the [edit services service-set name interface-service service-interface interface-name] hierarchy level. A catastrophic event at the service-set level has the effect of deactivating the service set, applying the change, and then reactivating the service set.

2. Specify the name of a special routing instance, or VRF, you want applied to the HA synchronization traffic between the high availability pair.

   [edit interfaces interface-name redundancy-options]
   user@host# set routing-instance instance-name

3. For the service set defining an interface that is a member of the high availability pair, configure the service replication options using the replicate-services option.

   [edit services service-set service-set-name replicate-services]
   user@host# set replication-threshold threshold-value
   stateful-firewall
   nat

See Also
- Inter-Chassis High Availability for MS-MIC and MS-MPC (Release 15.1 and earlier) on page 769
- Example: Inter-Chassis Stateful High Availability for NAT and Stateful Firewall (MS-MIC, MS-MPC) on page 772
Example: Inter-Chassis Stateful High Availability for NAT and Stateful Firewall (MS-MIC, MS-MPC)

This example shows how to configure inter-chassis high availability for stateful firewall and NAT services.

- Requirements on page 772
- Overview on page 772
- Configuration on page 772

Requirements

This example uses the following hardware and software components:

- Two MX480 routers with MS-MPC line cards
- Junos OS Release 13.3 or later

Overview

Two MX 3D routers are identically configured to facilitate stateful failover for firewall and NAT services in case of a chassis failure.

Configuration

To configure inter-chassis high availability for this example, perform these tasks:

- Configuring Interfaces for Chassis 1 on page 774
- Configure Routing Information for Chassis 1 on page 776
- Configuring NAT and Stateful Firewall for Chassis 1 on page 777
- Configuring the Service Set on page 778
- Configuring Interfaces for Chassis 2 on page 780
- Configure Routing Information for Chassis 2 on page 781

CLI Quick Configuration

To quickly configure this example on the routers, copy the following commands and paste them into the router terminal window after removing line breaks and substituting interface information specific to your site.

```
[edit]
set interfaces ms-4/0/0 redundancy-options redundancy-peer ipaddress 5.5.5.2
set interfaces ms-4/0/0 redundancy-options routing-instance HA
set interfaces ms-4/0/0 unit 10 ip-address-owner service-plane
set interfaces ms-4/0/0 unit 10 family inet address 5.5.5.1/32
set interfaces ms-4/0/0 unit 20 family inet
set interfaces ms-4/0/0 unit 20 service-domain inside
```

NOTE: The following configuration is for chassis 1.
set interfaces ms-4/0/0 unit 30 family inet
set interfaces ms-4/0/0 unit 30 service-domain outside
set interfaces ge-2/0/0 vlan-tagging
set interfaces ge-2/0/0 unit 0 vlan-id 100 family inet address 20.1.1.1/24
set routing-instances HA instance-type vrf
set routing-instances HA interface ge-2/0/0.0
set routing-instances HA interface ms-4/0/0.10
set routing-instances HA route-distinguisher 1:1
set policy-options policy-statement dummy term 1 then reject
set routing-instances HA vrf-import dummy
set routing-instances HA vrf-export dummy
set routing-instances HA routing-options static route route 5.5.5.1/32 next-hop ms-4/0/0.10
set routing-instances HA routing-options static route route 5.5.5.2/32 next-hop 20.1.1.2
set services nat pool p2 address 32.0.0.0/24
set services nat pool p2 port automatic random-allocation
set services nat pool p2 address-allocation round-robin
set services nat rule r2 match-direction input
set services nat rule r2 term t1 from source-address 129.0.0.0/8
set services nat rule r2 term t1 from source-address 128.0.0.0/8
set services nat rule r2 term t1 then translated source-pool p2
set services nat rule r2 term t1 then translated translation-type natp-44
set services nat rule r2 term t1 then translated address-pooling paired
set services nat rule r2 term t1 then syslog
set services stateful-firewall rule r2 match-direction input
set services stateful-firewall rule r2 term t1 from source-address any-unicast
set services stateful-firewall rule r2 term t1 then accept
set services stateful-firewall rule r2 term t1 then syslog
set services service-set ss2 replicate-services replication-threshold 180
set services service-set ss2 replicate-services stateful-firewall
set services service-set ss2 replicate-services nat
set services service-set ss2 stateful-firewall-rules r2
set services service-set ss2 nat-rules r2
set services service-set ss2 next-hop-service inside-service-interface ms-4/0/0.20
set services service-set ss2 next-hop-service outside-service-interface ms-4/0/0.30
set services service-set ss2 syslog host local class session-logs
set services service-set ss2 syslog host local class stateful-firewall-logs
set services service-set ss2 syslog host local class nat-logs

NOTE: The following configuration is for chassis 2. The NAT, stateful firewall, and service-set information must be identical for chassis 1 and 2.

set interfaces ms-4/0/0 redundancy-options routing-instance HA
set interfaces ms-4/0/0 unit 10 ip-address-owner service-plane
set interfaces ms-4/0/0 unit 10 family inet address 5.5.5.2/32
set interfaces ms-4/0/0 unit 20 family inet
set interfaces ms-4/0/0 unit 20 service-domain inside
set interfaces ms-4/0/0 unit 30 family inet
set interfaces ms-4/0/0 unit 30 service-domain outside
set interfaces ge-2/0/0 vlan-tagging
set interfaces ge-2/0/0 unit 0 vlan-id 100 family inet address 20.1.1.2/24
set routing-instances HA instance-type vrf
set routing-instances HA interface ge-2/0/0.0
set routing-instances HA interface ms-4/0/0.10
set routing-instances HA route-distinguisher 1:1
set routing-instances HA vrf-import dummy
set routing-instances HA vrf-export dummy
set routing-instances HA routing-options static route 5.5.5.2/32 next-hop ms-4/0/0.10
set routing-instances HA routing-options static route 5.5.5.1/32 next-hop 20.1.1.1
set services nat pool p2 address 32.0.0.0/24
set services nat pool p2 port automatic random-allocation
set services nat pool p2 address-allocation round-robin
set services nat rule r2 match-direction input
set services nat rule r2 term t1 from source-address 129.0.0.0/8
set services nat rule r2 term t1 from source-address 128.0.0.0/8
set services nat rule r2 term t1 then translated source-pool p2
set services nat rule r2 term t1 then translated translation-type napt-44
set services nat rule r2 term t1 then translated address-pooling paired
set services nat rule r2 term t1 then syslog
set services stateful-firewall rule r2 match-direction input
set services stateful-firewall rule r2 term t1 from source-address any-unicast
set services stateful-firewall rule r2 term t1 then accept
set services stateful-firewall rule r2 term t1 then syslog
set services service-set ss2 replicate-services replication-threshold 180
set services service-set ss2 replicate-services stateful-firewall
set services service-set ss2 replicate-services nat
set services service-set ss2 stateful-firewall-rules r2
set services service-set ss2 nat-rules r2
set services service-set ss2 next-hop-service inside-service-interface ms-4/0/0.20
set services service-set ss2 next-hop-service outside-service-interface ms-4/0/0.30
set services service-set ss2 syslog host local class session-logs
set services service-set ss2 syslog host local class stateful-firewall-logs
set services service-set ss2 syslog host local class nat-logs

Configuring Interfaces for Chassis 1.

The interfaces for each of the HA pair of routers are configured identically with the exception of the following service PIC options:

- redundancy-options redundancy-peer ipaddress address
- unit unit-number family inet address address of a unit, other than 0, that contains the ip-address-owner service-plane option

To configure interfaces:

1. Configure the redundant service PIC on chassis 1.

[edit interfaces]
user@host# set interfaces ms-4/0/0 redundancy-options redundancy-peer ipaddress 5.5.5.2
user@host# set interfaces ms-4/0/0 redundancy-options routing-instance HA
user@host# set interfaces ms-4/0/0 unit 10 ip-address-owner service-plane
user@host# set interfaces ms-4/0/0 unit 10 family inet address 5.5.5.1/32
user@host# set interfaces ms-4/0/0 unit 20 family inet
user@host# set interfaces ms-4/0/0 unit 20 service-domain inside
default route
user@host# set interfaces ms-4/0/0 unit 30 family inet
user@host# set interfaces ms-4/0/0 unit 30 service-domain outside

2. Configure the interfaces for chassis 1 that are used as interchassis links for synchronization traffic.

   user@host# set interfaces ge-2/0/0 vlan-tagging
   user@host# set interfaces ge-2/0/0 unit 0 vlan-id 100 family inet address 20.1.1.1/24

3. Configure remaining interfaces as needed.
Configure Routing Information for Chassis 1

Step-by-Step Procedure

Detailed routing configuration is not included for this example. A routing instance is required for the HA synchronization traffic between the chassis as follows:

- Configure routing instances for Chassis 1.

  ```
 user@host# set routing-instances HA instance-type vrf
 user@host# set routing-instances HA interface ge-2/0/0.0
 user@host# set routing-instances HA interface ms-4/0/0.10
 user@host# set routing-instances HA route-distinguisher 1:1
 user@host# set policy-options policy-statement dummy term 1 then reject
 user@host# set routing-instances HA vrf-import dummy
 user@host# set routing-instances HA vrf-export dummy
 user@host# set routing-instances HA routing-options static route 5.5.5.1/32 next-hop ms-4/0/0.10
 user@host# set routing-instances HA routing-options static route 5.5.5.2/32 next-hop 20.1.1.2
  ```
Results

```
user@host# show routing-instances
HA {
 instance-type vrf;
 interface ge-2/0/0.0;
 interface ms-4/0/0.10;
 route-distinguisher 1:1;
 vrf-import dummy;
 vrf-export dummy;
 routing-options {
 static {
 route 5.5.5.1/32 next-hop ms-4/0/0.10;
 route 5.5.5.2/32 next-hop 20.1.1.2;
 }
 }
}
```

**Configuring NAT and Stateful Firewall for Chassis 1**

**Step-by-Step Procedure**

Configure NAT and stateful firewall identically on both routers. To configure NAT and stateful firewall:

1. Configure NAT as needed.

   ```
 user@host# set services nat pool p2 address 32.0.0.0/24
 user@host# set services nat pool p2 port automatic random-allocation
 user@host# set services nat pool p2 address-allocation round-robin
 user@host# set services nat rule r2 match-direction input
 user@host# set services nat rule r2 term t1 from source-address 129.0.0.0/8
 user@host# set services nat rule r2 term t1 from source-address 128.0.0.0/8
 user@host# set services nat rule r2 term t1 then translated source-pool p2
 user@host# set services nat rule r2 term t1 then translated translation-type napt-44
 user@host# set services nat rule r2 term t1 then translated address-pooling paired
 user@host# set services nat rule r2 term t1 then syslog
   ```

2. Configure stateful firewall as needed.

   ```
 user@host# set services stateful-firewall rule r2 match-direction input
 user@host# set services stateful-firewall rule r2 term t1 from source-address any-unicast
 user@host# set services stateful-firewall rule r2 term t1 then accept
 user@host# set services stateful-firewall rule r2 term t1 then syslog
   ```
Results  

```bash
user@host# show services nat

nat {
 pool p2 {
 address 32.0.0.0/24;
 port {
 automatic {
 random-allocation;
 }
 }
 address-allocation round-robin;
 }
 rule r2 {
 match-direction input;
 term t1 {
 from {
 source-address {
 129.0.0.0/8;
 128.0.0.0/8;
 }
 }
 then {
 translated {
 source-pool p2;
 translation-type {
 napt-44;
 }
 address-pooling paired;
 syslog;
 }
 syslog;
 }
 }
 }
}
```

```bash
user@host show services stateful-firewall

rule r2 {
 match-direction input;
 term t1 {
 from {
 source-address {
 any-unicast;
 }
 }
 then {
 accept;
 syslog;
 }
 }
}
```

**Configuring the Service Set**

**Step-by-Step Procedure**

Configure the service set identically on both routers. To configure the service set:
1. Configure the service set replication options.

   user@host# set services service-set ss2 replicate-services replication-threshold 180
   user@host# set services service-set ss2 replicate-services stateful-firewall
   user@host# set services service-set ss2 replicate-services nat

2. Configure references to NAT and stateful firewall rules for the service set.

   user@host# set services service-set ss2 stateful-firewall-rules r2
   user@host# set services service-set ss2 nat-rules r2

3. Configure next-hop service interface on the MS-PIC.

   user@host# set services service-set ss2 next-hop-service inside-service-interface ms-4/0/0.20
   user@host# set services service-set ss2 next-hop-service outside-service-interface ms-4/0/0.30

4. Configure desired logging options.

   user@host# set services service-set ss2 syslog host local class session-logs
   user@host# set services service-set ss2 syslog host local class stateful-firewall-logs
   user@host# set services service-set ss2 syslog host local class nat-logs
Results

```
user@host# show services service-set ss2
syslog {
 host local {
 class {
 session-logs;
 inactive: stateful-firewall-logs;
 nat-logs;
 }
 }
}
replicate-services {
 replication-threshold 180;
 stateful-firewall;
 nat;
}
stateful-firewall-rules r2;
inactive: nat-rules r2;
next-hop-service {
 inside-service-interface ms-3/0/0.20;
 outside-service-interface ms-3/0/0.30;
}
```

Configuring Interfaces for Chassis 2

Step-by-Step Procedure

The interfaces for each of the HA pair of routers are configured identically with the exception of the following service PIC options:

- redundancy-options redundancy-peer ipaddress address
- unit unit-number family inet address address of a unit, other than 0, that contains the ip-address-owner service-plane option

1. Configure the redundant service PIC on chassis 2.

   The redundancy-peer ipaddress points to the address of the unit (unit 10) on ms-4/0/0 on chassis on chassis 1 that contains the ip-address-owner service-plane statement.

   ```
 [edit interfaces]
 set interfaces ms-4/0/0 redundancy-options redundancy-peer ipaddress 5.5.5.1
 user@host# set interfaces ms-4/0/0 redundancy-options routing-instance HA
 user@host# set interfaces ms-4/0/0 unit 10 ip-address-owner service-plane
 user@host# set interfaces ms-4/0/0 unit 10 family inet address 5.5.5.2/32
 user@host# set interfaces ms-4/0/0 unit 20 family inet
 user@host# set interfaces ms-4/0/0 unit 20 service-domain inside
 user@host# set interfaces ms-4/0/0 unit 30 family inet
 user@host# set interfaces ms-4/0/0 unit 30 service-domain outside
   ```

2. Configure the interfaces for chassis 2 that are used as interchassis links for synchronization traffic

   ```
 user@host# set interfaces ge-2/0/0 vlan-tagging
   ```
user@host# set interfaces ge-2/0/0 unit 0 vlan-id 100 family inet address 20.1.1.2/24

3. Configure remaining interfaces for chassis 2 as needed.

Results

user@host# show interfaces
ms-4/0/0 {
    redundancy-options {
        redundancy-peer {
            ipaddress 5.5.5.1;
        }
        routing-instance HA;
    }
    unit 0 {
        family inet;
    }
    unit 10 {
        ip-address-owner service-plane;
        family inet {
            address 5.5.5.2/32;
        }
    }
}
ge-2/0/0 {
    vlan-tagging;
    unit 0 {
        vlan-id 100;
        family inet {
            address 20.1.1.2/24;
        }
    }
    unit 10 {
        vlan-id 10;
        family inet {
            address 2.10.1.2/24;
        }
    }
}

Configure Routing Information for Chassis 2

Step-by-Step Procedure

- Configure routing instances for chassis 2.

  user@host# set routing-instances HA instance-type vrf
  user@host# set routing-instances HA interface ge-2/0/0.0
  user@host# set routing-instances HA interface ms-4/0/0.10
  user@host# set routing-instances HA route-distinguisher 1:1
  user@host# set policy-options policy-statement dummy term 1 then reject
  user@host# set routing-instances HA vrf-import dummy
  user@host# set routing-instances HA vrf-export dummy
  user@host# set routing-instances HA routing-options static route 5.5.5.2/32 next-hop ms-4/0/0.10
user@host# set routing-instances HA routing-options static route 5.5.5.1/32 next-hop 20.1.1.1

NOTE: The following configuration steps are identical to the steps shown for chassis 1.

- Configuring NAT and Stateful Firewall
- Configuring the Service Set

Results

```
user@host# show services routing-instances
HA {
 instance-type vrf;
 interface xe-2/2/0.0;
 interface ms-4/0/0.10;
 route-distinguisher 1:1;
 vrf-import dummy;
 vrf-export dummy;
 routing-options {
 static {
 route 5.5.5.2/32 next-hop ms-4/0/0.10;
 route 5.5.5.1/32 next-hop 20.1.1.1;
 }
 }
}
```

See Also

- Inter-Chassis High Availability for Stateful Firewall and NAPT44 Overview (MS-MIC, MS-MPC) on page 769
- Configuring Inter-Chassis High Availability for Stateful Firewall and NAPT44 (MS-MPC, MS-MIC) on page 771
PART 9

Configuring Interface Redundancy and Bundling on LSQ Interfaces

- Overview on page 785
- Configuring Interface Redundancy with SONET APS and Virtual Interfaces on page 787
- Enabling Bundling on LSQ Interfaces on page 801
Overview

Layer 2 Service Package Capabilities and Interfaces

As described in Enabling Service Packages, you can configure the AS or Multiservices PIC and the internal ASM in the M7i platform to use either the Layer 2 or the Layer 3 service package.

When you enable the Layer 2 service package, the AS or Multiservices PIC supports link services. On the AS or Multiservices PIC and the ASM, link services include the following:

- Junos CoS components—“Configuring CoS Scheduling Queues on Logical LSQ Interfaces” on page 722 describes how the Junos CoS components work on link services IQ (lsq) interfaces. For detailed information about Junos CoS components, see the Class of Service Feature Guide (Routers and EX9200 Switches).

- Data compression using the compressed Real-Time Transport Protocol (CRTP) for use in voice over IP (VoIP) transmission.

  NOTE: On LSQ interfaces, all multilink traffic for a single bundle is sent to a single processor. If CRTP is enabled on the bundle, it adds overhead to the CPU. Because T3 network interfaces support only one link per bundle, make sure you configure a fragmentation map for compressed traffic on these interfaces and specify the no-fragmentation option. For more information, see “Configuring Delay-Sensitive Packet Interleaving” on page 896 and “Configuring CoS Fragmentation by Forwarding Class on LSQ Interfaces” on page 726.

- Link fragment interleaving (LFI) on Frame Relay links using FRF.12 end-to-end fragmentation—The standard for FRF.12 is defined in the specification FRF.12, Frame Relay Fragmentation Implementation Agreement.

- LFI on Multilink Point-to-Point Protocol (MLPPP) links.

- Multilink Frame Relay (MLFR) end-to-end (FRF.15)—The standard for FRF.15 is defined in the specification FRF.15, End-to-End Multilink Frame Relay Implementation Agreement.
• Multilink Frame Relay (MLFR) UNI NNI (FRF.16)—The standard for FRF.16 is defined in the specification FRF.16.1, Multilink Frame Relay UNI/NNI Implementation Agreement.

• MLPPP—The standard for MLPPP is defined in the specification RFC 1990, The PPP Multilink Protocol (MP).

• Multiclass extension to MLPPP—The standard is defined in the specification RFC 2686, The Multi-Class Extension to Multi-Link PPP.

For the LSQ interface on the AS or Multiservices PIC, the configuration syntax is almost the same as for Multilink and Link Services PICs. The primary difference is the use of the interface-type descriptor lsq instead of ml or ls. When you enable the Layer 2 service package on the AS or Multiservices PIC, the following interfaces are automatically created:

```
gr-fpc/pic/port
ip-fpc/pic/port
lsq-fpc/pic/port
lsq-fpc/pic/port:0
...
lsq-fpc/pic/port:N
mt-fpc/pic/port
pd-fpc/pic/port
pe-fpc/pic/port
sp-fpc/pic/port
vt-fpc/pic/port
```

Interface types gr, ip, mt, pd, pe, and vt are standard tunnel interfaces that are available on the AS or Multiservices PIC whether you enable the Layer 2 or the Layer 3 service package. These tunnel interfaces function the same way for both service packages, except that the Layer 2 service package does not support some tunnel functions, as shown in Table 5 on page 24. For more information about tunnel interfaces, see Tunnel and Encryption Services Interfaces Feature Guide for Routing Devices.

**NOTE:** Interface type sp is created because it is needed by the Junos OS. For the Layer 2 service package, the sp interface is not configurable, but you should not disable it.

Interface type lsq-fpc/pic/port is the physical link services IQ interface (lsq). Interface types lsq-fpc/pic/port:0 through lsq-fpc/pic/port:N represent FRF.16 bundles. These interface types are created when you include the mlfr-uni-nni-bundles statement at the [edit chassis fpc slot-number pic pic-number] hierarchy level. For more information, see “Configuring CoS Scheduling Queues on Logical LSQ Interfaces” on page 722.

**NOTE:** On DS0, E1, or T1 interfaces in LSQ bundles, you can configure the bandwidth statement, but the router does not use the bandwidth value if the interfaces are included in an MLPPP or MLFR bundle. The bandwidth is calculated internally according to the time slots, framing, and byte-encoding of the interface. For more information about these properties, see the Junos OS Network Interfaces Library for Routing Devices.
Configuring Interface Redundancy with SONET APS and Virtual Interfaces

- Configuring LSQ Interface Redundancy Across Multiple Routers Using SONET APS on page 787
- Configuring LSQ Interface Redundancy in a Single Router Using SONET APS on page 790
- Configuring LSQ Interface Redundancy in a Single Router Using Virtual Interfaces on page 790

Configuring LSQ Interface Redundancy Across Multiple Routers Using SONET APS

Link services IQ (lsq-) interfaces that are paired with SONET PICs can use the Automatic Protection Switching (APS) configuration already available on SONET networks to provide failure recovery. SONET APS provides stateless failure recovery, if it is configured on SONET interfaces in separate chassis and each SONET PIC is paired with an AS or Multiservices PIC in the same chassis. If one of the following conditions for APS failure is met, the associated SONET PIC triggers recovery to the backup circuit and its associated AS or Multiservices PIC. The failure conditions are:

- Failure of Link Services IQ PIC
- Failure of FPC that hosts the Link Services IQ PIC
- Failure of Packet Forwarding Engine
- Failure of chassis

The guidelines for configuring SONET APS are described in the Junos OS Network Interfaces Library for Routing Devices.

The following sections describe how to configure failover properties:

- Configuring the Association between LSQ and SONET Interfaces on page 788
- Configuring SONET APS Interoperability with Cisco Systems FRF.16 on page 789
- Restrictions on APS Redundancy for LSQ Interfaces on page 789
Configuring the Association between LSQ and SONET Interfaces

To configure the association between AS or Multiservices PICs hosting link services IQ interfaces and the SONET interfaces, include the `lsq-failure-options` statement at the `[edit interfaces]` hierarchy level:

```
lsq-fpc/pic/port {
 lsq-failure-options {
 no-termination-request;
 [trigger-link-failure interface-name];
 }
}
```

For example, consider the following network scenario:

- Primary router includes interfaces `oc3-0/2/0` and `lsq-1/1/0`.
- Backup router includes interfaces `oc3-2/2/0` and `lsq-3/2/0`.

Configure SONET APS, with `oc3-0/2/0` as the working circuit and `oc3-2/2/0` as the protect circuit. Include the `trigger-link-failure` statement to extend failure to the LSQ PICs:

```
interfaces lsq-1/1/0 {
 lsq-failure-options {
 trigger-link-failure oc3-0/2/0;
 }
}
```

**NOTE:** You must configure the `lsq-failure-options` statement on the primary router only. The configuration is not supported on the backup router.

To inhibit the router from sending PPP termination-request messages to the remote host if the Link Services IQ PIC fails, include the `no-termination-request` statement at the `[edit interfaces lsq-fpc/pic/port lsq-failure-options]` hierarchy level:

```
[edit interfaces lsq-fpc/pic/port lsq-failure-options]
no-termination-request;
```

This functionality is supported on link PICs as well. To inhibit the router from sending PPP termination-request messages to the remote host if a link PIC fails, include the `no-termination-request` statement at the `[edit interfaces interface-name ppp-options]` hierarchy level:

```
[edit interfaces interface-name ppp-options]
no-termination-request;
```

The `no-termination-request` statement is supported only with MLPPP and SONET APS configurations and works with PPP, PPP over Frame Relay, and MLPPP interfaces only, on the following PICs:
• Channelized OC3 IQ PICs
• Channelized OC12 IQ PICs
• Channelized STM1 IQ PICs
• Channelized STM4 IQ PICs

Configuring SONET APS Interoperability with Cisco Systems FRF.16

Juniper Networks routers configured with APS might not interoperate correctly with Cisco FRF.16. To enable interoperability, include the cisco-interoperability statement at the [edit interfaces lsq-fpc/pic/port mlfr-uni-nni-bundle-options] hierarchy level:

[edit interfaces lsq-fpc/pic/port mlfr-uni-nni-bundle-options]
cisco-interoperability send-lip-remove-link-for-link-reject;

The send-lip-remove-link-for-link-reject option prompts the router to send a Link Integrity Protocol remove link when it receives an add-link rejection message.

Restrictions on APS Redundancy for LSQ Interfaces

The following restrictions apply to LSQ failure recovery:

• It applies only to Link Services IQ PICs installed in M Series routers, except for M320 routers.
• You must configure the failure-options statement on physical LSQ interfaces, not on MLFR channelized units.
• The Link Services IQ PICs must be associated with SONET link PICs. The paired PICs can be installed on different routers or in the same router; in other words, both interchassis and intrachassis recovery are supported.
• Failure recovery is stateless; as a result, route flapping and loss of link state is expected in interchassis recovery, requiring PPP renegotiation. In intrachassis recovery, no impact on traffic is anticipated with Routing Engine failover, but PIC failover results in PPP renegotiation.
• The switchover is not revertive: when the original hardware is restored to service, traffic does not automatically revert back to it.
• Normal APS switchover and PIC-triggered APS switchover can be distinguished only by checking the system log messages.

NOTE: When an AS PIC experiences persistent back pressure as a result of high traffic volume for 3 seconds, the condition triggers an automatic core dump and reboot of the PIC to help clear the blockage. A system log message at level LOG_ERR is generated. This mechanism applies to both Layer 2 and Layer 3 service packages.
Configuring LSQ Interface Redundancy in a Single Router Using SONET APS

Stateless switchover from one Link Services IQ PIC to another within the same router can be configured by using the SONET APS mechanism described in “Configuring LSQ Interface Redundancy Across Multiple Routers Using SONET APS” on page 787. Each Link Services IQ PIC must be associated with a specified SONET link PIC within the same router.

NOTE: For complete intrachassis recovery, including recovery from Routing Engine failover, graceful Routing Engine switchover (GRES) must be enabled on the router. For more information, see the Junos OS Administration Library.

Configuring LSQ Interface Redundancy in a Single Router Using Virtual Interfaces

You can configure failure recovery on M Series, MX Series, and T Series routers that have multiple AS or Multiservices PICs and DPCs with lsq- interfaces by specifying a virtual LSQ redundancy (rlsq) interface in which the primary Link Services IQ PIC is active and a secondary PIC is on standby. If the primary PIC fails, the secondary PIC becomes active, and all LSQ processing is transferred to it. To determine which PIC is currently active, issue the `show interfaces redundancy` command.

NOTE: This configuration does not require the use of SONET APS for failover. Network interfaces that do not support SONET can be used, such as T1 or E1 interfaces.
The following sections provide more information:

- Configuring Redundant Paired LSQ Interfaces on page 791
- Restrictions on Redundant LSQ Interfaces on page 792
- Configuring Link State Replication for Redundant Link PICs on page 793
- Examples: Configuring Redundant LSQ Interfaces for Failure Recovery on page 795

### Configuring Redundant Paired LSQ Interfaces

The physical interface type rlsq specifies the pairings between primary and secondary lsq interfaces to enable redundancy. To configure a backup lsq interface, include the redundancy-options statement at the [edit interfaces rlsqnumber] hierarchy level:

```plaintext
[edit interfaces rlsqnumber]
redundancy-options {
 (hot-standby | warm-standby);
 primary lsq-fpc/pic/port;
 secondary lsq-fpc/pic/port;
}
```

For the rlsq interface, number can be from 0 through 1023. If the primary lsq interface fails, traffic processing switches to the secondary interface. The secondary interface remains active even after the primary interface recovers. If the secondary interface fails and the primary interface is active, processing switches to the primary interface.

The hot-standby option is used with one-to-one redundancy configurations, in which one working PIC is supported by one backup PIC. It is supported with MLPPP, CRTP, FRF.15, and FRF.16 configurations for the LSQ interface to achieve an uninterrupted LSQ service. It sets the requirement for the failure detection and recovery time to be less than 5 seconds. The behavior is revertive, but you can manually switch between the primary and secondary PICs by issuing the request interfaces (revert | switchover) rlsqnumber operational mode command. It also provides a switch over time of 5 seconds and less for FRF.15 and a maximum of 10 seconds for FRF.16.

The warm-standby option is used with redundancy configurations in which one backup PIC supports multiple working PICs. Recovery times are not guaranteed, because the configuration must be completely restored on the backup PIC after a failure is detected.

Certain combinations of hot-standby and warm-standby configuration are not permitted and result in a configuration error. The following examples are permitted:

- Interface rlsq0 configured with primary lsq-0/0/0 and warm-standby, in combination with interface rlsq0:0 configured with primary lsq-0/0/0:0
- Interface rlsq0:0 configured with primary lsq-0/0/0:0, in combination with interface rlsq0:1 configured with primary lsq-0/0/0:1

The following example combinations are not permitted:
• Interface $rsq0$ configured with primary lsq-0/0/0 and hot-standby, in combination with interface $rsq0:0$ configured with primary lsq-0/0/0:0

• Interface $rsq0:0$ configured with primary lsq-0/0/0:0, in combination with interface $rsq1:0$ configured with primary lsq-0/0/0:0

• Interface $rsq0:0$ configured with primary lsq-0/0/0:0:0, in combination with interface $rsq1:1$ configured with primary lsq-0/0/0:1

• Interface $rsq0$ configured with primary lsq-0/0/0, in combination with interface $rsq1$ configured with primary lsq-0/0/0:0

In addition, the same physical interface cannot be reused as the primary interface for more than one $rsq$ interface, nor can any of the associated logical interfaces. For example, primary interface $lsq-0/0/0$ cannot be reused in another $rsq$ interface as $lsq-0/0/0:0$.

Restrictions on Redundant LSQ Interfaces

Link Services IQ PIC failure occurs under the following conditions:

• The primary PIC fails to boot. In this case, the $rsq$ interface does not come up and manual intervention is necessary to reboot or replace the PIC, or to rename the primary PIC to the secondary one in the $rsq$ configuration.

• If the following conditions are not met when configuring an $rsq$ interface:
  • The unit number allocated to the $rsq$ interface is less than the number of Multilink Frame Relay user-to-network interface network-to-network interface (UNI-NNI) (FRF.16) bundles allocated on the Link Services PIC.
  • Data-link connection identifier (DLCI) is configured for the $rsq$ interface.

If these conditions are not met, the $rsq$ interface does not boot. When you issue the $show interfaces redundancy$ command, the state of the $rsq$ interface is indicated as Waiting for primary MS PIC.

• The primary PIC becomes active and then fails. The secondary PIC automatically takes over processing.

• A failover to the secondary PIC takes place. The secondary PIC then fails. If the primary PIC has been restored to active state, processing switches to it.

• The FPC that contains the Link Services IQ PIC fails.

The following constraints apply to redundant LSQ configurations:

• We recommend that primary and secondary PICs be configured in two different FPCs (in chassis other than M10i routers).

• You cannot configure a Link Services IQ PIC with explicit bundle configurations and as a constituent of an $rsq$ interface.

• Redundant LSQ configurations provide full GRES support. (You must configure GRES at the [edit chassis] hierarchy level; see the Junos OS Administration Library.)
If you configure the `redundancy-options` statement with the `hot-standby` option, the configuration must include one primary interface value and one secondary interface value.

Since the same interface name is used for `hot-standby` and `warm-standby`, if you modify the configuration to change this attribute, it is recommended that you first deactivate the interface, commit the new configuration, and then reactivate the interface.

You cannot make changes to an active `redundancy-options` configuration. You must deactivate the `rlsqnumber` interface configuration, change it, and reactivate it.

The `rlsqnumber` configuration becomes active only if the primary interface is active. When the configuration is first activated, the primary interface must be active; if not, the `rlsq` interface waits until the primary interface comes up.

You cannot modify the configuration of `lsq` interfaces after they have been included in an active `rlsq` interface.

All the operational mode commands that apply to `rsp` interfaces also apply to `rlsq` interfaces. You can issue `show` commands for the `rlsq` interface or the primary and secondary `lsq` interfaces. However, statistics on the link interfaces are not carried over following a Routing Engine switchover.

The `rlsq` interfaces also support the `lsq-failure-options` configuration, discussed in “Configuring LSQ Interface Redundancy Across Multiple Routers Using SONET APS” on page 787. If the primary and secondary Link Services IQ PICs fail and the `lsq-failure-options` statement is configured, the configuration triggers a SONET APS switchover.

Redundant LSQ configurations that require MLPPP Multilink Frame Relay (FRF.15 and FRF.16) are supported only with the `warm-standby` option.

Redundant LSQ support is extended to ATM network interfaces.

Channelized interfaces are used with FRF.16 bundles, for example `rlsq0:0`. The `rlsq` number and its constituents, the primary and secondary interfaces, must match for the configuration to be valid: either all must be channelized, or none. For an example of an FRF.16 configuration, see “Configuring LSQ Interface Redundancy for an FRF.16 Bundle” on page 799.

When you configure a channelized `rlsq` interface, you must use a channel index number from 0 through 254.

---

**NOTE:** Adaptive Services and Multiservices PICs in layer-2 mode (running Layer 2 services) are not rebooted when a MAC flow-control situation is detected.

**Configuring Link State Replication for Redundant Link PICs**

`Link state replication`, also called `interface preservation`, is an addition to the SONET Automatic Protection Switching (APS) functionality that helps promote redundancy of the link PICs used in LSQ configurations.
Link state replication provides the ability to add two sets of links, one from the active (working) SONET PIC and the other from the backup (protect) SONET PIC to the same bundle. If the active SONET PIC fails, links from the standby PIC are used without causing a link renegotiation. All the negotiated state is replicated from the active links to the standby links to prevent link renegotiation. For more information about SONET APS configurations, see the Junos OS Network Interfaces Library for Routing Devices.

To configure link state replication, include the `preserve-interface` statement at the `[edit interfaces interface-name sonet-options aps]` hierarchy level on both network interfaces:

```
edit interfaces interface-name sonet-options aps
preserve-interface:
```

The following constraints apply to link PIC redundancy:

- APS functionality must be available on the SONET PICs and the interface configurations must be identical on both ends of the link. Any configuration mismatch causes the commit operation to fail.

- This feature is supported only with LSQ and SONET APS-enabled link PICs, including Channelized OC3, Channelized OC12, and Channelized STMI intelligent queuing (IQ) PICs.

- Link state replication supports MLPPP and PPP over Frame Relay (`frame-relay-ppp`) encapsulation, and fully supports GRES.

- Enabling the interface or protocol trace options with a large number of MLPPP links can trigger Link Control Protocol (LCP) renegotiation during the link switchover time.

```
NOTE: This renegotiation is more likely to take place for configurations with back-to-back Juniper Networks routers than in networks in which a Juniper Networks router is connected to an add/drop multiplexer (ADM).
```

- In general, networks that connect a Juniper Networks router to an ADM allow faster MLPPP link switchover than those with back-to-back Juniper Networks routers. The MLPPP link switchover time difference may be significant, especially for networks with a large number of MLPPP links.

- An aggressive LCP keepalive timeout configuration can lead to LCP renegotiation during the MLPPP link switchover. By default, the LCP keepalive timer interval is 10 seconds and the consecutive link down count is 3. The MLPPP links start LCP negotiation only after a timeout of 30 seconds. Lowering these configuration values may trigger one or more of the MLPPP links to renegotiate during the switchover time.

```
NOTE: LCP renegotiation is more likely to take place for configurations with back-to-back Juniper Networks routers than in networks in which a Juniper Networks router is connected to an ADM.
```
As an example, the following configuration shows the link state replication configuration between the ports coc3-1/0/0 and coc3-2/0/0.

```plaintext
interfaces {
 coc3-1/0/0 {
 sonet-options {
 aps {
 preserve-interface;
 working-circuit aps-group-1;
 }
 }
 }
 coc3-2/0/0 {
 sonet-options {
 aps {
 preserve-interface;
 protect-circuit aps-group-1;
 }
 }
 }
}

Examples: Configuring Redundant LSQ Interfaces for Failure Recovery

Configuring LSQ Interface Redundancy for MLPPP

The following configuration shows that lsq-1/1/0 and lsq-1/3/0 work as a pair and the redundancy type is hot-standby, which sets the requirement for the failure detection and recovery time to be less than 5 seconds:

```plaintext
interfaces rlsq0 {
  redundancy-options {
    primary lsq-1/1/0;
    secondary lsq-1/3/0;
    hot-standby; #either hot-standby or warm-standby is supported
  }
}
```

The following example shows a related MLPPP configuration:

```plaintext
NOTE: MLPPP protocol configuration is required for this configuration.
```

```plaintext
interfaces {
  t1-/1/2/0 {
    unit 0 {
      family mlppp {
        bundle rlso.0;
      }
    }
  }
```

The following example shows a related CoS configuration:

class-of-service {
 interfaces {
 rlsql0 {
 unit * {
 fragmentation-maps fr-map;
 }
 }
 }
}

The following example shows a complete link state replication configuration for MLPPP.
This example uses two bundles, each with four T1 links. The first four T1 links (t1-*:1 through
t1-*:4) form the first bundle and the last four T1 links (t1-*:5 through t1-*:8) form the
second bundle. To minimize the duplication in the configuration, this example uses the
[edit groups] statement; for more information, see the Junos OS Administration Library.
This type of configuration is not required; it simplifies the task and minimizes duplication.

groups {
 ml-partition-group {
 interfaces {
 <coc3-*> {
 partition 1 oc-slice 1 interface-type coc1;
 }
 <coc1-*> {
 partition 1-8 interface-type t1;
 }
 }
 }
 ml-bundle-group-1 {
 interfaces {
 <t1-*:[1-4]> {
 encapsulation ppp;
 unit 0 {
 family mlppp {
 bundle lsq-0/1/0.0;
 }
 }
 }
 }
 }
 ml-bundle-group-2 {
interfaces {
 <t1-*:"[5-8]"> {
 encapsulation ppp;
 unit 0 {
 family mlppp {
 bundle lsq-0/1/0.1;
 }
 }
 }
}

interfaces {
 lsq-0/1/0 {
 unit 0 [
 encapsulation multilink-ppp;
 family inet {
 address 1.1.1.1/32 {
 destination 1.1.1.2;
 }
 }
 }
 unit 1 {
 encapsulation multilink-ppp;
 family inet {
 address 1.1.2.1/32 {
 destination 1.1.2.2;
 }
 }
 }
 }
 coc3-1/0/0 {
 apply-groups ml-partition-group;
 sonet-options {
 aps {
 preserve-interface;
 working-circuit aps-group-1;
 }
 }
 }
 coc1-1/0/0:1 {
 apply-groups ml-partition-group;
 }
 tl1-1/0/0:1:1 {
 apply-groups ml-bundle-group-1;
 }
 tl1-1/0/0:1:2 {
 apply-groups ml-bundle-group-1;
 }
 tl1-1/0/0:1:3 {
 apply-groups ml-bundle-group-1;
 }
 tl1-1/0/0:1:4 {
 apply-groups ml-bundle-group-1;
 }
}
The following example shows a configuration for an FRF.15 bundle:
interfaces rlqs0 {
 redundancy-options {
 primary lsq-1/2/0;
 secondary lsq-1/3/0;
 warm-standby; #either hot-standby or warm-standby is supported
 }
 unit 0 {
 encapsulation multilink-frame-relay-end-to-end;
 family inet {
 address 30.1.1.1/24;
 }
 }
}

Configuring LSQ Interface Redundancy for an FRF.16 Bundle

The following example shows a configuration for an FRF.16 bundle:

interfaces rlqs0:0 {
 dce;
 encapsulation multilink-frame-relay-uni-nni;
 redundancy-options {
 primary lsq-1/2/0:0;
 secondary lsq-1/3/0:0;
 warm-standby; #either hot-standby or warm-standby is supported
 }
 unit 0 {
 dcli 1000;
 family inet {
 address 50.1.1.1/24;
 }
 }
}

Related Documentation

- Layer 2 Service Package Capabilities and Interfaces on page 785
- Configuring LSQ Interface Redundancy Across Multiple Routers Using SONET APS on page 787
- Configuring LSQ Interface Redundancy in a Single Router Using SONET APS on page 790
- Configuring Link Services and CoS on Services PICs on page 728
- Link Services Configuration for Junos Interfaces on page 721
CHAPTER 45

Enabling Bundling on LSQ Interfaces

- Inline MLPPP for WAN Interfaces Overview on page 801
- Reserving Bundle Bandwidth for Link-Layer Overhead on LSQ Interfaces on page 803
- Configuring Multiclass MLPPP on LSQ Interfaces on page 804
- Enabling Inline LSQ Services on page 806
- Configuring LSQ Interfaces as NxT1 or NxE1 Bundles Using MLPPP on page 808
- Configuring LSQ Interfaces as NxT1 or NxE1 Bundles Using FRF.16 on page 814
- Configuring LSQ Interfaces as NxT1 or NxE1 Bundles Using FRF.15 on page 820
- Configuring LSQ Interfaces for Single Fractional T1 or E1 Interfaces Using MLPPP and LFI on page 821
- Configuring LSQ Interfaces for Single Fractional T1 or E1 Interfaces Using FRF.12 on page 826
- Configuring LSQ Interfaces for T3 Links Configured for Compressed RTP over MLPPP on page 833
- Configuring LSQ Interfaces as T3 or OC3 Bundles Using FRF.12 on page 835
- Configuring LSQ Interfaces for ATM2 IQ Interfaces Using MLPPP on page 837

Inline MLPPP for WAN Interfaces Overview

Inline Multilink PPP (MLPPP), Multilink Frame Relay (FRF.16), and Multilink Frame Relay End-to-End (FRF.15) for time-division multiplexing (TDM) WAN interfaces provide bundling services through the Packet Forwarding Engine without requiring a PIC or Dense Port Concentrator (DPC).

Traditionally, bundling services are used to bundle multiple low-speed links to create a higher bandwidth pipe. This combined bandwidth is available to traffic from all links and supports link fragmentation and interleaving (LFI) on the bundle, reducing high priority packet transmission delay.

This support includes multiple links on the same bundle as well as multiclass extension for MLPPP. Through this service you can enable bundling services without additional DPC slots to support Service DPC and free up the slots for other MICs.
NOTE: MLPPP is not supported on MX Series Virtual Chassis.

Starting in Junos OS Release 15.1, you can configure inline MLPPP interfaces on MX80, MX104, MX240, MX480, and MX960 routers with Channelized E1/T1 Circuit Emulation MICs. A maximum of up to eight inline MLPPP interface bundles are supported on Channelized E1/T1 Circuit Emulation MICs, similar to the support for inline MLPPP bundles on other MICs with which they are compatible.

Configuring inline MLPPP for WAN interfaces benefits the following services:

• CE-PE link for Layer 3 VPN and DIA service with public switched telephone networks (PSTN)-based access networks.
• PE-P link when PSTN is used for MPLS networks.

This feature is used by the following service providers:

• Service providers that use PSTN to offer Layer 3 VPN and DIA service with PSTN-based access networks to medium or large business customers.
• Service providers with SONET-based core networks.

The following figure illustrates the scope of this feature:

Figure 39: Inline MLPPP for WAN Interfaces
For connecting many smaller sites in VPNs, bundling the TDM circuits together with MLPPP/MLFR technology is the only way to offer higher bandwidth and link redundancy.

MLPPP enables you to bundle multiple PPP links into a single multilink bundle, and MLFR enables you to bundle multiple Frame Relay data-link connection identifiers (DLCIs) into a single multilink bundle. Multilink bundles provide additional bandwidth, load balancing, and redundancy by aggregating low-speed links, such as T1, E1, and serial links.

MLPPP is a protocol for aggregating multiple constituent links into one larger PPP bundle. MLFR allows you to aggregate multiple Frame Relay links by inverse multiplexing. MLPPP and MLFR provide service options between low-speed T1 and E1 services. In addition to providing additional bandwidth, bundling multiple links can add a level of fault tolerance to your dedicated access service. Because you can implement bundling across multiple interfaces, you can protect users against loss of access when a single interface fails.

To configure inline MLPPP for WAN interfaces, see:

- Example: Configuring Inline MLPPP and Multilink Frame Relay End-to-End (FRF.15) for WAN Interfaces
- Example: Configuring Inline Multilink Frame Relay (FRF.16) for WAN Interfaces

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Starting in Junos OS Release 15.1, you can configure inline MLPPP interfaces on MX80, MX104, MX240, MX480, and MX960 routers with Channelized E1/T1 Circuit Emulation MICs.</td>
</tr>
</tbody>
</table>

Related Documentation

- Enabling Inline LSQ Services on page 806
- Enabling MLPPP Link Fragmentation and Interleaving
- Example: Configuring Multilink Frame Relay FRF.15
- Example: Configuring Multilink Frame Relay FRF.16
- Link and Multilink Services Interfaces Feature Guide for Routing Devices

Reserving Bundle Bandwidth for Link-Layer Overhead on LSQ Interfaces

Link-layer overhead can cause packet drops on constituent links because of bit stuffing on serial links. Bit stuffing is used to prevent data from being interpreted as control information.

By default, 4 percent of the total bundle bandwidth is set aside for link-layer overhead. In most network environments, the average link-layer overhead is 1.6 percent. Therefore, we recommend 4 percent as a safeguard. For more information, see RFC 4814, Hash and Stuffing: Overlooked Factors in Network Device Benchmarking.
For link services IQ (lsq-) interfaces, you can configure the percentage of bundle bandwidth to be set aside for link-layer overhead. To do this, include the `link-layer-overhead` statement:

```
link-layer-overhead percent;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name mfr-uni-nni-bundle-options]`
- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`

You can configure the value to be from 0 percent through 50 percent.

Related Documentation

- Layer 2 Service Package Capabilities and Interfaces on page 785
- Oversubscribing Interface Bandwidth on LSQ Interfaces on page 731
- Configuring Guaranteed Minimum Rate on LSQ Interfaces on page 737
- Link Services Configuration for Junos Interfaces on page 721

Configuring Multiclass MLPPP on LSQ Interfaces

For link services LSQ (lsq-) interfaces with MLPPP encapsulation, you can configure multiclass MLPPP (MCML). If you do not configure MCML, fragments from different classes cannot be interleaved. All fragments for a single packet must be sent before the fragments from another packet are sent. Nonfragmented packets can be interleaved between fragments of another packet to reduce latency seen by nonfragmented packets. In effect, latency-sensitive traffic is encapsulated as regular PPP traffic, and bulk traffic is encapsulated as multilink traffic. This model works as long as there is a single class of latency-sensitive traffic, and there is no high-priority traffic that takes precedence over latency-sensitive traffic. This approach to LFI, used on the Link Services PIC, supports only two levels of traffic priority, which is not sufficient to carry the four-to-eight forwarding classes that are supported by M Series and T Series routers. For more information about the Link Services PIC support of LFI, see *Configuring Delay-Sensitive Packet Interleaving on Link Services Logical Interfaces*.

NOTE: ACX Series routers do not support link fragmentation interleaving (LFI).

For link services LSQ interfaces only, you can configure MCML, as defined in RFC 2686, *The Multi-Class Extension to Multi-Link PPP*. MCML makes it possible to have multiple classes of latency-sensitive traffic that are carried over a single multilink bundle with bulk traffic. In effect, MCML allows different classes of traffic to have different latency guarantees. With MCML, you can map each forwarding class into a separate multilink class, thus preserving priority and latency guarantees.
Configuring both LFI and MCML on the same bundle is not necessary, nor is it supported, because multiclass MLPPP represents a superset of functionality. When you configure multiclass MLPPP, LFI is automatically enabled.

The Junos OS implementation of MCML does not support compression of common header bytes, which is referred to in RFC 2686 as “prefix elision.”

MCML greatly simplifies packet ordering issues that occur when multiple links are used. Without MCML, all voice traffic belonging to a single flow is hashed to a single link to avoid packet ordering issues. With MCML, you can assign voice traffic to a high-priority class, and you can use multiple links. For more information about voice services support on link services IQ interfaces (lsq), see “Configuring Services Interfaces for Voice Services” on page 894.

To configure MCML on a link services IQ interface, you must specify how many multilink classes should be negotiated when a link joins the bundle, and you must specify the mapping of a forwarding class into an MCML class.

To specify how many multilink classes should be negotiated when a link joins the bundle, include the `multilink-max-classes` statement:

```
multilink-max-classes number;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`

The number of multilink classes can be 1 through 8. The number of multilink classes for each forwarding class must not exceed the number of multilink classes to be negotiated.

To specify the mapping of a forwarding class into a MCML class, include the `multilink-class` statement at the `[edit class-of-service fragmentation-maps map-name forwarding-class class-name]` hierarchy level:

```
[multilink-class number]
```

The multilink class index number can be 0 through 7. The `multilink-class` statement and `no-fragmentation` statements are mutually exclusive.
NOTE: In ACX Series routers, the multilink class index number can be 0 through 3. ACX Series routers do not support the no-fragmentation statement for fragmentation map.

To view the number of multilink classes negotiated, issue the `show interfaces lsq-fpc/pic/port.logical-unit-number detail` command.

Related Documentation

- Layer 2 Service Package Capabilities and Interfaces on page 785
- Configuring LSQ Interfaces as NxT1 or NxE1 Bundles Using MLPPP on page 808
- Configuring LSQ Interfaces for ATM2 IQ Interfaces Using MLPPP on page 837
- Configuring LSQ Interfaces for T3 Links Configured for Compressed RTP over MLPPP on page 833
- Link Services Configuration for Junos Interfaces on page 721

Enabling Inline LSQ Services

Inline Multilink PPP (MLPPP), Multilink Frame Relay (FRF.16), and Multilink Frame Relay End-to-End (FRF.15) for time-division multiplexing (TDM) WAN interfaces provide bundling services through the Packet Forwarding Engine without requiring a PIC or Dense Port Concentrator (DPC).

Traditionally, bundling services are used to bundle multiple low-speed links to create a higher bandwidth pipe. This combined bandwidth is available to traffic from all links and supports link fragmentation and interleaving (LFI) on the bundle, reducing high priority packet transmission delay.

This support includes multiple links on the same bundle as well as multiclass extension for MLPPP. Through this service you can enable bundling services without additional DPC slots to support Service DPC and free up the slots for other MICs.

The inline LSQ logical interface (referred to as lsq-) is a virtual service logical interface that resides on the Packet Forwarding Engine to provide Layer 2 bundling services that do not need a service PIC. The naming convention is `lsq-slot/pic/0`.

NOTE: Click [here](#) for a compatibility matrix of MICs currently supported by MPC1, MPC2, MPC3, MPC6, MPC8, and MPC9 on MX240, MX480, MX960, MX2008, MX2010, MX2020, and MX10003 routers.

A Type1 MPC has only one logical unit (LU); therefore only one LSQ logical interface can be created. When configuring a Type1 MPC, use PIC slot 0. Type2 MPC has two LUs; therefore two LSQ logical interfaces can be created. When configuring a Type2 MPC, use PIC slot 0 and slot 2.
Configure each LSQ logical interface with one loopback stream. This stream can be shaped like a regular stream, and is shared with other inline interfaces, such as the inline services (SI) interface.

To support FRF.16 bundles, create logical interfaces with the naming convention `lsq-slot/pic/0:bundle_id`, where `bundle_id` can range from 0 to 254. You can configure logical interfaces created on the main LSQ logical interface as MLPPP or FRF.16.

Because SI and LSQ logical interfaces might share the same stream, and there could be multiple LSQ logical interfaces on that stream, any logical interface-related shaping is configured at the Layer 2 node instead of the Layer 1 node. As a result, when SI is enabled, instead of limiting the stream bandwidth to 1Gb or 10Gb based on the configuration, only the Layer 2 queue allocated for the SI interface is shaped at 1Gb or 10Gb.

For MLPPP and FRF.15, each LSQ logical interface is shaped based on the total bundle bandwidth (sum of member link bandwidths with control packet flow overhead) by configuring one unique Layer 3 node per bundle. Similarly, each FRF.16 logical interface is shaped based on total bundle bandwidth by configuring one unique Layer 2 node per bundle. FRF16 logical interface data-link connection identifiers (DLCIs) are mapped to Layer 3 nodes.

To enable inline LSQ services and create the `lsq-` logical interface for the specified PIC, specify the `multi-link-layer-2-inline` and `mlfr-uni-nni-bundles-inline` configuration statements.

```
[edit chassis fpc number pic number]
user@host# set multi-link-layer-2-inline
user@host# set mlfr-uni-nni-bundles-inline number
```

NOTE: On MX80 and MX104 routers that have a single Packet Forwarding Engine, you can configure the LSQ logical interface only on FPC 0 and PIC 0. The channelized card must be in slot FPC 0/0 for the corresponding bundle to work.

For example, to enable inline service for PIC 0 on a Type1 MPC on slot 1:

```
[edit chassis fpc 1 pic 0]
user@host# set multi-link-layer-2-inline
user@host# set mlfr-uni-nni-bundles-inline 1
```

As a result, logical interfaces lsq-1/0/0, and lsq-1/0/0:0 are created. The number of inline multilink frame relay user-to-network interface (UNI) and network-to-network interface (NNI) bundles is set to 1.

For example, to enable inline service for both PIC 0 and PIC 2 on Type2 MPC installed in slot 5:

```
[edit chassis fpc 5 pic 0]
user@host# set multi-link-layer-2-inline
```
As a result, logical interfaces lsq-5/0/0, lsq-5/0/0:0, lsq-5/0/0:1, lsq-5/2/0, lsq-5/2/0:0, and lsq-5/2/0:1 are created. The number of inline multilink frame relay user-to-network interface (UNI) and network-to-network interface (NNI) bundles is set to 1.

NOTE: The PIC number here is only used as an anchor to choose the correct LU to bind the inline LSQ interface. The bundling services are operational as long as the Packet Forwarding Engine to which it is bound is operational, even if the logical PIC is offline.

Related Documentation

- Inline MLPPP for WAN Interfaces Overview on page 801
- Link and Multilink Services Interfaces Feature Guide for Routing Devices
- mlfr-uni-nni-bundles-inline on page 1134
- multi-link-layer-2-inline on page 1136

Configuring LSQ Interfaces as NxT1 or NxE1 Bundles Using MLPPP

To configure an NxT1 bundle using MLPPP, you aggregate N different T1 links into a bundle. The NxT1 bundle is called a logical interface, because it can represent, for example, a routing adjacency. To aggregate T1 links into a an MLPPP bundle, include the `bundle` statement at the `[edit interfaces t1-fpc/pic/port unit logical-unit-number family mlppp]` hierarchy level:

```
[edit interfaces t1-fpc/pic/port unit logical-unit-number family mlppp]
bundle lsq-fpc/pic/port.logical-unit-number;
```

NOTE: Link services IQ interfaces support both T1 and E1 physical interfaces. These instructions apply to T1 interfaces, but the configuration for E1 interfaces is similar.

To configure the link services IQ interface properties, include the following statements at the `[edit interfaces lsq-fpc/pic/port unit logical-unit-number]` hierarchy level:

```
[edit interfaces lsq-fpc/pic/port unit logical-unit-number]
drop-timeout milliseconds;
encapsulation multilink-ppp;
fragment-threshold bytes;
```
link-layer-overhead percent;
minimum-links number;
mrru bytes;
short-sequence;
family inet {
 address address;
}

NOTE: ACX Series routers do not support drop-timeout and link-layer-overhead properties.

The logical link services IQ interface represents the MLPPP bundle. For the MLPPP bundle, there are four associated queues on M Series routers and eight associated queues on M320 and T Series routers. A scheduler removes packets from the queues according to a scheduling policy. Typically, you designate one queue to have strict priority, and the remaining queues are serviced in proportion to weights you configure.

For MLPPP, assign a single scheduler map to the link services IQ interface (lsq) and to each constituent link. The default schedulers for M Series and T Series routers, which assign 95, 0, 0, and 5 percent bandwidth for the transmission rate and buffer size of queues 0, 1, 2, and 3, are not adequate when you configure LFI or multiclass traffic. Therefore, for MLPPP, you should configure a single scheduler with nonzero percent transmission rates and buffer sizes for queues 0 through 3, and assign this scheduler to the link services IQ interface (lsq) and to each constituent link, as shown in “Example: Configuring an LSQ Interface as an NxT1 Bundle Using MLPPP” on page 812.

NOTE: For M320 and T Series routers, the default scheduler transmission rate and buffer size percentages for queues 0 through 7 are 95, 0, 0, 5, 0, 0, 0, and 0 percent.

If the member link belonging to one MLPP, MLFR, or MFR bundle interface is moved to another bundle interface, or the links are swapped between two bundle interfaces, a commit is required between the delete and add operations to ensure that the configuration is applied correctly.

If the bundle has more than one link, you must include the per-unit-scheduler statement at the [edit interfaces lsq-fpc/pic/port] hierarchy level:

[edit interfaces lsq-fpc/pic/port]
per-unit-scheduler;

To configure and apply the scheduling policy, include the following statements at the [edit class-of-service] hierarchy level:

[edit class-of-service]
interfaces {
 t1-fpc/pic/port unit logical-unit-number {
scheduler-map map-name;
}
}
forwarding-classes {
 queue queue-number class-name;
}
scheduler-maps {
 map-name {
 forwarding-class class-name scheduler scheduler-name;
 }
}
schedulers {
 scheduler-name {
 buffer-size (percent percentage | remainder | temporal microseconds);
 priority priority-level;
 transmit-rate (rate | percent percentage | remainder) <exact>;
 }
}

For link services IQ interfaces, a strict-high-priority queue might starve the other three queues because traffic in a strict-high priority queue is transmitted before any other queue is serviced. This implementation is unlike the standard Junos CoS implementation in which a strict-high-priority queue does round-robin with high-priority queues, as described in the Class of Service Feature Guide (Routers and EX9200 Switches).

After the scheduler removes a packet from a queue, a certain action is taken. The action depends on whether the packet came from a multilink encapsulated queue (fragmented and sequenced) or a nonencapsulated queue (hashed with no fragmentation). Each queue can be designated as either multilink encapsulated or nonencapsulated, independently of the other. By default, traffic in all forwarding classes is multilink encapsulated. To configure packet fragmentation handling on a queue, include the fragmentation-maps statement at the [edit class-of-service] hierarchy level:

fragmentation-maps {
 map-name {
 forwarding-class class-name {
 fragment-threshold bytes;
 multilink-class number;
 no-fragmentation;
 }
 }
}

For NxT1 bundles using MLPPP, the byte-wise load balancing used in multilink-encapsulated queues is superior to the flow-wise load balancing used in nonencapsulated queues. All other considerations are equal. Therefore, we recommend that you configure all queues to be multilink encapsulated. You do this by including the fragment-threshold statement in the configuration. If you choose to set traffic on a queue to be nonencapsulated rather than multilink encapsulated, include the no-fragmentation statement in the fragmentation map. You use the multilink-class statement to map a forwarding class into a multiclass MLPPP (MCML). For more information about MCML, see “Configuring Multiclass MLPPP on LSQ Interfaces” on page 804.
When a packet is removed from a multilink-encapsulated queue, the software gives the packet an MLPPP header. The MLPPP header contains a sequence number field, which is filled with the next available sequence number from a counter. The software then places the packet on one of the N different T1 links. The link is chosen on a packet-by-packet basis to balance the load across the various T1 links.

If the packet exceeds the minimum link MTU, or if a queue has a fragment threshold configured at the [edit class-of-service fragmentation-maps map-name forwarding-class class-name] hierarchy level, the software splits the packet into two or more fragments, which are assigned consecutive multilink sequence numbers. The outgoing link for each fragment is selected independently of all other fragments.

Even if you do not set a maximum fragment size anywhere in the configuration, you can configure the maximum received reconstructed unit (MRRU) by including the mrru statement at the [edit interfaces interface-name unit logical-unit-number] hierarchy level. The MRRU is similar to the MTU, but is specific to link services interfaces. By default the MRRU size is 1500 bytes, and you can configure it to be from 1500 through 4500 bytes. For more information, see Configuring MRRU on Multilink and Link Services Logical Interfaces.

When a packet is removed from a nonencapsulated queue, it is transmitted with a plain PPP header. Because there is no MLPPP header, there is no sequence number information. Therefore, the software must take special measures to avoid packet reordering. To avoid packet reordering, the software places the packet on one of the N different T1 links. The link is determined by hashing the values in the header. For IP, the software computes the hash based on source address, destination address, and IP protocol. For MPLS, the software computes the hash based on up to five MPLS labels, or four MPLS labels and the IP header.

For UDP and TCP the software computes the hash based on the source and destination ports, as well as source and destination IP addresses. This guarantees that all packets belonging to the same TCP/UDP flow always pass through the same T1 link, and therefore cannot be reordered. However, it does not guarantee that the load on the various T1 links is balanced. If there are many flows, the load is usually balanced.

The N different T1 interfaces link to another router, which can be from Juniper Networks or another vendor. The router at the far end gathers packets from all the T1 links. If a packet has an MLPPP header, the sequence number field is used to put the packet back into sequence number order. If the packet has a plain PPP header, the software accepts the packet in the order in which it arrives and makes no attempt to reassemble or reorder the packet.
Example: Configuring an LSQ Interface as an NxT1 Bundle Using MLPPP

```
[edit chassis]
fpc 1 {
  pic 3 {
    adaptive-services {
      service-package layer-2;
    }
  }
}
[edit interfaces]
t1-0/0/0 {
  encapsulation ppp;
  unit 0 {
    family mlppp {
      bundle lsq-1/3/0.1; # This adds t1-0/0/0 to the specified bundle.
    }
  }
}
t1-0/0/1 {
  encapsulation ppp;
  unit 0 {
    family mlppp {
      bundle lsq-1/3/0.1;
    }
  }
}
lsq-1/3/0 {
  unit 1 { # This is the virtual link that concatenates multiple T1s.
    encapsulation multilink-ppp;
    drop-timeout 1000;
    fragment-threshold 128;
    link-layer-overhead 0.5;
    minimum-links 2;
    mrru 4500;
    short-sequence;
    family inet {
      address 10.2.3.4/24;
    }
  }
}
[edit interfaces]
lsq-1/3/0 {
  per-unit-scheduler;
}
[edit class-of-service]
interfaces {
  lsq-1/3/0 { # multilink PPP constituent link
    unit 0 {
      scheduler-map sched-map1;
    }
  }
  t1-0/0/0 { # multilink PPP constituent link
    unit 0 {
      scheduler-map sched-map1;
    }
  }
```

t1-0/0/1 [# multilink PPP constituent link
 unit 0 {
 scheduler-map sched-map1;
 }
}
forwarding-classes {
 queue 0 be;
 queue 1 ef;
 queue 2 af;
 queue 3 nc;
}
scheduler-maps {
 sched-map {
 forwarding-class af scheduler af-scheduler;
 forwarding-class be scheduler be-scheduler;
 forwarding-class ef scheduler ef-scheduler;
 forwarding-class nc scheduler nc-scheduler;
 }
}
schedulers {
 af-scheduler {
 transmit-rate percent 30;
 buffer-size percent 30;
 priority low;
 }
 be-scheduler {
 transmit-rate percent 25;
 buffer-size percent 25;
 priority low;
 }
 ef-scheduler {
 transmit-rate percent 40;
 buffer-size percent 40;
 priority strict-high; # voice queue
 }
 nc-scheduler {
 transmit-rate percent 5;
 buffer-size percent 5;
 priority high;
 }
}
fragmentation-maps {
 fragmap-1 {
 forwarding-class be {
 fragment-threshold 180;
 }
 forwarding-class ef {
 fragment-threshold 100;
 }
 }
}
[edit interfaces]
lsq-1/3/0 {
 unit 0 {
 fragmentation-map fragmap-1;
To configure an NxT1 bundle using FRF.16, you aggregate N different T1 links into a bundle. The NxT1 bundle carries a potentially large number of Frame Relay PVCs, identified by their DLCIs. Each DLCI is called a logical interface, because it can represent, for example, a routing adjacency.

To aggregate T1 links into an FRF.16 bundle, include the `mlfr-uni-nni-bundles` statement at the `[edit chassis fpc slot-number pic slot-number]` hierarchy level and include the `bundle` statement at the `[edit interfaces t1-fpc/pic/port unit logical-unit-number family mlfr-uni-nni]` hierarchy level:

```c rate
[edit chassis fpc slot-number pic slot-number]
mlfr-uni-nni-bundles number;

[edit interfaces t1-fpc/pic/port unit logical-unit-number family mlfr-uni-nni]
bundle lsq-fpc/pic/port:channel;
```

NOTE: Link services IQ interfaces support both T1 and E1 physical interfaces. These instructions apply to T1 interfaces, but the configuration for E1 interfaces is similar.

To configure the link services IQ interface properties, include the following statements at the `[edit interfaces lsq- fpc/pic/port:channel]` hierarchy level:

```c rate
[edit interfaces lsq- fpc/pic/port:channel]
encapsulation multilink-frame-relay-uni-nni;
dce;
mlfr-uni-nni-options {
    acknowledge-retries number;
    acknowledge-timer milliseconds;
    action-red-differential-delay (disable-tx | remove-link);
    drop-timeout milliseconds;
    fragment-threshold bytes;
    hello-timer milliseconds;
    link-layer-overhead percent;
    lmi-type (ansi | itu);
    minimum-links number;
```
mrru bytes;
n391 number;
n392 number;
n393 number;
red-differential-delay milliseconds;
t391 number;
t392 number;
yellow-differential-delay milliseconds;
}
unit logical-unit-number {
 dlci dlci-identifier;
 family inet {
 address address;
 }
}

The link services IQ channel represents the FRF.16 bundle. Four queues are associated with each DLCI. A scheduler removes packets from the queues according to a scheduling policy. On the link services IQ interface, you typically designate one queue to have strict priority. The remaining queues are serviced in proportion to weights you configure.

For link services IQ interfaces, a strict-high-priority queue might starve the other three queues because traffic in a strict-high-priority queue is transmitted before any other queue is serviced. This implementation is unlike the standard Junos CoS implementation in which a strict-high-priority queue does round-robin with high-priority queues, as described in the Class of Service Feature Guide (Routers and EX9200 Switches).

If the bundle has more than one link, you must include the **per-unit-scheduler** statement at the [edit interfaces lsq-fpc/pic/port:channel] hierarchy level:

```
[edit interfaces lsq-fpc/pic/port:channel]
per-unit-scheduler;
```

For FRF.16, you can assign a single scheduler map to the link services IQ interface (lsq) and to each link services IQ DLCI, or you can assign different scheduler maps to the various DLCIs of the bundle, as shown in "Example: Configuring an LSQ Interface as an NxT1 Bundle Using FRF.16" on page 817.

For the constituent links of an FRF.16 bundle, you do not need to configure a custom scheduler. Because LFI and multiclass are not supported for FRF.16, the traffic from each constituent link is transmitted from queue 0. This means you should allow most of the bandwidth to be used by queue 0. For M Series and T Series routers, the default schedulers' transmission rate and buffer size percentages for queues 0 through 3 are 95, 0, 0, and 5 percent. These default schedulers send all user traffic to queue 0 and all network-control traffic to queue 3, and therefore are well suited to the behavior of FRF.16. If desired, you can configure a custom scheduler that explicitly replicates the 95, 0, 0, and 5 percent queuing behavior, and apply it to the constituent links.
NOTE: For M320 and T Series routers, the default scheduler transmission rate and buffer size percentages for queues 0 through 7 are 95, 0, 0, 5, 0, 0, 0, and 0 percent.

If the member link belonging to one MLPP, MLFR, or MFR bundle interface is moved to another bundle interface, or the links are swapped between two bundle interfaces, a commit is required between the delete and add operations to ensure that the configuration is applied correctly.

To configure and apply the scheduling policy, include the following statements at the [edit class-of-service] hierarchy level:

```conf
[edit class-of-service]
interfaces {
  lsq-fpc/pic/port:channel {
    unit logical-unit-number {
      scheduler-map map-name;
    }
  }
}
forwarding-classes {
  queue queue-number class-name;
}
scheduler-maps {
  map-name {
    forwarding-class class-name scheduler scheduler-name;
  }
}
schedulers {
  scheduler-name {
    buffer-size (percent percentage | remainder | temporal microseconds);
    priority priority-level;
    transmit-rate (rate | percent percentage | remainder) <exact>;
  }
}
```

To configure packet fragmentation handling on a queue, include the `fragmentation-maps` statement at the [edit class-of-service] hierarchy level:

```conf
[edit class-of-service]
fragmentation-maps {
  map-name {
    forwarding-class class-name {
      fragment-threshold bytes;
    }
  }
}
```

For FRF.16 traffic, only multilink encapsulated (fragmented and sequenced) queues are supported. This is the default queuing behavior for all forwarding classes. FRF.16 does not allow for nonencapsulated traffic because the protocol requires that all packets carry
the fragmentation header. If a large packet is split into multiple fragments, the fragments must have consecutive sequential numbers. Therefore, you cannot include the no-fragmentation statement at the [edit class-of-service fragmentation-maps map-name forwarding-class class-name] hierarchy level for FRF.16 traffic. For FRF.16, if you want to carry voice or any other latency-sensitive traffic, you should not use slow links. At T1 speeds and above, the serialization delay is small enough so that you do not need to use explicit LFI.

When a packet is removed from a multilink-encapsulated queue, the software gives the packet an FRF.16 header. The FRF.16 header contains a sequence number field, which is filled with the next available sequence number from a counter. The software then places the packet on one of the N different T1 links. The link is chosen on a packet-by-packet basis to balance the load across the various T1 links.

If the packet exceeds the minimum link MTU, or if a queue has a fragment threshold configured at the [edit class-of-service fragmentation-maps map-name forwarding-class class-name] hierarchy level, the software splits the packet into two or more fragments, which are assigned consecutive multilink sequence numbers. The outgoing link for each fragment is selected independently of all other fragments.

If you do not include the fragment-threshold statement in the fragmentation map, the fragmentation threshold you set at the [edit interfaces interface-name unit logical-unit-number] or [edit interfaces interface-name mfr-uni-nni-bundle-options] hierarchy level is the default for all forwarding classes. If you do not set a maximum fragment size anywhere in the configuration, packets are fragmented if they exceed the smallest MTU of all the links in the bundle.

Even if you do not set a maximum fragment size anywhere in the configuration, you can configure the maximum received reconstructed unit (MRRU) by including the mrru statement at the [edit interfaces lslq-fpc/pic/port unit logical-unit-number] or [edit interfaces interface-name mfr-uni-nni-bundle-options] hierarchy level. The MRRU is similar to the MTU but is specific to link services interfaces. By default, the MRRU size is 1500 bytes, and you can configure it to be from 1500 through 4500 bytes. For more information, see Configuring MRRU on Multilink and Link Services Logical Interfaces.

The N different T1 interfaces link to another router, which can be from Juniper Networks or another vendor. The router at the far end gathers packets from all the T1 links. Because each packet has an FRF.16 header, the sequence number field is used to put the packet back into sequence number order.

Example: Configuring an LSQ Interface as an NxT1 Bundle Using FRF.16

Configure an NxT1 bundle using FRF.16 with multiple CoS scheduler maps:

```plaintext
[edit chassis fpc 1 pic 3]
adaptive-services {
    service-package layer-2;
}
mlfr-uni-nni-bundles 2; # Creates channelized LSQ interfaces/FRF.16 bundles.
[edit interfaces]
t1-0/0/0 {
```
encapsulation multilink-frame-relay-uni-nni;
unit 0 {
 family mlfr-uni-nni {
 bundle lsq-1/3/0:1;
 }
}
}
t1-0/0/1 {
 encapsulation multilink-frame-relay-uni-nni;
 unit 0 {
 family mlfr-uni-nni {
 bundle lsq-1/3/0:1;
 }
 }
}
}
lsq-1/3/0:1 { # Bundle link consisting of t1-0/0/0 and t1-0/0/1
 per-unit-scheduler;
 encapsulation multilink-frame-relay-uni-nni;
 dce; # One end needs to be configured as DCE.
 mlfr-uni-nni-bundle-options {
 drop-timeout 180;
 fragment-threshold 64;
 hello-timer 180;
 minimum-links 2;
 mrru 3000;
 link-layer-overhead 0.5;
 }
 unit 0 {
 dlci 26; # Each logical unit maps a single DLCI.
 family inet {
 address 10.2.3.4/24;
 }
 }
 unit 1 {
 dlci 42;
 family inet {
 address 10.20.30.40/24;
 }
 }
 unit 2 {
 dlci 69;
 family inet {
 address 10.20.30.40/24;
 }
 }
}
[edit class-of-service]
scheduler-maps {
 sched-map-lsq0 {
 forwarding-class af scheduler af-scheduler-lsq0;
 forwarding-class be scheduler be-scheduler-lsq0;
 forwarding-class ef scheduler ef-scheduler-lsq0;
 forwarding-class cs scheduler cs-scheduler-lsq0;
 }
 sched-map-lsq1 {
 forwarding-class af scheduler af-scheduler-lsq1;
 forwarding-class be scheduler be-scheduler-lsq1;
 forwarding-class ef scheduler ef-scheduler-lsq1;
 forwarding-class cs scheduler cs-scheduler-lsq1;
 }
}
forwarding-class be scheduler be-scheduler-lsq0;
forwarding-class ef scheduler ef-scheduler-lsq0;
forwarding-class nc scheduler nc-scheduler-lsq0;
}
}
schedulers {
 af-scheduler-lsq0 {
 transmit-rate percent 60;
 buffer-size percent 60;
 priority low;
 }
 be-scheduler-lsq0 {
 transmit-rate percent 30;
 buffer-size percent 30;
 priority low;
 }
 ef-scheduler-lsq0 {
 transmit-rate percent 5;
 buffer-size percent 5;
 priority strict-high;
 }
 nc-scheduler-lsq0 {
 transmit-rate percent 5;
 buffer-size percent 5;
 priority high;
 }
 af-scheduler-lsq1 {
 transmit-rate percent 50;
 buffer-size percent 50;
 priority low;
 }
 be-scheduler-lsq1 {
 transmit-rate percent 30;
 buffer-size percent 30;
 priority low;
 }
 ef-scheduler-lsq1 {
 transmit-rate percent 15;
 buffer-size percent 15;
 priority strict-high;
 }
 nc-scheduler-lsq1 {
 transmit-rate percent 5;
 buffer-size percent 5;
 priority high;
 }
}
}
interfaces {
 lsq-1/3/0:1 { # MLFR FRF.16
 unit 0 {
 scheduler-map sched-map-lsq0;
 }
 unit 1 {
 scheduler-map sched-map-lsq1;
 }
 }
}
This example configures an NxT1 bundle using FRF.15 on a link services IQ interface. FRF.15 is similar to FRF.12, as described in “Configuring LSQ Interfaces for Single Fractional T1 or E1 Interfaces Using FRF.12” on page 826. The difference is that FRF.15 supports multiple physical links in a bundle, whereas FRF.12 supports only one physical link per bundle. For the Junos OS implementation of FRF.15, you can configure one DLCI per physical link.

NOTE: Link services IQ interfaces support both T1 and E1 physical interfaces. This example refers to T1 interfaces, but the configuration for E1 interfaces is similar.

```
[edit interfaces]
lsq-1/3/0 {
    per-unit-scheduler;
    unit 0 {
        encapsulation multilink-frame-relay-end-to-end;
    }
}
unit 1 {
    encapsulation multilink-frame-relay-end-to-end;
}
# First physical link
    t1-1/1/0:1 {
        encapsulation frame-relay;
        unit 0 {
            dcl 69;
            family mfr-end-to-end {
                bundle lsq-1/3/0.0;
            }
        }
    }
# Second physical link
    t1-1/1/0:2 {
        encapsulation frame-relay;
        unit 0 {
            dcl 13;
        }
    }
```
When you configure a single fractional T1 interface, it is called a logical interface, because it can represent, for example, a routing adjacency.

The logical link services IQ interface represents the MLPPP bundle. Four queues are associated with the logical interface. A scheduler removes packets from the queues according to a scheduling policy. Typically, you designate one queue to have strict priority, and the remaining queues are serviced in proportion to weights you configure.

To configure a single fractional T1 interface using MLPPP and LFI, you associate one DS0 (fractional T1) interface with a link services IQ interface. To associate a fractional T1 interface with a link services IQ interface, include the bundle statement at the [edit interfaces ds-fpc/pic/port:channel unit logical-unit-number family mllppp] hierarchy level:

```
[edit interfaces ds-fpc/pic/port:channel unit logical-unit-number family mllppp]
bundle lsq-fpc/pic/port.logical-unit-number;
```

NOTE: Link services IQ interfaces support both T1 and E1 physical interfaces. These instructions apply to T1 interfaces, but the configuration for E1 interfaces is similar.

To configure the link services IQ interface properties, include the following statements at the [edit interfaces lsq-fpc/pic/port unit logical-unit-number] hierarchy level:

```
[edit interfaces lsq-fpc/pic/port unit logical-unit-number]
drop-timeout milliseconds;
encapsulation multilink-ppp;
fragment-threshold bytes;
link-layer-overhead percent;
minimum-links number;
mrru bytes;
short-sequence;
family inet {
```

```
family mllfr-end-to-end { 
    bundle lsq-1/3/0.0;
    }
} 
```

Related Documentation

- Layer 2 Service Package Capabilities and Interfaces on page 785
- Configuring LSQ Interfaces as NxT1 or NxE1 Bundles Using MLPPP on page 808
- Configuring LSQ Interfaces as NxT1 or NxE1 Bundles Using FRF.16 on page 814
- Link Services Configuration for Junos Interfaces on page 721
address address;
}

For MLPPP, assign a single scheduler map to the link services IQ (lsq) interface and to each constituent link. The default schedulers for M Series and T Series routers, which assign 95, 0, 0, and 5 percent bandwidth for the transmission rate and buffer size of queues 0, 1, 2, and 3, are not adequate when you configure LFI or multiclass traffic. Therefore, for MLPPP, you should configure a single scheduler with nonzero percent transmission rates and buffer sizes for queues 0 through 3, and assign this scheduler to the link services IQ (lsq) interface and to each constituent link and to each constituent link, as shown in “Example: Configuring an LSQ Interface for a Fractional T1 Interface Using MLPPP and LFI” on page 824.

NOTE: For M320 and T Series routers, the default scheduler transmission rate and buffer size percentages for queues 0 through 7 are 95, 0, 0, 5, 0, 0, 0, and 0 percent.

To configure and apply the scheduling policy, include the following statements at the [edit class-of-service] hierarchy level:

```
[edit class-of-service]
interfaces {
    ds-fpc/pic/port.channel {
        scheduler-map map-name;
    }
}
forwarding-classes {
    queue queue-number class-name;
}
scheduler-maps {
    map-name {
        forwarding-class class-name scheduler scheduler-name;
    }
}
schedulers {
    scheduler-name {
        buffer-size (percent percentage | remainder | temporal microseconds);
        priority priority-level;
        transmit-rate (rate | percent percentage | remainder) <exact>;
    }
}
```

For link services IQ interfaces, a strict-high-priority queue might starve all the other queues because traffic in a strict-high priority queue is transmitted before any other queue is serviced. This implementation is unlike the standard Junos CoS implementation in which a strict-high-priority queue receives infinite credits and does round-robin with high-priority queues, as described in the Class of Service Feature Guide (Routers and EX9200 Switches).

After the scheduler removes a packet from a queue, a certain action is taken. The action depends on whether the packet came from a multilink encapsulated queue (fragmented
and sequenced) or a nonencapsulated queue (hashed with no fragmentation). Each queue can be designated as either multilink encapsulated or nonencapsulated, independently of the other. By default, traffic in all forwarding classes is multilink encapsulated. To configure packet fragmentation handling on a queue, include the fragmentation-maps statement at the [edit class-of-service] hierarchy level:

```
[edit class-of-service]
fragmentation-maps {
    map-name {
        forwarding-class class-name {
            fragment-threshold bytes;
            no-fragmentation;
        }
    }
}
```

If you require the queue to transmit small packets with low latency, configure the queue to be nonencapsulated by including the no-fragmentation statement. If you require the queue to transmit large packets with normal latency, configure the queue to be multilink encapsulated by including the fragment-threshold statement. If you require the queue to transmit large packets with low latency, we recommend using a faster link and configuring the queue to be nonencapsulated. For more information about fragmentation maps, see “Configuring CoS Fragmentation by Forwarding Class on LSQ Interfaces” on page 726.

When a packet is removed from a multilink-encapsulated queue, it is fragmented. If the packet exceeds the minimum link MTU, or if a queue has a fragment threshold configured at the [edit class-of-service fragmentation-maps map-name forwarding-class class-name] hierarchy level, the software splits the packet into two or more fragments, which are assigned consecutive multilink sequence numbers.

If you do not include the fragment-threshold statement in the fragmentation map, the fragmentation threshold you set at the [edit interfaces interface-name unit logical-unit-number] hierarchy level is the default for all forwarding classes. If you do not set a maximum fragment size anywhere in the configuration, packets are fragmented if they exceed the smallest MTU of all the links in the bundle.

Even if you do not set a maximum fragment size anywhere in the configuration, you can configure the maximum received reconstructed unit (MRRU) by including the mrru statement at the [edit interfaces lsq-fpc/pic/port unit logical-unit-number] hierarchy level. The MRRU is similar to the MTU, but is specific to link services interfaces. By default the MRRU size is 1500 bytes, and you can configure it to be from 1500 through 4500 bytes. For more information, see Configuring MRRU on Multilink and Link Services Logical Interfaces.

When a packet is removed from a multilink-encapsulated queue, the software gives the packet an MLPPP header. The MLPPP header contains a sequence number field, which is filled with the next available sequence number from a counter. The software then places the packet on the fractional T1 link. Traffic from another queue might be interleaved between two fragments of the packet.
When a packet is removed from a nonencapsulated queue, it is transmitted with a plain PPP header. The packet is then placed on the fractional T1 link as soon as possible. If necessary, the packet is placed between the fragments of a packet from another queue.

The fractional T1 interface links to another router, which can be from Juniper Networks or another vendor. The router at the far end gathers packets from the fractional T1 link. If a packet has an MLPPP header, the software assumes the packet is a fragment of a larger packet, and the fragment number field is used to reassemble the larger packet. If the packet has a plain PPP header, the software accepts the packet in the order in which it arrives, and the software makes no attempt to reassemble or reorder the packet.

Example: Configuring an LSQ Interface for a Fractional T1 Interface Using MLPPP and LFI

Configure a single fractional T1 logical interface:

```
[edit interfaces]
lsq-0/2/0 {
  per-unit-scheduler;
  unit 0 {
    encapsulation multilink-ppp;
    link-layer-overhead 0.5;
    family inet {
      address 10.40.1.1/30;
    }
  }
}
ct3-1/0/0 {
  partition 1 interface-type ct1;
}
ct1-1/0/0:1 {
  partition 1 timeslots 1-2 interface-type ds;
}
ds-1/0/0:1:1 {
  encapsulation ppp;
  unit 0 {
    family mlppp {
      bundle lsq-0/2/0.0;
    }
  }
}
[edit class-of-service]
interfaces {
  ds-1/0/0:1:1 { # multilink PPP constituent link
    unit 0 {
      scheduler-map sched-map1;
    }
  }
  forwarding-classes {
    queue 0 be;
    queue 1 ef;
    queue 2 af;
    queue 3 nc;
  }
  scheduler-maps {
```
sched-map {
 forwarding-class af scheduler af-scheduler;
 forwarding-class be scheduler be-scheduler;
 forwarding-class ef scheduler ef-scheduler;
 forwarding-class nc scheduler nc-scheduler;
}
schedulers {
 af-scheduler {
 transmit-rate percent 20;
 buffer-size percent 20;
 priority low;
 }
 be-scheduler {
 transmit-rate percent 20;
 buffer-size percent 20;
 priority low;
 }
 ef-scheduler {
 transmit-rate percent 50;
 buffer-size percent 50;
 priority strict-high; # voice queue
 }
 nc-scheduler {
 transmit-rate percent 10;
 buffer-size percent 10;
 priority high;
 }
}
fragmentation-maps {
 fragmap-1 {
 forwarding-class be {
 fragment-threshold 180;
 }
 forwarding-class ef {
 fragment-threshold 100;
 }
 }
}
[edit interfaces]
lsq-0/2/0 {
 unit 0 {
 fragmentation-map fragmap-1;
 }
}
Configuring LSQ Interfaces for Single Fractional T1 or E1 Interfaces Using FRF.12

To configure a single fractional T1 interface using FRF.12, you associate a DS0 interface with a link services IQ (lsq) interface. When you configure a single fractional T1, the fractional T1 carries a potentially large number of Frame Relay PVCs identified by their DLCIs. Each DLCI is called a logical interface, because it can represent, for example, a routing adjacency. To associate the DS0 interface with a link services IQ interface, include the bundle statement at the [edit interfaces ds-fpc/pic/port:channel unit logical-unit-number family mlfr-end-to-end] hierarchy level:

```plaintext
[edit interfaces ds-fpc/pic/port:channel unit logical-unit-number family mlfr-end-to-end]
bundle lsq-fpc/pic/port.logical-unit-number;
```

NOTE: Link services IQ interfaces support both T1 and E1 physical interfaces. These instructions apply to T1 interfaces, but the configuration for E1 interfaces is similar.

To configure the link services IQ interface properties, include the following statements at the [edit interfaces lsq-fpc/pic/port unit logical-unit-number] hierarchy level:

```plaintext
[edit interfaces lsq-fpc/pic/port unit logical-unit-number]
drop-timeout milliseconds;
encapsulation multilink-frame-relay-end-to-end;
fragment-threshold bytes;
link-layer-overhead percent;
minimum-links number;
mrru bytes;
short-sequence;
family inet {
    address address;
}
```

The logical link services IQ interface represents the FRF.12 bundle. Four queues are associated with each logical interface. A scheduler removes packets from the queues according to a scheduling policy. Typically, you designate one queue to have strict priority, and the remaining queues are serviced in proportion to weights you configure.

For FRF.12, assign a single scheduler map to the link services IQ interface (lsq) and to each constituent link. For M Series and T Series routers, the default schedulers, which assign 95, 0, 0, and 5 percent bandwidth for the transmission rate and buffer size of queues 0, 1, 2, and 3, are not adequate when you configure LFI or multiclass traffic. Therefore, for FRF.12, you should configure schedulers with nonzero percent transmission rates and buffer sizes for queues 0 through 3, and assign them to the link services IQ interface (lsq) and to each constituent link, as shown in “Examples: Configuring an LSQ Interface for a Fractional T1 Interface Using FRF.12” on page 829.
NOTE: For M320 and T Series routers, the default scheduler transmission rate and buffer size percentages for queues 0 through 7 are 95, 0, 0, 5, 0, 0, 0, and 0 percent.

To configure and apply the scheduling policy, include the following statements at the [edit class-of-service] hierarchy level:

```
[edit class-of-service]
interfaces {
  ds-fpc/pic/port.channel {
    scheduler-map map-name;
  }
}
forwarding-classes {
  queue queue-number class-name;
}
scheduler-maps {
  map-name {
    forwarding-class class-name scheduler scheduler-name;
  }
}
schedulers {
  scheduler-name {
    buffer-size (percent percentage | remainder | temporal microseconds);
    priority priority-level;
    transmit-rate (rate | percent percentage | remainder) <exact>;
  }
}
```

For link services IQ interfaces, a strict-high-priority queue might starve the other three queues because traffic in a strict-high-priority queue is transmitted before any other queue is serviced. This implementation is unlike the standard Junos CoS implementation in which a strict-high-priority queue does round-robin with high-priority queues, as described in the Class of Service Feature Guide (Routers and EX9200 Switches).

After the scheduler removes a packet from a queue, a certain action is taken. The action depends on whether the packet came from a multilink encapsulated queue (fragmented and sequenced) or a nonencapsulated queue (hashed with no fragmentation). Each queue can be designated as either multilink encapsulated or nonencapsulated, independently of the other. By default, traffic in all forwarding classes is multilink encapsulated. To configure packet fragmentation handling on a queue, include the fragmentation-maps statement at the [edit class-of-service] hierarchy level:

```
[edit class-of-service]
fragmentation-maps {
  map-name {
    forwarding-class class-name {
      fragment-threshold bytes;
      no-fragmentation;
    }
  }
}
```
If you require the queue to transmit small packets with low latency, configure the queue to be nonencapsulated by including the `no-fragmentation` statement. If you require the queue to transmit large packets with normal latency, configure the queue to be multilink encapsulated by including the `fragment-threshold` statement. If you require the queue to transmit large packets with low latency, we recommend using a faster link and configuring the queue to be nonencapsulated. For more information about fragmentation maps, see "Configuring CoS Fragmentation by Forwarding Class on LSQ Interfaces" on page 726.

When a packet is removed from a multilink-encapsulated queue, it is fragmented. If the packet exceeds the minimum link MTU, or if a queue has a fragment threshold configured at the `[edit class-of-service fragmentation-maps map-name forwarding-class class-name]` hierarchy level, the software splits the packet into two or more fragments, which are assigned consecutive multilink sequence numbers.

If you do not include the `fragment-threshold` statement in the fragmentation map, the fragmentation threshold you set at the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level is the default for all forwarding classes. If you do not set a maximum fragment size anywhere in the configuration, packets are fragmented if they exceed the smallest MTU of all the links in the bundle.

Even if you do not set a maximum fragment size anywhere in the configuration, you can configure the maximum received reconstructed unit (MRRU) by including the `mrru` statement at the `[edit interfaces lsq-fpc/pic/port unit logical-unit-number]` hierarchy level. The MRRU is similar to the MTU but is specific to link services interfaces. By default, the MRRU size is 1500 bytes, and you can configure it to be from 1500 through 4500 bytes. For more information, see Configuring MRRU on Multilink and Link Services Logical Interfaces.

When a packet is removed from a multilink-encapsulated queue, the software gives the packet an FRF.12 header. The FRF.12 header contains a sequence number field, which is filled with the next available sequence number from a counter. The software then places the packet on the fractional T1 link. Traffic from another queue might be interleaved between two fragments of the packet.

When a packet is removed from a nonencapsulated queue, it is transmitted with a plain Frame Relay header. The packet is then placed on the fractional T1 link as soon as possible. If necessary, the packet is placed between the fragments of a packet from another queue.

The fractional T1 interface links to another router, which can be from Juniper Networks or another vendor. The router at the far end gathers packets from the fractional T1 link. If a packet has an FRF.12 header, the software assumes the packet is a fragment of a larger packet, and the fragment number field is used to reassemble the larger packet. If the packet has a plain Frame Relay header, the software accepts the packet in the order in which it arrives, and the software makes no attempt to reassemble or reorder the packet.
A whole packet from a nonencapsulated queue can be placed between fragments of a multilink-encapsulated queue. However, fragments from one multilink-encapsulated queue cannot be interleaved with fragments from another multilink-encapsulated queue. This is the intent of the specification FRF.12, Frame Relay Fragmentation Implementation Agreement. If fragments from two different queues were interleaved, the header fields might not have enough information to separate the fragments.

Examples: Configuring an LSQ Interface for a Fractional T1 Interface Using FRF.12

FRF.12 with Fragmentation and Without LFI

This example shows a 128 KB DS0 interface. There is one traffic stream on ge-0/0/0, which is classified into queue 0 (be). Packets are fragmented in the link services IQ (lsq-) interface according to the threshold configured in the fragmentation map.

```
[edit chassis]
fpc 0 {
  pic 3 {
    adaptive-services {
      service-package layer-2;
    }
  }
}

[edit interfaces]
ge-0/0/0 {
  unit 0 {
    family inet {
      address 20.1.1.1/24 {
        arp 20.1.1.2 mac 00.00.5e.00.53.56;
      }
    }
  }
}

ce1-0/2/0 {
  partition 1 timeslots 1-2 interface-type ds;
}
ds-0/2/0/1 {
  no-keepalives;
dce;
  encapsulation frame-relay;
  unit 0 {
    dli 100;
    family mlfr-end-to-end {
      bundle lsq-0/3/0.0;
    }
  }
}

lsq-0/3/0 {
  per-unit-scheduler;
  unit 0 {
    encapsulation multilink-frame-relay-end-to-end;
    family inet {
```
address 10.200.0.78/30;
]
]
fxp0 {
 unit 0 {
 family inet {
 address 172.16.1.162/24;
 }
 }
}
lo0 {
 unit 0 {
 family inet {
 address 10.0.0.1/32;
 }
 }
}
[edit class-of-service]
forwarding-classes {
 queue 0 be;
 queue 1 ef;
 queue 2 af;
 queue 3 nc;
}
interfaces {
 lsq-0/3/0 {
 unit 0 {
 fragmentation-map map1;
 }
 }
}
fragmentation-maps {
 map1 {
 forwarding-class {
 be {
 fragment-threshold 160;
 }
 }
 }
}

FRF.12 with Fragmentation and LFI

This example shows a 512 KB DS0 bundle and four traffic streams on ge-0/0/0 that are classified into four queues. The fragment size is 160 for queue 0, queue 1, and queue 2. The voice stream on queue 3 has LFI configured.

[edit chassis]
fpc 0 {
 pic 3 {
 adaptive-services {
 service-package layer-2;
[edit interfaces]
ge-0/0/0 {
 unit 0 {
 family inet {
 address 20.1.1.1/24 {
 arp 20.1.1.2 mac 00.00.5e.00.53.56;
 }
 }
 }
}
ce1-0/2/0 {
 partition 1 timeslots 1-8 interface-type ds;
}
ds-0/2/0:1 {
 no-keepalives;
 dce;
 encapsulation frame-relay;
 unit 0 {
 dlc i 100;
 family mfr-end-to-end {
 bundle lsq-0/3/0.0;
 }
 }
}
lsq-0/3/0 {
 per-unit-scheduler;
 unit 0 {
 encapsulation multilink-frame-relay-end-to-end;
 family inet {
 address 10.200.0.78/30;
 }
 }
}
[edit class-of-service]
collectors {
 inet-precedence ge-interface-classifier {
 forwarding-class be {
 loss-priority low code-points 000;
 }
 forwarding-class ef {
 loss-priority low code-points 010;
 }
 forwarding-class af {
 loss-priority low code-points 100;
 }
 forwarding-class nc {
 loss-priority low code-points 110;
 }
 }
 forwarding-classes {
 queue 0 be;
 queue 1 ef;
queue 2 af;
queue 3 nc;
}

interfaces {
 lsq-0/3/0 {
 unit 0 {
 scheduler-map sched2;
 fragmentation-map map2;
 }
 }
 ds-0/2/0:1 {
 scheduler-map link-map2;
 }
 ge-0/0/0 {
 unit 0 {
 classifiers {
 inet-precedence ge-interface-classifier;
 }
 }
 }
}

scheduler-maps {
 sched2 {
 forwarding-class be scheduler economy;
 forwarding-class ef scheduler business;
 forwarding-class af scheduler stream;
 forwarding-class nc scheduler voice;
 }
 link-map2 {
 forwarding-class be scheduler link-economy;
 forwarding-class ef scheduler link-business;
 forwarding-class af scheduler link-stream;
 forwarding-class nc scheduler link-voice;
 }
}

fragmentation-maps {
 map2 {
 forwarding-class {
 be {
 fragment-threshold 160;
 }
 ef {
 fragment-threshold 160;
 }
 af {
 fragment-threshold 160;
 }
 nc {
 no-fragmentation;
 }
 }
 }

 schedulers {
 economy {
 transmit-rate percent 26;
 }
 }
}
```
buffer-size percent 26;
}
business {
    transmit-rate percent 26;
    buffer-size percent 26;
}
stream {
    transmit-rate percent 35;
    buffer-size percent 35;
}
voice {
    transmit-rate percent 13;
    buffer-size percent 13;
}
link-economy {
    transmit-rate percent 26;
    buffer-size percent 26;
}
link-business {
    transmit-rate percent 26;
    buffer-size percent 26;
}
link-stream {
    transmit-rate percent 35;
    buffer-size percent 35;
}
link-voice {
    transmit-rate percent 13;
    buffer-size percent 13;
}
```

Related Documentation

- Layer 2 Service Package Capabilities and Interfaces on page 785
- Configuring LSQ Interfaces for Single Fractional T1 or E1 Interfaces Using MLPPP and LFI on page 821
- Link Services Configuration for Junos Interfaces on page 721

Configuring LSQ Interfaces for T3 Links Configured for Compressed RTP over MLPPP

This example bundles a single T3 interface on a link services IQ interface with MLPPP encapsulation. Binding a single T3 interface to a multilink bundle allows you to configure compressed RTP (CRTP) on the T3 interface.

This scenario applies to MLPPP bundles only. The Junos OS does not currently support CRTP over Frame Relay. For more information, see "Configuring Services Interfaces for Voice Services" on page 894.

There is no need to configure LFI at DS3 speeds, because the packet serialization delay is negligible.
This configuration uses a default fragmentation map, which results in all forwarding classes (queues) being sent out with a multilink header.

To eliminate multilink headers, you can configure a fragmentation map in which all queues have the no-fragmentation statement at the [edit class-of-service fragmentation-maps map-name forwarding-class class-name] hierarchy level, and attach the fragmentation map to the lsq-1/3/0.1 interface, as shown here:

```
[edit class-of-service]
fragmentation-maps {
  fragmap {
    forwarding-class {
      be {
        no-fragmentation;
      }
      af {
        no-fragmentation;
      }
      ef {
        no-fragmentation;
      }
      nc {
        no-fragmentation;
      }
    }
  }
  interfaces {
    lsq-1/3/0.1 {
      fragmentation-map fragmap;
    }
  }
}
```
Configuring LSQ Interfaces as T3 or OC3 Bundles Using FRF.12

This example configures a clear-channel T3 or OC3 interface with multiple logical interfaces (DLCIs) on the link. In this scenario, each DLCI represents a customer. DLCIs are shaped at the egress PIC to a particular speed (NxDS0). This allows you to configure LFI using FRF.12 End-to-End Protocol on Frame Relay DLCIs.

To do this, first configure logical interfaces (DLCIs) on the physical interface. Then bundle the DLCIs, so that there is only one DLCI per bundle.

The physical interface must be capable of per-DLCI scheduling, which allows you to attach shaping rates to each DLCI. For more information, see the Junos OS Network Interfaces Library for Routing Devices.

To prevent fragment drops at the egress PIC, you must assign a shaping rate to the link services IQ logical interfaces and to the egress DLCIs. Shaping rates on DLCIs specify how much bandwidth is available for each DLCI. The shaping rate on link services IQ interfaces should match the shaping rate assigned to the DLCI that is associated with the bundle.

Egress interfaces also must have a scheduler map attached. The queue that carries voice should be strict-high-priority, while all other queues should be low-priority. This makes LFI possible.

This example shows voice traffic in the ef queue. The voice traffic is interleaved with bulk data. Alternatively, you can use multiclass MLPPP to carry multiple classes of traffic in different multilink classes, as described in “Configuring Multiclass MLPPP on LSQ Interfaces” on page 804.

```
[edit interfaces]
t3-0/0/0 {
  per-unit-scheduler;
  encapsulation frame-relay;
  unit 0 {
    dcli 69;
    family mlfr-end-to-end {
      bundle lsq-1/3/0.0;
    }
  }
  unit 1 {
    dcli 42;
  }
}
```
family mlfr-end-to-end {
 bundle lsq-1/3/0;
}

lsq-1/3/0 {
 unit 0 {
 encapsulation multilink-frame-relay-end-to-end;
 }
 fragment-threshold 320; # Multilink packets must be fragmented
}

unit 1 {
 encapsulation multilink-frame-relay-end-to-end;
}

fragment-threshold 160;
[edit class-of-service]
scheduler-maps {
 sched {
 # Scheduling parameters that apply to bundles on AS or Multiservices PICs.
 ...
 }
 pic-sched {
 # Scheduling parameters for egress DLCIs.
 # The voice queue should be strict-high priority.
 # All other queues should be low priority.
 ...
 }
 fragmentation-maps {
 fragmap {
 forwarding-class {
 ef {
 no-fragmentation;
 }
 # Voice is carried in the ef queue.
 # It is interleaved with bulk data.
 }
 }
 }
}

interfaces {
 t3-0/0/0 {
 unit 0 {
 shaping-rate 512k;
 scheduler-map pic-sched;
 }
 unit 1 {
 shaping-rate 128k;
 scheduler-map pic-sched;
 }
 }
 lsq-1/3/0 { # Assign fragmentation and scheduling to LSQ interfaces.
 unit 0 {
 shaping-rate 512k;
 scheduler-map sched;
 fragmentation-map fragmap;
 }
 unit 1 {
shaping-rate 128k;
scheduler-map sched;
fragmentation-map fragmap;
}
}

For more information about how FRF.12 works with links services IQ interfaces, see “Configuring LSQ Interfaces for Single Fractional T1 or E1 Interfaces Using FRF.12” on page 826.

Related Documentation

- Layer 2 Service Package Capabilities and Interfaces on page 785
- Link Services Configuration for Junos Interfaces on page 721
- Configuring LSQ Interfaces for T3 Links Configured for Compressed RTP over MLPPP on page 833

Configuring LSQ Interfaces for ATM2 IQ Interfaces Using MLPPP

This example configures an ATM2 IQ interface with MLPPP bundled with link services IQ interfaces. This allows you to configure LFI on ATM virtual circuits.

For this type of configuration, the ATM2 IQ interface must have LLC encapsulation.

The following ATM PICs are supported in this scenario:

- 2-port OC-3/STM1 ATM2 IQ
- 4-port DS3 ATM2 IQ

Virtual circuit multiplexed PPP over AAL5 is not supported. Frame Relay is not supported. Bundling of multiple ATM VCs into a single logical interface is not supported.

Unlike DS3 and OC3 interfaces, there is no need to create a separate scheduler map for the ATM PIC. For ATM, you define CoS components at the [edit interfaces at-fpc/pic/port atm-options] hierarchy level, as described in the Junos OS Network Interfaces Library for Routing Devices.

NOTE: Do not configure RED profiles on ATM logical interfaces that are bundled. Drops do not occur at the ATM interface.

In this example, two ATM VCs are configured and bundled into two link services IQ bundles. A fragmentation map is used to interleave voice traffic with other multilink traffic. Because MLPPP is used, each link services IQ bundle can be configured for CRTP.

```plaintext
[edit interfaces]
at-1/2/0 {
atm-options {
vpi 0;
pic-type atm2;
```
unit 0 {
 vci 0.69;
 encapsulation atm-mlppp-llc;
 family mlppp {
 bundle lsq-1/3/0.10;
 }
}
unit 1 {
 vci 0.42;
 encapsulation atm-mlppp-llc;
 family mlppp {
 bundle lsq-1/3/0.11;
 }
}
lsq-1/3/0 {
 unit 10 {
 encapsulation multilink-ppp;
 }
 # Large packets must be fragmented.
 # You can specify fragmentation for each forwarding class.
 fragment-threshold 320;
 compression {
 rtp {
 port minimum 2000 maximum 64009;
 }
 }
}
unit 11 {
 encapsulation multilink-ppp;
 fragment-threshold 160;
 [edit class-of-service]
 scheduler-maps {
 sched { # Scheduling parameters that apply to LSQ bundles on AS or Multiservices PICs.
 ...
 }
 fragmentation-maps {
 fragmap {
 forwarding-class {
 ef {
 no-fragmentation;
 }
 }
 }
 }
 }
 interfaces { # Assign fragmentation and scheduling parameters to LSQ interfaces.
 lsq-1/3/0 {
 unit 0 {
 shaping-rate 512k;
 scheduler-map sched;
 fragmentation-map fragmap;
 }
 unit 1 {

shaping-rate 128k;
scheduler-map sched;
fragmentation-map fragmap;
}
}

Related Documentation

- Layer 2 Service Package Capabilities and Interfaces on page 785
- Link Services Configuration for Junos Interfaces on page 721
PART 10

Distributing Traffic Among Next-Hop Servers with Traffic Load Balancer

- Configuring Traffic Load Balancer on page 843
CHAPTER 46

Configuring Traffic Load Balancer

- Traffic Load Balancer Overview on page 843
- Configuring TLB on page 850

Traffic Load Balancer Application Description

Traffic Load Balancer (TLB) is supported on MX Series routers with Multiservices Modular Port Concentrator (MS-MPC) and Modular Port Concentrator (MPC) line cards, as well as the Services Processing Card (MX-SPC3) when running Next Gen Services on MX Series routers (MX480 and MX960). TLB enables you to distribute traffic among multiple servers.

TLB employs an MS-MPC-based control plane and a data plane using the MX Series router forwarding engine.

TLB uses an enhanced version of equal-cost multipath (ECMP). Enhanced ECMP facilitates the distribution of flows across groups of servers. Enhancements to native ECMP ensure that when servers fail, only flows associated with those servers are impacted, minimizing the overall network churn on services and sessions.

TLB provides application-based health monitoring for up to 255 servers per group, providing intelligent traffic steering based on health checking of server availability information. You can configure an aggregated multiservices (AMS) interface to provide one-to-one redundancy for MS-MPCs used for server health monitoring.

TLB applies its flow distribution processing to ingress traffic.

TLB supports multiple virtual routing instances to provide improved support for large scale load balancing requirements.
TLB supports static virtual-IP-address-to-real-IP-address translation, and static destination port translation during load balancing.

Traffic Load Balancer Modes of Operation

Traffic Load Balancer provides three modes of operation for the distribution of outgoing traffic and for handling the processing of return traffic.

- **Transparent Mode Layer 2 Direct Server Return on page 844**
- **Translated Mode on page 844**
- **Transparent Mode Layer 3 Direct Server Return on page 845**

Transparent Mode Layer 2 Direct Server Return

When you use transparent mode Layer 2 direct server return (DSR):

- The PFE processes data.
- Load balancing works by changing the Layer 2 MAC of packets.
- An MS-MPC performs the network-monitoring probes.
- Real servers must be directly (Layer 2) reachable from the MX Series router.
- TLB installs a route and all the traffic over that route is load-balanced.
- TLB never modifies Layer 3 and higher level headers.

Figure 40 on page 844 shows the TLB topology for transparent mode Layer 2 DSR.

Translated Mode

Transosed mode provides greater flexibility than transparent mode Layer 2 DSR. When you choose translated mode:

- An MS-MPC performs the network-monitoring probes.
- The PFE performs stateless load balancing.
Data traffic directed to a virtual IP address undergoes translation of the virtual IP address to a real server IP address and translates the virtual port to a server listening port. Return traffic undergoes the reverse translation.

Client to virtual IP traffic is translated; the traffic is routed to reach its destination.

Server-to-client traffic is captured using implicit filters and directed to an appropriate load-balancing next hop for reverse processing. After translation, traffic is routed back to the client.

Two load balancing methods are available: random and hash. The random method is only for UDP traffic and provides quavms-random distribution. While not literally random, this mode provides fair distribution of traffic to an available set of servers. The hash method provides a hash key based on any combination of the source IP address, destination IP address, and protocol.

NOTE: Translated mode processing is only available for IPv4-to-IPv4 and IPv6-to-IPv6 traffic.

Figure 41 on page 845 shows the TLB topology for translated mode.

Figure 41: TLB Topology for Translated Mode

Transparent Mode Layer 3 Direct Server Return

Transparent mode Layer 3 DSR load balancing distributes sessions to servers that can be a Layer 3 hop away. Traffic is returned directly to the client from the real-server.

Traffic Load Balancer Functions

TLB provides the following functions:

- TLB always distributes the requests for any flow. When you specify DSR mode, the response returns directly to the source. When you specify translated mode, reverse traffic is steered through implicit filters on server-facing interfaces.
- TLB supports hash-based load balancing or random load balancing.
TLB enables you to configure servers offline to prevent a performance impact that might be caused by a rehashing for all existing flows. You can add a server in the administrative down state and use it later for traffic distribution by disabling the administrative down state. Configuring servers offline helps prevent traffic impact to other servers.

When health checking determines a server to be down, only the affected flows are rehashed.

When a previously down server is returned to service, all flows belonging to that server based on hashing return to it, impacting performance for the returned flows. For this reason, you can disable the automatic rejoining of a server to an active group. You can return servers to service by issuing the `request services traffic-load-balance real-service rejoin` operational command.

NOTE: NAT is not applied to the distributed flows.

Health check monitoring application runs on an MS-MPC/NPU. This network processor unit (NPU) is not used for handling data traffic.

TLB supports static virtual-IP-address-to-real-IP-address translation, and static destination port translation during load balancing.

TLB provides multiple VRF support.

Related Documentation

- Interchassis High-Availability
- Understanding AMS Interfaces

Traffic Load Balancer Application Components

Servers and Server Groups

TLB enables configuration of groups of up to 255 servers (referred to in configuration statements as `real services`) for use as alternate destinations for stateless session distribution. All servers used in server groups must be individually configured before assignment to groups. Load balancing uses hashing or randomization for session distribution. Users can add and delete servers to and from the TLB server distribution table and can also change the administrative status of a server.

NOTE: TLB uses the session distribution next-hop API to update the server distribution table and retrieve statistics. *Applications do not have direct control on the server distribution table management. They can only influence changes indirectly through the add and delete services of the TLB API.*

Server Health Monitoring — Single Health Check and Dual Health Check

TLB supports ICMP, TCP, HTTP, SSL Hello, and custom health check probes to monitor the health of servers in a group. You can use a single probe type for a server group, or a
dual health check configuration that includes two probe types. The configurable health monitoring function resides on either an SPC3 or an MS-MPC. By default, probe requests are sent every 5 seconds. Also by default, a real server is declared down only after five consecutive probe failures and declared up only after five consecutive probe successes.

Use a custom health check probe to specify the following:

- Expected string in the probe response
- String that is sent with the probe
- Server status to assign when the probe times out (up or down)
- Server status to assign when the expected response to the probe is received (up or down)
- Protocol — UDP or TCP

TLB provides application stickiness, meaning that server failures or changes do not affect traffic flows to other active servers. Changing a server’s administrative state from up to down does not impact any active flows to remaining servers in the server distribution table. Adding a server or deleting a server from a group has some traffic impact for a length of time that depends on your configuration of the interval and retry parameters in the monitoring profile.

TLB provides two levels of server health monitoring:

- Single Health Check—One probe type is attached to a server group by means of the network-monitoring-profile configuration statement.
- TLB Dual Health Check (TLB-DHC)—Two probe types are associated with a server group by means of the network-monitoring-profile configuration statement. A server’s status is declared based on the result of two health check probes. Users can configure up to two health check profiles per server group. If a server group is configured for dual health check, a real-service is declared to be UP only when both health-check probes are simultaneously UP; otherwise, a real-service is declared to be DOWN.
NOTE:
The following restrictions apply to AMS interfaces used for server health monitoring:

- An AMS interface configured under a TLB instance uses its configured member interfaces exclusively for health checking of configured multiple real servers.
- The member interfaces use unit 0 for single VRF cases, but can use units other than 1 for multiple VRF cases.
- TLB uses the IP address that is configured for AMS member interfaces as the source IP address for health checks.
- The member interfaces must be in the same routing instance as the interface used to reach real servers. This is mandatory for TLB server health-check procedures.

Virtual Services
The virtual service provides a virtual IP address (VIP) that is associated with the group of servers to which traffic is directed as determined by hash-based or random session distribution and server health monitoring. In the case of Layer2 DSR and Layer3 DSR, the special address 0.0.0.0 causes all traffic flowing to the forwarding instance to be load balanced.

The virtual service configuration includes:

- Mode—indicating how traffic is handled (translated or transparent).
- The group of servers to which sessions are distributed.
- The load balancing method.
- Routing instance and route metric.

BEST PRACTICE: Although you can assign a virtual address of 0.0.0.0 in order to use default routing, we recommend using a virtual address that can be assigned to a routing instance set up specifically for TLB.

Traffic Load Balancer Configuration Limits
Traffic Load Balancer configuration limits are described in Table 28 on page 849.
Table 28: TLB Configuration Limits

<table>
<thead>
<tr>
<th>Configuration Component</th>
<th>Configuration Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of instances.</td>
<td>Starting in Junos OS Release 16.1R6 and Junos OS Release 18.2R1, the TLB application supports 2000 TLB instances for virtual services that use the direct-server-return or the translated mode. In earlier releases, the maximum number of instances is 32. If multiple virtual services are using the same server group, then all of those virtual services must use the same load balancing method to support 2000 TLB instances. For virtual services that use the layer2-direct-server-return mode, TLB supports only 32 TLB instances. To perform the same function as the layer2-direct-server-return mode and have support for 2000 TLB instances, you can use the direct-server-return mode and use a service filter with the skip action.</td>
</tr>
<tr>
<td>Maximum number of servers per group</td>
<td>255</td>
</tr>
<tr>
<td>Maximum number of virtual services per services PIC</td>
<td>32</td>
</tr>
<tr>
<td>Maximum number of health checks per services PIC in a 5-second interval</td>
<td>For MS-MPC services cards: 2000 For Next Gen Services mode and the SPC3 services card: 1250</td>
</tr>
<tr>
<td>Maximum number of groups per virtual service</td>
<td>1</td>
</tr>
<tr>
<td>Maximum number of virtual IP addresses per virtual service</td>
<td>1</td>
</tr>
<tr>
<td>Supported health checking protocols</td>
<td>ICMP, TCP, HTTP, SSL, Custom</td>
</tr>
<tr>
<td>NOTE: ICMP health checking is supported only on MS-MPC services cards.</td>
<td></td>
</tr>
</tbody>
</table>

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1R6</td>
<td>Starting in Junos OS Release 16.1R6 and Junos OS Release 18.2R1, the TLB application supports 2000 TLB instances for virtual services that use the direct-server-return or the translated mode.</td>
</tr>
</tbody>
</table>

Related Documentation

- Configuring TLB on page 850
Configuring TLB

The following topics describe how to configure TLB. To create a complete application, you must also define interfaces and routing information. You can optionally define firewall filters and policy options in order to differentiate TLB traffic.

- Loading the TLB Service Package on page 850
- Configuring a TLB Instance Name on page 850
- Configuring Interface and Routing Information on page 851
- Configuring Servers on page 853
- Configuring Network Monitoring Profiles on page 854
- Configuring Server Groups on page 855
- Configuring Virtual Services on page 856
- Configuring Tracing for the Health Check Monitoring Function on page 859

Loading the TLB Service Package

Load the TLB service package on each service PIC on which you want to run TLB.

NOTE: For Next Gen Services and the SPC3 services card, you do not need to load this package.

To load the TLB service package on a service PIC:

- Load the `jservices-traffic-dird` package.

  ```
  [edit chassis fpc slot-number pic pic-number adaptive-services service-package extension-provider]
  user@host# set package jservices-traffic-dird
  ```

 For example:

  ```
  [edit chassis fpc 3 pic 0 adaptive-services service-package extension-provider]
  user@host# set package jservices-traffic-dird
  ```

Configuring a TLB Instance Name

To configure a name for the TLB instance:

- At the `[edit services traffic-load-balance]` hierarchy level, identify the TLB instance name.

  ```
  [edit services traffic-load-balance]
  user@host# set instance instance-name
  ```

 For example:
Configuring Interface and Routing Information

To configure interface and routing information:

1. At the [edit services traffic-load-balance instance instance-name] hierarchy level, identify the service interface associated with this instance.

 user@host# [edit services traffic-load-balance instance instance-name]
 user@host# set interface interface-name

 For example, on an MS-MPC:

 [edit services traffic-load-balance instance tib-instance1]
 user@host# set interface ms-1/0/0

 For example, for Next Gen Services on an MX-SPC3:

 [edit services traffic-load-balance instance tib-instance1]
 user@host# set interface vms-1/0/0

2. Enable the routing of health-check packet responses from real servers to the service interface that you identified in Step 1.

 [edit interfaces]
 user@host# set interface-name unit 0 ip-address-owner service-plane

 For example, on an MS-MPC:

 [edit interfaces]
 user@host# set ms-1/0/0 unit 0 ip-address-owner service-plane

 For example, on an SPC3:

 [edit interfaces]
 user@host# set vms-1/0/0 unit 0 ip-address-owner service-plane

3. Specify the client interface for which an implicit filter is defined to direct traffic in the forward direction. This is required only for translated mode.

 user@host# [edit services traffic-load-balance instance instance-name]
 user@host# set client-interface interface-name

 For example:

 [edit services traffic-load-balance instance tib-instance1]
 user@host# set client-interface ge-5/2/0.0
4. Specify the virtual routing instance used to route data traffic in the forward direction to servers. This is required for SLT and Layer 3 DSR; it is optional for Layer 2 DSR.

 user@host# [edit services traffic-load-balance instance instance-name]
 user@host# set server-vrf server-vrf

 For example:

 [edit services traffic-load-balance instance tlb-instance1]
 user@host# set server-vrf server-vrf

5. Specify the server interface for which implicit filters are defined to direct return traffic to the client.

 NOTE: Implicit filters for return traffic are not used for DSR.

 user@host# [edit services traffic-load-balance instance instance-name]
 user@host# set server-interface server-interface

 For example:

 [edit services traffic-load-balance instance tlb-instance1]
 user@host# set server-interface ge-5/2/1.0

6. (Optional) Specify the filter used to bypass health checking for return traffic.

 user@host# [edit services traffic-load-balance instance instance-name]
 user@host# set server-inet-bypass-filter server-inet-bypass-filter

 For example:

 [edit services traffic-load-balance instance tlb-instance1]
 user@host# set server-inet-bypass-filter tlb-ipv4-bypass

7. Specify the virtual routing instance in which you want the data in the reverse direction to be routed to the clients.

 user@host# [edit services traffic-load-balance instance instance-name]
 user@host# set client-vrf client-vrf

 For example:

 [edit services traffic-load-balance instance tlb-instance1]
 user@host# set client-vrf client-vrf

 NOTE: Virtual routing instances for routing data in the reverse direction are not used with DSR.
Configuring Servers

To configure servers for the TLB instance:

- Configure a logical name and IP address for each server to be made available for next-hop distribution.

 [edit services traffic-load-balance instance instance-name]
 user@host# set real-service real-service-name address server-ip-address

For example:

 [edit services traffic-load-balance instance tlb-instance1]
 user@host# set real-service rs138 address 172.26.99.138
 user@host# set real-service rs139 address 172.26.99.139
 user@host# set real-service rs140 address 172.26.99.140
Configuring Network Monitoring Profiles

A network monitoring profile configures a health check probe, which you assign to a server group to which session traffic is distributed.

To configure a network monitoring profile:

1. Configure the type of probe to use for health monitoring — icmp, tcp, http, ssl-hello, or custom.

 NOTE: icmp probes are supported only on MS-MPC services cards. Next Gen Services and the MX-SPC3 do not support ICMP probes in this release.

 - For an ICMP probe:

     ```
     [edit services network-monitoring profile profile-name]
     user@host.com# set icmp
     ```

 - For a TCP probe:

     ```
     [edit services network-monitoring profile profile-name]
     user@host.com# set tcp port tcp-port-number
     ```

 - For an HTTP probe:

     ```
     [edit services network-monitoring profile profile-name]
     user@host.com# set http host hostname url url port http-port-number method (get | option)
     ```

 - For a SSL probe:

     ```
     [edit services network-monitoring profile profile-name]
     user@host.com# set ssl-hello port port ssl-version
     ```

 - For a custom probe:

     ```
     [edit services network-monitoring profile profile-name]
     user@host.com# set custom cmd priority default-real-service-status (down | up) expect (ascii | binary) receive-string port port real-service-action (down | up) send (ascii | binary) send-string
     ```

2. Configure the interval for probe attempts, in seconds (1 through 180).

   ```
   [edit services network-monitoring profile profile-name]
   user@host.com# set probe-interval interval
   ```

 For example:

   ```
   [edit services network-monitoring profile profile1-icmp]
   ```
3. Configure the number of failure retries, after which the real server is tagged as down.

 [edit services network-monitoring profile profile-name]
 user@host.com# set failure-retries number-of-retries

 For example:

 [edit services network-monitoring profile profile1-icmp]
 user@host.com# set failure-retries 3

4. Configure the number of recovery retries, which is the number of successful probe attempts after which the server is declared up.

 [edit services network-monitoring profile profile-name]
 user@host.com# set recovery-retries number-of-retries

 For example:

 [edit services network-monitoring profile profile1-icmp]
 user@host.com# set recovery-retries 1

Configuring Server Groups

Server groups consist of servers to which traffic is distributed by means of stateless, hash-based session distribution and server health monitoring.

To configure a server group:

1. Specify the names of one or more configured real servers.

 [edit services traffic-load-balance instance instance-name groups group-name]
 user@host.com# set real-services real-service-name, ...

 For example:

 [edit services traffic-load-balance instance tlb-instance1 groups tlb-group1]
 user@host.com# set real-services [rs138 rs139 rs140]

2. Configure the routing instance for the group when you do not want to use the default instance, inet.0.

 [edit services traffic-load-balance instance instance-name groups group-name]
 user@host.com# set routing-instance routing-instance-name

 For example:

 [edit services traffic-load-balance instance tlb-instance1 groups tlb-group1]
3. (Optional) Disable the default option that allows a server to rejoin the group automatically when it comes up.

 [edit services traffic-load-balance instance instance-name group group-name]
 user@host.com# set real-service-rejoin-options no-auto-rejoin

4. (Optional) Configure the logical unit of the instance’s service interface to use for health checking.
 a. Specify the logical unit.

 [edit services traffic-load-balance instance instance-name group group-name]
 user@host.com# set health-check-interface-subunit health-check-interface-subunit

 b. Enable the routing of health-check packet responses from real servers to the interface.

 [edit interfaces]
 user@host.com# set interface-name unit subunit ip-address-owner service-plane

 For example:

 [edit services traffic-load-balance instance tlb-instance1 group tlb-group1]
 user@host.com# set health-check-interface-subunit 30
 [edit interfaces]
 user@host.com# set ms-1/0/0 unit 30 ip-address-owner service-plane

5. Configure one or two network monitoring profiles to be used to monitor the health of servers in this group.

 [edit services traffic-load-balance instance instance-name groups group-name]
 user@host.com# set network-monitoring-profile profile-name1 profile-name2

 For example:

 [edit services traffic-load-balance instance tlb-instance1 groups tlb-group1]
 user@host.com# set network-monitoring-profile profile1-icmp profile2-http

Configuring Virtual Services

A virtual service provides an address that is associated with a the group of servers to which traffic is directed as determined by hash-based or random session distribution and server health monitoring. You may optionally specify filters and routing instances to steer traffic for TLB.
To configure a virtual service:

1. At the [edit services traffic-load-balance instance instance-name] hierarchy level, specify a non-zero address for the virtual service.

 [edit services traffic-load-balance instance instance-name virtual-service virtual-service-name]
 user@host# set address virtual-ip-address

 For example:

 [edit services traffic-load-balance instance tlb-instance1 virtual-service virtual-service1]
 user@host# set address 192.0.2.11

2. Specify the server group used for this virtual service.

 [edit services traffic-load-balance instance instance-name virtual-service virtual-service-name]
 user@host# set group group-name

 For example:

 [edit services traffic-load-balance instance tlb-instance1 virtual-service virtual-service1]
 user@host# set group tlb-group1

3. (Optional) Specify a routing instance for the virtual service. If you do not specify a routing instance, the default routing instance is used.

 [edit services traffic-load-balance instance instance-name virtual-service virtual-service-name]
 user@host# set routing-instance routing-instance

 For example:

 [edit services traffic-load-balance instance tlb-instance1 virtual-service virtual-service1]
 user@host# set routing-instance msp-tproxy-server-vrf31

4. Specify the processing mode for the virtual service.

 [edit services traffic-load-balance instance instance-name virtual-service virtual-service-name]
 user@host# set mode (layer2-direct-server-return | direct-server-return | translated)

 For example:

 [edit services traffic-load-balance instance tlb-instance1 virtual-service virtual-service1]
 user@host# set mode translated

5. (Optional) For a translated mode virtual service, enable the addition of the IP addresses for all the real servers in the group under the virtual service to the server-side filters.
Doing this allows you to configure two virtual services with the same listening port and protocol on the same interface and VRF.

```bash
[edit services traffic-load-balance instance instance-name virtual-service
    virtual-service-name]
user@host# set include-real-server-ips-in-server-filter
```

6. (Optional) Specify a routing metric for the virtual service.

```bash
[edit services traffic-load-balance instance instance-name virtual-service
    virtual-service-name]
user@host# set routing-metric routing-metric
```

For example:

```bash
[edit services traffic-load-balance instance tlb-instance1 virtual-service virtual-service1]
user@host# set routing-metric 128
```

7. Specify the method used for load balancing. You can specify a hash method that provides a hash key based on any combination of the source IP address, destination IP address, and protocol, or you can specify random.

```bash
[edit services traffic-load-balance instance tlb-instance1 virtual-service virtual-service1]
user@host# set load-balancing-method (hash hash-key (source-ip | destination-ip | proto) | random)
```

For example:

```bash
[edit services traffic-load-balance instance tlb-instance1 virtual-service virtual-service1]
user@host# set load-balancing-method hash hash-key source-ip
```

or

```bash
[edit services traffic-load-balance instance tlb-instance1 virtual-service virtual-service1]
user@host# set load-balancing-method random
```

![NOTE:](image) If you switch between the hash method and the random method for a virtual service, the statistics for the virtual service are lost.

8. For a translated mode virtual service, specify a service for translation, including a virtual-port, server-listening-port, and protocol.

```bash
[edit services traffic-load-balance instance instance-name virtual-service
    virtual-service-name]
user@host# set service service-name virtual-port virtual-port server-listening-port server-listening-port protocol (udp | tcp)
```

For example:
9. Commit the configuration.

```
[edit services traffic-load-balance instance instance-name virtual-service virtual-service-name]
user@host# set service fast-track-service virtual-port 1111 server-listening-port 22 protocol tcp
```

NOTE: In the absence of a client-interface configuration under the TLB instance, the implicit client filter (for VIP) is attached to the client-vrf configured under the TLB instance. In this case, the routing-instance under a translate mode virtual service cannot be the same as the client-vrf configured under the TLB instance. If it is, the commit fails.

Configuring Tracing for the Health Check Monitoring Function

To configure tracing options for the health check monitoring function:

1. Specify that you want to configure tracing options for the health check monitoring function.

```
[edit services network-monitoring]
user@host# edit traceoptions
```

2. (Optional) Configure the name of the file used for the trace output.

```
[edit services network-monitoring traceoptions]
user@host# set file file-name
```

3. (Optional) Disable remote tracing capabilities.

```
[edit services network-monitoring traceoptions]
user@host# set no-remote-trace
```

4. (Optional) Configure flags to filter the operations to be logged.

```
[edit services network-monitoring traceoptions]
user@host# set flag flag
```

Table 29 on page 860 describes the flags that you can include.
Table 29: Trace Flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Support on MS-MPC and SPC3 Cards</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>MS-MPC and SPC3</td>
<td>Trace all operations.</td>
</tr>
<tr>
<td>all-real-services</td>
<td>SPC3</td>
<td>Trace all real services.</td>
</tr>
<tr>
<td>config</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer configuration events.</td>
</tr>
<tr>
<td>connect</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer ipc events.</td>
</tr>
<tr>
<td>database</td>
<td>MS-MPC and SPC3</td>
<td>Trace database events.</td>
</tr>
<tr>
<td>file-descriptor-queue</td>
<td>MS-MPC</td>
<td>Trace file descriptor queue events.</td>
</tr>
<tr>
<td>inter-thread</td>
<td>MS-MPC</td>
<td>Trace inter-thread communication events.</td>
</tr>
<tr>
<td>filter</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer filter programming events.</td>
</tr>
<tr>
<td>health</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer health events.</td>
</tr>
<tr>
<td>messages</td>
<td>MS-MPC and SPC3</td>
<td>Trace normal events.</td>
</tr>
<tr>
<td>normal</td>
<td>MS-MPC</td>
<td>Trace normal events.</td>
</tr>
<tr>
<td>operational-commands</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer show events.</td>
</tr>
<tr>
<td>parse</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer parse events.</td>
</tr>
<tr>
<td>probe</td>
<td>MS-MPC and SPC3</td>
<td>Trace probe events.</td>
</tr>
<tr>
<td>probe-infra</td>
<td>MS-MPC and SPC3</td>
<td>Trace probe infra events.</td>
</tr>
<tr>
<td>route</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer route events.</td>
</tr>
<tr>
<td>snmp</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer SNMP events.</td>
</tr>
<tr>
<td>statistics</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer statistics events.</td>
</tr>
<tr>
<td>system</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer system events.</td>
</tr>
</tbody>
</table>

5. (Optional) Configure the level of tracing.

```
[edit services network-monitoring traceoptions]
user@host# set level (all |error | info | notice | verbose | warning)
```

6. (Optional) Configure tracing for a particular real server within a particular server group.
[edit services network-monitoring traceoptions]
user@host# set monitor monitor-object-name group-name group-name
 real-services-name real-service-name

7. (Optional) Starting in Junos OS Release 16.1R6 and 18.2R1, configure tracing for a
 particular virtual service and instance.

[edit services traffic-load-balance traceoptions]
user@host# set monitor monitor-object-name instance-name instance-name
 virtual-svc-name virtual-service-name

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
</table>
| 16.1R6 | Starting in Junos OS Release 16.1R6 and 18.2R1, configure tracing for a
 | particular virtual service and instance. |

Related Documentation

- Traffic Load Balancer Overview on page 843
Enabling Load Balancing and High Availability Using Multiservices Interfaces

- Enabling Load Balancing and High Availability Using Multiservices Interfaces on page 865
Enabling Load Balancing and High Availability Using Multiservices Interfaces

- Understanding Aggregated Multiservices Interfaces on page 865
- Configuring Aggregated Multiservices Interfaces on page 872
- Configuring Load Balancing on AMS Infrastructure on page 874
- Configuring Warm Standby for Services Interfaces on page 877
- Example: Configuring an Aggregated Multiservices Interface (AMS) on page 878
- Example: Configuring Next-Hop Style Services on an Aggregated Multiservices Interface on page 884
- Example: Configuring Static Source Translation on AMS Infrastructure on page 887

Understanding Aggregated Multiservices Interfaces

This topic contains the following sections:

- Aggregated Multiservices Interface on page 865
- IPv6 Traffic on AMS Interfaces Overview on page 869
- Member Failure Options and High Availability Settings on page 870
- Warm Standby Redundancy on page 871

Aggregated Multiservices Interface

In Junos OS, you can combine multiple services interfaces to create a bundle of services interfaces that can function as a single interface. Such a bundle of interfaces is known as an aggregated multiservices interface (AMS), and is denoted as amsN in the configuration, where N is a unique number that identifies an AMS interface (for example, ams0). Starting in Junos OS Release 19.3R1, AMS interfaces are also supported if you are running Next Gen Services. However, if you are running Next Gen Services, only MX-SPC3 services PICs can run on the MX.
NOTE: MX240, MX480, MX960 routers support Next Gen Services using the MX-MX-SPC3 services card. When running Next Gen Services, you cannot run other legacy MX services cards in the same chassis.

This topic describes running AMS interfaces in a Next Gen Services environment, as well as with legacy MX services cards and notes the differences as required.

AMS interfaces are also supported if you are running Next Gen Services. However, if you are running Next Gen Services, only MX-SPC3 services PICs can run on the MX.

AMS configuration provides higher scalability, improved performance, and better failover and load-balancing options.

AMS configuration enables service sets to support multiple services PICs by associating an AMS bundle with a service set. An AMS bundle can have up to eight services PICs as member interfaces and can distribute services among the member interfaces.

Member interfaces are identified as mams in the configuration. The chassis is process in routers that support AMS configuration creates a mams entry for every multiservices interface on the router.

Starting with Junos OS Release 16.2, an AMS interface can have up to 36 member interfaces. If you include more than 24 member interfaces, you must increase the service PIC boot timeout to 240 or 300 seconds for all service PICs. In Junos OS Release 16.1 and earlier, an AMS interface could have a maximum of 24 member interfaces.

Starting with Junos OS Release 19.2R1, you can use up to 60 PICs across different AMS bundles on a MX2020 router. The hard limit of maximum 36 member interfaces per AMS bundle still exists. However, in the chassis, there can be multiple AMS bundles such that 15 MS-MPC slots can be configured across these bundles.

When you configure services options at the ams interface level, the options apply to all member interfaces (mams) for the ams interface.

The options also apply to service sets configured on services interfaces corresponding to the ams interface’s member interfaces. All settings are per PIC. For example, session-limit applies per member and not at an aggregate level.

NOTE: You cannot configure services options at both the ams (aggregate) and member-interface level. If services options are configured on ms-x/y/z or vms-x/y/z, they also apply to service sets on mams-x/y/z.

When you want services options settings to apply uniformly to all members, configure services options at the ams interface level. If you need different settings for individual members (for example, because of a syslog configuration), configure services options at the member interface level.
NOTE: Per-member drop of traffic and per-member next-hop configuration is required for NAT64. For NAPT44, this per-member specification allows arbitrary hash keys, providing better load-balancing options to allow dynamic NAT operations to be performed. For NAT64, NAPT44, and dynamic NAT44, it is not possible to determine which member allocates the dynamic NAT address. To ensure that reverse flow packets arrive at the same member as the forward flow packets, pool-address-based routes are used to steer reverse flow packets.

NOTE: Until Junos OS Release 13.3, for every media logical interface on which services were configured (interface style services), a logical interface alias was internally created. This interface alias stores the topology chains for features that are performed on the logical interface after an input service was processed to avoid packet loops in the system. With interface aliases, the maximum number of logical interfaces supported with services was reduced to half the supported maximum number because each logical interface consumed two entries, namely, one for the interface itself and the other for the interface alias.

Starting in Junos OS Release 14.1R4, input interface aliases are not created for MS-MPCs and MS-MICs. As a result, the maximum number of logical interfaces that are supported with services PICs is equal to the maximum number supported on the system. After input service processing by MS-MPCs and MS-MICs, the services PIC sends the packet to the Packet Forwarding Engine on the multiservices (ms-) logical interface where the corresponding service is configured. Post-services are not supported on MS- MPCs and MS-MICs in Junos OS Release 13.2 and later.

NOTE: You cannot include MS-DPCs or other MS-PICs in an AMS configuration that contains MS-MICs or MS-MPCs as member interfaces.

NOTE: If you modify a NAT pool that is being used by a service set assigned to an AMS interface, you must deactivate and activate the service set before the NAT pool changes take effect.

By default, the traffic distribution over the member interfaces of an AMS interface happens in a round-robin fashion. You can also configure the following hash key values to regulate the traffic distribution: source-ip, destination-ip, and protocol. For services that require traffic symmetry, you must configure symmetrical hashing. Symmetrical hashing configuration ensures that both forward and reverse traffic is routed through the same member interface.
With basic NAT44, load balancing on AMS interfaces of MS-MICs and MS-MPCs does not work properly if the ingress hash key is source IP address and the egress hash key is destination IP address.

If the service set is applied on the Gigabit Ethernet or 10-Gigabit Ethernet interface that functions as the NAT inside interface, then the hash keys used for load balancing might be configured in such a way that the ingress key is set as destination IP address and the egress key is set as source IP address. Because the source IP address undergoes NAT processing, it is not available for hashing the traffic in the reverse direction. Therefore, load balancing does not happen on the same IP address and forward and reverse traffic does not map to the same PIC. With the hash keys reversed, load balancing occurs correctly.

With next-hop services, for forward traffic, the ingress key on the inside interface load balances traffic, and for reverse traffic, the ingress key on the outside interface load balances traffic or per-member next hops steer reverse traffic. With interface-style services, the ingress key load-balances forward traffic and the egress key load-balances forward traffic or per-member next hops steer reverse traffic. Forward traffic is traffic entering from the inner side of a service set and reverse traffic is traffic entering from the outer side of a service set. The forward key is the hash key used for the forward direction of traffic and the reverse key is the hash key used for the reverse direction of traffic (depends on whether it relates to interface services or next-hop services style.)

With stateful firewalls, you can configure the following combinations of forward and reverse keys for load balancing. In the following combinations presented for hash keys, FOR-KEY refers to the forward key, REV-KEY denotes the reverse key, SIP signifies source IP address, DIP signifies destination IP address, and PROTO refers to protocol such as IP.

- FOR-KEY: SIP, REV-KEY: DIP
- FOR-KEY: SIP,PROTO REV-KEY: DIP,PROTO
- FOR-KEY: DIP, REV-KEY: SIP
- FOR-KEY: DIP,PROTO REV-KEY: SIP,PROTO
- FOR-KEY: SIP,DIP REV-KEY: SIP, DIP
- FOR-KEY: SIP,DIP,PROTO REV-KEY: SIP, DIP,PROTO

With static NAT configured as basic NAT44 or destination NAT44, and with stateful firewall configured or not, if the forward direction of traffic must undergo NAT processing, configure the hash keys as follows:

- FOR-KEY: DIP, REV-KEY: SIP
- FOR-KEY: DIP,PROTO REV-KEY: SIP,PROTO

If the reverse direction of traffic must undergo NAT processing, configure the hash keys as follows:

- FOR-KEY: SIP, REV-KEY: DIP
- FOR-KEY: SIP,PROTO REV-KEY: DIP,PROTO
With dynamic NAT configured, and with stateful firewall configured or not, only the forward direction traffic can undergo NAT. The forward hash key can be any combination of SIP, DIP, and protocol, and the reverse hash key is ignored.

NOTE: The Junos OS AMS configuration supports IPv4 and IPv6 traffic.

IPv6 Traffic on AMS Interfaces Overview

Starting in Junos OS release 14.2R1, you can use AMS interfaces for IPv6 traffic. To configure IPv6 support for an AMS interface, include the `family inet6` statement at the `[edit interfaces ams-interface-name unit 1]` hierarchy level. When `family inet` and `family inet6` are set for an AMS interface subunit, the hash-keys is configured at service-set level for interface style and at IFL level for next-hop style.

When a member interface of an AMS bundle fails, traffic destined to the failed member is redistributed among the remaining active members. The traffic (flows or sessions) traversing through the existing active members is unaffected. If M members are currently active, the expected result is that only about \(\frac{1}{M} \) fraction of the traffic (flows/sessions) is impacted because that amount of traffic is shifted from the failed member to remain active members. When the failed member interface comes back online, only a fraction of the traffic is redistributed to the new member. If N members are currently active, the expected result is that only about \(\frac{1}{N+1} \) fraction of the traffic (flows/sessions) is impacted because that amount of traffic moves to the new restored member. The \(\frac{1}{M} \) and \(\frac{1}{N+1} \) values assume that the flows are uniformly distributed among members, because a packet-hash is used to load-balance and because traffic usually contains a typical random combination of IP addresses (or any other fields that are used as load-balancing keys).

Similar to IPv4 traffic, for IPv6 packets, an AMS bundle must contain members of only one services PIC type. Separate AMS bundles on the same router can contain members of different services PIC types (for example, two MS-MICs in ams0, and two MS-MPC PICs in ams1). However, if you are running Next Gen Services, only MX-SPC3 services PICs can run on the MX.

The number of flows distributed, in an ideal environment, can be \(\frac{1}{N} \) in a best-case scenario when the \(N \)th member goes up or down. However, this assumption considers that the hash keys load-balance the real or dynamic traffic. For example, consider a real-world deployment where member A is serving only one flow, whereas member B is serving 10 flows. If member B goes down, then the number of flows disrupted is 10/11.

The NAT pool-split behavior is designed to utilize the benefits of the rehash-minimization feature. The splitting of a NAT pool is performed for dynamic NAT scenarios (dynamic NAT, NAT64, and NAPT44).

If the original and redistributed flows are defined as follows:

- **Member-original-flows**—The traffic mapped to a member when all members are up.
- **Member-redistributed-flows**—The additional traffic mapped to a member when some other member fails. These traffic flows might need to be rebalanced when member interfaces come up and go down.
With the preceding definitions of the original and redistributed flows for member interfaces, the following observations apply:

- The member-original-flows of a member stay intact as long as that member is up. Such flows are not impacted when other members move between the up and down states.

- The member-redistributed-flows of a member can change when other members go up or down. This change of flows occurs because these additional flows need to be rebalanced among all active members. Therefore, the member-redistributed-flow can vary a lot based on other members going down or up. Although it might seem that when a member goes down, the flows on active-members are preserved, and that when a member goes up, flows on active-members are not preserved in an effective way, this behavior is only because of static or hash-based rebalancing of traffic among active members.

The rehash-minimization feature handles the operational changes in a member interface status only (such as member offline or member Junos OS reset). It does not handle changes in configuration. For example, addition or deletion, or activation and deactivation, of member interfaces at the [edit interfaces ams\N load-balancing-options member-interface mams-a/b/0] hierarchy level requires the member PICs to be bounced. Twice NAT or hairpinning is not supported, similar to IPv4 support for AMS interfaces.

Member Failure Options and High Availability Settings

Because multiple service interfaces are configured as part of an AMS bundle, AMS configuration also provides for failover and high availability support. You can either configure one of the member interfaces as a backup interface that becomes active when any one of the other member interfaces goes down, or configure the AMS in such a way that when one of the member interfaces goes down, the traffic assigned to that interface is shared across the active interfaces.

The **member-failure-options** configuration statement enables you to configure how to handle traffic when a member interface fails. One option is to redistribute the traffic immediately among the other member interfaces. However, redistribution of traffic involves recalculating the hash tags, and might cause some disruption in traffic on all the member interfaces.

The other option is to configure the AMS to drop all traffic that is assigned to the failed member interface. With this you can optionally configure an interval, **rejoin-timeout**, for the AMS to wait for the failed interface to come back online after which the AMS can redistribute the traffic among other member interfaces. If the failed member interface comes back online before the configured wait time, traffic continues unaffected on all member interfaces, including the interface that has come back online and resumed the operations.

You can also control the rejoining of the failed interface when it comes back online. If you do not include the **enable-rejoin** statement in the **member-failure-options** configuration, the failed interface cannot rejoin the AMS when it comes back online. In such cases, you can manually rejoin that to the AMS by executing the **request interfaces revert interface-name** operational mode command.
The `rejoin-timeout` and `enable-rejoin` statements enable you to minimize traffic disruptions when member interfaces flap.

NOTE: When member-failure-options are not configured, the default behavior is to drop member traffic with a rejoin timeout of 120 seconds.

The `high-availability-options` configuration enables you to designate one of the member interfaces as a backup interface. The backup interface does not participate in routing operations as long as it remains a backup interface. When a member interface fails, the backup interface handles the traffic assigned to the failed interface. When the failed interface comes back online, it becomes the new backup interface.

In a many-to-one configuration (N:1), a single backup interface supports all other member interfaces in the group. If any of the member interfaces fails, the backup interface takes over. In this stateless configuration, data is not synchronized between the backup interface and the other member interfaces.

Starting in Junos OS Release 16.1, in a one-to-one configuration, a single active interface is paired with a single backup interface. If the active interface fails, the backup interface does take over. Configurations using `member-failure-options` are not available for one-to-one (1:1) high availability configurations.

When both `member-failure-options` and `high-availability-options` are configured for an AMS, the `high-availability-options` configuration takes precedence over the `member-failure-options` configuration. If a second failure occurs before the failed interface comes back online to be the new backup, the `member-failure-options` configuration takes effect.

Warm Standby Redundancy

Starting in Junos OS Release 17.2R1, you can use the same services interface as the backup in multiple AMS interfaces, resulting in an N:1 warm standby option for MS-MPCs and MS-MICs. Starting in Junos OS Release 19.3R1, the N:1 warm standby option is supported on the MX-SPC3 if you are running Next Gen Services. Each warm standby AMS interface contains two members; one member is the service interface you want to protect, called the primary interface, and one member is the secondary (backup) interface. The primary interface is the active interface and the backup interface does not handle any traffic unless the primary interface fails.

To configure warm standby on an AMS interface, you use the `redundancy-options` statement. You cannot use the `load-balancing-options` statement in a warm standby AMS interface.

To switch from the primary interface to the secondary interface, issue the `request interface switchover amsN` command.

To revert to the primary interface from the secondary interface, issue the `request interface revert amsN` command.
Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3R1</td>
<td>Starting in Junos OS Release 19.3R1, AMS interfaces are also supported if you are running Next Gen Services. However, if you are running Next Gen Services, only MX-SPC3 services PICs can run on the MX.</td>
</tr>
<tr>
<td>19.3R1</td>
<td>Starting in Junos OS Release 19.3R1, the N:1 warm standby option is supported on the MX-SPC3 if you are running Next Gen Services.</td>
</tr>
<tr>
<td>19.2R1</td>
<td>Starting with Junos OS Release 19.2R1, you can use up to 60 PICs across different AMS bundles on a MX2020 router. The hard limit of maximum 36 member interfaces per AMS bundle still exists. However, in the chassis, there can be multiple AMS bundles such that 15 MS-MPC slots can be configured across these bundles.</td>
</tr>
<tr>
<td>17.2R1</td>
<td>Starting in Junos OS Release 17.2R1, you can use the same services interface as the backup in multiple AMS interfaces, resulting in an N:1 warm standby option for MS-MPCs and MS-MICs.</td>
</tr>
<tr>
<td>16.2</td>
<td>Starting with Junos OS Release 16.2, an AMS interface can have up to 36 member interfaces.</td>
</tr>
<tr>
<td>16.1</td>
<td>Starting in Junos OS Release 16.1, in a one-to-one configuration, a single active interface is paired with a single backup interface. If the active interface fails, the backup interface does take over.</td>
</tr>
<tr>
<td>14.2</td>
<td>Starting in Junos OS release 14.2R1, you can use AMS interfaces for IPv6 traffic.</td>
</tr>
<tr>
<td>14.1</td>
<td>Starting in Junos OS Release 14.1R4, input interface aliases are not created for MS-MPCs and MS-MICs.</td>
</tr>
</tbody>
</table>

Configuring Aggregated Multiservices Interfaces

The aggregated multiservices (AMS) interface configuration in Junos OS enables you to combine services interfaces from multiple PICs to create a bundle of interfaces that can function as a single interface. You identify the PIC that you want to act as the backup. Starting in Junos OS Release 19.3R1, AMS interfaces are also supported if you are running Next Gen Services.

1. Create an aggregated multiservices interface and add member interfaces. Starting with Junos OS Release 16.2, an AMS interface can have up to 36 member interfaces. In Junos OS Release 16.1 and earlier, an AMS interface can have a maximum of 24 member interfaces.

![NOTE: The member interface format is mams-a/b/0, where a is the Flexible PIC Concentrator (FPC) slot number and b is the PIC slot number.](image)

```bash
[edit interfaces]
user@host# set interface-name load-balancing-options member-interface mams-a/b/0
```
For example:

```
[edit interfaces]
user@host# set ams1 load-balancing-options member-interface mams-1/1/0
user@host# set ams1 load-balancing-options member-interface mams-1/2/0
```

2. Configure logical units for the AMS interface.

```
[edit interfaces]
user@host# set interface-name unit logical-unit-number family family
user@host# set interface-name unit logical-unit-number family family
```

For example:

```
[edit interfaces]
user@host# set ams1 unit 1 family inet
user@host# set ams1 unit 2 family inet6
```

3. Configure member failure options.

```
[edit interfaces interface-name]
user@host# set load-balancing-options member-failure-options drop-member-traffic
rejoin-timeout seconds
user@host# set load-balancing-options member-failure-options drop-member-traffic
enable-rejoin
```

For example:

```
[edit interfaces ams1]
user@host# set load-balancing-options member-failure-options drop-member-traffic
rejoin-timeout 1000
user@host# set load-balancing-options member-failure-options drop-member-traffic
enable-rejoin
```

4. Configure the preferred backup.

```
[edit interfaces interface-name]
user@host# set load-balancing-options high-availability-options many-to-one
preferred-backup preferred-backup
```

For example:

```
[edit interfaces ams1]
user@host# set load-balancing-options high-availability-options many-to-one
preferred-backup mams-1/2/0
```

5. If the AMS interface has more than 24 member interfaces, set the service PIC boot timeout value to 240 or 300 seconds for every services PIC on the MX Series router. We recommend that you use a value of 240.
NOTE: Starting with Junos OS Release 16.2, an AMS interface can have up to 36 member interfaces. In Junos OS Release 16.1 and earlier, an AMS interface could have a maximum of 24 member interfaces.

```
[edit interfaces interface-name multiservice-options]
user@host# set pic-boot-timeout (240 | 300);
```

For example:

```
[edit interfaces sp-1/1/0 multiservice-options]
user@host# set pic-boot-timeout 240
```

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3R1</td>
<td>Starting in Junos OS Release 19.3R1, AMS interfaces are also supported if you are running Next Gen Services.</td>
</tr>
<tr>
<td>16.2</td>
<td>Starting with Junos OS Release 16.2, an AMS interface can have up to 36 member interfaces.</td>
</tr>
</tbody>
</table>

Related Documentation

- Understanding Aggregated Multiservices Interfaces on page 865

Configuring Load Balancing on AMS Infrastructure

Configuring load balancing requires an aggregated multiservices (AMS) system. AMS involves grouping several services PICs together. An AMS configuration eliminates the need for separate routers within a system. The primary benefit of having an AMS configuration is the ability to support load balancing of traffic across multiple services PICs.

AMS is supported on the MS-MPC and MS-MIC. Starting in Junos OS Release 19.3R1, AMS interfaces are also supported on the MX-SPC3 if you are running Next Gen Services.

High availability (HA) is supported on AMS infrastructure on all MX Series 5G Universal Routing Platforms. AMS has several benefits:

- Support for configuring behavior if a services PIC that is part of the AMS configuration fails
- Support for specifying hash keys for each service set in either direction
- Support for adding routes to individual PICs within the AMS system
Configuring AMS Infrastructure

AMS supports load balancing across multiple service sets. All ingress or egress traffic for a service set can be load balanced across different services PICs. To enable load balancing, you have to configure an aggregate interface with existing services interfaces.

To configure failure behavior in AMS, include the `member-failure-options` statement:

```
[edit interfaces ams1]
load-balancing-options {
    member-failure-options {
        drop-member-traffic {
            reconnect-timeout reconnect-timeout;
        }
        redistribute-all-traffic {
            enable-rejoin;
        }
    }
}
```

If a PIC fails, you can configure the traffic to the failed PIC to be redistributed by using the `redistribute-all-traffic` statement at the `[edit interfaces interface-name load-balancing-options member-failure-options]` hierarchy level. If the `drop-member-traffic` statement is used, all traffic to the failed PIC is dropped. Both options are mutually exclusive.

NOTE: If `member-failure-options` is not explicitly configured, the default behavior is to drop member traffic with a reconnect timeout of 120 seconds.

Only mams-interfaces (services interfaces that are part of AMS) can be aggregated. After an AMS interface has been configured, you cannot configure the individual constituent mams-interfaces. A mams-interface cannot be used as an rms interface. AMS supports IPv4 (`family inet`) and IPv6 (`family inet6`). You cannot configure addresses on an AMS interface. Network Address Translation (NAT) is the only application that runs on AMS infrastructure at this time.

NOTE: You cannot configure unit 0 on an AMS interface.

To support multiple applications and different types of translation, AMS infrastructure supports configuring hashing for each service set. You can configure the hash keys separately for ingress and egress. The default configuration uses source IP, destination IP, and the protocol for hashing; incoming-interface for ingress and outgoing-interface for egress are also available.
NOTE: When using AMS in a load-balanced setup for the NAT solution, the number of NAT IP addresses must be greater than or equal to the number of active nats-interfaces you have added to the AMS bundle.

Configuring High Availability

In an AMS system configured with high availability, a designated services PIC acts as a backup for other active PICs that are part of the AMS system in a many-to-one (N:1) backup configuration. In a N:1 backup configuration, one PIC is available as backup for all other active PICs. If any of the active PICs fail, the backup PIC takes over for the failed PIC. In an N:1 (stateless) backup configuration, traffic states and data structures are not synchronized between the active PICs and the backup PIC.

An AMS system also supports a one-to-one (1:1) configuration. In the case of 1:1 backup, a backup interface is paired with a single active interface. If the active interface fails, the backup interface takes over. In a 1:1 (stateful) configuration, traffic states and data structures are synchronized between the active PICs and the backup PIC. Stateful synchronization is required for high availability of IPsec connections.

High availability for load balancing is configured by adding the `high-availability-options` statement at the `[edit interfaces interface-name load-balancing-options]` hierarchy level.

To configure N:1 high availability, include the `high-availability-options` statement with the `many-to-one` option:

```
[edit interfaces ams1]
load-balancing-options {
    high-availability-options {
        many-to-one {
            preferred-backup preferred-backup;
        }
    }
}
```

Starting in Junos OS Release 16.1, you can configure stateful 1:1 high availability on an MS-MPC. Starting in Junos OS Release 19.3R1, stateful 1:1 high availability is supported on the MX-SPC3 if you are running Next Gen Services. To configure stateful 1:1 high availability, at the `[edit interfaces interface-name load-balancing-options]` hierarchy level, include the `high-availability-options` statement with the `one-to-one` option:

```
[edit interfaces ams1]
load-balancing-options {
    high-availability-options {
        one-to-one {
            preferred-backup preferred-backup;
        }
    }
}
```
Load Balancing Network Address Translation Flows

Network Address Translation (NAT) has been programmed as a plug-in and is a function of load balancing and high availability. The plug-in runs on AMS infrastructure. All flows for translation are automatically distributed to different services PICs that are part of the AMS infrastructure. In case of failure of an active services PIC, the configured backup PIC takes over the NAT pool resources of the failed PIC. The hashing method selected depends on the type of NAT. Using NAT on AMS infrastructure has a few limitations:

- NAT flows to failed PICs cannot be restored.
- There is no support for IPv6 flows.
- Twice NAT is not supported for load balancing.
- Deterministic NAT is not supported for load balancing.

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3R1</td>
<td>Starting in Junos OS Release 19.3R1, AMS interfaces are also supported on the MX-SPC3 if you are running Next Gen Services.</td>
</tr>
<tr>
<td>19.3R1</td>
<td>Starting in Junos OS Release 19.3R1, stateful 1:1 high availability is supported on the MX-SPC3 if you are running Next Gen Services.</td>
</tr>
<tr>
<td>16.1</td>
<td>Starting in Junos OS Release 16.1, you can configure stateful 1:1 high availability on an MS-MPC.</td>
</tr>
</tbody>
</table>

Configuring Warm Standby for Services Interfaces

You can configure an N:1 warm standby option for MS-MPCs and MS-MICs by creating multiple aggregated multiservices (AMS) interfaces, each of which contains the service interface you want to backup and the service interface that acts as the backup. The same backup service interface can be used in all these AMS interfaces. Starting in Junos OS Release 19.3R1, the N:1 warm standby option is also supported on the MX-SPC3 if you are running Next Gen Services.

To configure warm standby for services interfaces:

1. Create an AMS interface.

   ```
   [edit interfaces]
   user@host# set amsN
   ```

 The variable N is a unique number, such as 0 or 1.

2. Specify the primary service interface that you want to backup.

   ```
   [edit interfaces amsN]
   user@host# set redundancy-options primary mams-a/b/0
   ```
The variable \(a \) is the FPC slot number and \(b \) is the PIC slot number for the primary service interface.

3. Specify the secondary service interface, which backs up the primary interface.

```plaintext
[edit interfaces amsN]
user@host# set redundancy-options secondary mams-a/b/0
```

The variable \(a \) is the FPC slot number and \(b \) is the PIC slot number for the secondary service interface.

4. Repeat Steps 1 through 3 to create an AMS interface for each service interface that you want to backup. You can use the same secondary service interface in each AMS interface.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3R1</td>
<td>Starting in Junos OS Release 19.3R1, the N:1 warm standby option is also supported on the MX-SPC3 if you are running Next Gen Services.</td>
</tr>
</tbody>
</table>

Related Documentation

- Understanding Aggregated Multiservices Interfaces on page 865

Example: Configuring an Aggregated Multiservices Interface (AMS)

- Hardware and Software Requirements on page 878
- Overview on page 878
- Configuration on page 879
- Verification on page 883

Hardware and Software Requirements

This example requires MX Series routers that have services interfaces installed in that and Junos OS Release 13.2 running on that.

Overview

The aggregated multiservices (AMS) interface configuration in Junos OS enables you to combine multiple services interfaces to create a bundle of interfaces that can function as a single interface. This example shows you how to configure an AMS interface, load-balancing options, member failure options, high availability settings on an AMS interface, and an interface-style service set configuration that uses the AMS interface.

NOTE: You cannot include MS-DPCs or other multiservices PICs in an AMS configuration that contains MS-MICs or MS-MPCs as member interfaces.
An MS-PIC contains only one interface, whereas the MS-MPC contains four interfaces. To utilize the entire MS-MPC in a single AMS bundle, all the four member interfaces need to be assigned to that AMS bundle.

Keep the following points in mind for every member interface (XLP chip) needs to be part of the AMS interface bundle:

- XLP-based line cards from the same MPC can be part of multiple AMS bundles.
- Multiple XLP chips from several MPCs can also be part of a single bundle (up to eight member interfaces in an AMS bundle, depending on the deployment requirement).
- It is not necessary that all the XLP chips from the same MS-MPC must be part of the same AMS bundle. Some of the XLP chips can be part of an AMS bundle, while other XLP chips can be standalone ms-interfaces or need not be configured. However, the same XLP chip cannot be part of two different AMS interfaces at the same time. For example, each XLP chip from the same MS-MPC can be grouped into four different AMS bundles, based on the deployment needs.
- A maximum of up to eight member interfaces can be assigned to an AMS bundle.

For more information about AMS interfaces, see “Understanding Aggregated Multiservices Interfaces” on page 865.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```
Adding Member Interfaces
set interfaces ams0 load-balancing-options member-interface mams-0/0/0
set interfaces ams0 load-balancing-options member-interface mams-0/1/0
set interfaces ams0 load-balancing-options member-interface mams-1/0/0
set interfaces ams0 load-balancing-options member-interface mams-1/1/0
set interfaces ams0 load-balancing-options member-interface mams-2/0/0
set interfaces ams0 load-balancing-options member-interface mams-2/1/0
```

```
Configuring Logical Units
set interfaces ams0 unit 1 family inet
```

```
Configuring Member Failure Options
set interfaces ams0 load-balancing-options member-failure-options drop-member-traffic
rejoin-timeout 300
set interfaces ams0 load-balancing-options member-failure-options enable-rejoin
```

```
Configuring High Availability Options
set interfaces ams0 load-balancing-options high-availability-options many-to-one
preferred-backup mams-1/0/0
```
Configuring Service Set and Interface Services

```
set services service-set ams-ss1 interface-service service-interface ams0.1
set services service-set ams-ss1 interface-service load-balancing-options hash-keys
    ingress-key source-ip
set services service-set ams-ss1 interface-service load-balancing-options hash-keys
    egress-key destination-ip
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

1. Create an aggregated multiservices interface and add member interfaces.

 NOTE: You cannot configure the same mams to be part of two different AMS interfaces at the same time.

 [edit]
 user@router1# set interfaces ams0 load-balancing-options member-interface
 mams-0/0/0
 mams-0/1/0
 mams-1/0/0
 mams-1/1/0
 mams-2/0/0
 mams-2/1/0

2. Configure logical units for the AMS interface.

 NOTE: An AMS interface and its member interfaces cannot share the same logical interface units. For example, if one of the member interfaces has logical units 1 and 2 configured on it, you cannot configure logical units 1 and 2 for the AMS. Similarly, if you have configured logical units 3 and 4 on the AMS, you cannot configure those units on any of the member interfaces.

 [edit interfaces]
 user@router1# set ams0 unit 1 family inet

3. Configure member failure options.

 [edit interfaces ams0]
user@router1# set load-balancing-options member-failure-options drop-member-traffic rejoin-timeout 300
user@router1# set load-balancing-options member-failure-options drop-member-traffic enable-rejoin

NOTE: This example shows the drop-member-traffic configuration. However, if you would like to redistribute the traffic to other available members when one of the member interfaces goes down, you can include the redistribute-all-traffic statement instead of the drop-member-traffic statement.

The default behavior, when the member-failure-options configuration is not included, is to drop member traffic with a rejoin timeout of 120 seconds.

4. Configure the high-availability options.

[edit interfaces ams0]
user@router1# set load-balancing-options high-availability-options many-to-one preferred-backup mams-1/0/0

5. Configure interface style services.

[edit services]
user@router1# set service-set ams-ss1 interface-service service-interface ams0.1
user@router1# set service-set ams-ss1 interface-service load-balancing-options hash-keys ingress-key source-ip
user@router1# set service-set ams-ss1 interface-service load-balancing-options hash-keys egress-key destination-ip

6. If you are done configuring the device, commit the configuration.

[edit]
user@router1# commit

Table 30: Key Configuration Statements Used in this Example

<table>
<thead>
<tr>
<th>Statement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>member-interface</td>
<td>Adds a member interface (mams) to the AMS bundle.</td>
</tr>
<tr>
<td>drop-member-traffic</td>
<td>Specifies that all traffic to a member be dropped in case the member interface fails.</td>
</tr>
</tbody>
</table>
Table 30: Key Configuration Statements Used in this Example (continued)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Description</th>
</tr>
</thead>
</table>
| **rejoin-timeout**| Specifies the time interval, in seconds, for the AMS to wait before declaring a member interface down. If the failed member comes back online during this period, it can rejoin the AMS and resume traffic forwarding.
 The range is 0 through 1000 seconds. |
| **enable-rejoin** | Specifies whether a failed interface be allowed to rejoin the AMS when it comes back online.
 If this statement is not included in the configuration, you must manually add the interface to the AMS when the interface is back online. |
| **preferred-backup** | Designates a member interface as the floating backup. |
| **interface-services** | Specifies a service interface, an AMS interface in this example, to handle interface services. |
| **hash-keys** | Specifies the load-balancing hash keys. You can configure the following hash key values: **source-ip**, **destination-ip**, **iif** (incoming interface), **oif** (outgoing interface), and **protocol**.
 NOTE: For services that require traffic symmetry, you must configure symmetrical hashing. Symmetrical hashing configuration ensures that both forward and reverse traffic are routed through the same member interface. |

Results

From the configuration mode, confirm your configuration by entering the `show interfaces ams0` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
user@router1# show interfaces ams0
load-balancing-options {
    member-interface mams-0/0/0;
    member-interface mams-0/1/0;
    member-interface mams-1/0/0;
    member-interface mams-1/1/0;
    member-interface mams-2/0/0;
    member-interface mams-2/1/0;
    member-failure-options {
        drop-member-traffic {
            rejoin-timeout 300;
            enable-rejoin;
        }
    }
    high-availability-options {
        many-to-one {
            preferred-backup mams-1/0/0;
        }
    }
```
Verifying the AMS Configuration

Purpose
Verify the AMS configuration and status of member interfaces.

Action
From operational mode, enter the `show` command.

```
user@router1> show interfaces load-balancing detail

Load-balancing interfaces detail
Interface   : ams0
State       : Up
Last change : 00:01:28
Member count: 6
HA Model    : Many-to-One
Members     :
            Interface    Weight   State
            mams-0/0/0   10       Active
            mams-0/1/0   10       Active
            mams-1/0/0   10       Backup
            mams-1/1/0   10       Active
            mams-2/0/0   10       Active
            mams-2/1/0   10       Active
```

Meaning
Shows that ams0 has six member interfaces with a many-to-one backup configuration. Of the six member interfaces, five are in active state and one, mams-1/0/0, is in backup state.

Copyright © 2019, Juniper Networks, Inc.
Example: Configuring Next-Hop Style Services on an Aggregated Multiservices Interface

Hardware and Software Requirements

MX Series routers with services interfaces installed and running Junos OS Release 13.2.

Overview

Starting with Release 13.2, Junos OS extends next-hop style services support to aggregated multiservices (AMS) interfaces. In releases earlier than 12.3, only interface style services configurations were supported on AMS interfaces.

The next-hop style services configuration on AMS interfaces is different from the interface style services configuration. For next-hop style services, the load-balancing hash keys are defined as part of the logical unit configuration of the AMS interface. For interface style services, the hash keys configuration falls under the service-set configuration.

This example explains the next-hop style services configuration on an AMS interface, and shows the verification steps to verify that the configuration is working correctly.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Configuring an aggregated multiservices interface

set interfaces ams0 load-balancing-options member-interface mams-1/0/0
set interfaces ams0 load-balancing-options member-interface mams-1/1/0
set interfaces ams0 load-balancing-options member-interface mams-2/0/0
set interfaces ams0 load-balancing-options member-interface mams-2/1/0
set interfaces ams0 unit 1 family inet
set interfaces ams0 unit 1 service-domain inside
set interfaces ams0 unit 2 family inet
set interfaces ams0 unit 2 service-domain outside

Configuring Routing Instances that Use AMS interfaces

set routing-instances ri-internal instance-type virtual-router
set routing-instances ri-internal interface ge-0/0/2.0
set routing-instances ri-internal interface ams0.1
set routing-instances ri-internal routing-options static route 22.22.22.0/24 next-hop ams0.1
set routing-instances ri-external instance-type virtual-router
set routing-instances ri-external interface ge-2/0/6.0
set routing-instances ri-external interface ams0.2
set routing-instances ri-external routing-options static route 0.0.0.0/0 next-hop ams0.2

Configuring Hash Keys
set interfaces ams0 unit 1 load-balancing-options hash-keys ingress-key source-ip protocol
set interfaces ams0 unit 2 load-balancing-options hash-keys ingress-key destination-ip protocol

Configure Next Hop Services
set services service-set ams-test stateful-firewall-rules sfw1
set services service-set ams-test next-hop-service inside-service-interface ams0.1
set services service-set ams-test next-hop-service outside-service-interface ams0.2

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” in the CLI User Guide.

1. Configure an aggregated multiservices interface and the load-balancing options.

 [edit interfaces ams0]
 user@router1# set load-balancing-options member-interface mams-1/0/0
 user@router1# set load-balancing-options member-interface mams-1/1/0
 user@router1# set load-balancing-options member-interface mams-2/0/0
 user@router1# set load-balancing-options member-interface mams-2/1/0
 user@router1# set unit 1 family inet
 user@router1# set unit 1 service-domain inside
 user@router1# set unit 2 family inet
 user@router1# set unit 2 service-domain outside

2. Configure routing instances that use the aggregated multiservices interfaces configured in the first step.

 [edit routing-instances]
 user@router1# set ri-internal instance-type virtual-router
 user@router1# set ri-internal interface ge-0/0/2.0
 user@router1# set ri-internal interface ams0.1
 user@router1# set ri-internal routing-options static route 22.22.22.0/24 next-hop ams0.1
 user@router1# set ri-external instance-type virtual-router
 user@router1# set ri-external interface ge-2/0/6.0
 user@router1# set ri-external interface ams0.2
 user@router1# set ri-external routing-options static route 0.0.0.0/0 next-hop ams0.2

3. Configure hash keys for the aggregated multiservices interfaces.

 NOTE: Unlike in the interface-style configuration where hash keys are defined in the service-set configuration, for next-hop services, the hash keys are specified in the AMS configuration under the logical units.
4. Configure next-hop style services under the service-set configuration.

4. Configure next-hop style services under the service-set configuration.

[edit interfaces ams0]
user@router1# set unit 1 load-balancing-options hash-keys ingress-key source-ip protocol
user@router1# set unit 2 load-balancing-options hash-keys ingress-key destination-ip protocol

5. Commit the configuration.

[edit]
user@router1# commit

Results From the configuration mode, confirm your configuration by entering the show interfaces ams0, show routing-instances, and show services service-set ams-test commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@router1# show interfaces ams0
load-balancing-options {
 member-interface mams-1/0/0;
 member-interface mams-1/1/0;
 member-interface mams-2/0/0;
 member-interface mams-2/1/0;
 member-failure-options {
 redistribute-all-traffic {
 enable-rejoin;
 }
 }
}
unit 1 {
 family inet;
 service-domain inside;
 load-balancing-options {
 hash-keys {
 ingress-key [source-ip protocol];
 }
 }
}
unit 2 {
 family inet;
 service-domain outside;
 load-balancing-options {
 hash-keys {
 ingress-key [destination-ip protocol];
 }
 }
}
Example: Configuring Static Source Translation on AMS Infrastructure

This example shows a static source translation configured on an AMS interface. The flows will be load balanced across member interfaces with this example.

Configure the AMS interface `ams0` with load balancing options.

```
[edit interfaces ams0]
load-balancing-options {
  member-interface mams-5/0/0;
  member-interface mams-5/1/0;
}
unit 1 {
  family inet;
```
Configure hashing for the service set for both ingress and egress traffic.

```plaintext
[edit services service-set ss1]
interface-service {
    service-interface ams0.1;
    load-balancing-options {
        hash-keys {
            ingress-key destination-ip;
            egress-key source-ip;
        }
    }
}
```

NOTE: Hashing is determined based on whether the service set is applied on the ingress or egress interface.

Configure two NAT pools because you have configured two member interfaces for the AMS interface.

```plaintext
[edit services]
nat {
    pool p1 {
        address-range low 20.1.1.80 high 20.1.1.80;
    }
    pool p2 {
        address 20.1.1.81/32;
    }
}
```

Configure the NAT rule and translation.

```plaintext
[edit services]
nat {
    rule r1 {
        match-direction input;
        term t1 {
            from {
                source-address {
                    20.1.1.2/32;
                }
            }
            then {
                translated {
```
source-pool p1;
translation-type {
 basic-nat44;
}
}
}
term t1 {
 from {
 source-address {
 40.1.1.2/32;
 }
 }
 then {
 translated {
 source-pool p2;
 translation-type {
 basic-nat44;
 }
 }
 }
}
}

NOTE: A similar configuration can be applied for translation types dynamic-nat44 and napt-44. Twice NAT cannot run on AMS infrastructure at this time.

Related Documentation
- Configuring Load Balancing on AMS Infrastructure on page 874
- Understanding Aggregated Multiservices Interfaces on page 865
PART 12

Handling VoIP and Layer 2 Traffic

- Handling VoIP Traffic Using Voice Services on page 893
- Tunneling PPP Packets Across a Network Using Layer 2 Tunneling on page 903
CHAPTER 48
Handling VoIP Traffic Using Voice Services

- Voice Services Overview on page 893
- Configuring Services Interfaces for Voice Services on page 894
- Configuring Encapsulation for Voice Services on page 897
- Configuring Network Interfaces for Voice Services on page 898
- Examples: Configuring Voice Services on page 899

Voice Services Overview

Adaptive services interfaces include a voice services feature that allows you to specify interface type lsq-fpc/pic/port to accommodate voice over IP (VoIP) traffic. This interface uses compressed RTP (CRTP), which is defined in RFC 2508, *Compressing IP/UDP/RTP Headers for Low-Speed Serial Links*.

CRTP enables VoIP traffic to use low-speed links more effectively, by compressing the 40-byte IP/UDP/RTP header down to 2 to 4 bytes in most cases.

Voice services on the AS and MultiServices PICs support single-link PPP-encapsulated IPv4 traffic over the following physical interface types: ATM2, DS3, E1, E3, OC3, OC12, STM1, and T1, including the channelized versions of these interfaces.

Voice services do not require a separate service rules configuration.

Voice services also support LFI on Juniper Networks M Series Multiservice Edge routers, except the M320 router. For more information about configuring voice services, see “Configuring Services Interfaces for Voice Services” on page 894.

For link services IQ interfaces (lsq) only, you can configure CRTP with multiclass MLPPP (MCML). MCML greatly simplifies packet ordering issues that occur when multiple links are used. Without MCML, all voice traffic belonging to a single flow is hashed to a single link in order to avoid packet ordering issues. With MCML, you can assign voice traffic to a high-priority class, and you can use multiple links. For more information about MCML support on link services IQ interfaces, see “Configuring Link Services and CoS on Services PICs” on page 728.

Related Documentation

- Configuring Services Interfaces for Voice Services on page 894
- Configuring Encapsulation for Voice Services on page 897
Configuring Services Interfaces for Voice Services

You define voice service properties such as compression by configuring statements and values for a voice services interface, specified by the interface type lsq-. You can include the following statements:

```plaintext
encapsulation mlppp;
family inet {
    address address;
}
compression {
    rtp {
        f-max-period number;
        maximum-contexts number <force>;
        port {
            minimum port-number;
            maximum port-number;
        }
        queues [queue-numbers];
    }
}
fragment-threshold bytes;
```

You can include these statements at the following hierarchy levels:

- [edit interfaces (lsq | ls)-fpc/pic/port unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces (lsq | ls)-fpc/pic/port unit logical-unit-number]

The following sections provide detailed instructions for configuring for voice services on services interfaces:

- Configuring the Logical Interface Address for the MLPPP Bundle on page 894
- Configuring Compression of Voice Traffic on page 895
- Configuring Delay-Sensitive Packet Interleaving on page 896
- Example: Configuring Compression of Voice Traffic on page 896

Configuring the Logical Interface Address for the MLPPP Bundle

To configure the logical address for the MLPPP bundle, include the `address` statement:

```plaintext
address address {
    ...}
```
You can configure this statement at the following hierarchy levels:

- `[edit interfaces (lsq | ls)-fpc/pic/port unit logical-unit-number family inet]`
- `[edit logical-systems logical-system-name interfaces (lsq | ls)-fpc/pic/port unit logical-unit-number family inet]`

`address` specifies an IP address for the interface. AS and Multiservices PICs support only IP version 4 (IPv4) addresses, which are therefore configured under the `family inet` statement.

For information on other addressing properties you can configure that are not specific to service interfaces, see the *Junos OS Network Interfaces Library for Routing Devices*.

Configuring Compression of Voice Traffic

You can specify how a services interface handles voice traffic compression by including the `compression` statement:

```plaintext
compression {
  rtp {
    f-max-period number;
    maximum-contexts number <force>;
    port {
      minimum port-number;
      maximum port-number;
    }
    queues [queue-numbers ];
  }
}
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces (lsq | ls)-fpc/pic/port unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces (lsq | ls)-fpc/pic/port unit logical-unit-number]`

The following statements configure the indicated compression properties:

- **f-max-period number**—Sets the maximum number of compressed packets to insert between the transmission of full headers. If you do not include the statement, the default is 255 packets.

- **maximum-contexts number <force>**—Specifies the maximum number of RTP contexts to accept during negotiation. The optional `force` statement requires the PIC to use the value specified for maximum RTP contexts, regardless of the negotiated value. This option enables interoperation with Junos OS Releases that base the RTP context value on link speed.

- **port, minimum port-number, and maximum port-number**—Specify the lower and upper boundaries for a range of UDP destination port values on which RTP compression takes
effect. Values for `port-number` can range from 0 through 65,535. RTP compression is applied to traffic transiting the ports within the specified range.

- **queues [queue-numbers]**—Specifies one or more of queues `q0`, `q1`, `q2`, and `q3`. RTP compression is applied to the traffic in the specified queues.

NOTE: If you specify both a port range and one or more queues, compression takes place if either condition is met.

Configuring Delay-Sensitive Packet Interleaving

When you configure CRTP, the software automatically enables link fragmentation and interleaving (LFI). LFI reduces excessive delays by fragmenting long packets into smaller packets and interleaving them with real-time frames. This allows real-time and non-real-time data frames to be carried together on lower-speed links without causing excessive delays to the real-time traffic. When the peer interface receives the smaller fragments, it reassembles the fragments into their original packet. For example, short delay-sensitive packets, such as packetized voice, can race ahead of larger delay-insensitive packets, such as common data packets.

By default, LFI is always active when you include the `compression rtp` statement at the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level. You control the operation of LFI indirectly by setting the `fragment-threshold` statement on the same logical interface. For example, if you include the `fragment-threshold 256` statement at the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level, all IP packets larger than 256 bytes are fragmented.

Example: Configuring Compression of Voice Traffic

Configure compression on a T1 interface with MLPPP encapsulation. Configure fragmentation for all IP packets larger than 128 bytes.

```plaintext
[edit interfaces]
t1-1/0/0 {  
  unit 0 {    
    family mlppp {       
      bundle lsq-1/1/0;    
    }               
  }            
}                 
lsq-1/1/0 {  
  encapsulation mlppp;       
  unit 1 {     
    compression {       
      rtp {          
        port minimum 2000 maximum 64009;       
      }      
    }   
    family inet {   
      address 30.1.1.2/24;   
    }   
}  
```
Configuring Encapsulation for Voice Services

Voice services interfaces support the following logical interface encapsulation types:

- Multilink Point-to-Point Protocol (MLPPP), which is the default encapsulation
- ATM2 IQ MLPPP over AAL5 LLC
- Frame Relay PPP

For general information on encapsulation, see the Junos OS Network Interfaces Library for Routing Devices. You can also configure physical interface encapsulation on voice services interfaces.

To configure voice services encapsulation, include the `encapsulation` statement:

```
encapsulation type;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`

For voice services interfaces, the valid values for the `type` variable are `atm-mlppp-llc`, `frame-relay-ppp` or `multilink-ppp`.

You must also configure the physical interface with the corresponding encapsulation type, either Frame Relay or PPP. LSQ interfaces are supported by the following physical interface types: ATM2 IQ, DS3, E1, E3, OC3, OC12, STMI, and T1, including the channelized versions of these interfaces. For examples, see “Examples: Configuring Voice Services” on page 899.

NOTE: The only protocol type supported with `frame-relay-ppp` encapsulation is `family mlppp`.
Configuring Network Interfaces for Voice Services

To complete a voice services interface configuration, you need to configure the physical network interface with either MLPPP encapsulation and a voice services bundle or PPP encapsulation and a compression interface, as described in the following sections:

- Configuring Voice Services Bundles with MLPPP Encapsulation on page 898
- Configuring the Compression Interface with PPP Encapsulation on page 898

Configuring Voice Services Bundles with MLPPP Encapsulation

For voice services interfaces, you configure the link bundle as a channel. The physical interface is usually connected to networks capable of supporting MLPPP; the interface types supported for voice traffic are T1, E1, T3, E3, OC3, OC12, and STM1, including channelized versions of these interfaces.

NOTE:
For M Series routers and T Series routers, the following caveats apply:

- Maximum supported throughput on the bundle interfaces is 45 Mbps.
- Bundling of the logical interfaces under a T3 physical interface into the same or different bundles is not supported.

To configure a physical interface link for MLPPP, include the following statement:

```
bundle interface-name;
```

You can configure this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number family mlppp]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family mlppp]`

When you configure `family mlppp`, no other protocol configuration is allowed. For more information on link bundles, see Configuring the Links in a Multilink or Link Services Bundle.

Configuring the Compression Interface with PPP Encapsulation

To configure the physical interface for PPP encapsulation, you also need to specify the services interface to be used for voice compression: a Link Services IQ (lsq-) interface.
To configure the compression interface, include the `compression-device` statement:

```
compression-device interface-name;
```

You can configure this statement at the following hierarchy levels:

- `[edit interfaces (lsq | ls)-fpc/pic/port unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces (lsq | ls)-fpc/pic/port unit logical-unit-number]`

Related Documentation

- Voice Services Overview on page 893
- Configuring Services Interfaces for Voice Services on page 894
- Configuring Encapsulation for Voice Services on page 897
- Examples: Configuring Voice Services on page 899

Examples: Configuring Voice Services

Configure voice services using a T1 physical interface and MLPPP bundle encapsulation:

```
[edit interfaces]
t1-0/2/0:1 {
  encapsulation ppp;
  unit 0 {
    family mlppp {
      bundle lsq-1/3/0.1;
    }
  }
}
lsq-1/3/0 {
  unit 1 {
    encapsulation mlppp;
    family inet {
      address 10.5.5.2/30;
    }
    compression {
      rtp {
        f-max-period 100;
        queues [ q1 q2 ];
        port {
          minimum 16384;
          maximum 32767;
        }
      }
      fragment-threshold 128;
    }
  }
}
```
Configure voice services using Frame Relay encapsulation without bundling:

```conf
[edit interfaces]
t1-1/0/0 {
    encapsulation frame-relay;
    unit 0 {
        dci 100;
        encapsulation frame-relay-ppp;
        compression-device lsq-2/0/0.0;
    }
}
lsq-2/0/0 {
    unit 0 {
        compression {
            rtp {
                f-max-period 100;
                queues [ q1 q2 ];
                port {
                    minimum 16000;
                    maximum 32000;
                }
            }
        }
        family inet {
            address 10.1.1.1/32;
        }
    }
}
```

Configure voice services using an ATM2 physical interface (the corresponding class-of-service configuration is provided for illustration):

```conf
[edit interfaces]
at-1/2/0 {
    atm-options {
        vpi 0;
        pic-type atm2; # only ATM2 PICs are supported
    }
    unit 0 {
        vci 0.69;
        encapsulation atm-mlppp-llc;
        family mlppp {
            bundle lsq-1/3/0.10;
        }
    }
    unit 1 {
        vci 0.42;
        encapsulation atm-mlppp-llc;
        family mlppp {
            bundle lsq-1/3/0.11;
        }
    }
}
lsq-1/3/0 {
    unit 10 {
```
encapsulation multilink-ppp;
}
Large packets need to be fragmented.
Fragmentation can also be specified per forwarding class.
fragment-threshold 320;
compression {
 rtp {
 port minimum 2000 maximum 64009;
 }
}
}
unit 11 {
 encapsulation multilink-ppp;
}
fragmentation-threshold 160;
[edit class-of-service]
scheduler-maps {
sched {
 # Scheduling parameters apply to bundles on the AS or Multiservices PIC.
 # Unlike DS3/SONET interfaces, there is no need to create
 # a separate scheduler map for the ATM PIC. ATM defines
 # CoS constructs under the [edit interfaces at: fpc/pic/port] hierarchy.
 ...
}
}
fragmentation-maps {
 fragmap {
 forwarding-class {
 ef {
 # In this example, voice is carried in the ef queue.
 # It is interleaved with bulk data.
 # Alternatively, you could use multiclass MLPPP to
 # carry multiple classes of traffic in different
 # multilink classes.
 no-fragmentation;
 }
 }
 }
}
interfaces {
 # Assign fragmentation and scheduling parameters to LSQ interfaces.
 lsq-1/3/0 {
 unit 0 {
 shaping-rate 512k;
 scheduler-map sched;
 fragmentation-map fragmap;
 }
 unit 1 {
 shaping-rate 128k;
 scheduler-map sched;
 fragmentation-map fragmap;
 }
 }
}
Tunneling PPP Packets Across a Network Using Layer 2 Tunneling

Layer 2 Tunneling Protocol Overview on page 903
L2TP Services Configuration Overview on page 904
L2TP Minimum Configuration on page 905
Configuring L2TP Tunnel Groups on page 907
Configuring the Identifier for Logical Interfaces that Provide L2TP Services on page 911
AS PIC Redundancy for L2TP Services on page 913
Examples: Configuring L2TP Services on page 914
Tracing L2TP Operations on page 917

Layer 2 Tunneling Protocol Overview

L2TP is defined in RFC 2661, *Layer Two Tunneling Protocol (L2TP)*.

L2TP facilitates the tunneling of PPP packets across an intervening network in a way that is as transparent as possible to both end users and applications. It employs access profiles for group and individual user access, and uses authentication to establish secure connections between the two ends of each tunnel. Multilink PPP functionality is also supported.

The L2TP services are supported on the following routers only:

- M7i routers with AS PICs
- M10i routers with AS and MultiServices 100 PICs
- M120 routers with AS, MultiServices 100, and MultiServices 400 PICs
- On MX Series routers, the L2TP access concentrator (LAC) and L2TP network server (LNS) functions are supported only on MPCs; they are not supported on any services PIC or MS-DPC. For details about MPC support for L2TP, see the *MX Series Interface Module Reference*

For more information, see "L2TP Services Configuration Overview" on page 904.
L2TP Services Configuration Overview

The statements for configuring L2TP services are found at the following hierarchy levels:

- **[edit services l2tp tunnel-group <group-name>]**
 The L2TP tunnel-group statement identifies an L2TP instance or L2TP server. Associated statements specify the local gateway address on which incoming tunnels and sessions are accepted, the Adaptive Services (AS) Physical Interface Card (PIC) that processes data for the sessions in this tunnel group, references to L2TP and PPP access profiles, and other attributes for configuring window sizes and timer values.

- **[edit interfaces sp-fpc/pic/port unit logical-unit-number dial-options]**
 The dial-options statement includes configuration for the l2tp-interface-id statement and the shared/dedicated flag. The interface identifier associates a user session with a logical interface. Sessions can use either shared or dedicated logical interfaces. To run routing protocols, a session must use a dedicated logical interface.

- **[edit access profile profile-name client name l2tp]**
 Tunnel profiles are defined at the [edit access] hierarchy level. Tunnel clients are defined with authentication, multilink negotiation and fragmentation, and other L2TP attributes in these profiles.

- **[edit access profile profile-name client name ppp]**
 User profiles are defined at the [edit access] hierarchy level. User clients are defined with authentication and other PPP attributes in these profiles. These client profiles are used when local authentication is specified.

- **[edit access radius-server address]**
 When you configure authentication-order radius at the [edit access profile profile-name] hierarchy level, you must configure a RADIUS service at the [edit access radius-server] hierarchy level.

NOTE: For more information about configuring properties at the [edit access] hierarchy level, see the Junos OS Administration Library. For information about L2TP LAC and LNS configurations on MX Series routers for subscriber access, see L2TP for Subscriber Access Overview in the Junos Subscriber Access Configuration Guide.
L2TP Minimum Configuration

To configure L2TP services, you must perform at least the following tasks:

• Define a tunnel group at the [edit services l2tp] hierarchy level with the following attributes:
 - l2tp-access-profile—Profile name for the L2TP tunnel.
 - ppp-access-profile—Profile name for the L2TP user.
 - local-gateway—Address for the L2TP tunnel.
 - service-interface—AS PIC interface for the L2TP service.
 - Optionally, you can configure traceoptions for debugging purposes.

The following example shows a minimum configuration for a tunnel group with trace options:

```
[edit services l2tp]
tunnel-group finance-Ins-server {
  l2tp-access-profile westcoast_bldg_1_tunnel;
  ppp-access-profile westcoast_bldg_1;
  local-gateway {
    address 10.21.255.129;
  }
  service-interface sp-1/3/0;
}
traceoptions {
  flag all;
  filter {
    protocol udp;
    protocol l2tp;
    protocol ppp;
    protocol radius;
  }
}
```

• At the [edit interfaces] hierarchy level:
 - Identify the physical interface at which L2TP tunnel packets enter the router, for example ge-0/3/0.
 - Configure the AS PIC interface with unit 0 family inet defined for IP service, and configure another logical interface with family inet and the dial-options statement.

The following example shows a minimum interfaces configuration for L2TP:

```
[edit interfaces]
ge-0/3/0 {
  unit 0 {
    family inet {
      address 10.58.255.129/28;
    }
  }
```
• At the [edit access] hierarchy level:

 • Configure a tunnel profile. Each client specifies a unique L2TP Access Concentrator (LAC) name with an interface-id value that matches the one configured on the AS PIC interface unit; shared-secret is authentication between the LAC and the L2TP Network Server (LNS).

 • Configure a user profile. If RADIUS is used as the authentication method, it needs to be defined.

 • Define the RADIUS server with an IP address, port, and authentication data shared between the router and the RADIUS server.

 NOTE: When the L2TP Network Server (LNS) is configured with RADIUS authentication, the default behavior is to accept the preferred RADIUS-assigned IP address. Previously, the default behavior was to accept and install the nonzero peer IP address that came into the IP-Address option of the IPCP Configuration Request packet.

 • Optionally, you can define a group profile for common attributes, for example keepalive 0 to turn off keepalive messages.

The following example shows a minimum profiles configuration for L2TP:

```plaintext
[edit access]
group-profile westcoast_users {
  ppp {
    keepalive 0;
  }
}
profile westcoast_bldg_1_tunnel {
  client production {
    l2tp {
      interface-id test;
      shared-secret "$ABC123"; # SECRET-DATA
    }
    user-group-profile westcoast_users;
  }
}
```
Configuring L2TP Tunnel Groups

To establish L2TP service on a router, you need to identify an L2TP tunnel group and specify a number of values that define which access profiles, interface addresses, and other properties to use in creating a tunnel. To identify the tunnel group, include the `tunnel-group` statement at the `[edit services l2tp]` hierarchy level.

NOTE: If you delete a tunnel group or mark it inactive, all L2TP sessions in that tunnel group are terminated. If you change the value of the local-gateway address or the service-interface statement, all L2TP sessions using those settings are terminated. If you change or delete other statements at the `[edit services l2tp tunnel-group group-name]` hierarchy level, new tunnels you establish will use the updated values but existing tunnels and sessions are not affected.

This following sections explain how to configure L2TP tunnel groups:

- Configuring Access Profiles for L2TP Tunnel Groups on page 908
- Configuring the Local Gateway Address and PIC on page 908
- Configuring Window Size for L2TP Tunnels on page 909
- Configuring Timers for L2TP Tunnels on page 909
- Hiding Attribute-Value Pairs for L2TP Tunnels on page 909
- Configuring System Logging of L2TP Tunnel Activity on page 910
Configuring Access Profiles for L2TP Tunnel Groups

To validate L2TP connections and session requests, you set up access profiles by configuring the `profile` statement at the `[edit access]` hierarchy level. You need to configure two types of profiles:

- L2TP tunnel access profile, which validates all L2TP connection requests to the specified local gateway address
- PPP access profile, which validates all PPP session requests through L2TP tunnels established to the local gateway address

For more information on configuring the profiles, see the Junos OS Administration Library. A profile example is included in “Examples: Configuring L2TP Services” on page 914.

To associate the profiles with a tunnel group, include the `l2tp-access-profile` and `ppp-access-profile` statements at the `[edit services l2tp tunnel-group group-name]` hierarchy level:

```
l2tp-access-profile profile-name;
ppp-access-profile profile-name;
```

Configuring the Local Gateway Address and PIC

When you configure an L2TP group, you must also define a local address for the L2TP tunnel connections and the AS PIC that processes the requests:

- To configure the local gateway IP address, include the `address` statement at the `[edit services l2tp tunnel-group group-name local-gateway]` hierarchy level:
  ```
  address address;
  ```
- To configure the AS PIC, include the `service-interface` statement at the `[edit services l2tp tunnel-group group-name]` hierarchy level:
  ```
  service-interface sp-fpc/pic/port;
  ```

You can optionally specify the logical unit number along with the service interface. If specified, the unit is used as a logical interface representing PPP sessions negotiated using this profile.

NOTE: If you change the local gateway address or the service interface configuration, all L2TP sessions using those settings are terminated.

Dynamic class-of-service (CoS) functionality is supported on L2TP LNS sessions or L2TP sessions with ATM VCs, as long as the L2TP session is configured to use an IQ2 PIC on the egress interface. For more information, see the Class of Service Feature Guide (Routers and EX9200 Switches).
Configuring Window Size for L2TP Tunnels

You can configure the maximum window size for packet processing at each end of the L2TP tunnel:

- The receive window size limits the number of concurrent packets the server processes. By default, the maximum is 16 packets. To change the window size, include the `receive-window` statement at the `[edit services l2tp tunnel-group group-name]` hierarchy level:

  ```
  receive-window packets;
  ```

- The maximum-send window size limits the other end's receive window size. The information is transmitted in the receive window size attribute-value pair. By default, the maximum is 32 packets. To change the window size, include the `maximum-send-window` statement at the `[edit services l2tp tunnel-group group-name]` hierarchy level:

  ```
  maximum-send-window packets;
  ```

Configuring Timers for L2TP Tunnels

You can configure the following timer values that regulate L2TP tunnel processing:

- Hello interval—If the server does not receive any messages within a specified time interval, the router software sends a hello message to the tunnel's remote peer. By default, the interval length is 60 seconds. If you configure a value of 0, no hello messages are sent. To configure a different value, include the `hello-interval` statement at the `[edit services l2tp tunnel-group group-name]` hierarchy level:

  ```
  hello-interval seconds;
  ```

- Retransmit interval—By default, the retransmit interval length is 30 seconds. To configure a different value, include the `retransmit-interval` statement at the `[edit services l2tp tunnel-group group-name]` hierarchy level:

  ```
  retransmit-interval seconds;
  ```

- Tunnel timeout—If the server cannot send any data through the tunnel within a specified time interval, it assumes that the connection with the remote peer has been lost and deletes the tunnel. By default, the interval length is 120 seconds. To configure a different value, include the `tunnel-timeout` statement at the `[edit services l2tp tunnel-group group-name]` hierarchy level:

  ```
  tunnel-timeout seconds;
  ```

Hiding Attribute-Value Pairs for L2TP Tunnels

Once an L2TP tunnel has been established and the connection authenticated, information is encoded by means of attribute-value pairs. By default, this information is not hidden.
To hide the attribute-value pairs once the shared secret is known, include the hide-avps statement at the \[edit services l2tp tunnel-group group-name\] hierarchy level:

```
hide-avps;
```

Configuring System Logging of L2TP Tunnel Activity

You can specify properties that control how system log messages are generated for L2TP services.

To configure interface-wide default system logging values, include the syslog statement at the \[edit services l2tp tunnel-group group-name\] hierarchy level:

```
syslog {
    host hostname {
        services severity-level;
        facility-override facility-name;
        log-prefix prefix-value;
    }
}
```

Configure the host statement with a hostname or IP address that specifies the system log target server. The hostname local directs system log messages to the Routing Engine. For external system log servers, the hostname must be reachable from the same routing instance to which the initial data packet (that triggered session establishment) is delivered. You can specify only one system logging hostname.

Table 31 on page 910 lists the severity levels that you can specify in configuration statements at the \[edit services l2tp tunnel-group group-name syslog host hostname\] hierarchy level. The levels from emergency through info are in order from highest severity (greatest effect on functioning) to lowest.

Table 31: System Log Message Severity Levels

<table>
<thead>
<tr>
<th>Severity Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>Includes all severity levels</td>
</tr>
<tr>
<td>emergency</td>
<td>System panic or other condition that causes the router to stop functioning</td>
</tr>
<tr>
<td>alert</td>
<td>Conditions that require immediate correction, such as a corrupted system database</td>
</tr>
<tr>
<td>critical</td>
<td>Critical conditions, such as hard drive errors</td>
</tr>
<tr>
<td>error</td>
<td>Error conditions that generally have less serious consequences than errors in the emergency, alert, and critical levels</td>
</tr>
<tr>
<td>warning</td>
<td>Conditions that warrant monitoring</td>
</tr>
<tr>
<td>notice</td>
<td>Conditions that are not errors but might warrant special handling</td>
</tr>
</tbody>
</table>
Table 31: System Log Message Severity Levels (continued)

<table>
<thead>
<tr>
<th>Severity Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>info</td>
<td>Events or non-error conditions of interest</td>
</tr>
</tbody>
</table>

We recommend setting the system logging severity level to `error` during normal operation. To monitor PIC resource usage, set the level to `warning`. To gather information about an intrusion attack when an intrusion detection system error is detected, set the level to `notice` for a specific service set. To debug a configuration or log Network Address Translation (NAT) events, set the level to `info`.

For more information about system log messages, see the System Log Explorer.

To use one particular facility code for all logging to the specified system log host, include the `facility-override` statement at the `[edit services l2tp tunnel-group group-name syslog host hostname]` hierarchy level:

```
facility-override facility-name;
```

The supported facilities include: `authorization`, `daemon`, `ftp`, `kernel`, `user`, and `local0` through `local7`.

To specify a text prefix for all logging to this system log host, include the `log-prefix` statement at the `[edit services l2tp tunnel-group group-name syslog host hostname]` hierarchy level:

```
log-prefix prefix-text;
```

Related Documentation
- L2TP Services Configuration Overview on page 904
- L2TP Minimum Configuration on page 905
- Configuring the Identifier for Logical Interfaces that Provide L2TP Services on page 911
- Tracing L2TP Operations on page 917
- Examples: Configuring L2TP Services on page 914

Configuring the Identifier for Logical Interfaces that Provide L2TP Services

You can configure L2TP services on adaptive services interfaces on M7i, M10i, M120, and MX Series routers only. You must configure the logical interface to be dedicated or shared. If a logical interface is dedicated, it can represent only one session at a time. A shared logical interface can have multiple sessions.

To configure the logical interface, include the `l2tp-interface-id` statement at the `[edit interfaces interface-name unit logical-unit-number dial-options]` hierarchy level:

```
l2tp-interface-id name; (dedicated | shared);
```
The l2tp-interface-id name configured on the logical interface must be replicated at the [edit access profile name] hierarchy level:

- For a user-specific identifier, include the l2tp-interface-id statement at the [edit access profile name ppp] hierarchy level.
- For a group identifier, include the l2tp-interface-id statement at the [edit access profile name l2tp] hierarchy level.

You can configure multiple logical interfaces with the same interface identifier, to be used as a pool for several users. For more information on configuring access profiles, see the Junos OS Administration Library.

NOTE: If you delete the dial-options statement settings configured on a logical interface, all L2TP sessions running on that interface are terminated.

Example: Configuring Multilink PPP on a Shared Logical Interface

Multilink PPP is supported on either shared or dedicated logical interfaces. The following example can be used to configure many multilink bundles on a single shared interface:

```plaintext
interfaces {
    sp-1/3/0 {
        traceoptions {
            flag all;
        }
        unit 0 {
            family inet;
        }
        unit 20 {
            dial-options {
                l2tp-interface-id test;
                shared;
            }
            family inet;
        }
    }
}
access {
    profile t {
        client test {
            l2tp {
                interface-id test;
                multilink;
                shared-secret "$ABC123"; # SECRET-DATA
            }
        }
    }
    profile u {
        authentication-order radius;
    }
    radius-server {
```
192.168.65.63 {
 port 1812;
 secret "$ABC123"; # SECRET-DATA
}
}
services {
l2tp {
tunnel-group 1 {
l2tp-access-profile t;
ppp-access-profile u;
local-gateway {
 address 10.70.1.1;
}
service-interface sp-1/3/0;
}
traceoptions {
 flag all;
 debug-level packet-dump;
 filter {
 protocol l2tp;
 protocol ppp;
 protocol radius;
 }
}
}
}

Related Documentation
- L2TP Services Configuration Overview on page 904
- L2TP Minimum Configuration on page 905
- Configuring L2TP Tunnel Groups on page 907
- Tracing L2TP Operations on page 917
- Examples: Configuring L2TP Services on page 914

AS PIC Redundancy for L2TP Services

L2TP services support AS PIC redundancy. To configure redundancy, you specify a redundancy services PIC (rsp) interface in which the primary AS PIC is active and a secondary AS PIC is on standby. If the primary AS PIC fails, the secondary PIC becomes active, and all service processing is transferred to it. If the primary AS PIC is restored, it remains in standby and does not preempt the secondary AS PIC; you need to manually restore the services to the primary PIC. To determine which PIC is currently active, issue the show interfaces redundancy command.
NOTE: On L2TP, the only service option supported is warm standby, in which one backup PIC supports multiple working PICs. Recovery times are not guaranteed, because the configuration must be completely restored on the backup PIC after a failure is detected. The tunnels and sessions are torn down upon switchover and need to be restarted by the LAC and PPP client, respectively. However, configuration is preserved and available on the new active PIC, although the protocol state needs to be reestablished.

As with the other AS PIC services that support warm standby, you can issue the request interfaces (revert | switchover) command to manually switch between primary and secondary L2TP interfaces.

For more information, see “Configuring AS or Multiservices PIC Redundancy” on page 27. For an example configuration, see “Examples: Configuring L2TP Services” on page 914. For information on operational mode commands, see the CLI Explorer.

Related Documentation
- Layer 2 Tunneling Protocol Overview on page 903
- L2TP Services Configuration Overview on page 904
- Configuring AS or Multiservices PIC Redundancy on page 27
- L2TP Minimum Configuration on page 905
- Examples: Configuring L2TP Services on page 914

Examples: Configuring L2TP Services

Configure L2TP with multiple group and user profiles and a pool of logical interfaces for concurrent tunnel sessions:

```
[edit access]
address-pool customer_a {
    address 10.1.1.1/32;
}
address-pool customer_b {
    address-range low 10.2.2.1 high 10.2.3.2;
}
group-profile sunnyvale_users {
    ppp {
        framed-pool customer_a;
        idle-timeout 15;
        primary-dns 192.168.65.1;
        secondary-dns 192.168.65.2;
        primary-wins 192.168.65.3;
        secondary-wins 192.168.65.4;
        interface-id west;
    }
}
group-profile eastcoast_users {
    ppp {
```
framed-pool customer_b;
idle-timeout 20;
primary-dns 192.168.65.5;
secondary-dns 192.168.65.6;
primary-wins 192.168.65.7;
secondary-wins 192.168.65.8;
interface-id east;
}
}
group-profile sunnyvale_tunnel {
l2tp {
 maximum-sessions-per-tunnel 100;
 interface-id west_shared;
}
}
group-profile east_tunnel {
l2tp {
 maximum-sessions-per-tunnel 125;
 interface-id east_shared;
}
}
}
profile sunnyvale_bldg_1 {
 client white {
 chap-secret "$ABC123"; # SECRET-DATA
 ppp {
 idle-timeout 22;
 primary-dns 192.168.65.1;
 framed-ip-address 10.12.12.12/32;
 interface-id east;
 }
 group-profile sunnyvale_users;
 }
 client blue {
 chap-secret "$ABC123"; # SECRET-DATA
 group-profile sunnyvale_users;
 }
}
profile sunnyvale_bldg_1_tunnel {
 client test {
 l2tp {
 shared-secret "$ABC123"; # SECRET-DATA
 maximum-sessions-per-tunnel 75;
 interface-id west_shared;
 ppp-authentication chap;
 }
 group-profile sunnyvale_tunnel;
 }
 client production {
 l2tp {
 shared-secret "$ABC123";
 ppp-authentication chap;
 }
 group-profile sunnyvale_tunnel;
 }
}
[edit services]
[edit interfaces sp-1/3/0]
unit0 {
 family inet;
}
unit10 {
 dial-options {
 l2tp-interface-id foo-user;
 dedicated;
 }
 family inet;
}
unit11 {
 dial-options {
 l2tp-interface-id east;
 dedicated;
 }
 family inet;
}
unit12 {
 dial-options {
 l2tp-interface-id east;
 dedicated;
 }
 family inet;
}
unit21 {
 dial-options {
 l2tp-interface-id west;
 dedicated;
 }
 family inet;
}
unit30 {
 dial-options {
 l2tp-interface-id west_shared;
 }
 family inet;
}
shared;
} family inet;
}
unit 40 {
 dial-options {
 l2tp-interface-id east_shared;
 shared;
 }
 family inet;
}

Configure L2TP redundancy:

interfaces {
 rsp0 {
 redundancy-options {
 primary sp-0/0/0;
 secondary sp-1/3/0;
 }
 unit 0 {
 family inet;
 }
 unit 11 {
 dial-options {
 l2tp-interface-id east_shared;
 shared;
 }
 family inet;
 }
}

Related Documentation

- L2TP Services Configuration Overview on page 904
- L2TP Minimum Configuration on page 905
- Configuring L2TP Tunnel Groups on page 907
- Configuring the Identifier for Logical Interfaces that Provide L2TP Services on page 911
- Tracing L2TP Operations on page 917

Tracing L2TP Operations

Tracing operations track all AS PIC operations and record them in a log file in the /var/log directory. By default, this file is named /var/log/l2tpd.

NOTE: This topic refers to tracing L2TP LNS operations on M Series routers. To trace L2TP LAC operations on MX Series routers, see Tracing L2TP Events for Troubleshooting.
To trace L2TP operations, include the `traceoptions` statement at the `[edit services l2tp]` hierarchy level:

```plaintext
traceoptions {
    debug-level level;
    file <filename> <files number> <match regular-expression> <size maximum-file-size> <world-readable | no-world-readable>;
    filter {
        protocol name;
        user-name username;
    }
    flag flag;
    interfaces interface-name {
        debug-level severity;
        flag flag;
    }
    level (all | error | info | notice | verbose | warning);
    no-remote-trace;
}
```

You can specify the following L2TP tracing flags:

- **all**—Trace everything.
- **configuration**—Trace configuration events.
- **protocol**—Trace routing protocol events.
- **routing-socket**—Trace routing socket events.
- **rpd**—Trace routing protocol process events.

You can specify a trace level for PPP, L2TP, RADIUS, and User Datagram Protocol (UDP) tracing. To configure a trace level, include the `debug-level` statement at the `[edit services l2tp traceoptions]` hierarchy level and specify one of the following values:

- **detail**—Detailed debug information
- **error**—Errors only
- **packet-dump**—Packet decoding information

You can filter by protocol. To configure filters, include the `filter protocol` statement at the `[edit services l2tp traceoptions]` hierarchy level and specify one or more of the following protocol values:

- **ppp**
- **l2tp**
- **radius**
- **udp**

To implement filtering by protocol name, you must also configure either `flag protocol` or `flag all`.
You can also configure traceoptions for L2TP on a specific adaptive services interface. To configure per-interface tracing, include the `interfaces` statement at the `[edit services l2tp traceoptions]` hierarchy level:

```
interfaces interface-name {
    debug-level level;
    flag flag;
}
```

NOTE: Implementing traceoptions consumes CPU resources and affects the packet processing performance.

You can specify the `debug-level` and `flag` statements for the interface, but the options are slightly different from the general L2TP traceoptions. You specify the debug level as `detail`, `error`, or `extensive`, which provides complete PIC debug information. The following flags are available:

- **all**—Trace everything.
- **ipc**—Trace L2TP Inter-Process Communication (IPC) messages between the PIC and the Routing Engine.
- **packet-dump**—Dump each packet's content based on debug level.
- **protocol**—Trace L2TP, PPP, and multilink handling.
- **system**—Trace packet processing on the PIC.

Related Documentation
- L2TP Services Configuration Overview on page 904
- L2TP Minimum Configuration on page 905
- Configuring L2TP Tunnel Groups on page 907
- Configuring the Identifier for Logical Interfaces that Provide L2TP Services on page 911
- Examples: Configuring L2TP Services on page 914
PART 13

Configuration Statements and Operational Commands

• Configuration Statements on page 923
• Operational Commands on page 1363
CHAPTER 50

Configuration Statements

- adaptive-services-pics on page 935
- address (Interfaces) on page 936
- address (Services NAT Pool) on page 937
- address-allocation on page 938
- address-pooling on page 938
- address-range on page 939
- aggregation (IDS) on page 940
- allow-ip-options (Services Stateful Firewall) on page 941
- allow-ip-options (IDS MS-MPC) on page 942
- allow-ipv6-extension-header (IDS MS-MPC) on page 943
- allow-multicast on page 944
- allow-overlapping-nat-pools on page 944
- anti-replay-window-size (Services IPsec VPN) on page 945
- anti-replay-window-size (Services Service Set) on page 946
- app-mapping-timeout on page 947
- application on page 948
- application-protocol on page 949
- application-profile on page 951
- application-set on page 952
- application-sets (Services CoS) on page 953
- application-sets (IDS MS-DPC) on page 953
- application-sets (PCP) on page 954
- application-sets (Services NAT) on page 954
- application-sets (Services Stateful Firewall) on page 955
- applications (Services ALGs) on page 955
- applications (Services CoS) on page 956
- applications (IDS MS-DPC) on page 956
- applications (PCP) on page 957
• applications (Services NAT) on page 957
• applications (Services Stateful Firewall) on page 958
• authentication on page 959
• authentication-algorithm (Services IKE) on page 960
• authentication-algorithm (Services IPsec) on page 961
• authentication-method on page 963
• auxiliary-spi on page 964
• backup-remote-gateway on page 964
• bundle on page 965
• by-destination (IDS MS-DPC) on page 966
• by-destination (IDS MS-MPC) on page 967
• by-pair (IDS MS-DPC) on page 968
• by-protocol (IDS MS-MPC) on page 969
• by-source (IDS MS-DPC) on page 971
• by-source (IDS MS-MPC) on page 972
• bypass-traffic-on-exceeding-flow-limits on page 973
• bypass-traffic-on-pic-failure on page 974
• cg-n-pic on page 975
• child-inactivity-timeout on page 976
• cisco-interoperability on page 977
• class on page 978
• clat-prefix on page 979
• clear-dont-fragment-bit (Interfaces GRE Tunnels) on page 980
• clear-dont-fragment-bit (Services IPsec VPN) on page 981
• clear-dont-fragment-bit (Services NAT Options) on page 981
• clear-dont-fragment-bit (Services Service Set) on page 982
• clear-ike-sas-on-pic-restart on page 983
• clear-ipsec-sas-on-pic-restart on page 983
• compression on page 984
• compression-device (Interfaces) on page 985
• copy-dont-fragment-bit (Services IPsec VPN) on page 985
• copy-dont-fragment-bit (Services Set) on page 986
• cos-rules (Service Set) on page 987
• data (FTP) on page 988
• dead-peer-detection (Services IPsec VPN) on page 989
• description (Services IPsec VPN) on page 990
• destination-address (Services CoS) on page 990
Chapter 50: Configuration Statements

- destination-address (IDS MS-DPC) on page 991
- destination-address on page 991
- destination-address (PCP) on page 992
- destination-address (Services NAT) on page 993
- destination-address (Services Stateful Firewall) on page 994
- destination-address-range (IDS MS-DPC)) on page 995
- destination-address-range (PCP) on page 996
- destination-address-range (Services NAT) on page 997
- destination-address-range (Services Stateful Firewall) on page 998
- destination-pool on page 998
- destination-port on page 999
- destination-port (PCP) on page 1000
- destination-port range on page 1001
- destination-prefix (IDS) on page 1002
- destination-prefix (Services NAT) on page 1003
- destination-prefix-ipv6 (IDS) on page 1004
- destination-prefix-list (PCP) on page 1005
- destination-prefix-list (Services CoS) on page 1006
- destination-prefix-list (Services IDS) on page 1007
- destination-prefix-list (Services NAT) on page 1008
- destination-prefix-list (Services Stateful Firewall) on page 1009
- destined-port on page 1010
- deterministic-port-block-allocation on page 1011
- dh-group on page 1012
- dial-options on page 1013
- direction on page 1014
- disable-natt (Services IPsec VPN) on page 1015
- distinguished-name on page 1016
- dns-alg-pool on page 1017
- dns-alg-prefix on page 1017
- dns-filter on page 1018
- dns-filter-template on page 1021
- drop-member-traffic (Aggregated Multiservices) on page 1023
- ds-lite on page 1024
- dscp (Services CoS) on page 1025
- dynamic on page 1026
- ecmp-alb on page 1027
• ei-mapping-timeout on page 1028
• ei-flow-limit on page 1029
• enable-rejoin (aggregated Multiservices) on page 1030
• encapsulation on page 1031
• encryption on page 1032
• encryption-algorithm on page 1034
• establish-tunnels on page 1035
• f-max-period on page 1036
• facility-override (Service Sets) on page 1037
• facility-override (System Log Reporting) on page 1038
• family (Aggregated Multiservices) on page 1039
• family (Interfaces) on page 1040
• family (Voice Services) on page 1041
• filtering-type on page 1042
• force-entry (IDS MS-DPC) on page 1042
• forwarding-class (Services PIC Classifiers) on page 1043
• forwarding-class (Services CoS Fragmentation Properties) on page 1044
• fragment-limit on page 1045
• fragment-threshold (Forwarding Class Maps) on page 1046
• fragment-threshold (Interfaces LSQ) on page 1047
• fragmentation-map on page 1048
• fragmentation-maps on page 1049
• from (Services CoS) on page 1050
• from (IDS MS-DPC) on page 1051
• from (PCP) on page 1052
• from on page 1053
• from (Services NAT) on page 1054
• from (Services Stateful Firewall) on page 1055
• ftp (Services CoS) on page 1056
• gate-timeout on page 1057
• global-dns-stats-log-timer on page 1058
• group (Traffic Load Balancer) on page 1059
• gw-interface on page 1060
• hash-keys (Aggregated Multiservices) on page 1061
• hash-keys (Interfaces) on page 1064
• header-integrity-check on page 1066
• hello-interval (L2TP) on page 1067
Chapter 50: Configuration Statements

- hide-avps on page 1068
- high-availability-options (Aggregated Multiservices) on page 1069
- hint on page 1070
- host (L2TP) on page 1071
- host (service-set) on page 1072
- hot-standby on page 1073
- icmp-code on page 1074
- icmp-fragment-check (IDS MS-MPC) on page 1074
- icmp-large-packet-check (IDS MS-MPC) on page 1075
- icmp-type on page 1075
- ids-rules on page 1076
- ids-rule-sets on page 1076
- ignore-entry on page 1077
- ike on page 1078
- ike-access-profile on page 1079
- inactivity-timeout on page 1080
- initiate-dead-peer-detection on page 1081
- input (Interfaces) on page 1081
- instance (Traffic Load Balancer) on page 1082
- interface on page 1084
- interface-service (Services Interfaces) on page 1085
- interfaces (Aggregated Multiservices) on page 1086
- interfaces (Voice Services) on page 1087
- interval on page 1088
- ipsec on page 1089
- ipsec-inside-interface on page 1090
- ipsec-vpn-options on page 1091
- ipsec-vpn-rules on page 1092
- ipv6-multicast-interfaces on page 1093
- l2tp-access-profile on page 1094
- land-attack-check on page 1095
- land-attack-check (IDS MS-MPC) on page 1096
- learn-sip-register on page 1097
- lifetime-seconds on page 1098
- link-layer-overhead on page 1099
- limit-ports-per-address on page 1100
- load-balance on page 1101
- load-balancing-options (Aggregated Multiservices) on page 1102
- load-balancing-options (Service Set) on page 1104
- local-certificate on page 1105
- local-gateway (IPSec) on page 1106
- local-gateway (L2TP LNS) on page 1107
- local-id on page 1108
- log-prefix (L2TP) on page 1109
- log-prefix (Services) on page 1109
- logging (Services) on page 1110
- logging (IDS MS-DPC) on page 1111
- lsq-failure-options on page 1111
- manual on page 1112
- many-to-one (Aggregated Multiservices) on page 1113
- map-e on page 1114
- mapping-refresh on page 1116
- mapping-timeout on page 1117
- mapping-type on page 1118
- match-direction (Services CoS) on page 1118
- match-direction (IDS) on page 1119
- match-direction on page 1119
- match-direction (Services NAT) on page 1120
- match-direction (PCP) on page 1121
- match-direction (Services Stateful Firewall) on page 1122
- match-rules-on-reverse-flow on page 1122
- max-drop-flows on page 1123
- max-flows on page 1124
- max-session-setup-rate (Service Set) on page 1125
- max-sessions-per-subscriber on page 1126
- maximum on page 1127
- maximum-contexts on page 1128
- maximum-send-window on page 1129
- member-failure-options (Aggregated Multiservices) on page 1130
- member-interface (Aggregated Multiservices) on page 1132
- message-rate-limit on page 1133
- mlfr-uni-nni-bundles-inline on page 1134
- mode on page 1135
- mss (IDS MS-DPC) on page 1136
• multi-link-layer-2-inline on page 1136
• multilink-class on page 1137
• multilink-max-classes on page 1138
• nat-keepalive (Services IPsec VPN) on page 1139
• nat-options on page 1140
• nat-rule-sets (Service Set) on page 1141
• nat-rules on page 1141
• next-hop-service on page 1142
• no-anti-replay on page 1143
• no-anti-replay (Services Service Set) on page 1144
• no-certificate-chain-in-ike on page 1145
• no-fragmentation on page 1146
• no-ipsec-tunnel-in-traceroute on page 1147
• no-nat-traversal (Services IPsec VPN) on page 1147
• no-per-unit-scheduler on page 1148
• no-termination-request on page 1148
• no-translation on page 1149
• one-to-one (Aggregated Multiservices) on page 1150
• output on page 1151
• overload-pool on page 1151
• overload-prefix on page 1152
• package (Loading on PIC) on page 1152
• passive-mode-tunneling on page 1153
• pba-interim-logging-interval on page 1154
• pcp-rules on page 1154
• pcp-server on page 1155
• per-unit-scheduler on page 1156
• perfect-forward-secrecy (Services) on page 1158
• pgcp on page 1159
• pgcp-rules on page 1159
• pic-boot-timeout on page 1160
• policy (Services IKE) on page 1161
• policy (IPsec) on page 1162
• pool on page 1163
• pool (Service Interface) on page 1164
• port (Services NAT) on page 1165
• port (Services Voice) on page 1167
• port (System Log Messages) on page 1168
• port-forwarding on page 1169
• port-forwarding-mappings on page 1170
• ports-per-session on page 1171
• post-service-filter on page 1171
• ppp-access-profile on page 1172
• pre-shared-key (Services IKE) on page 1173
• preserve-interface on page 1174
• primary (Adaptive Services Interfaces) on page 1175
• primary (Link Services IQ PIC Interfaces) on page 1175
• profile (Traffic Load Balancer) on page 1176
• profile (Web Filter) on page 1179
• proposal (Services IKE) on page 1182
• proposal (Services IPsec VPN) on page 1183
• proposals on page 1184
• protocol (Applications) on page 1185
• protocol (IPsec) on page 1186
• ptsp-rules on page 1187
• queues on page 1187
• real-service (Traffic Load Balancer) on page 1188
• reassembly-timeout on page 1189
• receive-window on page 1190
• redistribute-all-traffic (Aggregated Multiservices) on page 1191
• redundancy-event (Services Redundancy Daemon) on page 1192
• redundancy-options (Adaptive Services Interfaces) on page 1193
• redundancy-options (Aggregated Multiservices) on page 1194
• redundancy-options (Link Services IQ PIC Interfaces) on page 1195
• redundancy-options (Stateful Synchronization) on page 1196
• redundancy-policy (Interchassis Services Redundancy) on page 1197
• redundancy-set on page 1199
• redundancy-set-id (Service Set) on page 1200
• reflexive | revert | reverse on page 1201
• rejoin-timeout (Aggregated Multiservices) on page 1202
• remote-gateway on page 1203
• remote-id on page 1204
• remotely-controlled on page 1205
• respond-bad-spi (Services IKE Policy) on page 1205
- retransmit-interval (Services) on page 1206
- rpc-program-number on page 1207
- routing-engine-services on page 1208
- rtp on page 1209
- rule (Services CoS) on page 1210
- rule (IDS MS-DPC) on page 1211
- rule (IDS MS-MPC) on page 1213
- rule on page 1215
- rule (PCP) on page 1217
- rule (Services NAT) on page 1218
- rule (Services Stateful Firewall) on page 1220
- rule (Softwire) on page 1221
- rule-set (Services CoS) on page 1222
- rule-set (Services IDS) on page 1222
- rule-set on page 1223
- rule-set (Services NAT) on page 1223
- rule-set (Services Stateful Firewall) on page 1224
- rule-set (Softwire) on page 1224
- secondary (Adaptive Services Interfaces) on page 1225
- secondary (Link Services IQ PIC Interfaces) on page 1225
- secure-nat-mapping on page 1226
- secured-port-block-allocation on page 1227
- server (pcp) on page 1229
- service on page 1231
- service-domain on page 1232
- service-filter (Interfaces) on page 1233
- service-interface (Services Interfaces) on page 1234
- service-interface (L2TP Processing) on page 1235
- service-interface-pools on page 1236
- service-set (Interfaces) on page 1237
- service-set (Services) on page 1238
- service-set-options on page 1241
- services (NAT) on page 1242
- session-limit (IDS MS-DPC) on page 1243
- session-limit (IDS MS-MPC) on page 1244
- set-dont-fragment-bit (Services Set) on page 1246
- set-dont-fragment-bit (Services IPsec VPN) on page 1247
• sip-call-hold-timeout on page 1248
• sip on page 1249
• snmp-command on page 1250
• snmp-trap-thresholds on page 1251
• softwire-concentrator on page 1253
• softwire-options on page 1254
• softwire-rules on page 1255
• source-address (PCP) on page 1256
• source-address (Service Sets) on page 1257
• source-address (Services CoS) on page 1258
• source-address (IDS MS-DPC) on page 1259
• source-address on page 1259
• source-address (Services NAT) on page 1260
• source-address (Services Stateful Firewall) on page 1261
• source-address-range (IDS MS-DPC) on page 1262
• source-address-range (PCP) on page 1263
• source-address-range (Services NAT) on page 1264
• source-address-range (Services Stateful Firewall) on page 1265
• source-pool on page 1265
• source-port on page 1266
• source-prefix (IDS) on page 1267
• source-prefix (Services NAT) on page 1268
• source-prefix-ipv6 (IDS) on page 1269
• source-prefix-list (PCP) on page 1270
• source-prefix-list (Services CoS) on page 1271
• source-prefix-list (Services IDS) on page 1272
• source-prefix-list (Services NAT) on page 1273
• source-prefix-list (Services Stateful Firewall) on page 1274
• spi on page 1275
• stateful-firewall-rules on page 1276
• stateful-nat64 on page 1276
• syslog (Services CoS) on page 1277
• syslog (IDS MS-DPC) on page 1277
• syslog on page 1278
• syslog (Services L2TP) on page 1279
• syslog (Services NAT) on page 1280
• syslog (Services Service Set) on page 1281
Chapter 50: Configuration Statements

- syslog (Services Stateful Firewall) on page 1282
- syn-cookie (IDS MS-DPC) on page 1283
- tcp-fast-open on page 1284
- tcp-mss (Services) on page 1285
- tcp-non-syn on page 1286
- tcp-syn-defense (IDS MS-MPC) on page 1287
- tcp-syn-fragment-check (IDS MS-MPC) on page 1287
- tcp-winnuke-check (IDS MS-MPC) on page 1288
- template (URL Filter) on page 1289
- term (Services CoS) on page 1291
- term (IDS MS-DPC) on page 1292
- term on page 1294
- term (IDS MS-MPC) on page 1296
- term (PCP) on page 1298
- term (Services NAT) on page 1299
- term (Services Stateful Firewall) on page 1300
- term (URL Filter) on page 1301
- then (Services CoS) on page 1302
- then (IDS MS-DPC) on page 1303
- then (IDS MS-MPC) on page 1305
- then on page 1307
- then (Services NAT) on page 1308
- then (PCP) on page 1309
- then (Services Stateful Firewall) on page 1310
- threshold (Services IPsec) on page 1311
- threshold (Services Logging and SYN-Cookie Defenses) on page 1312
- traceoptions (Health Check Monitoring) on page 1313
- traceoptions (Security PKI) on page 1316
- traceoptions (Services IPsec VPN) on page 1318
- traceoptions (Services L2TP) on page 1320
- traceoptions (Services Logging) on page 1324
- traceoptions (Traffic Load Balancer) on page 1326
- traceoptions (Services Redundancy Daemon) on page 1329
- traffic-load-balance (Traffic Load Balancer) on page 1331
- translated on page 1333
- transport on page 1334
- trigger-link-failure on page 1334
• translated-port on page 1335
• translation-type on page 1336
• trusted-ca on page 1338
• ttl-threshold on page 1338
• tunnel-group on page 1339
• tunnel-mtu (Services IPsec VPN) on page 1340
• tunnel-mtu (Services Service Set) on page 1341
• tunnel-timeout on page 1342
• udp-encapsulation on page 1343
• unit (Aggregated Multiservices) on page 1344
• unit (Interfaces) on page 1345
• unit (Voice Services) on page 1346
• url-filter on page 1347
• url-filter-profile on page 1348
• url-filter-template on page 1349
• uuid on page 1351
• v6rd on page 1352
• version (IKE) on page 1353
• video on page 1354
• video (Application Profile) on page 1354
• virtual-service (Traffic Load Balancer) on page 1355
• voice on page 1357
• voice (Application Profile) on page 1357
• warm-standby on page 1358
• web-filter on page 1359
• web-filter-profile on page 1361
adaptive-services-pics

Syntax

adaptive-services-pics {
 traceoptions {
 file filename <files number> <match regular-expression> <size size> <world-readable | no-world-readable>;
 flag flag;
 no-remote-trace;
 }
}

Hierarchy Level
[edit services]

Release Information
Statement introduced before Junos OS Release 7.4. The file option was added in Release 8.0.

Description
Define global services properties.

Options
The remaining statement is explained separately. See CLI Explorer.

Required Privilege
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Tracing Services PIC Operations on page 35
address (Interfaces)

Syntax

```
address address [

]
```

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number family family],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family family]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure the interface address.

Options

address—Address of the interface.

Required Privilege

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

- Junos OS Network Interfaces Library for Routing Devices for other statements that do not affect services interfaces.
- Configuring the Logical Interface Address for the MLPPP Bundle on page 894
- Junos OS Network Interfaces Library for Routing Devices
address (Services NAT Pool)

Syntax
address ip-prefix</prefix-length>;

Hierarchy Level
[edit services nat pool nat-pool-name]

Release Information
Statement introduced before Junos OS Release 7.4. The ip-prefix and /prefix-length options were enhanced to support IPv6 addresses in Junos OS Release 8.5.

Description
Specify the NAT pool prefix value.

The subnet and broadcast addresses are not included in the list of usable IP addresses. For example, if you use 10.11.12.0/28 for the NAT pool prefix value, the addresses 10.11.12.0 (subnet address) and 10.11.12.15 (broadcast address) are not available.

Options
ip-prefix—Specify an IPv4 or IPv6 prefix value.

/prefix-length—(Optional) Specify an IPv4 or IPv6 prefix length.

Required Privilege Level
interface—To view this statement in the configuration. interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Source and Destination Addresses Network Address Translation Overview on page 80
address-allocation

Syntax
address-allocation round-robin;

Hierarchy Level
[edit services nat pool pool-name]

Release Information
Statement introduced in Junos OS Release 11.2.

Description
When you use round-robin allocation, one port is allocated from each address in a range before repeating the process for each address in the next range. After ports have been allocated for all addresses in the last range, the allocation process wraps around and allocates the next unused port for addresses in the first range.

Regardless of whether the round-robin method of allocation is addresses is enabled by using the address-allocation round-robin statement, round-robin allocation is enabled by default on MS-MICs and MS-MPCs.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Pools of Addresses and Ports for Network Address Translation Overview on page 82

address-pooling

Syntax
address-pooling paired;

Hierarchy Level
[edit services nat (Services NAT) rule (Services NAT) rule-name term (Services NAT) term-name then (Services NAT) translated]

Release Information
Statement introduced in JUNOS Release 10.1.

Description
Specify the NAT address pooling behavior.

Options
paired—Currently, the only valid setting specifies paired address pooling behavior.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Network Address Translation Rules Overview on page 84
address-range

Syntax
address-range low minimum-value high maximum-value;

Hierarchy Level
[edit services nat pool nat-pool-name]

Release Information
Statement introduced before Junos OS Release 7.4.
minimum-value and maximum-value options enhanced to support IPv6 addresses in Junos OS Release 8.5.

Description
Specify the NAT pool address range.

Options
minimum-value—Lower boundary for the IPv4 or IPv6 address range.
maximum-value—Upper boundary for the IPv4 or IPv6 address range.

Required Privilege
level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Source and Destination Addresses Network Address Translation Overview on page 80
aggregation (IDS)

Syntax
aggregation {
 destination-prefix prefix-value | destination-prefix-ipv6 prefix-value;
 source-prefix prefix-value | source-prefix-ipv6 prefix-value;
}

Hierarchy Level
[edit services ids rule rule-name term term-name then]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 17.1 on MS-MPCs.

Description
Configure the IDS rule session limits for individual destination or source subnets rather than individual addresses. This applies session limits to an aggregation of all attacks from or to a subnet of the specified length.

Options
The remaining statements are explained separately. See CLI Explorer.

Required Privilege
interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation
• Configuring IDS Rules on an MS-DPC on page 498
• Configuring Protection Against Network Attacks on an MS-MPC on page 515
• Understanding IDS on an MS-MPC on page 511
allow-ip-options (Services Stateful Firewall)

Syntax
allow-ip-options [values];

Hierarchy Level
[edit services (Stateful Firewall) stateful-firewall rule (Services Stateful Firewall) rule-name term (Services Stateful Firewall) term-name then (Services Stateful Firewall)]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Configure how the stateful firewall handles IP header information. This statement is optional.

Options
value—Can be a set or range of numeric values, or one or more of the following predefined option types. You can enter either the option name or its numeric equivalent.

<table>
<thead>
<tr>
<th>Option Name</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>0</td>
</tr>
<tr>
<td>ip-security</td>
<td>130</td>
</tr>
<tr>
<td>ip-stream</td>
<td>8</td>
</tr>
<tr>
<td>loose-source-route</td>
<td>3</td>
</tr>
<tr>
<td>route-record</td>
<td>7</td>
</tr>
<tr>
<td>router-alert</td>
<td>148</td>
</tr>
<tr>
<td>strict-source-route</td>
<td>9</td>
</tr>
<tr>
<td>timestamp</td>
<td>4</td>
</tr>
</tbody>
</table>

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Actions in Stateful Firewall Rules on page 471
allow-ip-options (IDS MS-MPC)

Syntax

```plaintext
allow-ip-options {
  any;
  loose-source-route;
  route-alert;
  route-record;
  security;
  stream-id;
  strict-source-route;
  timestamp;
}
```

Hierarchy Level

```
[edit services ids rule rule-name term term-name then]
```

Release Information

Statement introduced in Junos OS Release 17.1 on MX Series.

Description

Specify the type of IPv4 options that the IDS rule permits in the IP header of a packet. If the packet includes an option that is not configured, the packet is blocked. If the packet includes a configured option whose length is an illegal value, the packet is dropped. This IDS rule can only be assigned to a service set on an MS-MPC.

Default

If you do not include the `allow-ip-options` statement, packets with any type of IPv4 option are blocked.

Options

- `any`—Allow all IPv4 options.
- `loose-source-route`—Allow the Loose Source Route option.
- `route-alert`—Allow the Router Alert option.
- `route-record`—Allow the Record Route option.
- `security`—Allow the Security option.
- `stream-id`—Allow the Stream ID option.
- `strict-source-route`—Allow the Strict Source Route option.
- `timestamp`—Allow the Time Stamp option.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- Configuring Protection Against Network Attacks on an MS-MPC on page 515
- Understanding IDS on an MS-MPC on page 511
allow-ipv6-extension-header (IDS MS-MPC)

Syntax

allow-ipv6-extension-header {
 ah;
 any;
 dstopts;
 esp;
 fragment;
 hop-by-hop;
 mobility;
 routing;
}

Hierarchy Level

[edit services ids rule rule-name term term-name then]

Release Information

Statement introduced in Junos OS Release 17.1 on MX Series.

Description

Specify the type of IPv6 extension headers that the IDS rule permits in a packet. If the packet includes an extension header that is not configured, the packet is blocked. If the packet includes configured extension headers that are incorrect, the packet is dropped. This IDS rule can only be assigned to a service set on an MS-MPC.

Default

If you do not include the allow-ipv6-extension-header statement, packets with any type of extension header are blocked.

Options

- **ah**—Allow Authentication Header extension header.
- **any**—Allow all IPv6 extension headers.
- **dstopts**—Allow Destination Options extension header.
- **esp**—Allow Encapsulating Security Payload extension header.
- **fragment**—Allow Fragment Header extension header.
- **hop-by-hop**—Allow Hop-by-Hop Option extension header.
- **mobility**—Allow Mobility Header extension header.
- **routing**—Allow Routing Header extension header.

Required Privilege Level

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

Related Documentation

- Configuring Protection Against Network Attacks on an MS-MPC on page 515
- Understanding IDS on an MS-MPC on page 511
allow-multicast

Syntax
allow-multicast;

Hierarchy Level
[edit services service-set service-set-name]

Release Information
Statement introduced in Junos OS Release 8.0.

Description
Allow multicast traffic to be sent to the Adaptive Services or Multiservices PIC.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Enabling Services PICs to Accept Multicast Traffic on page 23

allow-overlapping-nat-pools

Syntax
allow-overlapping-nat-pools;

Hierarchy Level
[edit services nat]

Release Information
Statement introduced with Junos OS Release 12.1.

Description
Specify that NAT source or destination pools can be shared between multiple service sets.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Service Sets for Network Address Translation on page 95
anti-replay-window-size (Services IPsec VPN)

Syntax

```
anti-replay-window-size bits;
```

Hierarchy Level

```
[edit services ipsec-vpn rule rule-name term term-name then]
```

Release Information

Statement introduced in Junos OS Release 10.0.

Description

Specify the size of the IPsec antireplay window.

Options

- `bits`—Size of the antireplay window, in bits.
 - **Default:** 64 bits (AS PICs), 128 bits (Multiservices PICs and DPCs)
 - **Range:** 64 through 4096 bits

Required Privilege Level

- `admin`—To view this statement in the configuration.
- `admin-control`—To add this statement to the configuration.
anti-replay-window-size (Services Service Set)

Syntax

anti-replay-window-size bits;

Hierarchy Level

[edit services service-set service-set-name ipsec-vpn-options]

Release Information

Statement introduced in Junos OS Release 10.0.

Description

Specify the size of the IPsec antireplay window. This statement is useful for dynamic endpoint tunnels for which you cannot configure the anti-replay-window-size statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level.

For static IPsec tunnels, this statement sets the antireplay window size for all the static tunnels within this service set. If a particular tunnel needs a specific value for antireplay window size, set the anti-replay-window-size statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level. If antireplay check has to be disabled for a particular tunnel in this service set, set the no-anti-replay statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level.

NOTE: The anti-replay-window-size and no-anti-replay settings at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level override the settings specified at the [edit services service-set service-set-name ipsec-vpn-options] hierarchy level.

Options

bits—Size of the antireplay window, in bits.

Default: 64 bits (AS PICs), 128 bits (Multiservices PICs and DPCs)

Range: 64 through 4096 bits

Required Privilege Level

admin—To view this statement in the configuration.

admin-control—To add this statement to the configuration.

Related Documentation

• Configuring IPsec Service Sets on page 600

• Configuring IPsec Rules on page 592
app-mapping-timeout

Syntax
app-mapping-timeout app-mapping-timeout;

Hierarchy Level
[edit services nat pool nat-pool-name]

Release Information
mapping-timeout statement introduced in JUNOS Release 12.3.

Description
Specify the duration for address pooling paired (AP-P) mappings that use the specified NAT pool. If this option is not configured and a timeout value is configured for mapping-timeout, the timeout value configured for mapping-timeout is used. If neither option is specified, the default value of 300 seconds is used.

Options
app-mapping-timeout—Lifetime of AP-P mappings in seconds.
Default: 300
Range: 120 through 864,000

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Source and Destination Addresses Network Address Translation Overview on page 80
application

Syntax
application application-name {
 application-protocol protocol-name;
 child-inactivity-timeout seconds;
 destination-port port-number;
 gate-timeout seconds;
 icmp-code value;
 icmp-type value;
 inactivity-timeout value;
 protocol type;
 rpc-program-number number;
 snmp-command command;
 source-port port-number;
 ttl-threshold number;
 uuid hex-value;
}

Hierarchy Level
[edit applications],
[edit applications application-set application-set-name]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Configure properties of an application and whether to include it in an application set.

Options
application-name—Identifier of the application.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• ALG Descriptions on page 399
• Configuring Application Sets on page 431
• Configuring Application Properties on page 431
• Examples: Configuring Application Protocols on page 450
• Verifying the Output of ALG Sessions on page 451
application-protocol

Syntax application-protocol protocol-name;

Hierarchy Level [edit applications application application-name]

Release Information Statement introduced before Junos OS Release 7.4.
login options introduced in Junos OS Release 7.4.
ip option introduced in Junos OS Release 8.2.
ike-esp-nat option introduced in Junos OS Release 17.1.
ras option introduced in Junos OS Release 17.1.

Description Identify the application protocol name. Application protocols are also called application layer gateways (ALGs).

Options protocol-name—Name of the protocol. The following protocols are supported:

 bootp—Bootstrap protocol
dce-rpc—DCE RPC
dce-rpc-portmap—DCE RPC portmap
dns—Domain Name Service
dexec—Remote Execution Protocol
ftp—File Transfer Protocol
h323—H.323
icmp—ICMP
iiop—Internet Inter-ORB Protocol
ike-esp-nat—IKE ALG
ip—IP
login—Login
netbios—NetBIOS
netshow—NetShow
pptp—Point-to-Point Tunneling Protocol
ras—Gatekeeper RAS for H323
realaudio—RealAudio
rpc—RPC
rpc-portmap—RPC portmap
rtsp—Real Time Streaming Protocol
shell—Shell
sip—Session Initiation Protocol
snmp—SNMP
sqlnet—SQLNet
talk—Talk Program
tftp—Trivial File Transfer Protocol
traceroute—Traceroute
winframe—WinFrame

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- ALG Descriptions on page 399
- Configuring Application Sets on page 431
- Configuring Application Properties on page 431
- Examples: Configuring Application Protocols on page 450
- Verifying the Output of ALG Sessions on page 451
application-profile

Syntax

```
application-profile profile-name {
  ftp {
    data {
      dscp (alias | bits);
      forwarding-class class-name;
    }
  }
  sip {
    video {
      dscp (alias | bits);
      forwarding-class class-name;
    }
    voice {
      dscp (alias | bits);
      forwarding-class class-name;
    }
  }
}
```

Hierarchy Level

- [edit services cos],
- [edit services cos rule rule-name term term-name then],
- [edit services cos rule rule-name term term-name then reverse]

Release Information

Statement introduced in Junos OS Release 8.1.

Description

Define or apply a CoS application profile. When you apply a CoS application profile in a CoS rule, terminate the profile name with a semicolon (;).

Options

- `profile-name`—Identifier for the application profile.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Application Profiles for Use as CoS Rule Actions on page 715
application-set

Syntax

```
application-set application-set-name {
  application application-name;
}
```

Hierarchy Level

[edit applications]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure one or more applications to include in an application set.

Options

- `application-set-name`—Identifier of an application set.

Required Privilege Level

system-control—To add this statement to the configuration.

Related Documentation

- ALG Descriptions on page 399
- Configuring Application Sets on page 431
- Configuring Application Properties on page 431
- Examples: Configuring Application Protocols on page 450
- Verifying the Output of ALG Sessions on page 451
application-sets (Services CoS)

Syntax applications-sets set-name;

Hierarchy Level [edit services cos rule rule-name term term-name from]

Description Define one or more target application sets.

Options set-name—Name of the target application set.

Required Privilege
Level interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation • Configuring Match Conditions In CoS Rules on page 713

application-sets (IDS MS-DPC)

Syntax application-sets set-name;

Hierarchy Level [edit services ids rule rule-name term term-name from]

Release Information Statement introduced before Junos OS Release 7.4.

Description Define one or more target application sets when using the MS-DPC.

Options set-name—Name of the target application set.

Required Privilege
Level interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation • Configuring Match Conditions in IDS Rules on page 500
application-sets (PCP)

Syntax applications-sets set-name;

Hierarchy Level [edit services pcp rule rule-name term term-name from]

Description Define an application set to which the PCP rule applies. A PCP rule assigns the PCP server that handles selected traffic.

PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, PCP is also supported on the MS-MPC and MS-MIC.

Options set-name—Name of the application set.

Required Privilege Level interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation • Configuring Port Control Protocol on page 220

application-sets (Services NAT)

Syntax applications-sets set-name;

Hierarchy Level [edit services nat rule rule-name term term-name from]

Release Information Statement introduced before Junos OS Release 7.4.

Description Define one or more target application sets.

Options set-name—Name of the target application set.

Required Privilege Level interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation • Network Address Translation Rules Overview on page 84
application-sets (Services Stateful Firewall)

Syntax
```
aplications-sets set-name;
```

Hierarchy Level
```
[edit services stateful-firewall rule rule-name term term-name from]
```

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Define one or more target application sets.

Options
```
set-name—Name of the target application set.
```

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Match Conditions in Stateful Firewall Rules on page 469

applications (Services ALGs)

Syntax
```
aplications{ ... }
```

Hierarchy Level
```
[edit]
```

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Define the applications used in services.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- ALG Descriptions on page 399
- Configuring Application Sets on page 431
- Configuring Application Properties on page 431
- Examples: Configuring Application Protocols on page 450
- Verifying the Output of ALG Sessions on page 451
applications (Services CoS)

Syntax applications [application-name];

Hierarchy Level [edit services cos rule rule-name term term-name from]

Description Define one or more applications to which the CoS services apply.

Options application-name—Name of the target application.

Required Privilege interface—To view this statement in the configuration.

Level interface-control—To add this statement to the configuration.

Related Documentation • Configuring CoS Rules on Services PICs
 • Configuring Match Conditions In CoS Rules on page 713

applications (IDS MS-DPC)

Syntax applications [application-name];

Hierarchy Level [edit services ids rule rule-name term term-name from]

Release Information Statement introduced before Junos OS Release 7.4.

Description Define one or more applications to which IDS applies when using the MS-DPC.

Options application-name—Name of the target application.

Required Privilege interface—To view this statement in the configuration.

Level interface-control—To add this statement to the configuration.

Related Documentation • Configuring Match Conditions in IDS Rules on page 500
applications (PCP)

Syntax

applications [application-name];

Hierarchy Level

[edit services pcp rule rule-name term term-name from]

Release Information

Statement introduced in Junos OS Release 13.2R1.

Description

Define one or more application protocols to which the PCP rule applies. A PCP rule assigns the PCP server that handles selected traffic.

PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, PCP is also supported on the MS-MPC and MS-MIC.

Options

application-name—Name of the application.

Required Privilege

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

• Configuring Port Control Protocol on page 220

applications (Services NAT)

Syntax

applications [application-name];

Hierarchy Level

[edit services nat rule rule-name term term-name from]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Define one or more application protocols to which the NAT services apply.

Options

application-name—Name of the target application.

Required Privilege

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

• Network Address Translation Rules Overview on page 84
applications (Services Stateful Firewall)

Syntax

```
applications [ application-name ];
```

Hierarchy Level

```
[edit services (Stateful Firewall) stateful-firewall rule (Services Stateful Firewall) rule-name
term (Services Stateful Firewall) term-name from (Services Stateful Firewall)]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Define one or more applications to which the stateful firewall services apply.

Options

`application-name`—Name of the target application.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Match Conditions in Stateful Firewall Rules on page 469
authentication

Syntax

```plaintext
authentication [ 
  algorithm (hmac-md5-96 | hmac-sha1-96 | hmac-sha-256-128); 
  key (ascii-text key | hexadecimal key); 
}
```

Hierarchy Level

[edit services (IPsec VPN) ipsec-vpn rule rule-name term term-name then manual direction direction]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure IPsec authentication parameters for a manual security association (SA).

Options

- **algorithm**—Hash algorithm that authenticates packet data. The algorithm can be one of the following:
 - **hmac-md5-96**—Produces a 128-bit digest.
 - **hmac-sha1-96**—Produces a 160-bit digest.
 - **hmac-sha-256-128**—Produces a 256-bit digest, truncated to 128 bits.

- **key**—Type of authentication key. The key can be one of the following:
 - **ascii-text key**—ASCII text key. For **hmac-md5-96**, the key is 16 ASCII characters; for **hmac-sha1-96**, the key is 20 ASCII characters.
 - **hexadecimal key**—Hexadecimal key. For **hmac-md5-96**, the key is 32 hexadecimal characters; for **hmac-sha1-96**, the key is 40 hexadecimal characters.

Required Privilege

- **admin**—To view this statement in the configuration.
- **admin-control**—To add this statement to the configuration.

Related Documentation

- Configuring Security Associations on page 549
authentication-algorithm (Services IKE)

Syntax

```
authentication-algorithm (md5 | sha1 | sha-256);
```

Hierarchy Level

```
[edit services ipsec-vpn ike proposal <proposal-name>]
```

Release Information

Statement introduced before Junos OS Release 7.4.
sha-256 option added in Junos OS Release 7.6.

Description

Configure the Internet Key Exchange (IKE) hash algorithm that authenticates packet data.

Options

- **md5**—Produces a 128-bit digest.
- **sha1**—Produces a 160-bit digest.
- **sha-256**—Produces a 256-bit digest.
- **sha-384**—Produces a 384-bit digest.

Required Privilege Level

- **admin**—To view this statement in the configuration.
- **admin-control**—To add this statement to the configuration.

Related Documentation

- Configuring IKE Proposals on page 571
authentication-algorithm (Services IPsec)

Syntax

```plaintext
authentication-algorithm (hmac-md5-96 | hmac-sha-256-128 | hmac-sha1-96);
```

Hierarchy Level

```plaintext
[edit services ipsec-vpn ipsec proposal ipsec-proposal-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure the IPsec hash algorithm that authenticates packet data.

NOTE: Keep the following points in mind when you configure the authentication algorithm in an IPsec proposal:

- **When both ends of an IPsec VPN tunnel contain the same IKE proposal but different IPsec proposals**, an error occurs and the tunnel is not established in this scenario. For example, if one end of the tunnel contains router 1 configured with the authentication algorithm as hmac-sha-256-128 and the other end of the tunnel contains router 2 configured with the authentication algorithm as hmac-md5-96, the VPN tunnel is not established.

- **When both ends of an IPsec VPN tunnel contain the same IKE proposal but different IPsec proposals**, and when one end of the tunnel contains two IPsec proposals to check whether a less secure algorithm is selected or not, an error occurs and the tunnel is not established. For example, if you configure two authentication algorithms for an IPsec proposal as hmac-sha-256-128 and hmac-md5-96 on one end of the tunnel, router 1, and if you configure the algorithm for an IPsec proposal as hmac-md5-96 on the other end of the tunnel, router 2, the tunnel is not established and the number of proposals mismatch.

- **When you configure two IPsec proposals at both ends of a tunnel**, such as the authentication-algorithm hmac-sha-256-128 and authentication-algorithm hmac-md5-96 statements at the [edit services ipsec-vpn ipsec proposal proposal-name] hierarchy level on one of the tunnel, router 1 (with the algorithms in two successive statements to specify the order), and the authentication-algorithm hmac-md5-96 and authentication-algorithm hmac-sha-256-128 statements at the [edit services ipsec-vpn ipsec proposal proposal-name] hierarchy level on one of the tunnel, router 2 (with the algorithms in two successive statements to specify the order, which is the reverse order of router 1), the tunnel is established in this combination as expected because the number of proposals is the same on both ends and they contain the same set of algorithms. However, the authentication algorithm selected is hmac-md5-96 and not the stronger algorithm of hmac-sha-256-128. This method of selection of the algorithm occurs because the first matching proposal is selected. Also, for a default proposal,
regardless of whether the router supports the Advanced Encryption Standard (AES) encryption algorithm, the 3des-cbc algorithm is chosen and not the aes-cfb algorithm, which is because of the first algorithm in the default proposal being selected. In the sample scenario described here, on router 2, if you reverse the order of the algorithm configuration in the proposal so that it is the same order as the one specified on router 1, hmac-sha-256-128 is selected as the authentication method.

- You must be aware of the order of proposals in an IPsec policy at the time of configuration if you want the matching of proposals to happen in a certain order of preference, such as the strongest algorithm to be considered first when a match is made when both policies from the two peers have a proposal.

- The authentication algorithm hmac-sha-256-128 is not supported on the MX104 Universal Routing Platform.

Options

- hmac-md5-96—Produces a 128-bit digest.
- hmac-sha-256-128—Produces a 256-bit digest.
- hmac-sha1-96—Produces a 160-bit digest.

Required Privilege

- admin—to view this statement in the configuration.
- admin-control—to add this statement to the configuration.

Related Documentation

- Configuring IPsec Proposals on page 584
authentication-method

Syntax

```
authentication-method (ecdsa-signatures-256 | ecdsa-signatures-384 | pre-shared-keys | rsa-signatures);
```

Hierarchy Level

```
[edit services (IPsec VPN) ipsec-vpn ike proposal proposal-name]
```

Release Information

Description

Configure an IKE authentication method.

Options

- **ecdsa-signatures-256**—Elliptic Curve Digital Signature Algorithm (ECDSA) for 256-bit moduli. This can only be used on an MS-MPC or MS-MIC.

- **ecdsa-signatures-384**—ECDSA for 384-bit moduli. This can only be used on an MS-MPC or MS-MIC.

- **pre-shared-keys**—A key derived from an out-of-band mechanism; the key authenticates the exchange.

- **rsa-signatures**—Public key algorithm (supports encryption and digital signatures).

Required Privilege Level

- admin—To view this statement in the configuration.
- admin-control—To add this statement to the configuration.

Related Documentation

- Configuring IKE Proposals on page 571
auxiliary-spi

Syntax auxiliary-spi spi-value;

Hierarchy Level [edit services (IPsec VPN) ipsec-vpn rule rule-name term term-name then manual direction direction]

Release Information Statement introduced before Junos OS Release 7.4.

Description Configure an auxiliary Security Parameter Index (SPI) for a manual SA. Use the auxiliary SPI when you configure the protocol statement to use the bundle option.

Options spi-value—An arbitrary value that uniquely identifies which SA to use at the receiving host (the destination address in the packet).

Range: 256 through 16,639

Required Privilege Level admin—To view this statement in the configuration.

admin-control—To add this statement to the configuration.

Related Documentation • Configuring Security Associations on page 549

backup-remote-gateway

Syntax backup-remote-gateway address;

Hierarchy Level [edit services ipsec-vpn rule rule-name term term-name then]

Release Information Statement introduced before Junos OS Release 7.4.

Description Define the backup remote address to which the IPsec traffic is directed when the primary remote gateway is down. Configuring this statement also enables the dead peer detection (DPD) protocol.

Options address—Backup remote IPv4 or IPv6 address.

Required Privilege Level admin—To view this statement in the configuration.

admin-control—To add this statement to the configuration.

Related Documentation • Configuring IPsec Rules on page 592

Copyright © 2019, Juniper Networks, Inc.
bundle

Syntax

bundle (lsq-fpc/pic/port | ...);

Hierarchy Level

[edit interfaces lsq-fpc/pic/port unit logical-unit-number family mippp]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Associate the voice services interface with the logical interface it is joining.

Options

lsq-fpc/pic/port—Name of the voice services interface you are linking.

Required Privilege

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

• Configuring Voice Services Bundles with MLPPP Encapsulation on page 898
by-destination (IDS MS-DPC)

Syntax

by-destination {
 hold-time seconds;
 maximum number;
 packets number;
 rate number;
}

Hierarchy Level
[edit services ids rule rule-name term term-name then session-limit]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Apply limit to sessions based on numbers generated from the configured destination (IP or subnet) or application when using the MS-DPC.

Options

 hold-time seconds—Length of time for which to stop all new flows once the rate of events exceeds the threshold set by one or more of the maximum, packets, or rate statements.

 maximum number—Maximum number of open sessions per application or IP address.

 packets number—Maximum peak packets per second per application or IP address.

 rate number—Maximum number of sessions per second per application or IP address.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Actions in IDS Rules on page 501
by-destination (IDS MS-MPC)

Syntax

```plaintext
by-destination {
  by-protocol {
    icmp {
      maximum number;
      packets number;
      rate number;
    }
    tcp {
      maximum number;
      packets number;
      rate number;
    }
    udp {
      maximum number;
      packets number;
      rate number;
    }
  }
  maximum number;
  packets number;
  rate number;
}
```

Hierarchy Level

```
[edit services ids rule rule-name term term-name then session-limit]
```

Release Information

Statement introduced in Junos OS Release 17.1 on MX Series.

Description

Configure the IDS rule session limits for an individual destination address or subnet. This protects against network probing attacks and network flooding attacks. This IDS rule can only be assigned to a service set on an MS-MPC.

When a session limit is exceeded for a destination, packets to the destination are dropped until the session limit is no longer exceeded.

To specify limits for destination subnets rather than individual addresses, include the aggregation statement at the [edit services ids rule rule-name term term-name then] hierarchy level.

Options

- `maximum number`—Specify the maximum number of concurrent sessions allowed for an individual destination address or subnet.
- `packets number`—Specify the maximum number of packets per second allowed for an individual destination address or subnet.
- `rate number`—Specify the maximum number of connections per second allowed for an individual destination address or subnet.
The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Protection Against Network Attacks on an MS-MPC on page 515
- Understanding IDS on an MS-MPC on page 511

by-pair (IDS MS-DPC)

Syntax
```bash
by-pair {
  hold-time seconds;
  maximum number;
  packets number;
  rate number;
}
```

Hierarchy Level
```
[edit services ids rule rule-name term term-name then session-limit]
```

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Apply limit to paired stateful firewall and NAT flows (forward and reverse) when using the MS-DPC.

Options
- **hold-time seconds**—Length of time for which to stop all new flows once the rate of events exceeds the threshold set by one or more of the maximum, packets, or rate statements.
- **maximum number**—Maximum number of open sessions per application or IP address.
- **packets number**—Maximum peak packets per second per application or IP address.
- **rate number**—Maximum number of sessions per second per application or IP address.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Actions in IDS Rules on page 501
by-protocol (IDS MS-MPC)

Syntax

by-protocol {
 icmp {
 maximum number;
 packets number;
 rate number;
 }
 tcp {
 maximum number;
 packets number;
 rate number;
 }
 udp {
 maximum number;
 packets number;
 rate number;
 }
}

Hierarchy Level
[edit services ids rule rule-name term term-name then session-limit by-destination].
[edit services ids rule rule-name term term-name then session-limit by-source]

Release Information
Statement introduced in Junos OS Release 17.1 on MX Series.

Description
Configure the IDS rule session limits for an individual destination or source address or subnet for the specified protocol. This protects against network probing attacks and network flooding attacks. This IDS rule can only be assigned to a service set on an MS-MPC.

When a session limit is exceeded for a source or destination for the protocol, packets from the source or to the destination are dropped until the session limit is no longer exceeded.

To specify limits for destination or source subnets rather than individual addresses, include the aggregation statement at the [edit services ids rule rule-name term term-name then] hierarchy level.

Options

icmp—Apply session limits to ICMP packets.

 maximum number—Specify the maximum number of concurrent ICMP sessions allowed for an individual destination or source address or subnet.

 packets number—Specify the maximum number of ICMP packets per second allowed for an individual destination or source address or subnet.

 rate number—Specify the maximum number of ICMP connections per second allowed for an individual destination or source address or subnet.
tcp—Session limits apply to TCP packets.

 maximum number—Specify the maximum number of concurrent TCP sessions allowed for an individual destination or source address or subnet.

 packets number—Specify the maximum number of TCP packets per second allowed for an individual destination or source address or subnet.

 rate number—Specify the maximum number of TCP connections per second allowed for an individual destination or source address or subnet.

udp—Session limits apply to UDP packets.

 maximum number—Specify the maximum number of concurrent UDP sessions allowed for an individual destination or source address or subnet.

 packets number—Specify the maximum number of UDP packets per second allowed for an individual destination or source address or subnet.

 rate number—Specify the maximum number of UDP connections per second allowed for an individual destination or source address or subnet.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Protection Against Network Attacks on an MS-MPC on page 515
- Understanding IDS on an MS-MPC on page 511
by-source (IDS MS-DPC)

Syntax

```
by-source {
    hold-time seconds;
    maximum number;
    packets number;
    rate number;
}
```

Hierarchy Level

```
[edit services ids rule rule-name term term-name then session-limit (IDS MS-DPC)]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Apply limit to sessions based on numbers generated from the configured source (IP or subnet) or application when using the MS-DPC.

Options

- **hold-time seconds**—Length of time for which to stop all new flows once the rate of events exceeds the threshold set by one or more of the maximum, packets, or rate statements.
- **maximum number**—Maximum number of open sessions per application or IP address.
- **packets number**—Maximum peak packets per second per application or IP address.
- **rate number**—Maximum number of sessions per second per application or IP address.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Actions in IDS Rules on page 501
by-source (IDS MS-MPC)

Syntax

```plaintext
by-source {
    by-protocol {
        icmp {
            maximum number;
            packets number;
            rate number;
        }
        tcp {
            maximum number;
            packets number;
            rate number;
        }
        udp {
            maximum number;
            packets number;
            rate number;
        }
    }
    maximum number;
    packets number;
    rate number;
}
```

Hierarchy Level

```plaintext
[edit services ids rule rule-name term term-name then session-limit]
```

Release Information

Statement introduced in Junos OS Release 17.1 on MX Series.

Description

Configure the IDS rule session limits for an individual source address or subnet. This protects against network probing attacks and network flooding attacks. When a session limit is exceeded for a source, packets from the source are dropped until the session limit is no longer exceeded. This IDS rule can only be assigned to a service set on an MS-MPC.

When a session limit is exceeded for a source, packets from the source are dropped until the session limit is no longer exceeded.

To specify limits for source subnets rather than individual addresses, include the aggregation statement at the [edit services ids rule rule-name term term-name then] hierarchy level.

Options

- **maximum number**—Specify the maximum number of concurrent sessions allowed for an individual source address or subnet.
- **packets number**—Specify the maximum number of packets per second allowed for an individual source address or subnet.
- **rate number**—Specify the maximum number of connections per second allowed for an individual source address or subnet.
The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Protection Against Network Attacks on an MS-MPC on page 515
- Understanding IDS on an MS-MPC on page 511

bypass-traffic-on-exceeding-flow-limits

Syntax

```
bypass-traffic-on-exceeding-flow-limits;
```

Hierarchy Level

```
[edit services service-set service-set-name service-set-options]
```

Release Information

- Statement introduced in Junos OS Release 10.1.
- Statement introduced in Junos OS Release 19.3R1 on MX240, MX480 and MX960 routers using the MX-SPC3 services card.

Description

Enable packets to bypass without creating a new session when the flow in the service set exceeds the limit that is set by the `max-flows` statement at the `[edit services service-set service-set-name]` hierarchy level.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Service Sets to be Applied to Services Interfaces on page 9
bypass-traffic-on-pic-failure

Syntax
bypass-traffic-on-pic-failure;

Hierarchy Level
[edit services service-set service-set-name service-set-options]

Release Information
Statement introduced in Junos OS Release 10.1.

Description
When the MultiServices PIC configured for a service set is either administratively taken offline or undergoes a failure, all the traffic entering the configured interface with an IDP service set would be dropped without notification. To avoid this traffic loss, include the bypass-traffic-on-pic-failure statement. When this statement is configured, the affected packets are forwarded in the event of a MultiServices PIC failure or offlining, as though interface-style services were not configured.

This issue applies only to Junos Application Aware (previously known as Dynamic Application Awareness) configurations with IDP service sets.

Required Privilege Level
interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Service Sets to be Applied to Services Interfaces on page 9
cgn-pic

Syntax
cgn-pic;

Hierarchy Level
[edit interfaces interface-name services-options]

Release Information
Statement introduced in Junos OS Release 11.2.

Description
Restrict usage of the service PIC to carrier-grade NAT (CGN) or associated services (intrusion detection, stateful firewall, and softwire). All memory is available for CGN or related services and can be used for CGN scaling.

The cgn-pic statement is supported only on the MS-DPC, MS-100, MS-400, and MS-500 line cards. The cgn-pic statement is not supported on MS-MPCs and MS-MICs.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Carrier-Grade NAT Feature Comparison for Junos Address Aware by Type of Interface Card on page 69
child-inactivity-timeout

Syntax

child-inactivity-timeout seconds;

Hierarchy Level
[edit applications application ike-esp-nat]

Release Information
Statement introduced in Junos OS Release 17.1 on MX Series.

Description
For an IKE ALG application, configure the ESP session (IPsec data traffic) idle timeout. If no IPsec data traffic is passed on the ESP session in this time, the session is deleted.

The IKE ALG enables the passing of IKEv1 and IPsec packets through NAPT-44 and NAT64 rules between IPsec peers that are not NAT-T compliant.

Options
seconds—Number of seconds.
Default: 800 seconds

Required Privilege
interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation
• ALG Descriptions on page 399
• Configuring Application Sets on page 431
• Configuring Application Properties on page 431
cisco-interoperability

Syntax
cisco-interoperability send-lip-remove-link-for-link-reject;

Hierarchy Level
[edit interfaces interface-name mfr-uni-nni-bundle-options]

Release Information
Statement introduced in Junos OS Release 7.4.

Description
FRF.16 interoperability settings.

Options
send-lip-remove-link-for-link-reject—Send Link Integrity Protocol remove link when an add-link rejection message is received.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring SONET APS Interoperability with Cisco Systems FRF.16 on page 789
class

Syntax class {
 alg-logs;
 deterministic-nat-configuration-log;
 ids-logs;
 nat-logs;
 packet-logs;
 pcp-logs;
 session-logs <open | close> ;
 stateful-firewall-logs ;
 urlf-logs;
}

Hierarchy Level [edit services service-set service-set-name syslog host hostname]

Release Information Statement introduced in Junos OS Release 13.2. deterministc-nat-configuration-log option introduced in Junos OS Release 17.3R1. You can configure multiple system log hosts from Junos OS Release 17.4R1 onwards. urlf-logs option introduced in Junos OS Release 18.3R1.

Description Set the class of applications to be logged to the system log.

Starting in Junos OS Release 17.4R1, you can configure up to a maximum of four system log servers (combination of local system log hosts and remote system log collectors) for each service set at the [edit services service-set service-set-name] hierarchy level.

Options class-name—Enter one of the following values:

- alg-logs—Log application-level gateway events.
- deterministic-nat-configuration-log—Log deterministic NAT sessions.
- ids-logs—Log intrusion detection system events.
- nat-logs—Log Network Address Translation events.
- packet-logs—Log general packet-related events.
- pcp-logs—Log Port Control Protocol events.
- session-logs—Log session open and close events.
- session-logs open—Log session open events only.
- session-logs close—Log session close events.
- urlf-logs—Log events for the filtering of DNS requests for blacklisted website domains.
Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- See Configuring System Logging for Service Sets on page 33.

clat-prefix

Syntax
clat-prefix clat-prefix;

Hierarchy Level
[edit services nat rule rule-name term term-name then translated]

Release Information
Statement introduced in Junos OS Release 17.1 on MX Series.

Description
Specify the IPv6 prefix that the customer-side translator (CLAT) uses when performing 464XLAT translation to IPv6 (the CLAT is not a Juniper Networks product). The Provider-Side Translator (PLAT) on the MX Series uses the CLAT IPv6 prefix to translate the IPv6 packet back to IPv4.

Related Documentation
- 464XLAT Overview on page 213
- Configuring 464XLAT Provider-Side Translator for IPv4 Connectivity Across IPv6-Only Network on page 214
clear-dont-fragment-bit (Interfaces GRE Tunnels)

Syntax

```plaintext
clear-dont-fragment-bit;
```

Hierarchy Level

```plaintext
[edit interfaces gr-fpc/pic/port unit logical-unit-number],
[edit logical-systems logical-system-name interfaces gr-fpc/pic/port unit logical-unit-number]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in 10.0R2 for 16x10GE MPC
Statement introduced in 13.2R4 for Multiservices MPC
Statement introduced in Junos OS Release 10.2 for MPC1 and MPC1Q.
Statement introduced in Junos OS Release 10.1 for MPC2 and variants.
Statement introduced in Junos OS Release 11.2R4 for MPC1E and MPC1E Q.
Statement introduced in Junos OS Release 11.2R4 for MPC2E and variants
Statement introduced in Junos OS Release 12.1 for MPC3E and variants
Statement introduced in Junos OS Release 12.2 for MPC2E P
Statement introduced in Junos OS Release 12.3R2 for MPC4E and variants
Statement introduced in Junos OS Release 13.3R2 and later for MPC5E and variants
Statement introduced in Junos OS Release 14.1R4, 14.2R3 and Junos Continuity 15.1 for
MPC2E NG and variants
Statement introduced in Junos OS Release 14.1R4, 14.2R3 and Junos Continuity 15.1 for
MPC3E NG and variants
Statement introduced in Junos OS Release 15.1F4 with Junos Continuity and 16.1R1 and
later for MPC7E and variants
Statement introduced in Junos OS Release 15.1F7 for MPC6E
Statement introduced in Junos OS Release 15.1F7 for MPC8E
Statement introduced in Junos OS Release 15.1F7 for MPC9E
Statement introduced in Junos OS Release 17.3 for MX10003 MPC (Multi-Rate)

Description

Clear the Don't Fragment (DF) bit on all IP version 4 (IPv4) packets entering the generic
routing encapsulation (GRE) tunnel on Adaptive Services (AS) or Multiservices interfaces.
If the encapsulated packet size exceeds the tunnel maximum transmission unit (MTU),
the packet is fragmented before encapsulation. The statement is supported only on MX
Series routers and all M Series routers except the M320 router.

When you configure the `clear-dont-fragment-bit` statement on an interface with the MPLS
protocol family enabled, you must specify an MTU value. This MTU value must not be
greater than maximum supported value, which is 9192.

Required Privilege Level

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

Related Documentation

- *Enabling Fragmentation on GRE Tunnels*
clear-dont-fragment-bit (Services IPsec VPN)

Syntax clear-dont-fragment-bit;

Hierarchy Level [edit services ipsec-vpn rule rule-name term term-name then]

Release Information Statement introduced before Junos OS Release 7.4.

Description Clear the do not fragment (DF) bit on all IP version 4 (IPv4) packets entering the IPsec tunnel. If the encapsulated packet size exceeds the tunnel maximum transmission unit (MTU), the packet is fragmented before encapsulation.

By default, this statement is disabled (the DF bit value is not cleared on the inner header and outer header by default).

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Configuring IPsec Rules on page 592

clear-dont-fragment-bit (Services NAT Options)

Syntax clear-dont-fragment-bit;

Hierarchy Level [edit services service-set service-set-name nat-options stateful-nat64]

Release Information Statement introduced with Junos OS Release 12.1.

Description Clear the DF (don't fragment) bit in a translated IPv4 packet if its packet size is less than 1280 bytes. If the packet is greater than or equal to 1280 bytes, the DF bit is not cleared.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Service Rules on page 20
clear-dont-fragment-bit (Services Service Set)

Syntax
clear-dont-fragment-bit;

Hierarchy Level
[edit services service-set service-set-name ipsec-vpn-options]

Release Information
Statement introduced in Junos OS Release 10.0.

Description
Clear the Don’t Fragment (DF) bit on all IP version 4 (IPv4) packets entering the IPsec tunnel. If the encapsulated packet size exceeds the tunnel maximum transmission unit (MTU), the packet is fragmented before encapsulation. This statement is useful for dynamic endpoint tunnels, for which you cannot configure the clear-dont-fragment-bit statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level.

For static IPsec tunnels, setting this statement clears the DF bit on packets entering all the static tunnels within this service set. If you want to clear the DF bit on packets entering a specific tunnel, set the clear-dont-fragment-bit statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level.

By default, this statement is disabled (the DF bit value is not cleared on the inner header and outer header by default).

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring IPsec Service Sets on page 600
- Configuring IPsec Rules on page 592
clear-ike-sas-on-pic-restart

Syntax
```
clear-ike-sas-on-pic-restart;
```

Hierarchy Level
```
[edit services ipsec-vpn]
```

Release Information
Statement introduced in Junos OS Release 8.5.

Description
Clear IKE security associations (SAs) when the corresponding PIC restarts or is taken offline.

Required Privilege
Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Security Associations on page 549

clear-ipsec-sas-on-pic-restart

Syntax
```
clear-ipsec-sas-on-pic-restart;
```

Hierarchy Level
```
[edit services ipsec-vpn]
```

Release Information
Statement introduced in Junos OS Release 9.2.

Description
Clear IPsec security associations (SAs) when the corresponding PIC restarts or is taken offline.

Required Privilege
Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Security Associations on page 549
compression

Syntax

```plaintext
compression {
  rtp {
    f-max-period number;
    maximum-contexts number <force>;
    port {
      minimum port-number;
      maximum port-number;
    }
    queues [ queue-numbers ];
  }
}
```

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure the compression properties for voice services traffic.

The remaining statements are described separately.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Compression of Voice Traffic on page 895
compression-device (Interfaces)

Syntax

```plaintext
compression-device interface-name;
```

Hierarchy Level

- [edit interfaces interface-name unit logical-unit-number],
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

Release Information

Statement introduced in Junos OS Release 7.5.

Description

Specify the compression interface for voice services traffic.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring the Compression Interface with PPP Encapsulation on page 898

copy-dont-fragment-bit (Services IPsec VPN)

Syntax

```plaintext
copy-dont-fragment-bit;
```

Hierarchy Level

- [edit services ipsec-vpn rule rule-name term term-name then]

Release Information

Description

Copy the do not fragment (DF) bit value to only the outer header and not modify the inner header of the IPsec packet. If the encapsulated packet size exceeds the tunnel maximum transmission unit (MTU), the packet is fragmented before encapsulation. This functionality is supported on MX Series routers with MS-MICs and MS-MPCs. These settings apply for static endpoint tunnels and not for dynamic tunnels, for which you need to include the `copy-dont-fragment-bit` statement at the `[edit services service-set service-set-name ipsec-vpn-options]` hierarchy level to copy the DF bit value to only the outer header of the packet in a static IPsec tunnel. This functionality is supported on MX Series routers with MS-MICs and MS-MPCs.

By default, this statement is disabled on MS-MICs and MS-MPCs (the DF bit value is not copied to the outer header by default).

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring IPsec Rules on page 592
copy-dont-fragment-bit (Services Set)

Syntax
copy-dont-fragment-bit;

Hierarchy Level
[edit services service-set service-set-name ipsec-vpn-options]

Release Information

Description
Copy the do not fragment (DF) bit value to only the outer header and not modify the inner header of the IPsec packet in dynamic endpoint tunnels. If the encapsulated packet size exceeds the tunnel maximum transmission unit (MTU), the packet is fragmented before encapsulation. This functionality is supported on MX Series routers with MS-MICs and MS-MPCs. These settings apply for dynamic endpoint tunnels and not for static tunnels, for which you need to include the `copy-dont-fragment-bit` statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level to copy the DF bit value to only the outer header of the packet in a static IPsec tunnel. This functionality is supported on MX Series routers with MS-MICs and MS-MPCs.

By default, this statement is disabled on MS-MICs and MS-MPCs (the DF bit value is not copied to the outer header by default).

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring IPsec Service Sets on page 600
- Configuring IPsec Rules on page 592
cos-rules (Service Set)

Syntax cos-rules [cos-rule-name];

Hierarchy Level [edit services service-set service-set-name]

Description Specify the CoS rules to apply to the service set. You can configure multiple rules.

The service set that the CoS rule is assigned to must include at least one stateful firewall rule or NAT rule, or CoS does not work. Only stateful firewall and NAT rules can be used with CoS rules in a service set.

Options cos-rule-name—CoS rule name.

Required Privilege Level system—To view this statement in the configuration.

system-control—To add this statement to the configuration.

Related Documentation • Configuring CoS Rules on page 712
data (FTP)

Syntax
```plaintext
data {
  dscp (alias | bits);
  forwarding-class class-name;
}
```

Hierarchy Level
```
[edit services cos application-profile profile-name ftp]
```

Release Information
Statement introduced in Junos OS Release 9.3.

Description
Set the appropriate `dscp` and `forwarding-class` value for FTP data.

Default
By default, the system will not alter the DSCP or forwarding class for FTP data traffic.

Required Privilege
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation
- *Configuring CoS Rules on Services PICs*
- video (Application Profile) on page 1354
- voice (Application Profile) on page 1357
dead-peer-detection (Services IPsec VPN)

Syntax

dead-peer-detection {
 interval seconds;
 threshold number;
}

Hierarchy Level

[edit services ipsec-vpn rule-name term term-name then]

Release Information

Statement introduced in Junos OS Release 11.4.
IKEv2 support introduced in Junos OS Release 17.2.

Description

Sets dead peer detection options when dead peer detection has been enabled with the initiate-dead-peer-detection command. The dead-peer-detection options are used for IKEv1 security associations (SAs). Starting in Junos OS Release 17.2R1, the dead-peer-detection options are also applicable to IKEv2 SAs. In Junos OS Release 17.1 and earlier, the dead-peer-detection options are not applicable to IKEv2 SAs, which use the default values.

Options

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

security—To view this statement in the configuration.
security-control—To add this statement to the configuration.
description (Services IPsec VPN)

Syntax

description description;

Hierarchy Level

[edit services ipsec-vpn ike policy policy-name],
[edit services ipsec-vpn ike proposal proposal-name],
[edit services ipsec-vpn ipsec policy policy-name],
[edit services ipsec-vpn ipsec proposal proposal-name]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Specify the text description for an IKE or IPsec policy or proposal.

Required Privilege Level

admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation

- description on page 990
- Configuring IPsec Proposals on page 584
- Configuring IPsec Policies on page 588

destination-address (Services CoS)

Syntax

destination-address (address | any-unicast) <except>;

Hierarchy Level

[edit services cos rule rule-name term term-name from]

Release Information

Statement introduced in Junos OS Release 8.1.

Description

Specify the destination address for rule matching.

Options

address—Destination IPv4 or IPv6 address or prefix value.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

- Configuring CoS Rules on Services PICs
- Configuring Match Conditions In CoS Rules on page 713
destination-address (IDS MS-DPC)

Syntax
\[\text{destination-address (address | any-unicast) <except>;} \]

Hierarchy Level
[edit services ids rule rule-name term term-name from]

Release Information
Statement introduced before Junos OS Release 7.4.
address option enhanced to support IPv4 and IPv6 addresses in Junos OS Release 8.5.

Description
Specify the destination address for rule matching when using the MS-DPC.

Options
address—Destination IPv4 or IPv6 address or prefix value.
any-unicast—Any unicast packet.
except—(Optional) Exempt the specified address, prefix, or unicast packets from rule matching.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Match Conditions in IDS Rules on page 500

destination-address

Syntax
\[\text{destination-address address;} \]

Hierarchy Level
[edit services ipsec-vpn rule rule-name term term-name from]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Specify the destination address for rule matching.

Options
address—Destination IP address.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring IPsec Rules on page 592
destination-address (PCP)

Syntax: destination-address address <except>;

Hierarchy Level: [edit services pcp rule rule-name term term-name from]

Description: Specify the destination address that must be matched for the PCP rule. A PCP rule assigns the PCP server that handles selected traffic.

PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, PCP is also supported on the MS-MPC and MS-MIC.

Options:
- **address**—Destination address or prefix value.
- **minimum-value**—Lower boundary for the address range.
- **except**—(Optional) Prevent the specified address range from matching the PCP rule.

Required Privilege Level:
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation:
- Configuring Port Control Protocol on page 220
destination-address (Services NAT)

Syntax
destination-address (address | any-unicast) <except>;

Hierarchy Level
[edit services nat rule rule-name term term-name from]

Release Information
Statement introduced before Junos OS Release 7.4.
any-unicast and except options introduced in Junos OS Release 7.6.
address option enhanced to support IPv6 and addresses in Junos OS Release 8.5.

Description
Specify the destination address for rule matching.

Options
address—Destination IPv4 or IPv6 address or prefix value.
any-unicast—Any unicast packet.
except—(Optional) Prevent the specified address, prefix, or unicast packets from being translated.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Network Address Translation Rules Overview on page 84
destination-address (Services Stateful Firewall)

Syntax
destination-address (address | any-ipv4 | any-ipv6 | any-unicast) <except>;

Hierarchy Level
[edit services stateful-firewall rule rule-name term term-name from]

Release Information
Statement introduced before Junos OS Release 7.4.
any-unicast and except options introduced in Junos OS Release 7.6.
address option enhanced to support IPv4 and IPv6 addresses in Junos OS Release 8.5.

Description
Specify the destination address for rule matching.

Options
address—Destination IPv4 or IPv6 address or prefix value. Using a value of 0::0/0 with IPv6 is not allowed for M-Series and MX-Series routers.

- any-ipv4—Any IPv4 packet.
- any-ipv6—Any IPv6 packet.
- any-unicast—Match all unicast packets.
- except—(Optional) Exclude the specified address, prefix, IPv4, IPv6, or unicast packets from rule matching.

Required Privilege
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Match Conditions in Stateful Firewall Rules on page 469
destination-address-range (IDS MS-DPC)

Syntax
destination-address-range low minimum-value high maximum-value <except>;

Hierarchy Level [edit services ids rule rule-name term term-name from]

Release Information Statement introduced in Junos OS Release 7.6. minimum-value and maximum-value options enhanced to support IPv4 and IPv6 addresses in Junos OS Release 8.5.

Description Specify the destination address range for rule matching when using the MS-DPC.

Options
minimum-value—Lower boundary for the IPv4 or IPv6 address range.
maximum-value—Upper boundary for the IPv4 or IPv6 address range.
except—(Optional) Exempt the specified address range from rule matching.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Match Conditions in IDS Rules on page 500
destination-address-range (PCP)

Syntax
destination-address-range high *maximum-value* low *minimum-value* <except>;

Hierarchy Level
[edit services pcp rule *rule-name* term *term-name* from]

Release Information
Statement introduced in Junos OS Release 13.2R1.

Description
Specify the destination address range that must be matched for the PCP rule. A PCP rule assigns the PCP server that handles selected traffic.

PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, PCP is also supported on the MS-MPC and MS-MIC.

Options
maximum-value—Upper boundary for the address range.
minimum-value—Lower boundary for the address range.
except—(Optional) Prevent the specified address range from matching the PCP rule.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Port Control Protocol on page 220
destination-address-range (Services NAT)

Syntax
destination-address-range low minimum-value high maximum-value <except>;

Hierarchy Level
[edit services nat rule rule-name term term-name from]

Release Information
Statement introduced in Junos OS Release 7.6.
minimum-value and maximum-value options enhanced to support IPv6 addresses in Junos OS Release 8.5.

Description
Specify the destination address range for rule matching.
If the translation-type statement in the then statement of the nat rule is set to stateful-nat-64, the destination address range for rule matching must be within the range specified by the destination-prefix statement in the then statement.

Options
minimum-value—Lower boundary for the IPv4 or IPv6 address range.
maximum-value—Upper boundary for the IPv4 or IPv6 address range.
extcept—(Optional) Prevent the specified address range from being translated.

Required Privilege Level
interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation
• Network Address Translation Rules Overview on page 84
destination-address-range (Services Stateful Firewall)

Syntax
destination-address-range low minimum-value high maximum-value <except>;

Hierarchy Level
[edit services stateful-firewall rule rule-name term term-name from]

Release Information
Statement introduced in Junos OS Release 7.6.
minimum-value and **maximum-value** options enhanced to support IPv4 and IPv6 addresses in Junos OS Release 8.5.

Description
Specify the destination address range for rule matching.

Options
- **minimum-value**—Lower boundary for the IPv4 or IPv6 address range.
- **maximum-value**—Upper boundary for the IPv4 or IPv6 address range.
- **except**—(Optional) Exclude the specified address range from rule matching.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Match Conditions in Stateful Firewall Rules on page 469

destination-pool

Syntax
destination-pool nat-pool-name;

Hierarchy Level
[edit services nat rule rule-name term term-name then translated]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Specify the destination address pool for translated traffic.

Options
- **nat-pool-name**—Destination pool name.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Network Address Translation Rules Overview on page 84
destination-port

Syntax destination-port port-value;

Hierarchy Level [edit applications application application-name]

Release Information Statement introduced before Junos OS Release 7.4.

Description Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) destination port number.

Options port-value—Identifier for the port or range of ports. For a complete list of supported application destination port requirements, see “Configuring Source and Destination Ports” on page 437.

Range: 1 through 65,535

NOTE: If you specify a value of 0 as a destination port or beginning of a destination port range, you will receive the following error:

```
'application application-name'
TCP Destination Port 0 Invalid
error: configuration check-out failed
```

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

• ALG Descriptions on page 399
• Configuring Application Sets on page 431
• Configuring Application Properties on page 431
• Examples: Configuring Application Protocols on page 450
• Verifying the Output of ALG Sessions on page 451
• Understanding Two-Way Active Measurement Protocol on Routers
destination-port (PCP)

Syntax

destination-port high maximum-value low minimum-value;

Hierarchy Level

[edit services pcp rule rule-name term term-name from]

Release Information

Statement introduced in Junos OS Release 13.2R1.

Description

Specify the destination port range that must be matched for the PCP rule. A PCP rule assigns the PCP server that handles selected traffic.

PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, PCP is also supported on the MS-MPC and MS-MIC.

Options

maximum-value—Upper boundary for the port range.

minimum-value—Lower boundary for the port range.

Required Privilege

interface—to view this statement in the configuration.

interface-control—to add this statement to the configuration.

Related Documentation

• Configuring Port Control Protocol on page 220
destination-port range

Syntax

```
destination-port range high maximum-value low minimum-value;
```

Hierarchy Level

```
[edit services nat rule rule-name term term-name from]
```

Release Information

Statement introduced in Junos OS Release 11.4.

Description

Specify the destination port range for rule matching.

Options

- **maximum-value**—Upper limit of port range for matching.
- **minimum-value**—Lower limit of port range for matching.

Required Privilege

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

Related Documentation

- Configuring Port Forwarding for Static Destination Address Translation on page 244
destination-prefix (IDS)

Syntax

```
destination-prefix prefix-value;
```

Hierarchy Level

```
[edit services ids rule rule-name term term-name then aggregation]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 17.1 on MS-MPCs.

Description

Specify a prefix length for destination IPv4 address aggregation for the IDS rule. This applies session limits to an aggregation of all attacks to a subnet of the specified length.

For example, if you configure a value of 24 for `destination-prefix`, then attacks to 10.1.1.2 and 10.1.1.3 are counted as attacks to the 10.1.1/24 subnet.

Options

- `prefix-value`—Integer value.
 - **Range:** 1 through 32

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Actions in IDS Rules on page 501
- Configuring Protection Against Network Attacks on an MS-MPC on page 515
- Understanding IDS on an MS-MPC on page 511
destination-prefix (Services NAT)

Syntax

```
destination-prefix destination-prefix
```

Hierarchy Level

```
[edit services nat rule rule-name term term-name then translated]
```

Release Information

Statement introduced in Junos OS Release 7.6. `destination-prefix` option enhanced to support IPv6 addresses in Junos OS Release 8.5.

Description

Specify the destination prefix for translated traffic.

Options

`destination-prefix`—IPv4 or IPv6 destination prefix value.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Network Address Translation Rules Overview on page 84
destination-prefix-ipv6 (IDS)

Syntax

```
destination-prefix-ipv6 prefix;
```

Hierarchy Level

```
[edit services ids rule rule-name term term-name then aggregation]
```

Release Information

Statement introduced in Junos OS Release 8.5.
Statement introduced in Junos OS Release 17.1 on MS-MPCs.

Description

Specify a prefix length for destination IPv6 address aggregation for the IDS rule. This applies session limits to an aggregation of all attacks to a subnet of the specified length.

For example, if you configure a value of 64 for `destination-prefix-ipv6`, then attacks to 2001:db8:1234:72a2::2 and 2001:db8:1234:72a2::3 are counted as attacks to the 2001:db8:1234:72a2::/64 subnet.

Options

- `prefix-value`—Integer value.
 - Range: 1 through 128

Required Privilege

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Actions in IDS Rules on page 501
- Configuring Protection Against Network Attacks on an MS-MPC on page 515
- Understanding IDS on an MS-MPC on page 511
destination-prefix-list (PCP)

Syntax
destination-prefix-list list-name;

Hierarchy Level
[edit services pcp rule rule-name term term-name from]

Release Information
Statement introduced in Junos OS Release 13.2R1.

Description
Specify the destination prefix list that must be matched for the PCP rule. You configure the prefix list by including the prefix-list statement at the [edit policy-options] hierarchy level. A PCP rule assigns the PCP server that handles selected traffic.

PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, PCP is also supported on the MS-MPC and MS-MIC.

Options
list-name—Destination prefix list.

except—(Optional) Prevent the specified prefix list from matching the PCP rule.

Required Privilege Level
interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Port Control Protocol on page 220
destination-prefix-list (Services CoS)

Syntax

`destination-prefix-list list-name <except>;`

Hierarchy Level

`[edit services cos rule rule-name term term-name from]`

Release Information

Statement introduced in Junos OS Release 8.2.

Description

Specify the destination prefix list for rule matching. You configure the prefix list by including the `prefix-list` statement at the `[edit policy-options]` hierarchy level.

Options

- `list-name`—Destination prefix list.
- `except`—(Optional) Exclude the specified prefix list from rule matching.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring CoS Rules on page 712
- Routing Policies, Firewall Filters, and Traffic Policers Feature Guide
destination-prefix-list (Services IDS)

Syntax

```
destination-prefix-list list-name <except>;
```

Hierarchy Level

[edit services ids rule rule-name term term-name from]

Release Information

Statement introduced in Junos OS Release 8.2.

Description

Specify the destination prefix list for rule matching. You configure the prefix list by including the prefix-list statement at the [edit policy-options] hierarchy level.

Options

- `list-name`—Destination prefix list.
- `except`—(Optional) Exclude the specified prefix list from rule matching.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Routing Policies, Firewall Filters, and Traffic Policers Feature Guide
- Configuring Match Conditions in IDS Rules on page 500
destination-prefix-list (Services NAT)

Syntax

destination-prefix-list list-name <except>;

Hierarchy Level

[edit services nat rule rule-name term term-name from]

Release Information

Statement introduced in Junos OS Release 8.2.

Description

Specify the destination prefix list for rule matching. You configure the prefix list by including the prefix-list statement at the [edit policy-options] hierarchy level.

If the translation-type statement in the then statement of the nat rule is set to stateful-nat-64, the destination prefix list for rule matching must be within the range specified by the destination-prefix statement in the then statement.

Options

list-name—Destination prefix list.

except—(Optional) Exclude the specified prefix list from rule matching.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

• Network Address Translation Rules Overview on page 84

• Routing Policies, Firewall Filters, and Traffic Policers Feature Guide
destination-prefix-list (Services Stateful Firewall)

Syntax
destination-prefix-list list-name <except>;

Hierarchy Level
[edit services stateful-firewall rule rule-name term term-name from]

Release Information
Statement introduced in Junos OS Release 8.2.

Description
Specify the destination prefix list for rule matching. You configure the prefix list by including the prefix-list statement at the [edit policy-options] hierarchy level.

Options
list-name—Destination prefix list.

except—(Optional) Exclude the specified prefix list from rule matching.

Required Privilege Level
interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Match Conditions in Stateful Firewall Rules on page 469
• Routing Policies, Firewall Filters, and Traffic Policers Feature Guide
destined-port

Syntax

`destined-port port id;`

Hierarchy Level

```
[edit services nat port-forwarding map-name]
```

Release Information

Statement introduced in Junos OS Release 11.4.

Description

Specify the destination port number that needs to be translated to another port.

The `destined-port` statement is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, the `destined-port` statement is also supported on the MS-MPC and MS-MIC.

Options

- **port id**—The destination port number from where traffic will be forwarded.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- Configuring Port Forwarding for Static Destination Address Translation on page 244
- Configuring Port Forwarding Without Destination Address Translation on page 248
deterministic-port-block-allocation

Syntax

deterministic-port-block-allocation {
 block-size block-size;
 include-boundary-addresses;
}

Hierarchy Level

[edit services nat pool pool-name port]

Release Information

Statement introduced in Junos OS Release 12.1.

Description

Configure algorithm-based allocation of blocks of destination ports. By specifying this method, you ensure that an incoming (source) IP address and port always map to the same destination IP address and port block, thus eliminating the need for logging address translations.

Options

- **block-size**—Maximum number of ports that can be allocated to a user.

If **block-size** is configured as zero, the method for computing the block size is as follows:

\[\text{block-size} = \text{int}(65412/\text{ceil}((\text{Number of subscribers}/\text{Number of IP addresses in the NAT pool}))) \]

where

64512 is derived from (65535 - 1023) because the regular port assignments start from 1024.

Number of subscribers is derived from the from clause of the applicable NAT rule.

Default: 256

Range: 0 through 32,000

- **include-boundary-addresses**—(Optional) Specifies that the lowest and highest addresses (the network and broadcast addresses) in the source address range of a NAT rule should be translated when the NAT pool is used. If the source address has a prefix of /32, the lowest and highest address are automatically translated.

Required Privilege Level

- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

Related Documentation

- Configuring Deterministic NAPT on page 169
dh-group

Syntax
dh-group \((\text{group}1 | \text{group}2 | \text{group}5 | \text{group}14 | \text{group}15 | \text{group}16 | \text{group}19 | \text{group}20 | \text{group}24) \);

Hierarchy Level
[edit services ipsec-vpn \underline{ike proposal \textit{proposal-name}}]

Release Information
Statement introduced before Junos OS Release 7.4.
group15, group16, and group24 options added in Junos OS Release 17.4R1.

Description
Configure the IKE Diffie–Hellman prime modulus group to use for performing the new Diffie–Hellman exchange.

Options
group1—768-bit.

group2—1024-bit.

group5—1536-bit.

group14—2048-bit.

group15—3072-bit.

group16—4096-bit.

group19—256-bit random Elliptic Curve Group.

group20—384-bit random Elliptic Curve Group.

group24—2048-bit with 256-bit Prime Order Subgroup.

Required Privilege Level
admin—To view this statement in the configuration.

admin-control—To add this statement to the configuration.

Related Documentation
• Configuring IKE Proposals on page 571
dial-options

Syntax

```plaintext
dial-options {
  ipsec-interface-id name;
  l2tp-interface-id name;
  (shared | dedicated);
}
```

Hierarchy Level

- `[edit interfaces sp-fpc/pic/port unit logical-unit-number]`
- `[edit interfaces si-fpc/pic/port unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces sp-fpc/pic/port unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces si-fpc/pic/port unit logical-unit-number]`

Release Information

Statement introduced before Junos OS Release 7.4.
The `[edit ...si-...]` hierarchy levels introduced in Junos OS Release 11.4.

Description

Specify the options for configuring logical interfaces for group and user sessions in L2TP or IPsec dynamic endpoint tunneling.

Options

- **dedicated**—(LNS on M Series routers and MX Series routers only) Specify that a logical interface can host only one session at a time.

 - **ipsec-interface-id name**—(M Series routers only) Interface identifier for group of dynamic peers. This identifier must be replicated at the `[edit access profile name client * ike]` hierarchy level.

 - **l2tp-interface-id name**—Interface identifier that must be replicated at the `[edit access profile name]` hierarchy level.

- **shared**—(LNS on M Series routers only) Specify that a logical interface can host multiple (shared) sessions at a time.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring the Identifier for Logical Interfaces that Provide L2TP Services on page 911
- Configuring Dynamic Endpoints for IPsec Tunnels on page 647
- Configuring Options for the LNS Inline Services Logical Interface
direction

Syntax

direction (inbound | outbound | bidirectional) [protocol (ah | bundle | esp); spi spi-value; auxiliary-spi spi-value; authentication { algorithm (hmac-md5-96 | hmac-sha1-96); key (ascii-text key | hexadecimal key); } encryption { algorithm algorithm; key (ascii-text key | hexadecimal key); }]

Hierarchy Level
[edit services ipsec-vpn rule rule-name term term-name then manual]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Specify the direction in which manual SAs are applied.

Options
bidirectional—Apply the SA in both directions.

inbound—Apply the SA on inbound traffic.

outbound—Apply the SA on outbound traffic.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring IPsec Rules on page 592
disable-natt (Services IPsec VPN)

Syntax
```
disable-natt;
```

Hierarchy Level
[edit services ipsec-vpn].

Release Information

Description
Before Junos OS Release 17.4R1, Network Address Translation-Traversal (NAT-T) is not supported for the Junos VPN Site Secure suite of IPsec features on the MX Series routers. In Junos OS releases before 17.4R1, disable NAT-traversal (NAT-T) when a NAT device is present between two IPsec gateways to cause the Encapsulating Security Payload (ESP) protocol to be used for encapsulation.

In traditional network deployments, IPsec does not work when packets traverse across a device that is configured for network address translation (NAT) or network address port translation (NAPT) for translating packets. IPsec does not work when either one of the device or both the devices that terminate the IPsec tunnel is behind a NAT device. This behavior occurs because NAT checks the port information, which is not present for IPsec-protected traffic.

When NAT-T is configured, IPsec traffic is encapsulated using the UDP header and port information is provided for the NAT devices. By default, Junos OS detects whether either one of the IPsec tunnel is behind a NAT device and automatically switches to using NAT-T for the protected traffic. However, in certain cases, NAT-T support on MX Series routers running a Junos OS Release before 17.4R1 might not work as desired. Also, you might require NAT-traversal to be disabled if you are aware that the network uses IPsec-aware NAT.

To avoid problems with NAT-T on MX series routers, you can disable NAT-T. When you disable NAT-T, the NAT-T functionality is globally switched off. Also, even when a NAT device is present between the two IPsec gateways, only ESP encapsulation is used when you disable NAT-T.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Disabling NAT-T on MX Series Routers for Handling NAT with IPsec-Protected Packets on page 609
distinguished-name

Syntax

```
distinguished-name container container-string-values | wildcard wildcard-string-values
```

Hierarchy Level

```
[edit services ipsec-vpn ikepolicy policy-name local-id|remote-id]
```

Release Information

`distinguished-name` option added in Junos OS Release 19.1.

Description

Specify one or more distinguished name values.

A distinguished name is a name used with digital certificates to uniquely identify a user. For example a distinguished name can be:

- CN=user
- DC=example
- DC=com

 Optionally, you can use the container keyword to specify that the order of the fields in a DN and their values exactly match the configured DN, or use the wildcard keyword to specify that the values of fields in a DN must match but the order of the fields does not matter.

Options

- `container container-string-values` — One or more distinguished name container string.
- `wildcard wildcard-string-values` — One or more distinguished name wildcard string.

Required Privilege Level

- `admin`—To view this statement in the configuration.
- `admin-control`—To add this statement to the configuration.

Related Documentation

- Configuring IKE Policies on page 576
dns-alg-pool

Syntax
dns-alg-pool dns-alg-pool;

Hierarchy Level
[edit services nat rule rule-name term term-name then translated]

Release Information
Statement introduced in Junos OS Release 10.4.

Description
Specify the Network Address Translation (NAT) pool for destination translation.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Network Address Translation Rules Overview on page 84

dns-alg-prefix

Syntax
dns-alg-prefix dns-alg-prefix;

Hierarchy Level
[edit services nat rule rule-name term term-name then translated]

Release Information
Statement introduced in Junos OS Release 10.4.

Description
Set the Domain Name System (DNS) application-level gateway (ALG) 96-bit prefix for mapping IPv4 addresses to IPv6 addresses.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Network Address Translation Rules Overview on page 84
dns-filter

Syntax
```
dns-filter {
    database-file filename;
    dns-resp-ttl seconds;
    dns-server [ ip-address ];
    hash-key key-string;
    hash-method hash-method-name;
    statistics-log-timer minutes;
    wildcarding-level level;
    txt-resp-err-code (Noerror | Refused);
    srv-resp-err-code (Noerror | Refused);
}
```

Hierarchy Level
```
[edit services web-filter profile profile-name],
[edit services web-filter profile profile-name dns-filter-template template-name]
```

Release Information
Statement introduced in Junos OS Release 18.3R1 on MX Series.
Support added for Next Gen Services on MX Series routers MX240, MX480 and MX960 with MX-SPC3 services cards in Junos OS Release 19.3R1.

Description
Configure the settings for filtering DNS requests for blacklisted website domains. Filtering can result in either:

- Blocking access to the site by sending the client a DNS response that includes an IP address or domain name of a sinkhole server instead of the blacklisted domain.
- Logging the DNS request and allowing access.

Settings at the `[edit services web-filter profile profile-name dns-filter-template template-name]` hierarchy level override the corresponding settings at the `[edit services web-filter profile profile-name]` hierarchy level.

Options
- **database-file filename**—Name of the domain filter database file to use when filtering DNS requests.
- **dns-resp-ttl seconds**—Number of seconds to live while sending the DNS response after taking the DNS sinkhole action.
 - **Default**: 1800
 - **Range**: 0 through 86,400
- **dns-server [ip-address]**—(Optional) IP addresses (IPv4 or IPv6) for up to three specific DNS servers. DNS filtering examines only DNS requests that are destined for those DNS servers.
- **hash-key key-string**—Hash key that you used to create the hashed domain name in the domain filter database file.
hash-method hash-method-name—Hash method that you used to create the hashed domain name in the domain filter database file. The only supported hash method is hmac-sha2-256.

statistics-log-timer minutes—Number of minutes in the interval for logging statistics for DNS requests and for sinkhole actions performed for each customer IP address.

Default: 5
Range: 0 through 60

txt-resp-err-code—This option can be set to either: Noerror | Refused. If set to Noerror, the error code is sent as 0 with an empty response If set to Refused error, the error code is sent as 5.

NOTE: This option is for Next Gen Services using the MX-SPC3 services card.

srv-resp-err-code (Noerror | Refused)—This option is only for Next Gen Services using the MX-SPC3 services card and can be set to either: Noerror | Refused. If set to Noerror, the error code is sent as 0 with an empty response If set to Refused error, the error code is sent as 5.

NOTE: This option is only for Next Gen Services using the MX-SPC3 services card.

wildcarding-level level—Level of subdomains that are searched for a match. A value of 0 indicates that subdomains are not searched.

For example, if you set the wildcarding-level to 4 and the database file includes an entry for example.com, the following comparisons are made for a DNS request that arrives with the domain 198.51.100.0.example.com:

- 198.51.100.0.example.com: no match
- 51.100.0.example.com: no match for one level down
- 100.0.example.com: no match for two levels down
- 0.example.com: no match for three levels down
- example.com: match for four levels down

Range: 0 through 10

Required Privilege Level
system—To view this statement in the configuration.
system-control—To add this statement to the configuration.
Related Documentation

- DNS Request Filtering for Blacklisted Website Domains on page 39
dns-filter-template

Syntax

dns-filter-template *template-name* [
 client-interfaces [*client-interface-name*];
 client-routing-instance *client-routing-instance-name*;
 dns-filter {
 database-file *filename*;
 dns-resp-ttl *seconds*;
 dns-server [*ip-address*];
 hash-key *key-string*;
 hash-method *hash-method-name*;
 statistics-log-timer *minutes*;
 wildcarding-level *level*;
 }
 server-interfaces [*server-interface-name*];
 server-routing-instance *server-routing-instance-name*;
 term *term-name* {
 from {
 src-ip-prefix [*source-prefix*];
 }
 then {
 accept;
 dns-sinkhole;
 }
 }
]

Hierarchy Level

[edit services web-filter profile *profile-name*]

Release Information

Statement introduced in Junos OS Release 18.3R1 on MX Series.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description

Configure filtering of DNS requests for blacklisted website domains for requests on specific uplink and downlink logical interfaces or routing instances, or for requests from specific source IP address prefixes. The DNS filter template overrides the corresponding settings at the DNS profile level. You can configure up to 32 DNS filter templates in a profile.

Filtering can result in either:

- Blocking access to the site by sending the client a DNS response that includes an IP address or domain name of a sinkhole server instead of the blacklisted domain.
- Logging the DNS request and allowing access.

Options

- **accept**—Accept DNS requests for DNS filtering.
client-interfaces [client-interface-name]—(Optional) Client-facing (uplink) logical interfaces on which the DNS filter template settings are applied.

client-routing-instance client-routing-instance-name—(Optional) Client-facing (uplink) routing instance on which the DNS filter template settings are applied.

dns-filter-template template-name—Name of the DNS filter template.

dns-sinkhole—Perform the sinkhole action identified in the domain filter database for blacklisted DNS requests.

server-interfaces [server-interface-name]—(Optional) Server-facing logical interfaces (downlink) on which the DNS filter template settings are applied.

server-routing-instance server-routing-instance-name—(Optional) Server-facing (downlink) routing instance on which the DNS filter template settings are applied.

NOTE: If you configure the client and server interfaces or the client and server routing instances, implicit filters are installed on the interfaces or routing instances to direct DNS traffic to the MS-MPC for DNS filtering. If you configure neither the client and server interfaces nor the routing instances, you must provide a way to direct DNS traffic to the MS-MPC (for example, via routes).

src-ip-prefix [source-prefix]—(Optional) Source IP address prefixes of DNS requests you want to filter. You can configure a maximum of 64 prefixes in a term. If you do not specify any source prefixes, then all DNS requests are filtered.

term term-name—Name for a term. You can configure a maximum of 64 terms in a template.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

system—To view this statement in the configuration.

system-control—To add this statement to the configuration.

Related Documentation

• DNS Request Filtering for Blacklisted Website Domains on page 39
drop-member-traffic (Aggregated Multiservices)

Syntax
drop-member-traffic {
 rejoin-timeout rejoin-timeout;
}

Hierarchy Level [edit interfaces interface-name load-balancing-options member-failure-options]

Release Information Statement introduced in Junos OS Release 11.4.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

Description Specify whether the broadband gateway should drop traffic to a services PIC when it fails.

For many-to-one (N:1) high availability (HA) for service applications like Network Address Translation (NAT), this configuration is valid only when two or more services PICs have failed.

The remaining statement is explained separately. See CLI Explorer.

Default If this statement is not configured, then the default behavior is to drop member traffic with a rejoin timeout of 120 seconds.

Required Privilege
- level interface—To view this statement in the configuration.
- level interface-control—To add this statement to the configuration.

Related Documentation
- member-failure-options (Aggregated Multiservices) on page 1130
- Understanding Aggregated Multiservices Interfaces on page 865
- Example: Configuring an Aggregated Multiservices Interface (AMS) on page 878
ds-lite

Syntax

\[
\text{ds-lite} ~ \text{ds-lite-softwire-concentrator} \{ \\
\text{auto-update-mtu;}
\text{copy-dscp;}
\text{flow-limit} \text{ flow-limit} | \text{session-limit-per-prefix} \text{ session-limit-per-prefix;}
\text{mtu-v6} \text{ bytes;}
\text{softwire-address} \text{ softwire-address;}
\}
\]

Hierarchy Level

[edit services softwire softwire-concentrator]

Release Information

Statement introduced in Junos OS Release 10.4.
\text{auto-update-mtu} option introduced in Junos OS Release 10.4.
\text{copy-dscp} option introduced in Junos OS Release 11.2.
\text{mtu-v6} option introduced in Junos OS Release 10.4.
\text{softwire-address} option introduced in Junos OS Release 10.4.

Description

Configure settings for a DS-Lite concentrator used to process IPv4 packets encapsulated in IPv6.

The \text{ds-lite} statement is supported on MX Series routers with MS-DPCs and on M Series routers with MS-100, MS-400, and MS-500 line Multiservices PICs. Starting in Junos OS release 17.4R1, DS-Lite is supported on MX Series routers with MS-MPCs and MS-MICs.

Options

\text{bytes}—Maximum transmission unit (MTU), in bytes, for encapsulating IPv4 packets into IPv6. If the final length is greater than the configured value, the IPv6 packet is fragmented. This option is supported on MX Series routers equipped with MS-DPCs. Starting in Junos OS release 18.1R1, this option is also supported on MX Series routers with MS-MPCs or MS-MICs.

\text{ds-lite-softwire-concentrator}—Name applied to a DS-Lite softwire concentrator.

\text{auto-update-mtu}—This option is not currently supported.

\text{copy-dscp}—Copy DSCP information to IPv4 headers during decapsulation.

\text{flow-limit}—Maximum number of IPv4 flows per softwire.
\text{Range:} 0 through 16384 flows
\text{Range:} 0 through 9192 bytes

\text{session-limit-per-prefix}—Maximum number of sessions per B4 subnet prefix. This option is supported on MX Series routers equipped with MS-DPCs. Starting in Junos OS Release 18.2R1, this option is also supported on MS-MPCs and MS-MICs.
\text{Range:} 0 through 16384 sessions

\text{softwire-address}—Address of the DS-Lite softwire concentrator.
Required Privilege
- **Level**
 - interface—to view this statement in the configuration.
 - interface-control—to add this statement to the configuration.

Related Documentation
- Configuring a DS-Lite Softwire Concentrator on page 331

dscp (Services CoS)

Syntax
```
dscp (alias | bits);
```

Hierarchy Level
- [edit services cos application-profile profile-name (ftp | sip) (data | video | voice)],
- [edit services cos rule rule-name term term-name then],
- [edit services cos rule rule-name term term-name then reverse]

Release Information
- Statement introduced in Junos OS Release 8.1.

Description
Define the Differentiated Services code point (DSCP) mapping that is applied to the packets. Change the DSCP (or TOS) on the packet to the specified value. Any conformant bit string can be specified, but only the default alias can be used.

Options
- `alias`—Name assigned to a set of CoS markers.
- `bits`—Mapping value in the packet header.

Required Privilege
- **Level**
 - interface—to view this statement in the configuration.
 - interface-control—to add this statement to the configuration.

Related Documentation
- Configuring Actions in CoS Rules on page 714.
- Configuring CoS Rules on Services PICs
dynamic

Syntax

dynamic {
 ike-policy policy-name;
 ipsec-policy policy-name;
}

Hierarchy Level

[edit services ipsec-vpn rule rule-name term term-name then]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Define a dynamic IPsec SA.

Options

ike-policy *policy-name*—Name of the IKE policy. This statement is optional for the non-preshared-key authentication method. For digital signature-based authentication, this statement is optional and the default policy is used if none is supplied.

ipsec-policy *policy-name*—Name of the IPsec policy. This statement is optional and the default policy is used if none is supplied.

Required Privilege Level

admin—To view this statement in the configuration.

admin-control—To add this statement to the configuration.

Related Documentation

- Configuring Security Associations on page 549
ecmp-alb

Syntax

```plaintext
ecmp-alb {
    apply-groups;
    apply-groups-except;
    tolerance;
}
```

Hierarchy Level
[edit chassis]

Release Information
Statement introduced in Junos OS Release 14.2.

Description
Enable adaptive load balancing for equal-cost multipath (ECMP) next hops.

NOTE: The `ecmp-alb` statement can be enabled only when the `[edit chassis network-services enhanced-ip]` statement is configured.

Options

- `apply-groups`—Specify the groups from which to inherit configuration data.
- `apply-groups-except`—Specify the groups from which configuration data should not be inherited.
- `tolerance`—Specify the adaptive tolerance in percentage.

Default: 20%.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.
ei-mapping-timeout

Syntax

mapping-timeout seconds;

Hierarchy Level

[edit services nat pool nat-pool-name]

Release Information

ei-mapping-timeout statement introduced in JUNOS Releases 12.3.

Description

Specify the duration for endpoint independent translations that use the specified NAT pool. This includes endpoint-independent mapping (EIM) and endpoint-independent filtering (EIF).

Options

seconds—Lifetime of endpoint independent mappings in seconds.
Default: 300
Range: 120 through 864,000

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

• Network Address Translation Configuration Overview on page 80
eif-flow-limit

Syntax

```
eif-flow-limit number-of-flows
```

Hierarchy Level

```
[edit services nat rule rule-name term term-name then translated secure-nat-mapping]
```

Release Information

Statement introduced in Junos OS Release 12.3

Description

Specify the maximum number of inbound flows allowed on EIF mapping to the configured value. This limit is per EIF mapping and is per given instance of time. For example, if `eif-flow-limit` is configured as n, then only n inbound connections are allowed at a given instance of time. The n+1 and subsequent connections arriving when n connections are alive are dropped. A new inbound connection is allowed only when one of the n connections times out or is closed. This limit is applied for all type of flows.

Starting in Junos OS Release 15.1R3, `eif-flow-limit` is also supported on the MS-MPC and MS-MIC.

Required Privilege

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Protecting CGN Devices Against Denial of Service (DOS) Attacks on page 349
enable-rejoin (aggregated Multiservices)

Syntax

```
enable-rejoin;
```

Hierarchy Level

```
[edit interfaces interface-name load-balancing-options member-failure-options redistribute-all-traffic]
```

Release Information

Statement introduced in Junos OS Release 11.4. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

Description

Enable the failed member to rejoin the aggregated Multiservices (AMS) interface after the member comes back online.

For many-to-one (N:1) high availability (HA) for service applications like Network Address Translation (NAT), this configuration allows the failed members to rejoin the pool of active members automatically.

Default

If you do not configure this option, then the failed members do not automatically rejoin the `ams` interface even after coming back online.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- redistribute-all-traffic (Aggregated Multiservices) on page 1191
- Understanding Aggregated Multiservices Interfaces on page 865
- Example: Configuring an Aggregated Multiservices Interface (AMS) on page 878
encapsulation

Syntax
encapsulation type;

Hierarchy Level
[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Specify the logical link-layer encapsulation type.

Options
atm-mlppp-llc—For ATM2 IQ physical interfaces only, use Multilink Point-to-Point Protocol (MLPPP) over AAL5 LLC encapsulation.

frame-relay-ppp—For Frame Relay circuits, use Frame Relay PPP encapsulation.

multilink-ppp—By default, voice services logical interfaces use MLPPP encapsulation.

Required Privilege Level
interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation
• Configuring Encapsulation for Voice Services on page 897
• Junos OS Network Interfaces Library for Routing Devices
encryption

Syntax

```plaintext
equption [  
algorithma logorithm;  
key (asciitext key | hexadecimal key);  
]
```

Hierarchy Level

```
[edit services ipsec-vpn rule rule-name term term-name then manual direction direction]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure an encryption algorithm and key for manual SA.

Options

- **algorithm**—Type of encryption algorithm. The algorithm can be one of the following:
 - `des-cbc`—Has a block size of 8 bytes (64 bits); the key size is 48 bits long.
 - `3des-cbc`—Has a block size of 8 bytes (64 bits); the key size is 192 bits long.

 NOTE: For `3des-cbc`, the first 8 bytes should differ from the second 8 bytes, and the second 8 bytes should be the same as the third 8 bytes.

- **key**—Type of encryption key. The key can be one of the following:
 - `asciitext`—ASCII text key. Following are the key lengths, in ASCII characters, for the different encryption options:
 - `des-cbc` option, 8 ASCII characters
 - `3des-cbc` option, 24 ASCII characters
 - `aes-128-cbc` option, 16 ASCII characters
 - `aes-192-cbc` option, 24 ASCII characters
 - `aes-256-cbc` option, 32 ASCII characters
 - `hexadecimal`—Hexadecimal key. Following are the key lengths, in hexadecimal characters, for the different encryption options:
 - `des-cbc` option, 16 hexadecimal characters
 - `3des-cbc` option, 48 hexadecimal characters
- `aes-128-cbc` option, 32 hexadecimal characters
- `aes-192-cbc` option, 48 hexadecimal characters
- `aes-256-cbc` option, 64 hexadecimal characters

Required Privilege

- **system**—To view this statement in the configuration.
- **system-control**—To add this statement to the configuration.

Related Documentation

- Configuring Security Associations on page 549
encryption-algorithm

Syntax

```
encryption-algorithm algorithm;
```

Hierarchy Level

```
[edit services ipsec-vpn ike proposal proposal-name],  
[edit services ipsec-vpn ipsec proposal proposal-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
aes-128-cbc, aes-192-cbc, and aes-256-cbc options added in Junos OS Release 7.6.
aes-128-gcm, aes-192-gcm, and aes-256-gcm options added in Junos OS Release 17.3R1.

Description

Configure an IKE or IPsec encryption algorithm.

Options

- **3des-cbc**—Has a block size of 24 bytes; the key size is 192 bits long.
- **aes-128-cbc**—Advanced Encryption Standard (AES) 128-bit encryption algorithm.
- **aes-192-cbc**—AES 192-bit encryption algorithm.
- **aes-256-cbc**—AES 256-bit encryption algorithm.

NOTE: In Junos FIPS mode, AES-GCM is not supported in Junos OS Release 17.3R1. Starting in Junos OS Release 17.4R1, AES-GCM is supported in Junos FIPS mode.

- **aes-128-gcm**—(IPsec only) Advanced Encryption Standard in Galois/Counter Mode (AES-GCM) 128-bit encryption algorithm with a 16 octet integrity check value (ICV). This can only be used on an MS-MPC or MS-MIC.
- **aes-192-gcm**—(IPsec only) AES-GCM 192-bit encryption algorithm with a 16 octet IVC. This can only be used on an MS-MPC or MS-MIC.
- **aes-256-gcm**—(IPsec only) AES-GCM 256-bit encryption algorithm with a 16 octet IVC. This can only be used on an MS-MPC or MS-MIC.
- **des-cbc**—Has a block size of 8 bytes; the key size is 48 bits long.

Required Privilege Level

- **admin**—To view this statement in the configuration.
- **admin-control**—To add this statement to the configuration.

Related Documentation

- Configuring IKE Proposals on page 571
- Configuring IPsec Proposals on page 584
establish-tunnels

Syntax

establish-tunnels (immediately | on-traffic | responder-only);

Hierarchy Level

[edit services ipsec-vpn]

Release Information

Statement introduced in Release 8.5 of Junos OS.

`responder-only` option added in Junos OS Release 18.2R1.

Description

Specify when IKE is activated: immediately after VPN information is configured and configuration changes are committed, or only when data traffic flows. In the second case, IKE needs to be negotiated with the peer gateway. Starting in Junos OS Release 18.2R1, you can also specify that the MX Series router only responds to IKE negotiations.

NOTE: The `immediately` option is required to tear down the st0 interface when dead peer detection (DPD) protocol is configured.

Options

- **immediately**—IKE is activated immediately after VPN configuration and configuration changes are committed.
- **on-traffic**—IKE is activated only when data traffic flows. IKE needs to be negotiated with the peer gateway.
- **responder-only**—Responds to IKE negotiations that are initiated by the peer gateway, but does not initiate IKE negotiations. This option is required when another vendor’s peer gateway expects the protocol and port values in the traffic selector from the initiating gateway, which the MX Series does not provide.

Required Privilege Level

- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

Related Documentation

- Understanding Junos VPN Site Secure on page 531
f-max-period

Syntax f-max-period number;

Hierarchy Level [edit interfaces interface-name unit logical-unit-number compression rtp], [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number compression rtp]

Release Information Statement introduced before Junos OS Release 7.4.

Description Specify the maximum number of compressed packets allowed between the transmission of full headers in a compressed Real-time Transport Protocol (RTP) traffic stream.

Options number—Maximum number of packets.
Default: 256

Required Privilege Level interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation • Configuring Compression of Voice Traffic on page 895
facility-override (Service Sets)

Syntax

```
facility-override facility-name;
```

Hierarchy Level

```
[edit services service-set service-set-name syslog host hostname]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Override the default facility for system log reporting.

Options

- `facility-name`—Name of the facility that overrides the default assignment. Valid entries are:
 - `authorization`
 - `daemon`
 - `ftp`
 - `kernel`
 - `local0` through `local7`
 - `user`

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- Configuring System Logging for Service Sets on page 33
facility-override (System Log Reporting)

Syntax
facility-override facility-name;

Hierarchy Level [edit services l2tp tunnel-group group-name syslog host hostname]

Release Information Statement introduced before Junos OS Release 7.4.

Description Override the default facility for system log reporting.

Options
facility-name—Name of the facility that overrides the default assignment. Valid entries include:

- authorization
- daemon
- ftp
- kernel
- local0 through local7
- user

Required Privilege
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring System Logging of L2TP Tunnel Activity on page 910
family (Aggregated Multiservices)

Syntax
family family;

Hierarchy Level
[edit interfaces interface-name unit interface-unit-number]

Release Information
Statement introduced in Junos OS Release 11.4.

Description
Configure protocol family information for the logical interface.

Options
family—Protocol family. Currently, only one option, inet (IP version 4 suite), is supported.

Required Privilege
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- unit (Aggregated Multiservices) on page 1344
- Understanding Aggregated Multiservices Interfaces on page 865
- Example: Configuring an Aggregated Multiservices Interface (AMS) on page 878
family (Interfaces)

Syntax

```bash
family inet {
    address address {
        ...
    }
    service {
        input {
            [ service-set service-set-name <service-filter filter-name> ];
            post-service-filter filter-name;
        }
        output {
            [ service-set service-set-name <service-filter filter-name> ];
        }
    }
}
```

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure protocol family information for the logical interface.

Options

`family`—Protocol family. Valid settings for service interfaces include `inet` (IPv4) and `mpls`.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

- **Level**: interface—To view this statement in the configuration.
- **Level**: interface-control—To add this statement to the configuration.

Related Documentation

- Junos OS Network Interfaces Library for Routing Devices for other statements that do not affect services interfaces.
- Configuring the Address and Domain for Services Interfaces on page 31
- Junos OS Network Interfaces Library for Routing Devices
family (Voice Services)

Syntax

```plaintext
family (inet | mlppp | ...) {
    address address {
        ...
    }
    bundle interface-name;
}
```

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure protocol family information for the logical interface.

Options

family—Protocol family:

- inet—IP version 4
- mlppp—MLPPP

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

- Junos OS Network Interfaces Library for Routing Devices for other statements that do not affect services interfaces.
- Configuring Network Interfaces for Voice Services on page 898
- Junos OS Network Interfaces Library for Routing Devices
filtering-type

Syntax filtering-type endpoint-independent;

Hierarchy Level [edit services nat rule (Services NAT) rule-name term (Services NAT) term-name then (Services NAT) translated]

Description Specify the NAT filtering behavior for sessions initiated from outside to inside.

Options endpoint-independent—Currently, the only valid setting specifies endpoint-independent filtering behavior.

Required Privilege Level interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation • Network Address Translation Rules Overview on page 84

force-entry (IDS MS-DPC)

Syntax (force-entry | ignore-entry):

Hierarchy Level [edit services ids rule rule-name term term-name then]

Release Information Statement introduced before Junos OS Release 7.4.

Description Specify handling of entries in the IDS events cache when using the MS-DPC:
 • force-entry—Ensure that the entry has a permanent place in the IDS cache after one event is registered.
 • ignore-entry—Ensure that all IDS events are ignored.

Required Privilege Level interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation • Configuring Actions in IDS Rules on page 501
forwarding-class (Services PIC Classifiers)

Syntax
forwarding-class class-name;

Hierarchy Level
[edit services cos application-profile profile-name (ftp | sip) (data | video | voice)],
[edit services cos rule rule-name term term-name then],
[edit services cos rule rule-name term term-name then reverse]

Release Information
Statement introduced in Junos OS Release 8.1.

Description
Assign the packets to the specified forwarding class.

Options
class-name—Name of the target application.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Actions in CoS Rules on page 714.
forwarding-class (Services CoS Fragmentation Properties)

Syntax

forwarding-class class-name {
 (fragment-threshold bytes | no-fragmentation);
 multilink-class number;
}

Hierarchy Level
[edit class-of-service fragmentation-maps]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For link services IQ (lsq) interfaces only, define a forwarding class name and associated fragmentation properties within a fragmentation map.

The fragment-threshold and no-fragmentation statements are mutually exclusive.

Default
If you do not include this statement, the traffic in forwarding class class-name is fragmented.

Options
class-name—Name of the forwarding class.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring CoS Fragmentation by Forwarding Class on LSQ Interfaces on page 726
fragment-limit

Syntax
`fragment-limit number-of-fragments;`

Hierarchy Level
`[edit interfaces interface-name services-options]`

Release Information
Statement introduced in Junos OS Release 12.1.

Description
Configure the maximum number of fragments permitted in a packet before the packet is dropped.

Options
- `number-of-fragments`—Maximum number of fragments permitted.
 - **Range:** 1 to 250 fragments.
 - **Default:** 250 fragments.

Required Privilege
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation
- Configuring Fragmentation Control for MS-DPC and MS-PIC Service Interfaces on page 38
fragment-threshold (Forwarding Class Maps)

Syntax

fragment-threshold bytes;

Hierarchy Level

[edit class-of-service fragmentation-maps forwarding-class class-name]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For link services IQ (lsq) interfaces only, set the fragmentation threshold for an individual forwarding class.

Default

If you do not include this statement, the fragmentation threshold you set at the [edit interfaces interface-name unit logical-unit-number] or [edit interfaces interface-name mfr-uni-nni-bundle-options] hierarchy level is the default for all forwarding classes. If you do not set a maximum fragment size anywhere in the configuration, packets are fragmented if they exceed the smallest maximum transmission unit (MTU) of all the links in the bundle.

Options

bytes—Maximum size, in bytes, for multilink packet fragments. Any nonzero value must be a multiple of 64 bytes.

Range: 128 through 16,320 bytes

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

- Configuring CoS Fragmentation by Forwarding Class on LSQ Interfaces on page 726
fragment-threshold (Interfaces LSQ)

Syntax

```
fragment-threshold bytes;
```

Hierarchy Level

```
[edit interfaces lsq-fpc/pic/port unit logical-unit-number],
[edit logical-systems logical-system-name interfaces lsq-fpc/pic/port unit logical-unit-number]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For voice services interfaces, set the fragmentation threshold, in bytes.

Options

```
bytes—Maximum size, in bytes, for multilink packet fragments. The value must be a multiple of 64 bytes, because zero is also a multiple of 64 bytes.
```

Options

- **Range**: 128 through 16,320 bytes
- **Default**: 0 bytes (no fragmentation)

Required Privilege

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

Related Documentation

- Configuring Delay-Sensitive Packet Interleaving on page 896
fragmentation-map

Syntax
fragmentation-map map-name;

Hierarchy Level
[edit class-of-service interfaces interface-name unit logical-unit-number]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For AS PIC link services IQ (lsq) and virtual LSQ redundancy (rlsq) interfaces, associate a fragmentation map with a multilink PPP interface or MLFR FRF.16 DLCI.

Default
If you do not include this statement, traffic in all forwarding classes is fragmented.

Options
map-name—Name of the fragmentation map.

Required Privilege
interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation
- Fragmentation by Forwarding Class Overview
- Configuring Fragmentation by Forwarding Class
- Configuring Fragmentation by Forwarding Class
- Example: Configuring Fragmentation by Forwarding Class
- Configuring Drop Timeout Interval for Fragmentation by Forwarding Class
- fragmentation-maps on page 1049
fragmentation-maps

Syntax
```
fragmentation-maps {
  map-name {
    forwarding-class class-name {
      drop-timeout milliseconds;
      fragment-threshold bytes;
      multilink-class number;
      no-fragmentation;
    }
  }
}
```

Hierarchy Level
[edit class-of-service]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For Multiservices and Services PIC link services IQ (lsq) and virtual LSQ redundancy (rlsq) interfaces, define fragmentation properties for individual forwarding classes.

Default
If you do not include this statement, traffic in all forwarding classes is fragmented.

Options
- **map-name**—Name of the fragmentation map.

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- [Fragmentation by Forwarding Class Overview](#)
- [Configuring Fragmentation by Forwarding Class](#)
- [Example: Configuring Fragmentation by Forwarding Class](#)
- [Configuring Drop Timeout Interval for Fragmentation by Forwarding Class](#)
- [fragmentation-map on page 1048](#)
from (Services CoS)

Syntax

```plaintext
from {
    application-sets set-name;
    applications [ application-names ];
    destination-address address;
    destination-prefix-list list-name <except>;
    source-address address;
    source-prefix-list list-name <except>;
}
```

Hierarchy Level

```
[edit services cos rule rule-name term term-name]
```

Release Information

Statement introduced in Junos OS Release 8.1.

Description

Specify input conditions for a CoS term.

Options

For information on match conditions, see the description of firewall filter match conditions in the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring CoS Rules on page 712
from (IDS MS-DPC)

Syntax

```plaintext
from {
    application-sets set-name:
    applications [ application-names ];
    destination-address (address | any-unicast) <except>:
    destination-address-range low minimum-value high maximum-value <except>;
    source-address (address | any-unicast) <except>;
    source-address-range low minimum-value high maximum-value <except>;
}
```

Hierarchy Level

```plaintext
[edit services ids rule rule-name term term-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Specify input conditions for the IDS term when using the MS-DPC.

Options

For information on match conditions, see the description of firewall filter match conditions in the *Routing Policies, Firewall Filters, and Traffic Policers Feature Guide*.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

- **Level**
 - interface—To view this statement in the configuration.
 - interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Match Conditions in IDS Rules on page 500
from (PCP)

Syntax

```
from {
    application-sets set-name:
    applications [ application-name ];
    destination-address address <except>;
    destination-address-range high maximum-value low minimum-value <except>;
    destination-port high maximum-value low minimum-value;
    destination-prefix-list list-name <except>;
    source-address address <except>;
    source-address-range high maximum-value low minimum-value <except>;
    source-prefix-list list-name <except>;
}
```

Hierarchy Level

```
[edit services pcp rule rule-name term term-name]
```

Release Information

Statement introduced in Junos OS Release 13.2R1.

Description

Specify the match conditions for a PCP rule term. A PCP rule assigns the PCP server that handles selected traffic.

PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS.

Starting in Junos OS Release 17.4R1, PCP is also supported on the MS-MPC and MS-MIC.

The remaining statements are explained separately.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- [Configuring Port Control Protocol on page 220](#)
from

Syntax

from {
 destination-address address;
 ipsec-inside-interface interface-name;
 source-address address;
}

Hierarchy Level

[edit services ipsec-vpn rule rule-name term term-name]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Specify input conditions for the IPsec term.

Options

For information on match conditions, see the description of firewall filter match conditions in the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

• Configuring IPSec Rules on page 592
from (Services NAT)

Syntax

```plaintext
from {
    application-sets set-name;
    applications [ application-names ];
    destination-address (address | any-unicast) <except>;
    destination-address-range low minimum-value high maximum-value <except>;
    destination-port range high maximum-value low minimum-value;
    source-address address (address | any-unicast) <except>;
    source-address-range low minimum-value high maximum-value <except>;
}
```

Hierarchy Level

[edit services nat rule rule-name term term-name]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Specify input conditions for the NAT term.

Options

For information on match conditions, see the description of firewall filter match conditions in the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.

The remaining statements are explained separately.

Required Privilege

Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

• Network Address Translation Rules Overview on page 84
from (Services Stateful Firewall)

Syntax

```plaintext
from {
    application-sets set-name;
    applications [ application-names ];
    destination-address (address | any-ipv4 | any-ipv6 | any-unicast) <except>;
    destination-address-range low minimum-value high maximum-value <except>;
    destination-prefix-list list-name <except>;
    source-address (address | any-ipv4 | any-ipv6 | any-unicast) <except>;
    source-address-range low minimum-value high maximum-value <except>;
    source-prefix-list list-name <except>;
}
```

Hierarchy Level

[edit services stateful-firewall rule rule-name term term-name]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Specify input conditions for a stateful firewall term.

Options

For information on match conditions, see the description of firewall filter match conditions in the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

• Configuring Stateful Firewall Rules on page 467
ftp (Services CoS)

Syntax

ftp {
 data {
 dscp (alias | bits);
 forwarding-class class-name;
 }
}

Hierarchy Level
[edit services cos application-profile profile-name ftp]

Release Information
Statement introduced in Junos OS Release 9.3.

Description
Set the appropriate dscp and forwarding-class value for FTP.

Default
By default, the system does not alter the DSCP or forwarding class for FTP traffic.

Required Privilege
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Configuring CoS Rules on Services PICs
- sip (Application Profile)
gate-timeout

Syntax gate-timeout seconds;

Hierarchy Level [edit applications application ike-esp-nat]

Release Information Statement introduced in Junos OS Release 17.1 on MX Series.

Description For an IKE ALG application, configure the length of time that can pass after IKE establishes the security association between the IPsec client and server and before the ESP traffic starts in both directions. If the ESP traffic has not started before this timeout value, the ESP gates are deleted and the ESP traffic is blocked.

The IKE ALG enables the passing of IKEv1 and IPsec packets through NAPT-44 and NAT64 rules between IPsec peers that are not NAT-T compliant.

Options seconds—Number of seconds.

 Default: 120 seconds

Required Privilege interface—To view this statement in the configuration.

 interface-control—To add this statement to the configuration.

Related Documentation

 • ALG Descriptions on page 399
 • Configuring Application Sets on page 431
 • Configuring Application Properties on page 431
global-dns-stats-log-timer

Syntax
global-dns-stats-log-timer minutes;

Hierarchy Level
[edit services web-filter profile profile-name]

Release Information
Statement introduced in Junos OS Release 18.3R1 on MX Series.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers
MX240, MX480 and MX960 with the MX-SPC3 services card.

Description
Configure the interval for logging per-client statistics for filtering of DNS requests for
blacklisted website domains.

Options
minutes—The number of minutes in the logging interval.
Default: 5
Range: 0 through 60

Required Privilege Level
system—To view this statement in the configuration.
system-control—To add this statement to the configuration.

Related Documentation
• DNS Request Filtering for Blacklisted Website Domains on page 39
group (Traffic Load Balancer)

Syntax

```plaintext
group group-name {
    health-check-interface-subunit health-check-interface-subunit;
    network-monitoring-profile [profile-name1, <profile-name2>];
    real-service-rejoin-options no-auto-rejoin;
    real-services [server-list];
    <routing-instance routing-instance>;
}
```

Hierarchy Level

```
[edit services traffic-load-balance instance instance-name]
```

Release Information

Statement introduced in Junos OS Release 16.1 on MX Series.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description

Configure a group of servers as a pool for next-hop session distribution.

Options

- **group-name**—Use the specified string identifier for a group of servers to which sessions are distributed using the server distribution table in conjunction with the session distribution API.

- **group health-check-interface-subunit health-check-interface-subunit**—Use the specified subunit of the ms-interface used for health checking.

- **network-monitoring-profile profile-name**—Name of the network monitoring profile used to monitor the health of servers in the group.

- **network-monitoring-profile profile-name2**—(Optional) Name of a second network monitoring profile used to monitor the health of servers in the group.

- **real-services server-list**—Use the specified list of individual servers to which sessions are distributed using the server distribution table in conjunction with the session distribution API.

- **real-services-rejoin-options no-auto-rejoin**—Disable the default behavior that allows a server to rejoin the group automatically when it comes up.

- **routing-instance routing-instance**—(Optional) Use the specified routing instance if the default inet.0 is not used.

Required Privilege

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

Related Documentation

- Traffic Load Balancer Overview on page 843
- Configuring TLB on page 850
gw-interface

Syntax

gw-interface interface-name.logical-unit-number;

Hierarchy Level

[edit services service-set service-set-name ipsec-vpn-options local-gateway address]

Release Information

Statement introduced in Junos OS Release 17.2 on MX Series.

Description

Enable the cleanup of IKE triggers and IKE and IPsec SAs when an IPsec tunnel's local gateway IP address goes down or the MS-MIC or MS-MPC being used in the tunnel's service set goes down. If the local gateway IP address for an IPsec tunnel's service set goes down or the MS-MIC or MS-MPC that is being used in the service set goes down, the service set no longer sends IKE triggers. In addition, when the local gateway IP address goes down, the IKE and IPsec SAs are cleared for next-hop service sets, and go to the Not Installed state for interface-style service sets. The SAs that have the Not Installed state are deleted when the local gateway IP address comes back up.

If the local gateway IP address that goes down is for the responder peer, then you need to manually clear the IKE and IPsec SAs on the initiator peer so that the IPsec tunnel comes back up once the local gateway IP address comes back up (see clear services ipsec-vpn ike security-associations and clear services ipsec-vpn ipsec security-associations).

Options

* interface-name—Name of the interface of the IPsec local gateway.

* logical-unit-number—Number of the logical unit of the IPsec local gateway interface. You must include the logical unit number.

Required Privilege Level

admin—To view this statement in the configuration.

admin-control—To add this statement to the configuration.

Related Documentation

- Configuring IPsec Service Sets on page 600
hash-keys (Aggregated Multiservices)

Syntax

hash-keys {
 egress-key (destination-ip | source-ip);
 ingress-key (destination-ip | source-ip);
}

Hierarchy Level

[edit services service-set service-set-name interface-service load-balancing-options]

Release Information

Statement introduced in Junos OS Release 11.4.

Description

Configure the hash keys used for load balancing in aggregated multiservices (AMS) for service applications (Network Address Translation [NAT], stateful firewall, application-level gateway [ALG], HTTP header enrichment, and mobility). The hash keys supported in the ingress and egress direction are the source IP address and destination IP address.

Hash keys are used to define the load-balancing behavior among the various members in the AMS group. For example, if hash-keys is configured as source-ip, then the hashing would be performed based on the source IP address of the packet. Therefore, all packets with the same source IP address land on the same member. Hash keys must be configured with respect to the traffic direction: ingress or egress. For example, if hash-keys is configured as source-ip in the ingress direction, then it should be configured as destination-ip in the egress direction. This is required to ensure that the packets of the same flow reach the same member of the AMS group.

The configuration of the ingress and egress hash keys is mandatory if you are using AMS for NAT. This configuration is not mandatory if you are using AMS for stateful firewall; if the hash keys are not configured, then the defaults are chosen. Refer to Table 32 on page 1062 for the supported hash keys.

The resource-triggered option enables anchor session PICs to use the load or resource information from the anchor services PICs to select the AMS member will anchor the services for the subscriber for load balancing among AMS members. In addition, for mobile subscriber-aware services (such as HTTP header enrichment), you must configure the resource-triggered statement, which means that the load balancing is not done using the ingress and egress keys.
Table 32: Hash Keys Supported for AMS for Service Applications

<table>
<thead>
<tr>
<th>Hash Keys for NAT</th>
<th>Service Set at Ingress Interface</th>
<th>Service Set at Egress Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT Type</td>
<td>Ingress hash key</td>
<td>Egress hash key</td>
</tr>
<tr>
<td>source static</td>
<td>Destination IP address</td>
<td>Source IP address</td>
</tr>
<tr>
<td>source dynamic</td>
<td>Source IP address</td>
<td>Destination IP address</td>
</tr>
<tr>
<td>Network Address Port Translation (NAPT)</td>
<td>Source IP address</td>
<td>Destination IP address</td>
</tr>
<tr>
<td>destination static</td>
<td>Source IP address</td>
<td>Destination IP address</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hash Keys for Stateful Firewall</th>
<th>Service Set at Ingress Interface</th>
<th>Service Set at Egress Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stateful Firewall</td>
<td>Destination IP address</td>
<td>Source IP address</td>
</tr>
<tr>
<td>Stateful Firewall</td>
<td>Source IP address</td>
<td>Destination IP address</td>
</tr>
</tbody>
</table>

NOTE: If NAT is used in the service set (along with stateful firewall and ALG), then the hash keys should be based on the NAT type; otherwise, the hash keys of the stateful firewall should be used.
NOTE: The egress-keys option is hidden and is deprecated in Junos OS Release 15.1 and later, and is only maintained for backward compatibility. It might be removed completely in a future software release. Load-balancing or steering of traffic occurs, based on the hash keys in the forward direction. Load-balancing of traffic also occurs, based on the hash keys in the reverse direction except in dynamic NAT scenarios (dynamic NAT, NAT64, and NAPT44). For interface-style services, the ingress hash-key is used for the forward direction and the egress hash-key is used for the reverse direction. These hash-keys are configured within the service-set definition by using the ingress-key and egress-key statements at the [edit services service-set service-set-name interface-service load-balancing-options] hierarchy level. For next-hop style services, the ingress hash-key on the inside-domain next-hop is used in the forward direction and the ingress hash-key (not the egress hash-key) on outside-domain next-hop is used for the reverse direction. These hash-keys are configured at the logical AMS interface level by using the ingress-key and egress-key statements at the [edit interfaces amsN unit logical-unit-number load-balancing-options hash-keys] hierarchy level.

ingress-key destination-ip—Use the destination IP address of the flow to compute the hash used in load balancing in the ingress flow direction.

ingress-key source-ip—Use the source IP address of the flow to compute the hash used in load balancing in the ingress flow direction.

egress-key destination-ip—Use the destination IP address of the flow to compute the hash used in load balancing. Configure the hash keys to be used in the egress flow direction. The configuration is mandatory if you are using AMS for Network Address Translation (NAT). This configuration is not mandatory if you are using AMS for stateful firewall; if the hash keys are not configured, then the defaults are chosen.

egress-key source-ip—Use the source IP address of the flow to compute the hash used in load balancing. Configure the hash keys to be used in the egress flow direction.

Required Privilege

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>To view this statement in the configuration.</td>
</tr>
<tr>
<td>interface-control</td>
<td>To add this statement to the configuration.</td>
</tr>
</tbody>
</table>

Related Documentation

- load-balancing-options on page 1102
hash-keys (Interfaces)

Syntax

```
hash-keys {
  egress-key (source-ip | destination-ip);
  ingress-key (source-ip | destination-ip);
  ipv6-source-prefix-length ipv6-source-prefix-length;
}
```

Hierarchy Level [edit interfaces unit unit-name load-balancing-options]

Release Information Statement introduced in Junos OS Release 11.4.
```
ipv6-source-prefix-length
```
option introduced in Junos OS Release 18.2 R1.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers
MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

Description Configure the hash keys used for load balancing in aggregated multiservices (AMS) for
next-hop style services. The hash keys supported in the ingress and egress direction are
the source IP address and destination IP address.

Hash keys are used to define the load-balancing behavior among the various members
in the AMS. For example, if hash-keys is configured as source-ip, then the hashing is
performed based on the source IP address of the packet, so that all packets with the
same source IP address land on the same member. When you use ingress-key and
egress-key, you must configure hash keys to take the traffic direction into consideration.
For example, if you configure hash-keys as source-ip in the ingress direction, then you
must configure hash-keys as destination-ip in the egress direction. This is required to
sure that the packets of the same flow reach the same member of the AMS group.

If you are configuring an AMS interface used in a service set for DS-Lite,
The remaining statements are explained separately. See CLI Explorer.

Options egress-key destination-ip—Use the destination IP address of the flow to compute the
hash used in load balancing. Configure the hash keys to be used in the egress flow
direction.

egress-key source-ip—Use the source IP address of the flow to compute the hash used
in load balancing. Configure the hash keys to be used in the egress flow direction.

ingress-key destination-ip—Use the destination IP address of the flow to compute the
hash used in load balancing. Configure the hash keys to be used in the ingress flow
direction.

ingress-key source-ip—Use the source IP address of the flow to compute the hash used
in load balancing. Configure the hash keys to be used in the ingress flow direction.
Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Load Balancing on AMS Infrastructure on page 874
header-integrity-check

Syntax

```
header-integrity-check {
  enable-all;
}
```

Hierarchy Level

[edit services service-set service-set service-set-options]

Release Information

Statement introduced in Release 13.2.

Description

Configure Junos OS to verify the packet header for anomalies in IP, TCP, UDP, and ICMP information and to flag such anomalies and errors.

Starting in Junos OS release 17.1R1, the header integrity check on the MS-MPC or MS-MIC drops any packets with header anomalies and includes the following checks:

- ICMP ping of death
- IP unknown protocol
- TCP no flag
- TCP SYN FIN
- TCP FIN no ACK

NOTE: The header-integrity-check option that is supported on MS-MICs and MS-MPCs to verify the packet header for anomalies in IP, TCP, UDP, and ICMP information and flag such anomalies and errors has a functionality that is opposite to the functionality caused by passive mode tunneling. If you configure both the header-integrity-check statement and the passive-mode tunneling statement on MS-MICs and MS-MPCs, and attempt to commit such a configuration, an error is displayed during commit.

The passive mode tunneling functionality (by including the passive-mode-tunnelin statement at the [edit services service-set service-set-name ipsec-vpn-options] hierarchy level) is a superset of the capability to disable IPsec tunnel endpoint in the traceroute output (by including no-ipsec-tunnel-in-traceroute statement at the [edit services ipsec-vpn] hierarchy level). Passive mode tunneling also bypasses the active IP checks and tunnel MTU check in addition to not treating an IPsec tunnel as a next-hop as configured by the no-ipsec-tunnel-in-traceroute statement.

Required Privilege

Interface—To view this statement in the configuration.

Interface-control—To add this statement to the configuration.
hello-interval (L2TP)

Syntax

```plaintext
hello-interval seconds;
```

Hierarchy Level

```
[edit services l2tp tunnel-group name]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Specify the keepalive timer for L2TP tunnels.

Options

- `seconds`—Interval, in seconds, after which the server sends a hello message if no messages are received. A value of 0 means that no hello messages are sent.
 - Range: 0 through 3600
 - Default: 60 seconds

Required Privilege

- Level: interface—To view this statement in the configuration.
 - Level: interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Timers for L2TP Tunnels on page 909
- Configuring an L2TP Tunnel Group for LNS Sessions with Inline Services Interfaces
hide-avps

Syntax
hide-avps;

Hierarchy Level
[edit services l2tp tunnel-group name]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Hide L2TP attribute-value pairs if the secret shared between the two ends of the tunnel is known.

NOTE: This statement is not supported for L2TP LNS on MX Series routers.

Default
Attribute-value pairs that can be hidden are exposed, even if the secret information is known.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Hiding Attribute-Value Pairs for L2TP Tunnels on page 909
high-availability-options (Aggregated Multiservices)

Syntax

```plaintext
defined high-availability-options {
  (many-to-one | one-to-one) {
    preferred-backup preferred-backup;
  }
}
```

Hierarchy Level

[edit interfaces interface-name load-balancing-options]

Release Information

Statement introduced in Junos OS Release 11.4.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

Description

Configure the high availability options for the aggregated multiservices (AMS) interface. For service applications, if only the load-balancing feature is being used, then this configuration is optional.

For many-to-one (N:1) high availability support for service applications like Network Address Translation (NAT), the preferred backup services PIC, in hot standby mode, backs up one or more (N) active services PICs.

NOTE: In both cases, if one of the active services PICs goes down, then the backup replaces it as the active PIC. When the failed PIC comes back up, it becomes the new backup. This is called floating backup.

One-to-one (1:1) high availability support associates a single backup interface with a single active interface. In 1:1 (stateful) configurations, synchronization causes the active and back up PICs to synchronize traffic states and data structures, preventing data loss during a failover event. Stateful synchronization is required for IPsec high availability support. 1:1 configuration is supported only on the MS-MPC and MX-SPC3.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- interface—to view this statement in the configuration.
 - interface-control—to add this statement to the configuration.

Related Documentation

- load-balancing-options on page 1102
- Understanding Aggregated Multiservices Interfaces on page 865
- Example: Configuring an Aggregated Multiservices Interface (AMS) on page 878
hint

Syntax

```
hint [ hint-strings ];
```

Hierarchy Level

```
[edit services nat pool nat-pool-name pgcp]
```

Release Information

Statement introduced in Junos OS Release 9.0.

Description

Configure a hint that enables the border gateway function (BGF) to choose a NAT pool by direction rather than by virtual interface. The BGF matches the configured hint with a termination hint located in the Direction field of a nonstandard termination ID.

Default

When no hint is configured, the BGF can choose any NAT pool associated with the virtual interface.

Options

`hint-string`—Alphanumeric string of up to three characters that the BGF uses to match with a termination hint located in the Direction field of a nonstandard termination ID. You can also include underscores (_) and hyphens (-) within the string. To specify a list of hints, use the format: `[hint xx hint yy]`.

Required Privilege

`interface`—To view this statement in the configuration.

Level

`interface-control`—To add this statement to the configuration.
host (L2TP)

Syntax

```plaintext
host hostname {  
  services severity-level;  
  facility-override facility-name;  
  log-prefix prefix-value;  
}
```

Hierarchy Level

```
[edit services l2tp tunnel-group group-name syslog]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Specify the hostname for the system logging utility.

Options

- **hostname**—Name of the system logging utility host machine. This can be the local Routing Engine or an external server address.

 The remaining statements are explained separately. See [CLI Explorer](#).

Required Privilege

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring System Logging of L2TP Tunnel Activity on page 910
host (service-set)

Syntax

```plaintext
host hostname [ 
  class { 
    alg-logs; 
    deterministic-nat-configuration-log; 
    ids-logs; 
    nat-logs; 
    packet-logs; 
    pcp-logurlf-logs; 
    session-logs <open|close>; 
    stateful-firewall-logs; 
    urlf-logs; 
  } 
  facility-override facility-name; 
  interface-service prefix-value; 
  log-prefix prefix-value; 
  port port-number; 
  services severity-level; 
  source-address source-address; 
}
```

Hierarchy Level

```
[edit services service-set service-set-name syslog]
```

Release Information

Statement introduced before Junos OS Release 7.4.

class option introduced in Junos OS Release 13.2.

You can configure multiple system log hosts from Junos OS Release 17.4R1 onwards.

Description

Specify the hostname for the system logging utility.

Starting in Junos OS Release 17.4R1, you can configure up to a maximum of four system log servers (combination of local system log hosts and remote system log collectors) for each service set at the [edit services service-set service-set-name] hierarchy level.

NOTE: Starting with Junos OS release 14.1X55, 14.2R5, 15.1R3, and 16.1R1, for multiservices (ms-) interfaces, you cannot configure system logging for PCP and ALGs by including the pcp-logs and alg-logs statements at the [edit services service-set service-set-name syslog host hostname class] hierarchy level. An error message is displayed if you attempt to commit a configuration that contains the pcp-logs and alg-logs options to define system logging for PCP and ALGs for ms- interfaces.

Options

hostname—Name of the system logging utility host machine.

From Junos OS Release 17.4R1, you can configure up to four system log hosts.
The remaining statements are explained separately. See CLI Explorer.

hot-standby

Syntax

```hot-standby;```

**Hierarchy Level**

- `[edit interfaces rlqn number redundancy-options]`
- `[edit interfaces rlqn number redundancy-options]`
- `[edit interfaces rsln number redundancy-options]`
- `[edit interfaces rmsln number redundancy-options]`

**Release Information**

Statement introduced in Junos OS Release 7.6.

**Description**

For one-to-one AS, rsp, or rms redundancy configurations, specify that the failure detection and recovery must take place in less than 5 seconds. For FRF.15 (MLFR) and FRF.16 (MFR) configuration, specify the switch over time of 5 seconds and less for FRF.15 and a maximum of 10 seconds for FRF.16.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- [Configuring System Logging for Service Sets on page 33]
- [Configuring LSQ Interface Redundancy in a Single Router Using Virtual Interfaces on page 790]
- [Configuring AS or Multiservices PIC Redundancy on page 27]
**icmp-code**

**Syntax**

icmp-code *value*;

**Hierarchy Level**

[edit applications application *application-name*]

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Internet Control Message Protocol (ICMP) code value.

**Options**

*value*—The ICMP code value. For a complete list, see “Configuring the ICMP Code and Type” on page 436.

**Required Privilege Level**

interface—To view this statement in the configuration.  
interface-control—To add this statement to the configuration.

**Related Documentation**

• ALG Descriptions on page 399  
• Configuring Application Sets on page 431  
• Configuring the ICMP Code and Type on page 436  
• Examples: Configuring Application Protocols on page 450  
• Verifying the Output of ALG Sessions on page 451

**icmp-fragment-check (IDS MS-MPC)**

**Syntax**

icmp-fragment-check;

**Hierarchy Level**

[edit services ids rule *rule-name* term *term-name* then]

**Release Information**

Statement introduced in Junos OS Release 17.1 on MX Series.

**Description**

Identify and drop ICMP packets that are IP fragments. This statement can only be used in IDS rules assigned to a service set on an MS-MPC.

**Required Privilege Level**

interface—To view this statement in the configuration.  
interface-control—To add this statement to the configuration.

**Related Documentation**

• Configuring Protection Against Network Attacks on an MS-MPC on page 515  
• Understanding IDS on an MS-MPC on page 511
icmp-large-packet-check (IDS MS-MPC)

Syntax  icmp-large-packet-check;

Hierarchy Level  [edit services ids rule rule-name term term-name then]

Release Information  Statement introduced in Junos OS Release 17.1 on MX Series.

Description  Identify and drop ICMP packets that are larger than 1024. This statement can only be

used in IDS rules assigned to a service set on an MS-MPC.

Required Privilege

Level  interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation  • Configuring Protection Against Network Attacks on an MS-MPC on page 515

• Understanding IDS on an MS-MPC on page 511

icmp-type

Syntax  icmp-type value;

Hierarchy Level  [edit applications application application-name]

Release Information  Statement introduced before Junos OS Release 7.4.

Description  ICMP packet type value.

Options  value—The ICMP type value, such as echo or echo-reply. For a complete list, see

“Configuring the ICMP Code and Type” on page 436.

Required Privilege

Level  interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation  • ALG Descriptions on page 399

• Configuring Application Sets on page 431

• Configuring the ICMP Code and Type on page 436

• Examples: Configuring Application Protocols on page 450

• Verifying the Output of ALG Sessions on page 451
**ids-rules**

**Syntax**

```
ids-rules [rule-name];
```

**Hierarchy Level**

```
[edit services service-set service-set-name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Specify the intrusion detection service (IDS) rules included in this service set. You can configure multiple rules. If the service set is on an MS-MPC, only the first IDS input rule and the first IDS output rule are used.

**Options**

- `rule-name`—Identifier for the rule to be included.

**Required Privilege**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring Service Rules on page 20
- Configuring Protection Against Network Attacks on an MS-MPC on page 515

**ids-rule-sets**

**Syntax**

```
(ids-rule-sets rule-set-name);
```

**Hierarchy Level**

```
[edit services service-set service-set-name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Specify the intrusion detection service (IDS) rule set included in this service set. You can configure only one rule set for each service. If the service set is on an MS-MPC, only the first IDS input rule and the first IDS output rule are used.

**Options**

- `rule-set-name`—Identifier for the set of rules to be included.

**Required Privilege**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring Service Rules on page 20
- Configuring Protection Against Network Attacks on an MS-MPC on page 515
ignore-entry

See force-entry
ike

Syntax

ike {
  proposal proposal-name {
    authentication-algorithm (sha1 | sha-256 | sha-384);
    authentication-method (ecdsa-signatures-256 | ecdsa-signatures-384 | pre-shared-keys | rsa-signatures);
    description description;
    dh-group (group1 | group2 | group5 | group14 | group15 | group16 | group19 | group20 | group24);
    encryption-algorithm algorithm;
    lifetime-seconds seconds;
  }
  policy policy-name {
    description description;
    local-certificate identifier;
    local-id (ipv4_addr ipv4-address | ipv6-addr ipv6-address | key-id identifier);
    version (1 | 2);
    mode (aggressive | main);
    pre-shared-key (ascii-text key | hexadecimal key);
    proposals [ proposal-names ];
    remote-id {
      any-remote-id;
      ipv4_addr [ values ];
      ipv6_addr [ values ];
      key_id [ values ];
    }
  }
}

Hierarchy Level
[edit services ipsec-vpn]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Configure IKE.

The remaining statements are explained separately.

NOTE: In Junos FIPS mode, the aggressive option of the mode statement is not supported.

NOTE: In Junos FIPS mode, ECDSA options of the authentication-method statement are not supported in Junos OS Release 17.3R1. Starting in Junos OS Release 17.4R1, ECDSA is supported in Junos FIPS mode.
ike-access-profile

Syntax  
ike-access-profile profile-name;

Hierarchy Level  
[edit services service-set service-set-name ipsec-vpn-options]

Release Information  
Statement introduced in Junos OS Release 7.4.

Description  
Define the access profile for the IPsec traffic on dynamic tunnels.

Options  
profile-name—Identifier for access profile, which must match the name configured at the 
[edit access profile name client * ike] hierarchy level.

Required Privilege Level  
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation  
• Configuring Dynamic Endpoints for IPsec Tunnels on page 647
• Configuring IPsec Service Sets on page 600
inactivity-timeout

Syntax

```
inactivity-timeout seconds;
```

Hierarchy Level

```
[edit applications application application-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure the inactivity timeout period, in seconds.

Options

```
seconds — Length of time the application is inactive before it times out.
```

Default: 14,400 seconds

Required Privilege Level

```
interface — To view this statement in the configuration.
interface-control — To add this statement to the configuration.
```

Related Documentation

- ALG Descriptions on page 399
- Configuring Application Sets on page 431
- Configuring the Inactivity Timeout Period on page 440
- Examples: Configuring Application Protocols on page 450
- Verifying the Output of ALG Sessions on page 451
**initiate-dead-peer-detection**

Syntax

```
initiate-dead-peer-detection;
```

Hierarchy Level

```
[edit services ipsec-vpn rule rule-name term term-name then]
```

Release Information

Support for IKEv2 introduced in Junos OS Release 11.4.

Description

Enable triggering of dead peer detection (DPD) hello messages to the remote peer for the specified tunnel.

Required Privilege

- system—To view this statement in the configuration.
- system-control—To add this statement to the configuration.

Related Documentation

- Configuring IPsec Rules on page 592
- dead-peer-detection on page 989
- backup-remote-gateway on page 964

**input (Interfaces)**

Syntax

```
input {
 service-set service-set-name <service-filter filter-name>;
 post-service-filter filter-name;
}
```

Hierarchy Level

```
[edit interface interface-name unit logical-unit-number family inet service],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet service]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Define the input service sets and filters to be applied to traffic.

Options

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Applying Filters and Services to Interfaces on page 24
instance (Traffic Load Balancer)

Syntax

```
instance instance-name {
 client-interface client-interface;
 client-vrf client-vrf;
 group group-name {
 health-check-interface-subunit health-check-interface-subunit;
 network-monitoring-profile profile-name;
 real-service-rejoin-options no-auto-rejoin;
 real-services [server-list];
 <routing-instance routing-instance>;
 }
 interface interface-name;
 real-service real-service {
 address server-ip-address;
 admin-down;
 }
 server-inet-bypass-filter server-inet-bypass-filter;
 server-inet6-bypass-filter server-inet6-bypass-filter;
 server-interface server-interface;
 server-vrf server-vrf-name;
 virtual-service virtual-service-name {
 address virtual-ip-address;
 group group-name;
 load-balance-method {
 hash {
 hash-key method;
 } random;
 }
 mode (layer2-direct-server-return | direct-server-return | translated);
 <routing-instance routing-instance-name>;
 <routing-metric route-metric>;
 server-interface server-interface;
 service service-name {
 protocol (udp | tcp);
 server-listening-port port;
 virtual-port virtual-port;
 }
 }
}
```

Hierarchy Level
[edit services traffic-load-balance]

Release Information
Statement introduced in Junos OS Release 16.1 on MX Series.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers
MX240, MX480 and MX960 with the MX-SPC3 services card.

Description
Configure a Traffic Load Balancer instance.
Options

**client-interface client-interface**—For translated mode, client interface where the implicit filter is installed to direct the traffic in the forward direction.

**client-vrf client-vrf**—Use the specified name of the routing instance in which the data traffic in the reverse direction is routed to the clients.

**instance instance-name**—Identifier (text string) for a TLB configuration.

**server-inet-bypass-filter server-inet-bypass-filter**—Name of the firewall filter from which the terms are referenced and added to the server-side implicit filters. This enables the operator to bypass reverse (RIP to VIP) translation of IPv4 traffic.

**server-inet6-bypass-filter server-inet6-bypass-filter**—Name of the firewall filter from which the terms are referenced and added to the server-side implicit filters. This enables the operator to bypass reverse (RIP to VIP) translation of IPv6 traffic.

**server-interface server-interface**—For translated mode, specifies the server interfaces where the server filters are implicitly installed to direct the return traffic to the load balancing next hop.

**server-vrf server-vrf-name**—The routing instance in which the data traffic in the forward direction is routed to the servers.

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege**

**Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Traffic Load Balancer Overview on page 843
- Configuring TLB on page 850
interface

Syntax   interface interface-name.unit-number;

Hierarchy Level   [edit services service-interface-pools pool pool-name]

Release Information   Statement introduced in Junos OS Release 9.3.

Description   Add logical service interfaces to the pool of service interfaces.

Options   

   interface-name.unit-number—Name and logical unit number of the service interface.

   • All interfaces in a pool must belong to the same service PIC or DPC.
   • All interfaces assigned to the same service must be in the same pool.
   • Logical interfaces cannot be in more than one pool.
   • All interfaces must have either family inet or family inet6 configured.
   • Logical unit 0 cannot be configured in a service interface pool.
   • You can configure up to 1000 logical interfaces in a service interface pool.

Required Privilege Level   

   interface—To view this statement in the configuration.
   interface-control—To add this statement to the configuration.

Related Documentation   • Session Border Control Solutions Guide Using BGF and IMSG
interface-service (Services Interfaces)

Syntax

interface-service {
  load-balancing-options {
    hash-keys {
      egress-key (destination-ip | source-ip);
      ingress-key (destination-ip | source-ip);
    }
  }
  service-interface name;
}

Hierarchy Level
[edit services service-set service-set-name]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Specify the device name for the interface service Physical Interface Card (PIC).

Options
service-interface name—Name of the service device associated with the interface-wide service set.

Required Privilege
interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation
• Configuring Service Sets to be Applied to Services Interfaces on page 9
interfaces (Aggregated Multiservices)

Syntax

```
interfaces interface-name {
 load-balancing-options {
 hash-keys {
 egress-key (source-ip | destination-ip);
 ingress-key (source-ip | destination-ip);
 }
 high-availability-options {
 (many-to-one | one-to-one) {
 preferred-backup preferred-backup;
 }
 }
 member-failure-options {
 drop-member-traffic {
 rejoin-timeout rejoin-timeout;
 }
 redistribute-all-traffic {
 enable-rejoin;
 }
 }
 member-interface interface-name;
 }
 redundancy-options {
 primary mams-a/b/0;
 secondary mams-a/b/0;
 }
 unit interface-unit-number {
 family family;
 }
}
```

Hierarchy Level [edit]

Release Information Statement introduced in Junos OS Release 11.4.

Description Configure the aggregated Multiservices (AMS) interface. The AMS interface provides the infrastructure for load balancing and high availability (HA).

Options

- **interface-name**—Name of a valid aggregated multiservices interface (ams)—for example, ams0 or ams1.

  The remaining statements are explained separately. See CLI Explorer.

Required Privilege

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.
Related Documentation

• Configuring Load Balancing on AMS Infrastructure on page 874
• Understanding Aggregated Multiservices Interfaces on page 865
• Example: Configuring an Aggregated Multiservices Interface (AMS) on page 878

interfaces (Voice Services)

Syntax

```
interfaces { ... }
```

Hierarchy Level

```
[edit]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure interfaces on the router.

Default

The management and internal Ethernet interfaces are automatically configured. You must configure all other interfaces.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

• Junos OS Network Interfaces Library for Routing Devices
interval

Syntax  interval seconds;

Hierarchy Level  [edit services ipsec-vpn rule rule-name term term-name then dead-peer-detection]

Release Information  Statement introduced in Junos OS Release 11.4.
IKEv2 support introduced in Junos OS Release 17.2.

Description  Specify the amount of time that the peer waits for traffic from its destination peer before sending a dead-peer-detection (DPD) request packet. The interval value is used for IKEv1 security associations (SAs). Starting in Junos OS Release 17.2R1, the interval value is also applicable to IKEv2 SAs. In Junos OS Release 17.1 and earlier, the interval option is not applicable to IKEv2 SAs, which use the default value.

Options  seconds—Number of seconds that the peer waits before sending a DPD request packet.
Range: 1 through 180 seconds
Default: 10 seconds

Required Privilege Level  security—to view this statement in the configuration.
security-control—to add this statement to the configuration.

Related Documentation  • Configuring IPsec Rules on page 592
ipsec

Syntax

```
ipsec {
 proposal proposal-name {
 authentication-algorithm (hmac-sha-256);
 description description;
 encryption-algorithm algorithm;
 lifetime-seconds seconds;
 protocol (esp | bundie);
 }
 policy policy-name {
 description description;
 perfect-forward-secrecy {
 keys (group1 | group2 | group5 | group14 | group15 | group16 | group24);
 }
 proposals [proposal-names];
 }
}
```

Hierarchy Level  [edit services ipsec-vpn]

Release Information  Statement introduced before Junos OS Release 7.4.

Description  Configure IPsec.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level  system—To view this statement in the configuration.

  system-control—To add this statement to the configuration.

Related Documentation  • Configuring Security Associations on page 549
**ipsec-inside-interface**

Syntax

ipsec-inside-interface interface-name;

Hierarchy Level

[edit services ipsec-vpn rule rule-name term term-name from]

Release Information

Statement introduced in Junos OS Release 7.4.

Description

Specify the interface name for next-hop-style service sets. This value is also implicitly generated in dynamic endpoint tunneling.

Options

interface-name—Service interface for internal network.

Required Privilege

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

- Configuring IPsec Rules on page 592
- Configuring Dynamic Endpoints for IPsec Tunnels on page 647
ipsec-vpn-options

Syntax
ipsec-vpn-options {
  anti-replay-window-size bits;
  clear-dont-fragment-bit;
  ike-access-profile profile-name;
  local-gateway address;
  no-certificate-chain-in-ike;
  no-anti-replay;
  passive-mode-tunneling;
  trusted-ca [ ca-profile-names ];
  tunnel-mtu bytes;
  udp-encapsulation {
    <udp-dest-port destination-port>;
  }
}

Hierarchy Level [edit services service-set service-set-name]

Release Information Statement introduced before Junos OS Release 7.4.

Description Specify IP Security (IPsec) service options.

Options The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring IPsec Service Sets on page 600
- Configuring Service Rules on page 20
**ipsec-vpn-rules**

Syntax  
(ipsec-vpn-rules rule-name | ipsec-vpn-rule-sets rule-set-name);

Hierarchy Level  
[edit services service-set service-set-name]

Release Information  
Statement introduced before Junos OS Release 7.4.

Description  
Specify the IPsec rules or rule set included in this service set. You can configure multiple rules, but only one rule set for each service.

Options  
rule-name—Identifier for the collection of terms that constitute this rule.

rule-set-name—Identifier for the set of rules to be included.

Required Privilege Level  
interface—to view this statement in the configuration.

interface-control—to add this statement to the configuration.

Related Documentation  
• Configuring Service Rules on page 20
**ipv6-multicast-interfaces**

**Syntax**

```
ipv6-multicast-interfaces (all | interface-name) [disable;]
```

**Hierarchy Level**

[edit services nat],
[edit services softwire]

**Release Information**

Statement introduced in Junos OS Release 9.1.

**Description**

Enable multicast filters on Ethernet interfaces when IPv6 NAT is used for neighbor discovery.

**Options**

- `all`—Enable filters on all interfaces.
- `disable`—Disable filters on the specified interfaces.
- `interface-name`—Enable filters on a specific interface only.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring IPv6 Multicast Interfaces on page 333
### l2tp-access-profile

**Syntax**

l2tp-access-profile *profile-name*;

**Hierarchy Level**

[edit services l2tp tunnel-group name]

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Specify the profile used to validate all L2TP connection requests to the local gateway address.

**Options**

*profile-name*—Identifier for the L2TP connection profile.

**Required Privilege Level**

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

**Related Documentation**

- Configuring Access Profiles for L2TP Tunnel Groups on page 908
- Configuring an L2TP Access Profile on the LNS
**land-attack-check**

**Syntax**

land-attack-check (ip-only | ip-port);

**Hierarchy Level**

[edit services service-set service-set-name nat-options]

**Release Information**

Statement introduced with Junos OS Release 12.3.

**Description**

Enable land attack checks based on either IP address only or both IP address and IP port number.

---

**NOTE:** If you do not configure this statement, there is no land attack check for hairpinning NAT packets.

**Options**

- ip-only—Land attack check is based on IP address only.
- ip-port—Land attack check is based on IP address and IP port number.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Configuring Service Rules on page 20
- max-sessions-per-subscriber on page 1126
**land-attack-check (IDS MS-MPC)**

**Syntax**  
land-attack-check (ip-only | ip-port);

**Hierarchy Level**  
[edit services ids rule rule-name term term-name then]

**Release Information**  
Statement introduced in Junos OS Release 17.1 on MX Series.

**Description**  
Identify and drop SYN packets that have the same source and destination address or port, which provides protection against land attacks. This statement can only be used in IDS rules assigned to a service set on an MS-MPC.

**Options**  
- **ip-only**—Identify and drop SYN packets that have the same source and destination address.
- **ip-port**—Identify and drop SYN packets that have the same source and destination address and port.

**Required Privilege Level**  
- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

**Related Documentation**  
- Configuring Protection Against Network Attacks on an MS-MPC on page 515
- Understanding IDS on an MS-MPC on page 511
learn-sip-register

Syntax
learn-sip-register;

Hierarchy Level
[edit applications application application-name]

Release Information
Statement introduced in Junos OS Release 7.4.

Description
Learn potential incoming SIP calls by inspecting the SIP register method.

More information: You can enable the router to accept any incoming SIP calls for the endpoint devices that are behind the NAT firewall. When a device behind the firewall registers with the proxy that is outside the firewall, the AS or Multiservices PIC maintains the registration state. When the learn-sip-register statement is enabled, the router can use this information to accept inbound calls. If this statement is not configured, no inbound calls are accepted; only the devices behind the firewall can call devices outside the firewall.

NOTE: You can manually inspect the SIP register by running the show services stateful-firewall sip-register command.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- ALG Descriptions on page 399
- Configuring Application Sets on page 431
- Configuring SIP on page 441
- Examples: Configuring Application Protocols on page 450
- Verifying the Output of ALG Sessions on page 451
**lifetime-seconds**

**Syntax**  
 lifetime-seconds seconds;

**Hierarchy Level**  
[edit services ipsec-vpn ike proposal proposal-name],  
[edit services ipsec-vpn ipsec proposal proposal-name]

**Release Information**  
Statement introduced before Junos OS Release 7.4.

**Description**  
Configure the lifetime of an IKE or IPsec SA. This statement is optional.

**Options**  
* seconds—Lifetime  
  * Default: 3600 seconds (IKE); 28,800 seconds (IPsec)  
  * Range: 180 through 86,400

**Required Privilege Level**  
- system—To view this statement in the configuration.  
- system-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring IKE Proposals on page 571  
- Configuring IPsec Proposals on page 584  
- Configuring Security Associations on page 549
**link-layer-overhead**

**Syntax**  
link-layer-overhead percent;

**Hierarchy Level**  
[edit interfaces interface-name mfr-uni-nni-bundle-options],  
[edit interfaces interface-name unit logical-unit-number],  
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

**Release Information**  
Statement introduced before Junos OS Release 7.4.

**Description**  
For link services IQ (lsq) interfaces only, configure the percentage of total bundle bandwidth to be set aside for link-layer overhead. Link-layer overhead accounts for the bit stuffing on serial links. Bit stuffing is used to prevent data from being interpreted as control information. Overhead resulting from link-layer encapsulation and framing is computed automatically.

**Options**  
*percent*—Percentage of total bundle bandwidth to be set aside for link-layer overhead.  
**Range:** 0 through 50 percent  
**Default:** 0 percent

**Required Privilege Level**  
interface—To view this statement in the configuration.  
interface-control—To add this statement to the configuration.

**Related Documentation**  
* Configuring CoS Scheduling Queues on Logical LSQ Interfaces on page 722
**limit-ports-per-address**

**Syntax**  
limit-ports-per-address *number*;

**Hierarchy Level**  
[edit services nat pool nat-pool-name]

**Release Information**  

**Description**  
Specify the limit for number of ports allocated per host (IP address).

**Options**  
*number*—Number of ports allocated per host (IP address).  
**Range:** 2 through 65,435

**Required Privilege Level**  
interface—To view this statement in the configuration.  
interface-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring Pools of Addresses and Ports for Network Address Translation Overview on page 82
load-balance

**Syntax**

```
load-balance {
 per-packet;
 random;
}
```

**Hierarchy Level**

```
[edit policy-options policy-statement policy-name then]
```

**Release Information**

Statement introduced in Junos OS Release 14.2.

**Description**

Specify the type of load balancing of an equal-cost multipath (ECMP) in the forwarding table.

**Options**

- **per-packet**—Load-balance on a per-packet basis.
- **random**—Load-balance using packet random spray.

**Required Privilege Level**

- **routing**—To view this statement in the configuration.
- **routing-control**—To add this statement to the configuration.

**Related Documentation**

load-balancing-options (Aggregated Multiservices)

Syntax

```plaintext
load-balancing-options {
 high-availability-options {
 (many-to-one | one-to-one) {
 preferred-backup preferred-backup;
 }
 }
 member-failure-options {
 drop-member-traffic {
 rejoin-timeout rejoin-timeout;
 }
 redistribute-all-traffic {
 enable-rejoin;
 }
 }
 hash-keys {
 egress-key (destination-ip | source-ip);
 ingress-key (destination-ip | source-ip);
 }
 member-interface interface-name;
}
```

Hierarchy Level

[edit interfaces interface-name]

Release Information

Statement introduced in Junos OS Release 11.4.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

Description

Configure the high availability (HA) options for the aggregated multiservices (AMS) interface.

Many-to-one (N:1) high availability mode for service applications like Network Address Translation (NAT) is supported. In the case of N:1 high availability mode, one services PIC is the backup (in hot standby mode) for one or more (N) active services PICs. If one of the active services PICs goes down, then the backup replaces it as the active services PIC. When the failed PIC comes back online, it becomes the new backup. This is called floating backup mode. In an N:1 (stateless) configuration, traffic states and data structures are not synchronized between active PICs and the backup PIC.

You can also configure a one-to-one (1:1) high availability mode. In the 1:1 configuration, a single interface is configured as the backup for another single active interface. If the active interface goes down, the backup interface replaces it as the active interface. A 1:1 (stateful) configuration synchronizes traffic states and data structures between the active services PIC and the backup services PIC. This is required for IPsec connections.

Load-balancing might not be uniform among member interfaces in certain network deployments. The variance can be because of a misconfiguration, which causes the traffic itself not to be sufficiently randomly distributed, causing the hash keys to be
ineffective (for example, the hash key is destination IP but all sessions have only source IP address). The variation can be within the expected range and the load balancing depends on the IP addresses chosen. The hash calculation performs a checksum on several bits of the IP address and not only on the last few lower significant bits of the IP address. In such a scenario, the load-balancing ratio can change, for instance, if the source IP address is changed from 20.0.0.0/24 to 20.0.1.0/24.

The distribution of traffic across member interfaces of an AMS interface is static load-balancing. Flows are load balanced based on a packet hash on parameters such as source IP or destination IP. Load-balancing effectiveness depends on the IP address or protocol diversity. For example, if the hash key is destination IP and all packets have the same destination, then all flows are directed to the same member. This is flow-level load balancing and not per packet. As a result, traffic between a pair of addresses may be 10,000 pps, whereas another pair of addresses may have 1 pps. The load of the former is not distributed among members. High availability is limited to stateless HA. When a backup interface takes over as an active interface, all flows are reestablished (for example, packets may undergo NAT processing differently after failover).

With a stateful firewall, static NAT as basic-nat44 or destination-nat44, and dynamic NAT as nat64, napt-44, dynamic-nat44, and with application layer gateways (ALGs) configured, NAT hairpinning is not supported. Input direction for rule match to be applied is supported only for dynamic NAT types (NAT64, NAT44, and dynamic-NAT44). Service-set policies need to have input or input-output direction only. Flows on all active members are reset when the number of actives changes. The resetting of flows can be avoided at the cost of failed-member’s traffic loss using certain options.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Understanding Aggregated Multiservices Interfaces on page 865
- Example: Configuring an Aggregated Multiservices Interface (AMS) on page 878
load-balancing-options (Service Set)

Syntax
load-balancing-options {
    hash-keys {
        egress-key (destination-ip | source-ip);
        ingress-key (destination-ip | source-ip);
    }
}

Hierarchy Level  [edit services service-set service-set-name interface-service]

Release Information  Statement introduced in Junos OS 11.4.

Description  Configure the load-balancing options for aggregated multiservices (AMS) in service applications (Network Address Translation [NAT], stateful firewall, application-level gateway [ALG], HTTP header enrichment, and mobility). AMS for service applications can be used for load balancing with or without high availability (HA). Currently, load balancing is based on the configured hash keys.

    The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level  interface—To view this statement in the configuration.
                          interface-control—To add this statement to the configuration.

Related Documentation  • Understanding Aggregated Multiservices Interfaces on page 865
                        • Example: Configuring an Aggregated Multiservices Interface (AMS) on page 878
## local-certificate

<table>
<thead>
<tr>
<th>Syntax</th>
<th>local-certificate <em>identifier</em>;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierarchy Level</td>
<td>[edit services ipsec-vpn ike policy <em>policy-name</em>]</td>
</tr>
<tr>
<td>Release Information</td>
<td>Statement introduced in Junos OS Release 7.5.</td>
</tr>
<tr>
<td>Description</td>
<td>Name of the certificate that needs to be sent to the peer during the IKE authentication phase.</td>
</tr>
<tr>
<td>Options</td>
<td><em>identifier</em>—Name of certificate.</td>
</tr>
<tr>
<td>Required Privilege Level</td>
<td>system—To view this statement in the configuration. system-control—To add this statement to the configuration.</td>
</tr>
<tr>
<td>Related Documentation</td>
<td></td>
</tr>
</tbody>
</table>
  - Configuring IKE Policies on page 576  
  -  


**local-gateway (IPSec)**

**Syntax**
```
local-gateway address <gw-interface interface-name.logical-unit-number>
```

**Hierarchy Level**
```
[edit services service-set service-set-name ipsec-vpn-options]
```

**Release Information**
Statement introduced before Junos OS Release 7.4.

**Description**
Define the local IPv4 or IPv6 address for the IPsec traffic.

---

**NOTE:** You cannot use a VRRP virtual-address for defining the local-gateway address.

---

**Options**
- **address**—Local address.

  The remaining statement is explained separately.

**Required Privilege Level**
- admin—To view this statement in the configuration.
- admin-control—To add this statement to the configuration.

**Related Documentation**
- Configuring Service Rules on page 20
local-gateway (L2TP LNS)

Syntax

local-gateway {
   address address;
   gateway-name gateway-name;
}

Hierarchy Level [edit services l2tp tunnel-group name]

Release Information Statement introduced before Junos OS Release 7.4.

Description Specify the IP address or name for the local (LNS) gateway for L2TP tunnel.

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

Options

address—Local IP address; corresponds to the IP address that is used by LACs to identify the LNS. When the LAC is an MX Series router, this address matches the remote gateway address configured in the LAC tunnel profile.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

• Configuring the Local Gateway Address and PIC on page 908.

• Configuring L2TP Tunnel Groups on page 907

• Configuring an L2TP Tunnel Group for LNS Sessions with Inline Services Interfaces
local-id

Syntax:  
```plaintext
local-id (distinguished-name container container-string-values | wildcard wildcard-string-values | ipv4_addr ipv4-address | ipv6-addr ipv6-address | key-id identifier fqdn fqdn);
```

Hierarchy Level:  
```
[edit services ipsec-vpn ike policy policy-name]
```

Release Information:  
Statement introduced before Junos OS Release 7.4.  
`ipv6_addr` option added in Junos OS Release 7.6.

Description:  
Specify local identifiers for IKE Phase 1 negotiation. This statement is optional.

Options:  
- `ipv4_addr ipv4-address`—IPv4 address identification value.
- `ipv6_addr ipv6-address`—IPv6 address identification value.
- `key_id identifier`—Key identification value.
- `fqdn fqdn`—Fully-qualified domain name.
- `distinguished-name container container-string-values | wildcard wildcard-string-values`—One or more distinguished name values.

Required Privilege Level:  
- `system`—To view this statement in the configuration.
- `system-control`—To add this statement to the configuration.

Related Documentation:  
- Configuring Security Associations on page 549
### log-prefix (L2TP)

**Syntax**

```
log-prefix prefix-value;
```

**Hierarchy Level**

[edit services l2tp tunnel-group group-name syslog host hostname]

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Set the system logging prefix value.

**Options**

`prefix-value`—System logging prefix value.

**Required Privilege**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Configuring System Logging of L2TP Tunnel Activity on page 910

### log-prefix (Services)

**Syntax**

```
log-prefix prefix-value;
```

**Hierarchy Level**

[edit services service-set service-set-name syslog host hostname]

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Set the system logging prefix value.

**Options**

`prefix-value`—System logging prefix value.

**Required Privilege**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Configuring System Logging for Service Sets on page 33
**logging (Services)**

**Syntax**

```
logging {
 traceoptions {
 file filename <files number> <match regular-expression> <size size> <world-readable >
 no-world-readable >;
 flag flag;
 no-remote-trace;
 }
}
```

**Hierarchy Level**

[edit services]

**Release Information**

Statement introduced in Junos OS Release 8.0.

**Description**

Define global services properties.

**Options**

The remaining statement is explained separately. See CLI Explorer.

**Required Privilege**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Tracing Services PIC Operations on page 35
logging (IDS MS-DPC)

Syntax

```
logging {
 syslog;
 threshold rate;
}
```

Hierarchy Level

```
[edit services ids rule rule-name term term-name then]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Set logging values for this IDS term when using the MS-DPC.

Options

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Actions in IDS Rules on page 501

lsq-failure-options

Syntax

```
lsq-failure-options {
 no-termination-request;
 trigger-link-failure interface-name;
}
```

Hierarchy Level

```
[edit interfaces lsq-fpc/pic/port]
```

Release Information

Statement introduced in Junos OS Release 7.4.

Description

For link services IQ (lsq) interfaces only, define the failure recovery option settings.

Options

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring the Association between LSQ and SONET Interfaces on page 788
Syntax

manual {
  direction (inbound | outbound | bidirectional) {
    authentication {
      algorithm (hmac-md5-96 | hmac-sha1-96);
      key (ascii-text key | hexadecimal key);
    }
    auxiliary-spi spi-value;
    encryption {
      algorithm algorithm;
      key (ascii-text key | hexadecimal key);
    }
    spi spi-value;
    protocol (ah | esp | bundle);
  }
}

Hierarchy Level

[edit services ipsec-vpn rule rule-name term term-name then]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Define a manual IPsec SA.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

admin—To view this statement in the configuration.

admin-control—To add this statement to the configuration.

Related Documentation

• Configuring Security Associations on page 549
### many-to-one (Aggregated Multiservices)

**Syntax**

```plaintext
many-to-one {
 preferred-backup preferred-backup;
}
```

**Hierarchy Level**

```
[edit interfaces interface-name load-balancing-options high-availability-options]
```

**Release Information**

Statement introduced in Junos OS Release 11.4. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

**Description**

Configure the many-to-one (N:1) preferred backup for the aggregated multiservices (AMS) interface.

**NOTE:** The preferred backup must be one of the member interfaces (mams−) that have already been configured at the [edit interfaces interface-name load-balancing-options] hierarchy level. Even in the case of mobile control plane redundancy, which is one-to-one (1:1), the initial preferred backup is configured at this hierarchy level.

**Options**

`preferred-backup preferred-backup`—Use the specified interface as the preferred backup member interface. The member interface format is mams-\(a/b\)/0, where \(a\) is the FPC slot number and \(b\) is the PIC slot number.

**Required Privilege Level**

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

**Related Documentation**

- [high-availability-options (Aggregated Multiservices) on page 1069](#)
- [Understanding Aggregated Multiservices Interfaces on page 865](#)
- [Example: Configuring an Aggregated Multiservices Interface (AMS) on page 878](#)
map-e

Syntax

map-e name {
  disable-auto-route;
  ea-bits-len ea-bits-len;
  ipv4-prefix ipv4-prefix;
  mape-prefix mape-prefix;
  mtu-v6 mtu-v6;
  psid-length psid-length;
  psid-offset psid-offset;
  softwire-address softwire-address;
  v4-reassembly;
  v6-reassembly;
  version-03;
}

Hierarchy Level
[edit services softwire softwire-concentrator]

Release Information
Statement introduced in Junos OS Release 18.2R1 for MX Series Routers with MPC and MIC interfaces.

Description
Configure Mapping of Address and port – Encapsulation (MAP-E) as an inline service on MX Series routers that use MPC and MIC interfaces. MAP-E is an automatic tunneling mechanism that encapsulates IPv4 packets within an IPv6 address. The IPv4 packets are carried in an IPv4-over-IPv6 tunnel from the MAP-E Customer Edge (CE) devices to the MAP-E Provider Edge (PE) devices (also called as Border Relay (BR) devices) through an IPv6 routing topology, where they are de-tunneled for further processing.

Options

disable-auto-route—Disable auto-routes and enable static routes to facilitate ECMP load balancing.

NOTE: When you enable the disable-auto-route option, you must configure static routes.

name—Name of the MAP-E softwire concentrator.

ea-bits-len—Configure rule for Embedded Address (EA) length for the MAP-E domain.

NOTE:
- If v4-prefix-len is 0 then ea-bits-len must be non-zero, and vice versa.
- It is possible that ea-bits-len is equal to 0, but psid-len is non-zero.
If the sum of v4-prefix-len and ea-bits-len is less than 32, then the psid-len must be equal to the difference between 32 and the sum total of v4-prefix-len and ea-bits-len.

Range: 0 through 48

ipv4-prefix—Configure rule for IPv4 prefix and length of the MAP-E domain.
Range: 0 through 32

mape-prefix—Configure rule for IPv6 prefix and length for the MAP-E domain. The MAP-E IPv4 and IPv6 prefix must be unique per softwire concentrator.

mtu-v6—(Optional) Specify the Maximum transmission unit (MTU) for the MAP-E softwire tunnel.
Default: 9192
Range: 1280 through 9192

psid-length—Configure Port Set ID (PSID) length value for the MAP-E domain.

Range: 0 through 16

psid-offset—(Optional) Configure PSID offset value for the MAP-E domain.
Default: 4
Range: 0 through 16

softwire-address—Specify the Border Relay device unicast IPv6 address as the softwire concentrator IPv6 address.

v4-reassembly | v6-reassembly—(Optional) Enable IPv4 and IPv6 reassembly for MAP-E.

version-03—Configure version number to distinguish between currently supported version of the Internet draft draft-ietf-softwire-map-03 (expires on July 28, 2013), Mapping of Address and Port with Encapsulation (MAP) and the latest available version.

Required Privilege Level: system

Related Documentation:

•
mapping-refresh

Syntax  

mapping-refresh (inbound | outbound | inbound-outbound);

Hierarchy Level  

[edit services nat rule rule-name term term-name then translated secure-nat-mapping]

Release Information  

Statement introduced in Junos OS Release 12.3

Description  

Specify how the flow timer should be refreshed based on the mapping refresh configured for all types of fwnat flows. For TCP flows, if tcp-tickles is configured, then tickles are sent only on the flow matching the mapping-refresh direction. For inbound-outbound mapping, refresh tickles will be sent on both the flows (default behavior).

Starting in Junos OS Release 15.1R3, mapping-refresh is also supported on the MS-MPC and MS-MIC.

Options  

inbound—Refresh the flow timer for inbound flows only.

inbound-outbound—Refresh the flow timer for all flows.

outbound—Refresh the flow timer for outbound flows only.

Required Privilege Level  

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation  

• Protecting CGN Devices Against Denial of Service (DOS) Attacks on page 349
mapping-timeout

Syntax  

mapping-timeout seconds;

Hierarchy Level  

[edit services nat pool nat-pool-name]

Release Information  

mapping-timeout statement introduced in JUNOS Release 10.1.

NOTE: This configuration option has been replaced by app-mapping-timeout. This option is currently retained only for backward compatibility.

Description  

Specify the duration for mappings that use the specified NAT pool.

Options  

seconds—Lifetime of mappings in seconds.

Default: 300
Range: 120 through 864,000

Required Privilege Level  

interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation  

• Configuring Source and Destination Addresses Network Address Translation Overview on page 80
mapping-type

Syntax  mapping-type endpoint-independent;

Hierarchy Level  [edit services nat rule (Services NAT) rule-name term (Services NAT) term-name then (Services NAT) translated]


Description  Specify the source NAT mapping type.

Options  endpoint-independent—Currently, the only valid setting specifies endpoint-independent mapping behavior.

Required Privilege  interface—To view this statement in the configuration.

Related Documentation  • Network Address Translation Rules Overview on page 84

match-direction (Services CoS)

Syntax  match-direction (input | output | input-output);

Hierarchy Level  [edit services cos rule rule-name]


Description  Specify the direction in which the rule match is applied.

Options  input—Apply the rule match on the input side of the interface.

output—Apply the rule match on the output side of the interface.

input-output—Apply the rule match bidirectionally.

Required Privilege  interface—To view this statement in the configuration.

Related Documentation  • Configuring CoS Rules on Services PICs
match-direction (IDS)

Syntax    match-direction (input | output | input-output);

Hierarchy Level   [edit services ids rule rule-name]

Release Information   Statement introduced before Junos OS Release 7.4.

Description   Specify the direction in which the rule match is applied.

Options   input—Apply the rule match on input.

output—Apply the rule match on output.

input-output—Apply the rule match bidirectionally.

Required Privilege
Level   interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation   • Configuring Match Conditions in IDS Rules on page 500

• Configuring Protection Against Network Attacks on an MS-MPC on page 515

match-direction

Syntax    match-direction (input | output);

Hierarchy Level   [edit services ipsec-vpn rule rule-name]

Release Information   Statement introduced before Junos OS Release 7.4.

Description   Specify the direction in which the rule match is applied.

Options   input—Apply the rule match on input.

output—Apply the rule match on output.

Required Privilege
Level   interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation   • Configuring IPsec Rules on page 592
**match-direction (Services NAT)**

**Syntax**

```
match-direction (input | output);
```

**Hierarchy Level**

```
[edit services nat rule rule-name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Specify the direction in which the rule match is applied.

**Options**

- **input**—Apply the rule match on input.
- **output**—Apply the rule match on output.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Network Address Translation Rules Overview on page 84
match-direction (PCP)

**Syntax**

```plaintext
match-direction (input | output);
```

**Hierarchy Level**

```
[edit services pcp rule rule-name]
```

**Release Information**

Statement introduced in Junos OS Release 13.2R1.

**Description**

Specify the direction in which the rule match is applied. A PCP rule assigns the PCP server that handles selected traffic.

PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, PCP is also supported on the MS-MPC and MS-MIC.

**Options**

- **input**—Apply the rule match on input.
- **output**—Apply the rule match on output.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Configuring Port Control Protocol on page 220
### match-direction (Services Stateful Firewall)

**Syntax**

```
match-direction (input | output | input-output);
```

**Hierarchy Level**

```
[edit services stateful-firewall rule rule-name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Specify the direction in which the rule match is applied.

**Options**

- `input`—Apply the rule match on the input side of the interface.
- `output`—Apply the rule match on the output side of the interface.
- `input-output`—Apply the rule match bidirectionally.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring Stateful Firewall Rules on page 467

### match-rules-on-reverse-flow

**Syntax**

```
match-rules-on-reverse-flow;
```

**Hierarchy Level**

```
[edit services service-set service-set-name cos-options]
```

**Release Information**

Statement introduced in Junos OS Release 16.1R5 and 17.4R1.

**Description**

Configure the service set to create a CoS session even if a packet is first received in the reverse direction of the matching direction of the CoS rule. The CoS rule values are then applied as soon as a packet in the correct match direction is received.

**Required Privilege Level**

- `system`—To view this statement in the configuration.
- `system-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring CoS Rules on page 712
max-drop-flows

Syntax

max-drop-flows {
  ingress ingress-flows;
  egress egress-flows;
}

Hierarchy Level

[edit services service-set service-set-name]

Release Information

Statement introduced in Junos OS Release 12.3

Description

Configure the maximum drop flows allowed per ingress and egress direction. The configuration is per service set. The configured limits indicate the maximum number of drop flows that can be created at a given instance of time in both directions. If max drop flows ingress is 10 and egress is 5 then at a given instance of time maximum of 10 ingress drop flows and 5 egress drop flows can be present. Two counters, one for each direction ingress and egress, are to be added to service set stateful-firewall statistics to track the number of drop flows not created due to the drop flow limits exceeded. These limits applies to all types of drop flows i.e., TCP, UDP, ICMP etc. Ingress drop flows are forward flows for match-direction input rules and reverse flows for match-direction output rules. Similarly egress drop flows are reverse flows for match-direction input and forward flows for match-direction output rules. The limits are applied cumulatively on all the nat rules associated with the service-set.

If you specify the maximum drop flows to be zero, it indicates that the configuration is not effective. You must specify a value higher than zero for maximum drop flows.

Options

ingress-flows—Maximum number of drop flows on the ingress interface.

egress-flows—Maximum number of drop flows on the egress interface.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

• Configuring Service Set Limitations on page 21
max-flows

Syntax  max-flows number;

Hierarchy Level  [edit services service-set service-set-name]

Release Information  Statement introduced before Jun OS Release 7.4.

Description  Maximum number of flows allowed for the service set.

Options  number—Maximum number of flows.

NOTE: When an aggregated multiservices (AMS) interface is configured as the service interface for a service set, the max-flow value configured for the service set is applied to each of the member interfaces in the AMS interface. That is, if you have configured 1000 as the max-flow value for a service set that uses an AMS interface with four active member interfaces, each of the member interfaces can handle 1000 flows each, resulting in an effective max-flow value of 4000.

Required Privilege Level  interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation  • Configuring Service Set Limitations on page 21
max-session-setup-rate (Service Set)

Syntax

```
max-session-setup-rate (number | numberk);
```

Hierarchy Level

```
[edit services service-set service-set-name]
```

Release Information

Statement introduced in Junos OS Release 17.1R1 on MX Series.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

Description

Set the maximum number of session setups allowed per second for the service set. After this setup rate is reached, any additional session setup attempts are dropped. If you do not include the `max-session-setup-rate` statement, the session setup rate is not limited.

Options

- `max-session-setup-rate number`—Use the specified maximum number of session setups per second.
  - Range: 1 through 429,496,729
  - Default: 0 (The session setup rate is not limited.)
- `numberk`—Maximum number of sessions, expressed in thousands. Starting in Junos OS Release 18.4R1, 1k=1000. Prior to Junos OS Release 18.4R1, 1k=1024.

Required Privilege

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- Configuring Service Set Limitations on page 21
max-sessions-per-subscriber

Syntax
max-sessions-per-subscriber session-number;

Hierarchy Level
[edit services service-set service-set-name nat-options]

Release Information
Statement introduced in Junos OS Release 12.3.

Description
Set the maximum number of sessions from a single subscriber allowed for NAPT-44. This statement does not apply to other types of NAT. The maximum number of sessions per subscriber is 32,000 sessions.

Options
session-number — Maximum number of sessions a single subscriber can establish for NAPT-44.
Range: 1 through 32000
Default: None

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Service Rules on page 20
• land-attack-check on page 1095
maximum

Syntax  maximum number;

Hierarchy Level  [edit interfaces interface-name services-options session-limit]


Description  Specify the maximum number of sessions allowed simultaneously on services cards. If you specify the maximum number of sessions to be zero, it indicates that the configuration is not effective. You must specify a value higher than zero for the maximum number of sessions.

Options  number—Maximum number of sessions.

  Range: 1 through 4,294,967,295

Required Privilege  interface—To view this statement in the configuration.

  interface-control—To add this statement to the configuration.

Related Documentation  • How to Configure Services Interfaces for Next Gen Services
**maximum-contexts**

**Syntax**  
maximum-contexts number <force>;

**Hierarchy Level**  
[edit interfaces interface-name unit logical-unit-number compression rtp],  
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number compression rtp]

**Release Information**  
Statement introduced in Junos OS Release 7.5.

**Description**  
Specify the maximum number of RTP contexts to accept during negotiation.

**Options**  
*number*—Maximum number of contexts.  
*force*—(Optional) Requires the PIC to use the value specified for maximum RTP contexts, regardless of the negotiated value. This option allows the software to interoperate with Junos OS Releases that base the RTP context value on link speed.

**Required Privilege**  
interface—To view this statement in the configuration.  
interface-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring Compression of Voice Traffic on page 895
**maximum-send-window**

Syntax  
maximum-send-window packets;

Hierarchy Level  
[edit services l2tp tunnel-group name]

Release Information  
Statement introduced before Junos OS Release 7.4.

Description  
Specify the size of the send window for L2TP tunnels, which limits the remote end’s receive window size.

NOTE: This statement is not supported for L2TP LNS on MX Series routers.

Options  
packets—Maximum number of packets the send window can hold at one time. 
Default: 32

Required Privilege Level  
interface—To view this statement in the configuration.  
interface-control—To add this statement to the configuration.

Related Documentation  
- Configuring Window Size for L2TP Tunnels on page 909
member-failure-options (Aggregated Multiservices)

Syntax

```plaintext
member-failure-options {
 drop-member-traffic {
 rejoin-timeout rejoin-timeout;
 }
 redistribute-all-traffic {
 enable-rejoin;
 }
}
```

Hierarchy Level

[edit interfaces interface-name load-balancing-options]

Release Information

Statement introduced in Junos OS Release 11.4.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

Description

Configure the possible behavior for the aggregated Multiservices (AMS) interface in case of failure of more than one active member.

**NOTE:** The drop-member-traffic configuration and the redistribute-all-traffic configuration are mutually exclusive.

Table 33 on page 1130 displays the behavior of the member interface after the failure of the first services PIC. Table 34 on page 1131 displays the behavior of the member interface after the failure of two services PICs.

**NOTE:** The AMS infrastructure has been designed to handle one failure automatically. However, in the unlikely event that more than one services PIC fails, the AMS infrastructure provides configuration options to minimize the impact on existing traffic flows.

**Table 33: Behavior of Member Interface After One Multiservices PIC Fails**

<table>
<thead>
<tr>
<th>High Availability Mode</th>
<th>Member Interface Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many-to-one (N:1) high availability support for service applications</td>
<td>Automatically handled by the AMS infrastructure</td>
</tr>
</tbody>
</table>
### Table 34: Behavior of Member Interface After Two Multiservices PICs Fail

<table>
<thead>
<tr>
<th>High Availability Mode</th>
<th>Configuration</th>
<th>rejoin-timeout</th>
<th>Behavior when member rejoins before rejoin-timeout expires</th>
<th>Behavior when member rejoins after rejoin-timeout expires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many-to-one (N:1)</td>
<td>drop-member-traffic</td>
<td>Configured</td>
<td>The existing traffic for the second failed member will not be redistributed to the other members.</td>
<td>The first member to rejoin will rejoin the AMS automatically. The second member to rejoin becomes the backup. This behavior is handled automatically by the AMS infrastructure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The first member to rejoin becomes an active member. The second member to rejoin becomes the backup. This behavior is handled automatically by the AMS infrastructure.</td>
<td>The first member to rejoin becomes an active member. The second member to rejoin becomes the backup. This behavior is handled automatically by the AMS infrastructure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The second member to rejoin becomes the backup. This behavior is handled automatically by the AMS infrastructure.</td>
<td>The second member to rejoin becomes the backup. This behavior is handled automatically by the AMS infrastructure.</td>
</tr>
</tbody>
</table>

| Many-to-one (N:1)       | redistribute-all-traffic | Not applicable | Before rejoin, the traffic is redistributed to existing active members. | After a failed member rejoins, the traffic is load-balanced afresh. This may impact existing traffic flows. |
|                         |               |                | | |

The remaining statements are explained separately. See CLI Explorer.

**Default**

If `member-failure-options` are not configured, then the default behavior is to drop member traffic with a rejoin timeout of 120 seconds.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- `load-balancing-options (Aggregated Multiservices)` on page 1102
- `Understanding Aggregated Multiservices Interfaces` on page 865
- `Example: Configuring an Aggregated Multiservices Interface (AMS)` on page 878

Copyright © 2019, Juniper Networks, Inc.
member-interface (Aggregated Multiservices)

Syntax

member-interface interface-name;

Hierarchy Level

[edit interfaces interface-name load-balancing-options]

Release Information

Statement introduced in Junos OS Release 11.4. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

Description

Specify the member interfaces for the aggregated multiservices (AMS) interface. You can configure multiple interfaces by specifying each interface in a separate statement.

Starting with Junos OS Release 16.2, an AMS interface can have up to 32 member interfaces. In Junos OS Release 16.1 and earlier, an AMS interface can have a maximum of 24 member interfaces. If you configure more than 24 member interfaces, you must set the pic-boot-timeout value to 240 or 300 seconds at the [edit interfaces interface-name multiservice-options] hierarchy level for every services PIC interface on the MX Series router.

For high availability service applications like Network Address Translation (NAT) that support many-to-one (N:1) redundancy, you can specify two or more interfaces. On an MS-MPC or MX-SPC3, you can configure one-to-one (1:1) redundancy. In a 1:1 (stateful) configuration, a single backup interface provides redundancy for a single active interface. A 1:1 configuration is required for IPsec.

NOTE: The member interfaces that you specify must be members of aggregated multiservices interfaces (mams-).

Options

interface-name—Name of the member interface. The member interface format is mams-a/b/0, where a is the FPC slot number and b is the PIC slot number.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

- Understanding Aggregated Multiservices Interfaces on page 865
- Configuring Aggregated Multiservices Interfaces on page 872
- load-balancing-options (Aggregated Multiservices) on page 1102
message-rate-limit

Syntax  
message-rate-limit messages-per-second

Hierarchy Level  
interfaces interface-name {
  services-options {
    cgn-pic;
    disable-global-timeout-override;
    ignore-errors <alg> <tcp>;
    inactivity-non-tcp-timeout seconds;
    inactivity-tcp-timeout seconds;
    inactivity-timeout seconds;
    open-timeout seconds;
    session-limit {
      maximum number;
      rate new-sessions-per-second;
    }
    session-timeout seconds;
    syslog {
    }
  }
}

Release Information  
Statement introduced Junos OS Release 11.1.

Description  
Maximum system log messages per second allowed from this interface.

NOTE: The message-rate-limit command can be configured only for physical service interfaces (sp-x/x/x) and not for redundancy services PIC interfaces (rspx).

Options  
messages-per-second—This option configures the maximum number of system log messages per second that can be formatted and sent from the PIC to either the Routing Engine (local) or to an external server (remote). The default rates are 10,000 for the Routing Engine and 800,000 for an external server.

Range: 0 through 2147483647

Required Privilege Level  
interface—to view this statement in the configuration.

interface-control—to add this statement to the configuration.

Related Documentation  
• Configuring System Logging for Service Sets on page 33
mlfr-uni-nni-bundles-inline

Syntax  mlfr-uni-nni-bundles-inline number;

Hierarchy Level  [edit chassis fpc number pic number]


Description  Specify the number of inline multilink frame relay user-to-network interface (UNI) and network-to-network interface (NNI) bundles.

Options  number—Specify the number of inline multilink frame relay UNI NNI bundles.

Range: 1 through 255

Required Privilege Level  interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation  • Inline MLPPP for WAN Interfaces Overview on page 801
  • Example: Configuring Inline MLPPP and Multilink Frame Relay End-to-End (FRF.15) for WAN Interfaces
  • Example: Configuring Inline Multilink Frame Relay (FRF.16) for WAN Interfaces
mode

Syntax  mode (aggressive | main);

Hierarchy Level  [edit services ipsec-vpn ike policy policy-name]

Release Information  Statement introduced before Junos OS Release 7.4.

Description  Define an IKE policy mode.

Default  main

Options  aggressive—Takes half the number of messages of main mode, has less negotiation power, and does not provide identity protection.

NOTE: In Junos FIPS mode, the aggressive option is not supported.

main—Uses six messages, in three peer-to-peer exchanges, to establish the IKE SA. These three steps include the IKE SA negotiation, a Diffie-Hellman exchange, and authentication of the peer. Also provides identity protection.

Required Privilege  system—To view this statement in the configuration.

Level  system-control—To add this statement to the configuration.

Related Documentation  • Configuring IKE Policies on page 576
**mss (IDS MS-DPC)**

**Syntax**
```
mss value;
```

**Hierarchy Level**
```
[edit services ids rule rule-name term term-name then syn-cookie]
```

**Release Information**
Statement introduced before Junos OS Release 7.4.

**Description**
Specify the maximum segment size (MSS) value used in Transmission Control Protocol (TCP) delayed binding when using the MS-DPC.

**Options**
- `value`—MSS value.
  - **Default:** 1500
  - **Range:** 128 through 8192

**Required Privilege Level**
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**
- [Configuring Actions in IDS Rules on page 501](#)

---

**multi-link-layer-2-inline**

**Syntax**
```
multi-link-layer-2-inline;
```

**Hierarchy Level**
```
[edit chassis fpc number pic number]
```

**Release Information**

**Description**
Enable inline Layer 2 bundling services.

**Required Privilege Level**
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**
- [Inline MLPPP for WAN Interfaces Overview on page 801](#)
  - [Example: Configuring Inline MLPPP and Multilink Frame Relay End-to-End (FRF.15) for WAN Interfaces](#)
  - [Example: Configuring Inline Multilink Frame Relay (FRF.16) for WAN Interfaces](#)
multilink-class

Syntax multilink-class number;

Hierarchy Level [edit class-of-service fragmentation-maps map-name forwarding-class class-name]

Release Information Statement introduced before Junos OS Release 7.4.

Description For link services IQ (lsq) interfaces only, map a forwarding class into a multicast MLPPP (MCML).

The multilink-class statement and no-fragmentation statements are mutually exclusive.

Options number—The multilink class assigned to this forwarding class.
Range: 0 through 7
Default: None

Required Privilege Level interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation • Configuring CoS Fragmentation by Forwarding Class on LSQ Interfaces on page 726
• Configuring Multiclass MLPPP on LSQ Interfaces on page 804
• Configuring Fragmentation by Forwarding Class
• Junos OS Services Interfaces Library for Routing Devices
• multilink-max-classes on page 1138
multilink-max-classes

Syntax multilink-max-classes number;

Hierarchy Level [edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

Release Information Statement introduced before Junos OS Release 7.4.

Description For link services IQ (lsq) interfaces only, configure the number of multilink classes to be negotiated when a link joins the bundle.

Options number—The number of multilink classes to be negotiated when a link joins the bundle.
Range: 1 through 8
Default: None

Required Privilege Level interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation • Configuring Multiclass MLPPP on LSQ Interfaces on page 804
nat-keepalive (Services IPsec VPN)

Syntax

```
nat-keepalive seconds;
```

Hierarchy Level

```
[edit services service-set service-set-name ipsec-vpn-options]
```

Release Information

Statement introduced in Junos OS Release 17.4 for MX Series routers.

Description

Specify the interval at which NAT keepalive packets can be sent so that NAT translation continues.

Options

```
seconds — Maximum interval in seconds at which NAT keepalive packets can be sent.
Range: 1 through 300 seconds.
Default: 20 seconds.
```

Required Privilege Level

```
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
```

Related Documentation

- Configuring Junos VPN Site Secure or IPSec VPN
nat-options

Syntax

```
nat-options {
 land-attack-check (ip-only | ip-port);
 max-sessions-per-subscriber session-number;
 stateful-nat64 {
 clear-dont-fragment-bit;
 }
}
```

Hierarchy Level

```
[edit services service-set service-set-name]
```

Release Information

Statement introduced with Junos OS Release 12.1. 
land-attack-check and max-sessions-per-subscriber statements added in 13.3.

Description

Specify parameters for NAT operation.

Required Privilege Level

interface—To view this statement in the configuration. 
interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Service Rules on page 20
- clear-dont-fragment-bit on page 981
- land-attack-check on page 1095
- max-sessions-per-subscriber on page 1126
- stateful-nat64 on page 1276
**nat-rule-sets (Service Set)**

**Syntax**

```
nat-rule-sets rule-set-name;
```

**Hierarchy Level**

```
[edit services service-set service-set-name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Specify the Network Address Translation (NAT) rule set included in the service set. You can configure only one NAT rule set. If you specify a NAT rule set, you cannot specify a NAT rule.

**Options**

- `rule-set-name`—Name of the NAT rule set.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Applying Services to Subscriber-Aware Traffic with a Service Set

**nat-rules**

**Syntax**

```
(nat-rules rule-name | nat-rule-sets rule-set-name);
```

**Hierarchy Level**

```
[edit services service-set service-set-name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Specify the Network Address Translation (NAT) rules or rule set included in this service set. You can configure multiple rules, but only one rule set for each service.

**Options**

- `rule-name`—Identifier for the collection of terms that constitute this rule.
- `rule-set-name`—Identifier for the set of rules to be included.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Configuring Service Rules on page 20
- Applying Services to Subscriber-Aware Traffic with a Service Set
next-hop-service

Syntax

next-hop-service {
    inside-service-interface interface-name.unit-number;
    outside-service-interface interface-name.unit-number;
    outside-service-interface-type interface-type;
    service-interface-pool name;
}

Hierarchy Level  [edit services service-set service-set-name]

Release Information

Statement introduced before Junos OS Release 7.4.

service-interface-pool option added in Junos OS Release 9.3.

Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

Description

Specify interface names or a service interface pool for the forwarding next-hop service set. You cannot specify both a service interface pool and an inside or outside interface.

Options

inside-service-interface interface-name.unit-number—Name and logical unit number of the service interface associated with the service set applied inside the network.

outside-service-interface interface-name.unit-number—Name and logical unit number of the service interface associated with the service set applied outside the network.

outside-service-interface-type interface-type—Identifies the interface type of the service interface associated with the service set applied outside the network. For inline IP reassembly, set the interface type to local.

service-interface-pool name—Name of the pool of logical interfaces configured at the [edit services service-interface-pools pool pool-name] hierarchy level. You can configure a service interface pool only if the service set has a PGCP rule configured. The service set cannot contain any other type of rule.

NOTE: service-interface-pool is not applicable for IP reassembly configuration on L2TP.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

• Configuring Service Sets to be Applied to Services Interfaces on page 9

• How to Configure Next-Hop Style Service Sets for Next Gen Services
no-anti-replay

Syntax

no-anti-replay;

Hierarchy Level

[edit services ipsec-vpn rule rule-name term term-name then]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Disable IPsec antireplay service, which occasionally causes interoperability issues for security associations.

Required Privilege

Level

admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation

• Configuring IPsec Rules on page 592
no-anti-replay (Services Service Set)

Syntax  
no-anti-replay;

Hierarchy Level  
[edit services service-set service-set-name ipsec-vpn-options]

Release Information  
Statement introduced in Junos OS Release 10.0.

Description  
Disable IPsec antireplay service for this service set, which occasionally causes interoperability issues for security associations. This statement is useful for dynamic endpoint tunnels for which you cannot configure the no-anti-reply statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level.

For static IPsec tunnels, this statement disables the antireplay check for all the tunnels within this service set. If antireplay check has to be enabled for a particular tunnel, then set the anti-replay-window-size statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level.

NOTE: Setting the anti-replay-window-size and no-anti-replay statements at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level overrides the settings specified at the [edit services service-set service-set-name ipsec-vpn-options] hierarchy level.

Required Privilege Level  
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation  
• Configuring IPsec Service Sets on page 600
• Configuring IPsec Rules on page 592
**no-certificate-chain-in-ike**

**Syntax**

```
no-certificate-chain-in-ike;
```

**Hierarchy Level**

```
[edit services service-set name ipsec-vpn-options]
```

**Release Information**

Statement introduced in Junos OS Release 18.2R1 on MX Series routers.

**Description**

To avoid IKE fragmentation, send only the end-entity certificate for certificate-based IKE authentication instead of the full certificate chain.

**Required Privilege Level**

- system—To view this statement in the configuration.
- system-control—To add this statement to the configuration.

**Related Documentation**

- Configuring IPsec Service Sets on page 600
**no-fragmentation**

**Syntax**

```
nofragmentation;
```

**Hierarchy Level**

```
[edit class-of-service fragmentation-maps forwarding-class class-name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

For link services IQ (lsq) interfaces only, set traffic on a particular forwarding class to be interleaved, rather than fragmented. This statement specifies that no extra fragmentation header is prepended to the packets received on this queue and that static-link load balancing is used to ensure in-order packet delivery.

Static-link load balancing is done based on packet payload. For IP version 4 (IPv4) and IP version 6 (IPv6) traffic, the link is chosen based on a hash computed from the source address, destination address, and protocol. If the IP payload is Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) traffic, the hash also includes source port and destination port. For MPLS traffic, the hash includes all MPLS labels and fields in the payload, whether the MPLS payload is IPv4 or IPv6.

**Default**

If you do not include this statement, the traffic in forwarding class `class-name` is fragmented.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Configuring CoS Fragmentation by Forwarding Class on LSQ Interfaces on page 726
no-ipsec-tunnel-in-traceroute

Syntax
no-ipsec-tunnel-in-traceroute;

Hierarchy Level
[edit services ipsec-vpn]

Release Information
Statement introduced in Junos OS Release 10.0.

Description
Disables displaying the IPsec tunnel endpoint in the trace route output. The IPsec tunnel is not treated as a next hop and TTL is not decremented. If the TTL becomes zero, the ICMP time exceeded message will not be generated.

Required Privilege
admin—to view this statement in the configuration.
admin-control—to add this statement to the configuration.

Related Documentation
• Configuring Security Associations on page 549

no-nat-traversal (Services IPsec VPN)

Syntax
no-nat-traversal;

Hierarchy Level
[edit services service-set service-set-name ipsec-vpn-options]

Release Information
Statement introduced in Junos OS Release 17.4R1 for MX Series routers.

Description
Configure to disable NAT-T at the services-set level (tunnel level). NAT-T is enabled by default therefore you must use the no-nat-traversal for disabling the NAT-T.

NOTE: The global disable NAT-T setting at [edit services ipsec-vpn] hierarchy level overrides the default NAT-T setting at [edit service-set] hierarchy level.

Required Privilege
interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation
• Disabling NAT-T on MX Series Routers for Handling NAT with IPsec-Protected Packets on page 609
**no-per-unit-scheduler**

**Syntax**
no-per-unit-scheduler;

**Hierarchy Level**
[edit interfaces interface-name]

**Release Information**
Statement introduced before Junos OS Release 11.4.

**Description**
To enable traffic control profiles to be applied at FRF.16 bundle (physical) interface level, disable the per-unit scheduler, which is enabled by default. This statement and the shared-scheduler statement are mutually exclusive.

**Required Privilege Level**
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**Related Documentation**
- Oversubscribing Interface Bandwidth

**no-termination-request**

**Syntax**
no-termination-request;

**Hierarchy Level**
[edit interfaces interface-name ppp-options],
[edit interfaces lsq-fpc/pic/port lsq-failure-options]

**Release Information**
Statement introduced in Junos OS Release 7.4.
Support at the [edit interfaces interface-name ppp-options] hierarchy level added in Junos OS Release 8.3.

**Description**
Inhibit PPP termination-request messages to the remote host if the primary circuit fails.

**Required Privilege Level**
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**Related Documentation**
- Configuring the Association between LSQ and SONET Interfaces on page 788
### no-translation

**Syntax**

no-translation;

**Hierarchy Level**

[edit services nat rule rule-name term term-name then]

**Release Information**

Statement introduced in Junos OS Release 7.6.

**Description**

Specify that traffic is not to be translated.

The **no-translation** statement is supported on MX series routers with MS-DPCs and on M Series routers with MS-100, MS-400, and MS-500 MultiServices PICS. The **no-translation** statement is supported on MX series routers with MS-MPCs and MS-MICs starting in Junos OS release 15.1R1.

**Options**

none

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Network Address Translation Rules Overview on page 84
### one-to-one (Aggregated Multiservices)

**Syntax**

```
one-to-one {
 preferred-backup preferred-backup;
}
```

**Hierarchy Level**

```
[edit interfaces interface-name load-balancing-options high-availability-options]
```

**Release Information**

Statement introduced in Junos OS Release 15.2. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

**Description**

Configure a single interface to be the preferred one-to-one (1:1) backup for an active aggregated multiservices (AMS) interface. If the active interface fails, the backup interface takes over. A 1:1 (stateful) configuration synchronizes traffic states and data structures between the active and backup PICs. This is required for high availability of IPsec connections. 1:1 configuration is supported only on MS-MPCs and MX-SPC3s.

**NOTE:** The preferred backup must be one of the member interfaces (mams–) that have already been configured at the [edit interfaces interface-name load-balancing-options] hierarchy level.

**Options**

**preferred-backup preferred-backup**—Use the specified interface as the preferred backup member interface. The member interface format is mams-\(a/b\)/0, where \(a\) is the Flexible PIC Concentrator (FPC) slot number and \(b\) is the PIC slot number.

**Required Privilege**

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

**Related Documentation**

- high-availability-options (Aggregated Multiservices) on page 1069
- Understanding Aggregated Multiservices Interfaces on page 865
- Example: Configuring an Aggregated Multiservices Interface (AMS) on page 878
output

Syntax

```plaintext
output {
 [service-set service-set-name < service-filter filter-name>];
}
```

Hierarchy Level

- [edit interface interface-name unit logical-unit-number family inet service],
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet service]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Define the output service sets and filters to be applied to traffic.

Options

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Applying Filters and Services to Interfaces on page 24

overload-pool

Syntax

```plaintext
overload-pool overload-pool-name;
```

Hierarchy Level

- [edit services nat rule rule-name term term-name then translated]

Release Information

Statement introduced in Junos OS Release 7.6.

Description

Specify an address pool that can be used if the source pool becomes exhausted.

Options

- `overload-pool-name`—Name of the overload pool.

Required Privilege

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Network Address Translation Rules Overview on page 84
overload-prefix

Syntax

`overload-prefix overload-prefix;`

Hierarchy Level

`[edit services nat rule rule-name term term-name then translated]`

Release Information

Statement introduced in Junos OS Release 7.6.

Description

Specify the prefix that can be used if the source pool becomes exhausted.

Options

`overload-prefix`—Prefix value.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

• Network Address Translation Rules Overview on page 84

package (Loading on PIC)

Syntax

`package package-name;`

Hierarchy Level

`[edit chassis fpc slot-number pic pic-number adaptive-services service-package extension-provider]`

Release Information

Statement introduced in Junos OS Release 9.1.

Description

Identify a package to be loaded on the PIC. When a package is added or removed, the PIC reboots.

Options

`package-name`—Name of the package to be loaded on the PIC. There can be up to eight packages loaded on a PIC; however, only one data package is allowed per PIC. An error message is displayed if more than eight packages are specified.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.
passive-mode-tunneling

Syntax
passive-mode-tunneling;

Hierarchy Level
[edit services service-set service-set-name ipsec-vpn-options]

Release Information
Statement introduced in Junos OS Release 10.0.

Description
Allows tunneling of malformed packets. When this statement is enabled, traffic bypasses the usual active IP checks. The IPsec tunnel is not treated as a next hop and TTL is not decremented. If the packet size exceeds the tunnel MTU value, an ICMP error is not generated. Starting with Junos OS Release 13.3R4 and 14.2R1, passive mode tunneling is supported on MS-MICs and MS-MPCs.

NOTE: The header-integrity-check option that is supported on MS-MICs and MS-MPCs to verify the packet header for anomalies in IP, TCP, UDP, and ICMP information and flag such anomalies and errors has a functionality that is opposite to the functionality caused by passive mode tunneling. If you configure both the header-integrity-check statement and the passive-mode tunneling statement on MS-MICs and MS-MPCs, and attempt to commit such a configuration, an error is displayed during commit.

The passive mode tunneling functionality (by including the passive-mode-tunneling statement at the [edit services service-set service-set-name ipsec-vpn-options] hierarchy level) is a superset of the capability to disable IPsec tunnel endpoint in the traceroute output (by including no-ipsec-tunnel-in-traceroute statement at the [edit services ipsec-vpn] hierarchy level). Passive mode tunneling also bypasses the active IP checks and tunnel MTU check in addition to not treating an IPsec tunnel as a next-hop as configured by the no-ipsec-tunnel-in-traceroute statement.

Required Privilege
Level
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation
- Configuring IPsec Service Sets on page 600
**pba-interim-logging-interval**

**Syntax**

```
pba-interim-logging-interval seconds
```

**Hierarchy Level**

```
[edit interfaces interface-name services-options]
```

**Release Information**

Statement introduced in Junos OS Release 13.3.

**Description**

Port block allocation (PBA) generates one syslog entry per set of ports allocated to a subscriber. These logs are UDP based and can be lost in the network, especially for long running flows. Interim logging resends the above logs at a configured interval for all active blocks that have traffic on at least one block. For the MS-MIC and MS-MPC, log messages are generated for sessions which have a port in a block, even if the block has no traffic.

**Options**

- **seconds**—Interval, in seconds, for re-sending of session logs
  - **Default:** 0—This indicates that interim logging is not used.
  - **Range:** 1800 to 86,400 seconds.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Configuring NAT Session Logs on page 305

---

**pcp-rules**

**Syntax**

```
pcp-rules rule-name;
```

**Hierarchy Level**

```
[edit services service-set service-set-name]
```

**Release Information**

Statement introduced in Junos OS Release 13.2R1.

**Description**

Specify the PCP rule to apply to the service set. A PCP rule assigns the PCP server that handles selected traffic.

PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, PCP is also supported on the MS-MPC and MS-MIC.

**Options**

- **rule-name**—The PCP rule to apply to the service set.

**Required Privilege Level**

- system—To view this statement in the configuration.
- system-control—To add this statement to the configuration.
pcp-server

**Syntax**

```
pcp-server server-name;
```

**Hierarchy Level**

```
[edit services pcp rule rule-name term term-name then]
```

**Release Information**

Statement introduced in Junos OS Release 13.2R1.

**Description**

Specify the PCP server that handles the traffic that matches the PCP rule term.

PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, PCP is also supported on the MS-MPC and MS-MIC.

**Options**

- `server-name`—Name of the PCP server.

**Required Privilege**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring Port Control Protocol on page 220
per-unit-scheduler

Syntax

```
per-unit-scheduler;
```

Hierarchy Level

```
[edit interfaces interface-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 13.2 on 16x10GE MPC and MPC3E line cards.
Statement introduced in Junos OS Release 13.3 on MPC4E line cards.
Statement introduced in Junos OS Release 15.1 on MPC6E line cards.

Description

For Channelized OC3 IQ, Channelized OC12 IQ, Channelized STM1 IQ, Channelized T3 IQ, Channelized E1 IQ, E3 IQ, link services IQ interfaces (lsq-), Gigabit Ethernet IQ, Gigabit Ethernet IQ2 and IQ2-E, and 10-, 40-, and 100-Gigabit Ethernet interfaces (including the 16x10GE MPC), enable the association of scheduler maps with logical interfaces.

CAUTION: Turning on per-unit scheduling causes the interface to reinitialize, which means all logical interfaces (units) on the interface are deleted and recreated.

NOTE: To enable per-unit scheduling on MX80 and MX104 routers, configure the per-unit-scheduler statement at each member physical interface level of a particular aggregated Ethernet interface as well as at that aggregated Ethernet interface level. On other routing platforms, it is enough if you include this statement at the aggregated Ethernet interface level.

NOTE: Per-unit scheduling is not supported on T1 interfaces configured on the Channelized OC12 IQ PIC.

NOTE: On Gigabit Ethernet IQ2 and IQ2-E PICs without the per-unit-scheduler statement, the entire PIC supports 4071 VLANs and the user can configure all the VLANs on the same port.

On Gigabit Ethernet IQ2 and IQ2-E PICs with the per-unit-scheduler statement, the entire PIC supports 1024 – 2 * number of ports (1024 minus two times the number of ports), because each port is allocated two default schedulers.
When including the `per-unit-scheduler` statement, you must also include the `vlan-tagging` statement or the `flexible-vlan-tagging` statement (to apply scheduling to VLANs) or the `encapsulation frame-relay` statement (to apply scheduling to DLCIs) at the `[edit interfaces interface-name]` hierarchy level.

**Required Privilege Level**
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**
- Applying Scheduler Maps and Shaping Rate to DLCIs and VLANs
- `vlan-tagging`
- `flexible-vlan-tagging`
- Example: Applying Scheduling and Shaping to VLANs
- Configuring Virtual LAN Queuing and Shaping on PTX Series Routers
**perfect-forward-secrecy (Services)**

**Syntax**

```
perfect-forward-secrecy {
 keys (group1 | group2 | group5 | group14 | group15 | group16 | group24);
}
```

**Hierarchy Level**

```
[edit services ipsec-vpn ipsec policy policy-name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4. group15, group16, and group24 options added in Junos OS Release 17.4R1.

**Description**

Define Perfect Forward Secrecy (PFS). Creates single-use keys. This statement is optional.

**Options**

- **keys**—Type of Diffie-Hellman prime modulus group that IKE uses when performing the new Diffie-Hellman exchange. The key can be one of the following:
  - group1—768-bit.
  - group2—1024-bit.
  - group5—1536-bit.
  - group14—2048-bit.
  - group15—3072-bit.
  - group16—4096-bit.
  - group24—2048-bit with 256-bit Prime Order Subgroup.

**Required Privilege Level**

- admin—To view this statement in the configuration.
- admin-control—To add this statement to the configuration.

**Related Documentation**

- Configuring IPsec Policies on page 588
pgcp

Syntax

```c
pgcp {
 hint [hint-strings];
 ports-per-session ports;
 remotely-controlled;
 transport [transport-protocols];
}
```

Hierarchy Level

```
[edit services nat pool nat-pool-name]
```

Release Information

Statement introduced in Junos OS Release 8.4.

- `remotely-controlled` and `ports-per-session` statements added in Junos OS Release 8.5.
- `hint` statement added in Junos OS Release 9.0.

Description

Specify that the NAT pool is used exclusively by the BGF.

Required Privilege

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

pgcp-rules

Syntax

```c
(pgcp-rules rule-name | pgcp-rules-sets rule-set-name);
```

Hierarchy Level

```
[edit services service-set service-set-name]
```

Release Information

Statement introduced in Junos OS Release 8.4.

Description

Specify the Packet Gateway Control Protocol (PGCP) rules or ruleset included in this service set. You can configure multiple rules but only one ruleset for each service.

Options

- `rule-name`—Identifier for the collection of terms that constitute this rule.
- `rule-set-name`—Identifier for the set of rules to be included.

Required Privilege

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Service Sets to be Applied to Services Interfaces on page 9
**pic-boot-timeout**

**Syntax**

```
pic-boot-timeout (240 | 300);
```

**Hierarchy Level**

```
[edit interfaces interface-name multiservice-options]
```

**Release Information**

Statement introduced in Junos OS Release 16.2 on MX Series routers.

**Description**

Set the service PIC boot timeout value to 240 or 300 seconds for every services PIC on the MX Series router if you are configuring more than 24 members in an aggregated multiservices (AMS) interface. We recommend setting the boot timeout value to 240. Starting with Junos OS Release 16.2, an AMS interface can have up to 32 member interfaces. In Junos OS Release 16.1 and earlier, an AMS interface can have a maximum of 24 member interfaces.

If you do not set the timeout value to 240 or 300 and you configure an AMS interface with more than 24 members, the default value of 180 causes some of the service PICs to go offline.

**Options**

- **240**—Service PIC boot timeout is set to 240 seconds.
- **300**—Service PIC boot timeout is set to 300 seconds.
- **Default:** 180

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- [Configuring Aggregated Multiservices Interfaces on page 872](#)
policy (Services IKE)

Syntax

```plaintext
policy policy-name {
 description description;
 local-certificate identifier;
 local-id (ipv4_addr ipv4-address | ipv6-addr ipv6-address | key-id identifier);
 version (1 | 2);
 mode (aggressive | main);
 pre-shared-key (ascii-text key | hexadecimal key);
 proposals [proposal-names];
 remote-id {
 any-remote-id;
 ipv4_addr [values];
 ipv6_addr [values];
 key_id [values];
 }
 respond-bad-spi max-responses
}
```

Hierarchy Level

[edit services ipsec-vpn ike]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Define an IKE policy.

Options

`policy-name`—IKE policy name.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation

- Configuring IKE Policies on page 576
**policy (IPsec)**

Syntax

```
policy policy-name {
 description description;
 perfect-forward-secrecy {
 keys (group1 | group2 | group5 | group14 | group15 | group16 | group24);
 }
 proposals [proposal-names];
}
```

Hierarchy Level

```
[edit services ipsec-vpn ipsec]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Define an IPsec policy.

Options

```
policy-name—IPsec policy name.
```

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

```
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.
```

Related Documentation

```
• Configuring IPsec Policies on page 588
```
pool

Syntax

```
pool nat-pool-name {
 address ip-prefix /prefix-length;
 address-allocation round-robin;
 address-range low minimum-value high maximum-value;
 app-mapping-timeout app-mapping-timeout;
 ei-mapping-timeout ei-mapping-timeout;
 limit-ports-per-address number;
 mapping-timeout mapping-timeout;
 pgcp {
 hint [hint-strings];
 ports-per-session ports;
 remotely-controlled:
 }
 port {
 automatic (sequential | random-allocation);
 range low minimum-value high maximum-value random-allocation;
 preserve-parity;
 preserve-range;
 secured-port-block-allocation {
 active-block-timeout timeout-seconds;
 block-size block-size;
 max-blocks-per-user max-blocks;
 }
 }
}
```

Hierarchy Level

[edit services nat]

Release Information

Statement introduced before Junos OS Release 7.4.
pgcp statement added in Junos OS Release 8.4.
remotely-controlled and ports-per-session statements added in Junos OS Release 8.5.
hint statement added in Junos OS Release 9.0.
address-allocation statement added in Junos OS Release 11.2.
sequential statement introduced in Junos OS Release 14.2.

Description

Specify the NAT name and properties.

Options

**nat-pool-name**—Identifier for the NAT address pool.

The remaining statements are explained separately. See CLI Explorer.

---

**NOTE:** If you make any configuration changes to a NAT pool that has secured port block allocation configured, you must delete the existing NAT address pool, wait at least 5 seconds, and then configure a new NAT address pool. We also strongly recommend that you perform this procedure if you make...
any changes to the NAT pool configuration, even when secured port block allocation is not configured.

<table>
<thead>
<tr>
<th>Required Privilege Level</th>
<th>interface—To view this statement in the configuration. interface-control—To add this statement to the configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related Documentation</td>
<td>Configuring Pools of Addresses and Ports for Network Address Translation Overview on page 82</td>
</tr>
</tbody>
</table>

**pool (Service Interface)**

**Syntax**

```
pool pool-name {
 interface interface-name unit-number;
}
```

**Hierarchy Level**

[edit services service-interface-pools]

**Release Information**

Statement introduced in Junos OS Release 9.3.

**Description**

Configure a service interface pool for VPN aggregation for the BGF feature.

**Options**

- **pool-name**—Name of the service interface pool.
  The remaining options are explained separately.

<table>
<thead>
<tr>
<th>Required Privilege Level</th>
<th>interface—To view this statement in the configuration. interface-control—To add this statement to the configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related Documentation</td>
<td>Configuring Service Interface Pools on page 23</td>
</tr>
</tbody>
</table>
port (Services NAT)

Syntax
port {
  automatic (sequential | random-allocation);
  range low minimum-value high maximum-value random-allocation;
  preserve-parity;
  preserve-range;
  deterministic-port-block-allocation <block-size block-size> <include-boundary-addresses>;
  secured-port-block-allocation {
    active-block-timeout timeout-seconds;
    block-size block-size;
    max-blocks-per-user max-blocks;
  }
}

Hierarchy Level  [edit services nat pool nat-pool-name]

Release Information  port statement introduced before Junos OS Release 7.4.
random-allocation statement introduced in Junos OS Release 9.3.
secured-port-block-allocation statement introduced in Junos OS Release 11.2.
sequential statement introduced in Junos OS Release 14.2R1.

Description  Specify the NAT pool port or range. You can configure an automatically assigned port or specify a range with minimum and maximum values.

NOTE: Starting in Junos OS Release 14.2R1, the sequential option is introduced to enable you to configure sequential allocation of ports. The sequential and random-allocation options available with the port automatic statement at the [edit services nat pool nat-pool-name] hierarchy level are mutually exclusive. You can include the sequential option for sequential allocation and the random-allocation option for random delegation of ports. By default, sequential allocation of ports takes place if you include only the port automatic statement at the [edit services nat pool nat-pool-name] hierarchy level.

For releases earlier than Junos OS Release 14.2R1, configure automatic sequential port assignment by using the auto option at the [edit services nat pool nat-pool-name port automatic] hierarchy level.

If you upgrade a router running a Junos OS release earlier than Release 14.2R1 to Release 14.2 and if the router contains the port automatic statement defined without the auto option included with the configuration, the router validates the auto option present in the configuration for sequential allocation of ports.

Options  automatic—Cause the port assignment type to be automatically performed by the router.
sequential—Allocate ports in a sequential manner. With sequential allocation, the next available address in the NAT pool is selected only when all the ports available from an address are exhausted.

minimum-value—Lower boundary for the port range.

maximum-value—Upper boundary for the port range.

NOTE: Starting with Junos OS Release 15.1R1, the preserve-port and preserve-range functionalities are supported on MX Series routers with MS-MPCs and MS-MICs.

preserve-parity—Allocate ports with same parity as the original port.

preserve-range—Preserve privileged port range after translation.

random-allocation—Allocate ports within a specified range randomly.

Other options are described separately.

Required Privilege Level

interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation

• Configuring Source and Destination Addresses Network Address Translation Overview on page 80
• Configuring Address Pools for Network Address Port Translation (NAPT) Overview on page 141
**port (Services Voice)**

**Syntax**

```plaintext
port {
 minimum port-number;
 maximum port-number;
}
```

**Hierarchy Level**

- `[edit interfaces lsq-fpc/pic/port unit logical-unit-number compression rtp]`
- `[edit logical-systems logical-system-name interfaces lsq-fpc/pic/port unit logical-unit-number compression rtp]`

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

For voice services interfaces only, specify a range of User Datagram Protocol (UDP) destination port numbers in which RTP compression takes place.

**Options**

- `minimum port-number`—Specify the minimum port number.
  - **Range:** 0 through 65,535
- `maximum port-number`—Specify the maximum port number.
  - **Range:** 0 through 65,535

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- [Configuring Compression of Voice Traffic on page 895](#)
### port (System Log Messages)

**Syntax**
```
port port-number;
```

**Hierarchy Level**
```
[edit interfaces interface-name services-options syslog host hostname]
```

**Release Information**
Statement introduced in Junos OS Release 11.1.

**Description**
Specify the UDP port for system log messages on the host. The default port is 514.

**Options**
- `port-number`—Port number for system log messages.

**Required Privilege Level**
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**
- Configuring System Logging for Services Interfaces
port-forwarding

Syntax  

```
port-forwarding map-name {
 destined-port;
 translated-port;
}
```

Hierarchy Level  

```
[edit services nat]
```

Release Information  
Statement introduced in Junos OS Release 11.4.

Description  
Specify the mapping for port forwarding.

The `port-forwarding` statement is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, the `port-forwarding` statement is also supported on the MS-MPC and MS-MIC.

Options  

- `map-name`—Identifier for the port forwarding map.

The remaining statements are explained separately.

Required Privilege Level  
interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation  
- Configuring Port Forwarding for Static Destination Address Translation on page 244
- Configuring Port Forwarding Without Destination Address Translation on page 248
port-forwarding-mappings

Syntax
port-forwarding-mappings map-name;

Hierarchy Level
[edit services nat rule rule-name term term-name then]

Release Information
Statement introduced in Junos OS Release 11.4.

Description
Specify the name of the mapping for port forwarding in a Network Address Translation rule.

The `port-forwarding-mappings` statement is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Port forwarding on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS supports only the `dnat-44` and `twice-napt-44` translation types in NAT rules, and supports only IPv4 networks. Starting in Junos OS Release 17.4R1, the `port-forwarding-mappings` statement is also supported on the MS-MPC and MS-MIC.

Options
map-name—Identifier for the port forwarding mapping.

Required Privilege Level
interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation
- Configuring Port Forwarding for Static Destination Address Translation on page 244
- Configuring Port Forwarding Without Destination Address Translation on page 248
ports-per-session

Syntax  
ports-per-session ports;

Hierarchy Level  
[edit services nat pool nat-pool-name pgcp]

Release Information  
Statement introduced in Junos OS Release 8.4.

Description  
Configure the number of ports required to support Real-Time Transport Protocol (RTP), Real-Time Control Protocol (RTCP), Real-Time Streaming Protocol (RTSP), and forward error correction (FEC) for voice and video flows on the Multiservices PIC.

Options  
number-of-ports—Number of ports to enable: 2 or 4 for combined voice and video services. 
Default: 2

Required Privilege Level  
interface—To view this statement in the configuration. 
interface-control—To add this statement to the configuration.

post-service-filter

Syntax  
post-service-filter filter-name;

Hierarchy Level  
[edit interfaces interface-name unit logical-unit-number family inet service input],  
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet service input]

Release Information  
Statement introduced before Junos OS Release 7.4.

Description  
Define the filter to be applied to traffic after service processing. The filter is applied only if a service set is configured and selected. You can configure a postservice filter on the input side of the interface only.

The post-service-filter statement is not supported when the service interface is on an MS-MIC or MS-MPC.

Options  
filter-name—Identifier for the post-service filter.

Required Privilege Level  
interface—To view this statement in the configuration. 
interface-control—To add this statement to the configuration.

Related Documentation  
• Applying Filters and Services to Interfaces on page 24
**ppp-access-profile**

**Syntax**

```plaintext
ppp-access-profile profile-name;
```

**Hierarchy Level**

```
[edit services l2tp tunnel-group name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Specify the profile used to validate all Point-to-Point Protocol (PPP) session requests through L2TP tunnels established to the local gateway address.

---

**NOTE:** This statement is not supported for L2TP LNS on MX Series routers.

**Options**

- `profile-name`—Identifier for the PPP profile.

**Required Privilege Level**

- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

**Related Documentation**

- Configuring Access Profiles for L2TP Tunnel Groups on page 908
pre-shared-key (Services IKE)

Syntax  
pre-shared-key (ascii-text key | hexadecimal key);

Hierarchy Level  
[edit services ike policy policy-name]

Release Information  
Statement introduced before Junos OS Release 7.4.

Description  
Define a preshared key for an IKE policy.

Options  
key—Value of preshared key. The key can be one of the following:
  • ascii-text—ASCII text key.
  • hexadecimal—Hexadecimal key.

Required Privilege  
Level  
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation  
• Configuring IKE Policies on page 576
**preserve-interface**

**Syntax**
```
preserve-interface;
```

**Hierarchy Level**
```
[edit interfaces interface-name sonet-options aps]
```

**Release Information**
Statement introduced in Junos OS Release 7.6.

**Description**
Provide link PIC replication, providing MLPPP link redundancy at the port level. This feature is supported with SONET APS and the following link PICs:

- Channelized OC3 IQ PIC
- Channelized OC12 IQ PIC
- Channelized STM1 IQ PIC

Link PIC replication provides the ability to add two sets of links, one from the active SONET PIC and the other from the standby SONET PIC, to the same bundle. If the active SONET PIC fails, links from the standby PIC are used without triggering link renegotiation. All the negotiated state is replicated from the active links to the standby links to prevent link renegotiation.

**Required Privilege Level**
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**
- Configuring Link State Replication for Redundant Link PICs on page 793
primary (Adaptive Services Interfaces)

**Syntax**
```
primary interface-name;
```

**Hierarchy Level**
```
[edit interfaces (rsp0 | rsp1) redundancy-options]
```

**Release Information**
Statement introduced before Junos OS Release 7.4.

**Description**
Specify the primary adaptive services interface.

**Options**
- `interface-name`—The identifier for the AS or Multiservices PIC interface, which must be of the form `sp-fpc/pic/port`.

**Required Privilege Level**
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**
- Configuring AS or Multiservices PIC Redundancy on page 27

primary (Link Services IQ PIC Interfaces)

**Syntax**
```
primary interface-name;
```

**Hierarchy Level**
```
[edit interfaces lsqlnumber redundancy-options]
```

**Release Information**
Statement introduced in Junos OS Release 7.6.

**Description**
Specify the primary Link Services IQ PIC interface.

**Options**
- `interface-name`—The identifier for the Link Services IQ PIC interface, which must be of the form `lsq-fpc/pic/port`.

**Required Privilege Level**
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**
- Configuring LSQ Interface Redundancy in a Single Router Using Virtual Interfaces on page 790
Profile (Traffic Load Balancer)

Syntax

```
profile profile-name {
 custom {
 cmd priority {
 default-real-service-status (down | up);
 expect (ascii | binary) receive-string;
 port port;
 real-service-action (down | up);
 send (ascii | binary) send-string;
 }
 protocol (tcp | udp);
 }
 failure-retries number-of-retries;
 http {
 host hostname;
 method (get | option);
 port http-port-number;
 url url;
 }
 icmp;
 probe-interval interval;
 recovery-retries number-of-recovery-retries;
 ssl-hello {
 port port;
 ssl-version;
 }
 tcp {
 port tcp-port-number;
 }
}
```

Hierarchy Level
[edit services network-monitoring]

Release Information
Statement introduced in Junos OS Release 16.1 on MX Series.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers
MX240, MX480 and MX960 with the MX-SPC3 services card.

Description
Configure a monitoring profile that can be used for health-checking a group of TLB servers.

Options

- `custom`—Use custom probes for server health checking.

  - `cmd priority`—Use the specified command priority to send for a custom probe.
    - Values: 1 or 2

  - `default-real-service-status (down | up)`—Assign a server status for when the probe times out. The `up` value is used when the server or the intermediate network nodes are only expected to send a negative response to a probe.
    - Default: down
expect (ascii | binary) receive-string —Use the specified ascii or binary string as an expected probe response.

Range: 1 through 512 characters

port port —Use the specified port for custom probes.

protocol (tcp | udp) —Use the selected protocol for custom probes.

real-service-action (down | up) —Assign a server status for when the expected response to the probe is received.

Default: down

send (ascii | binary) send-string —Send the specified ascii or binary string as a probe.

Range: 1 through 512 characters

failure-retries number-of-retries —Use the specified number of probes that are sent after which the real server is tagged as down.

Default: 5

http —Use HTTP probes for server health checking.

host hostname —Use the specified hostname for HTTP probes for server health checks.

method (get | option) —Use the get or option HTTP method for server health checks.

port http-port-number —Use the specified port number for HTTP probes.

url url —Use the specified URL for HTTP probes. Maximum length is 128 bytes.

icmp —Use ICMP probes for server health checking.

probe-interval interval —Use the specified interval of time, in seconds, at which health check probes are sent.

Default: 5

profile-name —Identifier for the network monitoring profile.

recovery-retries number-of-recovery-retries —Use the specified number of successful probe attempts after which the server is declared up.

Default: 5

ssl-hello —Use a Client Hello for server health checks

port port —Use the specified port number for Client Hello server health checks.

ssl-version —SSL version.

Default: 3

tcp —Use TCP probes for server health checks.

port tcp-port-number —Use the specified port number for TCP probes.
<table>
<thead>
<tr>
<th>Required Privilege Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>To view this statement in the configuration.</td>
</tr>
<tr>
<td>interface-control</td>
<td>To add this statement to the configuration.</td>
</tr>
</tbody>
</table>

**Related Documentation**

- Traffic Load Balancer Overview on page 843
- Configuring TLB on page 850
profile (Web Filter)

Syntax

```
profile profile-name {
 dns-filter {
 database-file filename;
 dns-resp-ttl seconds;
 dns-server [ip-address];
 hash-key key-string;
 hash-method hash-method-name;
 statistics-log-timer minutes;
 wildcarding-level level;
 }
 dns-filter-template template-name {
 client-interfaces [client-interface-name];
 client-routing-instance client-routing-instance-name;
 dns-filter {
 database-file filename;
 dns-resp-ttl seconds;
 dns-server [ip-address];
 hash-key key-string;
 hash-method hash-method-name;
 statistics-log-timer minutes;
 wildcarding-level level;
 }
 server-interfaces [server-interface-name];
 server-routing-instance server-routing-instance-name;
 term term-name {
 from {
 src-ip-prefix [source-prefix];
 }
 then {
 accept;
 dns-sinkhole;
 }
 }
 }
 global-dns-stats-log-timer minutes;
 url-filter-database filename;
 (url-filter-template | template) template-name {
 client-interfaces [client-interface-name1 client-interface-name2];
 disable-url-filtering;
 dns-resolution-interval minutes;
 dns-resolution-rate seconds;
 dns-retries number;
 dns-routing-instance dns-routing-instance-name;
 dns-server [ip-address1 ip-address2 ip-address3];
 dns-source-interface loopback-interface-name;
 dns-routing-instance dns-routing-instance-name;
 routing-instance routing-instance-name;
 server-interfaces [server-interface-name1 server-interface-name2];
 term term-name {
 from {
 src-ip-prefix [prefix1 prefix2];
 }
 }
 }
}
```
dest-port [port1 port2];
}
then {
  accept;
  custom-page custom-page;
  http-status-code http-status-code;
  redirect-url redirect-url;
  tcp-reset;
}
}
url-filter-database filename
}

Hierarchy Level
starting in Junos OS Release 18.3R1

Hierarchy Level (before Junos OS Release 18.3R1)

Release Information

Description
Define URL filter profile or DNS filter profile.

A URL filter profile is for filtering access to blacklisted URLs. A URL filter profile includes a general database setting and templates. The template settings apply to specific interfaces or to access from specific source IP address prefixes, and override the database setting at the profile level.

A DNS filter profile is used to filter DNS requests for blacklisted website domains. A DNS filter profile includes general DNS filtering settings and up to 32 templates. The template settings apply to DNS requests on specific interfaces or to DNS requests from specific source IP address prefixes, and override the corresponding settings at the profile level. You can configure up to eight DNS filter profiles.

NOTE: For URL filtering, use the url-filter-template option starting in Junos OS Release 18.3R1 and use the template option in Junos OS Releases before 18.3R1.
Options

`profile-name`—Name of the filter profile.

`url-filter-database filename`—Specify the filename of the URL filter database. This option is mandatory.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

Level

- system—To view this statement in the configuration.
- system-control—To add this statement to the configuration.

Related Documentation

- DNS Request Filtering for Blacklisted Website Domains on page 39
- Configuring URL Filtering on page 50
**proposal (Services IKE)**

**Syntax**

```
proposal proposal-name {
 authentication-algorithm (md5 | sha1 | sha-256);
 authentication-method (ecdsa-signatures-256 | ecdsa-signatures-384 | pre-shared-keys | rsa-signatures);
 description description;
 dh-group (group1 | group2 | group5 | group14 | group15 | group16 | group19 | group20 | group24);
 encryption-algorithm algorithm;
 lifetime-seconds seconds;
}
```

**Hierarchy Level**

```
[edit services ipsec-vpn]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Define an IKE proposal for a dynamic SA.

---

**NOTE:** In Junos FIPS mode, ECDSA options of the authentication-method statement are not supported in Junos OS Release 17.3R1. Starting in Junos OS Release 17.4R1, ECDSA is supported in Junos FIPS mode.

---

**Options**

- `proposal-name`—IKE proposal name.
  The remaining statements are explained separately.

**Required Privilege Level**

- system—To view this statement in the configuration.
- system-control—To add this statement to the configuration.

**Related Documentation**

- Configuring IKE Proposals on page 571
**proposal (Services IPsec VPN)**

**Syntax**

```plaintext
proposal proposal-name {
 authentication-algorithm (hmac-md5-96 | hmac-sha1-96);
 description description;
 encryption-algorithm algorithm;
 lifetime-seconds seconds;
 protocol (ah | esp | bundle);
}
```

**Hierarchy Level**

[edit services ipsec-vpn ipsec]

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Define an IPsec proposal for a dynamic SA.

**Options**

`proposal-name`—IPsec proposal name.

The remaining statements are explained separately. See [CLI Explorer](#).

**Required Privilege Level**

- system—To view this statement in the configuration.
- system-control—To add this statement to the configuration.

**Related Documentation**

- Configuring IPsec Proposals on page 584
proposals

Syntax proposals [ proposal-names ];

Hierarchy Level [edit services ipsec-vpn ike policy policy-name], [edit services ipsec-vpn ipsec policy policy-name]

Release Information Statement introduced before Junos OS Release 7.4.

Description Define a list of proposals to include in the IKE or IPsec policy.

Options proposal-names—List of IKE or IPsec proposal names.

Required Privilege Level
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation
• Configuring IKE Proposals on page 571
• Configuring IPsec Proposals on page 584
**protocol (Applications)**

**Syntax**

```
protocol type;
```

**Hierarchy Level**

```
[edit applications application application-name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Networking protocol type or number.

**Options**

```
type—Networking protocol type. The following text values are supported:

ah
egp
esp
gre
icmp
icmp6
igmp
ipip
ospf
pim
rsrp
tcp
udp
```

**NOTE:** IP version 6 (IPv6) is not supported as a network protocol in application definitions.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- ALG Descriptions on page 399
- Configuring Application Sets on page 431
- Configuring Application Properties on page 431
Examples: Configuring Application Protocols on page 450
• Verifying the Output of ALG Sessions on page 451

protocol (IPsec)

Syntax

protocol (ah | esp | bundle);

Hierarchy Level

[edit services ipsec-vpn ipsec proposal proposal-name],
[edit services ipsec-vpn rule rule-name term term-name then manual direction direction]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Define an IPsec protocol for a dynamic or manual SA.

Options

**ah**—(Not supported on MS-MPCs and MS-MICs on MX Series routers) Use the Authentication Header protocol.

**esp**—Use the Encapsulating Security Payload protocol.

**bundle**—(Not supported on MS-MPCs and MS-MICs on MX Series routers) Use the AH and ESP protocol.

Required Privilege

**Level**

admin—To view this statement in the configuration.

admin-control—To add this statement to the configuration.

Related Documentation

• Configuring Security Associations on page 549
ptsp-rules

Syntax  
(ptsp-rules rule-name | ptsp-rules-sets rule-set-name);

Hierarchy Level  
[edit services service-set service-set-name]

Release Information  
Statement introduced in Junos OS Release 10.2.

Description  
Specify the PTSP rules or rule set included in this service set. You can configure multiple rules but only one rule set for each service.

Options  
rule-name—identifier for the collection of terms that constitute this rule.
rule-set-name—identifier for the set of rules to be included.

Required Privilege Level  
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation  
• Configuring Service Sets to be Applied to Services Interfaces on page 9

queues

Syntax  queues [ queue-numbers ];

Hierarchy Level  
[edit interfaces interface-name unit logical-unit-number compression rtp],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number compression rtp]

Release Information  
Statement introduced before Junos OS Release 7.4.

Description  
For voice services interfaces only, assign queue numbers on which RTP compression takes place.

Options  queues queue-numbers—Assign one or more of the following queues: q0, q1, q2, and q3.

Required Privilege Level  
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation  
• Configuring Compression of Voice Traffic on page 895
**real-service (Traffic Load Balancer)**

**Syntax**

```plaintext
real-service real-service-name {
 address server-ip-address;
 admin-down;
}
```

**Hierarchy Level**

```plaintext
[edit services traffic-load-balance instance instance-name]
```

**Release Information**

Statement introduced in Junos OS Release 16.1 on MX Series.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

**Description**

Configure a traffic load balancer server.

**Options**

`admin-down`—Set a server’s status to Down.

`real-service-name`—Identifier for a server to which sessions can be distributed using the server distribution table in conjunction with the session distribution API.

`server-ip-address`—IP address for the server.

**Required Privilege Level**

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

**Related Documentation**

- Traffic Load Balancer Overview on page 843
- Configuring TLB on page 850
reassembly-timeout

Syntax  reassembly-timeout seconds;

Hierarchy Level  [edit interfaces interface-name services-options]


Description  The maximum acceptable time, in seconds, from the receipt of the first and latest fragments in a packet. When the number is exceeded, the packet is dropped.

Options  seconds—Maximum seconds allowed.

Range: 1 to 60 seconds.

Default: 4 seconds.

Required Privilege

Level  interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation  • Configuring Fragmentation Control for MS-DPC and MS-PIC Service Interfaces on page 38
receive-window

Syntax  receive-window packets;

Hierarchy Level  [edit services l2tp tunnel-group name]

Release Information  Statement introduced before Junos OS Release 7.4.

Description  Specify the size of the receive window for L2TP tunnels, which limits the number of packets the server processes concurrently.

NOTE: This statement is not supported for L2TP LNS on MX Series routers.

Options  packets—Maximum number of packets the receive window can hold at one time.
  Default: 16

Required Privilege Level  interface—To view this statement in the configuration.
  interface-control—To add this statement to the configuration.

Related Documentation  • Configuring Window Size for L2TP Tunnels on page 909
redistribute-all-traffic (Aggregated Multiservices)

Syntax

```bash
redistribute-all-traffic {
 enable-rejoin;
}
```

Hierarchy Level

[edit interfaces interface-name load-balancing-options member-failure-options]

Release Information

Statement introduced in Junos OS Release 11.4. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

Description

Enable the option to redistribute traffic of a failed active member to the other active members.

For many-to-one (N:1) high availability support for Network Address Translation (NAT), the traffic for the failed member is automatically redistributed to the other active members.

The remaining statement is explained separately. See CLI Explorer.

Required Privilege

- **Level**
  - interface—To view this statement in the configuration.
  - interface-control—To add this statement to the configuration.

Related Documentation

- Understanding Aggregated Multiservices Interfaces on page 865
- Example: Configuring an Aggregated Multiservices Interface (AMS) on page 878
- member-failure-options (Aggregated Multiservices) on page 1130
redundancy-event (Services Redundancy Daemon)

Syntax

```
redundancy-event event-name {
 monitor {
 <link-down interface-name;>
 <peer {
 (mastership-acquire | mastership-release);
 }>
 <process routing abort;>
 <process routing restart;>
 }
}
```

Hierarchy Level

[edit services event-options]

Release Information

Statement introduced in Junos OS Release 17.1 on MX Series. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description

Configure events monitored to trigger change of mastership and routing using inter-chassis redundancy.

Options

- **event-name**—Alphanumeric name for a monitored event.
- **link-down interface-name**—Name of an interface, link, or link aggregation, to monitor.
- **peer mastership-acquire**—(Optional) Monitor mastership acquisition peer events.
- **peer mastership-release**—(Optional) Monitor mastership release peer events.
- **process routing abort**—(Optional, and only applies to Next Gen Services) Monitor process routing daemon (rpd) abort requests.
- **process routing restart**—(Optional) Monitor process routing daemon (rpd) restart requests.

Required Privilege Level

- maintenance—To view this statement in the configuration.
- maintenance-control—To add this statement to the configuration.

Related Documentation

- Configuring Inter-Chassis Services Redundancy for Next Gen Services
- Configuring the Service Redundancy Daemon on page 760
redundancy-options (Adaptive Services Interfaces)

**Syntax**

```plaintext
redundancy-options {
 primary sp-fpc/pic/port;
 secondary sp-fpc/pic/port;
 hot-standby
}
```

**Hierarchy Level**

- [edit interfaces rsnumber]
- [edit interfaces msnumber]

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Specify the primary and secondary (backup) adaptive services interfaces.

**Options**

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Configuring AS or Multiservices PIC Redundancy on page 27
### redundancy-options (Aggregated Multiservices)

**Syntax**

```plaintext
redundancy-options {
 primary mams-a/b/0;
 secondary mams-a/b/0;
}
```

**Hierarchy Level**

```
[edit interfaces interface-name]
```

**Release Information**

Statement introduced in Junos OS Release 17.2 on MX Series. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

**Description**

Configure warm standby for an aggregated multiservices (AMS) interface. Specify a primary and a secondary (backup) member services interface for the AMS interface. The primary interface is the service interface that you want to back up, and it is the active interface unless it fails. The secondary interface is the backup interface, and does not handle any traffic unless the primary interface fails. You can use the same services interface as the backup in multiple warm standby AMS interfaces.

You cannot use both the `redundancy-options` and the `load-balancing-options` statements in the same AMS interface.

**Options**

- **primary mams-a/b/0**—Name of the primary services interface, where `a` is the FPC slot number and `b` is the PIC slot number.
- **secondary mams-a/b/0**—Name of the secondary (backup) services interface, where `a` is the FPC slot number and `b` is the PIC slot number.

**Required Privilege Level**

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

**Related Documentation**

- Configuring Warm Standby for Services Interfaces on page 877
redundancy-options (Link Services IQ PIC Interfaces)

Syntax

redundancy-options { 
    (hot-standby | warm-standby); 
    primary lsq-fpc/pic/port; 
    secondary lsq-fpc/pic/port; 
    } 

Hierarchy Level
[edit interfaces risqnumber]

Release Information
Statement introduced in Junos OS Release 7.6.

Description
Specify the primary and secondary (backup) Link Services IQ PIC interfaces.

Options
The remaining statements are explained separately. See CLI Explorer.

Required Privilege
- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

Related Documentation
- Configuring LSQ Interface Redundancy in a Single Router Using Virtual Interfaces on page 790
**redundancy-options (Stateful Synchronization)**

**Syntax**

```
redundancy-options {
 redundancy-local {
 data-address address;
 }
 redundancy-peer {
 ipaddress address;
 }
 replication-threshold seconds;
 routing-instance instance-name;
}
```

**Hierarchy Level**

[edit interfaces interface-name]

**Release Information**

Statement introduced in Junos OS Release 13.3. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

**Description**

Specify the primary and secondary (backup) adaptive services PIC interfaces.

**Options**

- **data-address address**—Internal IP address of the local redundant PIC.
- **ipaddress address**—Internal IP address of the remote redundant PIC.
- **instance-name**—Name of the routing instance to apply to the HA synchronization traffic between the high availability pair.
- **seconds**—Length of time that the flow remains active for replication.

**Default:** 180 seconds

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- *Inter-Chassis Stateful Synchronization for Long Lived NAT, Stateful Firewall, and IDS Flows for Next Gen Services*
- Configuring Inter-Chassis Stateful Synchronization for Long Lived NAT and Stateful Firewall Flows (MS-MPC, MS-MIC) (Release 16.1 and later) on page 745
- Inter-Chassis High Availability for MS-MIC and MS-MPC (Release 15.1 and earlier) on page 769
redundancy-policy (Interchassis Services Redundancy)

Syntax  redundancy-policy policy-name { redundancy-events [event-list] { then { acquire-mastership; <add-static-route destination { (next-hop next-hop | receive); routing-instance routing-instance } > } <broadcast-warning> ; <delete-static-route destination { routing-instance routing-instance; } > <(release-mastership | release-mastership-force)> } }

Hierarchy Level  [edit policy-options]

Release Information  Statement introduced in Junos OS Release 17.1 on MX Series. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description  Specify the actions to be taken for redundancy events. These include acquiring or releasing mastership and adding or deleting static routes.

Options  acquire-mastership—Switch from standby to master role.

add-static-route destination—(Optional) Use the specified destination IP address and prefix for an added signal route.

broadcast-warning—(Optional) Switch status from Standby to Standby (Warned).

delete-static-route destination—(Optional) Use the specified destination IP address and prefix for a deleted signal route.

event-list—List of names of one or more monitored events that trigger the actions specified in this policy.

next-hop—Interface name for the next hop for an added signal route.

policy-name—Name of the redundancy policy.

receive—Use the added signal route as a receive route.

release-mastership—(Optional) Switch from master to standby role.

release-mastership-force—(Optional) Force switch from master to standby role.
**routing-instance routing-instance**—(Optional) Name of the vrf used for the added signal route.

**Required Privilege Level**
maintenance—To view this statement in the configuration.
maintenance-control—To add this statement to the configuration.

**Related Documentation**
- Configuring Inter-Chassis Services Redundancy for Next Gen Services
- Configuring the Service Redundancy Daemon on page 760
**redundancy-set**

Syntax  
redundancy-set redundancy-set {  
  healthcheck-timer-interval healthcheck-timer-interval;  
  hold-time hold-time;  
  keepalive keepalive;  
  redundancy-group redundancy-group;  
  redundancy-policy [redundancy-policy-list]  
}

Hierarchy Level  
[edit services]

Release Information  
Statement introduced in Junos OS Release 17.1 on MX Series. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description  
Specify the characteristics of a redundancy set.

Options  
- **healthcheck-timer-interval**  
  Frequency of health check probes in seconds.  
  **Range:** 0 through 3600 seconds

- **hold-time**  
  Maximum wait time for a health check response. When this time expires, the peer is considered down.  
  **Range:** 0 through 3600 seconds

- **keepalive**  
  Frequency of srd hello messages in seconds.  
  **Range:** 1 through 60 seconds

- **redundancy-group**  
  Redundancy group identifier. This must match a redundancy group ID in the ICCP configuration.  
  **Range:** 1 through 100

- **redundancy-policy-list**  
  Names of one or more redundancy policies applied to the redundancy set.

- **redundancy-set**  
  Redundancy set identifier.  
  **Range:** 1 through 100

Required Privilege Level  
maintenance—To view this statement in the configuration.  
maintenance-control—To add this statement to the configuration.

Related Documentation  
- Configuring Inter-Chassis Services Redundancy for Next Gen Services  
- Configuring the Service Redundancy Daemon on page 760
### redundancy-set-id (Service Set)

**Syntax**  
```yaml
redundancy-set-id redundancy-set;
```

**Hierarchy Level**  
```yaml
[edit services service-set service-set-name]
```

**Release Information**  
Statement introduced in Junos OS Release 17.1 on MX Series. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

**Description**  
Specify the identifier of the redundancy set to use in the stateful synchronization of services for a service set.

**Options**  
`redundancy-set`—Identifier for the redundancy set. The identifier can be a number from 1-100.

**Required Privilege Level**  
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring Inter-Chassis Services Redundancy for Next Gen Services
- Configuring the Service Redundancy Daemon on page 760
### reflexive | revert | reverse

**Syntax**
```
reflexive; | revert; | reverse [
 application-profile profile-name;
 dscp (alias | bits);
 forwarding-class class-name;
 syslog;
]
```

**Hierarchy Level**
[edit services cos rule rule-name term term-name then]

**Release Information**
Statement introduced in Junos OS Release 8.1. revert option introduced in Junos OS Release 16.1R5 and 17.4R1.

**Description**
- **reflexive**—Applies the CoS rule actions to flows in the reverse direction as well as to flows in the matching direction.
- **revert**—Stores the DSCP and forwarding class of a packet that is received in the match direction of the rule and then applies that DSCP and forwarding class to packets that are received in the reverse direction of the same session.
- **reverse**—Allows you to define CoS behavior for flows in the reverse direction.

The remaining statements are explained separately.

**Required Privilege**
- **Level**
  - interface—To view this statement in the configuration.
  - interface-control—To add this statement to the configuration.

**Related Documentation**
- [Configuring CoS Rules on Services PICs](#)
- Configuring CoS Rules on page 712
rejoin-timeout (Aggregated Multiservices)

Syntax

rejoin-timeout rejoin-timeout;

Hierarchy Level

[edit interfaces interface-name load-balancing-options member-failure-options drop-member-traffic]

Release Information

Statement introduced in Junos OS Release 11.4. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

Description

Configure the time by when failed members (members in the DISCARD state) should rejoin the aggregated Multiservices (AMS) interface automatically. All members that do not rejoin by the configured time are moved to the INACTIVE state and the traffic meant for each of the members is dropped.

If multiple members fail around the same time, then they are held in the DISCARD state using a single timer. When the timer expires, all the failed members move to INACTIVE state at the same time.

Default

If you do not configure a value, the default value of 120 seconds is used.

Options

rejoin-timeout—Time, in seconds, by which a failed member must rejoin.

Default: 120 seconds

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

- Understanding Aggregated Multiservices Interfaces on page 865
- Example: Configuring an Aggregated Multiservices Interface (AMS) on page 878
- drop-member-traffic (Aggregated Multiservices) on page 1023
remote-gateway

Syntax  remote-gateway address;

Hierarchy Level  [edit services ipsec-vpn rule rule-name term term-name then]

Release Information  Statement introduced before Junos OS Release 7.4.

Description  Define the remote address to which the IPsec traffic is directed.

Options  address—Remote IPv4 or IPv6 address.

Required Privilege Level  admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation  • Configuring IPsec Rules on page 592
remote-id

Syntax
remote-id {
  any-remote-id;
  ipv4_addr [ values ];
  ipv6_addr [ values ];
  key_id [ values ];
  fqdn fqdn
distinguished-name container container-string-values | wildcard wildcard-string-values
}

Hierarchy Level [edit services ipsec-vpn ikepolicy policy-name]

Release Information
Statement introduced before Junos OS Release 7.4.
ipv6_addr option added in Junos OS Release 7.6.
any-remote-id option added in Junos OS Release 8.2.
distinguished-name container container-string-values | wildcard wildcard-string-values option added in Junos OS Release 19.1.

Description
Define the remote identification values to which the IKE policy applies.

Options
any-remote-id—Allow any remote address to connect. This option is supported only in dynamic configurations and cannot be configured with specific values.

ipv4_addr [ values ]—Define one or more IPv4 address identification values.

ipv6_addr [ values ]—Define one or more IPv6 address identification values.

key_id [ values ]—Define one or more key identification values.

fqdn fqdn—Fully-qualified domain name.

distinguished-name container container-string-values | wildcard wildcard-string-values—One or more distinguished name values.

Required Privilege Level
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation
• Configuring IKE Policies on page 576
remotely-controlled

Syntax remotely-controlled;

Hierarchy Level [edit services nat pool nat-pool-name pgcp]

Release Information Statement introduced in Junos OS Release 8.5.

Description Configure the addresses and ports in a NAT pool to be remotely controlled by the gateway controller.

Required Privilege Level interface—To view this statement in the configuration.

interface–control—To add this statement to the configuration.

respond-bad-spi (Services IKE Policy)

Syntax respond-bad-spi max-responses;

Hierarchy Level [edit services ipsec-vpn ike policy]

Release Information Statement introduced in Junos OS Release 12.3.

Description Enable response to invalid IPsec Security Parameter Index (SPI) values. If the security associations (SAs) between two peers of an IPsec VPN become unsynchronized, the device resets the state of a peer so that the two peers are synchronized.

Options max-responses—Number of times to respond to invalid SPI values per gateway.
Range: 1 through 30
Default: 5

Required Privilege Level admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation • Configuring IKE Policies on page 576
retransmit-interval (Services)

Syntax
retransmit-interval seconds;

Hierarchy Level
[edit services l2tp tunnel-group name]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Specify the maximum retransmit interval for L2TP tunnels.

NOTE: This statement is not supported for L2TP LNS on MX Series routers.

Options
seconds—Interval, in seconds, after which the server retransmits data if no acknowledgment is received.

Default: 30 seconds

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Timers for L2TP Tunnels on page 909
**rpc-program-number**

**Syntax**  
rpc-program-number number;

**Hierarchy Level**  
[edit applications application application-name]

**Release Information**  
Statement introduced before Junos OS Release 7.4.

**Description**  
Remote procedure call (RPC) or Distributed Computing Environment (DCE) value.

**Options**  
*number*—RPC or DCE program value.

**Range:** 100,000 through 400,000

**Required Privilege Level**  
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**Related Documentation**  
- ALG Descriptions on page 399
- Configuring an RPC Program Number on page 449
  - Examples: Configuring Application Protocols on page 450
  - Verifying the Output of ALG Sessions on page 451
**routing-engine-services**

**Syntax**

```
routing-engine-services;
```

**Hierarchy Level**

```
[edit services service-set service-set service-set-options]
```

**Release Information**

Statement introduced in Junos OS Release 15.1.
Support for Next Gen Services introduced in Junos OS Release 19.3R1.

**Description**

When configuring a Routing Engine-based captive portal service, specify the service set options to apply to a service set. The services interfaces on the Routing Engine are identified with an si- prefix (for example, si-1/1/0). The si- interface contains all redirect and rewrite traffic and services for the Routing Engine.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- HTTP Redirect Service Overview
- Configuring MS-MPC-Based or MX-SPC3-Based Static HTTP Redirect Services
- Configuring MS-MPC-Based or MX-SPC3-Based Converged HTTP Redirect Services
- Configuring Routing Engine-Based, Static HTTP Redirect Services
- Configuring Routing Engine-Based, Converged HTTP Redirect Services
**rtp**

Syntax  
```  
 rtp [
 f-max-period number;
 maximum-contexts number <force>;
 port [
 minimum port-number;
 maximum port-number;
]
 queues [queue-numbers];
]
```

Hierarchy Level  
[edit interfaces interface-name unit logical-unit-number compression],  
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number compression]  

Release Information  
Statement introduced before Junos OS Release 7.4.

Description  
Configure the RTP properties for voice services traffic.  
The remaining statements are described separately.

Required Privilege  
interface—To view this statement in the configuration.  
interface-control—To add this statement to the configuration.

Related Documentation  
• Configuring Compression of Voice Traffic on page 895


**rule (Services CoS)**

Syntax

```plaintext
rule rule-name {
 match-direction (input | output | input-output);
 term term-name {
 from {
 application-sets set-name;
 applications [application-names];
 destination-address address;
 destination-prefix-list list-name <except>;
 source-address address;
 source-prefix-list list-name <except>;
 }
 then {
 application-profile profile-name;
 dscp (alias | bits);
 forwarding-class class-name;
 syslog;
 reflexive | revert | reverse {
 application-profile profile-name;
 dscp (alias | bits);
 forwarding-class class-name;
 syslog;
 }
 }
 }
}
```

Hierarchy Level

[edit services cos],
[edit services cos rule-set rule-set-name]

Release Information

Statement introduced in Junos OS Release 8.1.

Description

Specify the rule the router uses when applying this service.

Options

- **rule-name**—Identifier for the collection of terms that constitute this rule.

  The remaining statements are explained separately.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring CoS Rules on page 712
- Configuring CoS Rules on Services PICs
rule (IDS MS-DPC)

Syntax  
rule rule-name  
  match-direction (input | output | input-output);  
  term term-name  
    from  
      application-sets set-name;  
      applications [ application-names ];  
      destination-address (address | any-unicast) <except>;  
      destination-address-range low minimum-value high maximum-value <except>;  
      source-address (address | any-unicast) <except>;  
      source-address-range low minimum-value high maximum-value <except>;  
  }  
then  
  aggregation (IDS)  
    destination-prefix prefix-value | destination-prefix-ipv6 prefix-value;  
    source-prefix prefix-value | source-prefix-ipv6 prefix-value;  
  (force-entry | ignore-entry);  
logging  
  syslog;  
  threshold rate;  
}  
session-limit  
  by-destination (IDS MS-DPC)  
    hold-time seconds;  
    maximum number;  
    packets number;  
    rate number;  
  }  
  by-pair (IDS MS-DPC)  
    hold-time seconds;  
    maximum number;  
    packets number;  
    rate number;  
  }  
  by-source (IDS MS-DPC)  
    hold-time seconds;  
    maximum number;  
    packets number;  
    rate number;  
  }  
  syn-cookie  
    mss value;  
    threshold rate;  
  }  
}  

Hierarchy Level  [edit services ids],
[edit services ids rule-set rule-set-name]

**Release Information**  Statement introduced before Junos OS Release 7.4.

**Description**  Specify the rule the router uses when applying this service on the MS-DPC.

**Options**  
- `rule-name`—identifier for the collection of terms that constitute this rule.

**Required Privilege**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**
- Configuring IDS Rules on an MS-DPC on page 498
rule (IDS MS-MPC)

Syntax

```plaintext
rule {
 match-direction (input | output | input-output);
 term {
 then {
 aggregation (IDS) {
 destination-prefix prefix-value | destination-prefix-ipv6 prefix-value;
 source-prefix prefix-value | source-prefix-ipv6 prefix-value;
 }
 allow-ip-options {
 any;
 loose-source-route;
 route-record;
 route-alert;
 security;
 stream-id;
 strict-source-route;
 timestamp;
 }
 allow-ipv6-extension-header {
 any;
 ah;
 dstopts;
 esp;
 fragment;
 hop-by-hop;
 mobility;
 routing;
 }
 icmp-fragment-check;
 icmp-large-packet-check;
 land-attack-check (ip-only | ip-port);
 session-limit {
 by-destination {
 by-protocol {
 icmp {
 maximum number;
 packets number;
 rate number;
 }
 tcp {
 maximum number;
 packets number;
 rate number;
 }
 udp {
 maximum number;
 packets number;
 rate number;
 }
 }
 maximum number;
 }
 }
 }
 allow-ip-options {
 any;
 loose-source-route;
 route-record;
 route-alert;
 security;
 stream-id;
 strict-source-route;
 timestamp;
 }
 allow-ipv6-extension-header {
 any;
 ah;
 dstopts;
 esp;
 fragment;
 hop-by-hop;
 mobility;
 routing;
 }
 icmp-fragment-check;
 icmp-large-packet-check;
 land-attack-check (ip-only | ip-port);
 session-limit {
 by-destination {
 by-protocol {
 icmp {
 maximum number;
 packets number;
 rate number;
 }
 tcp {
 maximum number;
 packets number;
 rate number;
 }
 udp {
 maximum number;
 packets number;
 rate number;
 }
 }
 maximum number;
 }
 }
 }
}
```
packets number;
rate number;
}
by-source {
by-protocol {
icmp {
maximum number;
packets number;
rate number;
}
tcp {
maximum number;
packets number;
rate number;
}
udp {
maximum number;
packets number;
rate number;
}
}maximum number;
packets number;
rate number;
}
tcp-syn-defense;
tcp-syn-fragment-check;
tcp-winnuke-check;
}
]

Hierarchy Level [edit services ids ]

Release Information Statement introduced in Junos OS Release 17.1 on MX Series.

Description Configure network attack protection for a service set on an MS-MPC.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation • Configuring Protection Against Network Attacks on an MS-MPC on page 515
**rule**

**Syntax**

```
rule rule-name {
 match-direction (input | output);
 term term-name {
 from {
 destination-address address;
 ipsec-inside-interface interface-name;
 source-address address;
 }
 then {
 anti-replay-window-size bits;
 backup-remote-gateway address;
 clear-dont-fragment-bit;
 dynamic {
 ike-policy policy-name;
 ipsec-policy policy-name;
 }
 initiate-dead-peer-detection;
 manual {
 direction (inbound | outbound | bidirectional) {
 authentication {
 algorithm (hmac-md5-96 | hmac-sha1-96);
 key (ascii-text key | hexadecimal key);
 }
 auxiliary-spi spi-value;
 encryption {
 algorithm algorithm;
 key (ascii-text key | hexadecimal key);
 }
 protocol (ah | bundle | esp);
 spi spi-value;
 }
 }
 no-anti-replay;
 remote-gateway address;
 syslog;
 tunnel-mtu bytes;
 }
 }
}
```

**Hierarchy Level**

- [edit services ipsec-vpn],
- [edit services ipsec-vpn rule-set rule-set-name]

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Specify the rule the router uses when applying this service.

**Options**

- **rule-name**—identifier for the collection of terms that comprise this rule.
The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**
- Configuring IPsec Rules on page 592
- Configuring IPsec Rule Sets on page 599
- Configuring Security Associations on page 549
rule (PCP)

Syntax

```
rule rule-name {
 match-direction (input | output);
 term term-name {
 from {
 application-sets set-name;
 applications [application-name];
 destination-address address <except>;
 destination-address-range high maximum-value low minimum-value <except>;
 destination-port high maximum-value low minimum-value;
 destination-prefix-list list-name <except>;
 source-address address <except>;
 source-address-range high maximum-value low minimum-value <except>;
 source-prefix-list list-name <except>;
 }
 then {
 pcp-server server-name;
 }
 }
}
```

Hierarchy Level
[edit services pcp]

Release Information
Statement introduced in Junos OS Release 13.2R1.

Description
Configure a rule to assign the port control protocol (PCP) server that handles selected traffic. PCP enables hosts to operate servers for a long time (as in the case of a webcam) or a short time (for example, while playing a game or on a phone call) when behind a NAT device, including when behind a carrier-grade NAT operated by their ISP. PCP enables applications to create mappings from an external IP address and port to an internal IP address and port.

PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICs. Starting in Junos OS Release 17.4R1, PCP is also supported on the MS-MPC and MS-MIC.

Options

`rule-name`—Rule name

The remaining statements are explained separately.

Required Privilege Level
interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation
- Configuring Port Control Protocol on page 220
rule (Services NAT)

Syntax

```plaintext
rule rule-name {
 match-direction (input | output);
 term term-name {
 from {
 application-sets set-name;
 applications [application-names];
 destination-address (address | any-unicast) <except>;
 destination-address-range low minimum-value high maximum-value <except>;
 destination-port range high maximum-value low minimum-value;
 source-address (address | any-unicast) <except>;
 source-address-range low minimum-value high maximum-value <except>;
 }
 then {
 no-translation;
 port-forwarding-mappings map-name;
 translated {
 address-pooling paired;
 clat-prefix clat-prefix;
 destination-pool nat-pool-name;
 destination-prefix destination-prefix; destination-prefix;
 dns-alg-pool dns-alg-pool;
 dns-alg-prefix dns-alg-prefix;
 filtering-type endpoint-independent;
 mapping-type endpoint-independent;
 overload-pool overload-pool;
 overload-prefix overload-prefix;
 source-pool nat-pool-name;
 source-prefix source-prefix;
 translation-type (basic-nat-pt | basic-nat44 | basic-nat66 | deterministic-napt44
 | deterministic-napt64 |dnat-44 | dynamic-nat44 | napt-44 | napt-66 | napt-pt
 | stateful-nat464 | stateful-nat64 | twice-basic-nat-44 | twice-dynamic-nat-44
 | twice-napt-44);
 }
 }
 syslog;
 }
}
```

Hierarchy Level

- [edit services nat],
- [edit services nat rule-set rule-set-name]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Specify the rule the router uses when applying this service.
NOTE: You are limited to a maximum of 200 terms for a NAT rule that is applied to an inline services (type si) interface. If you specify more than 200 terms, you will receive the following error when you commit the configuration:

```
[edit]
 service-set service-set-name
 NAT rule rule-name with more than 200 terms is disallowed for si-n/n/n.n
error: configuration check-out failed
```

Options  
* `rule-name`—Identifier for the collection of terms that make up this rule.

The remaining statements are explained separately.

Required Privilege  
* `interface`—To view this statement in the configuration.
* `interface-control`—To add this statement to the configuration.

Related Documentation  
* Network Address Translation Rules Overview on page 84
**rule (Services Stateful Firewall)**

**Syntax**

```plaintext
rule rule-name {
 match-direction (input | output | input-output);
 term term-name {
 from {
 application-sets set-name;
 applications [application-names];
 destination-address (address | any-ipv4 | any-ipv6 | any-unicast) <except>;
 destination-address-range low minimum-value high maximum-value <except>;
 destination-prefix-list list-name <except>;
 source-address (address | any-ipv4 | any-ipv6 | any-unicast) <except>;
 source-address-range low minimum-value high maximum-value <except>;
 source-prefix-list list-name <except>;
 }
 then {
 (accept <skip-ids> | discard | reject);
 syslog;
 }
 }
}
```

**Hierarchy Level**

[edit services stateful-firewall],
[edit services stateful-firewall rule-set rule-set-name]

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Specify the rule the router uses when applying this service.

**Options**

`rule-name`—Identifier for the collection of terms that constitute this rule.

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**Related Documentation**

- Configuring Stateful Firewall Rules on page 467
rule (Softwire)

Syntax

```
rule rule-name {
 match-direction (input | output);
 term term-name {
 then {
 (ds-lite ds-lite-softwire-concentrator | map-e name | v6rd v6rd-softwire-concentrator);
 }
 }
}
```

Hierarchy Level

[edit services softwire],

[edit services softwire rule-set rule-set-name]

Release Information

Statement introduced in Junos OS Release 10.4.

map-e name option introduced in Junos OS Release 18.2R1 for MX Series Routers with MPC and MIC interfaces.

Description

Configure a rule to apply a softwire concentrator for a flow.

Softwire rules are supported on the MS-DPC, MS-100, MS-400, and MS-500 line cards. Starting in Junos OS release 17.4R1, softwire rules for DS-Lite are supported on MX Series routers with MS-MPCs and MS-MICs.

Options

- **rule-name**—Identifier for the collection of terms that constitute this rule.
- **input**—Apply the rule match on the input side of the interface.
- **output**—Apply the rule match on the output side of the interface.
- **ds-lite-softwire-concentrator**—Specify the DS-Lite softwire concentrator to use.
- **map-e name**—Specify the Mapping of Address and Port with Encapsulation (MAP-E) softwire concentrator to use.
- **v6rd-softwire-concentrator**—Specify the 6rd softwire concentrator to use.

Required Privilege

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Softwire Rules on page 323
rule-set (Services CoS)

Syntax

```
rule-set rule-set-name {
 [rule rule-name];
}
```

Hierarchy Level [edit services cos]


Description Specify the rule set the router uses when applying this service.

Options `rule-set-name` — Identifier for the collection of rules that constitute this rule set.

Required Privilege Level interface—To view this statement in the configuration.
               interface-control—To add this statement to the configuration.

Related Documentation • Configuring CoS Rule Sets on Services PICs

rule-set (Services IDS)

Syntax

```
rule-set rule-set-name {
 [rule rule-names];
}
```

Hierarchy Level [edit services ids]

Release Information Statement introduced before Junos OS Release 7.4.

Description Specify the rule set the router uses when applying this service.

Options `rule-set-name` — Identifier for the collection of rules that constitute this rule set.

Required Privilege Level interface—To view this statement in the configuration.
               interface-control—To add this statement to the configuration.

Related Documentation • Configuring IDS Rule Sets on an MS-DPC on page 506
rule-set

Syntax  
rule-set rule-set-name {  
  [ rule rule-names ];  
}

Hierarchy Level  [edit services ipsec-vpn]

Release Information  Statement introduced before Junos OS Release 7.4.

Description  Specify the rule set the router uses when applying this service.

Options  
rule-set-name—Identifier for the collection of rules that constitute this rule set.

Required Privilege  
Level  interface—To view this statement in the configuration.
        interface-control—To add this statement to the configuration.

Related Documentation  
• Configuring IPsec Rule Sets on page 599
• Configuring IPsec Rules on page 592

rule-set (Services NAT)

Syntax  
rule-set rule-set-name {  
  [ rule rule-names ];  
}

Hierarchy Level  [edit services nat]

Release Information  Statement introduced before Junos OS Release 7.4.

Description  Specify the rule set the router uses when applying this service.

Options  
rule-set-name—Identifier for the collection of rules that constitute this rule set.

Required Privilege  
Level  interface—To view this statement in the configuration.
        interface-control—To add this statement to the configuration.

Related Documentation  
• Network Address Translation Rules Overview on page 84
rule-set (Services Stateful Firewall)

Syntax

rule-set rule-set-name {
  [ rule rule-names ];
}

Hierarchy Level
[edit services stateful-firewall]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Specify the rule set the router uses when applying this service.

Options
rule-set-name—Identifier for the collection of rules that constitute this rule set.

Required Privilege
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Stateful Firewall Rule Sets on page 473

rule-set (Softwire)

Syntax

rule-set rule-set-name {
  rule rule-name;
}

Hierarchy Level
[edit services softwire]

Release Information
Statement introduced in Junos OS Release 10.4.

Description
Specify the rule set the router uses when applying this service.

Options
rule-set-name—Identifier for the collection of rules that constitute this rule set.

Required Privilege
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Softwire Rules on page 323
**secondary (Adaptive Services Interfaces)**

**Syntax**

```
secondary interface-name;
```

**Hierarchy Level**

```
[edit interfaces (rsp0 | rsp1) redundancy-options]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Specify the secondary (backup) adaptive services interface.

**Options**

`interface-name`—The identifier for the adaptive services interface, which must be of the form `sp-fpc/pic/port`.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring AS or Multiservices PIC Redundancy on page 27

---

**secondary (Link Services IQ PIC Interfaces)**

**Syntax**

```
secondary interface-name;
```

**Hierarchy Level**

```
[edit interfaces lsqlnumber redundancy-options]
```

**Release Information**

Statement introduced in Junos OS Release 7.6.

**Description**

Specify the secondary (backup) Link Services IQ PIC interface.

**Options**

`interface-name`—The identifier for the Link Services IQ PIC interface, which must be of the form `lsq-fpc/pic/port`.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring LSQ Interface Redundancy in a Single Router Using Virtual Interfaces on page 790
secure-nat-mapping

Syntax
secure-nat-mapping {
    mapping-refresh (inbound | outbound | inbound-outbound);
    eif-flow-limit number-of-flows'
}

Hierarchy Level  [edit services nat rule rule-name term term-name then translated]

Release Information  Statement introduced in Junos OS Release 12.3 on MS-DPCs.
Statement introduced in Junos OS Release 15.1R3 on MS-MPCs and MS-MICs.

Description  Specify configuration options that help prevent or minimize the effect of attempted
denial of service (DOS) attacks for NAT operations.

Options  The remaining statements are explained separately. See CLI Explorer.

Required Privilege  interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation  • Protecting CGN Devices Against Denial of Service (DOS) Attacks on page 349
secured-port-block-allocation

Syntax

```
secured-port-block-allocation {
 active-block-timeout timeout-seconds;
 block-size block-size;
 max-blocks-per-address max-blocks;
}
```

Hierarchy Level

```
[edit services nat pool pool-name port]
```

Release Information

Statement introduced in Junos OS Release 11.2.

Description

When you use block allocation, one or more blocks of ports in a NAT pool address range are available for assignment to a subscriber.

Port block allocation is supported on MX series routers with MS-DPCs and on M Series routers with MS-100, MS-400, and MS-500 MultiServices PICS. Port block allocation is supported on MX series routers with MS-MPCs and MS-MICs starting in Junos OS release 14.2R2.

NOTE: If you define the session lifetime globally for a Multiservices (ms-) interface (by using the session-timeout seconds statement at the [edit interfaces interface-name services-options] hierarchy level), the session is terminated even if traffic continues to flow beyond that time period. When continuous traffic transmission occurs, the session is reset immediately after the timeout period. When you configure the same value for the session timeout and the active port block allocation timeout, the system might not determine that the active port block timeout period has elapsed. As a result, when the active port block timeout elapses, the system might use the same block for the initial port allocation that was used previously. However, for the subsequent allocation of a port block, the system identifies the active block timeout value correctly and allocates a port from a new block. This behavior is expected when the session timeout and port block timeout values are identical. To avoid this problem, we recommend that you configure different values for session timeout and port block timeout so that the JSERVICES_NAT_PORT_BLOCK_ALLOC system logging message is generated at correct intervals of the active port block timeout value.

NOTE: If you make any configuration changes to a NAT pool that has secured port block allocation configured, you must delete the existing NAT address pool, wait at least 5 seconds, and then configure a new NAT address pool. We also strongly recommend that you perform this procedure if you make
any changes to the NAT pool configuration, even when secured port block allocation is not configured.

Options  active-block-timeout timeout-seconds—Interval, in seconds, during which a block is active. After the timeout elapses, a new block is allocated, even if ports are available in the active block.
  Range: 0 through 86400. When you specify 0, the active block transitions to inactive only when it runs out of ports and a new block is allocated. Any inactive block without any ports in use will be freed to the NAT pool, unless it is active block.
  Default: 120

block-size block-size—Number of ports included in a block.
  Range: For the Multiservices DPC only, 1 through 32,000
  Range: For the Multiservices MPC and Multiservices MIC only, 1 through the total number of configured ports. For example, for a port range of 1024 through 61,024, the block-size range is 1 through 60,000.
  Default: 128

max-blocks-per-address max-blocks—Maximum number of blocks that can be allocated to a user address.
  Range: 1 to 512

timeout-seconds—Interval, in seconds, during which a block is active. After timeout, a new block is allocated, even if ports are available in the active block.
  Default: 120

Required Privilege Level
  interface—to view this statement in the configuration.
  interface-control—to add this statement to the configuration.

Related Documentation
  • Configuring Address Pools for Network Address Port Translation (NAPT) Overview on page 141
server (pcp)

Syntax
server server-name {
  ipv4-address ipv4-address;
  ipv6-address ipv6-address;
  long-lifetime-error long-lifetime-error;
  mapping-lifetime-max mapping-lifetime-max;
  mapping-lifetime-min mapping-lifetime-min;
  max-mappings-per-client max-mappings-per-client;
  nat-options {
    pool pool-name;
  }
  pcp-options {
    prefer-failure;
    third-party;
  }
  short-lifetime-error short-lifetime-error;
  softwire-concentrator softwire-concentrator-name;
}

Hierarchy Level [edit services pcp]


Description Configure PCP server options. PCP enables hosts to operate servers for a long time (as in the case of a webcam) or a short time (for example, while playing a game or on a phone call) when behind a NAT device, including when behind a carrier-grade NAT operated by their ISP. PCP enables applications to create mappings from an external IP address and port to an internal IP address and port.

PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, PCP is also supported on the MS-MPC and MS-MIC.

Options

ipv4-address—IPv4 address of the PCP server.

ipv6-address—IPv6 address of the PCP server.

long-lifetime-error — Time limit for generating long lifetime errors.
  Default: 1800 seconds
  Range: 900 through 18,000 seconds

mapping-lifetime-max—Maximum lifetime, in seconds, for PCP mapping. If the PCP client requests a lifetime less than the maximum configured, the server will assign the maximum lifetime and respond accordingly.
  Default: 86,400 seconds
  Range: 3600 through 4294967 seconds
**mapping-lifetime-min**—Minimum lifetime, in seconds, for PCP mapping. If a PCP client requests a lifetime less than the minimum configured, the server will assign a minimum lifetime and respond accordingly.

- **Default:** 300 seconds
- **Range:** 120 through 3600 seconds

**max-mappings-per-client**—Maximum number of PCP mappings that the PCP client can request.

- **Default:** 32
- **Range:** 1 through 32

**pool-name**—Name of the NAT pool to use for PCP mapping. You can identify multiple pools. If you do not specify a NAT pool for mapping, the Junos OS performs a partial rule match based on the source IP, source port, and protocol, and the Junos OS uses the NAT pool configured for the first matching rule to allocate mappings for PCP.

**prefer-failure**—Generate an error message when the PCP client requests a specific IP address or port that is not available, rather than assigning another available address from the NAT pool.

**short-lifetime-error**—Time limit for generating short lifetime errors.

- **Default:** 30 seconds
- **Range:** 15 through 300 seconds

**softwire-concentrator-name**—Softwire concentrator name whose softwire-address is used in creating PCP mappings. The PCP server address must be the same as the softwire-concentrator address.

**third-party**—Enable third-party requests by the PCP client.

The other statements are explained separately.

**Required Privilege Level**

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

**Related Documentation**

- Configuring Port Control Protocol on page 220
service

Syntax

```
service {
 input {
 [service-set service-set-name <service-filter filter-name>];
 post-service-filter filter-name;
 }
 output {
 [service-set service-set-name <service-filter filter-name>];
 }
}
```

Hierarchy Level

- [edit interfaces interface-name unit logical-unit-number family inet],
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Define the service sets and filters to be applied to an interface.

Options

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Applying Filters and Services to Interfaces on page 24
### service-domain

**Syntax**

```
service-domain (inside | outside);
```

**Hierarchy Level**

- `[edit interfaces interface-name unit logical-unit-number family inet]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet]`

**Release Information**

Statement introduced before Junos OS Release 7.4. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

**Description**

Specify the service interface domain. If you specify this interface using the `next-hop-service` statement at the `[edit services service-set service-set-name]` hierarchy level, the interface domain must match that specified with the `inside-service-interface` and `outside-service-interface` statements.

**Options**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inside</td>
<td>Interface used within the network.</td>
</tr>
<tr>
<td>outside</td>
<td>Interface used outside the network.</td>
</tr>
</tbody>
</table>

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring the Address and Domain for Services Interfaces on page 31
- How to Configure Services Interfaces for Next Gen Services

---

Copyright © 2019, Juniper Networks, Inc.
service-filter (Interfaces)

Syntax  

```
service-filter filter-name;
```

Hierarchy Level  

```
[edit interfaces interface-name unit logical-unit-number family inet service (input | output) service-set service-set-name],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet service (input | output) service-set service-set-name]
```

Release Information  

Statement introduced before Junos OS Release 7.4.

Description  

Define the filter to be applied to traffic before it is accepted for service processing. Configuration of a service filter is optional; if you include the `service-set` statement without a `service-filter` definition, Junos OS assumes the match condition is true and selects the service set for processing automatically.

Options  

`filter-name`—Identifies the filter to be applied in service processing. You can include special characters, such as a forward slash (/), colon (:), or a period (.).

Required Privilege  

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation  

- Applying Filters and Services to Interfaces on page 24
- Junos OS Services Interfaces Library for Routing Devices
**service-interface (Services Interfaces)**

**Syntax**
```
service-interface interface-name;
```

**Hierarchy Level**
```
[edit services service-set service-set-name interface-service]
```

**Release Information**
Statement introduced before Junos OS Release 7.4. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

**Description**
Specify the name for the services interface associated with an interface-wide service set.

**Options**
- `interface-name`—Identifier of the service interface.

**Required Privilege Level**
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**
- [Configuring Service Sets to be Applied to Services Interfaces on page 9](#)
- [Applying Services to Subscriber-Aware Traffic with a Service Set](#)
- [How to Configure Interface-Style Service Sets for Next Gen Services](#)
**service-interface (L2TP Processing)**

**Syntax**

```
service-interface interface-name;
```

**Hierarchy Level**

```
[edit services l2tp tunnel-group name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.  
`si-fpc/pic/port` option added in Junos OS Release 11.4.  
Option `asifpc` added in Junos OS Release 16.2.

**Description**

Specify the service interface responsible for handling L2TP processing.

---

**NOTE:** On MX Series routers, the service interface configuration is required for static LNS sessions. Either the service interface configuration or the service device pool configuration can be used for dynamic LNS sessions.

---

**Options**

`interface-name`—Name of the service interface. The ae, si, and sp interface types are supported as follows:

- `asix`—(MPCs on MX Series routers) Aggregated inline services interface.
- `sp-fpc/pic/port`—On AS or Multiservices PICs on M7i, M10i, and M120 routers.
- `si-fpc/pic/port`—On MPCs on MX Series routers.

**Required Privilege Level**

```
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
```

**Related Documentation**

- Configuring the Local Gateway Address and PIC on page 908
- Configuring an L2TP Tunnel Group for LNS Sessions with Inline Services Interfaces
**service-interface-pools**

**Syntax**

```
service-interface-pools {
 pool pool-name {
 interface interface-name.unit-number;
 }
}
```

**Hierarchy Level**  [edit services]

**Release Information**  Statement introduced in Junos OS Release 9.3.

**Description**  Configure service interface pools used for VPN aggregation.

**Options**  The options are explained separately.

**Required Privilege**

- **Level**  interface—To view this statement in the configuration.
  interface-control—To add this statement to the configuration.

**Related Documentation**

-  Configuring Service Interface Pools on page 23
**service-set (Interfaces)**

**Syntax**  
service-set service-set-name;

**Hierarchy Level**  
[edit interfaces interface-name unit logical-unit-number family inet service (input | output)],  
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet service (input | output)]

**Release Information**  
Statement introduced before Junos OS Release 7.4.  
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

**Description**  
Define one or more service sets to be applied to an interface. If you define multiple service sets, the router software evaluates the filters in the order in which they appear in the configuration.

**Options**  
*service-set-name*—Name of the service set.

**Required Privilege**  
**Level**  
System—To view this statement in the configuration.  
System-control—To add this statement to the configuration.

**Related Documentation**  
- Guidelines for Configuring Service Filters
**service-set (Services)**

**Syntax**

```
service-set service-set-name {
 allow-multicast;
 captive-portal-content-delivery-profile;
 cos-options {
 match-rules-on-reverse-flow;
 }
 cos-rules [cos-rule-name];
 extension-service service-name {
 provider-specific-rules-configuration;
 }
 (ids-rules rule-name | ids-rule-sets rule-set-name);
 interface-service {
 load-balancing-options {
 hash-keys {
 egress-key (destination-ip | source-ip);
 ingress-key (destination-ip | source-ip);
 }
 }
 service-interface interface-name;
 }
 ipsec-vpn-options {
 anti-replay-window-size bits;
 clear-dont-fragment-bit;
 ike-access-profile profile-name;
 local-gateway address;
 no-anti-replay;
 no-certificate-chain-in-ike;
 passive-mode-tunneling;
 trusted-ca [ca-profile-names];
 tunnel-mtu bytes;
 udp-encapsulation {
 <udp-dest-port destination-port>;
 }
 }
 ip-reassembly-rules rule-name;
 (ipsec-vpn-rules rule-name | ipsec-vpn-rule-sets rule-set-name);
 max-flows number;
 max-drop-flows {
 ingress ingress-flows;
 egress egress-flows;
 }
 max-session-setup-rate max-setup-rate;
 nat-options {
 land-attack-check (ip-only | ip-port);
 stateful-nat64 {
 clear-dont-fragment-bit;
 }
 }
 (nat-rules rule-name | nat-rule-sets rule-set-name);
 next-hop-service
```
inside-service-interface interface-name.unit-number;
outside-service-interface interface-name.unit-number;
outside-service-interface-type local;
service-interface-pool name;
}

pcp-rules rule-name;
(pgcp-rules rule-name | pgcp-rule-sets rule-set-name);
(ptsp-rules rule-name | ptsp-rule-sets rule-set-name);

service-set-options {
  bypass-traffic-on-exceeding-flow-limits;
bypass-traffic-on-pic-failure;
disable-session-open-syslog
enable-asymmetric-traffic-processing;
header-integrity-check
routing-engine-services;
support-uni-directional-traffic;
}

snmp-trap-thresholds{
  flows high high-threshold | low low-threshold;
nat-address-port high-threshold | low low-threshold;
}

softwire-options {
  dslite-ipv6-prefix-length dslite-ipv6-prefix-length;
}

(softwire-rules rule-name | softwire-rule-sets rule-set-name);
(stateful-firewall-rules rule-name | stateful-firewall-rule-sets rule-set-name);

syslog {
  host hostname {
    class {
      alg-logs;
deterministic-nat-configuration-log;
ids-logs;
nat-logs;
packet-logs;
pcp-logs;
session-logs <open | close>;
stateful-firewall-logs ;
    }

services severity-level;
facility-override facility-name;
interface-service prefix-value;
port port-number;
services severity-level;
    }
  }

(web-filter-profile | url-filter-profile) profile-name;
}

Hierarchy Level [edit services]
Release Information
Statement introduced before Junos OS Release 7.4.
- `pcp-rules` option added in Junos OS Release 13.2R1.
- `pgcp-rules` and `pgcp-rule-sets` options added in Junos OS Release 8.4.
- `server-set-options` option added in Junos OS Release 10.1.
- `ptsp-rules` and `ptsp-rule-sets` options added in Junos OS Release 10.2.
- `softwire-rules` and `clear-rule-sets` options added in Junos OS Release 10.4.
- `url-filter-profile` option added in Junos OS Release 17.2R1.
- `match-rules-on-reverse-flow` option added in Junos OS Release 16.1R5 and 17.4R1.
- `web-filter-profile` option added in Junos OS Release 18.3R1.

Description
Define the service set.

NOTE: Use the `web-filter-profile` option starting in Junos OS Release 18.3R1 and use the `url-filter-profile` option in Junos OS Releases before 18.3R1.

Options
- `service-set-name`—Name of the service set. You can include special characters, such as a forward slash (/), colon (:), or a period (.).
  - Range: Up to 64 alphanumeric characters.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege
- `system`—To view this statement in the configuration.
- `system-control`—To add this statement to the configuration.

Related Documentation
- Understanding Service Sets on page 7
**service-set-options**

**Syntax**

```
service-set-options {
 bypass-traffic-on-exceeding-flow-limits;
 bypass-traffic-on-pic-failure;
 enable-asymmetric-traffic-processing;
 header-integrity-check;
 routing-engine-services;
 support-uni-directional-traffic;
 tcp-fast-open {
 disabled;
 drop;
 }
 tcp-non-syn {
 drop-flow;
 drop-flow-send-rst;
 }
}
```

**Hierarchy Level**

```
[edit services service-set service-set-name]
```

**Release Information**

Statement introduced in Junos OS Release 10.1.
- `enable-asymmetric-traffic-processing` and `support-uni-directional-traffic` options added in Junos OS Release 11.2.
- `routing-engine-services` option added in Junos OS Release 15.1.
- `enable-change-on-ams-redistribution` option added in Junos OS Release 15.1.
- `tcp-fast-open` option added in Junos OS Release 17.2.

**Description**

Specify the service set options to apply to a service set.

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring Service Sets to be Applied to Services Interfaces on page 9
- Configuring APPID Support for Unidirectional Traffic
services (NAT)

Syntax services nat [...]
session-limit (IDS MS-DPC)

Syntax

```
session-limit {
 by-destination (IDS MS-DPC) {
 hold-time seconds;
 maximum number;
 packets number;
 rate number;
 }
 by-pair (IDS MS-DPC) {
 hold-time seconds;
 maximum number;
 packets number;
 rate number;
 }
 by-source (IDS MS-DPC) {
 hold-time seconds;
 maximum number;
 packets number;
 rate number;
 }
}
```

Hierarchy Level

```
[edit services ids rule rule-name term term-name then]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Enable flow limitation by configuring thresholds on source, destination, or stateful firewall and network address translation (NAT) paired traffic flows when using the MS-DPC.

Options

The remaining statements are described separately.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Actions in IDS Rules on page 501
session-limit (IDS MS-MPC)

Syntax

```
session-limit {
 by-destination {
 by-protocol {
 icmp {
 maximum number;
 packets number;
 rate number;
 }
 tcp {
 maximum number;
 packets number;
 rate number;
 }
 udp {
 maximum number;
 packets number;
 rate number;
 }
 }
 maximum number;
 packets number;
 rate number;
 }
 by-source {
 by-protocol {
 icmp {
 maximum number;
 packets number;
 rate number;
 }
 tcp {
 maximum number;
 packets number;
 rate number;
 }
 udp {
 maximum number;
 packets number;
 rate number;
 }
 }
 maximum number;
 packets number;
 rate number;
 }
}
```

Hierarchy Level
[edit services ids rule rule-name term term-name then]
Release Information  Statement introduced in Junos OS Release 17.1 on MX Series.

Description  Configure the IDS rule session limits for an individual destination or source address or subnet. This protects against network probing attacks and network flooding attacks. This IDS rule can only be assigned to a service set on an MS-MPC.

You can specify limits for specific protocols (ICMP, TCP, and UDP), or specify limits independent of a protocol.

When a session limit is exceeded for a source or destination, packets from the source or to the destination are dropped until the session limit is no longer exceeded.

To specify limits for destination or source subnets rather than individual addresses, include the aggregation statement at the [edit services ids rule rule-name term term-name then] hierarchy level.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege  Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Protection Against Network Attacks on an MS-MPC on page 515
• Understanding IDS on an MS-MPC on page 511
set-dont-fragment-bit (Services Set)

Syntax
set-dont-fragment-bit;

Hierarchy Level
[edit services service-set service-set-name ipsec-vpn-options]

Release Information

Description
Configure the do not fragment (DF) bit in only the outer header of the IPsec packet and leave the inner header unmodified for dynamic endpoint tunnels. If the encapsulated packet size exceeds the tunnel maximum transmission unit (MTU), the packet is fragmented before encapsulation. These settings apply for dynamic endpoint tunnels and not for static tunnels, for which you need to include the set-dont-fragment-bit statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level to set the DF bit in the outer header of the IPv4 packets that enter the static IPsec tunnel. This functionality is supported on MX Series routers with MS-MICs and MS-MPCs.

By default, this statement is disabled on MS-MICs and MS-MPCs (the DF bit value is not configured in the outer header by default).

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring IPsec Service Sets on page 600
• Configuring IPsec Rules on page 592
set-dont-fragment-bit (Services IPsec VPN)

**Syntax**

set-dont-fragment-bit;

**Hierarchy Level**

[edit services ipsec-vpn rule rule-name term term-name then]

**Release Information**


**Description**

Configure the do not fragment (DF) bit in only the outer header of the IPsec packet and leave the inner header unmodified. If the encapsulated packet size exceeds the tunnel maximum transmission unit (MTU), the packet is fragmented before encapsulation. These settings apply for static endpoint tunnels and not for dynamic tunnels, for which you need to include the **set-dont-fragment-bit** statement at the [edit services service-set service-set-name ipsec-vpn-options] hierarchy level to set the DF bit in the outer header of the IPv4 packets that enter the dynamic IPsec tunnel. This functionality is supported on MX Series routers with MS-MICs and MS-MPCs.

By default, this statement is disabled on MS-MICs and MS-MPCs (the DF bit value is not configured in the outer header by default).

**Required Privilege**

<table>
<thead>
<tr>
<th>Level</th>
<th>Required Privilege</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>To view this statement in the configuration.</td>
</tr>
<tr>
<td>interface-control</td>
<td>To add this statement to the configuration.</td>
</tr>
</tbody>
</table>

**Related Documentation**

- Configuring IPsec Rules on page 592
**sip-call-hold-timeout**

**Syntax**
sip-call-hold-timeout seconds;

**Hierarchy Level**
[edit applications application application-name]

**Release Information**
Statement introduced in Junos OS Release 7.4.

**Description**
Timeout period for SIP calls placed on hold, in seconds.

**Options**
seconds—Length of time the application holds a SIP call open before it times out.
Default: 7200 seconds
Range: 0 through 36,000 seconds (10 hours)

**Required Privilege Level**
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**Related Documentation**
- ALG Descriptions on page 399
- Configuring SIP on page 441
- Examples: Configuring Application Protocols on page 450
- Verifying the Output of ALG Sessions on page 451
**sip**

Syntax

```plaintext
sip {
 video {
 dscp (alias | bits);
 forwarding-class class-name;
 }
 voice {
 dscp (alias | bits);
 forwarding-class class-name;
 }
}
```

Hierarchy Level

```
[edit services cos application-profile profile-name]
```

Release Information

Statement introduced in Junos OS Release 9.3.

Description

Set the appropriate `dscp` and `forwarding-class` value for SIP traffic.

Default

By default, the system will not alter the DSCP or forwarding class for SIP traffic.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- Configuring CoS Rules on page 712
**snmp-command**

**Syntax**

```
 snmp-command command;
```

**Hierarchy Level**

```
 [edit applications application application-name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

SNMP command format.

**Options**

`command`—Supported commands are SNMP `get`, `get-next`, `set`, and `trap`.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- ALG Descriptions on page 399
- Configuring an SNMP Command for Packet Matching on page 449
- Examples: Configuring Application Protocols on page 450
- Verifying the Output of ALG Sessions on page 451
snmp-trap-thresholds

Syntax

```
snmp-trap-thresholds {
 flows high high-threshold | low low-threshold;
 nat-address-port high high-threshold | low low-threshold;
}
```

Hierarchy Level

```
[edit services service-set service-set-name]
```

Release Information


Description

Configures SNMP flow thresholds for all flows for a service set or flows for all NAT pools configured for a service set.

Options

The remaining options are described separately.

- **flows high high-threshold**—Configure the upper limit for all flows on the service set. The limit is expressed as a percentage of `max-flows` configured for the service set. When the number of active flows exceeds this limit, an SNMP trap is set.
  
  Default: 90 percent of `max-flows`

- **flows low low-threshold**—Configure the lower limit for all flows on the service set. The limit is expressed as a percentage of `max-flows` configured for the service set. When the number of active flows falls below this limit, an SNMP trap is set.
  
  Default: 70 percent of `max-flows`

- **nat-address-port high high-threshold**—Configure the upper limit for flows for all NAT pools on the service set. The limit is expressed as a percentage of `max-flows` configured for the service set. When the number of active flows exceeds this limit, an SNMP trap is set.
  
  Default: 90 percent of `max-flows`

- **nat-address-port low low-threshold**—Configure the lower limit for flows. The limit is expressed as a percentage of `max-flows` configured for the service set. When the number of active flows falls below this limit, an SNMP trap is set.
  
  Default: 80 percent of `max-flows`

**NOTE:** SNMP traps that are generated when you modify the threshold value for flows of NAT address pools in a service set (by using the `snmp-trap-thresholds nat-address-port (high high-threshold | low low-threshold)` statement) are not effective in the PIC. Only the initial threshold value that is set is effective on the PIC and subsequent changes to the threshold value are not reflected on the PIC. As a workaround, for the configuration changes under the `[edit services nat pool nat-pool-name]` hierarchy level, you must
deactivate and activate the relevant service-set to enable the updated configuration to become effective. Otherwise, you must reboot the PIC for the updated threshold value of to take effect.

NOTE: Until Junos OS Release 14.1, when the NAT pool utilization exceeded the high threshold value configured, an SNMP trap was sent. However, a similar SNMP trap was not triggered when the NAT pool utilization fell below the configured lower limit or threshold. Because NMS systems are being used to monitor and set alarm for threshold values, the absence of an SNMP trap when the low threshold value was reached caused NMS to retain an active alarm in the alarms list. As a result, starting with Release 14.2R1, an SNMP trap is generated when the NAT pool utilization reaches the lower threshold, thereby causing the alarm in NMS to be reset.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Service Set Limitations on page 21
**softwire-concentrator**

**Syntax**
```
softwire-concentrator {
 ds-lite ds-lite-softwire-concentrator {
 auto-update-mtu;
 flow-limit flow-limit | session-limit-per-prefix session-limit-per-prefix;
 mtu-v6 bytes;
 softwire-address address;
 }
 map-e v6rd v6rd-softwire-concentrator {
 ipv4-prefix ipv4-prefix;
 v6rd-prefix ipv6-prefix;
 mtu-v4 mtu-v4;
 }
}
```

**Hierarchy Level**
```
[edit services softwire]
```

**Release Information**
Statement introduced in Junos OS Release 10.4.
map-e option introduced in Junos OS Release 18.2R1 for MX Series Routers with MPC and MIC interfaces.

**Description**
Configure settings for a softwire concentrator.

Softwires are supported on the MS-DPC, MS-100, MS-400, and MS-500 line cards.
Starting in Junos OS release 17.4R1, softwires for DS-Lite are supported on MX Series routers with MS-MPCs and MS-MICs.

**Options**
The remaining statements are explained separately. See CLI Explorer.

**Required Privilege**
- **Level** interface—To view this statement in the configuration.
- **Level** interface-control—To add this statement to the configuration.

**Related Documentation**
- Configuring a DS-Lite Softwire Concentrator on page 331
- Configuring a 6rd Softwire Concentrator on page 353
**softwire-options**

**Syntax**

```plaintext
softwire-options {
 dslite-ipv6-prefix-length dslite-ipv6-prefix-length ;
}
```

**Hierarchy Level**

```plaintext
[edit services service-set service-set-name]
```

**Release Information**


**Description**

Specify the IPv6 prefix length associated with a subscriber’s basic broadband bridging device that is subject to a limited number of sessions.

This feature is supported on MX Series routers equipped with MS-DPCs. Starting in Junos OS Release 18.2R1, this option is also supported on MS-MPCs and MS-MICs.

**Options**

- **dualite-ipv6-prefix-length**—Subnet prefix representing the size of the subnet subject to session limitation.
  - **Values**: 56, 64, 96, 128
  - **Default**: 0—no limitation.

**NOTE:** If you are using a next-hop service set on an AMS interface for DS-Lite, set the AMS inside interface’s ipv6-source-prefix-length value at the [edit interfaces interface-name unit interface-unit-number load-balancing-options hash-keys] hierarchy level to the same value you use for `dslite-ipv6-prefix-length`.

**Required Privilege**

- **Level**: `interface`—To view this statement in the configuration.
  - `interface-control`—To add this statement to the configuration.

**Related Documentation**

- DS-Lite Per Subnet Limitation Overview on page 349
**softwire-rules**

**Syntax**

```
(softwire-rule rule-name | softwire-rule-sets rule-set-name);
```

**Hierarchy Level**

```
[edit services service-set service-set-name]
```

**Release Information**

Statement introduced in Junos OS Release 10.4.

**Description**

Specify the DS-Lite or 6rd rules or rule set included in this service set. You can configure multiple rules; however, you can only configure one rule set for each service set.

Softwire rules are supported on the MS-DPC, MS-100, MS-400, and MS-500 line cards. Starting in Junos OS release 17.4R1, softwire rules for DS-Lite are supported on MX Series routers with MS-MPCs and MS-MICs.

**Options**

- `rule-name`—Identifier for the collection of terms that constitute this rule.
- `rule-set-name`—Identifier for the set of rules to be included.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- [Configuring Service Rules on page 20](#)
source-address (PCP)

Syntax  
source-address address <except>;

Hierarchy Level  
[edit services pcp rule rule-name term term-name from]

Release Information  
Statement introduced in Junos OS Release 13.2R1.

Description  
Specify the source address that must be matched for the PCP rule. A PCP rule assigns the PCP server that handles selected traffic.

PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, PCP is also supported on the MS-MPC and MS-MIC.

Options  
address—Destination address or prefix value.
except—(Optional) Prevent the specified address or prefix from matching the PCP rule.

Required Privilege Level  
interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation  
• Configuring Port Control Protocol on page 220
source-address (Service Sets)

Syntax  
source-address source-address

Hierarchy Level  
[edit services service-set service-set-name syslog host hostname]

Release Information  

Description  
Specify a source address to record in system log messages that are directed to a remote machine specified in the hostname statement.

NOTE: The supported interfaces are ms, rms, and mams interfaces. If you do not specify the interface parameter, the command loops on all supported interfaces.

Options  
source-address—A valid IP address, which is recorded as the message source in messages sent to the remote machines specified in the host hostname statement

Required Privilege  
interface—to view this statement in the configuration.  
interface-control—to add this statement to the configuration.

Related Documentation  
- Configuring System Logging for Service Sets on page 33  
- host on page 1072  
- service-set on page 1238
**source-address (Services CoS)**

Syntax  
source-address address;

Hierarchy Level  
[edit services cos rule rule-name term term-name from]

Release Information  
Statement introduced in Junos OS Release 8.1. address option enhanced to support IPv4 and IPv6 addresses in Junos OS Release 8.5.

Description  
Source address for rule matching.

Options  
- address—Source IPv4 or IPv6 address or prefix value.

Required Privilege Level  
interface—To view this statement in the configuration. interface-control—To add this statement to the configuration.

Related Documentation  
- Configuring CoS Rules on Services PICs
- Configuring Match Conditions In CoS Rules on page 713
source-address (IDS MS-DPC)

Syntax
source-address (address | any-unicast) <except>;

Hierarchy Level
[edit services ids rule rule-name term term-name from]

Release Information
Statement introduced before Junos OS Release 7.4. address option enhanced to support IPv4 and IPv6 addresses in Junos OS Release 8.5.

Description
Specify the source address for rule matching when using the MS-DPC.

Options
address—Source IPv4 or IPv6 address or prefix value.
any-unicast—Any unicast packet.
except—(Optional) Exempt the specified address, prefix, or unicast packets from rule matching.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Match Conditions in IDS Rules on page 500

source-address

Syntax
source-address address;

Hierarchy Level
[edit services ipsec-vpn rule rule-name term term-name from]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Specify the source address for rule matching.

Options
address—Source IP address.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring IPsec Rules on page 592
source-address (Services NAT)

Syntax  
source-address (address | any-unicast) <except>;

Hierarchy Level  
[edit services nat rule rule-name term term-name from]

Release Information  
Statement introduced before Junos OS Release 7.4.  
any-unicast and except options introduced in Junos OS Release 7.6.  
address option enhanced to support IPv6 addresses in Junos OS Release 8.5.

Description  
Specify the source address for rule matching.

Options  
address—Source IPv4 or IPv6 address or prefix value.  
any-unicast—Any unicast packet.  
except—(Optional) Prevent the specified address or unicast packets from being translated.

Required Privilege Level  
interface—To view this statement in the configuration.  
interface-control—To add this statement to the configuration.

Related Documentation  
• Network Address Translation Rules Overview on page 84
source-address (Services Stateful Firewall)

Syntax

source-address (address | any-ipv4 | any-ipv6 | any-unicast) <except>;

Hierarchy Level

[edit services stateful-firewall rule rule-name term term-name from]

Release Information

Statement introduced before Junos OS Release 7.4. any-unicast and except options introduced in Junos OS Release 7.6. address option enhanced to support IPv4 and IPv6 addresses in Junos OS Release 8.5.

Description

Source address for rule matching.

Options

address—Source IPv4 or IPv6 address or prefix value.

any-ipv4—Any IPv4 packet.

any-ipv6—Any IPv6 packet.

any-unicast—Any unicast packet.

except—(Optional) Exclude the specified address, prefix, IPv4, IPv6, or unicast packets from rule matching.

Required Privilege Level

interface—to view this statement in the configuration.

interface-control—to add this statement to the configuration.

Related Documentation

• Configuring Match Conditions in Stateful Firewall Rules on page 469
source-address-range (IDS MS-DPC)

Syntax  
source-address-range low minimum-value high maximum-value <except>;

Hierarchy Level  
[edit services ids rule rule-name term term-name from]

Release Information  
Statement introduced in Junos OS Release 7.6. 
minimum-value and maximum-value options enhanced to support IPv4 and IPv6 addresses in Junos OS Release 8.5.

Description  
Specify the source address range for rule matching when using the MS-DPC.

Options  
minimum-value—Lower boundary for the IPv4 or IPv6 address range.
maximum-value—Upper boundary for the IPv4 or IPv6 address range.
except—(Optional) Exempt the specified address range from rule matching.

Required Privilege Level  
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation  
• Configuring Match Conditions in IDS Rules on page 500
source-address-range (PCP)

**Syntax**
```
source-address-range high maximum-value low minimum-value <except>;
```

**Hierarchy Level**
```
[edit services pcp rule rule-name term term-name from]
```

**Release Information**
Statement introduced in Junos OS Release 13.2R1.

**Description**
Specify the source address range that must be matched for the PCP rule. A PCP rule assigns the PCP server that handles selected traffic.

PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, PCP is also supported on the MS-MPC and MS-MIC.

**Options**
- `maximum-value`—Upper boundary for the address range.
- `minimum-value`—Lower boundary for the address range.
- `except`—(Optional) Prevent the specified address range from matching the PCP rule.

**Required Privilege Level**
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**
- Configuring Port Control Protocol on page 220
**source-address-range (Services NAT)**

**Syntax**

```
source-address-range low minimum-value high maximum-value <except>;
```

**Hierarchy Level**

```
[edit services nat rule rule-name term term-name from]
```

**Release Information**

Statement introduced in Junos OS Release 7.6. `minimum-value` and `maximum-value` options enhanced to support IPv6 addresses in Junos OS Release 8.5.

**Description**

Specify the source address range for rule matching.

**Options**

- `minimum-value`—Lower boundary for the IPv4 or IPv6 address range.
- `maximum-value`—Upper boundary for the IPv4 or IPv6 address range.
- `except`—(Optional) Prevent the specified address range from being translated.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Network Address Translation Rules Overview on page 84
source-address-range (Services Stateful Firewall)

Syntax
source-address-range low minimum-value high maximum-value <except>;

Hierarchy Level
[edit services stateful-firewall rule rule-name term term-name from]

Release Information
Statement introduced in Junos OS Release 7.6. minimum-value and maximum-value options enhanced to support IPv4 and IPv6 addresses in Junos OS Release 8.5.

Description
Source address range for rule matching.

Options
minimum-value—Lower boundary for the IPv4 or IPv6 address range.
maximum-value—Upper boundary for the IPv4 or IPv6 address range.
except—(Optional) Exclude the specified address, prefix, or unicast packets from rule matching.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Match Conditions in Stateful Firewall Rules on page 469

source-pool

Syntax
source-pool nat-pool-name;

Hierarchy Level
[edit services nat rule rule-name term term-name then translated]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Specify the source address pool for translated traffic.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Network Address Translation Rules Overview on page 84
source-port

Syntax  
source-port \texttt{port-number};

Hierarchy Level  
[edit applications application application-name]

Release Information  
Statement introduced before Junos OS Release 7.4.

Description  
Source port identifier.

Options  
\texttt{port-value}—Identifier for the port. For a complete list, see “Configuring Source and Destination Ports” on page 437.

Required Privilege Level  
interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation  
• ALG Descriptions on page 399
• Configuring Application Properties on page 431
• Configuring Source and Destination Ports on page 437
• Verifying the Output of ALG Sessions on page 451
source-prefix (IDS)

Syntax  
source-prefix prefix-value;

Hierarchy Level  
[edit services ids rule rule-name term term-name then aggregation]

Release Information  
Statement introduced before Junos OS Release 7.4.  
Statement introduced in Junos OS Release 17.1 on MS-MPCs.

Description  
Specify the prefix length for source IPv4 address aggregation for the IDS rule. This applies session limits to an aggregation of all attacks from within a subnet of the specified length.

For example, if you configure a value of 24 for source-prefix, then attacks from 10.1.1.2 and 10.1.1.3 are counted as attacks from the 10.1.1/24 subnet. However, if a single host on a subnet generates a large number of network probing or flooding attacks, the flows for the entire subnet might be stopped.

Options  
prefix-value—Integer value.  
Range: 1 through 32

Required Privilege Level  
interface—To view this statement in the configuration.  
interface-control—To add this statement to the configuration.

Related Documentation  
- Configuring IDS Rules on an MS-DPC on page 498  
- Configuring Protection Against Network Attacks on an MS-MPC on page 515  
- Understanding IDS on an MS-MPC on page 511
source-prefix (Services NAT)

Syntax
source-prefix source-prefix;

Hierarchy Level
[edit services nat rule rule-name term term-name then translated]

Release Information
Statement introduced in Junos OS Release 7.6. `source-prefix` option enhanced to support IPv6 addresses in Junos OS Release 8.5.

Description
Specify the source prefix for translated traffic.

Options
`source-prefix`—IPv4 or IPv6 source prefix value.

Required Privilege Level
`interface`—To view this statement in the configuration.
`interface-control`—To add this statement to the configuration.

Related Documentation
• Network Address Translation Rules Overview on page 84
source-prefix-ipv6 (IDS)

Syntax  
source-prefix-ipv6 prefix-value;

Hierarchy Level  
[edit services ids rule rule-name term term-name then aggregation]

Release Information  
Statement introduced in Junos OS Release 8.5.
Statement introduced in Junos OS Release 17.1 on MS-MPCs.

Description  
Specify the prefix length for source IPv6 address aggregation for the IDS rule. This applies session limits to an aggregation of all attacks from within a subnet of the specified length.

For example, if you configure a value of 64 for source-prefix-ipv6, then attacks from 2001:db8:1234:72a2::2 and 2001:db8:1234:72a2::3 are counted as attacks from the 2001:db8:1234:72a2::/64 subnet. However, if a single host on a subnet generates a large number of network probing or flooding attacks, the flows for the entire subnet might be stopped.

Options  
prefix-value—Integer value.
Range: 1 through 128

Required Privilege Level  
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation  
- Configuring IDS Rules on an MS-DPC on page 498
- Configuring Protection Against Network Attacks on an MS-MPC on page 515
- Understanding IDS on an MS-MPC on page 511
source-prefix-list (PCP)

Syntax  source-prefix-list list-name <except>;

Hierarchy Level  [edit services pcp rule rule-name term term-name from]


Description  Specify the source prefix list that must be matched for the PCP rule. You configure the prefix list by including the prefix-list statement at the [edit policy-options] hierarchy level. A PCP rule assigns the PCP server that handles selected traffic.

PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, PCP is also supported on the MS-MPC and MS-MIC.

Options  list-name—Source prefix list.
          except—(Optional) Prevent the specified prefix list from matching the PCP rule.

Required Privilege Level  interface—To view this statement in the configuration.
                          interface-control—To add this statement to the configuration.

Related Documentation  • Configuring Port Control Protocol on page 220
source-prefix-list (Services CoS)

Syntax  
source-prefix-list list-name <except>;

Hierarchy Level  
[edit services cos rule rule-name term term-name from]

Release Information  
Statement introduced in Junos OS Release 8.2.

Description  
Specify the source prefix list for rule matching. You configure the prefix list by including the prefix-list statement at the [edit policy-options] hierarchy level.

Options  
list-name—Destination prefix list.
except—(Optional) Exclude the specified prefix list from rule matching.

Required Privilege Level  
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation  
• Configuring CoS Rules on page 712
• Routing Policies, Firewall Filters, and Traffic Policers Feature Guide
source-prefix-list (Services IDS)

Syntax  
source-prefix-list list-name [except;]

Hierarchy Level  
[edit services ids rule rule-name term term-name from]

Release Information  
Statement introduced in Junos OS Release 8.2.

Description  
Specify the source prefix list for rule matching. You configure the prefix list by including the prefix-list statement at the [edit policy-options] hierarchy level.

Options  
list-name—Destination prefix list.
except—(Optional) Exclude the specified prefix list from rule matching.

Required Privilege Level  
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation  
• Configuring Match Conditions in IDS Rules on page 500
• Routing Policies, Firewall Filters, and Traffic Policers Feature Guide
source-prefix-list (Services NAT)

Syntax

source-prefix-list list-name <except>;

Hierarchy Level

[edit services nat rule rule-name term term-name from]

Release Information

Statement introduced in Junos OS Release 8.2.

Description

Specify the source prefix list for rule matching. You configure the prefix list by including the prefix-list statement at the [edit policy-options] hierarchy level.

Options

list-name—Destination prefix list.

except—(Optional) Exclude the specified prefix list from rule matching.

Required Privilege

level:

interface—to view this statement in the configuration.

interface-control—to add this statement to the configuration.

Related Documentation

• Network Address Translation Rules Overview on page 84

• Routing Policies, Firewall Filters, and Traffic Policers Feature Guide
source-prefix-list (Services Stateful Firewall)

**Syntax**

source-prefix-list list-name <except>;

**Hierarchy Level**

[edit services stateful-firewall rule rule-name term term-name from]

**Release Information**

Statement introduced in Junos OS Release 8.2.

**Description**

Specify the source prefix list for rule matching. You configure the prefix list by including the prefix-list statement at the [edit policy-options] hierarchy level.

**Options**

- **list-name**—Destination prefix list.
- **except**—(Optional) Exclude the specified prefix list from rule matching.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Configuring Match Conditions in Stateful Firewall Rules on page 469
- Routing Policies, Firewall Filters, and Traffic Policers Feature Guide
spi

Syntax   
spi spi-value;

Hierarchy Level     
[edit services ipsec-vpn rule rule-name term term-name then manual direction direction]

Release Information     Statement introduced before Junos OS Release 7.4.

Description     Configure the SPI for an SA.

Options     spi-value—An arbitrary value that uniquely identifies which SA to use at the receiving host (the destination address in the packet).
Range:  256 through 16,639

NOTE: Use the auxiliary SPI when you configure the protocol statement to use the bundle option.

Required Privilege Level     system—To view this statement in the configuration.
 system-control—To add this statement to the configuration.

Related Documentation     • Configuring Security Associations on page 549
**stateful-firewall-rules**

**Syntax**  
(stateful-firewall-rules rule-names | stateful-firewall-rule-sets rule-set-name);

**Hierarchy Level**  
[edit services service-set service-set-name]

**Release Information**  
Statement introduced before Junos OS Release 7.4.

**Description**  
Specify the stateful firewall rules or rule set included in this service set. You can configure multiple rules, but only one rule set for each service.

**Options**  
- **rule-name**—identifier for the collection of terms that make up this rule.
- **rule-set-name**—identifier for the set of rules to be included.

**Required Privilege**  
- System—To view this statement in the configuration.
- System-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring Service Rules on page 20

**stateful-nat64**

**Syntax**  
stateful-nat64 {  
  clear-dont-fragment-bit;  
}

**Hierarchy Level**  
[edit services service-set service-set-name nat-options]

**Release Information**  
Statement introduced with Junos OS Release 12.1.

**Description**  
Set parameters for stateful NAT64 operation.

---

**NOTE:** These parameters do not change the operation of other types of NAT.

**Required Privilege**  
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring Service Rules on page 20
- clear-dont-fragment-bit on page 981
**syslog (Services CoS)**

**Syntax**
syslog;

**Hierarchy Level**
[edit services cos rule rule-name term term-name then],
[edit services cos rule rule-name term term-name then reverse]

**Release Information**
Statement introduced in Junos OS Release 8.1.

**Description**
Enable system logging. The system log information from the Multiservices and Services PICs is passed to the kernel for logging in the /var/log directory. This setting overrides any syslog statement setting included in the service set or interface default configuration.

**Required Privilege Level**
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**
- Configuring CoS Rules on Services PICs
- Configuring Actions in CoS Rules on page 714

**syslog (IDS MS-DPC)**

**Syntax**
syslog;

**Hierarchy Level**
[edit services ids rule rule-name term term-name then logging]

**Release Information**
Statement introduced before Junos OS Release 7.4.

**Description**
Enable system logging when using the MS-DPC. The system log information from the MS-DPC is passed to the kernel for logging in the /var/log directory.

**Required Privilege Level**
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**
- Configuring Actions in IDS Rules on page 501
**syslog**

**Syntax**

```plaintext
syslog;
```

**Hierarchy Level**

```
[edit services ipsec-vpn rule rule-name term term-name then]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Enable system logging. The system log information for the Adaptive Services or Multiservices Physical Interface Card (PIC) is passed to the kernel for logging in the `/var/log` directory.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Configuring IPsec Rules on page 592
syslog (Services L2TP)

Syntax  
```
syslog {
 host hostname {
 services severity-level;
 facility-override facility-name;
 log-prefix prefix-value;
 }
}
```

Hierarchy Level  [edit services l2tp tunnel-group group-name]

Release Information  Statement introduced before Junos OS Release 7.4.

Description  Configure the generation of system log messages for L2TP services. System log information is passed to the kernel for logging in the `/var/log/l2tpd` directory.

NOTE: This statement is not supported for L2TP LNS on MX Series routers.

Options  The remaining statements are described separately.

Required Privilege Level  
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation  
- Configuring System Logging of L2TP Tunnel Activity on page 910
**syslog (Services NAT)**

**Syntax**  
`syslog;`

**Hierarchy Level**  
`[edit services nat rule rule-name term term-name then]`

**Release Information**  
Statement introduced before Junos OS Release 7.4.

**Description**  
Enable system logging. The system log information from the Multiservices PIC is passed to the kernel for logging in the `/var/log` directory.

**Required Privilege**  
interface—To view this statement in the configuration.  
interface-control—To add this statement to the configuration.

**Related Documentation**  
- Network Address Translation Rules Overview on page 84
### syslog (Services Service Set)

**Syntax**

```plaintext
syslog {
 host hostname {
 class {
 alg-logs;
 deterministic-nat-configuration-log;
 ids-logs;
 nat-logs;
 packet-logs;
 pcp-logs;
 session-logs <open | close>;
 stateful-firewall-logs;
 utf-logs;
 }
 facility-override facility-name;
 interface-service prefix-value;
 log-prefix prefix-value;
 port port-number;
 services severity-level;
 source-address source-address;
 }
}
```

**Hierarchy Level**

```
[edit services service-set service-set-name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Configure generation of system log messages for the service set. The system log information is passed to the kernel for logging in the `/var/log` directory. These settings override the values defined at the `[edit interfaces interface-name services-options]` hierarchy level; for more information on configuring those values, see `Configuring System Logging for Services Interfaces`.

---

**NOTE:**

Starting with Junos OS release 14.1X55, 14.2R5, 15.1R3, and 16.1R1, for multiservices (ms-) interfaces, you cannot configure system logging for PCP and ALGs by including the pcp-logs and alg-logs statements at the `[edit services service-set service-set-name syslog host hostname class]` hierarchy level. An error message is displayed if you attempt to commit a configuration that contains the pcp-logs and alg-logs options to define system logging for PCP and ALGs for ms- interfaces.

**Options**

The remaining statements are described separately.
syslog (Services Stateful Firewall)

Syntax  syslog;

Hierarchy Level  [edit services stateful-firewall rule rule-name term term-name then]

Release Information  Statement introduced before Junos OS Release 7.4.

Description  Enable system logging. The system log information from the Adaptive Services or Multiservices PIC is passed to the kernel for logging in the /var/log directory. This setting overrides any syslog statement setting included in the service set or interface default configuration.

Related Documentation  • Configuring Actions in Stateful Firewall Rules on page 471
**syn-cookie (IDS MS-DPC)**

**Syntax**

```plaintext
syn-cookie {
 mss value;
 threshold rate;
}
```

**Hierarchy Level**

```
[edit services ids rule rule-name term term-name then]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Enable SYN-cookie defenses against SYN attacks when using the MS-DPC. By default, SYN-cookie techniques are not applied.

When SYN cookie is enabled on Junos OS and becomes the TCP-negotiating proxy for the destination server, it replies to each incoming SYN segment with a SYN/ACK containing an encrypted cookie as its initial sequence number (ISN). The cookie is an MD5 hash of the original source address and port number, destination address and port number, and ISN from the original SYN packet. After sending the cookie, Junos OS drops the original SYN packet and deletes the calculated cookie from memory. If there is no response to the packet containing the cookie, the attack is noted as an active SYN attack and is effectively stopped.

If the initiating host responds with a TCP packet containing the cookie +1 in the TCP ACK field, Junos OS extracts the cookie, subtracts 1 from the value, and recomputes the cookie to validate that it is a legitimate ACK. If it is legitimate, Junos OS starts the TCP proxy process by setting up a session and sending a SYN to the server containing the source information from the original SYN. When Junos OS receives a SYN/ACK from the server, it sends ACKs to the server and to the initiation host. At this point the connection is established and the host and server are able to communicate directly.

**Options**

The remaining statements are described separately.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Configuring Actions in IDS Rules on page 501
tcp-fast-open

Syntax

tcp-fast-open {
  disabled;
  drop;
}

Hierarchy Level
[edit services service-set service-set-name service-set-options]

Release Information
Statement introduced in Junos OS Release 17.2.

Description
Specify how TCP Fast Open (TFO) enabled packets are to be handled.

Default
By default, all TFO packets are forwarded by the service PIC.

Options
disabled—Any TCP packet with the TFO option present has the TFO option stripped from the TCP header of the packet, and the rest of the packet is forwarded as is. The benefit of stripping the header over dropping the packet is that the client does not have to wait for the retransmission timer to go off and then retransmit the SYN packet without the TFO option.

drop—Any TCP packet with the TFO option present is dropped.

Required Privilege
Level
system—To view this statement in the configuration.
system-control—To add this statement to the configuration.

Related Documentation
• Exchanging Data More Efficiently Using TCP Fast Open on page 54
**tcp-mss (Services)**

**Syntax**  
tcp-mss *number*;

**Hierarchy Level**  
[edit services service-set service-set-name]

**Release Information**  
Statement introduced in Junos OS Release 9.5.

**Description**  
Specify the TCP Maximum Segment Size (MSS) allowed for the service set.

**Options**  
*number*—MSS value.

**Required Privilege**  
interface—To view this statement in the configuration.

**Level**  
interface-control—To add this statement to the configuration.

**Related Documentation**  
- Configuring Service Set Limitations on page 21
tcp-non-syn

Syntax  
tcp-non-syn {
  drop-flow;
  drop-flow-send-rst;
}

Hierarchy Level  
[edit services service-set service-set-name service-set-options]

Release Information  
Statement introduced in Junos OS Release 16.1R2.

Description  
Specify how the first non-SYN TCP packet is processed on services PICs. When a services PIC receives the first non-SYN TCP packet for processing, the packet is dropped.

Options  
drop-flow—When a services PIC receives the first non-SYN TCP packet for processing, the packet is dropped.

A drop flow created on the services PIC ensures that subsequent non-SYN TCP packets with the same 5-tuple information (source and destination addresses, protocol, and source and destination ports) are dropped. If this statement is not configured, a session is created when a packet hits the services set and matches the stateful firewall rule even if the packet is a non-SYN packet.

drop-flow-send-rst—When a services PIC receives the first non-SYN TCP packet for processing, the packet is dropped and a reset packet is sent to originator to ensure that no further packets are generated.

A drop flow created on the services PIC ensures that subsequent non-SYN TCP packets with the same 5-tuple information (source and destination addresses, protocol, and source and destination ports) are dropped. If this statement is not configured, a session is created when a packet hits the services set and matches the stateful firewall rule even if the packet is a non-SYN packet.

Required Privilege Level  
system—to view this statement in the configuration.
  system-control—to add this statement to the configuration.

Related Documentation  
• Configuring Service Sets to be Applied to Services Interfaces on page 9
tcp-syn-defense (IDS MS-MPC)

Syntax tcp-syn-defense;

Hierarchy Level [edit services ids rule rule-name term term-name then]

Release Information Statement introduced in Junos OS Release 17.1 on MX Series.

Description Close unestablished TCP connections and send a TCP RST to the end host to clear the TCP states on it when the open-timeout value at the [edit interfaces interface-name service-options] hierarchy level expires. This provides protection against TCP SYN flooding attacks. This statement can only be used in IDS rules assigned to a service set on an MS-MPC.

Required Privilege Level
- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

Related Documentation
- Configuring Protection Against Network Attacks on an MS-MPC on page 515
- Understanding IDS on an MS-MPC on page 511

tcp-syn-fragment-check (IDS MS-MPC)

Syntax tcp-syn-fragment-check;

Hierarchy Level [edit services ids rule rule-name term term-name then]

Release Information Statement introduced in Junos OS Release 17.1 on MX Series.

Description Identify and drop TCP SYN packets that are IP fragments. This statement can only be used in IDS rules assigned to a service set on an MS-MPC.

Required Privilege Level
- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

Related Documentation
- Configuring Protection Against Network Attacks on an MS-MPC on page 515
- Understanding IDS on an MS-MPC on page 511
**tcp-winnuke-check (IDS MS-MPC)**

**Syntax**
tcp-winnuke-check;

**Hierarchy Level**
[edit services ids rule rule-name term term-name then]

**Release Information**
Statement introduced in Junos OS Release 17.1 on MX Series.

**Description**
Identify and drop TCP segments that are destined for port 139 and have the urgent (URG) flag set, which provides protection against WinNuke attacks. This statement can only be used in IDS rules assigned to a service set on an MS-MPC.

**Required Privilege**
- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

**Related Documentation**
- Configuring Protection Against Network Attacks on an MS-MPC on page 515
- Understanding IDS on an MS-MPC on page 511
template (URL Filter)

Syntax

```
template template-name {
 client-interfaces [client-interface-name1 client-interface-name2];
 disable-url-filtering;
 dns-resolution-interval minutes;
 dns-resolution-rate seconds;
 dns-retries number;
 dns-routing-instance dns-routing-instance-name;
 dns-server [ip-address1 ip-address2 ip-address3];
 dns-source-interface loopback-interface-name;
 routing-instance routing-instance-name;
 server-interfaces [server-interface-name1 server-interface-name2];
 term term-name {
 from {
 src-ip-prefix [prefix1 prefix2];
 dest-port [port1 port2];
 }
 then {
 accept;
 custom-page custom-page;
 http-status-code http-status-code;
 redirect-url redirect-url;
 tcp-reset;
 }
 }
 url-filter-database filename
}
```  

Hierarchy Level

[edit services url-filter profile profile-name]

Release Information

Statement introduced in Junos OS Release 17.2.

disable-url-filtering option introduced in Junos OS Release 17.2R2 and 17.4R1.

Description

Configure a URL filter template.

NOTE: Starting in Junos OS Release 18.3R1, the template statement is deprecated and has been replaced by the url-filter-template statement. The template statement is supported for backward compatibility.

Options

- `template-name`—Name of the template.

- `client-interfaces [ client-interface-name1 client-interface-name2 ]`—The list of client-facing logical interfaces (uplink) on which the URL filtering is configured. This option is mandatory.
**disable-url-filtering**—Disables the filtering of HTTP traffic that contains an embedded IP address (for example, http://10.1.1.1) belonging to a blacklisted domain name in the URL filter database.

**dns-resolution-interval minutes**—DNS resolution time interval in minutes.
- **Default:** 1440
- **Range:** 60 through 1440 minutes.

**dns-resolution-rate seconds**—Number of DNS queries per second sent out from the system before initiating further DNS queries.
- **Default:** 50
- **Range:** 50 through 100.

**dns-retries number**—Number of retries for a DNS query in case query fails or times out.
- **Default:** 3
- **Range:** 1 through 5.

**dns-routing-instance dns-routing-instance-name**—The VRF on which the DNS server is reachable. This option is mandatory. You can use the default routing instance inet.0 or a defined routing instance.

**dns-server [ ip-address1 ip-address2 ip-address3 ]**—One or more IP (IPv4 or IPv6) addresses of DNS servers to which the DNS queries are sent out. This option is mandatory.

**dns-source-interface loopback-interface-name**—The loopback interface for which source IP address is picked for sending DNS queries. This option is mandatory.

**routing-instance routing-instance-name**—The VRF on which URL filtering feature is configured. This option is mandatory. You can use the default routing instance inet.0 or a defined routing instance.

**server-interfaces [ server-interface-name1 server-interface-name2 ]**—Server-facing interfaces to which traffic is destined. This option is mandatory.

The list of server-facing logical interfaces (downlink) on which the URL filtering is configured. This option is mandatory.

**url-filter-database filename**—The filename of the URL filter database. The file should be placed in the /var/db/url-filterd directory, but indicate just the filename here and not the full path.

The remaining statements are explained separately.

**Required Privilege Level**
- **system**—To view this statement in the configuration.
- **system-control**—To add this statement to the configuration.

**Related Documentation**
- Configuring URL Filtering on page 50
term (Services CoS)

Syntax

```
term term-name {
 from {
 application-sets set-name;
 applications [application-names];
 destination-address address;
 destination-prefix-list list-name <except>;
 source-address address;
 source-prefix-list list-name <except>;
 }
 then {
 application-profile profile-name;
 dscp (alias | bits);
 forwarding-class class-name;
 syslog;
 reflexive; | revert; | reverse {
 application-profile profile-name;
 dscp (alias | bits);
 forwarding-class class-name;
 syslog;
 }
 }
}
```

Hierarchy Level

```
[edit services cos rule rule-name]
```

Release Information
Statement introduced in Junos OS Release 8.1.

Description
Define the CoS term properties.

Options

```
term-name—Identifier for the term.
```

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring CoS Rules on page 712.
- Configuring CoS Rules on Services PICs
term (IDS MS-DPC)

Syntax

term term-name {
from {
application-sets set-name;
applications [ application-names ];
destination-address (address | any-unicast) <except>;
destination-address-range low minimum-value high maximum-value <except>;
source-address (address | any-unicast) <except>;
source-address-range low minimum-value high maximum-value <except>;
}
then {
aggregation (IDS) {
  destination-prefix prefix-value | destination-prefix-ipv6 prefix-value;
  source-prefix prefix-value | source-prefix-ipv6 prefix-value;
}
(force-entry | ignore-entry);
logging {
  syslog;
  threshold rate;
}
session-limit {
  by-destination (IDS MS-DPC) {
    hold-time seconds;
    maximum number;
    packets number;
    rate number;
  }
  by-pair (IDS MS-DPC) {
    hold-time seconds;
    maximum number;
    packets number;
    rate number;
  }
  by-source (IDS MS-DPC) {
    hold-time seconds;
    maximum number;
    packets number;
    rate number;
  }
}
syn-cookie {
  mss value;
  threshold rate;
}
}

Hierarchy Level [edit services ids rule rule-name]

Release Information Statement introduced before Junos OS Release 7.4.
<table>
<thead>
<tr>
<th>Description</th>
<th>Define the IDS term properties when using the MS-DPC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options</td>
<td>term-name—Identifier for the term.</td>
</tr>
<tr>
<td></td>
<td>The remaining statements are explained separately. See CLI Explorer.</td>
</tr>
<tr>
<td>Required Privilege</td>
<td>interface—To view this statement in the configuration.</td>
</tr>
<tr>
<td>Level</td>
<td>interface-control—To add this statement to the configuration.</td>
</tr>
<tr>
<td>Related Documentation</td>
<td>• Configuring IDS Rules on an MS-DPC on page 498</td>
</tr>
</tbody>
</table>
term

Syntax
term term-name {
  from {
    destination-address address;
    ipsec-inside-interface interface-name;
    source-address address;
  }
  then {
    anti-replay-window-size bits;
    backup-remote-gateway address;
    clear-dont-fragment-bit;
    dynamic {
      ike-policy policy-name;
      ipsec-policy policy-name;
    }
    initiate-dead-peer-detection;
    manual {
      direction (inbound | outbound | bidirectional) {
        authentication {
          algorithm (hmac-sha-256);
          key (ascii-text key | hexadecimal key);
        }
      auxiliary-spi spi-value;
      encryption {
        algorithm algorithm;
        key (ascii-text key | hexadecimal key);
      }
      protocol (bundle | esp);
      spi spi-value;
    }
  }
  no-anti-replay;
  remote-gateway address;
  syslog;
  tunnel-mtu bytes;
}
}

Hierarchy Level [edit services ipsec-vpn rule rule-name]

Release Information Statement introduced before Junos OS Release 7.4.

Description Define the IPsec term properties.

Options term-name—Identifier for the term.

The remaining statements are explained separately. See CLI Explorer.
<table>
<thead>
<tr>
<th>Required Privilege</th>
<th>Level</th>
<th>Related Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interface—To view this statement in the configuration.</td>
<td>Configuring IPsec Rules on page 592</td>
</tr>
<tr>
<td></td>
<td>interface-control—To add this statement to the configuration.</td>
<td></td>
</tr>
</tbody>
</table>
term (IDS MS-MPC)

Syntax

```
term {
 then {
 aggregation (IDS) {
 destination-prefix prefix-value | destination-prefix-ipv6 prefix-value;
 source-prefix prefix-value | source-prefix-ipv6 prefix-value;
 }
 allow-ip-options {
 any;
 loose-source-route;
 route-record;
 route-alert;
 security;
 stream-id;
 strict-source-route;
 timestamp;
 }
 allow-ipv6-extension-header {
 any;
 ah;
 dstopts;
 esp;
 fragment;
 hop-by-hop;
 mobility;
 routing;
 }
 icmp-fragment-check;
 icmp-large-packet-check;
 land-attack-check (ip-only | ip-port);
 session-limit {
 by-destination {
 by-protocol {
 icmp {
 maximum number;
 packets number;
 rate number;
 }
 tcp {
 maximum number;
 packets number;
 rate number;
 }
 udp {
 maximum number;
 packets number;
 rate number;
 }
 }
 maximum number;
 packets number;
 rate number;
 }
 }
}
```
Hierarchy Level  [edit services ids rule rule-name]

Release Information  Statement introduced in Junos OS Release 17.1 on MX Series.

Description  Configure the network attack prevention actions for an IDS rule for a service set on an MS-MPC.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level  interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation  • Configuring Protection Against Network Attacks on an MS-MPC on page 515
• Understanding IDS on an MS-MPC on page 511
term (PCP)

Syntax  

```
 term term-name {
 from {
 application-sets set-name;
 applications [application-name];
 destination-address address <except>;
 destination-address-range high maximum-value low minimum-value <except>;
 destination-port high maximum-value low minimum-value;
 destination-prefix-list list-name <except>;
 source-address address <except>;
 source-address-range high maximum-value low minimum-value <except>;
 source-prefix-list list-name <except>;
 }
 then {
 pcp-server server-name;
 }
 }
```

Hierarchy Level  

```
[edit services pcp rule rule-name]
```

Release Information  
Statement introduced in Junos OS Release 13.2R1.

Description  
Define the PCP rule term properties. A PCP rule assigns the PCP server that handles selected traffic.

PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, PCP is also supported on the MS-MPC and MS-MIC.

The remaining statements are explained separately.

Options  

```
term-name—Identifier for the term.
```

The remaining statements are explained separately.

Required Privilege  
interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation  
- Configuring Port Control Protocol on page 220
term (Services NAT)

Syntax

```xml
term term-name {
 from {
 application-sets set-name;
 applications [application-names];
 destination-address (address | any-unicast) <except>;
 destination-address-range low minimum-value high maximum-value <except>;
 destination-port range high maximum-value low minimum-value;
 source-address (address | any-unicast) <except>;
 source-address-range low minimum-value high maximum-value <except>;
 }
 then {
 no-translation;
 port-forwarding-mappings map-name;
 translated {
 address-pooling paired;
 clat-prefix clat-prefix;
 destination-pool nat-pool-name;
 destination-prefix destination-prefix;
 dns-alg-pool dns-alg-pool;
 dns-alg-prefix dns-alg-prefix;
 filtering-type endpoint-independent;
 mapping-type endpoint-independent;
 source-pool nat-pool-name;
 source-prefix source-prefix;
 translation-type (basic-nat-pt | basic-nat44 | basic-nat66 | dnat-44 |
 deterministic-napt44 | deterministic-napt64 | dynamic-nat44 | napt-44 | napt-66 |
 napt-pt | stateful-nat464 | stateful-nat64 | twice-basic-nat-44 |
 twice-dynamic-nat-44 | twice-napt-44);
 }
 syslog;
 }
}
```

Hierarchy Level

[edit services nat rule rule-name]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Define the NAT term properties.

Options

**term-name**—Identifier for the term.

The remaining statements are explained separately.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.
term (Services Stateful Firewall)

Syntax

```
term term-name {
 from {
 application-sets set-name;
 applications [application-names];
 destination-address (address | any-ipv4 | any-ipv6 | any-unicast) <except>;
 destination-address-range low minimum-value high maximum-value <except>;
 destination-prefix-list list-name <except>;
 source-address (address | any-ipv4 | any-ipv6 | any-unicast) <except>;
 source-address-range low minimum-value high maximum-value <except>;
 source-prefix-list list-name <except>;
 }
 then {
 (accept | discard | reject);
 syslog;
 }
}
```

Hierarchy Level

```
[edit services stateful-firewall rule rule-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Define the stateful firewall term properties.

Options

`term-name`—Identifier for the term.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

`interface`—To view this statement in the configuration.

`interface-control`—To add this statement to the configuration.

Related Documentation

- Configuring Stateful Firewall Rules on page 467
- Network Address Translation Rules Overview on page 84
term (URL Filter)

Syntax

```
term term-name {
 from {
 src-ip-prefix [prefix1prefix2];
 dest-port [port1 port2];
 }
 then {
 accept;
 custom-page custom-page;
 http-status-code http-status-code;
 redirect-url redirect-url;
 tcp-reset;
 }
}
```

Hierarchy Level

- **(starting in Junos OS Release 18.3R1)**
  - `[edit services web-filter profile profile-name url-filter-template template-name]`

- **(before Junos OS Release 18.3R1)**
  - `[edit services url-filter profile profile-name template template-name]`

Release Information

Statement introduced in Junos OS Release 17.2.

Description

Define a URL filtering term. A term is a set of match criteria with actions to be taken if the match criteria is met. You must configure `term` to configure URL filtering.

Options

- **term-name**—Name of the term.
- **from**—Define match criteria.

  The `from` statement is optional. If you omit the `from` statement, all source IP prefixes and all destination ports are considered to match. All such combinations then take the configured actions of the term.

  Only one term in a template can have an optional `from` statement. If you omit more than one `from` statement per template, you will get the following error message on commit:

  ```
 URLFD_CONFIG_FAILURE: Configuration not valid:
 Cannot have two wild card terms in template template1
 error: configuration check-out failed
  ```

  Similarly, no two templates within a profile can have a term without a `from` statement.

- **dest-ports**—Destination port list specification.
Range: 1 through 65535

csrc-ip-prefix—Source IP prefix list specification.

then—Specify one of the following actions to be taken if the from condition is matched:

accept—Accept the traffic and allow it to flow as normal.

custom-page custom-page—Custom-page string.

http-status-code http-status-code—HTTP status code value.
Range: 400 through 599

redirect-url redirect-url—URL to redirect traffic to.

tcp-reset—Reset TCP.

Required Privilege
Level system—To view this statement in the configuration.

system-control—To add this statement to the configuration.

then (Services CoS)

Syntax

then {
  application-profile profile-name;
  dscp (alias | bits);
  forwarding-class class-name;
  syslog;
  reflexive | revert | reverse {
    application-profile profile-name;
    dscp (alias | bits);
    forwarding-class class-name;
    syslog;
  }
}

Hierarchy Level [edit services cos rule rule-name term term-name]


Description Define the CoS term actions.
The remaining statements are explained separately.

Required Privilege
Level interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation
  • Configuring CoS Rules on Services PICs
  • Configuring Actions in CoS Rules on page 714
then (IDS MS-DPC)

Syntax

```
then {
 aggregation (IDS) {
 destination-prefix prefix-number | destination-prefix-ipv6 prefix-value;
 source-prefix prefix-number | source-prefix-ipv6 prefix-value;
 }
 (force-entry | ignore-entry);
 logging {
 syslog;
 threshold rate;
 }
 session-limit {
 by-destination (IDS MS-DPC) {
 hold-time seconds;
 maximum number;
 packets number;
 rate number;
 }
 by-pair (IDS MS-DPC) {
 hold-time seconds;
 maximum number;
 packets number;
 rate number;
 }
 by-source (IDS MS-DPC) {
 hold-time seconds;
 maximum number;
 packets number;
 rate number;
 }
 }
 syn-cookie {
 mss value;
 threshold rate;
 }
}
```

Hierarchy Level

```
[edit services ids rule rule-name term term-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Define the IDS term actions when using the MS-DPC.

Options

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

```
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
```
Related Documentation

- Configuring IDS Rules on an MS-DPC on page 498
then (IDS MS-MPC)

Syntax

```
then [
 aggregation (IDS) [
 destination-prefix prefix-value | destination-prefix-ipv6 prefix-value;
 source-prefix prefix-value | source-prefix-ipv6 prefix-value;
]
 allow-ip-options {
 any;
 loose-source-route;
 route-record;
 route-alert;
 security;
 stream-id;
 strict-source-route;
 timestamp;
 }
 allow-ipv6-extension-header {
 any;
 ah;
 dstopts;
 esp;
 fragment;
 hop-by-hop;
 mobility;
 routing;
 }
 icmp-fragment-check;
 icmp-large-packet-check;
 land-attack-check (ip-only | ip-port);
 session-limit {
 by-destination {
 by-protocol [
 icmp [
 maximum number;
 packets number;
 rate number;
]
 tcp [
 maximum number;
 packets number;
 rate number;
]
 udp [
 maximum number;
 packets number;
 rate number;
]
]
 maximum number;
 packets number;
 rate number;
]
 }
```

Copyright © 2019, Juniper Networks, Inc.
by-source {
  by-protocol {
    icmp {
      maximum number;
      packets number;
      rate number;
    }
    tcp {
      maximum number;
      packets number;
      rate number;
    }
    udp {
      maximum number;
      packets number;
      rate number;
    }
  }
  maximum number;
  packets number;
  rate number;
}
  tcp-syn-defense;
  tcp-syn-fragment-check;
  tcp-winnuke-check;
}

Hierarchy Level  [edit services ids rule rule-name term term-name ]

Release Information Statement introduced in Junos OS Release 17.1 on MX Series.

Description Configure the network attack prevention actions for an IDS rule for a service set on an MS-MPC.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level interface—To view this statement in the configuration.
  interface-control—To add this statement to the configuration.

Related Documentation • Configuring Protection Against Network Attacks on an MS-MPC on page 515
  • Understanding IDS on an MS-MPC on page 511
then

Syntax then {
  anti-replay-window-size bits;
  backup-remote-gateway address;
  clear-dont-fragment-bit;
  dynamic {
    ike-policy policy-name;
    ipsec-policy policy-name;
  }
  initiate-dead-peer-detection;
  manual {
    direction (inbound | outbound | bidirectional) {
      authentication {
        algorithm (hmac-sha-256);
        key (ascii-text key | hexadecimal key);
      }
      auxiliary-spi spi-value;
      encryption {
        algorithm algorithm;
        key (ascii-text key | hexadecimal key);
      }
      protocol (bundle | esp);
      spi spi-value;
    }
  }
  no-anti-replay;
  remote-gateway address;
  syslog;
  tunnel-mtu bytes;
}

Hierarchy Level [edit services ipsec-vpn rule rule-name term term-name]

Release Information Statement introduced before Junos OS Release 7.4.

Description Define the IPsec term actions.

Options The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation • Configuring IPsec Rules on page 592
then (Services NAT)

Syntax

```plaintext
then {
 no-translation;
 port-forwarding-mappings map-name;
 translated {
 address-pooling paired;
 clat-prefix clat-prefix;
 destination-pool nat-pool-name;
 destination-prefix destination-prefix;
 dns-alg-pool dns-alg-pool;
 dns-alg-prefix dns-alg-prefix;
 filtering-type endpoint-independent;
 mapping-type endpoint-independent;
 source-pool nat-pool-name;
 source-prefix source-prefix;
 translation-type (basic-nat-pt | basic-nat44 | basic-nat66 | deterministic-napt44 |
 deterministic-napt64 | dnat-44 | dynamic-nat44 | napt-44 | napt-66 | napt-pt |
 stateful-nat464 | stateful-nat64 | twice-basic-nat-44 | twice-dynamic-nat-44 |
 twice-napt-44);
 }
 syslog;
}
```

Hierarchy Level

```
[edit services nat rule rule-name term term-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Define the NAT term actions.

The remaining statements are explained separately.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

- Network Address Translation Rules Overview on page 84
then (PCP)

Syntax

```
then {
 pcp-server server-name;
}
```

Hierarchy Level

```
[edit services pcp rule rule-name term term-name]
```

Release Information

Statement introduced in Junos OS Release 13.2R1.

Description

Specify the PCP server to handle the traffic that matches the PCP rule term.

- PCP is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS.
- Starting in Junos OS Release 17.4R1, PCP is also supported on the MS-MPC and MS-MIC.

The remaining statements are explained separately.

Required Privilege

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- Configuring Port Control Protocol on page 220
then (Services Stateful Firewall)

Syntax

```plaintext
then {
 (accept <skip-ids> | discard | reject);
 syslog;
}
```

Hierarchy Level

```
[edit services stateful-firewall rule rule-name term term-name]
```

Release Information

Statement introduced before Junos OS Release 7.4. 
skip-ids option added in Junos OS Release 17.1 on MS-MPC and MS-MIC on MX Series.

Description

Define the stateful firewall term actions. You can configure the router to accept, discard, or reject the targeted traffic. The other actions are optional.

Options

- **accept**—Accept the traffic and send it on to its destination.
- **accept skip-ids**—The packet is accepted and sent on to its destination, but IDS rule processing configured on an MS-MPC or MS-MIC is skipped.
- **discard**—Do not accept traffic or process it further.
- **reject**—Do not accept the traffic and return a rejection message. Rejected traffic can be logged or sampled.

The remaining statement is explained separately. See CLI Explorer.

Required Privilege Level

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

Related Documentation

- Configuring Actions in Stateful Firewall Rules on page 471
-Routing Policies, Firewall Filters, and Traffic Policers Feature Guide
- Configuring Protection Against Network Attacks on an MS-MPC on page 515
threshold (Services IPsec)

Syntax

threshold number;

Hierarchy Level

[edit services ipsec-vpn rule rule-name term term-name then dead-peer-detection]

Release Information

Statement introduced in Junos OS Release 11.4.
IKEv2 support introduced in Junos OS Release 17.2.

Description

Specify the maximum number of unsuccessful dead peer detection (DPD) requests to be sent before the peer is considered unavailable. The threshold value is used for IKEv1 security associations (SAs). Starting in Junos OS Release 17.2R1, the threshold value is also applicable to IKEv2 SAs. In Junos OS Release 17.1 and earlier, the threshold option is not applicable to IKEv2 SAs, which use the default value.

Options

number—Maximum number of unsuccessful DPD requests to be sent.
Range: 1 through 10
Default: 3

Required Privilege

security—To view this statement in the configuration.
security-control—To add this statement to the configuration.

Related Documentation

• Configuring IPsec Rules on page 592
threshold (Services Logging and SYN-Cookie Defenses)

Syntax

threshold rate;

Hierarchy Level

[edit services ids rule rule-name term term-name then logging],
[edit services ids rule rule-name term term-name then syn-cookie]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Specify the threshold for logging or applying SYN-cookie defenses when using the MS-DPC.

Options

rate—Logging threshold number of events per second.
rate—SYN-cookie defense number of SYN attacks per second.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

• Configuring Actions in IDS Rules on page 501
traceoptions (Health Check Monitoring)

Syntax

```
traceoptions {
 file file-name ;
 flag flag;
 level (all | error | info | notice | verbose | warning);
 monitor monitor-object-name {
 group-name group-name;
 real-services-name real-service-name;
 }
 no-remote-trace;
}
```

Hierarchy Level

[edit services network-monitoring]

Release Information

Statement introduced in Junos OS Release 16.1 on MX Series.

Description

Specify tracing options for the traffic load balancer health check monitoring function.

Options

- **file file-name**—Use the specified name of the file to receive the output of the tracing operation.

- **flag flag**—Specify which operations you want to trace. To specify more than one operation, include multiple flag statements. Table 35 on page 1314 specifies the various values you can set this option to.
Table 35: Trace Flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Support on MS-MPC and SPC3 Cards</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>MS-MPC and SPC3</td>
<td>Trace all operations.</td>
</tr>
<tr>
<td>all-real-services</td>
<td>SPC3</td>
<td>Trace all real services.</td>
</tr>
<tr>
<td>config</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer configuration events.</td>
</tr>
<tr>
<td>connect</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer ipc events.</td>
</tr>
<tr>
<td>database</td>
<td>MS-MPC and SPC3</td>
<td>Trace database events.</td>
</tr>
<tr>
<td>file-descriptor-queue</td>
<td>MS-MPC</td>
<td>Trace file descriptor queue events.</td>
</tr>
<tr>
<td>inter-thread</td>
<td>MS-MPC</td>
<td>Trace inter-thread communication events.</td>
</tr>
<tr>
<td>filter</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer filter programming events.</td>
</tr>
<tr>
<td>health</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer health events.</td>
</tr>
<tr>
<td>messages</td>
<td>MS-MPC and SPC3</td>
<td>Trace normal events.</td>
</tr>
<tr>
<td>normal</td>
<td>MS-MPC</td>
<td>Trace normal events.</td>
</tr>
<tr>
<td>operational-commands</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer show events.</td>
</tr>
<tr>
<td>parse</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer parse events.</td>
</tr>
<tr>
<td>probe</td>
<td>MS-MPC and SPC3</td>
<td>Trace probe events.</td>
</tr>
<tr>
<td>probe-infra</td>
<td>MS-MPC and SPC3</td>
<td>Trace probe infra events.</td>
</tr>
<tr>
<td>route</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer route events.</td>
</tr>
<tr>
<td>snmp</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer SNMP events.</td>
</tr>
<tr>
<td>statistics</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer statistics events.</td>
</tr>
<tr>
<td>system</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer system events.</td>
</tr>
</tbody>
</table>
group-name group-name—Specify which server group is to be traced.

level—Use the specified level of tracing. You can specify any of the following levels:

- **all**—Match all levels.
- **error**—Match error conditions.
- **info**—Match informational messages
- **notice**—Match conditions that must be handled specially.
- **verbose**—Match verbose messages.
- **warning**—Match warning messages.

monitor monitor-object-name—Name of a monitoring object that contains server group or real service.

no-remote-trace—Disable remote tracing.

real-services-name real-service-name—Specify which real service is to be traced.

Required Privilege
Level

- trace and interface—To view this statement in the configuration.
- trace-control and interface-control—To add this statement to the configuration.

Related Documentation

- Configuring TLB on page 850
traceoptions (Security PKI)

Syntax

```
traceoptions {
 file filename <files number> <match regular-expression> <size maximum-file-size>
 <world-readable | no-world-readable>;
 flag flag;
}
```

Hierarchy Level [edit security pki]

Description
Configure security public key infrastructure (PKI) trace options. To specify more than one trace option, include multiple flag statements. Trace option output is recorded in the /var/log/pkid file.

Options

- **file filename**—Name of the file to receive the output of the tracing operation. Enclose the name within quotation marks. To include the file statement, you must specify a filename.

- **files number**—(Optional) Maximum number of trace files. When a trace file (for example, pkid) reaches its maximum size, it is renamed pkid.0, then pkid.1, and so on, until the maximum number of trace files is reached. When the maximum number is reached, the oldest trace file is overwritten. If you specify a maximum number of files, you must also specify a maximum file size with the size option.

  Range: 2 through 1000 files

  Default: 2 files

- **flag**—Trace operation to perform. To specify more than one trace operation, include multiple flag statements:

  - all—Trace with all flags enabled.

  - certificate-verification—Trace PKI certificate verification events.

  - online-crl-check—Trace PKI online certificate revocation list (CRL) events.

  - enrollment—PKI certificate enrollment tracing.

  - match regular-expression—(Optional) Refine the output to include lines that contain the regular expression.

  - size maximum-file-size—(Optional) Maximum size of each trace file, in kilobytes (KB). If you specify a maximum file size, you also must specify a maximum number of trace files with the files number option.

  Default: 1024 KB

- **world-readable | no-world-readable**—(Optional) By default, log files can be accessed only by the user who configures the tracing operation. The world-readable option
enables any user to read the file. To explicitly set the default behavior, use the 
\texttt{no-world-readable} option.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{Required Privilege} & trace—To view this statement in the configuration. \\
\textbf{Level} & trace-control—To add this statement to the configuration. \\
\hline
\end{tabular}
\end{table}

\begin{itemize}
\item Related Documentation
\end{itemize}

\begin{itemize}
\item Tracing Junos VPN Site Secure Operations on page 610
\end{itemize}
traceoptions (Services IPsec VPN)

Syntax

```plaintext
traceoptions {
 file <filename> <files number> <match regular-expression> <size bytes> <world-readable | no-world-readable>;
 flag flag;
 level level;
 no-remote-trace;
}
```

Hierarchy Level  
[edit services ipsec-vpn]

Release Information
Statement introduced in Junos OS Release 7.5.
level option added in Junos OS Release 10.0.

Description
Configure IPsec tracing operations. By default, messages are written to /var/log/kmd.

Options
files number—Maximum number of trace data files.
Range: 2 through 1000
flag flag—Tracing operation to perform:
- all—Trace everything.
- certificates—Trace certificates that apply to the IPsec service set.
- database—Trace security associations database events.
- general—Trace general events.
- ike—Trace IKE module processing.
- parse—Trace configuration processing.
- policy-manager—Trace policy manager processing.
- routing-socket—Trace routing socket messages.
- snmp—Trace SNMP operations.
- timer—Trace internal timer events.
level level—Key management process (kmd) tracing level. The following values are supported:
- all—Match all levels.
- error—Match error conditions.
- info—Match informational messages.
- notice—Match conditions that should be handled specially.
- verbose—Match verbose messages.
• **warning**—Match warning messages.

**size bytes**—Maximum trace file size.

**Required Privilege**

**Level**

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.
traceoptions (Services L2TP)

Syntax

```
traceoptions {
 debug-level level;
 file filename <files number> <match regular-expression> <size maximum-file-size>
 <world-readable | no-world-readable>;
 filter {
 protocol name;
 user user@domain;
 user-name username;
 }
 flag flag;
 interfaces interface-name {
 debug-level level;
 flag flag;
 }
 level (all | error | info | notice | verbose | warning);
 no-remote-trace;
}
```

Hierarchy Level

[edit services l2tp]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Define tracing operations for L2TP processes.

Options

- **debug-level level**—Trace level for PPP, L2TP, RADIUS, and UDP; this option does not apply to L2TP on MX Series routers:
  - **detail**—Trace detailed debug information.
  - **error**—Trace error information.
  - **packet-dump**—Trace packet decoding information.
- **file filename**—Name of the file to receive the output of the tracing operation. Enclose the name within quotation marks. All files are placed in the directory `/var/log`.
- **files number**—(Optional) Maximum number of trace files to create before overwriting the oldest one. If you specify a maximum number of files, you also must specify a maximum file size with the **size** option.

Range: 2 through 1000

Default: 3 files

- **filter**—Additional filter to refine the output to display particular subscribers. Filtering based on the following subscriber identifiers simplifies troubleshooting in a scaled environment.
- **protocol** *name*—One of the following protocols; this option does not apply to L2TP on MX Series routers:
  - l2tp
  - ppp
  - radius
  - udp

- **user** *user@domain*—Username of a subscriber; this option does not apply to L2TP on M Series routers. Optionally use an asterisk (*) as a wildcard to substitute for characters at the beginning or end of either term or both terms.

- **user-name** *username*—Username of a subscriber; this option does not apply to L2TP on MX Series routers.

**flag** *flag*—Tracing operation to perform. To specify more than one tracing operation, include multiple **flag** statements. You can include the following flags:

- **all**—Trace all operations.
- **configuration**—Trace configuration events.
- **events**—Trace interface events.
- **general**—Trace general events.
- **gres**—Trace GRES events.
- **init**—Trace daemon initialization.
- **ipc-rx**—Trace IPC receive events.
- **ipc-tx**—Trace IPC transmit events.
- **memory**—Trace memory management code.
- **message**—Trace message processing code.
- **packet-error**—Trace packet error events.
- **parse**—Trace parsing events.
- **protocol**—Trace L2TP events.
- **receive-packets**—Trace received L2TP packets.
- **routing-process**—Trace routing process interactions.
- **routing-socket**—Trace routing socket events.
- **session-db**—Trace session database interactions.
- **states**—Trace state machine events.
- **timer**—Trace timer events.
- **transmit-packets**—Trace transmitted L2TP packets.
- **tunnel**—Trace tunnel events.
interfaces interface-name—Apply L2TP trace options to a specific services interface. This option does not apply to L2TP on MX Series routers.

- debug-level level—Trace level for the interface; this option does not apply to L2TP on MX Series routers:
  - detail—Trace detailed debug information.
  - error—Trace error information.
  - extensive—Trace all PIC debug information.

- flag flag—Tracing operation to perform for the interface. This option does not apply to L2TP on MX Series routers. To specify more than one tracing operation, include multiple flag statements. You can include the following flags:
  - all—Trace everything.
  - ipc—Trace L2TP Inter-Process Communication (IPC) messages between the PIC and the Routing Engine.
  - packet-dump—Dump each packet content based on debug level.
  - protocol—Trace L2TP, PPP, and multilink handling.
  - system—Trace packet processing on the PIC.

level—Specify level of tracing to perform. The option you configure enables tracing of events at that level and all higher (more restrictive) levels. You can specify any of the following levels:

- all—Match messages of all levels.
- error—Match error messages.
- info—Match informational messages.
- notice—Match notice messages about conditions requiring special handling.
- verbose—Match verbose messages. This is the lowest (least restrictive) severity level; when you configure verbose, messages at all higher levels are traced. Therefore, the result is the same as when you configure all.
- warning—Match warning messages.

Default: error

match regular-expression—(Optional) Refine the output to include lines that contain the regular expression.

no-remote-trace—Disable remote tracing.

no-world-readable—(Optional) Disable unrestricted file access.
**size maximum-file-size**—(Optional) Maximum size of each trace file. By default, the number entered is treated as bytes. Alternatively, you can include a suffix to the number to indicate kilobytes (KB), megabytes (MB), or gigabytes (GB). If you specify a maximum file size, you also must specify a maximum number of trace files with the `files` option.

**Syntax:** `sizek` to specify KB, `sizem` to specify MB, or `sizeg` to specify GB

**Range:** 10240 through 1073741824

**world-readable**—(Optional) Enable unrestricted file access.

---

**Required Privilege**

- trace—To view this statement in the configuration.
- trace-control—To add this statement to the configuration.

**Related Documentation**

- Tracing L2TP Operations on page 917
- Tracing L2TP Events for Troubleshooting
**traceoptions (Services Logging)**

**Syntax**
```
traceoptions {
 file filename <files number> <match regular-expression> <size size> <world-readable | no-world-readable>;
 flag flag;
 no-remote-trace;
}
```

**Hierarchy Level**
[edit services adaptive-services-pics], [edit services logging]

**Release Information**
Statement introduced before Junos OS Release 7.4. 
file option added in Release 8.0.

**Description**
Configure Adaptive Services or Multiservices PIC tracing operations. The messages are output to `/var/log/serviced`.

**Options**
- **file filename**—Name of the file to receive the output of the tracing operation. All files are placed in the directory `/var/log`.
- **files number**—(Optional) Maximum number of trace files. When a trace file named `trace-file` reaches its maximum size, it is renamed `trace-file.0`, then `trace-file.1`, and so on, until the maximum number of trace files is reached. Then the oldest trace file is overwritten.

  If you specify a maximum number of files, you also must specify a maximum file size with the `size` option.

  **Range:** 2 through 1000 files
  **Default:** 3 files

- **flag flag**—Tracing operation to perform:
  - **all**—Trace everything.
  - **command-queued**—Trace command enqueue events.
  - **config**—Trace configuration events.
  - **handshake**—Trace handshake events.
  - **init**—Trace initialization events.
  - **interfaces**—Trace interface events.
  - **mib**—Trace GGSN SNMP MIB events.
  - **removed-client**—Trace client cleanup events.
• **show**—Trace CLI command servicing.

**match regex**—(Optional) Match output to a defined regular expression (regex).

**Default:** If you do not include this option, the trace operation output includes all lines relevant to the logged events.

**no-world-readable**—(Optional) Prevent any user from reading the log file.

**size size**—(Optional) Maximum size of each trace file, in kilobytes (KB), megabytes (MB), or gigabytes (GB). When a trace file named `trace-file` reaches this size, it is renamed `trace-file.0`. When the `trace-file` again reaches its maximum size, `trace-file.0` is renamed `trace-file.1` and `trace-file` is renamed `trace-file.0`. This renaming scheme continues until the maximum number of trace files is reached. Then the oldest trace file is overwritten.

If you specify a maximum file size, you also must specify a maximum number of trace files with the `files` option.

**Syntax:** `x k` to specify KB, `x m` to specify MB, or `x g` to specify GB

**Range:** 10 KB through 1 GB

**Default:** 128 KB

**world-readable**—(Optional) Allow any user to read the log file.

---

**Required Privilege**

- **Level**
  - `interface`—To view this statement in the configuration.
  - `interface-control`—To add this statement to the configuration.

**Related Documentation**

- [Tracing Services PIC Operations on page 35](#)
traceoptions (Traffic Load Balancer)

Syntax

```
traceoptions {
 file file-name <files number> <no-word-readable | world-readable> <size size>;
 flag flag;
 level (all | critical | error | info | notice | verbose | warning);
 monitor monitor-object-name {
 instance-name instance-name;
 virtual-svc-name virtual-service-name;
 }
 no-remote-trace;
}
```

Hierarchy Level
[edit services traffic-load-balance]

Release Information
Statement introduced in Junos OS Release 16.1 on MX Series.

`instance-name` and `virtual-service-name` options added in Junos OS Release 16.1R6 and 18.2R1 on MX Series.

Description
Configure tracing options for the traffic load balancer.

Options

- **file file-name**—Name of the file to receive the output of the tracing operation.
- **files number**—(Optional) Maximum number of trace files. When a trace file named trace-file reaches its maximum size, it is renamed trace-file.0, then trace-file.1, and so on, until the maximum number of trace files is reached. Then the oldest trace file is overwritten.
  - **Range:** 2 through 1000 files
  - **Default:** 3 files
- **flag flag**—Specify which operations you want to trace. To specify more than one operation, include multiple flag statements.
### Table 36: Trace Flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Support on MS-MPC and SPC3 Cards</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>MS-MPC and SPC3</td>
<td>Trace all operations.</td>
</tr>
<tr>
<td>all-real-services</td>
<td>SPC3</td>
<td>Trace all real services.</td>
</tr>
<tr>
<td>config</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer configuration events.</td>
</tr>
<tr>
<td>connect</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer ipc events.</td>
</tr>
<tr>
<td>database</td>
<td>MS-MPC and SPC3</td>
<td>Trace database events.</td>
</tr>
<tr>
<td>file-descriptor-queue</td>
<td>MS-MPC</td>
<td>Trace file descriptor queue events.</td>
</tr>
<tr>
<td>inter-thread</td>
<td>MS-MPC</td>
<td>Trace inter-thread communication events.</td>
</tr>
<tr>
<td>filter</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer filter programming events.</td>
</tr>
<tr>
<td>health</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer health events.</td>
</tr>
<tr>
<td>messages</td>
<td>MS-MPC and SPC3</td>
<td>Trace normal events.</td>
</tr>
<tr>
<td>normal</td>
<td>MS-MPC</td>
<td>Trace normal events.</td>
</tr>
<tr>
<td>operational-commands</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer show events.</td>
</tr>
<tr>
<td>parse</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer parse events.</td>
</tr>
<tr>
<td>probe</td>
<td>MS-MPC and SPC3</td>
<td>Trace probe events.</td>
</tr>
<tr>
<td>probe-infra</td>
<td>MS-MPC and SPC3</td>
<td>Trace probe infra events.</td>
</tr>
<tr>
<td>route</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer route events.</td>
</tr>
<tr>
<td>snmp</td>
<td>MS-MPC and SPC3</td>
<td>Trace traffic load balancer SNMP events.</td>
</tr>
<tr>
<td>statistics</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer statistics events.</td>
</tr>
<tr>
<td>system</td>
<td>MS-MPC</td>
<td>Trace traffic load balancer system events.</td>
</tr>
</tbody>
</table>
**instance-name instance-name**—(Optional) Name of the TLB instance to monitor.

**level**—Use the specified level of tracing. You can specify any of the following levels:

- **all**—Match all levels.
- **error**—Match error conditions.
- **info**—Match informational messages.
- **notice**—Match conditions that must be handled specially.
- **verbose**—Match verbose messages.
- **warning**—Match warning messages.

These trace levels are available for both the MS-MPC and SPC3 services cards unless otherwise specified.

**monitor monitor-object-name**—Name of a monitoring object that contains an instance name or virtual service name.

**no-remote-trace**—(Optional) Disable remote tracing.

**no-world-readable**—(Optional) Disable unrestricted file access.

For Next Gen Services on the MX-SPC3 services card, set the **monitor-object-name** to either:

**group-name**—Name of the group.

**real-services-name**—Name of the real service

**size size**—(Optional) Use the maximum size of each trace file, in kilobytes (KB) or megabytes (MB). When a trace file named trace-file reaches this size, it is renamed trace-file.0. When the trace-file again reaches its maximum size, trace-file.0 is renamed trace-file.1 and trace-file is renamed trace-file.0. This renaming scheme continues until the maximum number of trace files is reached. Then, the oldest trace file is overwritten. If you specify a maximum number of files, you must also specify a maximum file size with the size option.

**Syntax:**  \(xk\) to specify KB, \(xm\) to specify MB, or \(xg\) to specify GB.

**Range:**  10,240 through 1,073,741,824 bytes.

**Default:**  128 KB

**virtual-svc-name virtual-service-name**—(Optional) Name of the virtual service to monitor.

**word-readable**—(Optional) Enable unrestricted file access.

---

**Required Privilege**

**Level**

- trace and interface—To view this statement in the configuration.
- trace-control and interface-control—To add this statement to the configuration.

**Related Documentation**

- Traffic Load Balancer Overview on page 843
- Configuring TLB on page 850
traceoptions (Services Redundancy Daemon)

Syntax

```plaintext
traceoptions {
 file file-name <files number> <no-word-readable | world-readable> <size size>;
 flag flag;
 level (all | error | info | notice | verbose | warning);
 no-remote-trace;
}
```

Hierarchy Level

[edit services redundancy-set]

Release Information

Statement introduced in Junos OS Release 16.1 on MX Series.

Description

Specify the level of redundancy system events to be traced.

Options

- **file file-name**—Name of the file to receive the output of the tracing operation.
- **files number**—(Optional) Maximum number of trace files. When a trace file named trace-file reaches its maximum size, it is renamed trace-file.0, then trace-file.1, and so on, until the maximum number of trace files is reached. Then the oldest trace file is overwritten.
  
  Range: 2 through 1000 files
  
  Default: 3 files
- **flag flag**—Specify which operations are to be traced. To specify more than one operation, include multiple flag statements.
  
  - **all**—Trace everything.
  - **config**—Trace services redundancy configuration events.
  - **connect**—Trace services redundancy ipc events.
  - **error**—Trace services redundancy errors.
  - **database**—Trace services database events.
  - **normal**—Trace normal events.
  - **opcmd**—Trace services redundancy opcmd events.
  - **parse**—Trace services redundancy parse events.
  - **route**—Trace services redundancy route events.
  - **snmp**—Trace services redundancy snmp events.
  - **state**—Trace services redundancy set state-machine.
  - **switchover**—Trace switchover events.
  - **system**—Trace services redundancy system events.
**level**—Use the specified level of tracing. You can specify any of the following levels:

- **all**—Match all levels.
- **critical**—Match critical conditions.
- **error**—Match error conditions.
- **info**—Match informational messages
- **notice**—Match conditions that must be handled specially.
- **verbose**—Match verbose messages.
- **warning**—Match warning messages.

**no-remote-trace**—(Optional) Disable remote tracing.

**no-world-readable**—(Optional) Disable unrestricted file access.

**size** *(size)*—(Optional) Use the maximum size of each trace file, in kilobytes (KB) or megabytes (MB). When a trace file named trace-file reaches this size, it is renamed trace-file.0. When the trace-file again reaches its maximum size, trace-file.0 is renamed trace-file.1 and trace-file is renamed trace-file.0. This renaming scheme continues until the maximum number of trace files is reached. Then, the oldest trace file is overwritten. If you specify a maximum number of files, you must also specify a maximum file size with the size option.

**Syntax:**  \( xk \) to specify KB, \( xm \) to specify MB, or \( xg \) to specify GB.

**Range:** 10,240 through 1,073,741,824 bytes.

**Default:** 128 KB

**word-readable**—(Optional) Enable unrestricted file access.

### Required Privilege

- **maintenance**—To view this statement in the configuration.
- **maintenance-control**—To add this statement to the configuration.

### Related Documentation

- [Configuring the Service Redundancy Daemon on page 760](#)
traffic-load-balance (Traffic Load Balancer)

Syntax  

traffic-load-balance {  
    instance instance-name {  
        client-interface client-interface;  
        client-vrf client-vrf;  
        group group-name {  
            health-check-interface-subunit health-check-interface-subunit;  
            network-monitoring-profile [profile-name1, profile-name2];  
            real-service-rejoin-options no-auto-rejoin;  
            real-services [server-list];  
            <routing-instance routing-instance>;  
        }  
        interface interface-name;  
        real-service real-service {  
            address server-ip-address;  
            admin-down;  
        }  
        server-inet-bypass-filter server-inet-bypass-filter;  
        server-inet6-bypass-filter server-inet6-bypass-filter;  
        server-interface server-interface;  
        server-vrf server-vrf;  
        traceoptions {  
            file file-name <files number> <no-word-readable | world-readable> <size size>;  
            flag flag;  
            level (all | critical | error | info | notice | verbose | warning);  
            monitor {  
                instance-name instance-name;  
                virtual-svc-name virtual-service-name;  
            }  
            no-remote-trace;  
        }  
        virtual-service virtual-service-name {  
            address virtual-ip-address;  
            group group-name;  
            load-balance-method {  
                hash {  
                    hash-key method;  
                }  
                random;  
            }  
            mode (layer2-direct-server-return | direct-server-return | translated);  
            <routing-instance routing-instance-name>;  
            <routing-metric route-metric>;  
            server-interface server-interface;  
            service service-name {  
                protocol (udp | tcp);  
                server-listening-port port;  
                virtual-port virtual-port;  
            }  
        }  
    }  
}
Hierarchy Level  [edit services]

Release Information  Statement introduced in Junos OS Release 16.1 on MX Series. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description  Configure traffic load balancer options.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege  Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Traffic Load Balancer Overview on page 843
• Configuring TLB on page 850
translated

Syntax  
translated {
    address-pooling paired;
    clat-prefix clat-prefix;
    destination-pool nat-pool-name;
    destination-prefix destination-prefix;
    dns-alg-pool dns-alg-pool;
    dns-alg-prefix dns-alg-prefix;
    filtering-type endpoint-independent;
    mapping-type endpoint-independent;
    overload-pool overload-pool-name;
    overload-prefix;
    source-pool nat-pool-name;
    translation-type { basic-nat-pt | basic-nat44 | basic-nat66 | deterministic-napt44 |
        deterministic-napt64 | dnat-44 | dynamic-nat44 | napt-44 | napt-66 | napt-pt |
        stateful-nat464 | stateful-nat64 | twice-basic-nat-44 | twice-dynamic-nat-44 |
        twice-napt-44 }
}

Hierarchy Level  
[edit services nat rule rule-name term term-name then]

Release Information  
Statement introduced before Junos OS Release 7.4.

Description  
Define properties for translated traffic.

Options  
The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level  
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation  
• Network Address Translation Rules Overview on page 84
transport

Syntax  transport [ transport-protocols ];

Hierarchy Level  [edit services nat pool nat-pool-name pgcp]


Description  Configure the BGF to select a NAT pool based on transport protocol type.

Options  [ transport-protocol ]—One or more transport protocols.
Values:  rtp-avp, tcp, udp
Syntax:  One or more protocols. If you specify more than one protocol, you must enclose all protocols in brackets.

Required Privilege  Level  interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

trigger-link-failure

Syntax  trigger-link-failure interface-name;

Hierarchy Level  [edit interfaces lsq-fpc/pic/port lsq-failure-options]

Release Information  Statement introduced in Junos OS Release 7.4.

Description  List of SONET interfaces connected to the LSQ interface that can implement Automatic Protection Switching (APS) if the Link Services IQ PIC fails.

Options  interface-name—Name of SONET interface.

Required Privilege  Level  interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation  • Configuring the Association between LSQ and SONET Interfaces on page 788
translated-port

Syntax
translated-port port id;

Hierarchy Level
[edit services nat port-forwarding map-name]

Release Information
Statement introduced in Junos OS Release 11.4.

Description
Specify the port to which all traffic will be translated.

The translated-port statement is supported on the MS-DPC, MS-100, MS-400, and MS-500 MultiServices PICS. Starting in Junos OS Release 17.4R1, the translated-port statement is also supported on the MS-MPC and MS-MIC.

Options
port id—The port number to which traffic will be translated.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Port Forwarding for Static Destination Address Translation on page 244
- Configuring Port Forwarding Without Destination Address Translation on page 248
**translation-type**

**Syntax**

```
translation-type (basic-nat-pt | basic-nat44 | basic-nat66 | nat-44 | deterministic-napt44 | deterministic-napt64 | dnat-44 | dynamic-nat44 | napt-44 | napt-66 | napt-pt | nptv6 | stateful-nat464 | stateful-nat64 | twice-basic-nat-44 | twice-dynamic-nat-44 | twice-napt-44)
```

**Hierarchy Level**

```
[edit services nat rule rule-name term term-name then translated]
```

**Release Information**

Statement introduced before Junos OS Release 7.4. The following options introduced in Junos OS Release 11.2, replacing all previous options.

- basic-nat44
- basic-nat66
- basic-nat-pt
- dnat-44
- dynamic-nat44
- napt-44
- napt-66
- napt-pt
- stateful-nat64

- deterministic-napt44 option introduced in Junos OS Release 12.1.
- deterministic-napt64 option introduced in Junos OS Release 17.4R1.
- nptv6 option introduced in Junos OS Release 15.1
- stateful-nat64 option introduced in Junos OS Release 17.1R1.
- twice-basic-nat-44 option introduced in Junos OS Release 11.4.
- twice-dynamic-nat-44 option introduced in Junos OS Release 11.4.
- twice-napt-44 option introduced in Junos OS Release 11.4.

**Description**

Specify the NAT translation types. To identify the interface cards and Junos OS releases that support each translation type, see "Carrier-Grade NAT Feature Comparison for Junos Address Aware by Type of Interface Card" on page 69.

**Options**

- **basic-nat44**—Translate the source address statically (IPv4 to IPv4).

- **basic-nat66**—Translate the source address statically (IPv6 to IPv6).

- **basic-nat-pt**—Translate the addresses of IPv6 hosts as they originate sessions to the IPv4 hosts in the external domain. The **basic-nat-pt** option is always implemented with DNS ALG.

- **deterministic-napt44**—Translate as deterministic NAPT44.
deterministic-napt64—Translate as deterministic NAPT64.
dnat-44—Translate the destination address statically (IPv4 to IPv4).
dynamic-nat44—Translate only the source address by dynamically choosing the NAT address from the source address pool.
napt-44—Translate the transport identifier of the IPv4 private network to a single IPv4 external address.
napt-66—Translate the transport identifier of the IPv6 private network to a single IPv6 external address.
napt-pt—Bind addresses in an IPv6 network with addresses in an IPv4 network and vice versa to provide transparent routing for the datagrams traversing between the address realms.
nptv6—Translate the source address prefix in a stateless manner (IPv6 to IPv6).
stateful-nat64—Implement dynamic address and port translation for source IP addresses (IPv6-to-IPv4) and prefix removal translation for the destination IP addresses (IPv6-to-IPv4).
twice-basic-nat-44—Translate the source and destination addresses statically (IPv4 to IPv4).

NOTE: Starting with Junos OS Release 15.1R1, the twice NAT functionality (twice-basic-nat-44, twice-dynamic-nat-44, and twice-dynamic-napt-44 options) is supported on MX Series routers with MS-MPCs and MS-MICs.

twice-dynamic-nat-44—Translate the source address by dynamically choosing the NAT address from the source address pool. Translate the destination address statically.
twice-dynamic-napt-44—Translate the transport identifier of the IPv4 private network to a single IPv4 external address. Translate the destination address statically.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Network Address Translation Rules Overview on page 84
trusted-ca

Syntax trusted-ca ca-profile-name;

Hierarchy Level [edit services service-set service-set-name ipsec-vpn-options]

Release Information Statement introduced in Junos OS Release 7.5.

Description Identify one or more trusted IPsec certification authorities.

Options ca-profile-name—Name of certification authority profile, which is configured at the [edit security pki] hierarchy level.

Required Privilege Level admin—To view this statement in the configuration.

admin-control—To add this statement to the configuration.

Related Documentation • Configuring IPsec Service Sets on page 600

ttl-threshold

Syntax ttl-threshold number;

Hierarchy Level [edit applications application application-name]

Release Information Statement introduced before Junos OS Release 7.4.

Description Specify the traceroute time-to-live (TTL) threshold value. This value sets the acceptable level of network penetration for trace routing.

Options number—TTL threshold value.

Required Privilege Level interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation • ALG Descriptions on page 399

• Configuring the TTL Threshold on page 450.

• Examples: Configuring Application Protocols on page 450

• Verifying the Output of ALG Sessions on page 451
tunnel-group

Syntax
tunnel-group group-name {
  aaa-access-profile profile-name;
  dynamic-profile profile-name;
  hello-interval seconds;
  hide-avps;
  l2tp-access-profile profile-name;
  local-gateway address {
    address address;
    gateway-name gateway-name;
  }
  maximum-send-window packets;
  maximum-sessions number;
  ppp-access-profile profile-name;
  receive-window packets;
  retransmit-interval seconds;
  service-device-pool pool-name;
  service-interface interface-name;
  service-profile profile-name(parameter)&profile-name;
  syslog {
    host hostname {
      services severity-level;
      facility-override facility-name;
      log-prefix prefix-value;
    }
  }
  tos-reflect;
  tunnel-switch-profile profile-name;
  tunnel-timeout seconds;
}

Hierarchy Level
[edit services l2tp]

Release Information
Statement introduced before Junos OS Release 7.4.
Support for MX Series routers introduced in Junos OS Release 11.4.

Description
Specify the L2TP tunnel properties.

NOTE: Subordinate statement support depends on the platform. See individual statement topics for more detailed support information.

Options
  group-name—Identifier for the tunnel group.

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.
tunnel-mtu (Services IPsec VPN)

Syntax  

```
tunnel-mtu bytes;
```

Hierarchy Level  

```
[edit services ipsec-vpn rule rule-name term term-name then]
```

Release Information  
Statement introduced in Junos OS Release 7.5.

Description  
Maximum transmission unit (MTU) size for IPsec tunnels. This defines the maximum size of an IP packet, including the IPsec overhead.

Options  

- **bytes**—MTU size.
  - Default: 1500 bytes
  - Range: 256 through 9192 bytes

NOTE: Clear the IPsec SA in tunnel-mtu to accommodate Jumbo frames larger than 1500 bytes.

Required Privilege  
interface—To view this statement in the configuration.

Related Documentation  
- Configuring L2TP Tunnel Groups on page 907
- Configuring an L2TP Tunnel Group for LNS Sessions with Inline Services Interfaces
tunnel-mtu (Services Service Set)

Syntax  
tunnel-mtu bytes;

Hierarchy Level  
[edit services service-set service-set-name ipsec-vpn-options]

Release Information  
Statement introduced in Junos OS Release 10.0.

Description  
Maximum transmission unit (MTU) size for IPsec tunnels. This statement is useful for dynamic endpoint tunnels for which you cannot configure the tunnel-mtu statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level.

For static IPsec tunnels, this statement sets the tunnel MTU value for all the tunnels within this service set. If you need a specific value for a particular tunnel, then set the tunnel-mtu statement at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level.

NOTE: The tunnel-mtu setting at the [edit services ipsec-vpn rule rule-name term term-name then] hierarchy level overrides the value specified at the [edit services service-set service-set-name ipsec-vpn-options] hierarchy level.

Options  
bytes—MTU size.
Default: 1500 bytes
Range: 256 through 9192 bytes

Required Privilege Level  
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation  
- mtu
- Configuring IPsec Service Sets on page 600
- Configuring IPsec Rules on page 592
tunnel-timeout

Syntax    tunnel-timeout seconds;

Hierarchy Level    [edit services l2tp tunnel-group name]

Release Information    Statement introduced before Junos OS Release 7.4.

Description    Specify the maximum downtime for an L2TP tunnel, after which the tunnel is terminated because the connection is presumed to have been lost.

Options    seconds—Interval after which the tunnel is terminated if no data can be sent.

Default: 120 seconds

Required Privilege Level    interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

• Configuring Timers for L2TP Tunnels on page 909

• Configuring an L2TP Tunnel Group for LNS Sessions with Inline Services Interfaces
udp-encapsulation

Syntax

```
udp-encapsulation {
 <udp-dest-port destination-port>;
}
```

Hierarchy Level

```
[edit services service-set service-set-name ipsec-vpn-options]
```

Release Information

Statement introduced in Junos OS Release 16.1 on the MX Series.

Description

Enable multiple path forwarding of IPsec traffic by adding a UDP header to the IPsec encapsulation of packets. Doing this increases the throughput of IPsec traffic. If you do not enable UDP encapsulation, all the IPsec traffic follows a single forward path rather than using multiple available paths.

Options

- `udp-dest-port destination-port`—(Optional) Use the specified UDP destination port for the UDP header that is appended to the ESP encapsulation.
  - Range: 1025 through 65536. Do not use 4500.
  - Default: If you do not include the `udp-dest-port` statement, the default UDP destination port is 4565.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring IPsec Service Sets on page 600
- IPsec Multipath Forwarding with UDP Encapsulation on page 539
unit (Aggregated Multiservices)

Syntax

unit interface-unit-number {
  family family;
}

Hierarchy Level

[edit interfaces interface-name]

Release Information

Statement introduced in Junos OS Release 11.4.

Description

Configure the logical interface on the physical device. You must configure a logical
interface to be able to use the physical device.

The remaining statements are explained separately. See CLI Explorer.

Options

interface-unit-number—Number of the logical unit.

NOTE: Unit 0 is reserved and cannot be configured under the aggregated
Multiservices interface (ams).

Range: 1 through 16,384

Required Privilege

level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Understanding Aggregated Multiservices Interfaces on page 865
- Example: Configuring an Aggregated Multiservices Interface (AMS) on page 878
- interfaces on page 1086
**unit (Interfaces)**

**Syntax**

```
unit logical-unit-number {
 family inet {
 address address {
 }
 service {
 input {
 service-set service-set-name <service-filter filter-name> ;
 post-service-filter filter-name;
 }
 output {
 service-set service-set-name <service-filter filter-name> ;
 }
 }
 service-domain (inside | outside);
 }
}
```

**Hierarchy Level**  
[edit interfaces interface-name ]

**Release Information**  
Statement introduced before Junos OS Release 7.4.

**Description**  
Configure a logical interface on the physical device. You must configure a logical interface to be able to use the physical device.

**Options**  
*logical-unit-number*—Number of the logical unit.

- **Range**: 0 through 16,384

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege**  
- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

**Related Documentation**  
- Junos OS Network Interfaces Library for Routing Devices for other statements that do not affect services interfaces.
unit (Voice Services)

Syntax

```plaintext
unit logical-unit-number {
 compression {
 rtp {
 f-max-period number;
 maximum-contexts number <force>;
 port {
 minimum port-number;
 maximum port-number;
 }
 queues [queue-numbers];
 }
 }
 compression-device interface-name;
 encapsulation type;
 family family {
 address address {
 ...}
 bundle (lsq-fpc/pic/port | ...);
 }
}
```

Hierarchy Level

[edit interfaces interface-name ]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure a logical interface on the physical device. You must configure a logical interface to be able to use the physical device.

Options

`logical-unit-number`—Number of the logical unit.

Range: 0 through 16,384

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Junos OS Network Interfaces Library for Routing Devices for other statements that do not affect services interfaces.
- Configuring Services Interfaces for Voice Services on page 894
url-filter

Syntax
url-filter {
    profile profile-name {
        template template-name {
            client-interfaces [ client-interface-name1 client-interface-name2 ];
            disable-url-filtering;
            dns-resolution-interval minutes;
            dns-resolution-rate seconds;
            dns-retries number;
            dns-routing-instance dns-routing-instance-name;
            dns-server [ ip-address1 ip-address2 ip-address3 ];
            dns-source-interface loopback-interface-name;
            routing-instance routing-instance-name;
            server-interfaces [ server-interface-name1 server-interface-name2 ];
        }
        term term-name {
            from {
                src-ip-prefix [ prefix1 prefix2 ];
                dest-port [ port1 port2 ];
            }
            then {
                accept;
                custom-page custom-page;
                http-status-code http-status-code;
                redirect-url redirect-url;
                tcp-reset;
            }
        }
    }
    url-filter-database filename
}
}

Hierarchy Level [edit services]

Release Information Statement introduced in Junos OS Release 17.2.

Description Configure URL filtering service.

NOTE: Starting in Junos OS Release 18.3R1, the url-filter statement is deprecated and has been replaced by the web-filter statement. The url-filter statement is supported for backward compatibility.

Options url-filter-database filename—Specify the filename of the URL filter database. This option is mandatory.
The remaining statements are explained separately.

## url-filter-profile

**Syntax**

```
url-filter-profile profile-name:
```

**Hierarchy Level**

```
[edit services service-set service-set-name]
```

**Release Information**

Statement introduced in Junos OS Release 17.2.

**Description**

Specify the URL filter profile that the service set uses. The URL filter profile specifies how to filter access to blacklisted URLs, and is configured at the `[edit services url-filter]` hierarchy level.

---

**NOTE:** You must also configure the next-hop-service statement with this statement.

---

**NOTE:** Starting in Junos OS Release 18.3R1, the url-filter-profile statement is deprecated and has been replaced by the web-filter-profile statement. The url-filter-profile statement is supported for backward compatibility.

**Options**

- `profile-name`—Name of the URL filter profile.

**Required Privilege Level**

- system—To view this statement in the configuration.
- system-control—To add this statement to the configuration.

**Related Documentation**

- Configuring URL Filtering on page 50
- URL Filtering Overview on page 47
- url-filter on page 1347
url-filter-template

Syntax
url-filter-template template-name {
client-interfaces [ client-interface-name1 client-interface-name2 ];
disable-url-filtering;
dns-resolution-interval minutes;
dns-resolution-rate seconds;
dns-retries number;
dns-routing-instance dns-routing-instance-name;
dns-server [ ip-address1 ip-address2 ip-address3 ];
dns-source-interface loopback-interface-name;
routing-instance routing-instance-name;
server-interfaces [ server-interface-name1 server-interface-name2 ];
term term-name {
from {
src-ip-prefix [prefix] prefix2;
dest-port [port] port2; }
then {
accept;
custom-page custom-page;
http-status-code http-status-code;
redirect-url redirect-url;
tcp-reset;
}
}
url-filter-database filename
}

Hierarchy Level [edit services web-filter profile profile-name]

Release Information Statement introduced in Junos OS Release 18.3R1 on MX Series.

Description Configure a URL filter template.

Options template-name—Name of the URL filter template.

client-interfaces [ client-interface-name1 client-interface-name2 ]—The list of client-facing logical interfaces (uplink) on which the URL filtering is configured. This option is mandatory.

disable-url-filtering—Disables the filtering of HTTP traffic that contains an embedded IP address (for example, http://10.1.1.1) belonging to a blacklisted domain name in the URL filter database.

dns-resolution-interval minutes—DNS resolution time interval in minutes.
  Default: 1440
  Range: 60 through 1440 minutes.
**dns-resolution-rate-seconds**—Number of DNS queries per second sent out from the system before initiating further DNS queries.

Default: 50
Range: 50 through 100.

**dns-retries number**—Number of retries for a DNS query in case query fails or times out.

Default: 3
Range: 1 through 5.

**dns-routing-instance dns-routing-instance-name**—The VRF on which the DNS server is reachable. This option is mandatory. You can use the default routing instance inet.0 or a defined routing instance.

**dns-server [ ip-address1 ip-address2 ip-address3 ]**—One or more IP (IPv4 or IPv6) addresses of DNS servers to which the DNS queries are sent out. This option is mandatory.

**dns-source-interface loopback-interface-name**—The loopback interface for which source IP address is picked for sending DNS queries. This option is mandatory.

**routing-instance routing-instance-name**—The VRF on which URL filtering feature is configured. This option is mandatory. You can use the default routing instance inet.0 or a defined routing instance.

**server-interfaces [ server-interface-name1 server-interface-name2 ]**—Server-facing interfaces to which traffic is destined. This option is mandatory.

The list of server-facing logical interfaces (downlink) on which the URL filtering is configured. This option is mandatory.

**url-filter-database filename**—The filename of the URL filter database. The file should be placed in the /var/db/url-filterd directory, but indicate just the filename here and not the full path.

The remaining statements are explained separately.

**Required Privilege**

- **Level**
  - system—To view this statement in the configuration.
  - system-control—To add this statement to the configuration.

**Related Documentation**

- Configuring URL Filtering on page 50
uuid

Syntax  uuid hex-value;

Hierarchy Level  [edit applications application application-name]

Release Information  Statement introduced before Junos OS Release 7.4.

Description  Specify the Universal Unique Identifier (UUID) for DCE RPC objects.

Options  hex-value—Hexadecimal value.

Required Privilege  Interface—To view this statement in the configuration.
Level  Interface-control—To add this statement to the configuration.

Related Documentation  • ALG Descriptions on page 399
  • Configuring a Universal Unique Identifier on page 450
  • Examples: Configuring Application Protocols on page 450
  • Verifying the Output of ALG Sessions on page 451
v6rd

Syntax

```plaintext
v6rd {v6rd-softwire-concentrator [ipv4-prefix ipv4-prefix; v6rd-prefix ipv6-prefix; mtu-v4 mtu-v4; softwire-address ipv4-address;]}
```

Hierarchy Level

```
[edit services softwire softwire-concentrator]
```

Release Information

Statement introduced in Junos OS Release 10.4.

Description

Configure settings for a 6rd concentrator used to process IPv6 packets encapsulated in IPv4 packets.

The `v6rd` statement is supported only on the MS-DPC, MS-100, MS-400, and MS-500 line cards. The `v6rd` statement is not supported on MS-MPCs and MS-MICs.

Options

- `ipv4-prefix`—IPv4 prefix of the customer edge (CE) network
- `ipv6-prefix`—IPv6 prefix of the 6rd domain.
- `mtu-v4`—Maximum transmission unit (MTU), in bytes (576 through 9192), for IPv6 packets encapsulated into IPv4. If the final length is greater than the configured value, the IPv4 packet will be dropped.
- `address`—IPv4 address of a softwire concentrator. This is an IPv4 address independent of any interface and on a different prefix.

Required Privilege

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- Configuring a 6rd Softwire Concentrator on page 353
version (IKE)

Syntax

version (1 | 2);

Hierarchy Level

[edit services ipsec-vpn ike policy policy-name].

Release Information

Statement introduced in Junos OS Release 11.4.

Description

Configure the Internet Key Exchange (IKE) version that is used to negotiate dynamic SAs for IPSec.

Options

1—Uses IKEv1.

2—Uses IKEv2.

NOTE: By default, Junos OS uses IKE policy version 1.0. Version 2.0 is supported only in Junos OS Release 11.4 and later. If no version is explicitly configured, Junos OS sets the version to version 1.0.

Required Privilege

Level

admin—To view this statement in the configuration.

admin-control—To add this statement to the configuration.

Related Documentation

• Configuring IKE Policies on page 576
video

Syntax

```plaintext
video {
 dscp (Services CoS) (alias | bits);
 forwarding-class (Services PIC Classifiers) class-name;
}
```

Hierarchy Level

[edit services (CoS) cos application-profile profile-name sip]

Release Information

Statement introduced in Junos OS Release 9.3.

Description

Set the appropriate `dscp` and `forwarding-class` values for SIP video traffic.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Application Profiles for Use as CoS Rule Actions on page 715

video (Application Profile)

Syntax

```plaintext
video {
 dscp (alias | bits);
 forwarding-class class-name;
}
```

Hierarchy Level

[edit services cos application-profile profile-name sip]

Release Information

Statement introduced in Junos OS Release 9.3.

Description

Set the appropriate `dscp` and `forwarding-class` values for SIP video traffic.

Default

By default, the system will not alter the DSCP or forwarding class for SIP video traffic.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- voice (Application Profile) on page 1357

---

Adaptive Services Interfaces Feature Guide for Routing Devices

Copyright © 2019, Juniper Networks, Inc.
virtual-service (Traffic Load Balancer)

Syntax

```
virtual-service virtual-service-name {
 address virtual-ip-address;
 group group-name;
 load-balance-method {
 hash {
 hash-key method;
 }
 random;
 }
 mode (layer2-direct-server-return | direct-server-return | translated);
 <routing-instance routing-instance-name>;
 <routing-metric route-metric>;
 server-interface server-interface;
 service service-name {
 protocol (udp | tcp);
 server-listening-port port;
 virtual-port virtual-port;
 }
}
```

Hierarchy Level
[edit services traffic-load-balance instance instance-name]

Release Information
Statement introduced in Junos OS Release 16.1 on MX Series.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description
Configure a TLB virtual service.

Options
- **address virtual-ip-address**—Address of the virtual service.
- **group group-name**—Server group for the virtual service.
- **load-balance method hash hash-key method**—Use a combination of these hash-key methods for the session distribution API:
  - **dest-ip**—Hash on destination IP address.
  - **proto**—Hash on protocol.
  - **source-ip**—Hash on source IP address.
- **load-balance-method random**—Use randomizing algorithm for session distribution.
- **mode (layer2-direct-server-return | direct-server-return | translated)**—Traffic load balancer mode of operation:
  - **direct-server-return**—Transparent mode Layer 3 direct server return.
layer2-direct-server-return—Transparent mode Layer 2 direct server return. Load balancing works by changing the Layer 2 MAC of packets; Layer 3 and higher level headers are not modified.

translated—The Packet Forwarding Engine performs stateless load balancing.

route-metric—(Optional) Route metric

Range: 1 through 255

routing-instance-name—(Optional) Routing instance for the virtual service. Default is inet.0.

server-interface server-interface—(Optional) The server-interface specified under the virtual-service, will be used instead of the values provided under the instance level.

service service-name—Translated mode details. Packets destined to this virtual ip-address + virtual-port + protocol will be load balanced to the appropriate server. The destination IP address and port are replaced by the real services IP address and the server-listening-port (configured here).

protocol (udp | tcp)—Protocol.

server-listening-port port—Port number.

virtual-port virtual-port—Virtual port number.

virtual-ip-address—Local address for the virtual service.

virtual-service-name—Identifier for the virtual service.

Required Privilege

Level

interface—to view this statement in the configuration.

interface-control—to add this statement to the configuration.

Related Documentation

• Traffic Load Balancer Overview on page 843

• Configuring TLB on page 850
voice

Syntax

```plaintext
voice {
 dscp (Services CoS) (alias | bits);
 forwarding-class (Services PIC Classifiers) class-name;
}
```

Hierarchy Level

```
[edit services (CoS) cos application-profile profile-name sip]
```

Release Information

Statement introduced in Junos OS Release 9.3.

Description

Set the appropriate `dscp` and `forwarding-class` values for SIP voice traffic.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Application Profiles for Use as CoS Rule Actions on page 715

voice (Application Profile)

Syntax

```plaintext
voice {
 dscp (alias | bits);
 forwarding-class class-name;
}
```

Hierarchy Level

```
[edit services cos application-profile profile-name sip]
```

Release Information

Statement introduced in Junos OS Release 9.3.

Description

Set the appropriate `dscp` and `forwarding-class` values for SIP voice traffic.

Default

By default, the system will not alter the DSCP or forwarding class for SIP voice traffic.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring CoS Rules on Services PICs
- video (Application Profile) on page 1354
**warm-standby**

**Syntax**

```
warm-standby;
```

**Hierarchy Level**

```
[edit interfaces rl|sq number redundancy-options]
```

**Release Information**

Statement introduced in Junos OS Release 8.0.

**Description**

For AS or Multiservices PIC redundancy configurations, specify that the failure detection and recovery involves one backup PIC supporting multiple working PICs. Recovery time is not guaranteed.

**Required Privilege**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring LSQ Interface Redundancy in a Single Router Using Virtual Interfaces on page 790
web-filter

Syntax

```plaintext
web-filter {
 profile (Web Filter) profile-name {
 dns-filter {
 database-file filename;
 dns-resp-ttl seconds;
 dns-server [ip-address];
 hash-key key-string;
 hash-method hash-method-name;
 statistics-log-timer minutes;
 wildcarding-level level;
 }
 }
 dns-filter-template template-name {
 client-interfaces [client-interface-name];
 client-routing-instance client-routing-instance-name;
 dns-filter {
 database-file filename;
 dns-resp-ttl seconds;
 dns-server [ip-address];
 hash-key key-string;
 hash-method hash-method-name;
 statistics-log-timer minutes;
 wildcarding-level level;
 }
 }
 server-interfaces [server-interface-name];
 server-routing-instance server-routing-instance-name;
 term term-name {
 from {
 src-ip-prefix [source-prefix];
 }
 then {
 accept;
 dns-sinkhole;
 }
 }
}

global-dns-stats-log-timer minutes;
url-filter-database filename;
url-filter-template template-name {
 client-interfaces [client-interface-name1 client-interface-name2];
 disable-url-filtering;
 dns-resolution-interval minutes;
 dns-resolution-rate seconds;
 dns-retries number;
 dns-routing-instance dns-routing-instance-name;
 dns-server [ip-address1 ip-address2 ip-address3];
 dns-source-interface loopback-interface-name;
 dns-routing-instance dns-routing-instance-name;
 routing-instance routing-instance-name;
 server-interfaces [server-interface-name1 server-interface-name2];
 term term-name {
 from {
  ```
src-ip-prefix [prefix1 prefix2];
dest-port [port1 port2];
}
then {
  accept;
  custom-page custom-page;
  http-status-code http-status-code;
  redirect-url redirect-url;
  tcp-reset;
}
}

url-filter-database filename
}
}
}

Hierarchy Level  [edit services]

Release Information  Statement introduced in Junos OS Release 18.3R1 on MX Series.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers
MX240, MX480 and MX960 with the MX-SPC3 services card.

Description  Configure filtering of DNS requests for blacklisted website domains. Filtering can result
in either:

  • Blocking access to the site by sending the client a DNS response that includes an IP
    address or domain name of a sinkhole server instead of the blacklisted domain.
  • Logging the DNS request and allowing access.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege  system—To view this statement in the configuration.
Level  system-control—To add this statement to the configuration.

Related Documentation  • DNS Request Filtering for Blacklisted Website Domains on page 39
web-filter-profile

Syntax  

web-filter-profile profile-name;

Hierarchy Level  

[edit services service-set service-set-name]

Release Information  

Statement introduced in Junos OS Release 18.3R1. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description  

Specify the DNS filter profile or the URL filter profile that the service set uses. The filter profile is configured at the [edit services web-filter] hierarchy level, and specifies how to filter DNS requests for blacklisted website domains or how to filter access to blacklisted URLs.

Options  

profile-name—Name of the DNS filter profile.

Required Privilege Level  

system—To view this statement in the configuration. system-control—To add this statement to the configuration.

Related Documentation  

• DNS Request Filtering for Blacklisted Website Domains on page 39
CHAPTER 51

Operational Commands

- clear services cos statistics
- clear services crtp statistics
- clear services ids
- clear services ids destination-table
- clear services ids pair-table
- clear services ids source-table
- clear services inline nat pool
- clear services inline nat statistics
- clear services inline softwire statistics
- clear services ipsec-vpn certificates
- clear services ipsec-vpn ike security-associations
- clear services ipsec-vpn ipsec security-associations
- clear services ipsec-vpn ipsec statistics
- clear services l2tp destination
- clear services l2tp destination statistics
- clear services l2tp multilink
- clear services l2tp session
- clear services l2tp session statistics
- clear services l2tp tunnel
- clear services l2tp tunnel statistics
- clear services nat flows
- clear services nat mappings
- clear services nat mappings app
- clear services nat mappings eim
- clear services nat mappings pcp
- clear services redundancy-set last-saved-state id
- clear security pki ca-certificate
- clear security pki certificate-request
- clear security pki crl
- clear security pki key-pair
- clear security pki local-certificate
- clear services service-set statistics ids drops
- clear services service-sets statistics ids session-limits counters
- clear services service-sets statistics integrity-drops
- clear services service-sets statistics packet-drops
- clear services service-sets statistics syslog
- clear services sessions
- clear services stateful-firewall flows
- clear services stateful-firewall sip-call
- clear services stateful-firewall sip-register
- clear services stateful-firewall statistics
- clear services web-filter statistics profile
- request interface revert
- request interface (revert | switchover) (Adaptive Services)
- request interface switchover
- request security pki ca-certificate enroll
- request security pki ca-certificate load
- request security pki ca-certificate verify
- request security pki crl load
- request security pki generate-certificate-request
- request security pki generate-key-pair
- request security pki local-certificate enroll
- request security pki local-certificate generate-self-signed
- request security pki local-certificate load
- request security pki local-certificate verify
- request services ipsec-vpn ipsec switch tunnel
- request services redundancy-set trigger
- request services url-filter delete gencfg-data
- request services url-filter force dns-resolution
- request services url-filter update url-filter-database file
- request services url-filter validate
- request services web-filter delete gencfg-data
- request services web-filter update dns-filter-database
- request services web-filter force dns-resolution
- request services web-filter update url-filter-database file
• request services web-filter validate dns-filter-file-name
• request services web-filter validate url-filter-file-name
• show interfaces (Adaptive Services)
• show interfaces (Link Services IQ)
• show interfaces (Redundant Adaptive Services)
• show interfaces (Redundant Link Services IQ)
• show interfaces load-balancing (Aggregated Multiservices)
• show interfaces redundancy
• show security pki ca-certificate
• show security pki certificate-request
• show security pki crl
• show security pki local-certificate
• show services alg conversations
• show services alg statistics
• show services cos statistics
• show services ctp
• show services ctp flows
• show services ha detail
• show services ha statistics
• show services ids
• show services inline nat pool
• show services inline nat statistics
• show services inline softwire statistics
• show services ipsec-vpn certificates
• show services ipsec-vpn ike security-associations
• show services ipsec-vpn ipsec security-associations
• show services ipsec-vpn ipsec statistics
• show services link-services cpu-usage
• show services l2tp multilink
• show services l2tp radius
• show services l2tp session
• show services l2tp summary
• show services l2tp tunnel
• show services l2tp user
• show services nat deterministic-nat internal-host
• show services nat deterministic-nat nat-port-block
• show services nat ipv6-multicast-interfaces
• show services nat mappings
• show services nat pool
• show services pcp statistics
• show services redundancy-group
• show services service-sets cpu-usage
• show services service-sets memory-usage
• show services service-set statistics ids drops
• show services service-sets statistics ids session-limits counters
• show services service-sets statistics integrity-drops
• show services service-sets statistics packet-drops
• show services service-sets statistics syslog
• show services service-sets statistics tcp
• show services service-sets statistics tcp-mss
• show services service-sets summary
• show services sessions
• show services sessions (Aggregated Multiservices)
• show services sessions analysis
• show services sessions tcp-log
• show services softwire
• show services softwire flows
• show services softwire statistics
• show services stateful-firewall conversations
• show services stateful-firewall flow-analysis
• show services stateful-firewall flows
• show services stateful-firewall sip-call
• show services stateful-firewall sip-register
• show services stateful-firewall statistics
• show services stateful-firewall statistics application-protocol sip
• show services stateful-firewall subscriber-analysis
• show services subscriber analysis
• show services tcp-log connections
• show services traffic-load-balance statistics
• show services url-filter dns-resolution profile
• show services url-filter dns-resolution-statistics profile template
• show services url-filter statistics profile template
• show services web-filter dns-resolution profile
- show services web-filter dns-resolution-statistics profile template
- show services web-filter statistics profile
clear services cos statistics

Syntax

```
clear services cos statistics
 <interface interface-name>
 <service-set service-set-name>
```

Release Information

Command introduced in Junos OS Release 8.1.

Description

Clear statistics for class-of-service (CoS) code point bit patterns and forwarding classes as configured in CoS services for the AS PIC.

Options

- none—Clear all services CoS statistics.
- `interface interface-name`—(Optional) Clear statistics for the specified interface only.
- `service-set service-set-name`—(Optional) Clear statistics for the specified service set only.

Required Privilege

Level view

List of Sample Output

| clear services cos statistics on page 1368 |

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

```
clear services cos statistics

user@host> clear services cos statistics
```
clear services crtp statistics

Syntax

```
clear services crtp statistics
 <interface interface-name>
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

Clear Compressed Real-Time Transport Protocol (CRTP) flow statistics.

Options

- **none**—Clear CRTP flow statistics on all interfaces.
- **interface interface-name**—(Optional) Clear CRTP flow statistics for the specified interface. On M Series and T Series routers, a link services IQ (lsq-fpc/pic/port) or redundant link services IQ (rlsq-fpc/pic/port) interface.

Required Privilege

- **view**

List of Sample Output

- clear services crtp statistics on page 1369

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

```plaintext
user@host> clear services crtp statistics
```
clear services ids

Syntax

```
clear services ids
<interface interface-name>
<service-set service-set-name>
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

Clear intrusion detection service (IDS) events.

Options

- **none**—Clear all IDS events for all adaptive services interfaces for all service sets, and clear and reset IDS.
  
  `interface interface-name`—(Optional) On M Series and T Series routers, the `interface-name` can be `sp-fpc/pic/port` or `rspnumber`.

  `service-set service-set-name`—(Optional) Clear all IDS events for a particular service set.

Required Privilege

Level view

List of Sample Output

Clear services ids on page 1370

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

clear services ids

```
user@host> clear services ids
```
clear services ids destination-table

Syntax

```plaintext
Syntax: clear services ids destination-table
<destination-prefix destination-prefix-name>
<interface interface-name>
<service-set service-set-name>
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

Clear the intrusion detection service (IDS) events for a particular address that might be under attack.

Options

- **none**—Clear the attack destination address table.
- **destination-prefix destination-prefix-name**—(Optional) Clear the attack destination table for a particular destination prefix.
- **interface interface-name**—(Optional) Clear the attack destination table for a particular interface. On M Series and T Series routers, the `interface-name` can be `sp-fpc/pic/port` or `rspanumber`.
- **service-set service-set-name**—(Optional) Clear the attack destination table for a particular service set.

Required Privilege

- **Level**: view

List of Sample Output

- **clear services ids destination-table on page 1371**

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

```plaintext
clear services ids destination-table

user@host> clear services ids destination-table
```
clear services ids pair-table

Syntax

```plaintext
clear services ids pair-table
<destination-prefix destination-prefix-name>
<interface interface-name>
<service-set service-set-name>
<source-prefix source-prefix-name>
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

Clear the intrusion detection service (IDS) attack source and destination address pair table.

Options

- `none`—Clear the attack source and destination address pair table.
- `destination-prefix destination-prefix-name`—(Optional) Clear the attack source and destination address pair table for a particular destination prefix.
- `interface interface-name`—(Optional) Clear the attack destination table for a particular interface. On M Series and T Series routers, the `interface-name` can be `sp-fpc/pic/port` or `rspnumber`.
- `service-set service-set-name`—Optional) Clear the attack source and destination address pair table for a particular service set.
- `source-prefix source-prefix-name`—(Optional) Clear the attack source and destination address pair table for a particular source prefix.

Required Privilege

View

List of Sample Output

clear services ids pair-table on page 1372

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

clear services ids pair-table

```plaintext
user@host> clear services ids pair-table
```
clear services ids source-table

Syntax

clear services ids source-table
<interface interface-name>
<service-set service-set-name>
<source-prefix source-prefix-name>

Release Information
Command introduced before Junos OS Release 7.4.

Description
Clear all intrusion detection service (IDS) events for addresses that are suspected attackers.

Options
none—Clear the attack source address table.

interface interface-name—(Optional) On M Series and T Series routers, the interface-name can be sp-fpc/pic/port or rsnumber.

service-set service-set-name—(Optional) Clear the attack source address table for a particular service set.

source-prefix source-prefix-name—(Optional) Clear the attack source address table for a particular source prefix.

Required Privilege
view

List of Sample Output
clear services ids source-table on page 1373

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

clear services ids source-table

user@host> clear services ids source-table
**clear services inline nat pool**

**Syntax**
```
clear services inline nat pool pool-name
```

**Release Information**
Command introduced in Junos OS Release 11.4.

**Description**
Clear global inline NAT statistics.

**Options**
- `pool-name`—Name of the NAT pool for which statistic are cleared.

**Required Privilege Level**
`clear`

**List of Sample Output**
`clear services inline nat pool on page 1374`

**Output Fields**
When you enter this command, the NAT pool statistics are cleared. There is no specific output.

**Sample Output**
```
clear services inline nat pool
```
```
user@host> clear services inline nat pool p1
```
clear services inline nat statistics

Syntax

clear services inline nat statistics
<interface interface-name>

Release Information
Command introduced in Junos OS Release 11.4.

Description
Clear global inline NAT statistics.

Options
interface interface-name—(Optional) Clear inline NAT statistics for the specified interface only.

Required Privilege Level
clear

List of Sample Output

Output Fields
When you enter this command, the global inline NAT statistics are cleared. There is no specific output.

Sample Output

clear services inline nat statistics

user@host> clear services inline nat statistics
clear services inline softwire statistics

Syntax
clear services inline softwire statistics  
<interface interface-name>

Release Information  Command introduced in Junos OS Release 13.3R3.

Description  Clear global inline softwire statistics.

NOTE: The following two limitations apply to the clearing of data plane statistics using the clear services inline softwire statistics command:

- When traffic is continuously flowing and the counters are being updated in the data plane, none of the statistical values except the counter for 6rd decapsulation errors is reset.
- When you delete the softwire concentrator or the service set associated with an inline services (si-) interface, the counter for 6rd decapsulation errors might display all the previously accumulated values.

Options  interface interface-name—(Optional) Clear inline softwire statistics for the specified interface only.

Required Privilege Level  clear

List of Sample Output  clear services inline softwire statistics on page 1376

Output Fields  When you enter this command, the global inline softwire statistics are cleared. There is no specific output.

Sample Output

clear services inline softwire statistics

user@host>  clear services inline softwire statistics
# clear services ipsec-vpn certificates

**Syntax**
```plaintext
clear services ipsec-vpn certificates (all | service-set service-set)
<certificate-cache-entry number>
```

**Release Information**
Command introduced in Junos OS Release 7.5.

**Description**
(Adapter services interfaces only) Delete digital certificates from the IPsec configuration memory cache. Issuing this command also clears the certificate revocation list (CRL) from the cache along with the certificates.

**Options**
- `all`—Delete digital certificates for all service sets.

**Required Privilege Level**
```
clear
```

**List of Sample Output**
```
clear services ipsec-vpn certificates all on page 1377
```

**Output Fields**
When you enter this command, you are provided feedback on the status of your request.

**Sample Output**
```
clear services ipsec-vpn certificates all

user@host> clear services ipsec-vpn certificates all
```
clear services ipsec-vpn ike security-associations

Syntax

```plaintext
clear services ipsec-vpn ike security-associations
<peer-address-name>
<service-set service-set-name>
```

Release Information

- Command introduced before Junos OS Release 7.4.
- `service-set` option added in Junos OS Release 8.5.

Description

(Adaptive services interfaces only) Clear Internet Key Exchange (IKE) security associations.

Options

- `peer-address-name`—(Optional) Clear only the security association specified by the peer address.
- `service-set service-set-name`—(Optional) Clear only the security association specified by the service-set name.

Required Privilege

- view

Related Documentation

- show services ipsec-vpn ike security-associations on page 1580

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

```plaintext
clear services ipsec-vpn ike security-associations

user@host> clear services ipsec-vpn ike security-associations
```
clear services ipsec-vpn ipsec security-associations

Syntax

```
clear services ipsec-vpn security-associations
<peer-address-name>
<remote-gateway remote-gateway-address>
<service-set-name>
<tunnel-index tunnel-index-number>
```

Release Information

Command introduced before Junos OS Release 7.4. `remote-gateway`, `service-set-name`, and `tunnel-index` options added in Junos OS Release 8.4.

Description

(Adaptive services interfaces only) Clear IP Security (IPsec) security associations. You can combine the options for greater specificity.

Options

- `peer-address-name`—(Optional) Clear only the security association specified by the peer address.
- `remote-gateway remote-gateway-address`—(Optional) Clear only the security association specified by the remote gateway address.
- `service-set-name`—(Optional) Clear only the security association specified by the service-set name.
- `tunnel-index tunnel-index-number`—(Optional) Clear only the security association specified by the tunnel index number.

Required Privilege

`view`

Related Documentation

- `show services ipsec-vpn ipsec security-associations` on page 1585

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

```
clear services ipsec-vpn ipsec security-associations

user@host> clear services ipsec-vpn ipsec security-associations
```
clear services ipsec-vpn ipsec statistics

Syntax

    clear services ipsec-vpn ipsec statistics
    <remote-gateway address>
    <service-set service-set-name>

Release Information

Command introduced in Junos OS Release 8.1.

Description

(Adaptive services interface only) Clear IP Security (IPsec) statistics.

Options

    remote-gateway address—(Optional) Clear statistics for the specified remote system.

Required Privilege

    view

Related Documentation

    • show services ipsec-vpn ipsec statistics on page 1591

List of Sample Output

    clear services ipsec-vpn ipsec statistics on page 1380

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

clear services ipsec-vpn ipsec statistics

    user@host> clear services ipsec-vpn ipsec statistics
clear services l2tp destination

Syntax  
```
clear services l2tp destination
<all | local-gateway gateway-address | peer-gateway gateway-address>
```

Release Information  
Command introduced in Junos OS Release 10.4.

Description  
Clear all Layer 2 Tunneling Protocol (L2TP) destinations and all tunnels and sessions that belong to the destinations. This command is available only for LAC on MX Series routers.

**NOTE:** You cannot issue the clear services l2tp destination command in parallel with statistics-related show services l2tp commands from separate terminals. If this clear command is running, then you must press Ctrl+c to make the command run in the background before issuing any of the show commands listed in the following table:

<table>
<thead>
<tr>
<th>show services l2tp destination extensive</th>
<th>show services l2tp summary statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>show services l2tp destination statistics</td>
<td>show services l2tp tunnel extensive</td>
</tr>
<tr>
<td>show services l2tp session extensive</td>
<td>show services l2tp tunnel statistics</td>
</tr>
<tr>
<td>show services l2tp session statistics</td>
<td></td>
</tr>
</tbody>
</table>

Options  
- **all**—Close all L2TP destinations.
  
**BEST PRACTICE:** The all option is not intended to be used as a means to perform a bulk logout of L2TP subscribers. We recommend that you do not use the all option in a production environment. Instead of clearing all subscribers at once, consider clearing subscribers in smaller group, based on interface, tunnel, or destination end point.

- **local-gateway gateway-address**—Clear only the L2TP destinations and all tunnels and sessions associated with the specified local gateway address.

- **peer-gateway gateway-address**—Clear only the L2TP destinations and all tunnels and sessions associated with the peer gateway with the specified address.
**Required Privilege**  
Level clear

**Related Documentation**  
- `show services l2tp destination`

**List of Sample Output**  
`clear services l2tp destination all` on page 1382

**Output Fields**  
When you enter this command, you are provided feedback on the status of your request.

**Sample Output**

clear services l2tp destination all

```
user@host> clear services l2tp destination all

Destination 2 closed
```
clear services l2tp destination statistics

Syntax

clear services l2tp destination statistics
<all | local-gateway gateway-address | peer-gateway gateway-address >

Release Information


Description

Clear all statistics associated with the Layer 2 Tunneling Protocol (L2TP) destinations and all tunnels and sessions that belong to the destinations. This command is available only for LAC on MX Series routers.

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Clear all statistics associated with the L2TP destinations.</td>
</tr>
<tr>
<td>local-gateway gateway-address</td>
<td>Clear statistics related to L2TP destination and all tunnels and sessions associated with the specified local gateway address.</td>
</tr>
<tr>
<td>peer-gateway gateway-address</td>
<td>Clear statistics related to L2TP destination and all tunnels and sessions associated with the specified peer gateway address.</td>
</tr>
</tbody>
</table>

Required Privilege

clear

Related Documentation

- show services l2tp destination

List of Sample Output

<table>
<thead>
<tr>
<th>Sample Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear services l2tp destination statistics on page 1383</td>
</tr>
</tbody>
</table>

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

clear services l2tp destination statistics

user@host>clear services l2tp destination statistics all

Destination 1 statistics cleared
clear services l2tp multilink

Syntax

```
clear services l2tp multilink (all <statistics> | bundle-id number <statistics> | statistics (all | bundle-id number))
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

(M10i and M7i routers only) Close Layer 2 Tunneling Protocol (L2TP) multilink sessions or clear session statistics.

Options

- **all <statistics>**—Close all L2TP multilink sessions or clear statistics for all L2TP multilink sessions.
- **bundle-id number <statistics>**—L2TP multilink bundle ID. The value is an internally generated number from 1 to 65535. Close the specified L2TP multilink session, or using the **statistics** keyword with this option, clear statistics for the specified session.
- **statistics (all | bundle-id number)**—Clear all session statistics or clear statistics for the specified multilink bundle ID.

Required Privilege

- **Level**
  - view

Related Documentation

- L2TP Services Configuration Overview on page 904
- L2TP Minimum Configuration on page 905
- show services l2tp multilink on page 1600

List of Sample Output

```
clear services l2tp multilink statistics all
```

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

```
clear services l2tp multilink statistics all
user@host> clear services l2tp multilink statistics all
Multilink 1 statistics cleared
```
clear services l2tp session

**Syntax**
```
clear services l2tp session (all | interface interface-name | local-gateway gateway-address
| local-gateway-name gateway-name | local-session-id session-id | local-tunnel-id tunnel-id
| peer-gateway gateway-address | peer-gateway-name gateway-name
| tunnel-group group-name | user username)
```

**Release Information**
Command introduced before Junos OS Release 7.4.

**Description**
(M10i and M7i routers only) Clear Layer 2 Tunneling Protocol (L2TP) sessions on LNS.
(MX Series routers only) Clear L2TP sessions on LAC and LNS.

**NOTE:** On MX Series routers, you cannot issue the `clear services l2tp session` command in parallel with statistics-related `show services l2tp` commands from separate terminals. If this clear command is running, then you must press Ctrl+c to make the command run in the background before issuing any of the show commands listed in the following table:

<table>
<thead>
<tr>
<th>show services l2tp destination extensive</th>
<th>show services l2tp summary statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>show services l2tp destination statistics</td>
<td>show services l2tp tunnel extensive</td>
</tr>
<tr>
<td>show services l2tp session extensive</td>
<td>show services l2tp tunnel statistics</td>
</tr>
<tr>
<td>show services l2tp session statistics</td>
<td></td>
</tr>
</tbody>
</table>

**Options**
all—Close all L2TP sessions.

**BEST PRACTICE:** The all option is not intended to be used as a means to perform a bulk logout of L2TP subscribers. We recommend that you do not use the all option in a production environment. Instead of clearing all subscribers at once, consider clearing subscribers in smaller group, based on interface, tunnel, or destination end point.

interface interface-name—Clear only the L2TP sessions using the specified adaptive services or inline services interface. The interface type depends on the line card as follows:

- si-fpc/pic/port—MPCs on MX Series routers only. This option is not available for L2TP on M Series routers.
- **sp-fpc/pic/port**—AS or Multiservices PICs on M7i, M10i, and M120 routers only. This option is not available for L2TP on MX Series routers.

  **local-gateway gateway-address**—Clear only the L2TP sessions associated with the specified local gateway address.

  **local-gateway-name gateway-name**—Clear only the L2TP sessions associated with the specified local gateway name.

  **local-session-id session-id**—Clear only the L2TP sessions with this identifier for the local endpoint of the L2TP session.

  **local-tunnel-id tunnel-id**—Clear only the L2TP sessions associated with the specified local tunnel identifier.

  **peer-gateway gateway-address**—Clear only the L2TP sessions associated with the peer gateway with the specified address.

  **peer-gateway-name gateway-name**—Clear only the L2TP sessions associated with the peer gateway with the specified name.

  **tunnel-group group-name**—Clear only the L2TP sessions associated with the specified tunnel group. This option is not available for L2TP LAC on MX Series routers.

  **user username**—(M Series routers only) Clear only the L2TP sessions for the specified username.

**Required Privilege Level**
clear

**Related Documentation**
- L2TP Services Configuration Overview on page 904
- L2TP Minimum Configuration on page 905
- clear services l2tp session statistics on page 1388
- show services l2tp session on page 1608

**List of Sample Output**
clear services l2tp session on page 1386
  clear services l2tp session interface on page 1387

**Output Fields**
When you enter this command, you are provided feedback on the status of your request.

**Sample Output**
clear services l2tp session

```
user@host> clear services l2tp session 31694
Session 31694 closed
```
Sample Output

clear services l2tp session interface

<table>
<thead>
<tr>
<th>Local ID</th>
<th>Remote ID</th>
<th>State</th>
<th>Interface unit</th>
<th>Interface Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5117</td>
<td>1</td>
<td>Established</td>
<td>1073741828</td>
<td>si-2/0/0</td>
</tr>
<tr>
<td>34915</td>
<td>2</td>
<td>Established</td>
<td>1073741829</td>
<td>si-2/1/0</td>
</tr>
<tr>
<td>6454</td>
<td>3</td>
<td>Established</td>
<td>1073741830</td>
<td>si-2/0/0</td>
</tr>
<tr>
<td>46142</td>
<td>4</td>
<td>Established</td>
<td>1073741831</td>
<td>si-2/1/0</td>
</tr>
</tbody>
</table>

user@host> clear services l2tp session interface si-2/0/0
Session 5117 closed
Session 6454 closed

user@host> show services l2tp session Tunnel local ID: 17185

<table>
<thead>
<tr>
<th>Local ID</th>
<th>Remote ID</th>
<th>State</th>
<th>Interface unit</th>
<th>Interface Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>34915</td>
<td>2</td>
<td>Established</td>
<td>1073741829</td>
<td>si-2/1/0</td>
</tr>
<tr>
<td>46142</td>
<td>4</td>
<td>Established</td>
<td>1073741831</td>
<td>si-2/1/0</td>
</tr>
</tbody>
</table>
clear services l2tp session statistics

**Syntax**
clear services l2tp session statistics (all | interface interface-name | local-gateway gateway-address | local-gateway-name gateway-name | local-session-id session-id | local-tunnel-id tunnel-id | peer-gateway gateway-address | peer-gateway-name gateway-name | tunnel-group group-name | user username)

**Release Information**
Command introduced before Junos OS Release 7.4.
Support for MX Series routers added in Junos OS Release 10.4.

**Description**
(M10i and M7i routers: LNS only. MX Series routers: LAC and LNS.) Clear statistics for Layer 2 Tunneling Protocol (L2TP) sessions.

**Options**
- `all`—Clear statistics for all L2TP sessions.
- `interface interface-name`—Clear only the L2TP sessions using the specified adaptive services or inline services interface. The interface type depends on the line card as follows:
  - `si-fpc/pic/port`—MPCs on MX Series routers only. This option is not available for L2TP on M Series routers.
  - `sp-fpc/pic/port`—AS or Multiservices PICs on M7i, M10i, and M120 routers only. This option is not available for L2TP on MX Series routers.
- `local-gateway gateway-address`—Clear statistics for only the L2TP sessions associated with the local gateway with the specified address.
- `local-gateway-name gateway-name`—Clear statistics for only the L2TP sessions associated with the local gateway with the specified name.
- `local-session-id session-id`—Clear statistics for only the L2TP sessions with this identifier for the local endpoint of the L2TP session.
- `local-tunnel-id tunnel-id`—Clear statistics for only the L2TP sessions associated with the specified local tunnel identifier.
- `peer-gateway gateway-address`—Clear statistics for only the L2TP sessions associated with the peer gateway with the specified address.
- `peer-gateway-name gateway-name`—Clear statistics for only the L2TP sessions associated with the peer gateway with the specified name.
- `tunnel-group group-name`—Clear statistics for only the L2TP sessions associated with the specified tunnel group. This option is not available for L2TP LAC on MX Series routers.
- `user username`—Clear statistics for only the L2TP sessions for the specified username. This option is not available for L2TP LAC on MX Series routers.
Required Privilege Level

- view

Related Documentation
- L2TP Services Configuration Overview on page 904
- L2TP Minimum Configuration on page 905
- clear services l2tp session on page 1385
- show services l2tp session on page 1608

List of Sample Output clear services l2tp session statistics all on page 1389

Output Fields When you enter this command, you are provided feedback on the status of your request.

Sample Output

clear services l2tp session statistics all

user@host> clear services l2tp session statistics all

Session 26497 statistics cleared
clear services l2tp tunnel

**Syntax**

```
clear services l2tp tunnel (all | interface sp-fpc/pic/port | local-gateway gateway-address | local-gateway-name gateway-name | local-tunnel-id tunnel-id | peer-gateway gateway-address | peer-gateway-name gateway-name | tunnel-group group-name)
```

**Release Information**

Command introduced before Junos OS Release 7.4.
Support for LAC on MX Series routers introduced in Junos OS Release 10.4.
Support for LNS on MX Series routers introduced in Junos OS Release 11.4.

**Description**

(M10i and M7i routers: LNS only. MX Series routers: LAC and LNS.) Clear Layer 2 Tunneling Protocol (L2TP) tunnels.

**NOTE:** On MX Series routers, you cannot issue the `clear services l2tp tunnel` command in parallel with statistics-related `show services l2tp` commands from separate terminals. If this clear command is running, then you must press Ctrl+c to make the command run in the background before issuing any of the show commands listed in the following table:

<table>
<thead>
<tr>
<th>show services l2tp destination extensive</th>
<th>show services l2tp summary statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>show services l2tp destination statistics</td>
<td>show services l2tp tunnel extensive</td>
</tr>
<tr>
<td>show services l2tp session extensive</td>
<td>show services l2tp tunnel statistics</td>
</tr>
<tr>
<td>show services l2tp session statistics</td>
<td></td>
</tr>
</tbody>
</table>

**Options**

- **all**—Clear all L2TP tunnels.

**BEST PRACTICE:** The all option is not intended to be used as a means to perform a bulk logout of L2TP subscribers. We recommend that you do not use the all option in a production environment. Instead of clearing all subscribers at once, consider clearing subscribers in smaller groups, based on interface, tunnel, or destination end point.

- **sp-fpc/pic/port**—(Optional) Clear only the L2TP tunnels using the specified adaptive services interface. This option is not available for L2TP on MX Series routers.

- **local-gateway gateway-address**—Clear only the L2TP tunnels associated with the local gateway with the specified address.
**clear services l2tp tunnel**

**Required Privilege**  
view

**Related Documentation**  
- L2TP Services Configuration Overview on page 904  
- L2TP Minimum Configuration on page 905  
- clear services l2tp tunnel statistics on page 1392  
- show services l2tp tunnel on page 1623

**List of Sample Output**  
- clear services l2tp tunnel on page 1391

**Output Fields**  
When you enter this command, you are provided feedback on the status of your request.

**Sample Output**

```
clear services l2tp tunnel

user@host> clear services l2tp tunnel 17185

Tunnel 17185 closed
```
clear services l2tp tunnel statistics

Syntax

clear services l2tp tunnel statistics (all | interface sp-fpc/pic/port | local-gateway gateway-address | local-gateway-name gateway-name | local-tunnel-id tunnel-id | peer-gateway gateway-address | peer-gateway-name gateway-name | tunnel-group group-name)

Release Information

Command introduced before Junos OS Release 7.4.
Support for MX Series routers added in Junos OS Release 10.4.

Description

(M10i and M7i routers: LNS only. MX Series routers: LAC only.) Clear statistics for Layer 2 Tunneling Protocol (L2TP) tunnels.

Options

all—Clear statistics for all L2TP tunnels.

interface sp-fpc/pic/port—Clear statistics for only the L2TP tunnels using the specified adaptive services interface. This option is not available for L2TP LAC on MX Series routers.

local-gateway gateway-address—Clear statistics for only the L2TP tunnels associated with the local gateway with the specified address.

local-gateway-name gateway-name—Clear statistics for only the L2TP tunnels associated with the local gateway with the specified name.

local-tunnel-id tunnel-id—Clear statistics for only the L2TP tunnels that have the specified local tunnel identifier.

peer-gateway gateway-address—Clear statistics for only the L2TP tunnels associated with the peer gateway with the specified address.

peer-gateway-name gateway-name—Clear statistics for only the L2TP tunnels associated with the peer gateway with the specified name.

tunnel-group group-name—Clear statistics for only the L2TP tunnels in the specified tunnel group. This option is not available for L2TP LAC on MX Series routers.

Required Privilege Level

clear

Related Documentation

• L2TP Services Configuration Overview on page 904
• L2TP Minimum Configuration on page 905
• clear services l2tp tunnel on page 1390
• show services l2tp tunnel on page 1623

List of Sample Output

clear services l2tp tunnel statistics all on page 1393
**Output Fields**  When you enter this command, you are provided feedback on the status of your request.

**Sample Output**

`clear services l2tp tunnel statistics all`

```
user@host> clear services l2tp tunnel statistics all
Tunnel 9933 statistics cleared
```
clear servicesnat flows

**Syntax**
clear servicesnat flows
`<b4address b4address>`
`<service-set service-set>`
`<subscriber subscriber-address>`

**Release Information**

**Description**
Clear NAT flows.

**Options**
- **none**—Clear all NAT flows.
- **b4address** `b4address`—(Optional) Clear NAT flows for a particular B4 address.
- **service-set** `service-set`—(Optional) Clear NAT flows for a particular service set.
- **subscriber** `ip`—(Optional) Clear NAT flows for a particular subscriber, identified by IPv4 address.

**Required Privilege Level**
view

**Related Documentation**
List of Sample Output
clear services nat flows subscriber (IPv4 address) on page 1394

**Output Fields**
Table 37 on page 1394 lists the output fields for the clear servicesnat flows command. Output fields are listed in the approximate order in which they appear.

**Table 37: clear servicesnat flows Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of a services interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of the service set from which flows are being cleared.</td>
</tr>
<tr>
<td>Flows removed</td>
<td>Number of flows removed.</td>
</tr>
</tbody>
</table>

**Sample Output**
clear services nat flows subscriber (IPv4 address)

`user@host> clear servicesnat flows subscriber ip 198.51.100.3`
### Sample Output

<table>
<thead>
<tr>
<th>Interface</th>
<th>Service set</th>
<th>Flows removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp-2/0/0</td>
<td>ss1</td>
<td>0</td>
</tr>
</tbody>
</table>
clear services nat mappings

Syntax

```text
clear services nat mappings
 <app>
 <eim>
 <pcp>
 <service-set service-set>
```

Release Information


Description

Clear NAT mappings.

Options

- **none**—Clear all NAT mappings.
- **app**—(Optional) Clear address-pooling paired NAT mappings.
- **eim**—(Optional) Clear endpoint-independent NAT mappings.
- **pcp**—(Optional) Clear Port Control Protocol NAT mappings.
- **service-set service-set**—(Optional) Clear NAT mappings for a specified service set.

Required Privilege Level

clear

Related Documentation

- show services nat mappings on page 1639
- clear services nat mappings app on page 1398
- clear services nat mappings eim on page 1400
- clear services nat mappings pcp on page 1402

List of Sample Output

clear services nat mappings on page 1397

Output Fields

Table 38 on page 1396 lists the output fields for the **clear services nat mappings** command. Output fields are listed in the approximate order in which they appear.

**Table 38: clear services nat mappings Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of a services interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of the service set from which flows are being cleared.</td>
</tr>
<tr>
<td>Mappings removed</td>
<td>Number of mappings removed.</td>
</tr>
<tr>
<td>Flows removed</td>
<td>Number of flows removed.</td>
</tr>
</tbody>
</table>
Sample Output

clear services nat mappings

```
user@host> clear services nat mappings

<table>
<thead>
<tr>
<th>Interface</th>
<th>Service set</th>
<th>Mappings removed</th>
<th>Flows removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp-2/0/0</td>
<td>ssl</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

1397
### clear services nat mappings app

**Syntax**
```
clear services nat mappings app
 <b4address b4address/prefix>
 <service-set service-set>
 <subscriber subscriber-ipv4-address>
```

**Release Information**

**Description**
Clear NAT mappings for address pooling paired (app).

**Options**
- **none**—Clear all NAT app mappings.
- **b4address b4address/prefix**—(Optional) Clear NAT APP mappings for a particular subscriber b4address/prefix
- **service-set service-set**—(Optional) Clear NAT APP mappings for a specified service set.
- **subscriber subscriber-ipv4-address/prefix**—(Optional) Clear NAT APP mappings for a particular subscriber ipv4-address/prefix

**Required Privilege Level**
clear

**Related Documentation**
- show services nat mappings on page 1639
- List of Sample Output
  - clear services nat mappings app on page 1399

**Output Fields**
Table 39 on page 1398 lists the output fields for the `clear services nat mappings app` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of a services interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of the service set from which flows are being cleared.</td>
</tr>
<tr>
<td>Mappings removed</td>
<td>Number of mappings removed.</td>
</tr>
<tr>
<td>Flows removed</td>
<td>Number of flows removed.</td>
</tr>
</tbody>
</table>
Sample Output

clear services nat mappings app

```
user@host> clear services nat mappings app

+----------------+-------------------+-----------------+-----------------+
| Interface | Service set | Mappings removed | Flows removed |
+-----------+-----------+-----------------+-----------------+
| sp-2/0/0 | ssl | 0 | 0 |
+-----------+-----------+-----------------+-----------------+
```


clear services nat mappings eim

Syntax

clear services nat mappings eim
  <b4address b4address/prefix>
  <subscriber subscriber-ipv4-address>

Release Information

Description
Clear endpoint independent (EIM) and port control protocol (PCP) mappings.

Options
none—Clear all EIM and PCP mappings.

b4address b4address/prefix—(Optional) Clear EIM and PCP mappings for a particular subscriber b4address/prefix

internal-host ipv4address/prefix—(Optional) Clear EIM and PCP mappings matching the specified b4address and internal-host.

port port—(Optional) Clear EIM and PCP mappings matching the specified b4address, internal host, and port.

service-set service-set—(Optional) Clear EIM and PCP mappings for the specified service set.

subscriber subscriber-ipv4-address/prefix—(Optional) Clear EIM and PCP mappings for a particular subscriber ipv4-address/prefix

  • port port—(Optional) Clear EIM and PCP mappings matching the specified ipv4-address/prefix and port.

  • service-set service-set—(Optional) Clear EIM and PCP mappings for the specified service set.

Required Privilege
clear

Related Documentation
  • show services nat mappings on page 1639

List of Sample Output
clear services nat mappings eim on page 1401

Output Fields
Table 40 on page 1401 lists the output fields for the clear services nat mappings eim command. Output fields are listed in the approximate order in which they appear.
Table 40: clear services nat mappings eim Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of a services interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of the service set from which flows are being cleared.</td>
</tr>
<tr>
<td>Mappings removed</td>
<td>Number of mappings removed.</td>
</tr>
<tr>
<td>Flows removed</td>
<td>Number of flows removed.</td>
</tr>
</tbody>
</table>

Sample Output

clear services nat mappings eim

```
user@host> clear services nat mappings eim

<table>
<thead>
<tr>
<th>Interface</th>
<th>Service set</th>
<th>Mappings removed</th>
<th>Flows removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp-2/0/0</td>
<td>ssl</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
clear services nat mappings pcp

**Syntax**

```plaintext
clear services nat mappings pcp
<b4address b4address/prefix>
<subscriber subscriber-ipv4-address>
```

**Release Information**


**Description**

Clear NAT mappings for Port Control Protocol (PCP).

**Options**

- **none**—Clear all NAT PCP mappings.
- **b4address b4address/prefix**—(Optional) Clear NAT PCP mappings for a particular subscriber b4address/prefix
- **port port**—(Optional) Clear NAT PCP mappings matching the specified b4address internal host, and port.
- **service-set service-set**—(Optional) Clear NAT PCP mappings for the specified service set.
- **subscriber ipv4-address/prefix**—(Optional) Clear NAT PCP mappings for a particular subscriber ipv4-address/prefix
- **port port**—(Optional) Clear NAT PCP mappings matching the specified ipv4-address/prefix, and port.

**Required Privilege Level**

`clear`

**Related Documentation**

- [show services nat mappings on page 1639](#)

**List of Sample Output**

[clear services nat mappings pcp on page 1403](#)

**Output Fields**

Table 41 on page 1402 lists the output fields for the `clear services nat mappings pcp` command. Output fields are listed in the approximate order in which they appear.

**Table 41: clear services nat mappings pcp Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of a services interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of the service set from which flows are being cleared.</td>
</tr>
<tr>
<td>Mappings removed</td>
<td>Number of mappings removed.</td>
</tr>
</tbody>
</table>
Table 41: clear services nat mappings pcp Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flows removed</td>
<td>Number of flows removed.</td>
</tr>
</tbody>
</table>

Sample Output

clear services nat mappings pcp

```
user@host> clear services nat mappings pcp

Interface Service set Mappings removed Flows removed
sp-2/0/0 ss1 0 0
```

1403

Copyright © 2019, Juniper Networks, Inc.
clear services redundancy-set last(saved-state id

**Syntax**
clear services redundancy-set last-saved-state id
(\textit{redundancy-set} | all)

**Release Information**
Statement introduced in Junos OS Release 16.1 on MX Series.

**Description**
Clear the last saved state of a redundancy set or of all redundancy sets.
clear security pki ca-certificate

**Syntax**  
clear security pki ca-certificate (all | ca-profile ca-profile-name)

**Release Information**  
Command introduced in Junos OS Release 7.5.

**Description**  
Delete certificate authority (CA) digital certificates from the router.

**Options**  
- **all**—Delete all CA digital certificates from the router.
- **ca-profile ca-profile-name**—Delete the specified CA profile.

**Required Privilege Level**  
clear

**Related Documentation**  
- request security pki ca-certificate enroll on page 1433
- request security pki ca-certificate load on page 1434
- show security pki ca-certificate on page 1513

**List of Sample Output**  
clear security pki ca-certificate all on page 1405

**Output Fields**  
When you enter this command, you are provided feedback on the status of your request.

**Sample Output**  
clear security pki ca-certificate all

```
user@host> clear security pki ca-certificate all
```

Copyright © 2019, Juniper Networks, Inc.
clear security pki certificate-request

Syntax

clear security pki certificate-request (all | certificate-id certificate-id-name)

Release Information

Command introduced in Junos OS Release 7.5.

Description

Delete manually generated local digital certificate requests from the router.

Options

all—Delete all local digital certificate requests from the router.

certificate-id certificate-id-name—Delete the specified local digital certificate and corresponding public/private key pair.

Required Privilege Level

clear

Related Documentation

• show security pki certificate-request on page 1517

List of Sample Output

clear security pki certificate-request all on page 1406

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

clear security pki certificate-request all

user@host> clear security pki certificate-request all
clear security pki crl

Syntax

```
clear security pki crl (all | ca-profile ca-profile-name)
```

Release Information

Command introduced in Junos 8.1

Description

Delete certificate revocation lists (CRLs) from the router.

Options

- **all**—Delete all CRLs from the router.
- **ca-profile ca-profile-name**—Delete CRLs associated with the specified CA profile.

Required Privilege Level

**clear**

List of Sample Output

```
clear security pki crl ca-profile all
```

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

```
clear security pki crl ca-profile all

user@host> clear security pki crl ca-profile all
```
clear security pki key-pair

**Syntax**
clear security pki key-pair (all | certificate-id certificate-id-name)

**Release Information**
Command introduced in Junos OS Release 8.5.

**Description**
Clear public key infrastructure (PKI) key pair information for local digital certificates from the router.

**Options**
- **all**—Delete all local digital certificates, certificate requests, and the corresponding public and private key pairs from the router.
- **certificate-id certificate-id-name**—Delete the specified local digital certificate and corresponding public/private key pair.

**Required Privilege Level**
clear

**Related Documentation**
- request security pki local-certificate enroll on page 1440
- show security pki local-certificate on page 1523

**Output Fields**
This command produces no output.

**Sample Output**

```
user@host> clear security pki key pair
```
clear security pki local-certificate

Syntax

```bash
clear security pki local-certificate
 <all | certificate-id certificate-id-name | system-generated>
```

Release Information
Command introduced in Junos OS Release 7.5.

Description
Delete local digital certificates, certificate requests, and the corresponding public/private key pairs from the router.

Options
- **all**—(Optional) Delete all local digital certificates, certificate requests, and the corresponding public and private key pairs from the router.
- **certificate-id certificate-id-name**—(Optional) Delete the specified local digital certificate and corresponding public and private key pair.
- **system-generated**—(Optional) Auto-generated self-signed certificate.

Required Privilege
- clear

Related Documentation
- request security pki local-certificate enroll on page 1440
- show security pki local-certificate on page 1523

List of Sample Output
clear security pki local-certificate all on page 1409

Output Fields
This command produces no output.

Sample Output

clear security pki local-certificate all

```bash
user@host> clear security pki local-certificate all
```
**clear services service-set statistics ids drops**

**Syntax**
clear services service-set statistics ids drops
   <interface interface-name>
   <service-set service-set-name>

**Release Information**
Command introduced in Junos OS Release 17.1 on MX Series.

**Description**
Clear statistics for packet drops resulting from header-integrity, suspicious packet pattern, and session-limit checks performed by an MS-MPC or MS-MIC.

**Options**
- **none**—Clear statistics for all configured services interfaces and service sets.
- **interface interface-name**—(Optional) Clear statistics for the specified services interface.

**Required Privilege**
network

**Related Documentation**
- show services service-set statistics ids drops on page 1665

**List of Sample Output**
clear services service-set statistics ids drops on page 1410

**Sample Output**
clear services service-set statistics ids drops

user@host> clear services service-set statistics ids drops
clear services service-sets statistics ids session-limits counters

Syntax

```
clear services service-sets statistics ids session-limits counters
 <interface interface-name>
```

Release Information

Command introduced in Junos OS Release 17.1 on MX Series.

Description

Clear counters for session drops and packet drops resulting from session-limit checks performed by an IDS rule on an MS-MPC or MS-MIC.

Options

- **none**—Clear counters for all configured services interfaces.
- **interface interface-name**—(Optional) Clear counters for the specified services interface.

Required Privilege

- Level network

Related Documentation

- show services service-sets statistics ids session-limits counters on page 1672

List of Sample Output

clear services service-sets statistics ids session-limits counters on page 1411

Sample Output

```
user@host> clear services service-sets statistics ids session-limits counters
```
clear services service-sets statistics integrity-drops

Syntax

```
clear services service-sets statistics integrity-drops
 <interface interface-name>
```

Release Information

Command introduced in Junos OS Release 13.3

Description

Clear integrity-drops statistics for one adaptive services interface, for all adaptive services interfaces, or for one service-set.

Options

- `none`—Clear integrity-drops statistics for all configured adaptive service interfaces/service-set.
  - `Service-set service-set-name`—(Optional) Clear integrity-drops statistics for the specified service-set
  - `interface interface-name`—(Optional) Clear integrity-drops statistics for the specified adaptive services interface.

Required Privilege

- `network` Level

Related Documentation

- show services service-sets statistics packet-drops on page 1683
### clear services service-sets statistics packet-drops

**Syntax**

```
clear services service-sets statistics packet-drops
 <interface interface-name>
```

**Release Information**

Command introduced in Junos OS Release 7.4.

**Description**

Clear dropped-packet statistics for one adaptive services interface or for all adaptive services interfaces.

**Options**

- **none**—Clear dropped-packet statistics for all configured adaptive services interfaces.
- **interface interface-name**—(Optional) Clear dropped-packet statistics for the specified adaptive services interface. On M Series and T Series routers, the `interface-name` can be `ms-fpc/pic/port`, `sp-fpc/pic/port` or `rspnumber`.

**Required Privilege**

network

**Related Documentation**

- show services service-sets statistics packet-drops on page 1683

**List of Sample Output**

clear services service-sets statistics packet-drops on page 1413

**Output Fields**

When you enter this command, you are provided feedback on the status of your request.

**Sample Output**

```
clear services service-sets statistics packet-drops
user@host> clear services service-sets statistics packet-drops interface sp-5/0/0
Flow collector interface: cp-5/0/0
Interface state: Collecting flows
Statistics cleared successfully
```
clear services service-sets statistics syslog

Syntax

```
clear services service-sets statistics syslog
<service-set service-set-name>
<interface interface-name>
```

Release Information

Command introduced in Junos OS Release 11.1.

Description

Clear system log statistics for one services interface or for all services interfaces, and for one named service set or all service sets on the interface or interfaces.

Options

- `none`—Clear system log for all configured services interfaces and their service sets.
- `interface interface-name`—(Optional) Clear system log statistics for the specified services interface. On M Series, MX Series, and T Series routers, the `interface-name` can be `ms-fpc/pic/port`, `sp-fpc/pic/port`, or `rspnumber`.
- `service-set service-set-name`—(Optional) Clear system log statistics for the specified services interface.

Required Privilege

```
network
```

Related Documentation

- `show services service-sets statistics syslog` on page 1685

List of Sample Output

```
clear services service-sets statistics syslog on page 1414
```

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

```
clear services service-sets statistics syslog

user@host> clear services service-sets statistics syslog interface sp-5/0/0
Flow collector interface: cp-5/0/0
Interface state: Collecting flows
Statistics cleared successfully
```
clear services sessions

Syntax

clear services sessions
  <application-protocol protocol>
  <destination-port destination-port>
  <destination-prefix destination-prefix>
  <interface interface-name>
  <ip-action>
  <protocol protocol>
  <service-set service-set>
  <source-port source-port>
  <source-prefix source-prefix>

Release Information


Description

Clear services sessions currently active on the embedded PIC or MIC. When you enter this command, the sessions are marked for deletion and are cleared thereafter. The time that is taken to clear the currently active sessions varies, depending on the scaled nature of the environment.

Options

none—Clear all sessions.

application-protocol protocol—(Optional) Clear sessions for one of the following application protocols:

- bootp—Bootstrap protocol
- dce-rpc—Distributed Computing Environment-Remote Procedure Call protocols
- dce-rpc-portmap—Distributed Computing Environment-Remote Procedure Call protocols portmap service
- dns—Domain Name System protocol
- exec—Exec
- ftp—File Transfer Protocol
- h323—H.323 standards
- icmp—Internet Control Message Protocol
- liop—Internet Inter-ORB Protocol
- ip—IP
- login—Login
- netbios—NetBIOS
- netshow—NetShow
- pptp—Point-to-Point Tunneling Protocol
- realaudio—RealAudio
- **rpc**—Remote Procedure Call protocol
- **rpc-portmap**—Remote Procedure Call protocol portmap service
- **rtsp**—Real-Time Streaming Protocol
- **shell**—Shell
- **sip**—Session Initiation Protocol
- **snmp**—Simple Network Management Protocol
- **sqlnet**—SQLNet
- **talk**—Talk Program
- **tftp**—Trivial File Transfer Protocol
- **traceroute**—Traceroute
- **winframe**—WinFrame

**destination-port destination-port**—(Optional) Clear sessions for the specified destination port. The range of values is from 0 to 65535.

**destination-prefix destination-prefix**—(Optional) Clear sessions for the specified destination prefix.

**interface interface-name**—(Optional) Clear sessions for the specified interface. On M Series and T Series routers, the **interface-name** can be **ms-fpc / pic / port or rsnumber**.

**ip-action**—(Optional) Clear **ip-action** entries generated by the router to log, drop, or block traffic based on previous matches. The IP action options and targets are configured at the [**edit security idp idp-policy policy-name rulebase-ipsrule rule rule-name then**] hierarchy level.

**protocol protocol**—(Optional) Clear sessions for one of the following IP types:

- **number**—Numeric protocol value from 0 to 255
- **ah**—IPsec Authentication Header protocol
- **egp**—An exterior gateway protocol
- **esp**—IPsec Encapsulating Security Payload protocol
- **gre**—A generic routing encapsulation protocol
- **icmp**—Internet Control Message Protocol
- **icmp6**—Internet Control Message Protocol version 6
- **igmp**—Internet Group Management Protocol
- **ipip**—IP-over-IP Encapsulation Protocol
- **ospf**—Open Shortest Path First protocol
- **pim**—Protocol Independent Multicast protocol
- **rsvp**—Resource Reservation Protocol
- **sctp**—Stream Control Transmission Protocol
- **tcp**—Transmission Control Protocol
- **udp**—User Datagram Protocol

**service-set service-set**—(Optional) Clear sessions for the specified service set.

**source-port source-port**—(Optional) Clear sessions for the specified source port. The range of values is from 0 through 65535.

**source-prefix source-prefix**—(Optional) Clear sessions for the specified source prefix.

**Required Privilege**

| Level | clear |

**Related Documentation**

- show services sessions on page 1695

**List of Sample Output**

clear services sessions on page 1417

**Output Fields**

Table 42 on page 1417 lists the output fields for the clear services sessions command. Output fields are listed in the approximate order in which they appear.

**Table 42: clear services sessions Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of the service set from which sessions are being cleared.</td>
</tr>
<tr>
<td>Sessions marked for deletion</td>
<td>Number of sessions that are marked for deletion and are subsequently cleared.</td>
</tr>
</tbody>
</table>

**Sample Output**

clear services sessions

```
user@host> cleart services sessions
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Service set</th>
<th>Sessions marked for deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms-0/0/0</td>
<td>sset</td>
<td>10</td>
</tr>
</tbody>
</table>
clear services stateful-firewall flows

Syntax

```
clear services stateful-firewall flows
 <application-protocol protocol>
 <destination-port destination-port>
 <destination-prefix destination-prefix>
 <interface interface-name>
 <protocol protocol>
 <service-set service-set>
 <source-port source-port>
 <source-prefix source-prefix>
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

Clear stateful firewall flows. Issue this command to clear the stateful firewall flows for the specified option. The default option is "none", that is, to close all stateful firewall flows unless another option is specified.

Starting in Junos Release 14.1, the method for closing flows has changed. With the change, even for peak flows, the command prompt now returns to an active state after 30 seconds and the clear command completes in 90 to 120 seconds. In previous releases, closing peak flows could take as long as 4 minutes, after which the command prompt would return. Note too that during the first 30 seconds of issuing the command, the flows to be deleted remain visible in the `show services stateful-firewall flows` command output.

Options

none—Clear all stateful firewall flows.

destination-port destination-port—(Optional) Clear stateful firewall flows for a particular destination port. The range of values is 0 to 65535.

destination-prefix destination-prefix—(Optional) Clear stateful firewall flows for a particular destination prefix.

interface interface-name—(Optional) Clear stateful firewall flows for a particular interface. On M Series and T Series routers, the `interface-name` can be `ms-fpc/pic/port` or `rspnumber`.

protocol—(Optional) Clear stateful firewall flows for one of the following IP types:

- number—Numeric protocol value from 0 to 255.
- ah—IPsec Authentication Header protocol
- egp—An exterior gateway protocol
- esp—IPsec Encapsulating Security Payload protocol
- gre—A generic routing encapsulation protocol
- icmp—Internet Control Message Protocol
- igmp—Internet Group Management Protocol
- **ipip**—IP-over-IP Encapsulation Protocol
- **ospf**—Open Shortest Path First protocol
- **pim**—Protocol Independent Multicast protocol
- **rsvp**—Resource Reservation Protocol
- **sctp**—Stream Control Protocol
- **tcp**—Transmission Control Protocol
- **udp**—User Datagram Protocol

**service-set service-set**—(Optional) Clear stateful firewall flows for a particular service set.

**source-port source-port**—(Optional) Clear stateful firewall flows for a particular source port. The range of values is from 0 through 65535.

**source-prefix source-prefix**—(Optional) Clear stateful firewall flows for a particular source prefix.

**Required Privilege**

**Level**

view

**Related Documentation**

- show services stateful-firewall flows on page 1737

**List of Sample Output**

clear services stateful-firewall flows on page 1419

**Output Fields**

Table 43 on page 1419 lists the output fields for the clear services stateful-firewall flows command. Output fields are listed in the approximate order in which they appear.

**Table 43: clear services stateful-firewall flows Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an adaptive services interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of the service set from which flows are being cleared.</td>
</tr>
<tr>
<td>Conv removed</td>
<td>Number of conversations removed.</td>
</tr>
</tbody>
</table>

**Sample Output**

clear services stateful-firewall flows

```
user@host> clear services stateful-firewall flows

<table>
<thead>
<tr>
<th>Interface</th>
<th>Service set</th>
<th>Conv removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms-0/3/0</td>
<td>svc_set_trust</td>
<td>0</td>
</tr>
<tr>
<td>ms-0/3/0</td>
<td>svc_set_untrust</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Copyright © 2019, Juniper Networks, Inc.
clear services stateful-firewall sip-call

Syntax

```plaintext
<application-protocol protocol>
<destination-port destination-port>
<destination-prefix destination-prefix>
<interface interface-name>
<protocol protocol>
<service-set service-set>
<source-port source-port>
<source-prefix source-prefix>
```

Release Information

Command introduced in Junos OS Release 7.4.

Description

Clear Session Initiation Protocol (SIP) call information in stateful firewall flows.

Options

none—Clear stateful firewall statistics for all interfaces and all service sets.

`application-protocol`—(Optional) Clear information about one of the following application protocols:

- `bootp`—(SIP only) Bootstrap protocol
- `dce-rpc`—(SIP only) Distributed Computing Environment-Remote Procedure Call protocols
- `dce-rpc-portmap`—(SIP only) Distributed Computing Environment-Remote Procedure Call protocols portmap service
- `dns`—(SIP only) Domain Name System protocol
- `exec`—(SIP only) Exec
- `ftp`—(SIP only) File Transfer Protocol
- `h323`—H.323 standards
- `icmp`—Internet Control Message Protocol
- `iiop`—Internet Inter-ORB Protocol
- `login`—Login
- `netbios`—NetBIOS
- `netshow`—NetShow
- `realaudio`—RealAudio
- `rpc`—Remote Procedure Call protocol
- `rpc-portmap`—Remote Procedure Call protocol portmap service
- `rtsp`—Real-Time Streaming Protocol
- `shell`—Shell
• sip—Session Initiation Protocol
• snmp—Simple Network Management Protocol
• sqlnet—SQLNet
• tftp—Trivial File Transfer Protocol
• traceroute—Traceroute
• winframe—WinFrame

destination-port destination-port—(Optional) Clear information for a particular destination port. The range of values is 0 to 65535.

destination-prefix destination-prefix—(Optional) Clear information for a particular destination prefix.

interface interface-name—(Optional) Clear information for a particular adaptive services interface. On M Series and T Series routers, the interface-name can be sp-fpc/pic/port or rsnumber.

protocol—(Optional) Clear information about one of the following IP types:

• ah—IPsec Authentication Header protocol
• egp—An exterior gateway protocol
• esp—IPsec Encapsulating Security Payload protocol
• gre—A generic routing encapsulation protocol
• icmp—Internet Control Message Protocol
• igmp—Internet Group Management Protocol
• ipip—IP-within-IP Encapsulation Protocol
• ipv6—IPv6 within IP
• ospf—Open Shortest Path First protocol
• pim—Protocol Independent Multicast protocol
• rsvp—Resource Reservation Protocol
• sctp—Stream Control Protocol
• tcp—Transmission Control Protocol
• udp—User Datagram Protocol

service-set service-set—(Optional) Clear information for a particular service set.

source-port source-port—(Optional) Clear information for a particular source port. The range of values is 0 to 65535.

source-prefix source-prefix—(Optional) Clear information for a particular source prefix.
Required Privilege Level

- view

Related Documentation
- show services stateful-firewall sip-call on page 1743

List of Sample Output
- clear services stateful-firewall sip-call on page 1423

Output Fields
Table 44 on page 1423 lists the output fields for the clear services stateful-firewall sip-call command. Output fields are listed in the approximate order in which they appear.

Table 44: clear services stateful-firewall sip-call Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an adaptive services interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of the service set from which flows are being cleared.</td>
</tr>
<tr>
<td>SIP calls removed</td>
<td>Number of SIP calls removed.</td>
</tr>
</tbody>
</table>

Sample Output

clear services stateful-firewall sip-call

user@host> clear services stateful-firewall sip-call

<table>
<thead>
<tr>
<th>Interface</th>
<th>Service set</th>
<th>SIP calls removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp-0/3/0</td>
<td>test_sip_777</td>
<td>1</td>
</tr>
</tbody>
</table>
clear services stateful-firewall sip-register

Syntax  
```
clear services stateful-firewall sip-register
<application-protocol protocol>
<destination-port destination-port>
<destination-prefix destination-prefix>
<interface interface-name>
<protocol protocol>
<service-set service-set>
<source-port source-port>
<source-prefix source-prefix>
```

Release Information  
Command introduced in Junos OS Release 7.4.

Description  
Clear Session Initiation Protocol (SIP) register information in stateful firewall flows.

Options  
application-protocol (Optional) Clear information about one of the following application protocols:
- bootp (SIP only) Bootstrap protocol
- dce-rpc (SIP only) Distributed Computing Environment-Remote Procedure Call protocols
- dce-rpc-portmap (SIP only) Distributed Computing Environment-Remote Procedure Call protocols portmap service
- dns (SIP only) Domain Name System protocol
- exec (SIP only) Exec
- ftp (SIP only) File Transfer Protocol
- h323 H.323 standards
- icmp Internet Control Message Protocol
- iiop Internet Inter-ORB Protocol
- login Login
- netbios NetBIOS
- netshow NetShow
- realaudio RealAudio
- rpc Remote Procedure Call protocol
- rpc-portmap Remote Procedure Call protocol portmap service
- rtsp Real-Time Streaming Protocol
- shell Shell
- sip Session Initiation Protocol
- **snmp**—Simple Network Management Protocol
- **sqlnet**—SQLNet
- **tftp**—Trivial File Transfer Protocol
- **traceroute**—Traceroute
- **winframe**—WinFrame

**destination-port destination-port**—(Optional) Clear information for a particular destination port. The range of values is 0 to 65535.

**destination-prefix destination-prefix**—(Optional) Clear information for a particular destination prefix.

**interface interface**—(Optional) Clear information about a particular interface. On M Series and T Series routers, the **interface-name** can be **sp-fpc/pic/port** or **rspnumber**.

**protocol**—(Optional) Clear information about one of the following IP types:
- **ah**—IPsec Authentication Header protocol
- **egp**—An exterior gateway protocol
- **esp**—IPsec Encapsulating Security Payload protocol
- **gre**—A generic routing encapsulation protocol
- **icmp**—Internet Control Message Protocol
- **igmp**—Internet Group Management Protocol
- **ipip**—IP-within-IP Encapsulation Protocol
- **ipv6**—IPv6 within IP
- **ospf**—Open Shortest Path First protocol
- **pim**—Protocol Independent Multicast protocol
- **rsvp**—Resource Reservation Protocol
- **sctp**—Stream Control Protocol
- **tcp**—Transmission Control Protocol
- **udp**—User Datagram Protocol

**service-set service-set**—(Optional) Clear information for a particular service set.

**source-port source-port**—(Optional) Clear information for a particular source port. The range of values is 0 through 65535.

**source-prefix source-prefix**—(Optional) Clear information for a particular source prefix.
Required Privilege Level

View

Related Documentation

- show services stateful-firewall sip-register on page 1748

List of Sample Output
clear services stateful-firewall sip-register on page 1426

Output Fields

Table 45 on page 1426 lists the output fields for the clear services stateful-firewall sip-register command. Output fields are listed in the approximate order in which they appear.

Table 45: clear services stateful-firewall sip-register Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an adaptive services interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of the service set from which flows are being cleared.</td>
</tr>
<tr>
<td>SIP registration removed</td>
<td>Number of SIP registers removed.</td>
</tr>
</tbody>
</table>

Sample Output
clear services stateful-firewall sip-register

user@host> clear services stateful-firewall sip-register

<table>
<thead>
<tr>
<th>Interface</th>
<th>Service set</th>
<th>SIP registration removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp-0/3/0</td>
<td>test_sip_777</td>
<td>1</td>
</tr>
</tbody>
</table>
clear services stateful-firewall statistics

Syntax

```
clear services stateful-firewall statistics
<interface interface-name>
<service-set service-set>
```

Release Information
Command introduced before Junos OS Release 7.4.

Description
Clear stateful firewall statistics.

Options

```
none—Clear stateful firewall statistics for all interfaces and all service sets.

interface interface-name—(Optional) Clear stateful firewall statistics for the specified interface. On M Series and T Series routers, the interface-name can be ms-fpc/pic/port or rspnumber.

```

Required Privilege Level
view

Related Documentation

- show services stateful-firewall statistics on page 1752

List of Sample Output
clear services stateful-firewall statistics on page 1427

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

clear services stateful-firewall statistics

```
user@host> clear services stateful-firewall statistics
```
clear services web-filter statistics profile

Syntax

```
clear services web-filter statistics profile profile-name
 <dns-filter-template template-name>
 <fpc-slot fpc-slot pic-slot pic-slot>
 <url-filter-template template-name>
```

Release Information

Command introduced in Junos OS Release 18.3R1.

Description

Clear statistics for DNS request filtering or URL filtering for the specified filter profile.

Options

- `dns-filter-template template-name`—(Optional) Name of the DNS filter template for which statistics are cleared.
- `fpc-slot fpc-slot pic-slot pic-slot`—(Optional) Location of the services PIC for which statistics are cleared.
- `profile profile-name`—Name of the filter profile for which statistics are cleared.
- `url-filter-template template-name`—(Optional) Name of the URL filter template for which statistics are cleared.

Required Privilege

- clear

Related Documentation

- DNS Request Filtering for Blacklisted Website Domains on page 39
- Configuring URL Filtering on page 50

List of Sample Output

- clear services web-filter statistics profile on page 1428

Output Fields

When you enter this command, the statistics for DNS request filtering are cleared. There is no specific output.

Sample Output

```
clear services web-filter statistics profile
```

```
user@host> clear services web-filter statistics profile
```
request interface revert

**Syntax**

request interface revert interface interface-name

**Release Information**

Statement introduced in Junos OS Release 17.2 on MX Series.

**Description**

Revert from the secondary to the primary interface in the specified warm standby AMS interface.

**Options**

interface interface-name—Name of the AMS interface in which you want to revert from the secondary to the primary interface.

**Required Privilege**

view

**List of Sample Output**

request interface revert interface on page 1429

**Output Fields**

When you enter this command, you are provided feedback on the status of your request.

**Sample Output**

request interface revert interface

user@host> request interface revert interface ams1
**request interface (revert | switchover) (Adaptive Services)**

**Syntax**

request interface (revert | switchover) (rspnumber | rlsoqnumber)

**Release Information**

Command introduced before Junos OS Release 7.4.
Support for rlsoq interfaces added in Junos OS Release 7.6.

**Description**

(M Series and T Series routers only) Manually revert to the primary adaptive services interface or link services IQ interface, or to switch from the primary to the secondary interface.

**NOTE:** All rlsoq switchover or revert operations are allowed from the rlsoqnumber level only and not for individual channelized interfaces (rlsoqnumber:unit).

On an aggregated Ethernet interface with link protection enabled, use the `request interface (revert | switchover) (Aggregated Ethernet Link Protection)` operational command to manually revert egress traffic from the designated backup link to the designated primary link, or to manually switch egress traffic from the primary link to the backup link. For information about this command, see `request interface (revert | switchover) (Aggregated Ethernet Link Protection)`.

**Options**

(revert | switchover)—The revert keyword restores active processing to the primary adaptive services (sp) or link services IQ (lsq) interface. The switchover keyword transfers active processing to the secondary (backup) interface.

rspnumber—Redundant adaptive services interface name.
rlsqnumber—Redundant link services IQ interface name.

**Required Privilege Level**

view

**List of Sample Output**

request interface revert on page 1430
request interface switchover on page 1431

**Output Fields**

When you enter this command, you are provided feedback on the status of your request.

**Sample Output**

request interface revert

```
user@host> request interface revert rlsoq0
request succeeded
```
request interface switchover

user@host> request interface switchover rlsq0
error: rlsq0: already on secondary
request interface switchover

**Syntax**

request interface switchover interface *interface-name*

**Release Information**

Statement introduced in Junos OS Release 17.2 on MX Series.

**Description**

Switch over from the primary to the secondary (backup) interface in the specified warm standby AMS interface. If the secondary interface is already in use, then the operation fails.

**Options**

interface *interface-name*—Name of the AMS interface in which you want to switchover from the primary to the secondary interface.

**Required Privilege**

**Level**

view

**List of Sample Output**

request interface switchover interface on page 1432

**Output Fields**

When you enter this command, you are provided feedback on the status of your request.

**Sample Output**

request interface switchover interface

    user@host> request interface switchover interface ams1
request security pki ca-certificate enroll

Syntax

request security pki ca-certificate enroll ca-profile ca-profile-name

Release Information

Command introduced in Junos OS Release 7.5.

Description

Request a digital certificate from a certificate authority (CA) online by using the Simple Certificate Enrollment Protocol (SCEP).

Options

ca-profile ca-profile-name—CA profile name.

Required Privilege Level

maintenance

Related Documentation

• clear security pki ca-certificate on page 1405
• show security pki ca-certificate on page 1513

List of Sample Output

request security pki ca-certificate enroll on page 1433

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

request security pki ca-certificate enroll

user@host> request security pki ca-certificate enroll ca-profile entrust
Received following certificates:
Certificate: C=us, O=juniper, CN=First Officer
Certificate: C=us, O=juniper, CN=First Officer
Certificate: C=us, O=juniper
Do you want to load the above CA certificate? [yes,no] (no) yes
request security pki ca-certificate load

Syntax  
request security pki ca-certificate load ca-profile ca-profile-name filename path/filename

Release Information  
Command introduced in Junos OS Release 7.5.

Description  
Manually load a certificate authority (CA) digital certificate from a specified location.

Options  
ca-profile ca-profile-name—Load the specified CA profile.

filename path/filename—Directory location and filename of the CA digital certificate.

Required Privilege  
Level  
maintenance

Related Documentation  
• clear security pki ca-certificate on page 1405
• show security pki ca-certificate on page 1513

List of Sample Output  
request security pki ca-certificate load on page 1434

Output Fields  
When you enter this command, you are provided feedback on the status of your request.

Sample Output

request security pki ca-certificate load

user@host> request security pki ca-certificate load ca-profile ca-private filename pki-file
request security pki ca-certificate verify

Syntax
request security pki ca-certificate verify ca-profile ca-profile-name

Release Information
Command introduced in Junos OS Release 8.5.

Description
Verify the digital certificate installed for the specified certificate authority (CA).

Options
ca-profile ca-profile-name—Name of the local digital certificate identifier.

Required Privilege
maintenance

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output
You receive the following response before the certificate revocation list (CRL) is downloaded:

request security pki ca-certificate verify ca-profile ca1 (CRL not downloaded)
user@host> request security pki ca-certificate verify ca-profile ca1

CA certificate ca1: CRL verification in progress. Please check the PKId debug logs for completion status
request security pki crl load

Syntax  request security pki crl load ca-profile ca-profile-name filename path/filename


Description  Manually install a certificate revocation list (CRL) on the router from a specified location.

Options  
  
  ca-profile ca-profile-name  —Load the specified certificate authority (CA) profile.

  filename path/filename  —Directory location and filename of the CRL.

Required Privilege Level  maintenance

List of Sample Output  request security pki crl load on page 1436

Output Fields  When you enter this command, you are provided feedback on the status of your request.

Sample Output

request security pki crl load

  user@host> request security pki crl load ca-profile ca-private filename pki-file
request security pki generate-certificate-request

Syntax
request security pki generate-certificate-request certificate-id certificate-id-name
domain-name domain-name subject subject-distinguished-name
<email email-address>
<filename (path | terminal)>
<ip-address ip-address>

Release Information
Command introduced in Junos OS Release 7.5.

Description
Manually generate a local digital certificate request in the Public-Key Cryptography Standards #10 (PKCS-10) format.

Options

- **certificate-id certificate-id-name**—Name of the local digital certificate and the public/private key pair.

- **domain-name domain-name**—Fully qualified domain name (FQDN). The FQDN provides the identity of the certificate owner for Internet Key Exchange (IKE) negotiations and provides an alternative to the subject name.

- **subject subject-distinguished-name**—Distinguished name format that contains the common name, department, company name, state, and country:
  
  - **CN**—Common name
  - **OU**—Organizational unit name
  - **O**—Organization name
  - **ST**—State
  - **C**—Country

- **email email-address**—(Optional) E-mail address of the certificate holder.

- **filename (path | terminal)**—(Optional) Location where the local digital certificate request should be placed or the login terminal.

- **ip-address ip-address**—(Optional) IP address of the router.

Required Privilege Level
maintenance

Related Documentation
- clear security pki certificate-request on page 1406
- show security pki certificate-request on page 1517

List of Sample Output
request security pki generate-certificate-request on page 1438
When you enter this command, you are provided feedback on the status of your request.

**Sample Output**

```
request security pki generate-certificate-request

Generated certificate request
-----BEGIN CERTIFICATE REQUEST-----
MIIBoTCCAQoCAQAwCjEYMBYGA1UEAxMnPdHAxLmp1bm1wZXIubmVOMIGFMA0GCSqG
SIb3DQEBAQUAA4GNADCBiQKgQIcUFkIQwsIUD+AgQN5DDxRs2kVvKehh9qvoVFnz+
Hz4c9vsv388ElwT1kmt2cb3yfB6zePd+6WYpf57Cwre7YqPiX31f6z3YjX
H+1BPNbCxNWYyvrnSyYDfbFj800Xyqog8ACDFVL2JBwPNBYy71mg/K9sObBbAs6
5hZqwIDAQABoEcwRQ/YJkOZInvcNAQkOMtgwnJaOBgNvHQBaf8EBAMCB4AwJAYD
VRORAQ/H/BBowGIIwdHAxLmVzZxhY15qidW5pcCVyLmS1dDANBgkgkhiG9w0BAQQF
AAOBqBc2rqlv55DQXH7Lcb/FdqAL8ZM6GoaN5d6Gwq4bB6a7UQFtoH406gQ3G
3IHZ2Fz4xMIBpJYudkqyvcoDoH3AgTsLkfn7Wx3sH2qeQvs9bvL4P5nvEZWLD
EJMUHwteolZCI270f09Fe9cXwHSGs1UtXtgPQ3y2x1e1mLgw==
-----END CERTIFICATE REQUEST-----
Fingerprint:
```
request security pki generate-key-pair

Syntax
request security pki generate-key-pair certificate-id certificate-id-name
<size (512 | 1024 | 2048)>

Release Information
Command introduced in Junos OS Release 7.5.

Description
Generate a Public Key Infrastructure (PKI) public and private key pair for a local digital certificate.

Options
certificate-id certificate-id-name—Name of the local digital certificate and the public/private key pair.

size—(Optional) Key pair size. The key pair size can be 512, 1024, or 2048 bits.

Required Privilege
maintenance

List of Sample Output
request security pki generate-key-pair on page 1439

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output
request security pki generate-key-pair
user@host> request security pki generate-key-pair certificate-id billy size 2048
Generated key pair billy, key size 2048 bits
request security pki local-certificate enroll

Syntax
request security pki local-certificate enroll ca-profile ca-profile-name certificate-id certificate-id-name certificate-id-name challenge-password password domain-name domain-name subject subject-distinguished-name
<email email-address>
<ip-address ip-address>

Release Information
Command introduced in Junos OS Release 7.5.

Description
Request that a certificate authority (CA) enroll and install a local digital certificate online by using the Simple Certificate Enrollment Protocol (SCEP).

Options
ca-profile ca-profile-name—CA profile name.

certificate-id certificate-id-name—Name of the local digital certificate and the public/private key pair.

challenge-password password—Password set by the administrator and normally obtained from the SCEP enrollment webpage of the CA. The password is 16 characters in length.

domain-name domain-name—Fully qualified domain name (FQDN). The FQDN provides the identity of the certificate owner for Internet Key Exchange (IKE) negotiations and provides an alternative to the subject name.

subject subject-distinguished-name—Distinguished name format that contains the common name, department, company name, state, and country:

- CN—Common name
- OU—Organizational unit name
- O—Organization name
- ST—State
- C—Country

e-mail email-address—(Optional) E-mail address of the certificate holder.

ip-address ip-address—(Optional) IP address of the router.

Required Privilege
Level maintenance

Related Documentation
- show security pki local-certificate on page 1523
Output Fields  When you enter this command, you are provided feedback on the status of your request.

Sample Output

```
user@host> request security pki local-certificate enroll certificate-id r3-entrust-scep ca-profile entrust domain-name router3.example.net subject "CN=router3,OU=Engineering,O=juniper,C=US" challenge-password 123
```

Certificate enrollment has started. To view the status of your enrollment, check the public key infrastructure log (pkid) log file at /var/log/pkid. Please save the challenge-password for revoking this certificate in future. Note that this password is not stored on the router.
request security pki local-certificate generate-self-signed

Syntax
request security pki local-certificate generate-self-signed certificate-id certificate-id-name
domain-name domain-name ip-address ip-address email email-address
subject subject-distinguished-name

Release Information
Command introduced in Junos OS Release 9.1.

Description
Manually generate a self-signed certificate for the given distinguished name.

Options
- **certificate-id certificate-id-name**—Name of the local digital certificate and the public/private key pair.
- **domain-name domain-name**—Fully qualified domain name (FQDN). The FQDN provides the identity of the certificate owner for Internet Key Exchange (IKE) negotiations and provides an alternative to the subject name.
- **email email-address**—E-mail address of the certificate holder.
- **ip-address ip-address**—IP address of the router.
- **subject subject-distinguished-name**—Distinguished name format that contains the common name, department, company name, state, and country:
  - **CN**—Common name
  - **OU**—Organizational unit name
  - **O**—Organization name
  - **ST**—State
  - **C**—Country

Required Privilege
- **Level**
  - maintenance
  - security

Related Documentation
- Requesting for and Installing a Digital Certificates on Your Router on page 654

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output
```
user@host> request security pki local-certificate generate-self-signed certificate-id self-cert
subject cn=abc domain-name example.net email user1@example.net
Self-signed certificate generated and loaded successfully
```
request security pki local-certificate load

Syntax  request security pki local-certificate load certificate-id certificate-id-name  filename path

Release Information  Command introduced in Junos OS Release 7.5.

Description  Manually load a local digital certificate from a specified location.

Options  certificate-id certificate-id-name—Name of the public/private key pair mapped to the local digital certificate.

filename path/filename—Directory location and filename of the local digital certificate provided by the CA.

Required Privilege  Level  maintenance

List of Sample Output  request security pki local-certificate load on page 1443

Output Fields  When you enter this command, you are provided feedback on the status of your request.

Sample Output

request security pki local-certificate load

user@host>  request security pki local-certificate load filename /tmp/router2-cert certificate-id local-entrust2

Local certificate local-entrust2 loaded successfully
request security pki local-certificate verify

Syntax
request security pki local-certificate verify certificate-id certificate-id-name

Release Information
Command introduced in Junos OS Release 8.5.

Description
Verify the validity of the local digital certificate identifier.

Options
- certificate-id certificate-id-name — Display the specified certificate identifier name.

Required Privilege
- Level maintenance

Related Documentation
- show security pki local-certificate on page 1523

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

You receive the following response before the certificate revocation list (CRL) is downloaded:

request security pki local-certificate verify certificate-id bme1 (not downloaded)
user@host> request security pki local-certificate verify certificate-id bme1

Local certificate bme1: CRL verification in progress. Please check the PKId debug logs for completion status

You receive the following response after the certificate revocation list (CRL) is downloaded:

request security pki local-certificate verify certificate bme1 (downloaded)
user@host> request security pki local-certificate verify certificate-id bme1

Local certificate bme1 verification success
request services ipsec-vpn ipsec switch tunnel

Syntax
request services ipsec-vpn ipsec switch tunnel local-gateway address remote-gateway address
<routing-instance instance-name>

Release Information
Command introduced before Junos OS Release 7.4.
<routing-instance> option added in Release 8.1.

Description
(Adaptive services interface only) Manually switch between primary and backup IP Security (IPsec) tunnels.

Options
local-gateway address—Gateway address of the local system.
remote-gateway address—Gateway address of the remote system.
routing-instance instance-name—(Optional) VRF instance associated with local gateway address.

Required Privilege
view

Related Documentation
• show services ipsec-vpn ipsec security-associations on page 1585

List of Sample Output
request services ipsec-vpn ipsec switch tunnel on page 1445

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output
request services ipsec-vpn ipsec switch tunnel
user@host> request services ipsec-vpn ipsec switch tunnel local-gateway 10.1.1.1 remote-gateway 10.100.10.1
**request services redundancy-set trigger**

**Syntax**  
request services redundancy-set (redundancy-set |all) trigger redundancy-event

**Release Information**  
Statement introduced in Junos OS Release 16.1 on MX Series.

**Description**  
Manually trigger a redundancy event for the specified redundancy set or all sets on the current gateway.
request services url-filter delete gencfg-data

Syntax

request services url-filter delete gencfg-data

Release Information

Command introduced in Junos OS Release 17.2.

Description

Delete url-filterd-ased objects. This is historical information.

WARNING: Do not use this command unless explicitly instructed to do so.

NOTE: Starting in Junos OS Release 18.3R1, the request services url-filter delete gencfg-data command is deprecated and has been replaced by the request services web-filter delete gencfg-data command.

Required Privilege Level

view

Related Documentation

- request services url-filter force dns-resolution on page 1448
- request services url-filter update url-filter-database file on page 1450
- request services url-filter validate on page 1451
- Configuring URL Filtering on page 50
request services url-filter force dns-resolution

Syntax

request services url-filter force dns-resolution (all | profile profile-name)  
/template template-name/

Release Information

Command introduced in Junos OS Release 17.2.

Description

Force the domain name system (DNS) resolution request.

NOTE: Starting in Junos OS Release 18.3R1, the request services url-filter force dns-resolution command is deprecated and has been replaced by the request services web-filter force dns-resolution command.

Options

all—Force a DNS resolution request for all profiles.

profile profile-name—Force a DNS resolution request for the profile (all templates).

template template-name—Force a DNS resolution request for the template.

Required Privilege Level

view

Related Documentation

- request services url-filter delete gencfg-data on page 1447
- request services url-filter update url-filter-database file on page 1450
- request services url-filter validate on page 1451
- Configuring URL Filtering on page 50

List of Sample Output

request services url-filter force dns-resolution profile profile1 on page 1448
request services url-filter force dns-resolution profile profile1 template template1 on page 1448
request services url-filter force dns-resolution all on page 1449

Sample Output

request services url-filter force dns-resolution profile profile1

user@host> request services url-filter force dns-resolution profile profile1
STATUS: DNS resolution is triggered for profile profile1

request services url-filter force dns-resolution profile profile1 template template1

user@host> request services url-filter force dns-resolution profile profile1 template template1
STATUS: DNS resolution is triggered for template template1 in profile profile1

request services url-filter force dns-resolution all

user@host> request services url-filter force dns-resolution all
STATUS: DNS resolution has been triggered for all profiles
request services url-filter update url-filter-database file

Syntax
request services url-filter update url-filter-database file filename

Release Information
Command introduced in Junos OS Release 17.2.

Description
Update the URL filter database. If you change the database file, run this command. It sends a request to the DNS server for only the new hostnames that were not in the previous version of URL database file.

NOTE:
Starting in Junos OS Release 18.3R1, the request services url-filter update url-filter-database file command is deprecated and has been replaced by the request services web-filter update url-filter-database file command.

Options
filename—Use the database filename.

Required Privilege Level
view

Related Documentation
- request services url-filter delete gencfg-data on page 1447
- request services url-filter force dns-resolution on page 1448
- request services url-filter validate on page 1451
- Configuring URL Filtering on page 50
request services url-filter validate

Syntax  
request services url-filter validate (all | file-name filename)

Release Information  
Command introduced in Junos OS Release 17.2.

Description  
Validate the URL filter database to ensure the database is correct.

NOTE: Starting in Junos OS Release 18.3R1, the request services url-filter validate command is deprecated and has been replaced by the request services web-filter validate url-filter-file-name command.

Options  
all—Validate the URL filter database for all profiles.

file-name filename—Validate the URL filter database for the database file specified.

Required Privilege  
view

Related Documentation
  • request services url-filter delete genconfig-data on page 1447
  • request services url-filter force dns-resolution on page 1448
  • request services url-filter update url-filter-database file on page 1450
  • Configuring URL Filtering on page 50
request services web-filter delete gencfg-data

Syntax  request services web-filter delete gencfg-data

Release Information  Command introduced in Junos OS Release 18.3R1.

Description  Delete url-filtered-ased objects. This is historical information.

WARNING: Do not use this command unless explicitly instructed to do so.

Required Privilege  view

Related Documentation  
  - request services web-filter force dns-resolution on page 1454
  - request services web-filter update url-filter-database file on page 1455
  - request services web-filter validate url-filter-file-name on page 1457
  - Configuring URL Filtering on page 50
request services web-filter update dns-filter-database

Syntax
request services web-filter update dns-filter-database filename

Release Information
Command introduced in Junos OS Release 18.3R1.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description
When you make changes to the domain filter database file, which is used in filtering DNS requests for blacklisted domains, apply the changes.

Options
filename—File name of the database file.

Required Privilege
maintenance

Related Documentation
• DNS Request Filtering for Blacklisted Website Domains on page 39
**request services web-filter force dns-resolution**

**Syntax**
```
request services web-filter force dns-resolution (all | profile profile-name)
<template template-name>
```

**Release Information**
Command introduced in Junos OS Release 18.3R1.

**Description**
Force the domain name system (DNS) resolution request.

**Options**
- **all**—Force a DNS resolution request for all profiles.
- **profile profile-name**—Force a DNS resolution request for the profile (all templates).
- **template template-name**—Force a DNS resolution request for the template.

**Required Privilege Level**
view

**Related Documentation**
- [request services web-filter delete gencfg-data on page 1452](#)
- [request services web-filter update url-filter-database file on page 1455](#)
- [request services web-filter validate url-filter-file-name on page 1457](#)
- Configuring URL Filtering on page 50
request services web-filter update url-filter-database file

Syntax

request services web-filter update url-filter-database file filename

Release Information

Command introduced in Junos OS Release 18.3R1.

Description

Update the URL filter database. If you change the database file, run this command. It sends a request to the DNS server for only the new hostnames that were not in the previous version of the URL database file.

Options

filename—Use the database filename.

Required Privilege

view

Related Documentation

• request services web-filter delete gencfg-data on page 1452
• request services web-filter force dns-resolution on page 1454
• request services web-filter validate url-filter-file-name on page 1457
• Configuring URL Filtering on page 50
request services web-filter validate dns-filter-file-name

Syntax
request services web-filter validate dns-filter-file-name filename hash-key key-string hash-method hash-method-name

Release Information
Command introduced in Junos OS Release 18.3R1. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description
Validate the file format of the domain filter database file, which is used in filtering DNS requests for blacklisted domains.

Options
filename—File name of the database file.
hash-method-name—Hash method you used to produce the hashed domain name values in the database file.
key-string—Hash key you used to produce the hashed domain name values in the database file.

Required Privilege
maintenance

Related Documentation
• DNS Request Filtering for Blacklisted Website Domains on page 39
request services web-filter validate url-filter-file-name

**Syntax**
```
request services web-filter validate (all | url-filter-file-name filename)
```

**Release Information**
Command introduced in Junos OS Release 18.3R1.

**Description**
Validate the URL filter database to ensure the database is correct.

**Options**
- **all**—Validate the URL filter database for all profiles.
- **url-filter-file-name filename**—Validate the URL filter database for the database file specified.

**Required Privilege Level**
view

**Related Documentation**
- request services web-filter delete gencfg-data on page 1452
- request services web-filter force dns-resolution on page 1454
- request services web-filter update url-filter-database file on page 1455
- Configuring URL Filtering on page 50
**show interfaces (Adaptive Services)**

**Syntax**
```
show interfaces interface-type
 <brief | detail | extensive | terse>
 <descriptions>
 <media>
 <snmp-index snmp-index>
 <statistics>
```

**Release Information**
Command introduced before Junos OS Release 7.4.

**Description**
Display status information about the specified adaptive services interface.

**Options**
- **interface-type**—On M Series and T Series routers, the interface type is `sp/ fpc/pic/port`.
- **brief | detail | extensive | terse**—(Optional) Display the specified level of output.
- **descriptions**—(Optional) Display interface description strings.
- **media**—(Optional) Display media-specific information about network interfaces.
- **snmp-index snmp-index**—(Optional) Display information for the specified SNMP index of the interface.
- **statistics**—(Optional) Display static interface statistics.

**Required Privilege Level**
view

**List of Sample Output**
- `show interfaces (Adaptive Services)` on page 1463
- `show interfaces brief (Adaptive Services)` on page 1463
- `show interfaces detail (Adaptive Services)` on page 1463
- `show interfaces extensive (Adaptive Services)` on page 1464

**Output Fields**
Table 46 on page 1458 lists the output fields for the **show interfaces** (adaptive services and redundant adaptive services) command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface. Possible values are described in the “Enabled Field” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface index</td>
<td>Physical interface's index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
</tbody>
</table>

Table 46: Adaptive Services and Redundant Adaptive Services show interfaces Output Fields
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP ifindex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Type</td>
<td>Encapsulation being used on the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation being used on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Clocking</td>
<td>Reference clock source: can be Internal or External.</td>
<td>All levels</td>
</tr>
<tr>
<td>Speed</td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td>Device flags</td>
<td>Information about the physical device. Possible values are described in the</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>“Device Flags” section under Common Output Fields Description.</td>
<td></td>
</tr>
<tr>
<td>Interface flags</td>
<td>Information about the interface. Possible values are described in the “Interface</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>Flags” section under Common Output Fields Description.</td>
<td></td>
</tr>
<tr>
<td>Link type</td>
<td>Physical interface link type: Full-Duplex or Half-Duplex.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Link flags</td>
<td>Information about the link. Possible values are described in the “Link Flags”</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td>section under Common Output Fields Description.</td>
<td></td>
</tr>
<tr>
<td>Physical info</td>
<td>Information about the physical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Hold-times</td>
<td>Current interface hold-time up and hold-time down, in milliseconds.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Current address</td>
<td>Configured MAC address.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Hardware address</td>
<td>MAC address of the hardware.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Alternate link address</td>
<td>Backup address of the link.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Last flapped</td>
<td>Date, time, and how long ago the interface went from down to up. The format is</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td>Last flapped: year-month-day hour:minute:second timezone (hour:minute:second ago).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For example, Last flapped: 2002-04-26 10:52:40 PDT (04:33:20 ago).</td>
<td></td>
</tr>
<tr>
<td>Input Rate</td>
<td>Input rate in bits per second (bps) and packets per second (pps).</td>
<td>None specified</td>
</tr>
<tr>
<td>Output Rate</td>
<td>Output rate in bps and pps.</td>
<td>None specified</td>
</tr>
<tr>
<td>Statistics last cleared</td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 46: Adaptive Services and Redundant Adaptive Services show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the physical interface.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>

**NOTE:** With static NAT configured as basic NAT44 or destination NAT44 on MX Series routers with MS-MICs and MS-MPCs, the Input bytes field might show 16 more bytes than the Output bytes field. This is caused by the accounting of 16 bytes of the Juniper Forwarding Module cookie.

- **Input bytes**—Number of bytes received on the interface.
- **Output bytes**—Number of bytes transmitted on the interface.
- **Input packets**—Number of packets received on the interface.
- **Output packets**—Number of packets transmitted on the interface.

**Input errors**

Input errors on the interface. The following paragraphs explain the counters whose meaning might not be obvious:

- **Errors**—Sum of the incoming frame aborts and FCS errors.
- **Drops**—Number of packets dropped by the input queue of the I/O Manager ASIC. If the interface is saturated, this number increments once for every packet that is dropped by the ASIC’s RED mechanism.
- **Framing errors**—Number of packets received with an invalid frame checksum (FCS).
- **Runt**s—Frames received smaller than the runt threshold.
- **Giants**—Frames received larger than the giant threshold.
- **Policed discards**—Number of frames that the incoming packet match code discarded because they were not recognized or not of interest. Usually, this field reports protocols that the Junos OS does not handle.
- **Resource errors**—Sum of transmit drops.

**Output errors**

Output errors on the interface. The following paragraphs explain the counters whose meaning might not be obvious:

- **Carrier transitions**—Number of times the interface has gone from down to up. This number does not normally increment quickly, increasing only when the cable is unplugged, the far-end system is powered down and then up, or another problem occurs. If the number of carrier transitions increments quickly (perhaps once every 10 seconds), the cable, the far-end system, or the PIC is malfunctioning.
- **Errors**—Sum of the outgoing frame aborts and FCS errors.
- **Drops**—Number of packets dropped by the output queue of the I/O Manager ASIC. If the interface is saturated, this number increments once for every packet that is dropped by the ASIC’s RED mechanism.
- **MTU errors**—Number of packets larger than the MTU threshold.
- **Resource errors**—Sum of transmit drops.

Logical Interface

<table>
<thead>
<tr>
<th>Logical interface</th>
<th>Name of the logical interface.</th>
<th>All levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Logical interface index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>SNMP interface index</td>
<td>SNMP interface index number.</td>
<td>detail extensive none</td>
</tr>
</tbody>
</table>
Table 46: Adaptive Services and Redundant Adaptive Services show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the logical interface. Possible values are described in the</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>“Logical Interface Flags” section under Common Output Fields Description.</td>
<td></td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Encapsulation on the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Input packets</td>
<td>Number of packets received on the logical interface.</td>
<td>None specified</td>
</tr>
<tr>
<td>Output packets</td>
<td>Number of packets transmitted on the logical interface.</td>
<td>None specified</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the logical</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input bytes—Number of bytes received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output bytes—Number of bytes transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets—Number of packets received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output packets—Number of packets transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td>Local statistics</td>
<td>Statistics for traffic received from and transmitted to the Routing Engine. When</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>a burst of traffic is received, the value in the output packet rate field might</td>
<td></td>
</tr>
<tr>
<td></td>
<td>briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for this counter to stabilize.</td>
<td></td>
</tr>
<tr>
<td>Transit statistics</td>
<td>Statistics for traffic transiting the router. When a burst of traffic is</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>received, the value in the output packet rate field might briefly exceed the peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cell rate. It takes generally less than 1 second for the counter to stabilize.</td>
<td></td>
</tr>
<tr>
<td>protocol-family</td>
<td>Protocol family configured on the logical interface. If the protocol is inet, the IP</td>
<td>brief</td>
</tr>
<tr>
<td></td>
<td>address of the interface is also displayed.</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol family configured on the logical interface, such as iso, inet6, mpls.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Route table</td>
<td>Routing table in which the logical interface address is located. For example, 0</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>refers to the routing table inet.0.</td>
<td></td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the protocol family flags. Possible values are described in the</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td>“Family Flags” section under Common Output Fields Description.</td>
<td></td>
</tr>
<tr>
<td>Addresses, Flags</td>
<td>Information about the address flags. Possible values are described in the</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td>“Addresses Flags” section under Common Output Fields Description.</td>
<td></td>
</tr>
<tr>
<td>Destination</td>
<td>IP address of the remote side of the connection.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Local</td>
<td>IP address of the logical interface.</td>
<td>detail extensive none</td>
</tr>
</tbody>
</table>
Table 46: Adaptive Services and Redundant Adaptive Services show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast</td>
<td>Broadcast address.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Sample Output

**show interfaces (Adaptive Services)**

```
user@host> show interfaces sp-1/2/0

Physical interface: sp-1/2/0, Enabled, Physical link is Up
 Interface index: 147, SNMP ifIndex: 72
 Type: Adaptive-Services, Link-level type: Adaptive-Services, MTU: 9192,
 Speed: 800mbps
 Device flags : Present Running
 Interface flags: Point-To-Point SNMP-Traps Internal: 0x4000
 Link type : Full-Duplex
 Link flags : None
 Last flapped : 2006-03-06 11:37:18 PST (00:57:29 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)

Logical interface sp-1/2/0.16383 (Index 68) (SNMP ifIndex 73)
 Flags: Point-To-Point SNMP-Traps Encapsulation: Adaptive-Services
 Input packets : 3057
 Output packets: 3044
 Protocol inet, MTU: 9192
 Flags: Receive-options, Receive-TTL-Exceeded
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.0.0.34, Local: 10.0.0.1
```

**show interfaces brief (Adaptive Services)**

```
user@host> show interfaces sp-1/2/0 brief

Physical interface: sp-1/2/0, Enabled, Physical link is Up
 Type: Adaptive-Services, Link-level type: Adaptive-Services, MTU: 9192,
 Clocking: Unspecified, Speed: 800mbps
 Device flags : Present Running
 Interface flags: Point-To-Point SNMP-Traps Internal: 0x4000

Logical interface sp-1/2/0.16383
 Flags: Point-To-Point SNMP-Traps Encapsulation: Adaptive-Services
 inet 10.0.0.1 --> 10.0.0.34
```

**show interfaces detail (Adaptive Services)**

```
user@host> show interfaces sp-1/2/0 detail

Physical interface: sp-1/2/0, Enabled, Physical link is Up
 Interface index: 147, SNMP ifIndex: 72, Generation: 30
 Type: Adaptive-Services, Link-level type: Adaptive-Services, MTU: 9192,
 Clocking: Unspecified, Speed: 800mbps
 Device flags : Present Running
 Interface flags: Point-To-Point SNMP-Traps Internal: 0x4000
 Link type : Full-Duplex
 Link flags : None
 Physical info : Unspecified
 Hold-times : Up 0 ms, Down 0 ms
 Current address: Unspecified, Hardware address: Unspecified
 Alternate link address: Unspecified
 Last flapped : 2006-03-06 11:37:18 PST (00:57:56 ago)
 Statistics last cleared: Never
```
Traffic statistics:
Input bytes : 125147 0 bps
Output bytes : 1483113 0 bps
Input packets: 3061 0 pps
Output packets: 3048 0 pps

Logical interface sp-1/2/0.16383 (Index 68) (SNMP ifIndex 73) (Generation 7)
Flags: Point-To-Point SNMP-Traps Encapsulation: Adaptive-Services
Traffic statistics:
Input bytes : 125147
Output bytes : 1483113
Input packets: 3061
Output packets: 3048
Local statistics:
Input bytes : 125147
Output bytes : 1483113
Input packets: 3061
Output packets: 3048
Transit statistics:
Input bytes : 0 0 bps
Output bytes : 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps
Protocol inet, MTU: 9192, Generation: 20, Route table: 1
Flags: Receive-options, Receive-TTL-Exceeded
Addresses, Flags: Is-Preferred Is-Primary
Destination: 10.0.0.34, Local: 10.0.0.1, Broadcast: Unspecified,
Generation: 22

show interfaces extensive (Adaptive Services)

user@host> show interfaces sp-1/2/0 extensive

Physical interface: sp-1/2/0, Enabled, Physical link is Up
Interface index: 147, SNMP ifIndex: 72, Generation: 30
Type: Adaptive-Services, Link-level type: Adaptive-Services, MTU: 9192,
Clocking: Unspecified, Speed: 800mbps
Device flags : Present Running
Interface flags: Point-To-Point SNMP-Traps Internal: 0x4000
Link type : Full-Duplex
Link flags : None
Physical info : Unspecified
Hold-times : Up 0 ms, Down 0 ms
Current address: Unspecified, Hardware address: Unspecified
Alternate link address: Unspecified
Last flapped : 2006-03-06 11:37:18 PST (00:58:40 ago)
Statistics last cleared: Never
Traffic statistics:
Input bytes : 125547 0 bps
Output bytes : 1483353 0 bps
Input packets: 3065
Output packets: 3052
Input errors:
Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0,
Policed discards: 0, Resource errors: 0
Output errors:
Carrier transitions: 2, Errors: 0, Drops: 0, MTU errors: 0,
Resource errors: 0
Logical interface sp-1/2/0.16383 (Index 68) (SNMP ifIndex 73) (Generation 7)
Flags: Point-To-Point SNMP-Traps Encapsulation: Adaptive-Services

Traffic statistics:
- Input bytes: 125547
- Output bytes: 1483353
- Input packets: 3065
- Output packets: 3052

Local statistics:
- Input bytes: 125547
- Output bytes: 1483353
- Input packets: 3065
- Output packets: 3052

Transit statistics:
- Input bytes: 0  0 bps
- Output bytes: 0  0 bps
- Input packets: 0  0 pps
- Output packets: 0  0 pps

Protocol inet, MTU: 9192, Generation: 20, Route table: 1
- Flags: Receive-options, Receive-TTL-Exceeded
- Addresses, Flags: Is-Preferred Is-Primary
  - Destination: 10.0.0.34, Local: 10.0.0.1, Broadcast: Unspecified,
    Generation: 22
**show interfaces (Link Services IQ)**

**Syntax**

```
show interfaces lsq-fpc/pic/port <brief | detail | extensive | terse>
<descriptions>
<l2-statistics>
<media>
<snmp-index snmp-index>
<statistics>
```

**Release Information**

Command introduced before Junos OS Release 7.4.

`l2-statistics` option introduced with Junos OS Release 12.1.

**Description**

(M Series, MX Series, and T Series routers only) Display status information about the specified link services intelligent queuing (IQ) interface.

**Options**

`lsq-fpc/pic/port`—Display standard status information about the specified link services IQ interface.

`brief | detail | extensive | terse`—(Optional) Display the specified level of output.

`descriptions`—(Optional) Display interface description strings.


`media`—(Optional) Display media-specific information about network interfaces.

`snmp-index snmp-index`—(Optional) Display information for the specified SNMP index of the interface.

`statistics`—(Optional) Display static interface statistics.

**Additional Information**

Link services IQ interfaces are similar to link services interfaces. The important difference is that link services IQ interfaces fully support Junos OS class-of-service (CoS) components.

**Required Privilege Level**

view

**Related Documentation**

- Link and Multilink Services Overview
- Multilink Interfaces on Channelized MICs Overview

**List of Sample Output**

show interfaces extensive (MLPPP on Link Services IQ) on page 1481
show interfaces extensive (Multiclass MLPPP on Link Services IQ) on page 1482
show interfaces extensive (MLPPP on Link Services IQ Bundle) on page 1484
Output Fields  Table 47 on page 1467 lists the output fields for the `show interfaces` (link services IQ) command. Output fields are listed in the approximate order in which they appear.

**Table 47: show interfaces (Link Services IQ) Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface. Possible values are described in the “Enabled Field” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface index</td>
<td>Physical interface index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation being used on the physical interface: Multilink-Frame-Relay-UNI-NNI Multilink-Frame-Relay-UNI-NNI (default), LinkService, Frame-relay, Frame-relay-ccc, or Frame-relay-tcc.</td>
<td>All levels</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Device flags</td>
<td>Information about the physical device. Possible values are described in the “Device Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface flags</td>
<td>Information about the interface. Possible values are described in the “Interface Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Last flapped</td>
<td>Date, time, and how long ago the interface went from down to up. The format is Last flapped: year-month-day hour:minute:second timezone (hour:minute:second ago). For example, Last flapped: 2002-04-26 10:52:40 PDT (04:33:20 ago).</td>
<td>detail extensive none</td>
</tr>
</tbody>
</table>
Table 47: show interfaces (Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multilink Frame Relay UNI NNI bundle options</td>
<td>(Multilink Frame Relay UNI NNI only) Configured information about Multilink Frame Relay bundle options.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>• Device type—DCE (data communication equipment) or DTE (data terminal equipment).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MRU—Configured size of the maximum received reconstructed unit (MRU): 1500 to 4500 bytes. The default is 1524 bytes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Bandwidth—Speed at which the interface is running.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fragmentation threshold—Configured fragmentation threshold: 128 through 16,320 bytes, in integer multiples of 64 bytes. The default setting is 0, which disables fragmentation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Red differential delay limit—Red differential delay limit among bundle links has been reached, indicating an action will occur.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Yellow differential delay limit—Yellow differential delay among bundle links has been reached, indicating a warning will occur.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Red differential delay action—Type of actions taken when the red differential delay exceeds the red limit: Disable link transmit or Remove link from service.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Link layer overhead—Percentage of bundle bandwidth to be set aside for link layer overhead.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Reassembly drop timer—Drop timeout value to provide a recovery mechanism if individual links in the link services bundle drop one or more packets: 1 through 127 milliseconds. By default, the drop timeout parameter is 0 (disabled). A value under 5 ms is not recommended.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Links needed to sustain bundle—Minimum number of links to sustain the bundle: 1 through 8.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• LiP Hello timer—Link Interleaving Protocol hello timeout: 1 through 180 seconds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Acknowledgement timer—Maximum period to wait for an add link acknowledgement, hello acknowledgement, or remove link acknowledgement: 1 through 10 seconds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Acknowledgement retries—Number of retransmission attempts to be made for consecutive hello or remove link messages after the expiration of the acknowledgement timer: 1 through 5.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 47: show interfaces (Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multilink Frame Relay UNI NNI bundle options (continued)</td>
<td></td>
<td>detail extensive none</td>
</tr>
<tr>
<td>• Bundle class—Bundle class ID.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• LMI type—Multilink Frame Relay UNI NNI LMI type: ANSI, Q.933 ANNEX A, or Consortium.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• T391 LIV polling timer—Multilink Frame Relay UNI NNI Full status polling counter: 1 through 255, with a default value of 6.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• T392 polling verification timer—Multilink Frame Relay UNI NNI LMI error threshold. The number of errors required to bring down the link, within the event count specified by N393. The range is 1 through 10, with a default value of 3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• N391 full status polling count—Multilink Frame Relay UNI NNI Full status polling counter: 1 through 255.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• N392 error threshold—Multilink Frame Relay UNI NNI LMI error threshold: 1 through 10.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• N393 monitored event count—Multilink Frame Relay UNI NNI LMI monitored event count: 1 through 10, with a default value of 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Consortium LMI Settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• n391dte—DTE full status polling interval in seconds: 1 through 255.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• n392dce—DCE error threshold: 1 through 10.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• n392dte—DTE error threshold: 1 through 10.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• n393dce—DCE monitored event count: 1 through 10.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• n393dte—DTE monitored event count: 1 through 10.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• t391dte—DTE polling verification timer (in seconds): 5 through 30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• t392dce—DCE polling verification timer (in seconds): 5 through 30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMI</td>
<td>Local Management Interface packet statistics:</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td>• Input—Number of packets arriving on the interface (nn) and timestamp of the most recent packet arrival, in the format:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input: nn (last seen hh:mm:ss ago)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output—Number of packets sent out on the interface (nn) and how much time has passed since the last packet was sent, in the format:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output: nn (last seen hh:mm:ss ago)</td>
<td></td>
</tr>
<tr>
<td>DTE Statistics</td>
<td>Statistics about information transferred from the data terminal equipment (DTE) to the data communications equipment (DCE).</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td>• Enquiries sent—Number of link status enquiries sent from the DTE to the DCE.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Full enquiries sent—Number of full enquiries sent from the DTE to the DCE.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enquiry responses received—Number of enquiry responses received by the DCE from the DTE.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Full enquiry responses received—Number of full enquiry responses received by DCE from the DTE.</td>
<td></td>
</tr>
</tbody>
</table>
### Table 47: show interfaces (Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DCE Statistics</strong></td>
<td>Statistics about information transferred from the DCE to the DTE.</td>
<td><em>detail extensive</em> none</td>
</tr>
<tr>
<td>Enquiries received</td>
<td>Number of enquiries received by the DCE from the DTE.</td>
<td></td>
</tr>
<tr>
<td>Full enquiries received</td>
<td>Number of full enquiries received by the DCE from the DTE.</td>
<td></td>
</tr>
<tr>
<td>Enquiry responses sent</td>
<td>Number of enquiry responses sent from the DCE to the DTE.</td>
<td></td>
</tr>
<tr>
<td>Full enquiry responses sent</td>
<td>Number of full enquiry responses sent from the DCE to the DTE.</td>
<td></td>
</tr>
<tr>
<td><strong>Common Statistics</strong></td>
<td>Statistics about messages sent between the DTE and the DCE.</td>
<td></td>
</tr>
<tr>
<td>Unknown messages received</td>
<td>Number of received packets that do not fall into any other category.</td>
<td></td>
</tr>
<tr>
<td>Asynchronouts updates received</td>
<td>Number of link status peer changes received.</td>
<td></td>
</tr>
<tr>
<td>Out-of-sequence packets received</td>
<td>Number of packets for which the sequence of the packets received is different from the expected sequence.</td>
<td></td>
</tr>
<tr>
<td>Keepalive responses timed out</td>
<td>Number of keepalive responses that time out when no Local Management Interface (LMI) packet was reported for n392dte or n393dce intervals. (See LMI settings.)</td>
<td></td>
</tr>
<tr>
<td><strong>Traffic statistics</strong></td>
<td>Number and rate of bytes and packets received and transmitted on the physical interface. All references to traffic direction (input or output) are defined with respect to the Packet Forwarding Engine (PFE). Input traffic refers to the fragments received by the ingress PFE, which get assembled into Layer 3 input packets. Output packets refer to the IP packets transmitted out of the ingress PFE to the LSQ, which get segmented into output fragments.</td>
<td><em>detail extensive</em></td>
</tr>
<tr>
<td><strong>DLCI</strong></td>
<td>Data-link connection identifier (DLCI) number of the logical interview. The following information is displayed.</td>
<td></td>
</tr>
<tr>
<td><strong>Flags</strong></td>
<td>Values are:</td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>Set when the link is active and the DTE and DCE are exchanging information.</td>
<td></td>
</tr>
<tr>
<td>Down</td>
<td>Set when the link is active, but no information is received from the DTE.</td>
<td></td>
</tr>
<tr>
<td>DCE unconfigured</td>
<td>Set when the corresponding DLCI in the DCE is not configured.</td>
<td></td>
</tr>
<tr>
<td>Configured</td>
<td>Set when the corresponding DLCI is configured.</td>
<td></td>
</tr>
<tr>
<td>DCE-Configured</td>
<td>Displayed when the command is issued from the DTE.</td>
<td></td>
</tr>
<tr>
<td><strong>DLCI Statistics</strong></td>
<td>(Frame Relay) Data-link connection identifier (DLCI) statistics.</td>
<td></td>
</tr>
<tr>
<td>Active DLCI</td>
<td>Number of active DLCIs.</td>
<td></td>
</tr>
<tr>
<td>Inactive DLCI</td>
<td>Number of inactive DLCIs.</td>
<td></td>
</tr>
<tr>
<td><strong>Input rate</strong></td>
<td>(Redundant LSQ) Rate of bits and packets received on the interface.</td>
<td>None specified</td>
</tr>
<tr>
<td><strong>Output rate</strong></td>
<td>(Redundant LSQ) Rate of bits and packets transmitted on the interface.</td>
<td>None specified</td>
</tr>
</tbody>
</table>
Table 47: show interfaces (Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics last</td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>cleared</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the physical interface. All references to traffic direction (input or output) are defined with respect to the router. Input fragments received by the router are assembled into input packets; output packets are segmented into output fragments for transmission out of the router.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Frame exceptions</td>
<td>Information about framing exceptions. Includes events recorded under Exception Events for each logical interface.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Oversized frames—Number of frames received that exceed maximum frame length. Maximum length is 4500 Kb (kilobits).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Errored input frames—Number of input frame errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input on disabled link/bundle—Number of frames received on disabled links. These frames can result either from an inconsistent configuration, or from a bundle or link being brought up or down with traffic actively flowing through it.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output for disabled link/bundle—Number of frames sent for a disabled or unavailable link. These frames can result either from an inconsistent configuration, or from a bundle being brought up or down while traffic is flowing through it.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Queuing drops—Total number of packets dropped before traffic enters the link services IQ interface. Indicates that the interface is becoming oversubscribed.</td>
<td></td>
</tr>
<tr>
<td>Buffering exceptions</td>
<td>Information about buffering exceptions. Includes events recorded under Exception Events for each logical interface:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Packet data buffer overflow—Packet buffer memory is full. This overflow can occur when the aggregate data rate exceeds the physical link services IQ interface capacity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fragment data buffer overflow—Fragment buffer memory is full. This overflow can occur when excessive differential delay is experienced across the links within a single bundle, or when the aggregate data rate exceeds the physical link services IQ capacity. Check the logical interface exception event counters to determine which bundle is responsible.</td>
<td></td>
</tr>
</tbody>
</table>
Table 47: show interfaces (Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly exceptions</td>
<td>(Multilink Frame Relay end-to-end only) Information about assembly exceptions. Includes events recorded under Exception Events for each logical interface.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>An assembly exception does not necessarily indicate an operational problem with the physical link services IQ interface itself. If multilink-encapsulated traffic is dropped or reordered after a sequence number has been assigned, the interface records one or more exception events. The physical interface can drop multilink-encapsulated fragments itself as a result. Any multilink packets or fragments dropped by the interface itself result in packet or fragment drop counts on individual logical interfaces. If the logical interface drop counts are zero, but exception events are seen, the most likely cause is a problem with the individual link interfaces. Even if the logical interface fragment drop counts are nonzero, excess differential delay or traffic losses on individual interfaces can be the root cause.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Fragment timeout</strong>—The drop timer expired while a fragment sequence number was outstanding. Occurs only if the drop timer is enabled. This timeout can occur if the differential delay across the links in a bundle exceeds the drop-timer setting, or if a multilink packet is lost in transit while the drop timer is enabled. These events do not necessarily indicate any problem with the operation of the physical link services IQ interface itself, but can occur when one or more individual links drop traffic. Check the logical interface exception event counters to determine which bundle is responsible.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Missing sequence number</strong>—A gap was detected in the sequence numbers of fragments on a bundle. These events do not necessarily indicate any problem with the operation of the physical link services IQ interface itself, but can occur when one or more individual links drop traffic. Check the logical interface exception event counters to determine which bundle is responsible.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Out-of-order sequence number</strong>—Two frames without of-order sequence numbers within a single link. This event indicates that an individual link within a bundle reordered traffic, making the link services IQ interface unable to correctly process the resulting stream. Check the logical interface exception event counters to determine which bundle is responsible.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Out-of-range sequence number</strong>—Received a frame with an out-of-range sequence number. These events can occur when a large amount of multilink-encapsulated traffic is lost or the multilink peer is reset, so that a large jump in sequence numbers results. A small number of these events can occur when the far end of a bundle is taken down or brought up. Check the logical interface exception event counters to determine which bundle is responsible.</td>
<td></td>
</tr>
<tr>
<td>Hardware errors</td>
<td>(Multilink Frame Relay end-to-end only) Information about hardware errors:</td>
<td>extensive</td>
</tr>
<tr>
<td>(sticky)</td>
<td>• <strong>Data memory error</strong>—A memory error was detected on the interface DRAM. Indicates possible hardware failure. Contact Juniper Networks technical support.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Control memory error</strong>—A memory error was detected on the interface DRAM. Indicates possible hardware failure. Contact Juniper Networks technical support.</td>
<td></td>
</tr>
<tr>
<td>Egress queues</td>
<td>Total number of egress queues supported on the specified interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>
Table 47: show interfaces (Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue counters</td>
<td>Queue number and its associated user-configured forwarding class name.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td>• Queued packets—Number of queued packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Transmitted packets—Number of transmitted packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Dropped packets—Number of packets dropped by the ASIC’s RED mechanism.</td>
<td></td>
</tr>
<tr>
<td>Logical Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical interface</td>
<td>Logical interface index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Index</td>
<td>Logical interface SNMP interface index number.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the logical interface. Possible values are described in the</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>“Logical Interface Flags” section under Common Output Fields Description.</td>
<td></td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Encapsulation being used: PPP or Multilink PPP.</td>
<td>All levels</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td>Bundle options</td>
<td>(Multilink Frame Relay end-to-end interfaces only)</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td>• MRRU—Configured size of the maximum received reconstructed unit (MRRU):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500 through 4500 bytes. The default is 1504 bytes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drop timer period—Drop timeout value to provide a recovery mechanism if</td>
<td></td>
</tr>
<tr>
<td></td>
<td>individual links in link services bundle drop one or more packets: 0 though</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000 milliseconds. Values under 5 ms are not recommended. The default setting is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0, which disables the timer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sequence number format—Short sequence number header format (MLPPP only).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fragmentation threshold—Configured fragmentation threshold: 64 through</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16,320 bytes, in integer multiples of 64 bytes. The default setting is 0, which</td>
<td></td>
</tr>
<tr>
<td></td>
<td>disables fragmentation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Links needed to sustain bundle—Minimum number of links to sustain the bundle:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 through 8.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Multilink classes—Number of multilink classes negotiated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Link layer overhead—Percentage of bundle bandwidth to be set aside for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>link-layer overhead.</td>
<td></td>
</tr>
</tbody>
</table>
### Table 47: show interfaces (Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Bundle status (MLPPP) or Multilink class status (Multiclass MLPPP)</strong></td>
<td>Information about bundle status:</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td>• Remote MRRU—MRRU value received from remote peer. If negotiation has not been initiated, the default value is displayed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Received sequence number—Sequence number for received packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Transmitted sequence number—Sequence number for transmitted packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packet drops—Number and byte count of output packets that were dropped, rather than being encapsulated and sent out of the router as fragments. The packet drop counter is incremented if there is a temporary shortage of packet memory on the AS PIC, which causes packet fragmentation to fail.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fragment drops—Number and byte count of input fragments that were dropped, rather than being reassembled and handled by the router as packets. This counter also includes fragments that have been received successfully, but had to be dropped because not all fragments that constituted a packet had been received. The fragment drop counter is incremented when a fragment received on constituent links is dropped. Drop fragments can be triggered by sequence ordering errors, duplicate fragments, timed-out fragments, and bad multilink headers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MRRU exceeded—Number of reassembled packets exceeding the MRRU. This counter is not implemented in this release.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fragment timeout—The drop timer expired while a fragment sequence number was outstanding. Occurs only if the drop timer is enabled. This timeout can occur if the differential delay across the links in a bundle exceeds the drop-timer setting, or if a multilink packet is lost in transit while the drop timer is enabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Missing sequence number—A gap was detected in the sequence numbers of fragments on a bundle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Out-of-order sequence number—Two frames with out-of-order sequence numbers within a single link. This event indicates that an individual link within a bundle reordered traffic, making the multilink interface unable to correctly process the resulting stream.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Out-of-range sequence number—Received a frame with an out-of-range sequence number. These events can occur when a large amount of multilink-encapsulated traffic is lost or the multilink peer is reset, so that a large jump in sequence numbers results. A small number of these events can occur when the far end of a bundle is taken down or brought up.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packet data buffer overflow—Packet buffer memory is full. This overflow can occur when the aggregate data rate exceeds the physical link services IQ interface capacity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fragment data buffer overflow—Fragment buffer memory is full. This overflow can occur when excessive differential delay is experienced across the links within a single bundle, or when the aggregate data rate exceeds the physical link services IQ capacity.</td>
<td></td>
</tr>
</tbody>
</table>
Table 47: show interfaces (Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
<td>Information about fragments and packets received and sent by the router. All</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>references to traffic direction (input or output) are defined with respect to the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>router. Input fragments received by the router are assembled into input packets;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>output packets are segmented into output fragments for transmission out of the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>router. Each field has columns that indicate the number of frames received and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transmitted, frames per second (fps), the number of bytes received and transmitted,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and bits per second (bps).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bundle—Information for each active bundle link.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Fragments: Input and Output—Total number and rate of fragments received and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transmitted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Packets: Input and Output—Total number and rate of packets received and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transmitted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Multilink class—(Multiclass MLPPP only) Information about multiclass links</td>
<td></td>
</tr>
<tr>
<td></td>
<td>used in the multilink operation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Link—Information about links used in the multilink operation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Link name—Interface name of the link services IQ channel and state information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(physical link up or down).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Input and Output—Total number and rate of fragments and packets received and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transmitted.</td>
<td></td>
</tr>
<tr>
<td>NCP state</td>
<td>(PPP) Network Control Protocol state.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Conf-ack-received—Acknowledgement was received.</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>• Conf-ack-sent—Acknowledgement was sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Conf-req-sent—Request was sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Down—NCP negotiation is incomplete (not yet completed or has failed).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Not-configured—NCP is not configured on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Opened—NCP negotiation is successful.</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol family configured on the logical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the logical interface. If the MTU value is negotiated down to meet</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>the MRRU requirement on the remote side, this value is marked Adjusted.</td>
<td>none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Route Table</td>
<td>Routing table in which this address exists. For example, Route table:0 refers to</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>inet.0.</td>
<td></td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the protocol family flags. Possible values are described in the</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>“Family Flags” section under Common Output Fields Description.</td>
<td>none</td>
</tr>
<tr>
<td>Addresses,</td>
<td>Information about the addresses configured on the logical interface. Possible</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>values are described in the “Addresses Flags” section under Common Output Fields</td>
<td>none</td>
</tr>
<tr>
<td>Destination</td>
<td>IP address of the remote side of the connection.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 47: show interfaces (Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Local</strong></td>
<td>IP address of the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>Broadcast</strong></td>
<td>Broadcast address on the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>Generation</strong></td>
<td>Unique number for use by Juniper Networks technical support.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>MLPPP Bundle Interface</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical interface</td>
<td>Name of the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Index</strong></td>
<td>Logical interface index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>SNMP ifIndex</strong></td>
<td>Logical interface SNMP interface index number.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>Generation</strong></td>
<td>Unique number for use by Juniper Networks technical support.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Flags</strong></td>
<td>Information about the logical interface. Possible values are described in the</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>“Logical Interface Flags” section under Common Output Fields Description.</td>
<td></td>
</tr>
<tr>
<td><strong>SNMP-Traps</strong></td>
<td>SNMP trap notifications are enabled.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Encapsulation</strong></td>
<td>Encapsulation being used: PPP, Multilink PPP, or Multilink-FR.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Last flapped</strong></td>
<td>Date, time, and how long ago the interface went from down to up. The format</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td>is Last flapped: year-month-day hour:minute:second timezone (hour:minute:second</td>
<td></td>
</tr>
<tr>
<td><strong>Bandwidth</strong></td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Bundle links</strong></td>
<td>Information about the bundled links.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>information</strong></td>
<td>• Active bundle links—Number of active links.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Removed bundle links—Information about links used in the multilink operation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Disabled bundle links—Number of disabled links.</td>
<td></td>
</tr>
<tr>
<td>Bundle options</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| (Multilink Frame Relay end-to-end interfaces only) | | |}

- **MRU**—Configured size of the maximum received reconstructed unit (MRU): 1500 through 4500 bytes. The default is 1504 bytes.
- **Drop timer period**—Drop timeout value to provide a recovery mechanism if individual links in link services bundle drop one or more packets: 0 through 2000 milliseconds. Values under 5 ms are not recommended. The default setting is 0, which disables the timer.
- **Inner PPP Protocol field compression**—Inner PPP protocol compression is enabled or disabled.
- **Sequence number format**—Short sequence number header format (MLPPP only).
- **Fragmentation threshold**—Configured fragmentation threshold: 64 through 16,320 bytes, in integer multiples of 64 bytes. The default setting is 0, which disables fragmentation.
- **Links needed to sustain bundle**—Minimum number of links to sustain the bundle: 1 through 8.
- **Multilink classes**—Number of multilink classes negotiated.
- **Link layer overhead**—Percentage of bundle bandwidth to be set aside for link-layer overhead.
Table 47: show interfaces (Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Bundle status</strong> (MLPPP)</td>
<td>Information about bundle status:</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Received sequence number—Sequence number for received packets.</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>• Transmit sequence number—Sequence number for transmitted packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packet drops—Number and byte count of output packets that were dropped,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rather than being encapsulated and sent out of the router as fragments. The</td>
<td></td>
</tr>
<tr>
<td></td>
<td>packet drop counter is incremented if there is a temporary shortage of packet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>memory on the AS PIC, which causes packet fragmentation to fail.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fragment drops—Number and byte count of input fragments that were dropped,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rather than being reassembled and handled by the router as packets. This</td>
<td></td>
</tr>
<tr>
<td></td>
<td>counter also includes fragments that have been received successfully</td>
<td></td>
</tr>
<tr>
<td></td>
<td>but had to be dropped because not all fragments that constituted a packet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>had been received. The fragment drop counter is incremented when a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fragment received on constituent links is dropped. Drop fragments can be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>triggered by sequence ordering errors, duplicate fragments, timed-out</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fragments, and bad multilink headers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MRRU exceeded—Number of reassembled packets exceeding the MRRU. This</td>
<td></td>
</tr>
<tr>
<td></td>
<td>counter is not implemented in this release.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fragment timeout—The drop timer expired while a fragment sequence number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>was outstanding. Occurs only if the drop timer is enabled. This timeout can</td>
<td></td>
</tr>
<tr>
<td></td>
<td>occur if the differential delay across the links in a bundle exceeds the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>drop-timer setting, or if a multilink packet is lost in transit while the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>drop timer is enabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Missing sequence number—A gap was detected in the sequence numbers of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fragments on a bundle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Out-of-order sequence number—Two frames with out-of-order sequence numbers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>occurred within a single link. This event indicates that an individual</td>
<td></td>
</tr>
<tr>
<td></td>
<td>link within a bundle reordered traffic, making the multilink interface unable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>to correctly process the resulting stream.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Out-of-range sequence number—A frame was received with an out-of-range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sequence number. These events can occur when a large amount of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>multilink-encapsulated traffic is lost or the multilink peer is reset, so</td>
<td></td>
</tr>
<tr>
<td></td>
<td>that a large jump in sequence numbers results. A small number of these events</td>
<td></td>
</tr>
<tr>
<td></td>
<td>can occur when the far end of a bundle is taken down or brought up.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packet data buffer overflow—Packet buffer memory is full. This overflow can</td>
<td></td>
</tr>
<tr>
<td></td>
<td>occur when the aggregate data rate exceeds the physical link services IQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>interface capacity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fragment data buffer overflow—Fragment buffer memory is full. This overflow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>can occur when excessive differential delay is experienced across the links</td>
<td></td>
</tr>
<tr>
<td></td>
<td>within a single bundle, or when the aggregate data rate exceeds the physical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>link services IQ capacity.</td>
<td></td>
</tr>
</tbody>
</table>
Table 47: show interfaces (Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
<td>Information about frames, bytes, and bits per second received and sent by the router. All references to traffic direction (input or output) are defined with respect to the router. Each field has columns that indicate the number of frames received and transmitted, frames per second (fps), the number of bytes received and transmitted, and bits per second (bps). The bundle, multilink, and network statistics are reported by the Packet Forwarding Engine (PFE). The Multi Link Detail statistics like fragments, non-fragments and LFI are reported by the PIC. However, the PFE reports an extra overhead of 2 bytes in the output when compared with the Multilink Detail Statistics. This is due to the service-cookie in the PFE which does the link demux for the ML header. The difference in the bytes received and transmitted from Network and Multilink interfaces and Multilink statistics for each member link is divided between the ML and the PPP headers. For example the header counter for a long sequence configuration would be as follows.</td>
<td>extensive</td>
</tr>
<tr>
<td>Input side - Total overhead = 6 bytes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ML: 4 bytes of ML header = 1 byte of Flag + 3 bytes of long sequence number.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PPP: 2 bytes of protocol field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output side - Total overhead = 11 bytes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ML: 4 bytes of ML Header = 1 byte of Flag + 3 bytes of Long sequence number.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PPP: 5 bytes = 4 bytes of header + 1 byte of Idle flag.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 2 bytes of Service Cookie.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundle—Information for each active bundle link.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Multilink: Input and Output—Total number and rate of multilink frames, bytes, and bits per second received and transmitted. It is a module connecting LSQ PIC and its member link. Multilink Input displays L2 fragments received from the member link to the LSQ PIC. Multilink Output displays the L2 fragments transmitted from LSQ PIC to the member links.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Network: Input and Output—Total number of network frames, bytes, and bits per second received and transmitted. It refers to the packets transmitted from an ingress interface to the PFE and then to the LSQ PIC. Network Input displays the L3 packets received from the LSQ PIC to the PFE. Network Output displays the L3 packets transmitted from PFE to LSQ PIC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Link—Information about links used in the multilink operation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Link name—The interface name of the link services IQ channel and state information (physical link up or down) and up time.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Input and Output—Total number and rate of frames, bytes, and bits per second received and transmitted.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 47: show interfaces (Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multilink detail</td>
<td>Frames, bytes, and bits per second received and sent by the bundle. All references to traffic direction</td>
<td>extensive</td>
</tr>
<tr>
<td>statistics</td>
<td>(input or output) are defined with respect to the router. Each field has columns that indicate the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>number of frames received and transmitted, frames per second (fps), the number of bytes received and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transmitted, and bits per second (bps). The difference in the bytes received and transmitted from the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bundle is divided between the ML and the PPP headers. For example the header counter for a long</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sequence configuration would be as follows:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Input side - Total overhead = 6 bytes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ML: 4 bytes of ML header = 1 byte of Flag + 3 bytes of long sequence number.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- PPP: 2 bytes of protocol field.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Output side - Total overhead = 9 bytes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ML: 4 bytes of ML Header = 1 byte of Flag + 3 bytes of Long sequence number.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- PPP: 5 bytes = 4 bytes of header + 1 byte of Idle flag.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bundle—Information for the bundle link.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Fragments: Input and Output—Total number and rate of multilink fragments received and transmitted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Non-fragments: Input and Output—Total number and rate of nonfragmented multilink frames</td>
<td></td>
</tr>
<tr>
<td></td>
<td>received and transmitted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- LFI: Input and Output—Total number and rate of link fragmented and interleaved frames and bytes.</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol family configured on the logical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the logical interface. If the MTU value is negotiated down to meet the MRRU requirement</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>on the remote side, this value is marked Adjusted.</td>
<td>none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Route Table</td>
<td>Routing table in which this address exists. For example, Route table:0 refers to inet.0.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Addresses, Flags</td>
<td>Information about the addresses configured on the logical interface. Possible values are described in</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>the “Addresses Flags” section under Common Output Fields Description.</td>
<td>none</td>
</tr>
<tr>
<td>Destination</td>
<td>IP address of the remote side of the connection.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Local</td>
<td>IP address of the logical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Broadcast address on the logical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Sample Output

show interfaces extensive (MLPPP on Link Services IQ)

```plaintext
user@host> show interfaces lsq-0/2/0 extensive

Physical interface: lsq-0/2/0, Enabled, Physical link is Up
Interface index: 140, SNMP ifIndex: 25, Generation: 23
Link-level type: LinkService, MTU: 1504
Device flags : Present Running
Interface flags: Point-To-Point SNMP-Traps
Last flapped : 2005-06-02 08:54:36 PDT (00:05:45 ago)
Statistics last cleared: Never
Traffic statistics:
 Input bytes : 8872424 229080 bps
 Output bytes : 9856960 234448 bps
 Input packets: 38202 117 pps
 Output packets: 39453 117 pps

Frame exceptions:
 Oversized frames 0
 Errorred input frames 0
 Input on disabled link/bundle 0
 Output for disabled link/bundle 0
 Queuing drops 0

Buffering exceptions:
 Packet data buffer overflow 0
 Fragment data buffer overflow 0

Assembly exceptions:
 Fragment timeout 0
 Missing sequence number 0
 Out-of-order sequence number 0
 Out-of-range sequence number 0

Hardware errors (sticky):
 Data memory error 0
 Control memory error 0

Queue counters:

<table>
<thead>
<tr>
<th>Queue</th>
<th>Queued packets</th>
<th>Transmitted packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 be</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 ef</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 af</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 nc</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Logical interface lsq-0/2/0.0 (Index 66) (SNMP ifIndex 26) (Generation 5)
Flags: Point-To-Point SNMP-Traps Encapsulation: Multilink-PPP
Bandwidth: 256kbps
Bundle options:
 MRRU 1504
 Drop timer period 2000
 Sequence number format long (24 bits)
 Fragmentation threshold 0
 Links needed to sustain bundle 1
 Multilink classes 0
 Link layer overhead 4.0 %
Bundle status:
 Remote MRRU 1500
 Received sequence number 0x0
 Transmit sequence number 0x0
```
Packet drops 0 (0 bytes)  
Fragment drops 9 (1401 bytes)  
MRRU exceeded 0  
Fragment timeout 0  
Missing sequence number 0  
Out-of-order sequence number 4  
Out-of-range sequence number 0  
Packet data buffer overflow 0  
Fragment data buffer overflow 0

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Frames</th>
<th>fps</th>
<th>Bytes</th>
<th>bps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bundle:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multilink:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input:</td>
<td>79827</td>
<td>239</td>
<td>9593009</td>
<td>232288</td>
</tr>
<tr>
<td>Output:</td>
<td>77533</td>
<td>234</td>
<td>9811743</td>
<td>238056</td>
</tr>
<tr>
<td>Network:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input:</td>
<td>38202</td>
<td>117</td>
<td>8872424</td>
<td>229080</td>
</tr>
<tr>
<td>Output:</td>
<td>39453</td>
<td>117</td>
<td>9856960</td>
<td>234448</td>
</tr>
<tr>
<td>Link:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ds-1/0/2:1:1.0 &lt;- up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input:</td>
<td>1114</td>
<td>87</td>
<td>180183</td>
<td>113608</td>
</tr>
<tr>
<td>Output:</td>
<td>1577</td>
<td>118</td>
<td>199215</td>
<td>119064</td>
</tr>
<tr>
<td>ds-1/0/2:1:2.0 &lt;- down</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input:</td>
<td>1941</td>
<td>152</td>
<td>187948</td>
<td>118680</td>
</tr>
<tr>
<td>Output:</td>
<td>1574</td>
<td>116</td>
<td>199494</td>
<td>118992</td>
</tr>
</tbody>
</table>
| Protocol inet, MTU: 1500 [Adjusted]  
Flags: User-MTU, MTU-Protocol-Adjusted  
Addresses, Flags: Is-Preferred Is-Primary  
Destination: 10.74.11/24, Local: 10.74.11.10  
Protocol iso, MTU: 1500 [Adjusted]  
Flags: User-MTU, MTU-Protocol-Adjusted  
Protocol mpls, MTU: 1488 [Adjusted], Maximum labels: 3  
Flags: User-MTU, MTU-Protocol-Adjusted

**show interfaces extensive (Multiclass MLPPP on Link Services IQ)**

```
user@host> show interfaces extensive lsq-0/2/0

Physical interface: lsq-0/2/0, Enabled, Physical link is Up
Interface index: 140, SNMP ifIndex: 25, Generation: 23
Link-level type: LinkService, MTU: 1504
Device flags : Present Running
Interface flags: Point-To-Point SNMP-Traps
Last flapped : 2005-06-02 08:34:36 PDT (00:02:25 ago)
Statistics last cleared: Never
Traffic statistics:
<table>
<thead>
<tr>
<th></th>
<th>bytes</th>
<th>bps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input bytes</td>
<td>3474024</td>
<td>223704</td>
</tr>
<tr>
<td>Output bytes</td>
<td>4193992</td>
<td>233888</td>
</tr>
<tr>
<td>Input packets</td>
<td>15809</td>
<td>116</td>
</tr>
<tr>
<td>Output packets</td>
<td>16788</td>
<td>117</td>
</tr>
</tbody>
</table>
Frame exceptions:
| Oversized frames | 0 |
| Errored input frames| 0 |
| Input on disabled link/bundle | 0 |
| Output for disabled link/bundle | 0 |
| Queuing drops | 0 |
Buffering exceptions:
| Packet data buffer overflow | 0 |
| Fragment data buffer overflow | 0 |
Assembly exceptions:
| Fragment timeout | 0 |
```
Logical interface lsq-0/2/0.0 (Index 66) (SNMP ifIndex 26) (Generation 5)
Flags: Point-To-Point SNMP-Traps Encapsulation: Multilink-PPP
Bandwidth: 256kbps

Bundle options:
- MRRU: 1504
- Drop timer period: 2000
- Sequence number format: long (24 bits)
- Fragmentation threshold: 0
- Links needed to sustain bundle: 1
- Multilink classes: 2
- Link layer overhead: 4.0%

Multilink class 0 status:
- Received sequence number: 0x4c38
- Transmit sequence number: 0x4890
- Packet drops: 0 (0 bytes)
- Fragment drops: 2551 (397084 bytes)
- MRRU exceeded: 0
- Fragment timeout: 52
- Missing sequence number: 0
- Out-of-order sequence number: 953
- Out-of-range sequence number: 0
- Packet data buffer overflow: 0
- Fragment data buffer overflow: 0

Multilink class 1 status:
- Received sequence number: 0xffffffff
- Transmit sequence number: 0x3710
- Packet drops: 0 (0 bytes)
- Fragment drops: 0 (0 bytes)
- MRRU exceeded: 0
- Fragment timeout: 0
- Missing sequence number: 0
- Out-of-order sequence number: 0
- Out-of-range sequence number: 0
- Packet data buffer overflow: 0
- Fragment data buffer overflow: 0

Statistics
<table>
<thead>
<tr>
<th>Frames</th>
<th>fps</th>
<th>Bytes</th>
<th>bps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bundle:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fragments:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input: 33719</td>
<td>239</td>
<td>4041763</td>
<td>231632</td>
</tr>
<tr>
<td>Output: 32371</td>
<td>234</td>
<td>4096545</td>
<td>237488</td>
</tr>
<tr>
<td>Packets:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input: 15809</td>
<td>116</td>
<td>3474024</td>
<td>223704</td>
</tr>
<tr>
<td>Output: 16788</td>
<td>117</td>
<td>4193992</td>
<td>233888</td>
</tr>
</tbody>
</table>
show interfaces extensive (MLPPP on Link Services IQ Bundle)

user@host> show interfaces lsq-7/1/0.0 extensive

Logical interface lsq-7/1/0.0 (Index 88) (SNMP ifIndex 114) (Generation 188)
Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: Multilink-FR
Last flapped: Never
Bandwidth: 256kbps
Bundle links information:
  - Active bundle links 2
  - Removed bundle links 0
  - Disabled bundle links 0
Bundle options:
  - MRRU 1504
  - Drop timer period 1500
  - Inner PPP Protocol field compression enabled
  - Sequence number format short (12 bits)
  - Fragmentation threshold 0
  - Links needed to sustain bundle 1
  - Multilink classes 0
  - Link layer overhead 4.0 %
Bundle status:
  - Received sequence number 0xb74
  - Transmit sequence number 0xb74
  - Packet drops 0 (0 bytes)
  - Fragment drops 0 (0 bytes)
  - MRRU exceeded 0
  - Fragment timeout 0
  - Missing sequence number 0
  - Out-of-order sequence number 0
  - Out-of-range sequence number 0
  - Packet data buffer overflow 0
  - Fragment data buffer overflow 0
Statistics Frames fps Bytes bps
### Multilink Statistics

**Input:**
- `Bundle`: 315381 0 42757818 0
- `Multilink`: 315381 0 43388580 0
- `Network`: 315381 0 40952064 0

**Output:**
- `Bundle`: 315381 0 42757818 0
- `Multilink`: 315381 0 43388580 0
- `Network`: 315381 0 40952064 0

### Link Statistics

**ds-6/0/0:1:1.0**
- Up time: Up since boot
  - **Input:** 63794 0 25146728 0
  - **Output:** 63778 0 25273164 0

**ds-6/0/0:1:2.0**
- Up time: Up since boot
  - **Input:** 251587 0 17611090 0
  - **Output:** 251603 0 18115416 0

### Multilink Detail Statistics

**Bundle:**
- **Fragments:**
  - **Input:** 0 0 0 0
  - **Output:** 0 0 0 0
- **Non-Fragments:**
  - **Input:** 293748 0 19387368 0
  - **Output:** 293748 0 20562360 0

**Link:**
- **ds-6/0/0:1:1.0**
  - Up time: Up since boot
    - **Input:** 63794 0 25146728 0
    - **Output:** 63778 0 25273164 0

### Protocol inet, MTU: 1500, Generation: 204
- **Addresses, Flags:** Is-Preferred Is-Primary
- **Destination:** 10.0.1.0/30, **Local:** 10.0.1.2, **Broadcast:** Unspecified, **Generation:** 214

---

**show interfaces extensive (MFR on Link Services IQ Bundle)**

```
user@host> show interfaces lsq-1/0/0:0 extensive

Physical interface: lsq-1/0/0:0, Enabled, Physical link is Up
- Interface index: 179, SNMP ifIndex: 746, Generation: 182
- Link-level type: Multilink-FR-UNI-NNI, MTU: 1508
- Device flags: Present Running
- Interface flags: Point-To-Point SNMP-Traps Internal: 0x4000
- Last flapped: 2010-11-15 01:11:00 PST (00:31:58 ago)
- Statistics last cleared: Never
- Hold-times: Up 0 ms, Down 0 ms

Multilink Frame Relay UNI NNI bundle options:
- **Device type:** DCE
- **MRRU:** 1508
- **Bandwidth:** 1536kps
- **Fragmentation threshold:** 0
- **Red differential delay limit:** 120
- **Yellow differential delay limit:** 72
- **Red differential delay action:** Remove link
- **Reassembly drop timer:** 65535
- **Links needed to sustain bundle:** 1
- **Link layer overhead:** 4.0 %
- **LIP Hello timer:** 10
- **Acknowledgement timer:** 4
- **Acknowledgement retries:** 2
- **Bundle class:** A
```
<table>
<thead>
<tr>
<th>LMI type</th>
<th>Consortium</th>
</tr>
</thead>
<tbody>
<tr>
<td>T391 LIV polling timer</td>
<td>10</td>
</tr>
<tr>
<td>T392 polling verification timer</td>
<td>15</td>
</tr>
<tr>
<td>N391 full status polling count</td>
<td>6</td>
</tr>
<tr>
<td>N392 error threshold</td>
<td>3</td>
</tr>
<tr>
<td>N393 monitored event count</td>
<td>4</td>
</tr>
<tr>
<td>Consortium LMI settings:</td>
<td>n392dce 3, n393dce 4, t392dce 15 seconds</td>
</tr>
</tbody>
</table>

LMI statistics:
- Input: 188 (last seen 00:00:01 ago)
- Output: 189 (last sent 00:00:01 ago)

DTE statistics:
- Enquiries sent: 0
- Full enquiries sent: 0
- Enquiry responses received: 0
- Full enquiry responses received: 0

DCE statistics:
- Enquiries received: 157
- Full enquiries received: 31
- Enquiry responses sent: 158
- Full enquiry responses sent: 31

Common statistics:
- Unknown messages received: 0
- Asynchronous updates received: 0
- Out-of-sequence packets received: 0
- Keepalive responses timedout: 0

Traffic statistics:
- Input bytes: 0, 0 bps
- Output bytes: 0, 0 bps
- Input packets: 0, 0 pps
- Output packets: 0, 0 pps

IPv6 transit statistics:
- Input bytes: 0
- Output bytes: 0
- Input packets: 0
- Output packets: 0

Multilink Frame Relay UNI NNI bundle errors:
- Packet drops: 0 (0 bytes)
- Fragment drops: 0 (0 bytes)
- MRRU exceeded: 0
- Exception events: 0

Multilink Frame Relay UNI NNI bundle statistics:
- Frames, fps, Bytes, bps

Multilink:
- Input: 0, 0, 0, 0
- Output: 0, 0, 0, 0

Network:
- Input: 0, 0, 0, 0
- Output: 0, 0, 0, 0

Multilink Frame Relay UNI NNI bundle links information:
- Active bundle links: 1
- Removed bundle links: 0
- Disabled bundle links: 0

Multilink Frame Relay UNI NNI active bundle links statistics:
- Frames, fps, Bytes, bps

t1-7/0/0:1:3.0
- Up time: 00:31:24
- Input: 0, 0, 0, 0
- Output: 0, 0, 0, 0
- Current differential delay: 0.0 ms
Recent high differential delay 0.0 ms
Times over red diff delay 0
Times over yellow diff delay 0
LIP: add lnk lnk_ack lnk_rej hello hel_ack lnk_rem rem_ack
Rcv: 2 2 0 0 189 0 0
Xmt: 2 1 0 189 0 0 0

Logical interface lsq-1/0/0:2.0 (Index 77) (SNMP ifIndex 751) (Generation 142)

Flags: Point-To-Point SNMP-Traps Encapsulation: Multilink-FR-UNI-NNI
Last flapped: 2010-11-15 01:11:40 PST (00:31:18 ago)
Bundle status:
  Received sequence number 0xffff
  Transmit sequence number 0x0
  Packet drops 0 (0 bytes)
  Fragment drops 0 (0 bytes)
  MRRU exceeded 0
  Fragment timeout 0
  Missing sequence number 0
  Out-of-order sequence number 0
  Out-of-range sequence number 0
  Packet data buffer overflow 0
  Fragment data buffer overflow 0

Statistics

Bundle: Frames fps Bytes bps
Multilink: 0 0 0 0
Network: 0 0 0 0
Link: 0 0 0 0
Multilink detail statistics:
Bundle: Frames fps Bytes bps
Fragments: 0 0 0 0
Non-fragments: 0 0 0 0
Protocol inet, MTU: 1500, Generation: 153, Route table: 0
Flags: Sendbcast-pkt-to-re
Addresses, Flags: Is-Preferred Is-Primary
  Destination: 10.0.1.8/30, Local: 10.0.1.9, Broadcast: Unspecified,
Generation: 154

DLCI 12
Flags: Active
Traffic statistics:
  Input bytes: 0
  Output bytes: 0
  Input packets: 0
  Output packets: 0

DLCI statistics:
  Active DLCI: 1 Inactive DLCI: 0
show interfaces extensive (Multiclass MLPPP on Link Services IQ)

user@host> show interfaces extensive lsq-0/2/0

Physical interface: lsq-0/2/0, Enabled, Physical link is Up
Interface index: 140, SNMP ifIndex: 25, Generation: 23
Link-level type: LinkService, MTU: 1504
Device flags : Present Running
Interface flags: Point-To-Point SNMP-Traps
Last flapped : 2005-06-02 08:54:36 PDT (00:02:25 ago)
Statistics last cleared: Never
Traffic statistics:
  Input bytes : 3474024  223704 bps
  Output bytes : 4193992  233888 bps
  Input packets: 15809  116 pps
  Output packets: 16788  117 pps
Frame exceptions:
  Oversized frames 0
  Errorred input frames 0
  Input on disabled link/bundle 0
  Output for disabled link/bundle 0
  Queuing drops 0
Buffering exceptions:
  Packet data buffer overflow 0
  Fragment data buffer overflow 0
Assembly exceptions:
  Fragment timeout 0
  Missing sequence number 0
  Out-of-order sequence number 0
  Out-of-range sequence number 0
Hardware errors (sticky):
  Data memory error 0
  Control memory error 0
Queue counters: Queued packets Transmitted packets Dropped packets
  0 be 0 0 0
  1 ef 0 0 0
  2 af 0 0 0
  3 nc 0 0 0
Logical interface lsq-0/2/0.0 (Index 66) (SNMP ifIndex 26) (Generation 5)
  Flags: Point-To-Point SNMP-Traps Encapsulation: Multilink-PPP
  Bandwidth: 256kbps
  Bundle options:
    MRRU 1504
    Drop timer period 2000
    Sequence number format long (24 bits)
    Fragmentation threshold 0
    Links needed to sustain bundle 1
    Multilink classes 2
    Link layer overhead 4.0 %
  Multilink class 0 status:
    Received sequence number 0x4c38
    Transmit sequence number 0x4890
    Packet drops 0 (0 bytes)
    Fragment drops 2551 (397084 bytes)
    MRRU exceeded 0
Fragment timeout                52  
Missing sequence number         0  
Out-of-order sequence number    953  
Out-of-range sequence number    0  
Packet data buffer overflow     0  
Fragment data buffer overflow   0  

Multilink class 1 status:  
Received sequence number  0xffffffff  
Transmit sequence number  0x3710  
Packet drops              0 (0 bytes)  
Fragment drops             0 (0 bytes)  
MRRU exceeded              0  
Fragment timeout           0  
Missing sequence number     0  
Out-of-order sequence number 0  
Out-of-range sequence number 0  
Packet data buffer overflow 0  
Fragment data buffer overflow 0  

Statistics         Frames        fps         Bytes          bps  
Bundle:  
Fragments:           
Input :     33719        239       4041763       231632  
Output:     32371        234       4096545       237488  
Packets:             
Input :     15809        116       3474024       223704  
Output:     16788        117       4193992       233888  
Multilink class 0:  
Fragments:           
Input :     19331          0             0            0  
Output:             0          0             0            0  
Packets:             
Input :     2064          0             0            0  
Output:     1864          0             0            0  
Multilink class 1:  
Fragments:           
Input :             0          0             0            0  
Output:     14096          0             0            0  
Packets:             
Input :     14096          0             0            0  
Output:             0          0             0            0  
Link:  
ds-1/0/2:1:1.0, Enabled, Physical link is Up  
Input :     20972        151       2030595       118080  
Output:     16184        116       2048468       118488  
ds-1/0/2:1:2.0, Enabled, Physical link is Up  
Input :     12747         88       2011168       113552  
Output:     16187        118       2048077       119000  
Protocol inet, MTU: 1500 [Adjusted], Generation: 14, Route table: 0  
Flags: User-MTU, MTU-Protocol-Adjusted  
Addresses, Flags: Is-Preferred Is-Primary  
    Destination: 10.0.1.0/30, Local: 10.0.1.2, Broadcast: Unspecified,  
    Generation: 18
show interfaces (Redundant Adaptive Services)

**Syntax**
```
show interfaces rspnumber
 <brief | detail | extensive | terse>
 <descriptions>
 <media>
 <snmp-index snmp-index>
 <statistics>
```

**Release Information**
Command introduced before Junos OS Release 7.4.

**Description**
(M Series and T Series routers only) Display status information about the specified redundant adaptive services configuration.

**Options**
- `rspnumber`—Display standard status information about the specified redundant adaptive services configuration.
- `brief | detail | extensive | terse`—(Optional) Display the specified level of output.
- `descriptions`—(Optional) Display interface description strings.
- `media`—(Optional) Display media-specific information about network interfaces.
- `snmp-index snmp-index`—(Optional) Display information for the specified SNMP index of the interface.

**Required Privilege**
view

**List of Sample Output**
show interfaces extensive (Redundant Adaptive Services) on page 1490

**Output Fields**
See the output field table for the `show interfaces (Adaptive Services)` command.

**Sample Output**

```bash
user@host> show interfaces rsp0 extensive
Physical interface: rsp0, Enabled, Physical link is Up
 Interface index: 150, SNMP ifIndex: 40, Generation: 44
 Type: Adaptive-Services, Link-level type: Adaptive-Services, MTU: 9192,
 Clocking: Unspecified, Speed: 800mbps
 Device flags : Present Running
 Interface flags: Point-To-Point SNMP-Traps Redundancy-Device 16384
 Link type : Full-Duplex
 Link flags : None
 Physical info : Unspecified
 Hold-times : Up 0 ms, Down 0 ms
```

Copyright © 2019, Juniper Networks, Inc.
<table>
<thead>
<tr>
<th>Current address: Unspecified, Hardware address: Unspecified</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate link address: Unspecified</td>
<td></td>
</tr>
<tr>
<td>Last flapped : 2005-03-11 18:36:37 UTC (00:00:08 ago)</td>
<td></td>
</tr>
<tr>
<td>Statistics last cleared: Never</td>
<td></td>
</tr>
<tr>
<td>Traffic statistics:</td>
<td></td>
</tr>
<tr>
<td>Input bytes :</td>
<td>0</td>
</tr>
<tr>
<td>Output bytes :</td>
<td>0</td>
</tr>
<tr>
<td>Input packets:</td>
<td>0</td>
</tr>
<tr>
<td>Output packets:</td>
<td>0</td>
</tr>
<tr>
<td>Input errors:</td>
<td></td>
</tr>
<tr>
<td>Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0, Policed discards: 0, Resource errors: 0</td>
<td></td>
</tr>
<tr>
<td>Output errors:</td>
<td></td>
</tr>
<tr>
<td>Carrier transitions: 0, Errors: 0, Drops: 0, MTU errors: 0, Resource errors: 0</td>
<td></td>
</tr>
<tr>
<td>Logical interface rsp0.0 (Index 68) (SNMP ifIndex 42) (Generation 30) Flags: Point-To-Point SNMP-Traps Encapsulation: Adaptive-Services</td>
<td></td>
</tr>
<tr>
<td>Traffic statistics:</td>
<td></td>
</tr>
<tr>
<td>Input bytes :</td>
<td>0</td>
</tr>
<tr>
<td>Output bytes :</td>
<td>0</td>
</tr>
<tr>
<td>Input packets:</td>
<td>0</td>
</tr>
<tr>
<td>Output packets:</td>
<td>0</td>
</tr>
<tr>
<td>Local statistics:</td>
<td></td>
</tr>
<tr>
<td>Input bytes :</td>
<td>0</td>
</tr>
<tr>
<td>Output bytes :</td>
<td>0</td>
</tr>
<tr>
<td>Input packets:</td>
<td>0</td>
</tr>
<tr>
<td>Output packets:</td>
<td>0</td>
</tr>
<tr>
<td>Transit statistics:</td>
<td></td>
</tr>
<tr>
<td>Input bytes :</td>
<td>0</td>
</tr>
<tr>
<td>Output bytes :</td>
<td>0</td>
</tr>
<tr>
<td>Input packets:</td>
<td>0</td>
</tr>
<tr>
<td>Output packets:</td>
<td>0</td>
</tr>
<tr>
<td>Protocol inet, MTU: 9192, Generation: 37, Route table: 0</td>
<td></td>
</tr>
<tr>
<td>Flags: Receive-options, Receive-TTL-Exceeded</td>
<td></td>
</tr>
</tbody>
</table>
**show interfaces (Redundant Link Services IQ)**

**Syntax**

```
show interfaces rlsqnumber
<brief | detail | extensive | terse>
<descriptions>
<media>
<queue>
<routing>
<snmp-index snmp-index>
<statistics>
```

**Release Information**

Command introduced in Junos OS Release 7.6.

**Description**

(M Series and T Series routers only) Display status information about the specified redundant link services intelligent queuing (IQ) configuration.

**Options**

- `rlsqnumber`—Redundant link services IQ interface name. The logical interface number range of values is 0 through 127.
- `none`—Display standard status information about the specified redundant link services IQ configuration.
- `brief | detail | extensive | terse`—(Optional) Display the specified level of output.
- `descriptions`—(Optional) Display interface description strings.
- `media`—(Optional) Display media-specific information about network interfaces.
- `queue`—(Optional) Display queue information about network interfaces.
- `routing`—(Optional) Display routing information about network interfaces.
- `snmp-index snmp-index`—(Optional) Display information for the specified SNMP index of the interface.

**Required Privilege Level**

`view`

**List of Sample Output**

- `show interfaces (Redundant Link Services IQ) on page 1503`
- `show interfaces brief (Redundant Link Services IQ) on page 1503`
- `show interfaces detail (Redundant Link Services IQ) on page 1504`
- `show interfaces extensive (Redundant Link Services IQ) on page 1505`

**Output Fields**

Table 48 on page 1493 lists the output fields for the `show interfaces` (redundant link services IQ) command. Output fields are listed in the approximate order in which they appear.
### Table 48: show interfaces (Redundant Link Services IQ) Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Interface</td>
<td><strong>Physical interface</strong> Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td><strong>Enabled</strong> State of the interface. Possible values are described in the “Enabled Field” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td><strong>Interface index</strong> Physical interface's index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td><strong>SNMP ifIndex</strong> SNMP index number for the physical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td><strong>Generation</strong> Unique number for use by Juniper Networks technical support.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td><strong>Link-level type</strong> Encapsulation being used on the physical interface: Multilink-Frame-Relay-UNI-NNI (default), LinkService, Frame-relay, Frame-relay-ccc, or Frame-relay-tcc.</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td><strong>MTU</strong> Maximum transmission unit size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td><strong>Device flags</strong> Information about the physical device. Possible values are described in the “Device Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td><strong>Interface flags</strong> Information about the interface. Possible values are described in the “Interface Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td><strong>Last flapped</strong> Date, time, and how long ago the interface went from down to up. The format is Last flapped:year-month-day hour:minute:second timezone (hour:minute:second ago) . For example, Last flapped: 2002-04-26 10:52:40 PDT (04:33:20 ago).</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td><strong>Input rate</strong> (Redundant LSQ) Rate of bits and packets received on the interface.</td>
<td>None specified</td>
</tr>
<tr>
<td></td>
<td><strong>Output rate</strong> (Redundant LSQ) Rate of bits and packets transmitted on the interface.</td>
<td>None specified</td>
</tr>
<tr>
<td></td>
<td><strong>Statistics last cleared</strong> Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td><strong>Traffic statistics</strong> Number and rate of bytes and packets received and transmitted on the physical interface. All references to traffic direction (input or output) are defined with respect to the router. Input fragments received by the router are assembled into input packets; output packets are segmented into output fragments for transmission out of the router.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
### Table 48: show interfaces (Redundant Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame exceptions</td>
<td>Information about framing exceptions. Includes events recorded under <strong>Exception Events</strong> for each logical interface.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Oversized frames</strong>—Number of frames received that exceed maximum frame length. Maximum length is 4500 Kb (kilobits).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Errored input frames</strong>—Number of input frame errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Input on disabled link/bundle</strong>—Number of frames received on disabled links. These frames can result either from an inconsistent configuration, or from a bundle or link being brought up or down with traffic actively flowing through it.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Output for disabled link/bundle</strong>—Number of frames sent for a disabled or unavailable link. These frames can result either from an inconsistent configuration, or from a bundle being brought up or down while traffic is flowing through it.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Queuing drops</strong>—Total number of packets dropped before traffic enters the link services IQ interface. Indicates that the interface is becoming oversubscribed.</td>
<td></td>
</tr>
<tr>
<td>Buffering exceptions</td>
<td>Information about buffering exceptions. Includes events recorded under <strong>Exception Events</strong> for each logical interface.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Packet data buffer overflow</strong>—Packet buffer memory is full. This overflow can occur when the aggregate data rate exceeds the physical link services IQ interface capacity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Fragment data buffer overflow</strong>—Fragment buffer memory is full. This overflow can occur when excessive differential delay is experienced across the links within a single bundle, or when the aggregate data rate exceeds the physical link services IQ capacity. Check the logical interface exception event counters to determine which bundle is responsible.</td>
<td></td>
</tr>
</tbody>
</table>
## Table 48: show interfaces (Redundant Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Assembly exceptions</strong></td>
<td>(Multilink Frame Relay end-to-end only) Information about assembly exceptions. Includes events recorded under Exception Events for each logical interface.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>An assembly exception does not necessarily indicate an operational problem with the physical link services IQ interface itself. If multilink-encapsulated traffic is dropped or reordered after a sequence number has been assigned, the interface records one or more exception events. The physical interface can drop multilink-encapsulated fragments itself as a result. Any multilink packets or fragments dropped by the interface itself result in packet or fragment drop counts on individual logical interfaces. If the logical interface drop counts are zero, but exception events are seen, the most likely cause is a problem with the individual link interfaces. Even if the logical interface fragment drop counts are nonzero, excess differential delay or traffic losses on individual interfaces can be the root cause.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Fragment timeout</strong>—The drop timer expired while a fragment sequence number was outstanding. Occurs only if the drop timer is enabled. This timeout can occur if the differential delay across the links in a bundle exceeds the drop-timer setting, or if a multilink packet is lost in transit while the drop timer is enabled. These events do not necessarily indicate any problem with the operation of the physical link services IQ interface itself, but can occur when one or more individual links drop traffic. Check the logical interface exception event counters to determine which bundle is responsible.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Missing sequence number</strong>—A gap was detected in the sequence numbers of fragments on a bundle. These events do not necessarily indicate any problem with the operation of the physical link services IQ interface itself, but can occur when one or more individual links drop traffic. Check the logical interface exception event counters to determine which bundle is responsible.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Out-of-order sequence number</strong>—Two frames with out-of-order sequence numbers within a single link. This event indicates that an individual link within a bundle reordered traffic, making the link services IQ interface unable to correctly process the resulting stream. Check the logical interface exception event counters to determine which bundle is responsible.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Out-of-range sequence number</strong>—Received a frame with an out-of-range sequence number. These events can occur when a large amount of multilink-encapsulated traffic is lost or the multilink peer is reset, so that a large jump in sequence numbers results. A small number of these events can occur when the far end of a bundle is taken down or brought up. Check the logical interface exception event counters to determine which bundle is responsible.</td>
<td></td>
</tr>
<tr>
<td><strong>Hardware errors</strong> (sticky)</td>
<td>(Multilink Frame Relay end-to-end only) Information about hardware errors:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Data memory error</strong>—A memory error was detected on the interface DRAM. Indicates possible hardware failure. Contact Juniper Networks technical support.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Control memory error</strong>—A memory error was detected on the interface DRAM. Indicates possible hardware failure. Contact Juniper Networks technical support.</td>
<td></td>
</tr>
<tr>
<td><strong>Egress queues</strong></td>
<td>Total number of egress queues supported on the specified interface.</td>
<td>detail extensive none</td>
</tr>
</tbody>
</table>

Copyright © 2019, Juniper Networks, Inc.
### Table 48: show interfaces (Redundant Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Queue counters</strong></td>
<td>Queue number and its associated user-configured forwarding class name.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td>• Queued packets—Number of queued packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Transmitted packets—Number of transmitted packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Dropped packets—Number of packets dropped by the ASIC’s RED mechanism.</td>
<td></td>
</tr>
<tr>
<td><strong>Logical Interface</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Logical interface</strong></td>
<td>Name of the logical interface</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Index</strong></td>
<td>Logical interface index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>SNMP ifIndex</strong></td>
<td>Logical interface SNMP interface index number.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>Generation</strong></td>
<td>Unique number for use by Juniper Networks technical support</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Flags</strong></td>
<td>Information about the logical interface. Possible values are described in the</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>“Logical Interface Flags” section under Common Output Fields Description.</td>
<td></td>
</tr>
<tr>
<td><strong>Encapsulation</strong></td>
<td>Encapsulation being used: PPP or Multilink PPP.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Bandwidth</strong></td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Bundle options</strong></td>
<td>(Multilink Frame Relay end-to-end interfaces only)</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td>• MRRU—Configured size of the maximum received reconstructed unit (MRRU):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500 through 4500 bytes. The default is 1504 bytes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drop timer period—Drop timeout value to provide a recovery mechanism if</td>
<td></td>
</tr>
<tr>
<td></td>
<td>individual links in link services bundle drop one or more packets: 0 though</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000 milliseconds. Values under 5 ms are not recommended. The default setting is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0, which disables the timer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sequence number format—Short sequence number header format (MLPPP only).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fragmentation threshold—Configured fragmentation threshold: 64 through 16,320</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bytes, in integer multiples of 64 bytes. The default setting is 0, which</td>
<td></td>
</tr>
<tr>
<td></td>
<td>disables fragmentation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Links needed to sustain bundle—Minimum number of links to sustain the bundle: 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>through 8.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Multilink classes—Number of multilink classes negotiated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Link layer overhead—Percentage of bundle bandwidth to be set aside for link-layer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>overhead.</td>
<td></td>
</tr>
</tbody>
</table>
### Table 48: show interfaces (Redundant Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bundle status (MLPPP) or Multilink class status (MC-MLPPP)</td>
<td>Information about bundle status:</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>• Remote MRRU—MRRU value received from remote peer. If negotiation has not been initiated, the default value is displayed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Received sequence number—Sequence number for received packets.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Transmitted sequence number—Sequence number for transmitted packets.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Packet drops—Number and byte count of output packets that were dropped, rather than being encapsulated and sent out of the router as fragments. The packet drop counter is incremented if there is a temporary shortage of packet memory on the AS PIC, which causes packet fragmentation to fail.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fragment drops—Number and byte count of input fragments that were dropped, rather than being reassembled and handled by the router as packets. This counter also includes fragments that have been received successfully but had to be dropped because not all fragments that constituted a packet had been received. The fragment drop counter is incremented when a fragment received on constituent links is dropped. Drop fragments can be triggered by sequence ordering errors, duplicate fragments, timed-out fragments, and bad multilink headers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MRRU exceeded—Number of reassembled packets exceeding the MRRU. This counter is not implemented in this release.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fragment timeout—The drop timer expired while a fragment sequence number was outstanding. Occurs only if the drop timer is enabled. This timeout can occur if the differential delay across the links in a bundle exceeds the drop timer setting, or if a multilink packet is lost in transit while the drop timer is enabled.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Missing sequence number—A gap was detected in the sequence numbers of fragments on a bundle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Out-of-order sequence number—Two frames with out-of-order sequence numbers within a single link. This event indicates that an individual link within a bundle reordered traffic, making the multilink interface unable to correctly process the resulting stream.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Out-of-range sequence number—Received a frame with an out-of-range sequence number. These events can occur when a large amount of multilink-encapsulated traffic is lost or the multilink peer is reset, so that a large jump in sequence numbers results. A small number of these events can occur when the far end of a bundle is taken down or brought up.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Packet data buffer overflow—Packet buffer memory is full. This overflow can occur when the aggregate data rate exceeds the physical link services IQ interface capacity.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fragment data buffer overflow—Fragment buffer memory is full. This overflow can occur when excessive differential delay is experienced across the links within a single bundle, or when the aggregate data rate exceeds the physical link services IQ capacity.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 48: show interfaces (Redundant Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
<td>Information about fragments and packets received and sent by the router. All</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>references to traffic direction (input or output) are defined with respect to the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>router. Input fragments received by the router are assembled into input packets;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>output packets are segmented into output fragments for transmission out of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the router. Each field has columns that indicate the number of frames received</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and transmitted, frames per second (fps), the number of bytes received and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transmitted, and bits per second (bps).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bundle—Information for each active bundle link.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fragments: Input and Output—Total number and rate of fragments received</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and transmitted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packets: Input and Output—Total number and rate of packets received and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transmitted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Multilink class—(MC-MLPPP only) Information about multiclass links used in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the multilink operation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Link—Information about links used in the multilink operation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Link name—Interface name of the link services IQ channel and state</td>
<td></td>
</tr>
<tr>
<td></td>
<td>information (physical link up or down).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input and Output—Total number and rate of fragments and packets received</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and transmitted.</td>
<td></td>
</tr>
<tr>
<td>NCP state</td>
<td>(PPP) Network Control Protocol state.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Conf-ack-received—Acknowledgement was received.</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>• Conf-ack-sent—Acknowledgement was sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Conf-req-sent—Request was sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Down—NCP negotiation is incomplete (not yet completed or has failed).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Not-configured—NCP is not configured on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Opened—NCP negotiation is successful.</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol family configured on the logical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the logical interface. If the MTU value is negotiated down to meet</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>the MRRU requirement on the remote side, this value is marked Adjusted.</td>
<td></td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Route Table</td>
<td>Routing table in which this address exists. For example, Route table:0 refers to</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>inet.0.</td>
<td></td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the protocol family flags. Possible values are described in</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>the &quot;Family Flags&quot; section under Common Output Fields Description.</td>
<td>none</td>
</tr>
<tr>
<td>Addresses,</td>
<td>Information about the addresses configured on the logical interface. Possible</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>values are described in the &quot;Addresses Flags&quot; section under Common Output</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>Fields Description.</td>
<td></td>
</tr>
<tr>
<td>Destination</td>
<td>IP address of the remote side of the connection.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>

Adaptive Services Interfaces Feature Guide for Routing Devices

Copyright © 2019, Juniper Networks, Inc.
### Table 48: `show interfaces (Redundant Link Services IQ)` Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Local</strong></td>
<td>IP address of the logical interface.</td>
<td><code>detail extensive none</code></td>
</tr>
<tr>
<td><strong>Broadcast</strong></td>
<td>Broadcast address on the logical interface.</td>
<td><code>detail extensive none</code></td>
</tr>
<tr>
<td><strong>Generation</strong></td>
<td>Unique number for use by Juniper Networks technical support.</td>
<td><code>detail extensive</code></td>
</tr>
<tr>
<td><strong>MLPPP Bundle Interface</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Logical interface</strong></td>
<td>Name of the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Index</strong></td>
<td>Logical interface index number, which reflects its initialization sequence.</td>
<td><code>detail extensive none</code></td>
</tr>
<tr>
<td><strong>SNMP ifIndex</strong></td>
<td>Logical interface SNMP interface index number.</td>
<td><code>detail extensive none</code></td>
</tr>
<tr>
<td><strong>Generation</strong></td>
<td>Unique number for use by Juniper Networks technical support.</td>
<td><code>detail extensive</code></td>
</tr>
<tr>
<td><strong>Flags</strong></td>
<td>Information about the logical interface. Possible values are described in the</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>“Logical Interface Flags” section under Common Output Fields Description.</td>
<td></td>
</tr>
<tr>
<td><strong>SNMP-Traps</strong></td>
<td>SNMP trap notifications are enabled.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Encapsulation</strong></td>
<td>Encapsulation being used: PPP, Multilink PPP or Multilink-FR.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Last flapped</strong></td>
<td>Date, time, and how long ago the interface went from down to up. The format is</td>
<td><code>detail extensive none</code></td>
</tr>
<tr>
<td></td>
<td><code>Last flapped: year-month-day hour:minute:second timezone (hour:minute:second ago)</code></td>
<td></td>
</tr>
<tr>
<td><strong>Bandwidth</strong></td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Bundle links information</strong></td>
<td>Information about the bundled links.</td>
<td><code>detail extensive none</code></td>
</tr>
<tr>
<td></td>
<td>• <strong>Active bundle links</strong>—Number of active links.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Removed bundle links</strong>—Information about links used in the multilink operation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Disabled bundle links</strong>—Number of disabled links.</td>
<td></td>
</tr>
</tbody>
</table>
Table 48: show interfaces (Redundant Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bundle options</td>
<td>(Multilink Frame Relay end-to-end interfaces only)</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td>• MRRU—Configured size of the maximum received reconstructed unit (MRRU): 1500 through 4500 bytes. The default is 1504 bytes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drop timer period—Drop timeout value to provide a recovery mechanism if individual links in link services bundle drop one or more packets: 0 through 2000 milliseconds. Values under 5 ms are not recommended. The default setting is 0, which disables the timer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Inner PPP Protocol field compression—Inner PPP protocol compression is enabled or disabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sequence number format—Short sequence number header format (MLPPP only).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fragmentation threshold—Configured fragmentation threshold: 64 through 16,320 bytes, in integer multiples of 64 bytes. The default setting is 0, which disables fragmentation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Links needed to sustain bundle—Minimum number of links to sustain the bundle: 1 through 8.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Multilink classes—Number of multilink classes negotiated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Link layer overhead—Percentage of bundle bandwidth to be set aside for link-layer overhead.</td>
<td></td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------------------------------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td><strong>Bundle status</strong></td>
<td><strong>(MLPPP)</strong> Information about bundle status:</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td>• <strong>Received sequence number</strong>—Sequence number for received packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Transmit sequence number</strong>—Sequence number for transmitted packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Packet drops</strong>—Number and byte count of output packets that were dropped,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rather than being encapsulated and sent out of the router as fragments. The</td>
<td></td>
</tr>
<tr>
<td></td>
<td>packet drop counter is incremented if there is a temporary shortage of packet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>memory on the AS PIC, which causes packet fragmentation to fail.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Fragment drops</strong>—Number and byte count of input fragments that were dropped,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rather than being reassembled and handled by the router as packets. This</td>
<td></td>
</tr>
<tr>
<td></td>
<td>counter also includes fragments that have been received successfully but had to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>be dropped because not all fragments that constituted a packet had been</td>
<td></td>
</tr>
<tr>
<td></td>
<td>received. The fragment drop counter is incremented when a fragment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>received on constituent links is dropped. Drop fragments can be triggered by</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sequence ordering errors, duplicate fragments, timed-out fragments, and bad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>multilink headers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>MRRU exceeded</strong>—Number of reassembled packets exceeding the MRRU. This</td>
<td></td>
</tr>
<tr>
<td></td>
<td>counter is not implemented in this release.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Fragment timeout</strong>—The drop timer expired while a fragment sequence number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>was outstanding. Occurs only if the drop timer is enabled. This timeout can</td>
<td></td>
</tr>
<tr>
<td></td>
<td>occur if the differential delay across the links in a bundle exceeds the drop-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>timer setting, or if a multilink packet is lost in transit while the drop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>timer is enabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Missing sequence number</strong>—A gap was detected in the sequence numbers of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fragments on a bundle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Out-of-order sequence number</strong>—Two frames with out-of-order sequence numbers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>occurred within a single link. This event indicates that an individual link</td>
<td></td>
</tr>
<tr>
<td></td>
<td>within a bundle reordered traffic, making the multilink interface unable to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>correctly process the resulting stream.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Out-of-range sequence number</strong>—A frame was received with an out-of-range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sequence number. These events can occur when a large amount of multilink-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>encapsulated traffic is lost or the multilink peer is reset, so that a large</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jump in sequence numbers results. A small number of these events can occur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>when the far end of a bundle is taken down or brought up.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Packet data buffer overflow</strong>—Packet buffer memory is full. This overflow can</td>
<td></td>
</tr>
<tr>
<td></td>
<td>occur when the aggregate data rate exceeds the physical link services IQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>interface capacity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Fragment data buffer overflow</strong>—Fragment buffer memory is full. This overflow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>can occur when excessive differential delay is experienced across the links</td>
<td></td>
</tr>
<tr>
<td></td>
<td>within a single bundle, or when the aggregate data rate exceeds the physical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>link services IQ capacity.</td>
<td></td>
</tr>
</tbody>
</table>
Table 48: show interfaces (Redundant Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Statistics</strong></td>
<td>Information about frames, bytes, and bits per second received and sent by the</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>router. All references to traffic direction (input or output) are defined with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>respect to the router. Each field has columns that indicate the number of frames</td>
<td></td>
</tr>
<tr>
<td></td>
<td>received and transmitted, frames per second (fps), the number of bytes received</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and transmitted, and bits per second (bps).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Bundle</strong>—Information for each active bundle link.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Multilink: Input and Output</strong>—Total number and rate of multilink frames,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bytes, and bits per second received and transmitted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Network: Input and Output</strong>—Total number of multilink frames, bytes, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bits per second received and transmitted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Link</strong>—Information about links used in the multilink operation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Link name</strong> is the interface name of the link services IQ channel and state</td>
<td></td>
</tr>
<tr>
<td></td>
<td>information (physical link up or down) and up time.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Input and Output</strong>—Total number and rate of frames, bytes, and bits per</td>
<td></td>
</tr>
<tr>
<td></td>
<td>second received and transmitted.</td>
<td></td>
</tr>
<tr>
<td><strong>Multilink detail</strong></td>
<td>Frames, bytes, and bits per second received and sent by the bundle. All references</td>
<td>extensive</td>
</tr>
<tr>
<td><strong>statistics</strong></td>
<td>to traffic direction (input or output) are defined with respect to the router.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Each field has columns that indicate the number of frames received and transmitted,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>frames per second (fps), the number of bytes received and transmitted, and bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>per second (bps).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Bundle</strong>—Information for the bundle link.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Fragments: Input and Output</strong>—Total number and rate of multilink fragments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>received and transmitted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Non-fragments: Input and Output</strong>—Total number and rate of nonfragmented</td>
<td></td>
</tr>
<tr>
<td></td>
<td>multilink frames received and transmitted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>LFI: Input and Output</strong>—Total number and rate of link fragmented and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>interleaved frames and bytes.</td>
<td></td>
</tr>
<tr>
<td><strong>Protocol</strong></td>
<td>Protocol family configured on the logical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td><strong>MTU</strong></td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>MTU size on the logical interface. If the MTU value is negotiated down to meet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the MRRU requirement on the remote side, this value is marked <strong>Adjusted</strong>.</td>
<td></td>
</tr>
<tr>
<td><strong>Generation</strong></td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Route Table</strong></td>
<td>Routing table in which this address exists. For example, <strong>Route table:0</strong> refers</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>to inet.0.</td>
<td></td>
</tr>
<tr>
<td><strong>Addresses, Flags</strong></td>
<td>Information about the addresses configured on the logical interface. Possible</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>values are described in the “Addresses Flags” section under <strong>Common Output</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fields Description.</td>
<td></td>
</tr>
<tr>
<td><strong>Destination</strong></td>
<td>IP address of the remote side of the connection.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Local</strong></td>
<td>IP address of the logical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Broadcast</strong></td>
<td>Broadcast address on the logical interface.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 48: show interfaces (Redundant Link Services IQ) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>

Sample Output

show interfaces (Redundant Link Services IQ)

```
user@host> show interfaces rlsq0

Physical interface: rlsq0, Enabled, Physical link is Up
 Interface index: 196, SNMP ifIndex: 27
 Link-level type: LinkService, MTU: 1504
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x4000
 Last flapped : Never
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)

Logical interface rlsq0.0 (Index 72) (SNMP ifIndex 88)
 Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: Multilink-PPP
 Bandwidth: 0
 Statistics Frames fps Bytes bps
 Bundle:
 Fragments:
 Input: 3 0 255 0
 Output: 3 0 264 0
 Packets:
 Input: 3 0 252 0
 Output: 0 0 0 0
 Link:
 t1-1/3/0:1.0
 Input: 3 0 255 0
 Output: 0 0 0 0
 t1-1/3/0:2.0
 Input: 0 0 0 0
 Output: 3 0 264 0

 Protocol inet, MTU: 1500
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 192.0.2.0/30, Local: 192.0.2.1
```

show interfaces brief (Redundant Link Services IQ)

```
user@host> show interfaces rlsq0 brief

Physical interface: rlsq0, Enabled, Physical link is Up
 Link-level type: LinkService, MTU: 1504
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x4000

Logical interface rlsq0.0
 Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: Multilink-PPP
 inet 192.0.2.1/30
```
show interfaces detail (Redundant Link Services IQ)

user@host> show interfaces rlsq0 detail

Physical interface: rlsq0, Enabled, Physical link is Up
Interface index: 196, SNMP ifIndex: 27, Generation: 144
Link-level type: LinkService, MTU: 1504
Device flags : Present Running
Interface flags: SNMP-Traps Internal: 0x4000
Last flapped : Never
Statistics last cleared: Never
Traffic statistics:
  Input bytes : 252 0 bps
  Output bytes: 276 0 bps
  Input packets: 3 0 pps
  Output packets: 3 0 pps
Frame exceptions:
  Oversized frames 0
  Errorred input frames 0
  Input on disabled link/bundle 0
  Output for disabled link/bundle 0
  Queuing drops 0
Buffering exceptions:
  Packet data buffer overflow 0
  Fragment data buffer overflow 0
Assembly exceptions:
  Fragment timeout 0
  Missing sequence number 0
  Out-of-order sequence number 0
  Out-of-range sequence number 0
Hardware errors (sticky):
  Data memory error 0
  Control memory error 0
Egress queues: 8 supported, 4 in use
Queue counters:

<table>
<thead>
<tr>
<th>Queue</th>
<th>Queued packets</th>
<th>Transmitted packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 be</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 expedited-fo</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 assured-forw</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 network-cont</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Logical interface rlsq0.0 (Index 72) (SNMP ifIndex 88) (Generation 31)
Flags: Point-To-Point SNMP-Traps 0x40000 Encapsulation: Multilink-PPP
Bandwidth: 0
Bundle options:
  MRRU 1504
  Remote MRRU N/A
  Drop timer period 2000
  Sequence number format long (24 bits)
  Fragmentation threshold 0
  Links needed to sustain bundle 1
  Multilink classes 0
  Link layer overhead 4.0 %
Bundle status:
  Received sequence number 0xffffffff
  Transmit sequence number 0x0
show interfaces extensive (Redundant Link Services IQ)

The output for the show interfaces rlsq extensive command is identical to that for the show interfaces rlsq detail command. For sample output, see show interfaces detail (Redundant Link Services IQ) on page 1504.
show interfaces load-balancing (Aggregated Multiservices)

Syntax

show interfaces load-balancing
<detail>
<interface-name>

Release Information

Command introduced in Junos OS Release 11.4.
interface-name option added in Junos OS Release 16.1.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers
MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

Description

Display information about the aggregated multiservices interface (AMS) as well as its
individual member interfaces and the status of the replication state.

Options

none—Display standard information about status of all AMS interfaces.
detail—(Optional) Display detailed status of all AMS interfaces.

interface-name—(Optional) Name of the aggregated multiservices interface (ams). If
this is omitted, then the information for all the aggregated multiservices interfaces,
including those used in control plane redundancy and high availability (HA) for service
applications, is displayed.

Required Privilege Level

view

Related Documentation

• Understanding Aggregated Multiservices Interfaces on page 865
• Configuring Aggregated Multiservices Interfaces on page 872
• Example: Configuring an Aggregated Multiservices Interface (AMS) on page 878

List of Sample Output

show interfaces load-balancing on page 1509
show interfaces load-balancing detail on page 1509
show interfaces load-balancing detail (Specific Interface) on page 1509

Output Fields

Table 49 on page 1506 lists the output fields for the show interfaces load-balancing
(aggregated multiservices interfaces) command. Output fields are listed in the
approximate order in which they appear.

Table 49: Aggregated Multiservices show interfaces load-balancing Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the aggregated multiservices (AMS) interface.</td>
<td>detail none</td>
</tr>
</tbody>
</table>
Table 49: Aggregated Multiservices show interfaces load-balancing Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Status of AMS interfaces:</td>
<td>detail none</td>
</tr>
<tr>
<td></td>
<td>• Coming Up—Interface is becoming operational.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Members Seen—Member interfaces (mams) are available.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Up—Interface is configured and operational.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Wait for Members—Member interfaces (mams) are not available.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Wait Timer—Interface is waiting for member interfaces (mams) to come online.</td>
<td></td>
</tr>
<tr>
<td>Last change</td>
<td>Time (in hh:mm:ss [hours:minutes:seconds] format) when the state last changed.</td>
<td>detail none</td>
</tr>
<tr>
<td>Members</td>
<td>Number of member interfaces (mams-).</td>
<td>none specified</td>
</tr>
<tr>
<td>Member count</td>
<td>Number of member PICs (mams) that are part of the aggregated interface.</td>
<td>detail none</td>
</tr>
<tr>
<td>HA Model</td>
<td>High availability (HA) model supported on the interface.</td>
<td>detail none</td>
</tr>
<tr>
<td></td>
<td>• Many-to-One—The preferred backup Multiservices PIC, in hot standby mode, backs up one or more (N) active Multiservices PICs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• One-to-One—The preferred backup Multiservices PIC, in hot standby mode, backs up only one active Multiservices PIC.</td>
<td></td>
</tr>
<tr>
<td>Members</td>
<td>Information about the member interfaces:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Interface—Name of the member interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Weight—Not applicable for the current release.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• State—State of the member interface (mams-).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Active—Member is an active member.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Backup—Member is a backup.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Discard—Member has not yet rejoined the ams interface after failure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Down—Member has not yet powered on.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Inactive—Member has failed to rejoin the ams interface within the configured rejoin-timeout.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Invalid—Multiservices PIC corresponding to the member interface has been configured but is not physically present in the chassis.</td>
<td></td>
</tr>
</tbody>
</table>
Table 49: Aggregated Multiservices show interfaces load-balancing Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sync-state</td>
<td>Synchronization (sync) status of the control plane redundancy. The sync state is displayed only when the ams interface is Up.</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>- <strong>Interface</strong>—Name of the member interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Status</strong>—Synchronization status of the member interfaces.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>In progress</strong>—The active member is currently synchronizing its state information with the backup member.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>In sync</strong>—The active member has finished synchronizing its state information with the backup and the backup is ready to take over if the active member fails.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>NA (Not applicable)</strong>—The backup member is not yet ready to synchronize with the active (primary) member. This condition may occur if the backup is still powered off or still booting.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Unknown</strong>—The daemons are still initializing and the state information is unavailable.</td>
<td></td>
</tr>
</tbody>
</table>
Sample Output

show interfaces load-balancing

```bash
user@host> show interfaces load-balancing

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Last change</th>
<th>Members</th>
<th>HA Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>ams0</td>
<td>Up</td>
<td>00:10:02</td>
<td>4</td>
<td>Many-to-One</td>
</tr>
</tbody>
</table>
```

show interfaces load-balancing detail

```bash
user@host> show interfaces load-balancing detail

Load-balancing interfaces detail
<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Last change</th>
<th>Member count</th>
<th>HA Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>ams0</td>
<td>Up</td>
<td>00:10:23</td>
<td>4</td>
<td>Many-to-One</td>
</tr>
</tbody>
</table>

Members:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>mams-4/0/0</td>
<td>10</td>
<td>Active</td>
</tr>
<tr>
<td>mams-4/1/0</td>
<td>10</td>
<td>Active</td>
</tr>
<tr>
<td>mams-5/0/0</td>
<td>10</td>
<td>Active</td>
</tr>
<tr>
<td>mams-5/1/0</td>
<td>10</td>
<td>Backup</td>
</tr>
</tbody>
</table>

Sync-state:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>mams-4/0/0</td>
<td>Unknown</td>
</tr>
<tr>
<td>mams-4/1/0</td>
<td>Unknown</td>
</tr>
<tr>
<td>mams-5/0/0</td>
<td>Unknown</td>
</tr>
</tbody>
</table>
```

show interfaces load-balancing detail (Specific Interface)

```bash
user@host> show interfaces load-balancing ams0 detail

Load-balancing interfaces detail
<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Last change</th>
<th>Member count</th>
<th>HA Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>ams0</td>
<td>Up</td>
<td>00:11:28</td>
<td>4</td>
<td>Many-to-One</td>
</tr>
</tbody>
</table>

Members:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>mams-4/0/0</td>
<td>10</td>
<td>Active</td>
</tr>
<tr>
<td>mams-4/1/0</td>
<td>10</td>
<td>Active</td>
</tr>
<tr>
<td>mams-5/0/0</td>
<td>10</td>
<td>Active</td>
</tr>
<tr>
<td>mams-5/1/0</td>
<td>10</td>
<td>Backup</td>
</tr>
</tbody>
</table>

Sync-state:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>mams-4/0/0</td>
<td>Unknown</td>
</tr>
<tr>
<td>mams-4/1/0</td>
<td>Unknown</td>
</tr>
<tr>
<td>mams-5/0/0</td>
<td>Unknown</td>
</tr>
</tbody>
</table>
```
**show interfaces redundancy**

**Syntax**

`show interfaces redundancy <brief | detail>`

**Release Information**

Command introduced before Junos OS Release 7.4. 
`detail` option added in Junos OS Release 10.0.

**Description**

(M Series, T Series, and MX Series routers only) Display general information about redundancy for aggregated multiservices (AMS) interfaces configured for warm standby, adaptive services and link services intelligent queuing (IQ) interfaces, aggregated Ethernet interfaces redundancy, and LNS aggregated inline service interfaces.

**NOTE:** When you run the `show interfaces redundancy` command on an MX80 router, it displays the error message, `error: the redundancy-interface-process subsystem is not running`. This is because an MX80 router does not have a redundant FPC and does not support link protection.

**Options**

`brief | detail`—(Optional) Display the specified level of output.

**Required Privilege Level**

`view`

**List of Sample Output**

- `show interfaces redundancy` on page 1511
- `show interfaces redundancy (Aggregated Ethernet)` on page 1511
- `show interfaces redundancy (Aggregated Inline Service Interface)` on page 1511
- `show interfaces redundancy detail` on page 1512

**Output Fields**

Table 50 on page 1510 lists the output fields for the `show interfaces redundancy` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the AMS interface, redundant adaptive services, link services IQ interfaces, aggregated Ethernet interfaces, or LNS aggregated inline service interfaces.</td>
<td>All levels</td>
</tr>
<tr>
<td>State</td>
<td>State of the redundant interface: Not present, On primary, On secondary, or Waiting for primary MS PIC.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 50: show interfaces redundancy Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Change</td>
<td>Timestamp for the last change in status. This value resets after a master Routing Engine switchover event if any of the following conditions is met:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• GRES is not configured on the router.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The <code>rlsq</code> interface is configured without the <code>hot-standby</code> or <code>warm-standby</code> statements and the backup <code>lsq</code> interface was active before the switchover.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No logical interfaces are configured or all of the configured logical interfaces are down at the time of the switchover.</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>Name of the interface configured to be the primary interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Secondary</td>
<td>Name of the interface configured to be the backup interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Current Status</td>
<td>Physical status of the primary and secondary interfaces.</td>
<td>All levels</td>
</tr>
<tr>
<td>Mode</td>
<td>Standby mode.</td>
<td>detail</td>
</tr>
</tbody>
</table>

Sample Output

show interfaces redundancy

```
user@host> show interfaces redundancy
Interface State Last change Primary Secondary Current status
rspb Not present sp-1/0/0 sp-0/2/0 both down
rspb1 On secondary 1d 23:56 sp-1/2/0 sp-0/3/0 primary down
rspb2 On primary 10:10:27 sp-1/3/0 sp-0/2/0 secondary down
rlsqb On primary 00:06:24 lsbq-0/3/0 lsbq-1/0/0 both up
amsb On primary 00:39:51 mams-5/0/0 mams-5/1/0 both up
```

show interfaces redundancy (Aggregated Ethernet)

```
user@host> show interfaces redundancy
Interface State Last change Primary Secondary Current status
rlsqb On secondary 00:56:12 lsbq-4/0/0 lsbq-3/0/0 both up
```

show interfaces redundancy (Aggregated Inline Service Interface)

```
user@host> show interfaces redundancy asi0
Interface State Last change Primary Secondary Current status
asi0 On primary 00:00:09 si-1/0/0 si-0/0/0 both up
```
show interfaces redundancy detail

```plaintext
user@host> show interfaces redundancy detail

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Last change</th>
<th>Primary</th>
<th>Secondary</th>
<th>Current status</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>rlsq0</td>
<td>On primary</td>
<td>00:45:47</td>
<td>lsq-0/2/0</td>
<td>lsq-1/2/0</td>
<td>both up</td>
<td>hot-standby</td>
</tr>
<tr>
<td>rlsq0:0</td>
<td>On primary</td>
<td>00:45:46</td>
<td>lsq-0/2/0:0</td>
<td>lsq-1/2/0:0</td>
<td>both up</td>
<td>warm-standby</td>
</tr>
<tr>
<td>asio</td>
<td>On primary</td>
<td>00:03:42</td>
<td>si-1/0/0</td>
<td>si-0/0/0</td>
<td>both up</td>
<td>hot-standby</td>
</tr>
<tr>
<td>ams0</td>
<td>On primary</td>
<td>00:39:52</td>
<td>mams-5/0/0</td>
<td>mams-5/1/0</td>
<td>both up</td>
<td>warm-standby</td>
</tr>
<tr>
<td>replication state</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
**show security pki ca-certificate**

Syntax  
show security pki ca-certificate  
<brief | detail>  
<ca-profile ca-profile-name>

Release Information  
Command introduced in Junos OS Release 7.5.

Description  
Display information about certificate authority (CA) digital certificates installed in the router.

Options  
none—(Same as brief) Display information about all CA digital certificates.  
brief | detail—(Optional) Display the specified level of output.  
ca-profile ca-profile-name—(Optional) Display information about only the specified CA profile.

Required Privilege  
view

List of Sample Output  
show security pki ca-certificate on page 1514  
show security pki ca-certificate detail on page 1515

Output Fields  
Table 51 on page 1513 lists the output fields for the show security pki ca-certificate command.  
Output fields are listed in the approximate order in which they appear.

**Table 51: show security pki ca-certificate Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate identifier</td>
<td>Name of the digital certificate.</td>
<td>All levels</td>
</tr>
<tr>
<td>Certificate version</td>
<td>Revision number of the digital certificate.</td>
<td>detail</td>
</tr>
<tr>
<td>Serial number</td>
<td>Unique serial number of the digital certificate.</td>
<td>detail</td>
</tr>
<tr>
<td>Issued by</td>
<td>Authority that issued the digital certificate.</td>
<td>none brief</td>
</tr>
<tr>
<td>Issued to</td>
<td>Device that was issued the digital certificate.</td>
<td>none brief</td>
</tr>
</tbody>
</table>
### Table 51: show security pki ca-certificate Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issuer</td>
<td>Authority that issued the digital certificate, including details of the authority organized using the distinguished name format. Possible subfields are:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Common name—Name of the authority.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organization—Organization of origin.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organizational unit—Department within an organization.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• State—State of origin.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Country—Country of origin.</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Details of the digital certificate holder organized using the distinguished name format. Possible subfields are:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Common name—Name of the requestor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organization—Organization of origin.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organizational unit—Department within an organization.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• State—State of origin.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Country—Country of origin.</td>
<td></td>
</tr>
<tr>
<td>Validity</td>
<td>Time period when the digital certificate is valid. Values are:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• Not before—Start time when the digital certificate becomes valid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Not after—End time when the digital certificate becomes invalid.</td>
<td></td>
</tr>
<tr>
<td>Public key algorithm</td>
<td>Encryption algorithm used with the private key, such as <strong>rsaEncryption(1024 bits)</strong>.</td>
<td>All levels</td>
</tr>
<tr>
<td>Signature algorithm</td>
<td>Encryption algorithm that the CA used to sign the digital certificate, such as <strong>sha1WithRSAEncryption</strong>.</td>
<td>detail</td>
</tr>
<tr>
<td>Fingerprint</td>
<td>Secure Hash Algorithm (SHA1) and Message Digest 5 (MD5) hashes used to identify the digital certificate.</td>
<td>detail</td>
</tr>
<tr>
<td>Distribution CRL</td>
<td>Distinguished name information and the URL for the certificate revocation list (CRL) server.</td>
<td>detail</td>
</tr>
<tr>
<td>Use for key</td>
<td>Use of the public key, such as <strong>Certificate signing, CRL signing, Digital signature</strong>, or <strong>Key encipherment</strong>.</td>
<td>detail</td>
</tr>
</tbody>
</table>

### Sample Output

```
show security pki ca-certificate
user@host> show security pki ca-certificate
Certificate identifier: abc
 Issued to: example, Issued by: example
 Validity:
 Not before: 2005 Oct 18th, 23:54:22 GMT
 Not after: 2025 Oct 19th, 00:24:22 GMT
Public key algorithm: rsaEncryption(1024 bits)
```
Certificate identifier: entrust
Issued to: First Officer, Issued by: example
Validity:
- Not after: 2008 Oct 19th, 00:25:59 GMT
Public key algorithm: rsaEncryption(1024 bits)

Certificate identifier: abe
Issued to: First Officer, Issued by: example
Validity:
- Not after: 2008 Oct 19th, 00:25:59 GMT
Public key algorithm: rsaEncryption(1024 bits)

show security pki ca-certificate detail

user@host> show security pki ca-certificate detail

Certificate identifier: entrust
Certificate version: 3
Serial number: 4355 9235
Issuer:
- Organization: example, Country: us
Subject:
- Organization: example, Country: us
Validity:
- Not before: 2005 Oct 18th, 23:54:22 GMT
- Not after: 2025 Oct 19th, 00:24:22 GMT
Public key algorithm: rsaEncryption(1024 bits)
Signature algorithm: sha1WithRSAEncryption
Fingerprint:
Distribution CRL:
- C=us, O=example, CN=CA1
http://CA-1/CRL/example_us_crlfile.crl
Use for key: CRL signing, Certificate signing

Certificate identifier: entrust
Certificate version: 3
Serial number: 4355 925c
Issuer:
- Organization: example, Country: us
Subject:
- Organization: example, Country: us, Common name: First Officer
Validity:
- Not after: 2008 Oct 19th, 00:25:59 GMT
Public key algorithm: rsaEncryption(1024 bits)
Signature algorithm: sha1WithRSAEncryption
Fingerprint:
Distribution CRL:
C=us, O=example, CN=CRL1
http://CA-1/CRL/example_us_crlfile.crl
Use for key: Key encipherment
Certificate identifier: entrust
Certificate version: 3
Serial number: 4355 925b
Issuer:
Organization: example, Country: us
Subject:
Organization: example, Country: us, Common name: First Officer
Validity:
Not after: 2008 Oct 19th, 00:25:59 GMT
Public key algorithm: rsaEncryption(1024 bits)
Signature algorithm: sha1WithRSAEncryption
Fingerprint:
Distribution CRL:
C=us, O=example, CN=CRL1
http://CA-1/CRL/example_us_crlfile.crl
Use for key: Digital signature
show security pki certificate-request

**Syntax**

```
show security pki certificate-request
brief | detail
<certificate-id certificate-id-name>
```

**Release Information**

Command introduced in Junos OS Release 7.5.

**Description**

Display information about manually generated local digital certificate requests that are stored in the router.

**Options**

- `none`—(same as brief) Display information about all local digital certificate requests.
- `brief | detail`—(Optional) Display the specified level of output.
- `certificate-id certificate-id-name`—(Optional) Display information about only the specified local digital certificate request

**Required Privilege**

view

**Related Documentation**

- clear security pki certificate-request on page 1406

**List of Sample Output**

- show security pki certificate-request on page 1518
- show security pki certificate-request detail on page 1518

**Output Fields**

Table 52 on page 1517 lists the output fields for the show security pki certificate-request command. Output fields are listed in the approximate order in which they appear.

**Table 52: show security pki certificate-request Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate identifier</td>
<td>Name of the digital certificate.</td>
<td>All levels</td>
</tr>
<tr>
<td>Certificate version</td>
<td>Revision number of the digital certificate.</td>
<td>detail</td>
</tr>
<tr>
<td>Issued to</td>
<td>Device that was issued the digital certificate.</td>
<td>none brief</td>
</tr>
<tr>
<td>Subject</td>
<td>Details of the digital certificate holder organized using the distinguished name format. Possible subfields are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Common name—Name of the authority.</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Organization—Organization of origin.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organizational unit—Department within an organization.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• State—State of origin.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Country—Country of origin.</td>
<td></td>
</tr>
</tbody>
</table>
### Table 52: show security pki certificate-request Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate subject</td>
<td>Domain name or IP address of the device related to the digital certificate.</td>
<td>detail</td>
</tr>
<tr>
<td>Validity</td>
<td>Time period when the digital certificate is valid. Values are:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• Not before—Time when the digital certificate becomes valid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Not after—End time when the digital certificate becomes invalid.</td>
<td></td>
</tr>
<tr>
<td>Public key algorithm</td>
<td>Encryption algorithm used with the private key, such as rsaEncryption(1024 bits).</td>
<td>All levels</td>
</tr>
<tr>
<td>Public key verification status</td>
<td>Public key verification status: Failed or Passed. The detail output also provides the verification hash.</td>
<td>All levels</td>
</tr>
<tr>
<td>Fingerprint</td>
<td>Secure Hash Algorithm (SHA1) and Message Digest 5 (MD5) hashes used to identify the digital certificate.</td>
<td>detail</td>
</tr>
<tr>
<td>Use for key</td>
<td>Use of the public key, such as Certificate signing, CRL signing, Digital signature, or Key encryption.</td>
<td>detail</td>
</tr>
</tbody>
</table>

### Sample Output

#### show security pki certificate-request

```
user@host> show security pki certificate-request
Certificate identifier: local-microsoft-2
 Issued to: router2.example.com
 Public key algorithm: rsaEncryption(1024 bits)
 Public key verification status: Passed
```

#### show security pki certificate-request detail

```
user@host> show security pki certificate-request detail
Certificate identifier: local-entrust3
 Certificate version: 3
 Subject:
 Common name: router3.example.com
 Alternate subject: router3.example.com
 Public key algorithm: rsaEncryption(1024 bits)
 Public key verification status: Passed
 Use for key: Digital signature
```
show security pki crl

Syntax

```
show security pki crl
 <brief | detail>
 <ca-profile ca-profile-name>
```

Release Information

Command introduced in Junos OS Release 8.1.

Description

Display information about the certificate revocation lists (CRLs) that are stored in the router.

Options

- **none**—(same as brief) Display information about all CRLs.
- **brief | detail**—(Optional) Display the specified level of output.
- **ca-profile ca-profile-name**—(Optional) Display CRL information about only the specified CA profile.

Required Privilege

View

Related Documentation

- clear security pki crl on page 1407

List of Sample Output

- show security pki crl on page 1521
- show security pki crl detail on page 1521

Output Fields

Table 53 on page 1520 shows the output fields for the show security pki crl command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA profile</td>
<td>Name of the configured CA profile.</td>
<td>All levels</td>
</tr>
<tr>
<td>CRL version</td>
<td>Revision number of the certificate revocation list.</td>
<td>All levels</td>
</tr>
<tr>
<td>CRL number</td>
<td>Number of the certificate revocation list</td>
<td>All levels</td>
</tr>
<tr>
<td>CRL issuer</td>
<td>Device that was issued the certificate revocation list.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 53: show security pki crl Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issuer</td>
<td>Details of the digital certificate holder organized using the distinguished name format. Possible subfields are:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Common name—Name of the authority.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organization—Organization of origin.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organizational unit—Department within an organization.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• State—State of origin.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Country—Country of origin.</td>
<td></td>
</tr>
<tr>
<td>Effective date</td>
<td>Date and time the certificate revocation list becomes valid.</td>
<td>All levels</td>
</tr>
<tr>
<td>Next update</td>
<td>Date and time the router will download the latest version of the certificate revocation list.</td>
<td>All levels</td>
</tr>
<tr>
<td>Revocation List</td>
<td>List of digital certificates that have been revoked before their expiration date. Values are:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Serial number—Unique serial number of the digital certificate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Revocation date—Date and time that the digital certificate was revoked.</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

show security pki crl

```
user@host> show security pki crl
CA profile entrust
CRL version: V2
CRL number: 24
CRL issuer: C=CA, O=juniper
Effective date: 2006 May 31st, 05:35:25 GMT
Next update: 2006 Jun 1st, 06:35:25 GMT
```

detail

```
user@host> show security pki crl detail
CA profile: entrust
CRL version: V2
CRL number: 24
Issuer:
 Organization: juniper, Country: ca
Validity:
 Effective date: 2006 May 31st, 05:35:25 GMT
 Next update: 2006 Jun 1st, 06:35:25 GMT
Revocation List:
 Serial number Revocation date
 4451aca3 2006 May 25th, 09:13:38 GMT
 4451aca4 2006 May 25th, 10:11:33 GMT
 4451acb4 2006 May 29th, 11:28:54 GMT
 4451aceb 2006 May 29th, 11:29:01 GMT
```
show security pki local-certificate

Syntax
show security pki local-certificate
    <brief | detail>
    <certificate-id certificate-id-name>
    <system-generated>

Release Information
Command introduced in Junos OS Release 7.5.

Description
Display information about the local digital certificates and the corresponding public keys installed in the router.

Options
- none—(same as brief) Display information about all local digital certificates and corresponding public keys.
- brief | detail—(Optional) Display the specified level of output.
- certificate-id certificate-id-name—(Optional) Display information about only the specified local digital certificate and corresponding public keys.
- system-generated—(Optional) Auto-generated self-signed certificate.

Required Privilege
view

Related Documentation
- clear security pki local-certificate on page 1409

List of Sample Output
- show security pki local-certificate on page 1524
- show security pki local-certificate detail on page 1525

Output Fields
Table 54 on page 1523 lists the output fields for the show security pki local-certificate command. Output fields are listed in the approximate order in which they appear.

Table 54: show security pki local-certificate Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate ID</td>
<td>Name of the digital certificate.</td>
<td>All levels</td>
</tr>
<tr>
<td>Certificate version</td>
<td>Revision number of the digital certificate.</td>
<td>detail</td>
</tr>
<tr>
<td>Serial number</td>
<td>Unique serial number of the digital certificate.</td>
<td>detail</td>
</tr>
<tr>
<td>Issued by</td>
<td>Authority that issued the digital certificate.</td>
<td>none brief</td>
</tr>
<tr>
<td>Issued to</td>
<td>Device that was issued the digital certificate.</td>
<td>none brief</td>
</tr>
</tbody>
</table>
Table 54: show security pki local-certificate Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
</table>
| **Issuer**      | Authority that issued the digital certificate, including details of the authority organized using the distinguished name format. Possible subfields are:  
  - **Common name**—Name of the authority.  
  - **Organization**—Organization of origin.  
  - **Organizational unit**—Department within an organization.  
  - **State**—State of origin.  
  - **Country**—Country of origin. | detail          |
| **Subject**     | Details of the digital certificate holder organized using the distinguished name format. Possible subfields are:  
  - **Common name**—Name of the authority.  
  - **Organization**—Organization of origin.  
  - **Organizational unit**—Department within an organization.  
  - **State**—State of origin.  
  - **Country**—Country of origin. | detail          |
| **Alternate subject** | Domain name or IP address of the device related to the digital certificate.                                                                                                                                            | detail          |
| **Validity**    | Time period when the digital certificate is valid. Values are:  
  - **Not before**—Start time when the digital certificate becomes valid.  
  - **Not after**—End time when the digital certificate becomes invalid. | All levels       |
| **Public key algorithm** | Encryption algorithm used with the private key, such as rsaEncryption (1024 bits).                                                                                                                           | All levels       |
| **Public key verification status** | Public key verification status: Failed or Passed. The detail output also provides the verification hash.                                                                                                                                                  | All levels       |
| **Signature algorithm** | Encryption algorithm that the CA used to sign the digital certificate, such as sha1WithRSAEncryption.                                                                                                                                                   | detail          |
| **Fingerprint** | Secure Hash Algorithm (SHA1) and Message Digest 5 (MD5) hashes used to identify the digital certificate.                                                                                                                                               | detail          |
| **Distribution CRL** | Distinguished name information and URL for the certificate revocation list (CRL) server.                                                                                                                                                                 | detail          |
| **Use for key** | Use of the public key, such as Certificate signing, CRL signing, Digital signature, or Key encipherment.                                                                                                                                               | detail          |

**Sample Output**

```
show security pki local-certificate

user@host> show security pki local-certificate
```
Certificate identifier: local-entrust2
Issued to: router2.example.com, Issued by: juniper
Validity:
  Not after: 2008 Nov 21st, 23:58:22 GMT
Public key algorithm: rsaEncryption(1024 bits)
Public key verification status: Passed

show security pki local-certificate detail

user@host> show security pki local-certificate detail

Certificate identifier: local-entrust3
Certificate version: 3
Serial number: 4355 94f9
Issuer:
  Organization: juniper, Country: us
Subject:
  Organization: juniper, Country: us, Common name: router3.example.com
Alternate subject: router3.example.com
Validity:
  Not after: 2008 Nov 22nd, 00:03:58 GMT
Public key algorithm: rsaEncryption(1024 bits)
Public key verification status: Passed

Signature algorithm: sha1WithRSAEncryption
Fingerprint:
Distribution CRL:
  C=us, O=juniper, CN=CRL1
http://CA-1/CRL/juniper_us_crlfile.crl
Use for key: Digital signature
show services alg conversations

Syntax

```plaintext
show services alg conversations
 <brief>
 <application-protocol protocol>
 <extensive>
 <interface interface-name>
```

Release Information

- Command introduced in Junos OS Release 10.4.
- h323 option introduced in Junos OS Release 17.1.
- ike-esp-nat option introduced in Junos OS Release 17.1.

Description

Display ALG information for Junos OS extension-provider packages.

NOTE: In Junos OS releases earlier than 12.3, the extension-provider packages were variously referred to as Junos Services Framework (JSF), MP-SDK, and eJunos.

Options

- **none**—Display standard information about all Junos OS extension-provider packages ALG sessions.
- **brief**—(Optional) Display the specified level of output.
- **application-protocol**—(Optional) Display information about one of the following application protocols:
  - dce-rpc—Distributed Computing Environment-Remote Procedure Call protocols
  - dce-rpc-portmap—Distributed Computing Environment-Remote Procedure Call protocols portmap service
  - dns—Domain Name System protocol
  - ftp—File Transfer Protocol
  - h323—H323 protocol
  - ike-esp-nat— IKE ALG
  - pptp—Point-to-Point Tunneling Protocol
  - rpc—Remote Procedure Call protocol
  - rpc-portmap—Remote Procedure Call protocol portmap service
  - rtsp—Real-Time Streaming Protocol
  - rsh—Remote Shell
**sip**—Session Initiation Protocol

**sql**—SQLNet

**talk**—Talk Program

**extensive**—Display extensive information

**interface interface-name**—(Optional) Display information about a particular interface.

**Required Privilege Level**

view

**List of Sample Output**

show services alg conversations on page 1528
show services alg conversations brief on page 1528
show services alg conversations extensive on page 1528
show services alg conversations application-protocol on page 1529
show services alg conversations interface on page 1531

**Output Fields**

Table 55 on page 1527 lists the output fields for the `show services alg conversations` command. Output fields are listed in the approximate order in which they appear.

**Table 55:** `show services alg conversations` Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the interface.</td>
</tr>
<tr>
<td>ALG</td>
<td>Name of the ALG in use.</td>
</tr>
<tr>
<td>Number of conversations</td>
<td>Number of ALG conversations open. A conversation is a group of parent and child sessions.</td>
</tr>
<tr>
<td>Group ID</td>
<td>Numeric identifier for the session.</td>
</tr>
<tr>
<td>Parent session status</td>
<td>Status of the parent session:</td>
</tr>
<tr>
<td></td>
<td>• Active</td>
</tr>
<tr>
<td></td>
<td>• Closed</td>
</tr>
<tr>
<td>Parent session ID</td>
<td>Numeric identifier for the parent session.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol used for the parent session.</td>
</tr>
<tr>
<td>Forward Flow</td>
<td>The source and destination prefixes for forward flow.</td>
</tr>
<tr>
<td>Reverse Flow</td>
<td>The source and destination prefixes for reverse flow.</td>
</tr>
</tbody>
</table>
Table 55: show services alg conversations Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child session status</td>
<td>Status of the child session:</td>
</tr>
<tr>
<td></td>
<td>• Active</td>
</tr>
<tr>
<td></td>
<td>• Closed</td>
</tr>
<tr>
<td>Child session ID</td>
<td>Numeric identifier for the child session.</td>
</tr>
<tr>
<td>Number of Resources</td>
<td>Total number of active child sessions associated with the parent session.</td>
</tr>
<tr>
<td>Resource ID</td>
<td>Numeric identifier for the resources associated with the parent session.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol used for the child session.</td>
</tr>
</tbody>
</table>

Sample Output

show services alg conversations

user@host> show services alg conversations
Interface name: ms-2/1/0
ALG : SQLV2 ALG, State : active
Number of conversations: 1
Parent session status: closed
Child session : 1, protocol: TCP
Forward Flow : {10.50.50.2:37244 -> 10.40.40.10:4334}
Reverse Flow : {10.40.40.10:4334 -> 10.11.11.10:37244}

show services alg conversations brief

The output for the show services alg conversations brief command is identical to that for the show services alg conversations command. For sample output, see show services alg conversations on page 1528.

show services alg conversations extensive

user@router> show services alg conversations extensive
Interface name: ms-1/0/0
ALG : H323 ALG, State : active
Number of conversations: 1
Group ID : 3499913712, State : active
Parent session state: active
Parent session ID: 33554433, protocol : TCP
Forward Flow : {198.51.100.2:30000 -> 192.0.2.2:1720}
Reverse Flow : {192.0.2.2:1720 -> 203.0.113.1:57730}
Number of resources: 4
Resource ID: 3499927656, State: active
Number of sessions: 1
Child session ID: 33554436, protocol : UDP
Forward Flow : {198.51.100.2:5086 -> 192.0.2.2:5090}
show services alg conversations application-protocol

This command has the same output for the rpc, dce-rpc, rpc-portmap and dce-rpc-portmap ALGs.

user@router> show services alg conversations application-protocol rpc

Interface name: ms-1/1/0
ALG : SUNRPC ALG, State : active
Number of conversations: 2
  Parent session status: closed
    Child session : 1, protocol: UDP
    Child session : 2, protocol: UDP

user@router> show services alg conversations application-protocol dns

Interface name: ms-1/1/0
ALG : DNS ALG, State : active
Number of conversations: 1
  Parent session status: closed
    Child session : 1, protocol: UDP

user@router> show services alg conversations application-protocol ftp

Interface name: ms-1/1/0
ALG : FTP ALG, State : active
Number of conversations: 2
  Parent session status: closed
    Child session : 1, protocol: UDP
    Child session : 2, protocol: UDP
Interface name: ms-1/1/0
ALG : DNS ALG, State : active
  Number of conversations: 1
    Parent session status: closed
      Child session : 1, protocol: UDP

user@router> show services alg conversations application-protocol ike-esp-nat

Interface name: ms-2/2/0
ALG : IKE ALG, State : active
  Number of conversations: 1
    Parent session status: closed
      Child session : 1, protocol: ESP
        Forward Flow : (198.51.100.101:2623 -> 203.0.113.1:46838)
        Reverse Flow : (192.0.2.101:46838 -> 198.51.10.101:2623)

      Child session : 2, protocol: ESP
        Forward Flow : (192.0.2.101:2666 -> 198.51.101.57882)
        Reverse Flow : (198.51.10:1:57882 -> 203.0.113.1:2666)

user@router> show services alg conversations application-protocol pptp

Interface name: ms-2/0/0
ALG : PPTP ALG, State : active
  Number of conversations: 1
    Parent session status: active
      Parent session : 1, protocol : TCP
        Forward Flow : (192.0.2.10:1511 -> 198.51.100.10:1723)
        Reverse Flow : (198.51.100.10:1723 -> 192.0.2.10:1511)

      Child session : 1, protocol: GRE
        Forward Flow : (192.0.2.10:0 -> 198.51.100.10:49913)
        Reverse Flow : (198.51.100.10:49913 -> 192.0.2.10:0)

      Child session : 2, protocol: GRE
        Forward Flow : (198.51.100.10:0 -> 192.0.2.10:0)
        Reverse Flow : (192.0.2.10:0 -> 198.51.100.10:65001)

user@router> show services alg conversations application-protocol rtsp

Interface name: ms-0/1/0
ALG : RTSP ALG, State : active
  Number of conversations: 1
    Parent session : 1, protocol : TCP
        Forward Flow : (198.51.100.2:3985 -> 192.0.2.1:554)
        Reverse Flow : (203.0.113.2:554 -> 198.51.100.2:3985)

    Child session : 1, protocol: UDP
        Forward Flow : (203.0.113.2:35859 -> 198.51.100.2:38159)
        Reverse Flow : (198.51.100.2:38159 -> 203.0.113.2:35859)

    Child session : 2, protocol: UDP
        Forward Flow : (203.0.113.2:35859 -> 198.51.100.2:37391)
        Reverse Flow : (198.51.100.2:37391 -> 203.0.113.2:35859)

user@router> show services alg conversations application-protocol rsh

Interface name: ms-0/1/0
ALG : RSH ALG, State : active
  Number of conversations: 1
    Parent session : 1, protocol : TCP
        Forward Flow : (198.51.100.2:3985 -> 192.0.2.1:554)
        Reverse Flow : (203.0.113.2:554 -> 198.51.100.2:3985)

    Child session : 1, protocol: UDP
        Forward Flow : (203.0.113.2:35859 -> 198.51.100.2:38159)
        Reverse Flow : (198.51.100.2:38159 -> 203.0.113.2:35859)
Forward Flow: {203.0.113.2:35859 -> 198.51.100.2:38159}
Reverse Flow: {198.51.100.2:38159 -> 192.0.2.1:35859}

user@router> show services alg conversations application-protocol sip
Interface name: ms-1/1/0
ALG: SIP ALG, State: active
   Number of conversations: 1
   Parent session status: active
   Parent session: 1, protocol: UDP
   Forward Flow: {192.0.2.2:5060 -> 198.51.100.2:5060}
   Reverse Flow: {198.51.100.2:5060 -> 203.0.113.2:5060}
   Child session: 1, protocol: UDP
   Forward Flow: {192.0.2.2:6000 -> 198.51.100.2:12442}
   Reverse Flow: {198.51.100.2:12442 -> 203.0.113.2:6000}

user@router> show services alg conversations application-protocol sql
Interface name: ms-2/0/0
ALG: SQLV2 ALG, State: active
   Number of conversations: 1
   Parent session: 1, protocol: 0
   Forward Flow: {0.0.0.0:0 -> 0.0.0.0:0}
   Reverse Flow: {0.0.0.0:0 -> 0.0.0.0:0}
   Child session: 1, protocol: TCP
   Forward Flow: {203.0.113.2:19099 -> 198.51.100.10:32773}
   Reverse Flow: {198.51.100.10:32773 -> 192.0.2.1:19099}

user@router> show services alg conversations application-protocol talk
Interface name: ms-0/1/0
ALG: TALK ALG, State: active
   Number of conversations: 1
   Parent session: 1, protocol: TCP
   Forward Flow: {198.51.2:3985 -> 192.0.2.1:554}
   Reverse Flow: {203.0.113.2:3985 -> 198.51.2:3985}
   Child session: 1, protocol: UDP
   Forward Flow: {203.0.113.2:35859 -> 198.51.2:38159}
   Reverse Flow: {198.51.2:38159 -> 192.0.2.1:35859}

show services alg conversations interface

user@router> show services alg conversations interface ms-1/1/0
ALG: FTP ALG, State: active
   Number of conversations: 1
   Parent session status: active
   Parent session: 1, protocol: TCP
   Forward Flow: {10.20.20.10:47164 -> 10.30.30.21}

Copyright © 2019, Juniper Networks, Inc.
show services alg statistics

Syntax

show services alg statistics
<application-protocol protocol>
<integer interface-name>

Release Information

Command introduced in Junos OS Release 10.4.
h323 option introduced in Junos OS Release 17.1.
ike-esp-nat option introduced in Junos OS Release 17.1.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description

Display ALG statistics for Junos OS extension-provider packages.

NOTE: In Junos OS releases earlier than 12.3, the extension-provider packages were variously referred to as Junos Services Framework (JSF), MP-SDK, and eJunos.

Options

application-protocol—(Optional) Display statistics for one of the following application protocols:

dce-rpc—Distributed Computing Environment-Remote Procedure Call protocols
dce-rpc-portmap—Distributed Computing Environment-Remote Procedure Call protocols portmap service
dns—Domain Name System protocol
ftp—File Transfer Protocol
h323—H323 protocol
ike-esp-nat—IKE ALG
pptp—Point-to-Point Tunneling Protocol
rpc—Remote Procedure Call protocol
rpc-portmap—Remote Procedure Call protocol portmap service
rtsp—Real-Time Streaming Protocol
rsh—Remote Shell
sip—Session Initiation Protocol
sql—SQLNet
**talk**—Talk Program

**tftp**—Trivial File Transfer Protocol

**interface interface-name**—(Optional) Display information about a particular interface.

**Required Privilege**

**Level**

view

**List of Sample Output**

- show services alg statistics application-protocol on page 1540
- show services alg statistics interface on page 1544

**Output Fields**

Table 56 on page 1533 lists the output fields for the `show services alg statistics` command. Output fields are listed in the approximate order in which they appear.

**Table 56: show services alg statistics Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the interface.</td>
</tr>
<tr>
<td>ALG statistics</td>
<td>Name of the ALG for which the statistics are displayed.</td>
</tr>
<tr>
<td>Packets with wrong header</td>
<td>Number of packets with wrong header.</td>
</tr>
<tr>
<td>Non epm 3.0 packets</td>
<td>Number of non epm 3.0 packets.</td>
</tr>
<tr>
<td>Packets with type mismatch</td>
<td>Number of packets with type mismatch.</td>
</tr>
<tr>
<td>Packets with id mismatch</td>
<td>Number of packets with id mismatch.</td>
</tr>
<tr>
<td>Packets with call mismatch</td>
<td>Number of packets with call mismatch.</td>
</tr>
<tr>
<td>Packets fragmented</td>
<td>Number of packets fragmented.</td>
</tr>
<tr>
<td>Packets queued</td>
<td>Number of packets queued.</td>
</tr>
<tr>
<td>Packets dropped</td>
<td>Number of packets dropped.</td>
</tr>
<tr>
<td>Packets released</td>
<td>Number of packets released.</td>
</tr>
<tr>
<td>Invalid packets received</td>
<td>Number of invalid packets received.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Reply packets received</td>
<td>Number of reply packets received.</td>
</tr>
<tr>
<td>Oversized packets received</td>
<td>Number of oversized packets received.</td>
</tr>
<tr>
<td>ALG parser errors</td>
<td>Number of parsing failed errors.</td>
</tr>
<tr>
<td>Packets translated</td>
<td>Number of packets translated.</td>
</tr>
<tr>
<td>H323 total calls</td>
<td>Total number of audio/video calls that have been established.</td>
</tr>
<tr>
<td>H323 active calls</td>
<td>Current number of active H.323 calls.</td>
</tr>
<tr>
<td>H323 gate install failed</td>
<td>Number of gate installation failures for child sessions.</td>
</tr>
<tr>
<td>H323 pinhole opened too late</td>
<td>Number of H323 parent sessions that released the resources before pinhole creation.</td>
</tr>
<tr>
<td>H323 pinhole hit dropped</td>
<td>Number of H323 gate hits that have been dropped.</td>
</tr>
<tr>
<td>H323 gate timeout failed</td>
<td>Number of gate timeout failures due to an error.</td>
</tr>
<tr>
<td>H323 packets dropped</td>
<td>Number of packets dropped.</td>
</tr>
<tr>
<td>H323 get virtual ctx failed</td>
<td>Number of failures to get the session virtualization ctx information.</td>
</tr>
<tr>
<td>H323 obj alloc failed</td>
<td>Number of memory allocation failures for H323 session cookie.</td>
</tr>
<tr>
<td>H323 group alloc failed</td>
<td>Number of H323 session resource/group memory allocation failures.</td>
</tr>
<tr>
<td>H323 ce alloc failed</td>
<td>Number of H323 session call entity object memory allocation failures.</td>
</tr>
<tr>
<td>H323 Q931 decode error</td>
<td>Number of errors in decoding Q931 packets.</td>
</tr>
<tr>
<td>H323 H245 decode error</td>
<td>Number of errors in decoding H245 packets.</td>
</tr>
<tr>
<td>H323 Q931 process error</td>
<td>Number of errors in processing Q931 packets.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------------------------------------------</td>
</tr>
<tr>
<td>H323 H245 process error</td>
<td>Number of errors in processing H245 packets.</td>
</tr>
<tr>
<td>H323 do nat failed</td>
<td>Number of NAT translation failures after packet decode.</td>
</tr>
<tr>
<td>H323 do rm failed</td>
<td>Number of H323 vsip table creation failures.</td>
</tr>
<tr>
<td>H323 dscp marked</td>
<td>Number of Differentiated Services code point (DSCP) packets marked.</td>
</tr>
<tr>
<td>H323 dscp marked error</td>
<td>Number of Differentiated Services code point (DSCP) packets marked as errors.</td>
</tr>
<tr>
<td>RAS obj alloc failed</td>
<td>Number of RAS session object memory allocation failures.</td>
</tr>
<tr>
<td>RAS group alloc failed</td>
<td>Number of RAS session group memory allocation failures.</td>
</tr>
<tr>
<td>RAS packets dropped</td>
<td>Number of RAS packets dropped.</td>
</tr>
<tr>
<td>RAS packet exists in cookie error</td>
<td>Number of times that some packets exist in existing RAS sessions cookie.</td>
</tr>
<tr>
<td>RAS decode error</td>
<td>Number of errors in decoding RAS packets.</td>
</tr>
<tr>
<td>RAS flood error</td>
<td>Number of gatekeeper requests that were dropped because of too many RAS request messages.</td>
</tr>
<tr>
<td>RAS do nat failed</td>
<td>Number of RAS session payload IP translation errors.</td>
</tr>
<tr>
<td>PPTP Objects Active</td>
<td>Number of PPTP objects active.</td>
</tr>
<tr>
<td>PPTP Objects Total</td>
<td>Number of PPTP objects in total.</td>
</tr>
<tr>
<td>PPTP Objects Error</td>
<td>Number of PPTP objects having errors.</td>
</tr>
<tr>
<td>PPTP ASL Group Active</td>
<td>Number of PPTP groups active.</td>
</tr>
<tr>
<td>PPTP ASL Group Total</td>
<td>Number of PPTP groups in total.</td>
</tr>
<tr>
<td>PPTP ASL Group Error</td>
<td>Number of PPTP groups having errors.</td>
</tr>
<tr>
<td>PPTP Packets received</td>
<td>Number of PPTP packets received.</td>
</tr>
</tbody>
</table>
### Table 56: show services alg statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPTP Packets Discarded</td>
<td>Number of PPTP packets discarded.</td>
</tr>
<tr>
<td>PPTP Packets Free</td>
<td>Number of PPTP packets freed.</td>
</tr>
<tr>
<td>PPTP OCRQ Received</td>
<td>Number of Outgoing Call Requests received.</td>
</tr>
<tr>
<td>PPTP OCRQ Discarded</td>
<td>Number of Outgoing Call Requests discarded.</td>
</tr>
<tr>
<td>PPTP OCRP Received</td>
<td>Number of Outgoing Call Packets received.</td>
</tr>
<tr>
<td>PPTP OCRP Discarded</td>
<td>Number of Outgoing Call Packets discarded.</td>
</tr>
<tr>
<td>PPTP WEN(SLI) Received</td>
<td>Number of WEN (SLI) packets received.</td>
</tr>
<tr>
<td>PPTP WEN(SLI) Discarded</td>
<td>Number of WEN (SLI) packets discarded.</td>
</tr>
<tr>
<td>PPTP CCRQ-CDSN Received</td>
<td>Number of Call Clear Requests received.</td>
</tr>
<tr>
<td>PPTP CDSN Received</td>
<td>Number of Call Disconnection Notifications received.</td>
</tr>
<tr>
<td>PPTP CCRQ-CDSN Discarded</td>
<td>Number of Call Clear Requests discarded.</td>
</tr>
<tr>
<td>PPTP Session Create</td>
<td>Number of PPTP sessions created.</td>
</tr>
<tr>
<td>PPTP Session Destroy</td>
<td>Number of PPTP sessions destroyed.</td>
</tr>
<tr>
<td>PPTP Gate Create</td>
<td>Number of PPTP gates created.</td>
</tr>
<tr>
<td>PPTP Gate Hit</td>
<td>Number of PPTP gates hit.</td>
</tr>
<tr>
<td>PPTP Gate Timeout</td>
<td>Number of PPTP gates timed out.</td>
</tr>
<tr>
<td>PPTP NAT Events</td>
<td>Number of NAT events.</td>
</tr>
<tr>
<td>PPTP DO-NAT Total</td>
<td>Number of DO NATs in total.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>PPTP DO-NAT Ok</td>
<td>Number of DO NATs okay.</td>
</tr>
<tr>
<td>PPTP DO-NAT Pending</td>
<td>Number of DO NATs pending.</td>
</tr>
<tr>
<td>PPTP DO-NAT Fail</td>
<td>Number of DO NATs failed.</td>
</tr>
<tr>
<td>PPTP DO-RM Total</td>
<td>Number of DO RM Total in total.</td>
</tr>
<tr>
<td>PPTP DO-RM Ok</td>
<td>Number of DO RM Total okay.</td>
</tr>
<tr>
<td>PPTP DO-RM Pending</td>
<td>Number of DO RM Total pending.</td>
</tr>
<tr>
<td>PPTP DO-RM Fail</td>
<td>Number of DO RM Total failed.</td>
</tr>
<tr>
<td>PPTP NAT-ASYNC Total</td>
<td>Number of NAT-ASYNCs total.</td>
</tr>
<tr>
<td>PPTP NAT-ASYNC Invalid</td>
<td>Number of NAT-ASYNCs invalid.</td>
</tr>
<tr>
<td>PPTP NAT-ASYNC Error1</td>
<td>Number of NAT-ASYNCs error1.</td>
</tr>
<tr>
<td>PPTP NAT-ASYNC Error2</td>
<td>Number of NAT-ASYNCs error2.</td>
</tr>
<tr>
<td>PPTP ASL Hole Ok</td>
<td>Number of ASYNCS holes okay.</td>
</tr>
<tr>
<td>PPTP ASL Hole Error</td>
<td>Number of ASYNCS hole errors.</td>
</tr>
<tr>
<td>PPTP ASL First Hit</td>
<td>Number of ASYNCS holes first hit.</td>
</tr>
<tr>
<td>PPTP ASL Hole Timeout</td>
<td>Number of ASYNCS holes timed out.</td>
</tr>
<tr>
<td>PPTP ASL Invalid</td>
<td>Number of ASYNCS holes invalid.</td>
</tr>
<tr>
<td>PPTP NAT Ctx Free</td>
<td>Number of NAT Ctxs free.</td>
</tr>
<tr>
<td>PPTP Create Resource Error</td>
<td>Number of create resource errors.</td>
</tr>
<tr>
<td>PPTP set S2C hole error</td>
<td>Number of server-to-client hole errors.</td>
</tr>
</tbody>
</table>
### Table 56: show services alg statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPTP set C2S hole error</td>
<td>Number of client-to-server hole errors.</td>
</tr>
<tr>
<td>PPTP Inbrk error</td>
<td>Number of PPTP Inbrk errors.</td>
</tr>
<tr>
<td>PPTP Mpool Create Error</td>
<td>Number of Mpool create errors.</td>
</tr>
<tr>
<td>PPTP RM register client Error</td>
<td>Number of client registration errors.</td>
</tr>
<tr>
<td>Call packet with rpcbind2</td>
<td>Number of call packets with rpcbind2.</td>
</tr>
<tr>
<td>Call packet with rpcbind3</td>
<td>Number of call packets with rpcbind3.</td>
</tr>
<tr>
<td>Call packet with rpcbind4</td>
<td>Number of call packets with rpcbind4.</td>
</tr>
<tr>
<td>Invalid rpcbind call</td>
<td>Number of invalid rpcbind calls.</td>
</tr>
<tr>
<td>Reply packet with rpcbind2</td>
<td>Number of reply packets with rpcbind2.</td>
</tr>
<tr>
<td>Reply packet with rpcbind3</td>
<td>Number of reply packets with rpcbind3.</td>
</tr>
<tr>
<td>Reply packet with rpcbind4</td>
<td>Number of reply packets with rpcbind4.</td>
</tr>
<tr>
<td>Invalid rpcbind reply</td>
<td>Number of invalid rpcbind replies.</td>
</tr>
<tr>
<td>Packets exceeded maximum length</td>
<td>Number of packets exceeding maximum length.</td>
</tr>
<tr>
<td>Packets dropped by ALG</td>
<td>Number of packets dropped by the ALG.</td>
</tr>
<tr>
<td>Number of describe messages received</td>
<td>Number of describe messages received.</td>
</tr>
<tr>
<td>Number of setup messages received</td>
<td>Number of setup messages received.</td>
</tr>
<tr>
<td>Number of teardown messages received</td>
<td>Number of teardown messages received.</td>
</tr>
</tbody>
</table>
### Table 56: show services alg statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total packets dropped</td>
<td>Total number of SIP packets dropped.</td>
</tr>
<tr>
<td>Unexpected requests dropped</td>
<td>Number of unexpected requests dropped.</td>
</tr>
<tr>
<td>Unexpected responses dropped</td>
<td>Number of unexpected responses dropped.</td>
</tr>
<tr>
<td>Packets DSCP marked</td>
<td>Number of Differentiated Services code point (DSCP) packets marked.</td>
</tr>
<tr>
<td>Packets DSCP marked error</td>
<td>Number of Differentiated Services code point (DSCP) packets marked as error.</td>
</tr>
<tr>
<td>NAT errors</td>
<td>Number of Network Address Translation errors.</td>
</tr>
<tr>
<td>RR headers exceeded maximum limits</td>
<td>Number of RR headers exceeded maximum limits.</td>
</tr>
<tr>
<td>Contact headers exceeded maximum limits</td>
<td>Number of contact headers exceeded maximum limits.</td>
</tr>
<tr>
<td>Invite dropped due to call limit</td>
<td>Number of invites dropped due to call limit.</td>
</tr>
<tr>
<td>Messages not processed by sip stack</td>
<td>Number of messages not processed by sip stack.</td>
</tr>
<tr>
<td>Unknown packets dropped</td>
<td>Number of unknown packets dropped.</td>
</tr>
<tr>
<td>Decoding Errors</td>
<td>Number of decoding errors.</td>
</tr>
<tr>
<td>Packets received in out of state</td>
<td>Number of packets received in out of state.</td>
</tr>
<tr>
<td>Packets received</td>
<td>Number of packets received.</td>
</tr>
<tr>
<td>Packets freed by ALG</td>
<td>Number of packets freed by ALG.</td>
</tr>
<tr>
<td>Gate fail errors</td>
<td>Number of gate fail errors.</td>
</tr>
<tr>
<td>Lookup packets</td>
<td>Number of lookup packets.</td>
</tr>
</tbody>
</table>
Table 56: show services alg statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Announce packets</td>
<td>Number of announce packets.</td>
</tr>
<tr>
<td>Delete packets</td>
<td>Number of delete packets.</td>
</tr>
<tr>
<td>Number of packets received</td>
<td>Number of packets received.</td>
</tr>
<tr>
<td>Number of invalid packets</td>
<td>Number of invalid packets.</td>
</tr>
<tr>
<td>Total number of sessions</td>
<td>Total number of sessions.</td>
</tr>
<tr>
<td>Number of actives sessions</td>
<td>Number of active sessions.</td>
</tr>
</tbody>
</table>

Sample Output

show services alg statistics application-protocol

While the statistics are the same for dce-rpc and dce-rpc-portmap, both rpc and rpc-portmap have the same output too.

user@router> show services alg statistics application-protocol dce-rpc

Interface name: ms-1/1/0
DCE-RPC ALG statistics:
- Packets with wrong header : 0
- Non epm 3.0 packets : 0
- Packets with type mismatch: 0
- Packets with id mismatch : 0
- Packets with call mismatch: 0
- Packets fragmented : 0
- Packets queued : 0
- Packets dropped : 0
- Packets released : 0

user@router> show services alg statistics application-protocol dns

Interface name: ms-2/0/0
DNS ALG statistics:
- Invalid packets received : 0
- Reply packets received : 3509
- Oversized packets received : 0

user@router> show services alg statistics application-protocol ftp

Interface name: ms-1/1/0
FTP ALG statistics:
- Packets dropped : 0
- ALG parser errors : 0
- Packets translated : 0
user@router> show services alg conversations application-protocol h323
Interface name: ms-1/0/0
H323 ALG statistics:
   H323 total calls: 1
   H323 active calls: 1
   H323 gate install failed: 0
   H323 pinhole opened too late: 0
   H323 pinhole hit dropped: 0
   H323 gate timeout failed: 0
   H323 packets dropped: 0
   H323 get virtual ctx failed: 0
   H323 obj alloc failed: 0
   H323 group alloc failed: 0
   H323 ce alloc failed: 0
   H323 Q931 decode error: 0
   H323 H245 decode error: 0
   H323 Q931 process error: 0
   H323 H245 process error: 0
   H323 do nat failed: 0
   H323 do rm failed: 0
   H323 dscp marked: 0
   H323 dscp marked error: 0
   RAS obj alloc failed: 0
   RAS group alloc failed: 0
   RAS packets dropped: 0
   RAS packet exists in cookie error: 0
   RAS decode error: 0
   RAS flood error: 0
   RAS do nat failed: 0

user@router> show services alg statistics application-protocol ike-esp-nat
Interface name: ms-4/1/0
IKE ESP ALG statistics:
   Session interests processed: 2
   Sessions created: 2
   Sessions destroyed: 1
   Control sessions created: 2
   Control sessions destroyed: 1
   Data sessions created: 0
   Data sessions destroyed: 0
   Gates created: 4
   Gate hits: 0
   Gates timedout: 4

user@router> show services alg statistics application-protocol pptp
Interface name: ms-2/0/0
PPTP ALG statistics:
   PPTP Objects Active : 1
   PPTP Objects Total : 1
   PPTP Objects Error : 0
   PPTP ASL Group Active : 1
   PPTP ASL Group Total : 1
   PPTP ASL Group Error : 0
   PPTP Packets received : 11
   PPTP Packets Discarded : 0
   PPTP Packets Free : 0
   PPTP OCRQ Received : 1
   PPTP OCRQ Discarded : 0
   PPTP OCRP Received : 1
user@router> show services alg statistics application-protocol rpc

Interface name: ms-1/1/0

RPC ALG statistics:
  Call packet with rpcbind2 : 2
  Call packet with rpcbind3 : 0
  Call packet with rpcbind4 : 0
  Invalid rpcbind call : 0
  Reply packet with rpcbind2: 2
  Reply packet with rpcbind3: 0
  Reply packet with rpcbind4: 0
  Invalid rpcbind reply : 0
  Packets fragmented : 0
  Packets dropped : 0
  Packets released : 0

user@router> show services alg statistics application-protocol rtsp

Interface name: ms-0/1/0

RTSP ALG statistics:
  Packets exceeded maximum length : 0
  Packets dropped by ALG : 0
  Number of describe messages received : 8
Number of setup messages received : 30
Number of teardown messages received : 7

user@router> show services alg statistics application-protocol rsh

Interface name: ms-2/0/0
RSH ALG statistics:
  Invalid packets received   : 0
  Packets dropped by ALG   : 0
  ALG parser errors  : 0
  Packets freed by ALG     : 0

user@router> show services alg statistics application-protocol sip

Interface name: ms-2/0/0
SIP ALG statistics:
  Total packets dropped  : 0
  Unexpected requests dropped : 0
  Unexpected responses dropped : 0
  Packets DSCP marked : 0
  Packets DSCP marked error : 0
  NAT errors : 0
  RR headers exceeded maximum limits : 0
  Contact headers exceeded maximum limits : 0
  Invite dropped due to call limit : 0
  Messages not processed by sip stack : 0
  Unknown packets dropped : 0
  Decoding Errors : 0
  Packets received in out of state : 0

user@router> show services alg statistics application-protocol sql

Interface name: ms-2/0/0
SQLNET ALG statistics:
  Packets received  : 5
  ALG parser errors : 0
  Packets freed by ALG : 0
  Gate fail errors : 0

user@router> show services alg statistics application-protocol talk

Interface name: ms-2/0/0
TALK ALG statistics:
  Lookup packets  : 5
  Announce packets : 0
  Delete packets : 0

user@router> show services alg statistics application-protocol tftp

Interface name: ms-0/0/0
TFTP ALG statistics:
  Number of packets received : 0
  Number of Invalid packets : 0
  Total number of sessions : 0
  Number of active sessions: 0
show services alg statistics interface

user@router> show services alg statistics interface ms-1/1/0

Interface name: ms-1/1/0
FTP ALG statistics:
Packets dropped : 0
ALG parser errors : 0
Packets translated : 0
show services cos statistics

Syntax

show services cos statistics
<brief | detail | extensive>
<diffserv | forwarding-class>
@interface interface-name>
<service-set service-set-name>
<summary>

Release Information

Command introduced in Junos OS Release 8.1.

Description

Display the mapping of class-of-service (CoS) code point aliases to corresponding bit patterns and the mapping of forwarding class names to queue numbers as configured in CoS services for the Multiservices PIC, MS-MIC, or MS-MPC.

Options

none—Display all services CoS statistics.

brief | detail | extensive—(Optional) Display the specified level of output.

diffserv | forwarding-class—(Optional) Display only the selected information, either DiffServ codepoints or forwarding classes.

@interface interface-name—(Optional) Display statistics for the specified interface only.

service-set service-set-name—(Optional) Display statistics for the specified service set only.

summary—(Optional) Display summary of statistics on a per-interface basis.

Required Privilege

view

List of Sample Output

show services cos statistics on page 1546
show services cos statistics brief on page 1547
show services cos statistics detail on page 1547
show services cos statistics extensive on page 1547

Output Fields

Table 57 on page 1545 describes the output fields for the show services cos statistics command. Output fields are listed in the approximate order in which they appear.

Table 57: show services cos statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of service set.</td>
<td>All levels</td>
</tr>
<tr>
<td>DSCP</td>
<td>DiffServ code point bit pattern.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
## Table 57: show services cos statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets in</td>
<td>Number of packets received.</td>
<td>All levels</td>
</tr>
<tr>
<td>Packets out</td>
<td>Number of packets transmitted.</td>
<td>All levels</td>
</tr>
<tr>
<td>Forwarding class</td>
<td>Forwarding class queue number.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

## Sample Output

```bash
user@host> show services cos statistics
Interface: sp-1/0/0, Service set: scos
DSCP Packets in | Packets out
000000 0 0
000001 0 0
000010 0 0
000011 0 0
000100 0 0
000101 0 0
000110 0 0
000111 0 0
001000 0 0
001001 0 0
001010 0 0
001011 0 0
001100 0 0
001101 0 0
001110 0 0
001111 0 0
010000 0 0
010001 0 0
010010 0 0
010011 0 0
010100 0 0
010101 0 0
010110 0 0
010111 0 0
011000 0 0
011001 0 0
011010 0 0
011011 0 0
011100 0 0
011101 0 0
011110 0 0
011111 0 0
100000 0 0
100001 0 0
100010 0 0
100011 0 0
100100 0 0
100101 0 0
100110 0 0
100111 0 0
```

Copyright © 2019, Juniper Networks, Inc.
show services cos statistics brief

The output for the `show services cos statistics brief` command is identical to that for the `show services cos statistics` command.

show services cos statistics detail

The output for the `show services cos statistics detail` command is identical to that for the `show services cos statistics` command.

show services cos statistics extensive

The output for the `show services cos statistics extensive` command is identical to that for the `show services cos statistics` command.
show services crtp

Syntax

show services crtp
  <extensive>
  <interface interface-name>

Release Information

Command introduced before Junos OS Release 7.4.

Description

Display Compressed Real-Time Transport Protocol (CRTP) extensive output.

Options

none—Display CRTP extensive output for all interfaces.

extensive—(Optional) Display extensive CRTP information.

interface interface-name—(Optional) Display CRTP flow statistics for the specified interface. On M Series and T Series routers, a link services IQ (lsq-fpc/pic/port) or redundant link services IQ (rlaus-fpc/pic/port) interface.

Required Privilege

view

List of Sample Output

show services crtp extensive on page 1549

Output Fields

Table 58 on page 1548 lists the output fields for the show services crtp command. Output fields are listed in the approximate order in which they appear.

Table 58: show services crtp Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the physical interface.</td>
</tr>
<tr>
<td>Port minimum</td>
<td>Compression is applied to UDP packets with even ports in the specified range.</td>
</tr>
<tr>
<td>Port maximum</td>
<td></td>
</tr>
<tr>
<td>Maximum UDP compressed sessions</td>
<td>Maximum value of a context identifier in the space of context identifiers allocated for UDP.</td>
</tr>
<tr>
<td>CRTP maximum period</td>
<td>Maximum interval between full headers. Suggested value is 256.</td>
</tr>
<tr>
<td>CRTP maximum time</td>
<td>Maximum time interval between full headers. Suggested value is 5 seconds.</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>Ratio of received packet size to compressed packet size, in percentage. For example, if the packet size is 100 bytes when it is received, and is 40 bytes after compression, the compression ratio is 100 / 40 * 100 = 60%.</td>
</tr>
</tbody>
</table>
Table 58: show services crtp Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decompression ratio</td>
<td>Ratio of received packet size to decompressed packet size, in percentage. For example, if the packet size is 40 bytes when it is received, and is 100 bytes after compression, the decompression ratio is 100 ( \div \frac{40}{100} \times 100 = 60% ).</td>
</tr>
<tr>
<td>Discards</td>
<td>Number of frames that the incoming packet match code discarded because they were not recognized.</td>
</tr>
<tr>
<td>Sessions</td>
<td>Total number of active CRTP sessions.</td>
</tr>
<tr>
<td>IP bytes</td>
<td>Number of IP bytes sent and received.</td>
</tr>
<tr>
<td>Compressed bytes</td>
<td>Number of compressed IP header bytes sent and received.</td>
</tr>
<tr>
<td>CRTP packets</td>
<td>Number of CRTP packets sent and received.</td>
</tr>
<tr>
<td>CUDP/CNTCP packets</td>
<td>Number of compressed UDP packets and compressed non-TCP packets sent and received.</td>
</tr>
<tr>
<td>Full header packets</td>
<td>Number of full header packets sent and received. Full header packets communicate the uncompressed IP header plus any following headers and data to establish the uncompressed header state in the decompressor for a particular context.</td>
</tr>
<tr>
<td>Context state packet</td>
<td>Number of context state packets sent and received. Context state packets are sent from the decompressor to the compressor to communicate a list of context IDs for which synchronization is lost or might be lost.</td>
</tr>
<tr>
<td>IP packets</td>
<td>Number of IP packets sent and received.</td>
</tr>
<tr>
<td>Compressed packets</td>
<td>Number of compressed packets sent and received.</td>
</tr>
</tbody>
</table>

Sample Output

```
show services crtp extensive

user@host> show services crtp extensive

Interface: lsq-1/1/0.1
 Port minimum: 2000, Port maximum: 64009
 Maximum UDP compressed sessions: 256
 CRTP maximum period: 256, CRTP maximum time: 5
 Compression ratio: 0, Decompression ratio: 0, Discards: 0

<table>
<thead>
<tr>
<th>CRTP stats</th>
<th>Receive</th>
<th>Transmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IP bytes</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Compressed bytes</td>
<td>61</td>
<td>60</td>
</tr>
<tr>
<td>CRTP packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CUDP/CNTCP packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Full header packets</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>Packets Type</th>
<th>Before 1550</th>
<th>After 1550</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context state packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IP packets</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Compressed packets</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
**show services crtp flows**

**Syntax**

```
show services crtp flows
<interface interface-name>
```

**Release Information**
Command introduced before Junos OS Release 7.4.

**Description**
Display Compressed Real-Time Transport Protocol (CRTP) flows.

**Options**

- `none`—Display CRTP flows for all interfaces.
- `interface interface-name`—(Optional) Display CRTP flows for the specified interface.

On M Series and T Series routers, a link services IQ (lsq-fpc/pic/port) or redundant link services IQ (rlsq-fpc/pic/port) interface.

**Required Privilege**
view

**List of Sample Output**
show services crtp flows on page 1551

**Output Fields**
Table 59 on page 1551 lists the output fields for the `show services crtp flows` command. Output fields are listed in the approximate order in which they appear.

**Table 59: show services crtp flows Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the physical interface.</td>
</tr>
<tr>
<td>Flow</td>
<td>Received or transmitted flow.</td>
</tr>
<tr>
<td>Source</td>
<td>IP source address.</td>
</tr>
<tr>
<td>Destination</td>
<td>IP destination address.</td>
</tr>
<tr>
<td>SSRC ID</td>
<td>Synchronization source (SSRC) identifier. One of the fields in the RTP header used to select the context. The SSRC identifier is a randomly chosen value unique within a particular CRTP session.</td>
</tr>
<tr>
<td>Ctx ID</td>
<td>Session context ID. Indicates the session context in which to interpret the packet. The decompressor can use the context ID to index its table of stored session contexts directly.</td>
</tr>
</tbody>
</table>

**Sample Output**

```
show services crtp flows

user@host> show services crtp flows
```
**Interface: 1sq-1/1/0.1**

<table>
<thead>
<tr>
<th>Flow</th>
<th>Source</th>
<th>Destination</th>
<th>SSRC ID</th>
<th>Ctx ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive</td>
<td>192.0.2.3:28004</td>
<td>198.51.100.3:26000</td>
<td>123</td>
<td>0</td>
</tr>
<tr>
<td>Transmit</td>
<td>198.51.100.3:26000</td>
<td>192.0.2.3:28004</td>
<td>123</td>
<td>2</td>
</tr>
</tbody>
</table>
show services ha detail

**Syntax**

show services ha detail

<interface interface-name>

**Release Information**

Statement introduced in Junos OS Release 17.1 on MX Series.

**Description**

Display detailed information for stateful sync processing for a specified interface or for all interfaces.

**Options**

- **none**—Display detailed information for stateful sync processing for all interfaces.
- **interface-name**—(Optional) Name of a specific interface.

**Required Privilege**

view

**Related Documentation**

- Inter-Chassis Stateful Synchronization for Long Lived NAT and Stateful Firewall Flows (MS-MPC, MS-MIC) Overview (Release 16.1 and later) on page 744

**List of Sample Output**

show services ha detail on page 1554

**Output Fields**

Table 60 on page 1553 lists the output fields for the show services ha detail command. Output fields are listed in the approximate order in which they appear.

**Table 60: show services ha detail Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the interface for which information is reported.</td>
</tr>
<tr>
<td>Inter-chassis</td>
<td>Role of the interface.</td>
</tr>
<tr>
<td>Role</td>
<td>active—Active interface. backup—Backup interface.</td>
</tr>
<tr>
<td>Connection</td>
<td>Status of the peer connection.</td>
</tr>
<tr>
<td></td>
<td>Up Down</td>
</tr>
<tr>
<td>Synchronization</td>
<td>Synchronization state of peers.</td>
</tr>
<tr>
<td></td>
<td>Off—Peers are not currently engaged in synchronization. Cold—Peers are in a pre-synchronization state. Hot—Peers are ready for synchronization.</td>
</tr>
</tbody>
</table>
Table 60: show services ha detail Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peers</td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td>Local peer IP address.</td>
</tr>
<tr>
<td>Port</td>
<td>Local peer port number.</td>
</tr>
<tr>
<td>Remote</td>
<td>Remote peer IP address.</td>
</tr>
<tr>
<td>Port</td>
<td>Remote peer port number.</td>
</tr>
</tbody>
</table>

Sample Output

```
user@host> show services ha detail

Interface: ms-7/0/0
Inter-chassis: Role: active, Connection: Up, Synchronization: Hot
Peers: Local: 192.0.2.1 Port: 4001, Remote: 192.0.2.2 Port: 4001

Interface: ms-7/1/0
Inter-chassis: Role: active, Connection: Down, Synchronization: Off
Peers: Local: 198.51.100.1 Port: 4001, Remote: 198.51.100.2 Port: 4001

Interface: ms-8/0/0
Inter-chassis: Role: active, Connection: Up, Synchronization: Cold
Peers: Local: 203.0.113.1 Port: 4001, Remote: 203.0.113.2 Port: 4001

Interface: ms-8/1/0
Inter-chassis: Role: active, Connection: Up, Synchronization: Hot
Peers: Local: 10.10.10.1 Port: 4001, Remote: 10.10.10.2 Port: 4001
```
show services ha statistics

**Syntax**

```
show services ha statistics
<interface interface-name>
```

**Release Information**

Statement introduced in Junos OS Release 16.1 on MX Series.

**Description**

Display detailed statistics for stateful sync processing for a specified interface or for all interfaces.

**Options**

- `none`—Display detailed statistics for stateful sync processing for all interfaces.
- `interface-name`—(Optional) Name of a specific interface.

**Required Privilege**

view

**Related Documentation**

- Inter-Chassis Stateful Synchronization for Long Lived NAT and Stateful Firewall Flows (MS-MPC, MS-MIC) Overview (Release 16.1 and later) on page 744

**List of Sample Output**

show services ha statistics on page 1558

**Output Fields**

Table 61 on page 1555 lists the output fields for the show services ha statistics command. Output fields are listed in the approximate order in which they appear.

**Table 61: show services ha statistics Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface name.</td>
</tr>
<tr>
<td>Inter-chassis</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>Role of the interface.</td>
</tr>
<tr>
<td></td>
<td>• active—Active interface.</td>
</tr>
<tr>
<td></td>
<td>• backup—Backup interface.</td>
</tr>
<tr>
<td>Connection</td>
<td>Status of the peer connection.</td>
</tr>
<tr>
<td></td>
<td>• Up</td>
</tr>
<tr>
<td></td>
<td>• Down</td>
</tr>
<tr>
<td>Synchronization</td>
<td>Synchronization state of peers.</td>
</tr>
<tr>
<td></td>
<td>• Off—Peers are not currently engaged in synchronization.</td>
</tr>
<tr>
<td></td>
<td>• Cold—Peers are in a pre-synchronization state.</td>
</tr>
<tr>
<td></td>
<td>• Hot—Peers are ready for synchronization.</td>
</tr>
</tbody>
</table>
Table 61: `show services ha statistics` Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peers</td>
<td></td>
</tr>
<tr>
<td>Local Peer IP address</td>
<td>Local peer IP address.</td>
</tr>
<tr>
<td>Local Peer Port</td>
<td>Local peer port number.</td>
</tr>
<tr>
<td>Remote Peer IP address</td>
<td>Remote peer IP address.</td>
</tr>
<tr>
<td>Remote Peer Port</td>
<td>Remote peer port number.</td>
</tr>
<tr>
<td>Connection Status</td>
<td></td>
</tr>
<tr>
<td>TCP connection establish</td>
<td>Number of times a TCP connection is established.</td>
</tr>
<tr>
<td>TCP connection teardown</td>
<td>Number of times a TCP connection is torn down.</td>
</tr>
<tr>
<td>UDP address exchange sent</td>
<td>Number of times a UDP address is sent.</td>
</tr>
<tr>
<td>Stateful sync start sent</td>
<td>Number of stateful sync start messages sent by the backup PIC, indicating the start of the cold sync phase.</td>
</tr>
<tr>
<td>Stateful sync start received</td>
<td>Number of stateful sync start messages received by active PIC, indicating the start of the cold sync phase.</td>
</tr>
<tr>
<td>Cold sync completed count</td>
<td>Number of times the PIC has successfully completed the cold sync phase.</td>
</tr>
<tr>
<td>Session Add Statistics</td>
<td></td>
</tr>
<tr>
<td>Sent</td>
<td>Number of session add statistics sent by the active PIC.</td>
</tr>
<tr>
<td>Received</td>
<td>Number of session add statistics received by the backup PIC.</td>
</tr>
<tr>
<td>Completed</td>
<td>Number of session adds completed on the active and backup PICs.</td>
</tr>
<tr>
<td>Rate</td>
<td>Number of sessions currently added per second.</td>
</tr>
<tr>
<td>Nack sent</td>
<td>Number of times that a session add failed on the backup PIC, resulting in the sending of a Nack message to the active PIC.</td>
</tr>
<tr>
<td>Nack received</td>
<td>Number of Nack messages received from backup PIC due to session add failure.</td>
</tr>
<tr>
<td>Add pending</td>
<td>Number of sessions eligible for synchronization, but not yet synchronized.</td>
</tr>
<tr>
<td>Session Delete Statistics</td>
<td></td>
</tr>
<tr>
<td>Sent</td>
<td>Number of session deletes sent by the active PIC.</td>
</tr>
<tr>
<td>Received</td>
<td>Number of session deletes received by the backup PIC.</td>
</tr>
<tr>
<td>Completed</td>
<td>Number of session deletes completed on the active and backup PICs.</td>
</tr>
</tbody>
</table>
Table 61: show services ha statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate</td>
<td>Number of sessions currently deleted per second.</td>
</tr>
<tr>
<td>Nack sent</td>
<td>Number of times that a session add failed on the backup PIC, resulting in the sending of a Nack message to the active PIC.</td>
</tr>
<tr>
<td>Nack received</td>
<td>Number of Nack messages received from backup PIC due to session add failure.</td>
</tr>
<tr>
<td>Session not found</td>
<td>Number of sessions not found when session delete was attempted.</td>
</tr>
<tr>
<td>Session attach failures</td>
<td>Number of high-availability extension creation failures on the active PIC.</td>
</tr>
<tr>
<td>Session detach failures</td>
<td>Number of high-availability extension deletion failures on the active PIC.</td>
</tr>
<tr>
<td>Session extension get failures</td>
<td>Number of times that the high-availability extension is not available when requested.</td>
</tr>
<tr>
<td>Session nullify</td>
<td>Number of times the high-availability session creation failed on the active PIC.</td>
</tr>
<tr>
<td>Lookup fail</td>
<td>Number of times session lookup failed because the session has already been released by the infrastructure.</td>
</tr>
<tr>
<td>Initiate fail</td>
<td>Number of times session creation failed on the backup PIC.</td>
</tr>
<tr>
<td>Activate fail</td>
<td>Number of times session activation failed on the backup PIC.</td>
</tr>
<tr>
<td>Illegal flow type</td>
<td>Number of times an illegal flow type occurred on the active and backup PICs.</td>
</tr>
<tr>
<td>Illegal service set</td>
<td>Number of times service set extraction failed on backup and active PICs.</td>
</tr>
<tr>
<td>Unsupported protocol</td>
<td>Number of times that a session was not backed up because the protocol was neither TCP or UDP.</td>
</tr>
<tr>
<td>Send overflow</td>
<td>Number of times buffer overflowed when the high-availability session was created on the active PIC.</td>
</tr>
<tr>
<td>Send discard</td>
<td>Number of sessions that not synchronized to the backup, even though they were eligible for synchronization. This occurs whe at least one plugin in the service set indicates that a session should not be synchronized.</td>
</tr>
<tr>
<td>Spurious</td>
<td>Number of packets received on the backup PIC for which there are no existing sessions</td>
</tr>
<tr>
<td>Process incoming failed</td>
<td>Number of times JMUX header processing failed.</td>
</tr>
<tr>
<td>Session ignored</td>
<td>Number of sessions that were eligible for synchronization, but are ignored because stateful sync is not supported for them, such as ALG sessions</td>
</tr>
</tbody>
</table>

JMUX Error Statistics

Synchronization statistics related to the JMUX library.
### Table 61: show services ha statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JMUX begin fail</td>
<td>Number of times that JMUX key verification or header creation failed.</td>
</tr>
<tr>
<td>JMUX commit fail</td>
<td>Number of times addition of JMUX data failed.</td>
</tr>
<tr>
<td>JMUX flush fail</td>
<td>Number of times a send of JMUX data failed.</td>
</tr>
<tr>
<td>Invalid plugin header</td>
<td>Number of times stateful sync messages were rejected due to an invalid plugin header (internal error).</td>
</tr>
<tr>
<td>Invalid plugin name</td>
<td>Number of times stateful sync messages were rejected due to an invalid plugin name (internal error).</td>
</tr>
<tr>
<td>Invalid plugin length</td>
<td>Number of times stateful sync messages were rejected due to invalid plugin length (internal error).</td>
</tr>
<tr>
<td>Plugin receive error</td>
<td>Number of times installation of plugin information failed on the backup.</td>
</tr>
<tr>
<td>Plugin send error</td>
<td>Number of times the plugin failed to pack the extension.</td>
</tr>
<tr>
<td>IDL Error Statistics</td>
<td>Statistics concerning encode or decode errors at the backup.</td>
</tr>
<tr>
<td>IDL encode fail</td>
<td>Number of times IDL encoding failed on the active and backup PICs.</td>
</tr>
<tr>
<td>IDL decode fail</td>
<td>Number of times IDL decoding failed on the active and backup PICs.</td>
</tr>
</tbody>
</table>

### Sample Output

```
show services ha statistics

user@host> show services ha statistics

Interface: ms-5/0/0
Inter-chassis: Role: active, Connection: Up, Synchronization: Hot
Peers: Local: 192.0.2.2 Port: 4001, Remote: 192.0.2.1 Port: 4001

Connection Status:
 TCP connection establish: 8, Teardown: 8
 UDP address exchange sent: 8, Received: 8
 Stateful sync start sent: 0, Received: 8
 Cold sync completed count: 0

Session Add Statistics:
 Sent: 255, Received: 0
 Completed: 255, Rate: 0
 Nack sent: 0, Nack received: 0
 Add pending: 0

Session Delete Statistics:
 Sent: 255, Received: 0
 Completed: 255, Rate: 0
 Nack sent: 0, Nack received: 0
 Session not found: 0

Session Error Statistics:
 Session attach failures: 0, Session detach failures: 0
```
Session extension get failures: 0, Session nullify: 0
Lookup fail: 0, Initiate fail: 0, Activate fail: 0
Illegal flow type: 0, Illegal service set: 0
Unsupported protocol: 0, Send overflow: 0, Send discard: 0
Spurious: 0, Process incoming failed: 0, Session ignored: 0
JMUX Error Statistics:
  JMUX begin fail: 0, JMUX commit fail: 0, JMUX flush fail: 0
  Invalid plugin header: 0, Invalid plugin name: 0
  Invalid plugin length: 0, Plugin receive error: 0, Plugin send error: 0
IDL Error Statistics:
  IDL encode fail: 0, IDL decode fail: 0
show services ids

Syntax

show services ids (destination-table | pair-table | source-table)
<brief | extensive | terse>
<destination-prefix destination-prefix-name>
<interface interface-name>
<limit number>
<order (anomalies | bytes | flows | packets)>
<service-set service-set-name>
<source-prefix source-prefix-name>
<threshold number>

Release Information

Command introduced before Junos OS Release 7.4.

Description

Display information about intrusion detection service (IDS) events. All events gathered by IDS are reported as anomalies. For example, events such as create forward or watch flow, FTP passive, and FTP active are genuinely allowed by the stateful firewall but are logged as anomalies to track the rates and number for these events.

Options

destination-table—Display information for an address under possible attack.

pair-table—Display information for a particular suspected attack source and destination address pair.

source-table—Display information for an address that is a suspected attacker.

brief | extensive | terse—(Optional) Display the specified level of output.

destination-prefix destination-prefix-name—(Optional) Display information for a particular destination prefix.

interface interface-name—(Optional) On M Series and T Series routers, the interface-name can be sp-fpc/pic/port or rsnumber.

limit number—(Optional) Maximum number of entries to display. By default, all tables display the top 32 entries sorted by the number of events for the criteria chosen. To display additional entries, configure the limit option to set up to 256 entries.

order—(Optional) Display events according to one of the following table-ordering criteria. The default is anomalies.

- anomalies—Display information for particular anomalies.
- bytes—Order output by number of bytes received.
- flows—Order output by number of flows.
- packets—Order output by number of packets received.

service-set service-set-name—(Optional) Display information about a particular service set.
source-prefix source-prefix-name—(Optional) Display information about a particular source prefix.

threshold number—(Optional) Limit the display to events with this number of anomalies, bytes, flows, or packets, whichever criterion you specify for order. For example, to display all events with more than 100 flows, specify order flows and threshold 100.

Required Privilege

<table>
<thead>
<tr>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>view</td>
</tr>
</tbody>
</table>

List of Sample Output

- show services ids destination-table on page 1564
- show services ids destination-table extensive on page 1564
- show services ids destination-table extensive order anomalies on page 1565
- show services ids pair-table extensive on page 1565
- show services ids pair-table extensive limit on page 1565
- show services ids source-table extensive on page 1566
- show services ids source-table extensive limit on page 1566

Output Fields

Table 62 on page 1561 lists the output fields for the **show services ids** command. Output fields are listed in the approximate order in which they appear.

### Table 62: show services ids Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Output Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an adaptive services interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of a service set. Individual empty service sets are not displayed, but if no service set has any flows, a flow table header is printed for each service set.</td>
<td>All levels</td>
</tr>
<tr>
<td>Sorting order</td>
<td>Primary mode to display information: Anomalies, Bytes, Flows, or Packets.</td>
<td>All levels</td>
</tr>
<tr>
<td>Source address</td>
<td>Name of the source address.</td>
<td>All levels</td>
</tr>
<tr>
<td>Dest address</td>
<td>Name of the destination address.</td>
<td>All levels</td>
</tr>
<tr>
<td>Time</td>
<td>Total time the information has been in the table.</td>
<td>All levels</td>
</tr>
<tr>
<td>Flags</td>
<td>Flags can be Forced, F (terse output only), SYNcookie, S (terse output only), Forced+SYNcookie, and F+S (terse output only). The SYNcookie flag is visible only in the destination table.</td>
<td>All levels</td>
</tr>
<tr>
<td>Application</td>
<td>Configured application, such as FTP or Telnet.</td>
<td>All levels</td>
</tr>
<tr>
<td>Bytes</td>
<td>Total number of bytes sent from the source to the destination address, in thousands (k) or millions (m).</td>
<td>All levels</td>
</tr>
<tr>
<td>Packets</td>
<td>Total number of packets sent from the source to the destination address, in thousands (k) or millions (m).</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 62: `show services ids` Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Output Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flows</td>
<td>Total number of flows of packets sent from the source to the destination address, in thousands (k) or millions (m).</td>
<td>All levels</td>
</tr>
<tr>
<td>Anomalies</td>
<td>Total number of packets in the anomaly table, in thousands (k) or millions (m).</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Anomaly description

- First packet of TCP session not SYN
- ICMP echo request dropped, because sequence number duplicated
- ICMP echo reply dropped. No matching sequence number
- ICMP echo request dropped. Too many echo requests without echo reply
- ICMP header length check failed
- ICMP packet length greater than 64K
- IP fragment assembly timeout
- IP fragment length error
- IP fragment overlap
- IP packet length greater than 64K
- IP packet too short
- IP packet with broadcast destination address
- IP packet with checksum error
- IP packet with incorrect length
- IP packet with TTL equal to 0
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Output Level</th>
</tr>
</thead>
</table>
| Anomaly description (continued) | • IP packet with version other than 4  
• Land attack (IP src address = dest address)  
• No matching SFW rule; attempting to create discard flow  
• Number of open sessions exceeds IDS limit; packet dropped  
• Packet rate exceeds IDS limit; packet dropped  
• Session creation rate exceeds IDS limit; packet dropped  
• SFW application message too long  
• SFW discard packet contains non-configured IP option types  
• SFW drop packet because of discard flow  
• SFW dropped TCP watch packet  
• SFW rules request FTP active mode data packets to be accepted; attempting to create forward flow  
• SFW rules request FTP passive mode data packets to be accepted; attempting to create forward flow  
• SFW rules request packet to be accepted; attempting to create forward or watch flow  
• SFW rules request packet to be discarded; attempting to create discard flow  
• SFW rules request packet to be rejected; attempting to create reject flow  
• SFW discard flow requires packet to be dropped  
• SFW SYN defense  
• Smurf attack (ping to IP broadcast address)  
• TCP FIN/RST or SYN/(URG|FIN|RST) flags set  
• TCP header length check failed  
• TCP port scan (port not in LISTEN state)  
• TCP seq number zero and FIN/PSH/RST flags set  
• TCP seq number zero and no flags set  
• TCP source or destination port zero  
• TCP SYN flood attack  
• UDP header length check failed  
• UDP port scan (port not in LISTEN state)  
• UDP source or destination port zero | extensive |
| Count | Number of times that a particular anomaly occurred, in thousands (k) or millions (M). | extensive |
| Rate (eps) | Anomaly events per second. The IDS subsystem attempts to maintain a weighted average of rates, which might not reflect the exact incoming rate of attack at low rates. However, at high rates exceeding 160 events per second, the rates generally match. | extensive |
| Elapsed | Time since the same type of event last occurred. | extensive |
| Total IDS table entries | Number of entries in the IDS table. This number is not necessarily the sum of all entries displayed. | All levels |
Table 62: show services ids Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Output Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total failed IDS table entry insertions</td>
<td>Number of IDS entries not allowed into the table because the table was full</td>
<td>All levels</td>
</tr>
<tr>
<td>Total number of events (closed flows and anomalies detected)</td>
<td>Total number of events since the system was started or since the show ids services command was executed.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Sample Output

show services ids destination-table

```plaintext
user@host> show services ids destination-table
Interface: sp-1/3/0, Service set: null-sfw
Sorting order: Packets
Source address Dest address Time Flags Application
any -> 10.58.255.146 36m12s SYN cookie
Bytes: 35.0 m, Packets: 822.0 k, Flows: 274.0 k, Anomalies: 2251.0 k

Total IDS table entries: 87
Total failed IDS table entry insertions 0
Total number of events (closed flows and anomalies detected): 2606018
```

show services ids destination-table extensive

```plaintext
user@host> show services ids destination-table extensive
Interface: sp-1/3/0, Service set: null-sfw
Sorting order: Packets
Source address Dest address Time Flags Application
any -> 10.58.255.146 35m52s SYN cookie
Bytes: 34.0 m, Packets: 798.0 k, Flows: 266.0 k, Anomalies: 2251.0 k
Anomalies
First packet of TCP session not SYN 160.0 k 0 14s
TCP source or destination port zero 634.0 k 154.6 3m37s
UDP source or destination port zero 633.0 k 170.0 3m37s
ICMP header length check failed 2875 0.9 3m37s
IP fragment assembly timeout 820.0 k 12.8 3m18s
UDP header length check failed 385 0.5 3m53s
TCP header length check failed 383 0.5 3m53s

Total IDS table entries: 87
Total failed IDS table entry insertions 0
Total number of events (closed flows and anomalies detected): 2598063
```
### show services ids destination-table extensive order anomalies

**User@Host>** show services ids destination-table extensive order anomalies

**Interface:** sp-0/2/0, **Service set:** ss1

**IDS sorting order:** Anomalies

<table>
<thead>
<tr>
<th>Source address</th>
<th>Dest address</th>
<th>Time Flags</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.2.1</td>
<td>198.51.100.1</td>
<td>1m28s</td>
<td>junos-ftp</td>
</tr>
</tbody>
</table>

**Bytes:** 1065, **Packets:** 18, **Flows:** 1, **Anomalies:** 10

- **Anomalies description:**
  - creating forward or watch flow: Count 1, Rate 15.6, Elapsed 1m28s
  - Number of open sessions exceeds IDS limit: Count 9, Rate 0.8, Elapsed 18s

**Total IDS table entries:** 3

**Total failed IDS table entry insertions:** 0

**Total number of events (closed flows and anomalies):** 11

---

### show services ids pair-table extensive

**User@Host>** show services ids pair-table extensive

**Interface:** sp-3/2/0, **Service set:** ss_all_limits

**IDS sorting order:** Packets

<table>
<thead>
<tr>
<th>Source address</th>
<th>Dest address</th>
<th>Time Flags</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>198.51.100.4</td>
<td>198.51.100.4</td>
<td>2m20s</td>
<td>junos-ftp</td>
</tr>
</tbody>
</table>

**Bytes:** 5.7k, **Packets:** 102.0, **Flows:** 41.0, **Anomalies:** 462.0

- **Anomalies description:**
  - creating forward or watch flow: Count 41.0, Rate 8.8, Elapsed 2m17s
  - Packet rate exceeds IDS src limit: Count 21.0, Rate 7.1, Elapsed 2m17s
  - Session creation rate exceeds IDS src limit: Count 359.0, Rate 99.7, Elapsed 2m16s
  - TCP SYN flood attack: Count 41.0, Rate 1.9, Elapsed 1m30s

**Total IDS table entries:** 3

**Total failed IDS table entry insertions:** 0

**Total number of events (closed flows and anomalies):** 462

---

### show services ids pair-table extensive limit

**User@Host>** show services ids pair-table extensive limit 3

**Interface:** sp-1/3/0, **Service set:** null-sfw

**Sorting order:** Packets

<table>
<thead>
<tr>
<th>Source address</th>
<th>Dest address</th>
<th>Time Flags</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.58.255.18</td>
<td>10.58.255.146</td>
<td>38m41s</td>
<td>SYN cookie</td>
</tr>
</tbody>
</table>

**Bytes:** 286.0 m, **Packets:** 2823.0 k, **Flows:** 324.0 k, **Anomalies:** 387.0 k

- **Anomalies description:**
  - First packet of TCP session not SYN: Count 160.0 k, Rate 0.1, Elapsed 25s
  - TCP source or destination port zero: Count 69.0 k, Rate 14.1, Elapsed 6m26s
  - UDP source or destination port zero: Count 68.0 k, Rate 12.7, Elapsed 6m26s
  - ICMP header length check failed: Count 318, Rate 0.1, Elapsed 7m6s
  - IP fragment assembly timeout: Count 88.0 k, Rate 1.3, Elapsed 6m7s
  - UDP header length check failed: Count 39, Rate 0.0, Elapsed 6m58s
  - TCP header length check failed: Count 46, Rate 0.0, Elapsed 6m45s
10.58.255.23 -> 10.58.255.146  18m48s SYN cookie
Bytes: 104.0 m, Packets: 421.0 k, Flows: 230, Anomalies: 124.0 k

<table>
<thead>
<tr>
<th>Anomalies</th>
<th>Count</th>
<th>Rate(eps)</th>
<th>Elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP source or destination port zero</td>
<td>37.0 k</td>
<td>9.8</td>
<td>6m26s</td>
</tr>
<tr>
<td>UDP source or destination port zero</td>
<td>37.0 k</td>
<td>8.4</td>
<td>6m26s</td>
</tr>
<tr>
<td>IP fragment assembly timeout</td>
<td>48.0 k</td>
<td>1.0</td>
<td>6m7s</td>
</tr>
<tr>
<td>ICMP header length check failed</td>
<td>190</td>
<td>0.2</td>
<td>6m47s</td>
</tr>
<tr>
<td>UDP header length check failed</td>
<td>29</td>
<td>0.0</td>
<td>6m51s</td>
</tr>
<tr>
<td>TCP header length check failed</td>
<td>23</td>
<td>0.0</td>
<td>6m59s</td>
</tr>
</tbody>
</table>

10.58.255.25 -> 10.58.255.146  18m48s SYN cookie
Bytes: 104.0 m, Packets: 420.0 k, Flows: 232, Anomalies: 123.0 k

<table>
<thead>
<tr>
<th>Anomalies</th>
<th>Count</th>
<th>Rate(eps)</th>
<th>Elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP source or destination port zero</td>
<td>37.0 k</td>
<td>9.8</td>
<td>6m26s</td>
</tr>
<tr>
<td>UDP source or destination port zero</td>
<td>37.0 k</td>
<td>8.6</td>
<td>6m26s</td>
</tr>
<tr>
<td>IP fragment assembly timeout</td>
<td>48.0 k</td>
<td>1.5</td>
<td>6m7s</td>
</tr>
<tr>
<td>ICMP header length check failed</td>
<td>173</td>
<td>0.1</td>
<td>6m43s</td>
</tr>
<tr>
<td>UDP header length check failed</td>
<td>24</td>
<td>0.0</td>
<td>6m43s</td>
</tr>
<tr>
<td>TCP header length check failed</td>
<td>19</td>
<td>0.0</td>
<td>6m56s</td>
</tr>
</tbody>
</table>

Total IDS table entries: 87
Total failed IDS table entry insertions 0
Total number of events (closed flows and anomalies detected): 2659291

show services ids source-table extensive

Interface: sp-3/2/0, Service set: ss_all_limits
IDS sorting order: Packets

<table>
<thead>
<tr>
<th>Source address</th>
<th>Dest address</th>
<th>Time</th>
<th>Flags</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>198.51.100.4</td>
<td>any</td>
<td>2m43s</td>
<td></td>
<td>junos-ftp</td>
</tr>
</tbody>
</table>

Bytes: 5.7k, Packets: 102.0, Flows: 41.0, Anomalies: 462.0

<table>
<thead>
<tr>
<th>Anomaly description</th>
<th>Count</th>
<th>Rate</th>
<th>Elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>creating forward or watch flow</td>
<td>41.0</td>
<td>8.8</td>
<td>2m40s</td>
</tr>
<tr>
<td>Packet rate exceeds IDS src limit</td>
<td>21.0</td>
<td>7.1</td>
<td>2m40s</td>
</tr>
<tr>
<td>Session creation rate exceeds IDS src limit</td>
<td>359.0</td>
<td>99.7</td>
<td>2m39s</td>
</tr>
<tr>
<td>TCP SYN flood attack</td>
<td>41.0</td>
<td>1.9</td>
<td>1m53s</td>
</tr>
</tbody>
</table>

Total IDS table entries: 3
Total failed IDS table entry insertions 0
Total number of events (closed flows and anomalies): 462
10.58.255.18 -> any 40m 0s SYN cookie
Bytes: 250.0 m, Packets: 1978.0 k, Flows: 356.0 k, Anomalies: 387.0 k
Anomalies Count Rate(eps) Elapsed
TCP source or destination port zero 37.0 k 9.8 6m26s
First packet of TCP session not SYN 160.0 k 0.0 40s
TCP source or destination port zero 69.0 k 62.5 7m45s
UDP source or destination port zero 68.0 k 56.2 7m45s
ICMP header length check failed 319 0.1 7m49s
IP fragment assembly timeout 89.0 k 4.4 7m26s
UDP header length check failed 39 0.0 8m17s
TCP header length check failed 46 0.0 8m4s

10.58.255.30 -> any 20m 7s SYN cookie
Bytes: 107.0 m, Packets: 427.0 k, Flows: 264, Anomalies: 125.0 k
Anomalies Count Rate(eps) Elapsed
UDP source or destination port zero 38.0 k 65.5 7m45s
TCP source or destination port zero 37.0 k 38.1 7m45s
IP fragment assembly timeout 49.0 k 4.1 7m26s
TCP header length check failed 24 0.0 9m23s
ICMP header length check failed 165 0.1 8m6s
UDP header length check failed 26 0.0 8m13s

10.58.255.17 -> any 20m10s SYN cookie
Bytes: 107.0 m, Packets: 426.0 k, Flows: 262, Anomalies: 125.0 k
Anomalies Count Rate(eps) Elapsed
TCP source or destination port zero 38.0 k 55. 7m45s
UDP source or destination port zero 38.0 k 55.1 7m45s
ICMP header length check failed 147 0.1 7m50s
IP fragment assembly timeout 49.0 k 2.8 7m26s
TCP header length check failed 22 0.0 9m33s
UDP header length check failed 22 0.0 8m1s

Total IDS table entries:
87
Total failed IDS table entry insertions
0
Total number of events (closed flows and anomalies detected):
2691423
Interface: sp-1/3/0, Service set: blue
NAT pool Address Port Ports in use
d2-pool 10.59.16.100-10.59.16.100 4000-4002 1
**show services inline nat pool**

**Syntax**

```
show services inline nat pool
<pool pool--name>
```

**Release Information**

Command introduced in Junos OS Release 11.4.

**Description**

Display information about inline Network Address Translation (NAT) pool.

**Options**

`pool-name`—Display information about the specified services-inline interface NAT pool.

**Required Privilege Level**

view

**List of Sample Output**

show services inline nat pool on page 1568
show services inline nat pool (Network Prefix Translation for IPv6) on page 1569

**Output Fields**

Table 63 on page 1568 lists the output fields for the `show services inline nat pool` command. Output fields are listed in the order in which they appear.

**Table 63: show services inline nat pool Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an si interface hosted on a Trio-based line card.</td>
</tr>
<tr>
<td>NAT pool</td>
<td>Name of the pool used for address translations.</td>
</tr>
<tr>
<td>Translation type</td>
<td>Translation type specified in the applicable NAT rule for the service set.</td>
</tr>
<tr>
<td>Address range</td>
<td>Starting and ending public NAT addresses available for translation.</td>
</tr>
<tr>
<td>NATed packets</td>
<td>Number of packets translated for the specified pool.</td>
</tr>
<tr>
<td>un-NATed packets</td>
<td>Number of received packets that were not translated.</td>
</tr>
<tr>
<td>deNATed packets</td>
<td>Number of packets that were not translated for the specified service PIC.</td>
</tr>
<tr>
<td>Errors</td>
<td>Number of packets with translation errors.</td>
</tr>
</tbody>
</table>

**Sample Output**

```
show services inline nat pool

user@host> show services inline nat pool p1
Interface: si-5/0/0, Service set: ss-inat
NAT pool: p1, Translation type: BASIC NAT44
```
show services inline nat pool (Network Prefix Translation for IPv6)

user@host> show services inline nat pool ss_nptv6_pool1

Interface: si-4/0/0, Service set: ss_nptv6
NAT pool: ss_nptv6_pool1, Translation type: NPTV6
Address range: 2001:db8:3456::/48
NATed packets: 0, deNATed packets: 0, Errors: 0
**show services inline nat statistics**

**Syntax**

```
show services inline nat statistics
<interface interface-name>
```

**Release Information**

Command introduced in Junos OS Release 11.4.

**Description**

Display information about inline Network Address Translation (NAT) address translations.

**Options**

`interface-name` — (Optional) Display information about the specified NAT services-inline interface only. When a specific interface is not specified, statistics for all services-inline interfaces are shown.

**Required Privilege**

`view`

**List of Sample Output**

- show services inline nat statistics on page 1571
- show services inline nat statistics (Network Prefix Translation for IPv6) on page 1571

**Output Fields**

Table 64 on page 1570 lists the output fields for the `show services inline nat statistics` command. Output fields are listed in the order in which they appear.

**Table 64: show services inline nat statistics Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service PIC</td>
<td>Name of an si interface hosted on a Trio-based line card.</td>
<td>All levels</td>
</tr>
<tr>
<td>Slow path packets received</td>
<td>Number of ICMP exception packets received for NAT translation.</td>
<td>All levels</td>
</tr>
<tr>
<td>Slow path packets dropped</td>
<td>Number of received ICMP exception packets that were dropped.</td>
<td>All levels</td>
</tr>
<tr>
<td>Service PIC Name</td>
<td>FPC and PIC slots for the service PIC on which NAT processing is performed</td>
<td>All levels</td>
</tr>
<tr>
<td>Data Plane Statistics</td>
<td>Information about packets processed by the data plane for NAT operations</td>
<td>All levels</td>
</tr>
<tr>
<td>Control Plane Statistics</td>
<td>Information about packets processed by the control plane for NAT operations</td>
<td>All levels</td>
</tr>
<tr>
<td>ICMPv4 errors packets pass through</td>
<td>Number of ICMPv4 error packets that were passed through without being subjected to rules</td>
<td>All levels</td>
</tr>
<tr>
<td>ICMPv4 errors packets locally generated</td>
<td>Number of ICMPv4 error packets that were locally generated</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 64: *show services inline nat statistics* Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMPv6 errors packets pass through</td>
<td>Number of ICMPv6 error packets that were passed through without being subjected to rules</td>
<td>All levels</td>
</tr>
<tr>
<td>ICMPv6 errors packets locally generated</td>
<td>Number of ICMPv6 error packets that were locally generated</td>
<td>All levels</td>
</tr>
<tr>
<td>Dropped packets</td>
<td>Number of packets dropped during inline NAT processing</td>
<td>All levels</td>
</tr>
<tr>
<td>NATed packets</td>
<td>Number of packets translated for the specified service PIC.</td>
<td>All levels</td>
</tr>
<tr>
<td>deNATed packets</td>
<td>Number of packets that were not translated for the specified service PIC.</td>
<td>All levels</td>
</tr>
<tr>
<td>Errors</td>
<td>Number of packets with translation errors.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Sample Output

**show services inline nat statistics**

```
user@host> show services inline nat statistics
Service PIC Name : si-5/0/0
 Slow path packets received : 0
 Slow path packets dropped : 0
```

**show services inline nat statistics (Network Prefix Translation for IPv6)**

```
user@host> show services inline nat statistics
Service PIC Name : si-4/0/0

Control Plane Statistics
 ICMPv4 errors packets pass through : 0
 ICMPv4 errors packets locally generated : 0
 ICMPv6 errors packets pass through : 0
 ICMPv6 errors packets locally generated : 0
 Dropped packets : 0

Data Plane Statistics
 NATed packets : 0
 deNATed packets : 0
 Errors : 0
```

```
Service PIC Name : si-4/1/0

Control Plane Statistics
 ICMPv4 errors packets pass through : 0
 ICMPv4 errors packets locally generated : 0
```
ICMPv6 errors packets pass through : 0
ICMPv6 errors packets locally generated : 0
Dropped packets : 0

Data Plane Statistics
NATed packets : 0
deNATed packets : 0
Errors : 0
show services inline softwire statistics

**Syntax**

```
show services inline softwire statistics
<interface interface-name>
<mape name>
<v6rd>
```

**Release Information**

Command introduced in Junos OS Release 13.3R3. 
`map-e` option introduced in Junos OS Release 18.2R1 for MX Series Routers with MPC and MIC interfaces.

**Description**

Display information about inline softwire activity. The initial implementation of this comment reports only on 6rd activity.

**Options**

`interface interface-name`—(Optional) Display information about the specified services-inline interface only. When a specific interface is not specified, statistics for all services-inline interfaces are shown.

`mape name`—(Optional) Display information on per physical service interface basis.

`v6rd`—(Optional) Display information for 6rd.

**Required Privilege Level**

`view`

**List of Sample Output**

- `show services inline softwire statistics` on page 1574
- `show services inline softwire statistics mape` on page 1575

**Output Fields**

Table 65 on page 1573 lists the output fields for the `show services inline softwire statistics` command. Output fields are listed in the order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service PIC Name</td>
<td>Name of the service PIC for which statistics are displayed.</td>
</tr>
<tr>
<td>Control Plane Statistics</td>
<td>Statistics on the control plane.</td>
</tr>
<tr>
<td>ICMPv4 echo requests to softwire concentrator</td>
<td>Number of ICMPv4 echo received by the softwire concentrator.</td>
</tr>
<tr>
<td>ICMPv4 echo responses from softwire concentrator</td>
<td>Number of ICMPv4 echo responses sent from the softwire concentrator.</td>
</tr>
</tbody>
</table>
### Table 65: show services inline softwire statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Dropped ICMPv4 packets to softwire concentrator</strong></td>
<td>Number of ICMP packets (except ICMP request) received by the softwire concentrator. All these packets are dropped in by the packet forwarding engine Ukernel.</td>
</tr>
<tr>
<td><strong>Trace route UDP packets to softwire concentrator</strong></td>
<td>Number of UDP trace route packets (port numbers 33434 through 33534) received by the softwire concentrator.</td>
</tr>
<tr>
<td><strong>ICMPv4 Port unreachable errors sent from softwire concentrator</strong></td>
<td>Number of ICMP port unreachable errors sent by the softwire concentrator after receiving the UDP trace route packets.</td>
</tr>
<tr>
<td><strong>Other dropped IPv4 packets to softwire concentrator</strong></td>
<td>Number of non-ICMP packets that were received and dropped because of fragmentation during encapsulation or decapsulation.</td>
</tr>
<tr>
<td><strong>Data Plane Statistics</strong></td>
<td>Statistics of the data plane.</td>
</tr>
<tr>
<td><strong>6rd decaps</strong></td>
<td>Number of 6rd decapsulated packets and bytes in the data plane. Decapsulation includes removing the outer IPv4 header and routing the inner IPv6 packet.</td>
</tr>
<tr>
<td><strong>6rd encaps</strong></td>
<td>Number of 6rd encapsulated (IPv4) packets and bytes in the data plane.</td>
</tr>
<tr>
<td><strong>6rd decap errors</strong></td>
<td>Number of all the packets and bytes that are not IPv4-IPv6, IPv4-UDP, or IPv4-ICMP packets.</td>
</tr>
<tr>
<td><strong>6rd decap fragment errors</strong></td>
<td>Number of IPv4 fragmented packets and bytes.</td>
</tr>
<tr>
<td><strong>6rd decap spoof attacks</strong></td>
<td>Number of spoof attack packets and bytes, which includes packets for which the 6rd derived IPv4 address does not match with the source IPv4 address and packets for which the source IPv6 prefix does not match the 6rd IPv6 prefix.</td>
</tr>
<tr>
<td><strong>6rd encap v4 mtu errors</strong></td>
<td>Count of packets and bytes with IPv4 encapsulation MTU errors. For downlink packets after encapsulating with an IPv4 header, if the packet length is more than Tunnel MTU then it is dropped as v4 MTU errors. For these packet drops, an ICMPv6 packet too big error is sent back to the sender.</td>
</tr>
</tbody>
</table>

### Sample Output

```
show services inline softwire statistics
```

```
user@host> show services inline softwire statistics
Border Router v6rd statistics:
Service PIC Name si-0/0/0
Control Plane Statistics
```
ICMPv4 echo requests to softwire concentrator                    0  
ICMPv4 echo responses from softwire concentrator                 0  
Dropped ICMPv4 packets to softwire concentrator                  0  
Trace route UDP packets to softwire concentrator                 0  
ICMPv4 Port unreachable errors sent from softwire concentrator   0  
Other dropped IPv4 packets to softwire concentrator              0  

<table>
<thead>
<tr>
<th>Data Plane Statistics</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6rd decaps</td>
<td>3222173891</td>
<td>3061106519645</td>
</tr>
<tr>
<td>6rd decaps</td>
<td>3222173891</td>
<td>3061106519645</td>
</tr>
<tr>
<td>6rd decaps</td>
<td>3222173891</td>
<td>3061106519645</td>
</tr>
<tr>
<td>6rd decaps</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Service PIC Name         si-0/2/0

Control Plane Statistics
ICMPv4 echo requests to softwire concentrator                    0  
ICMPv4 echo responses from softwire concentrator                 0  
Dropped ICMPv4 packets to softwire concentrator                  0  
Trace route UDP packets to softwire concentrator                 0  
ICMPv4 Port unreachable errors sent from softwire concentrator   0  
Other dropped IPv4 packets to softwire concentrator              0  

show services inline softwire statistics mape

user@host> show services inline softwire statistics mape

Service PIC Name         si-0/0/0

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP-E decaps</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAP-E decaps</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAP-E decap errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAP-E encap errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAP-E decap spoof attacks</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAP-E decap v4 fragmented</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAP-E decap v4 reassembled</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAP-E encap v4 mtu errors</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
**show services ipsec-vpn certificates**

**Syntax**
```
show services ipsec-vpn certificates
 <brief | detail>
 <service-set service-set>
```

**Release Information**
Command introduced in Junos OS Release 7.5.

**Description**
(Adaptive services interfaces only) Display local and remote certificates installed in the IPsec configuration memory cache that are used for the IKE negotiation.

**Options**
- `none`—(same as `brief`) Display information about local and remote certificates associated with all service sets.
- `brief | detail`—(Optional) Display the specified level of output.
- `service-set service-set`—(Optional) Display information about local and remote certificates associated with only the specified service set.

**Required Privilege**
`view`

**List of Sample Output**
- show services ipsec-vpn certificates on page 1578
- show security ipsec-vpn certificates detail on page 1579

**Output Fields**
Table 66 on page 1577 lists the output fields for the `show services ipsec-vpn certificates` command. Output fields are listed in the approximate order in which they appear.

### Table 66: show services ipsec-vpn certificates Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service set</td>
<td>Name of the IPsec service set.</td>
<td>All levels</td>
</tr>
<tr>
<td>Total entries</td>
<td>Number of certificate cache entries.</td>
<td>All levels</td>
</tr>
<tr>
<td>Certificate cache entry</td>
<td>Identification number of the certificate cache entry.</td>
<td>All levels</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the digital certificate, including whether the certificate is a root certificate and trusted.</td>
<td>none brief</td>
</tr>
<tr>
<td>Issued to</td>
<td>Device that was issued the digital certificate.</td>
<td>none brief</td>
</tr>
<tr>
<td>Issued by</td>
<td>Authority that issued the digital certificate.</td>
<td>none brief</td>
</tr>
<tr>
<td>Certificate version</td>
<td>Revision number of the digital certificate.</td>
<td>detail</td>
</tr>
</tbody>
</table>
Table 66: show services ipsec-vpn certificates Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial number</td>
<td>Uniqueserial number of the digital certificate.</td>
<td>detail</td>
</tr>
<tr>
<td>Alternate subject</td>
<td>Domain name or IP address of the device related to the digital certificate.</td>
<td>All levels</td>
</tr>
<tr>
<td>Validity</td>
<td>Time period when the digital certificate is valid. Values are:</td>
<td>none brief</td>
</tr>
<tr>
<td></td>
<td>• Not before—Start time when the digital certificate becomes valid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Not after—End time when the digital certificate becomes invalid.</td>
<td></td>
</tr>
<tr>
<td>Public key algorithm</td>
<td>Specifies the encryption algorithm used with the private key, such as rsaEncryption (1024 bits).</td>
<td>detail</td>
</tr>
<tr>
<td>Signature algorithm</td>
<td>Encryption algorithm that the CA used to sign the digital certificate, such as sha1WithRSAEncryption.</td>
<td>detail</td>
</tr>
<tr>
<td>Fingerprint</td>
<td>Secure Hash Algorithm (SHA1) and Message Digest 5 (MD5) hashes used to identify the digital certificate.</td>
<td>detail</td>
</tr>
<tr>
<td>Distribution CRL</td>
<td>Distinguished name information and the URL for the certificate revocation list (CRL) server.</td>
<td>detail</td>
</tr>
<tr>
<td>Use for key</td>
<td>Use of the public key, such as Certificate signing, CRL signing, Digital signature, or Key encipherment.</td>
<td>detail</td>
</tr>
</tbody>
</table>

Sample Output

show services ipsec-vpn certificates

user@host> show services ipsec-vpn certificates

Service set: serviceset-dynamic-BiEspsha3des, Total entries: 3
Certificate cache entry: 3
  Flags: Non-root Trusted
  Issued to: router3.example.com, Issued by: juniper
  Alternate subject: router3.example.com
  Validity:
    Not after: 2008 Nov 22nd, 00:03:58 GMT

Certificate cache entry: 2
  Flags: Non-root Trusted
  Issued to: router2.example.com, Issued by: juniper
  Alternate subject: router2.example.com
  Validity:
    Not after: 2008 Nov 21st, 23:58:22 GMT

Certificate cache entry: 1
  Flags: Root Trusted
  Issued to: juniper, Issued by: juniper
  Validity:
show security ipsec-vpn certificates detail

user@host> **show services ipsec-vpn certificates detail**

Service set: serviceset-dynamic-BiEspsha3des, Total entries: 3
Certificate cache entry: 3
  Certificate version: 3
  Serial number: 4355 94f9
  Alternate subject: router3.example.com
  Public key algorithm: rsaEncryption
  Signature algorithm: sha1WithRSAEncryption
  Fingerprint:
  Distribution CRL:
    C=us, O=juniper, CN=CRL1
    http://CA-1/CRL/juniper_us_crlfile.crl
  Use for key: Digital signature

Certificate cache entry: 2
  Certificate version: 3
  Serial number: 4355 94f8
  Alternate subject: router2.example.com
  Public key algorithm: rsaEncryption
  Signature algorithm: sha1WithRSAEncryption
  Fingerprint:
  Distribution CRL:
    C=us, O=juniper, CN=CRL1
    http://CA-1/CRL/juniper_us_crlfile.crl
  Use for key: Digital signature

Certificate cache entry: 1
  Certificate version: 3
  Flags: Root
  Serial number: 4355 9235
  Public key algorithm: rsaEncryption
  Signature algorithm: sha1WithRSAEncryption
  Fingerprint:
  Distribution CRL:
    C=us, O=juniper, CN=CRL1
    http://CA-1/CRL/juniper_us_crlfile.crl
  Use for key: CRL signing, Certificate signing
show services ipsec-vpn ike security-associations

Syntax
show services ipsec-vpn ike security-associations
  <brief | detail>
  <peer-address>

Release Information
Command introduced before Junos OS Release 7.4. Statistics for Internet Key Exchange (IKE) security associations for each services PIC introduced in Junos OS Release 12.1.

Description
(Adaptive services interface only) Display information for Internet Key Exchange (IKE) security associations. If no security association is specified, the information for all security associations is displayed.

Options
none—(same as brief) Display standard information for all IPsec security associations.

brief | detail—(Optional) Display the specified level of output.

peer-address—(Optional) Display information about a particular security association address.

Required Privilege
view

List of Sample Output
show services ipsec-vpn ike security-associations on page 1582
show services ipsec-vpn ike security-associations detail on page 1583
show services ipsec-vpn ike security-associations (on ACX500 Routers) on page 1584

Output Fields
Table 67 on page 1580 lists the output fields for the show services ipsec-vpn ike security-associations command. Output fields are listed in the approximate order in which they appear.

Table 67: show services ipsec-vpn ike security-associations Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKE peer</td>
<td>Remote end of the IKE negotiation.</td>
<td>detail</td>
</tr>
<tr>
<td>Role</td>
<td>Part played in the IKE session. The router triggering the IKE negotiation is the initiator, and the router accepting the first IKE exchange packets is the responder.</td>
<td>detail</td>
</tr>
<tr>
<td>Remote Address</td>
<td>Responder's address.</td>
<td>none specified</td>
</tr>
<tr>
<td>State</td>
<td>State of the IKE security association:</td>
<td>none specified</td>
</tr>
<tr>
<td></td>
<td>* Matured—IKE security association is established.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Not matured—The IKE security association is in the process of negotiation.</td>
<td></td>
</tr>
</tbody>
</table>
Table 67: show services ipsec-vpn ike security-associations Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiator cookie</td>
<td>When the IKE negotiation is triggered, a random number is sent to the remote node.</td>
<td>All levels</td>
</tr>
<tr>
<td>Responder cookie</td>
<td>The remote node generates its own random number and sends it back to the initiator as a verification that the packets were received. Of the numerous security services available, protection against denial of service (DoS) is one of the most difficult to address. A “cookie” or anticlogging token (ACT) is aimed at protecting the computing resources from attack without spending excessive CPU resources to determine the cookie’s authenticity. An exchange prior to CPU-intensive public key operations can thwart some DoS attempts (such as simple flooding with invalid IP source addresses).</td>
<td>All levels</td>
</tr>
</tbody>
</table>
| Exchange type    | Specifies the number of messages in an IKE exchange, and the payload types that are contained in each message. Each exchange type provides a particular set of security services, such as anonymity of the participants, perfect forward secrecy of the keying material, and authentication of the participants. Junos OS supports two types of exchanges:  
  - **Main**—The exchange is done with six messages. **Main** encrypts the payload, protecting the identity of the neighbor.  
  - **Aggressive**—The exchange is done with three messages. **Aggressive** does not encrypt the payload, leaving the identity of the neighbor unprotected.  
  - **IKEv2**—The exchange is negotiated using IKE version 2. | All levels |
| PIC              | The services PIC for which the IKE security associations are displayed.            | All levels      |
| Authentication method | Authentication method that determines which payloads are exchanged and when they are exchanged. Value can be ECDSA-signatures (256 bit key), ECDSA-signatures (384 bit key), Pre-shared-keys, or RSA-signatures.  
  **NOTE:** In Junos FIPS mode, ECDSA is not supported in Junos OS Release 17.3R1. Starting in Junos OS Release 17.4R1, ECDSA is supported in Junos FIPS mode. | detail |
| Local            | Prefix and port number of the local end.                                        | detail          |
| Remote           | Prefix and port number of the remote end.                                       | detail          |
| Lifetime         | Number of seconds remaining until the IKE security association expires.          | detail          |
| Algorithms       | Header for the IKE algorithms output.                                            | detail          |
  - **Authentication**—(detail output only) Type of authentication algorithm used: md5 or sha1  
  - **Encryption**—(detail output only) Type of encryption algorithm used: des-cbc, 3des-cbc, or None.  
  - **Pseudo random function**—Function that generates highly unpredictable random numbers: hmac-md5 or hmac-sha1.
Table 67: show services ipsec-vpn ike security-associations Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic statistics</td>
<td>Number of bytes and packets received and transmitted on the IKE security association.</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Input bytes, Output bytes—Number of bytes received and transmitted on the IKE security association.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets, Output packets—Number of packets received and transmitted on the IKE security association.</td>
<td></td>
</tr>
<tr>
<td>Flags</td>
<td>Notification to the key management process of the status of the IKE negotiation:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• caller notification sent—Caller program notified about the completion of the IKE negotiation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• waiting for done—Negotiation is done. The library is waiting for the remote end retransmission timers to expire.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• waiting for remove—Negotiation has failed. The library is waiting for the remote end retransmission timers to expire before removing this negotiation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• waiting for policy manager—Negotiation is waiting for a response from the policy manager.</td>
<td></td>
</tr>
<tr>
<td>IPsec security associates</td>
<td>Number of IPsec security associations created and deleted with this IKE security association.</td>
<td>detail</td>
</tr>
<tr>
<td>Phase 2 negotiations in progress</td>
<td>Number of phase 2 negotiations in progress and status information:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Negotiation type—Type of phase 2 negotiation. The Junos OS currently supports quick mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Message ID—Unique identifier for a phase 2 negotiation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Local identity—Identity of the local phase 2 negotiation. The format is id-type-name [proto-name:port-number,[0..id-data-len] = iddata-presentation].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Remote identity—Identity of the remote phase 2 negotiation. The format is id-type-name [proto-name:port-number,[0..id-data-len] = iddata-presentation].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Flags—Notification to the key management process of the status of the IKE negotiation:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• caller notification sent—Caller program notified about the completion of the IKE negotiation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• waiting for done—Negotiation is done. The library is waiting for the remote end retransmission timers to expire.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• waiting for remove—Negotiation has failed. The library is waiting for the remote end retransmission timers to expire before removing this negotiation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• waiting for policy manager—Negotiation is waiting for a response from the policy manager.</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

`show services ipsec-vpn ike security-associations`

```
user@host> show services ipsec-vpn ike security-associations
Remote Address State Initiator cookie Responder cookie Exchange type
```
show services ipsec-vpn ike security-associations detail

user@host> show services ipsec-vpn ike security-associations detail

IKE peer 198.51.100.2
  Role: Responder, State: Matured
  Initiator cookie: d91c9f20f78e1d4e, Responder cookie: 727a04ed8d5021a1
  Exchange type: IKEv2, Authentication method: Pre-shared-keys
  Local: 2013.0.113.2:500, Remote: 198.51.100:500
  Lifetime: Expires in 1357 seconds
  Algorithms:
    Authentication : sha1
    Encryption : 3des-cbc
    Pseudo random function: hmac-sha1
  Traffic statistics:
    Input bytes : 22244
    Output bytes : 22236
    Input packets: 263
    Output packets: 263
  Flags: Caller notification sent
  IPSec security associations: 0 created, 0 deleted
  Phase 2 negotiations in progress: 0

IKE peer 192.0.2.4
  Role: Initiator, State: Matured
  Initiator cookie: cf22bd81a7000001, Responder cookie: fe83795c280002e
  Exchange type: Main, Authentication method: Pre-shared-keys
  Local: 192.0.2.5:500, Remote: 192.0.2.4:500
  Lifetime: Expires in 187 seconds
  Algorithms:
    Authentication : md5
    Encryption : 3des-cbc
    Pseudo random function: hmac-md5
  Traffic statistics:
    Input bytes : 1000
    Output bytes : 1280
    Input packets: 5
    Output packets: 9
  Flags: Caller notification sent
  IPSec security associations: 2 created, 0 deleted
  Phase 2 negotiations in progress: 1

Negotiation type: Quick mode, Role: Initiator, Message ID: 3582889153
  Local: 192.0.2.5:500, Remote: 192.0.2.4:500
  Local identity: ipv4_subnet(tcp:80,[0..7]=10.1.1.0/24)
Remote identity: ipv4_subnet(tcp:100,[0..7]=10.1.2.0/24)
Flags: Caller notification sent, Waiting for done

```
show services ipsec-vpn ike security-associations (on ACX500 Routers)

user@host> show services ipsec-vpn ike security-associations

<table>
<thead>
<tr>
<th>Remote Address</th>
<th>State</th>
<th>Initiator cookie</th>
<th>Responder cookie</th>
<th>Exchange type</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.10.130</td>
<td>Matured</td>
<td>90864887dfecb178</td>
<td>9a2ee2ab786f960d</td>
<td>Main</td>
</tr>
<tr>
<td>192.168.20.130</td>
<td>Matured</td>
<td>1dd17732a8c9b13a</td>
<td>b06e5072ac7362bf</td>
<td>Main</td>
</tr>
<tr>
<td>192.0.2.7</td>
<td>Matured</td>
<td>565e2813075e6fdb</td>
<td>67886757a74edcd6</td>
<td>IKEv2</td>
</tr>
</tbody>
</table>
```
show services ipsec-vpn ipsec security-associations

Syntax

```
show services ipsec-vpn ipsec security-associations
 <brief | detail | extensive>
 <service-set service-set-name>
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

(Adaptive services interface only) Display IPsec security associations for the specified service set. If no service set is specified, the security associations for all service sets are displayed.

Options

- `none`—Display standard information about IPsec security associations for all service sets.
- `brief | detail | extensive`—(Optional) Display the specified level of output.
- `service-set service-set-name`—(Optional) Display information about a particular service set.

Required Privilege Level

- `view`

List of Sample Output

- `show services ipsec-vpn ipsec security associations extensive` on page 1588
- `show services ipsec-vpn ipsec security associations detail` on page 1589
- `show services ipsec-vpn ipsec security associations (on ACX500 Routers)` on page 1589

Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service set</td>
<td>Name of the service set for which the IPsec security associations are defined. If appropriate, includes the outside service interface VRF name.</td>
<td>All levels</td>
</tr>
<tr>
<td>Rule</td>
<td>Name of the rule set applied to the security association.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Term</td>
<td>Name of the IPsec term applied to the security association.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Tunnel index</td>
<td>Numeric identifier of the specific IPsec tunnel for the security association.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Local gateway</td>
<td>Gateway address of the local system.</td>
<td>All levels</td>
</tr>
<tr>
<td>Remote gateway</td>
<td>Gateway address of the remote system.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Table 68: show services ipsec-vpn ipsec security-associations Output Fields
Table 68: show services ipsec-vpn ipsec security-associations Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPsec inside interface</td>
<td>Name of the logical interface hosting the IPsec tunnels.</td>
<td>All levels</td>
</tr>
<tr>
<td>Tunnel MTU</td>
<td>MTU of the IPsec tunnel.</td>
<td>All levels</td>
</tr>
<tr>
<td>Total uptime</td>
<td>Total amount of time that an IPsec tunnel has been up across security association rekeys.</td>
<td>detail</td>
</tr>
</tbody>
</table>

**Local identity**

Protocol, address or prefix, and port number of the local entity of the IPsec association. The format is `id-type-name (proto-name:port-number, [0..id-data-len] = id-data-presentation)`. The protocol is always displayed as any because it is not user-configurable in the IPsec rule. Similarly, the port number field in the output is always displayed as 0 because it is not user-configurable in the IPsec rule. The value of the `id-data-len` parameter can be one of the following, depending on the address configured in the IPsec rule:

- For an IPv4 address, the length is 4 and the value displayed is 3.
- For a subnet mask of an IPv4 address, the length is 8 and the value displayed is 7.
- For a range of IPv4 addresses, the length is 8 and the value displayed is 7.
- For an IPv6 address prefix, the length is 16 and the value displayed is 15.
- For a subnet mask of an IPv6 address prefix, the length is 32 and the value displayed is 31.
- For a range of IPv6 address prefixes, the length is 32 and the value displayed is 31.

The value of the `id-data-presentation` field denotes the IPv4 address or IPv6 prefix details. If the fully qualified domain name (FQDN) is specified instead of the address for the local peer of the IPsec association, it is displayed instead of the address details.

**Remote identity**

Protocol, address or prefix, and port number of the remote entity of the IPsec association. The format is `id-type-name (proto-name:port-number, [0..id-data-len] = id-data-presentation)`. The protocol is always displayed as any because it is not user-configurable in the IPsec rule. Similarly, the port number field in the output is always displayed as 0 because it is not user-configurable in the IPsec rule. The value of the `id-data-len` parameter can be one of the following, depending on the address configured in the IPsec rule:

- For an IPv4 address, the length is 4 and the value displayed is 3.
- For a subnet mask of an IPv4 address, the length is 8 and the value displayed is 7.
- For a range of IPv4 addresses, the length is 8 and the value displayed is 7.
- For an IPv6 address prefix, the length is 16 and the value displayed is 15.
- For a subnet mask of an IPv6 address prefix, the length is 32 and the value displayed is 31.
- For a range of IPv6 address prefixes, the length is 32 and the value displayed is 31.

The value of the `id-data-presentation` field denotes the IPv4 address or IPv6 prefix details. If the fully qualified domain name (FQDN) is specified instead of the address for the remote peer of the IPsec association, it is displayed instead of the address details.
Table 68: show services ipsec-vpn ipsec security-associations Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary remote gateway</td>
<td>IP address of the configured primary remote peer.</td>
<td>All levels</td>
</tr>
<tr>
<td>Backup remote gateway</td>
<td>IP address of the configured backup remote peer.</td>
<td>All levels</td>
</tr>
<tr>
<td>State</td>
<td>State of the primary or backup interface: Active, Offline, or Standby. Both ES PICs are initialized to Offline. For primary and backup peers, State can be Active or Standby. If both peers are in a state of Standby, no connection exists yet between the two peers.</td>
<td>All levels</td>
</tr>
<tr>
<td>Failover counter</td>
<td>Number of times a PIC switched between primary and backup interfaces, or the number of times the tunnel switched between the primary and remote peers since the software has been activated.</td>
<td>All levels</td>
</tr>
<tr>
<td>Direction</td>
<td>Direction of the security association: inbound or outbound.</td>
<td>All levels</td>
</tr>
<tr>
<td>SPI</td>
<td>Value of the security parameter index.</td>
<td>All levels</td>
</tr>
<tr>
<td>AUX-SPI</td>
<td>Value of the auxiliary security parameter index.</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• When the value of Protocol is AH or ESP, AUX-SPI is always 0.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• When the value of Protocol is AH+ESP, AUX-SPI is always a positive integer.</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>Mode of the security association:</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• transport—Protects single host-to-host protections.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• tunnel—Protects connections between security gateways.</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Type of security association:</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• manual—Security parameters require no negotiation. They are static, and are configured by the user.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dynamic—Security parameters are negotiated by the IKE protocol. Dynamic security associations are not supported in transport mode.</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Status of the security association:</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Installed—The security association is installed in the security association database. (For transport mode security associations, the value of State must always be Installed.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Not installed—The security association is not installed in the security association database.</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol supported:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• transport mode supports Encapsulation Security Protocol (ESP) or Authentication Header (AH).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• tunnel mode supports ESP or AH+ESP.</td>
<td></td>
</tr>
<tr>
<td>Authentication</td>
<td>Type of authentication used: hmac-md5-96, hmac-sha1-96, or none.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 68: show services ipsec-vpn ipsec security-associations Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encryption</td>
<td>Type of encryption algorithm used; can be 3des-cbc, aes-cbc (128 bits),</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>aes-cbc (192 bits), aes-cbc (256 bits), aes-gcm (128 bits), aes-gcm (192 bits),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aes-gcm (256 bits), des-cbc, or None.</td>
<td></td>
</tr>
<tr>
<td>NOTE: In Junos FIPS mode, AES-GCM is not supported in Junos OS Release 17.3R1. Starting in Junos OS Release 17.4R1, AES-GCM is supported in Junos FIPS mode.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft lifetime</td>
<td>Each lifetime of a security association has two display options, hard and soft,</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Hard lifetime</td>
<td>one of which must be present for a dynamic security association. The hard lifetime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>specifies the lifetime of the SA. The soft lifetime, which is derived from the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hard lifetime, informs the IPsec key management system that the SA is about to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>expire. This information allows the key management system to negotiate a new SA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>before the hard lifetime expires.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Expires in seconds seconds—Number of seconds left until the security association</td>
<td></td>
</tr>
<tr>
<td></td>
<td>expires.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Expires in kilobytes kilobytes—Number of kilobytes left until the security</td>
<td></td>
</tr>
<tr>
<td></td>
<td>association expires.</td>
<td></td>
</tr>
<tr>
<td>Anti-replay service</td>
<td>State of the service that prevents packets from being replayed: Enabled or</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>Disabled.</td>
<td></td>
</tr>
<tr>
<td>SA lifetime</td>
<td>Configured hard lifetime (total lifetime), in seconds, for the security association.</td>
<td>detail</td>
</tr>
<tr>
<td>Replay window size</td>
<td>Configured size, in packets, of the antireplay service window: 32 or 64. The</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>antireplay window size protects the receiver against replay attacks by rejecting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>old or duplicate packets. If the replay window size is 0, antireplay service is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>disabled.</td>
<td></td>
</tr>
<tr>
<td>disable-natt</td>
<td>Configure to disable NAT-T functionality. By default the NAT-T is enabled.</td>
<td>All levels.</td>
</tr>
<tr>
<td>nat-keepalive</td>
<td>Specify the interval at which NAT keepalive packets can be sent so that NAT</td>
<td>All levels.</td>
</tr>
<tr>
<td></td>
<td>translation continues.</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

show services ipsec-vpn ipsec security associations extensive

user@host> show services ipsec-vpn ipsec security-associations extensive

Service set: service-set-1
  Rule: _junos_, Term: term-1, Tunnel index: 1
  Local gateway: 192.0.2.2, Remote gateway: 198.51.100.4
  IPSec inside interface: sp-2/0/0.1 Local identity:
  ipv4_subnet(any:0,[0..7]=0.0.0.0/0)
  Remote identity: ipv4_subnet(any:0,[0..7]=0.0.0.0/0)
  Primary remote gateway: 192.0.2.1, State: Standby
  Backup remote gateway: 198.51.100.4, State: Active
  Failover counter: 1
  Direction: inbound, SPI: 3743521590, AUX-SPI: 0
Mode: tunnel, Type: dynamic, State: Installed
Soft lifetime: Expires in 23043 seconds
Hard lifetime: Expires in 23178 seconds
Anti-replay service: Enabled, Replay window size: 64
Direction: outbound, SPI: 2551045240, AUX-SPI: 0
Mode: tunnel, Type: dynamic, State: Installed
Soft lifetime: Expires in 23043 seconds
Hard lifetime: Expires in 23178 seconds
Anti-replay service: Enabled, Replay window size: 64
disable-natt: No, nat-keepalive: 10

show services ipsec-vpn ipsec security associations detail

user@host> show services ipsec-vpn ipsec security-associations detail

Service set: ipsec-sset-0, IKE Routing-instance: default
Rule: ipsec-rule-0, Term: term0, Tunnel index: 1
Local gateway: 192.0.2.1, Remote gateway: 192.0.2.2
IPSec inside interface: ms-3/0/0.1, Tunnel MTU: 1500
UDP encapsulate: Disabled, UDP Destination port: 0
Local identity: ipv4_subnet(any:0,[0..7]=198.51.100.0/16)
Remote identity: ipv4_subnet(any:0,[0..7]=203.0.113.0/16)
NATT Detection: Not Detected, NATT keepalive interval: 0
Total uptime: 0 days 0 hrs 1 mins 4 secs
Direction: inbound, SPI: 4004530393, AUX-SPI: 0
Mode: tunnel, Type: dynamic, State: Installed
Soft lifetime: Expires in 27885 seconds
Hard lifetime: Expires in 28736 seconds
Anti-replay service: Enabled, Replay window size: 4096
Copy ToS: Enabled
Copy TTL: Disabled, TTL value: 64
SA lifetime: 28800 seconds

show services ipsec-vpn ipsec security associations (on ACX500 Routers)

user@host> show services ipsec-vpn ipsec security-associations

Service set: SS_1, IKE Routing-instance: Customer-1
Rule: rule_1, Term: 1, Tunnel index: 2
Local gateway: 192.168.1.11, Remote gateway: 192.168.10.130
IPSec inside interface: ms-0/2/0.8, Tunnel MTU: 1300
UDP encapsulate: Disabled, UDP Destination port: 0

<table>
<thead>
<tr>
<th>Direction</th>
<th>SPI</th>
<th>AUX-SPI</th>
<th>Mode</th>
<th>Type</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>inbound</td>
<td>2204677182</td>
<td>0</td>
<td>tunnel</td>
<td>dynamic</td>
<td>ESP</td>
</tr>
<tr>
<td>outbound</td>
<td>3015420439</td>
<td>0</td>
<td>tunnel</td>
<td>dynamic</td>
<td>ESP</td>
</tr>
</tbody>
</table>

Service set: SS_2, IKE Routing-instance: Customer-1

Rule: Customer-1_rule_1, Term: 1, Tunnel index: 1
Local gateway: 192.168.1.12, Remote gateway: 192.168.20.130
IPSec inside interface: ms-0/2/0.7, Tunnel MTU: 1300
UDP encapsulate: Disabled, UDP Destination port: 0

<table>
<thead>
<tr>
<th>Direction</th>
<th>SPI</th>
<th>AUX-SPI</th>
<th>Mode</th>
<th>Type</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>inbound</td>
<td>2093089828</td>
<td>0</td>
<td>tunnel</td>
<td>dynamic</td>
<td>ESP</td>
</tr>
<tr>
<td>outbound</td>
<td>2160146627</td>
<td>0</td>
<td>tunnel</td>
<td>dynamic</td>
<td>ESP</td>
</tr>
</tbody>
</table>
show services ipsec-vpn ipsec statistics

Syntax

show services ipsec-vpn ipsec statistics
   <brief | detail>
   <remote-gw remote-peer-address>
   <service-set service-set-name>

Release Information

Command introduced before Junos OS Release 7.4.
New fields added in Junos OS Release 10.0.

Description

(Adaptive services interface only) Display IPsec statistics for the specified service set. If no service set is specified, the statistics for all service sets are displayed.

Options

none—Display standard IPsec statistics for all service sets.
brief | detail—(Optional) Display the specified level of output.
remote-gw remote-peer-address—(Optional) Display IPsec statistics for an individual IPsec tunnel and an individual remote host.
service-set service-set-name—(Optional) Display information about a particular service set.

Required Privilege

view

List of Sample Output

show services ipsec-vpn ipsec statistics detail on page 1593
show services ipsec-vpn ipsec statistics remote-gw on page 1593
show services ipsec-vpn ipsec statistics (on ACX500) on page 1593

Output Fields

Table 69 on page 1591 lists the output fields for the show services ipsec-vpn ipsec statistics command. Output fields are listed in the approximate order in which they appear.

Table 69: show services ipsec-vpn ipsec statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC</td>
<td>The physical interface on which the IPsec tunnel is configured.</td>
<td>All levels</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of the service set for which the IPsec tunnel is defined.</td>
<td>All levels</td>
</tr>
<tr>
<td>Local gateway</td>
<td>Gateway address of the local system.</td>
<td>All levels</td>
</tr>
<tr>
<td>Remote gateway</td>
<td>Gateway address of the remote system.</td>
<td>All levels</td>
</tr>
<tr>
<td>Tunnel index</td>
<td>Numeric identifier of the specific IPsec tunnel for the security association.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
### Table 69: show services ipsec-vpn ipsec statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ESP statistics</strong></td>
<td>Encapsulation Security Payload (ESP) statistics:</td>
<td>All levels</td>
</tr>
<tr>
<td>• Encrypted bytes</td>
<td>Total number of bytes encrypted by the local system across the IPsec tunnel.</td>
<td></td>
</tr>
<tr>
<td>• Decrypted bytes</td>
<td>Total number of bytes decrypted by the local system across the IPsec tunnel.</td>
<td></td>
</tr>
<tr>
<td>• Encrypted packets</td>
<td>Total number of packets encrypted by the local system across the IPsec tunnel.</td>
<td></td>
</tr>
<tr>
<td>• Decrypted packets</td>
<td>Total number of packets decrypted by the local system across the IPsec tunnel.</td>
<td></td>
</tr>
<tr>
<td><strong>AH Statistics</strong></td>
<td>Authentication Header statistics:</td>
<td>All levels</td>
</tr>
<tr>
<td>• Input bytes</td>
<td>Total number of bytes received by the local system across the IPsec tunnel.</td>
<td></td>
</tr>
<tr>
<td>• Output bytes</td>
<td>Total number of bytes transmitted by the local system across the IPsec tunnel.</td>
<td></td>
</tr>
<tr>
<td>• Input packets</td>
<td>Total number of packets received by the local system across the IPsec tunnel.</td>
<td></td>
</tr>
<tr>
<td>• Output packets</td>
<td>Total number of packets transmitted by the local system across the IPsec tunnel.</td>
<td></td>
</tr>
<tr>
<td><strong>Errors</strong></td>
<td></td>
<td>All levels</td>
</tr>
<tr>
<td>• AH authentication failures</td>
<td>Number of authentication header (AH) failures. An AH failure occurs when there is a mismatch of the authentication header in a packet transmitted across an IPsec tunnel.</td>
<td></td>
</tr>
<tr>
<td>• ESP authentication failures</td>
<td>Number of Encapsulation Security Payload (ESP) failures. An ESP failure occurs when there is an authentication mismatch in ESP packets.</td>
<td></td>
</tr>
<tr>
<td>• ESP Decryption failures</td>
<td>Number of ESP decryption failures.</td>
<td></td>
</tr>
<tr>
<td>• Bad headers</td>
<td>Number of invalid headers detected.</td>
<td></td>
</tr>
<tr>
<td>• Bad trailers</td>
<td>Number of invalid trailers detected.</td>
<td></td>
</tr>
<tr>
<td>• Replay before window drops</td>
<td>Number of replay errors. A replay error is generated when a duplicate packet is received within the replay window.</td>
<td></td>
</tr>
<tr>
<td>• Replayed pkts</td>
<td>Number of packets replayed.</td>
<td></td>
</tr>
<tr>
<td>• IP integrity errors</td>
<td>Number of IP integrity errors.</td>
<td></td>
</tr>
<tr>
<td>• Exceeds tunnel MTU</td>
<td>Number of times the tunnel maximum transmission unit (MTU) value was exceeded.</td>
<td></td>
</tr>
<tr>
<td>• Rule lookup failures</td>
<td>Number of rule lookup failures.</td>
<td></td>
</tr>
<tr>
<td>• No SA errors</td>
<td>Number of errors resulting from a missing security association (SA).</td>
<td></td>
</tr>
<tr>
<td>• Flow errors</td>
<td>Number of flow errors.</td>
<td></td>
</tr>
<tr>
<td>• Misc errors</td>
<td>Number of miscellaneous errors.</td>
<td></td>
</tr>
</tbody>
</table>
Sample Output

show services ipsec-vpn ipsec statistics detail

user@host> show services ipsec-vpn ipsec statistics

PIC: sp-0/2/0, Service set: ss0

ESP Statistics:
Encrypted bytes:    0
Decrypted bytes:    0
Encrypted packets:  0
Decrypted packets:  0

AH Statistics:
Input bytes:       168
Output bytes:      168
Input packets:     2
Output packets:    2

Errors:
AH authentication failures: 0
ESP authentication failures: 0
ESP decryption failures: 0
Bad headers: 0, Bad trailers: 0
Replay before window drops: 0, Replayed pkts: 0
IP integrity errors: 0, Exceeds tunnel MTU: 0
Rule lookup failures: 0, No SA errors: 0
Flow errors: 0, Misc errors: 0

show services ipsec-vpn ipsec statistics remote-gw

user@host> show services ipsec-vpn ipsec statistics remote-gw 192.0.2.1

PIC: sp-3/1/0, Service set: service-set-2
Local gateway: 198.51.100.1, Remote gateway: 192.0.2.1, Tunnel index: 2

ESP Statistics:
Encrypted bytes:    0
Decrypted bytes:    0
Encrypted packets:  0
Decrypted packets:  0

AH Statistics:
Input bytes:       0
Output bytes:      0
Input packets:     0
Output packets:    0

Errors:
AH authentication failures: 0
ESP authentication failures: 0
ESP decryption failures: 0
Bad headers: 0, Bad trailers: 0
Replay before window drops: 0, Replayed pkts: 0
IP integrity errors: 0, Exceeds tunnel MTU: 0
Rule lookup failures: 0, No SA errors: 0
Flow errors: 0, Misc errors: 0

show services ipsec-vpn ipsec statistics (on ACX500)

user@host> show services ipsec-vpn ipsec statistics
PIC: ms-0/2/0, Service set: SS_1

ESP Statistics:
- Encrypted bytes: 4121664
- Decrypted bytes: 151584
- Encrypted packets: 64162
- Decrypted packets: 1579

AH Statistics:
- Input bytes: 0
- Output bytes: 0
- Input packets: 0
- Output packets: 0

Errors:
- AH authentication failures: 0
- ESP authentication failures: 0
- ESP decryption failures: 0
- Bad headers: 0, Bad trailers: 0
- Replay before window drops: 0, Replayed pkts: 0
- IP integrity errors: 0, Exceeds tunnel MTU: 0
- Rule lookup failures: 3, No SA errors: 0
- Flow errors: 0, Misc errors: 0

PIC: ms-0/2/0, Service set: SS_2

ESP Statistics:
- Encrypted bytes: 576
- Decrypted bytes: 576
- Encrypted packets: 6
- Decrypted packets: 6

AH Statistics:
- Input bytes: 0
- Output bytes: 0
- Input packets: 0
- Output packets: 0

Errors:
- AH authentication failures: 0
- ESP authentication failures: 0
- ESP decryption failures: 0
- Bad headers: 0, Bad trailers: 0
- Replay before window drops: 0, Replayed pkts: 0
- IP integrity errors: 0, Exceeds tunnel MTU: 0
- Rule lookup failures: 0, No SA errors: 0
- Flow errors: 0, Misc errors: 0
**show services link-services cpu-usage**

**Syntax**

```plaintext
show services link-services cpu-usage
 <brief | detail>
 <interface interface-name>
```

**Release Information**

Command introduced in Junos OS Release 8.4.

**Description**

(M Series and T Series routers only) Display information about Link Services IQ (LSQ) CPU usage.

**Options**

- `none`—Display standard information about CPU usage for all LSQ interfaces.
- `brief | detail`—(Optional) Display the specified level of output.
- `interface interface-name`—(Optional) Display information about the specified LSQ interface.

**Required Privilege**

`view`

**List of Sample Output**

- show services link-services cpu-usage brief (AS PIC) on page 1597
- show services link-services cpu-usage brief (MultiServices PIC) on page 1597
- show services link-services cpu-usage detail (AS PIC) on page 1597
- show services link-services cpu-usage detail (MultiServices PIC) on page 1598

**Output Fields**

Table 70 on page 1595 lists the output fields for the `show services link-services cpu-usage` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role</td>
<td>CPU functional category.</td>
<td>brief</td>
</tr>
<tr>
<td>1 Second Average</td>
<td>Percentage of usage during 1-second duration.</td>
<td>All levels</td>
</tr>
<tr>
<td>5 Second Average</td>
<td>Percentage of usage during 5-second duration.</td>
<td>All levels</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of service (QoS) CPU, which takes care of queuing and scheduling of incoming IP packets on a per-bundle basis. It schedules packets with higher QoS values first.</td>
<td>All levels</td>
</tr>
<tr>
<td>Sequencer</td>
<td>Assigns sequence numbers to outgoing MLPPP fragments and interleaves link fragmentation and interleaving (LFI) traffic.</td>
<td>All levels</td>
</tr>
<tr>
<td>Load Balancer</td>
<td>Distributes load across different fragmenter CPUs.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Copyright © 2019, Juniper Networks, Inc.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmenter</td>
<td>Main LSQ CPU; fragments IP packets into MLPPP fragments and also reassembles MLPPP fragments into IP packets.</td>
<td>All levels</td>
</tr>
<tr>
<td>Total</td>
<td>Sum of all CPU functions.</td>
<td>brief</td>
</tr>
<tr>
<td>Idle</td>
<td>Counts idle cycles when the CPU does not have any work.</td>
<td>detail</td>
</tr>
<tr>
<td>Timer</td>
<td>Takes care of periodic events driven by a timer, such as timeouts.</td>
<td>detail</td>
</tr>
<tr>
<td>System</td>
<td>System housekeeping thread.</td>
<td>detail</td>
</tr>
<tr>
<td>Input (QoS)</td>
<td>Acquires and queues incoming IP frames from hardware interfaces.</td>
<td>detail</td>
</tr>
<tr>
<td>Output (QoS)</td>
<td>Sends scheduled frames to the next processing CPU.</td>
<td>detail</td>
</tr>
<tr>
<td>Output Frags (QoS)</td>
<td>Sends outstanding frames to the fragmenter CPU.</td>
<td>detail</td>
</tr>
<tr>
<td>Bypass (QoS)</td>
<td>Sends outstanding frames for LFI.</td>
<td>detail</td>
</tr>
<tr>
<td>Free frame (QoS)</td>
<td>Frees dropped frames.</td>
<td>detail</td>
</tr>
<tr>
<td>CPU Number</td>
<td>Identifier number of specific CPU.</td>
<td>detail</td>
</tr>
<tr>
<td>Drop (Fragmenter)</td>
<td>Drops frames that have been marked by the QoS CPU.</td>
<td>detail</td>
</tr>
<tr>
<td>Frag (Fragmenter)</td>
<td>Fragments IP frames into MLPPP fragments.</td>
<td>detail</td>
</tr>
<tr>
<td>Reass (Fragmenter)</td>
<td>Reassembles MLPPP fragments into IP frames.</td>
<td>detail</td>
</tr>
<tr>
<td>Freeback (Fragmenter)</td>
<td>Handles freeback of credits from other CPUs (MultiServices PICs only).</td>
<td>detail</td>
</tr>
<tr>
<td>Input LFI (Sequencer)</td>
<td>Receives LFI traffic from QoS CPU and transmits it with strict priority over MLPPP.</td>
<td>detail</td>
</tr>
<tr>
<td>Input Frag (Sequencer)</td>
<td>Receives MLPPP fragments from fragmenter CPUs, assigns sequence numbers, and appends MLPPP headers.</td>
<td>detail</td>
</tr>
<tr>
<td>Output Frag (Sequencer)</td>
<td>Load-balances and transmits fragments across links.</td>
<td>detail</td>
</tr>
<tr>
<td>Retry (Sequencer)</td>
<td>Retries transmission if hardware was busy in the previous attempt.</td>
<td>detail</td>
</tr>
<tr>
<td>Input Alloc (Load Balancer)</td>
<td>Acquires frames from hardware interfaces and validates them.</td>
<td>detail</td>
</tr>
</tbody>
</table>
Table 70: *show services link-services cpu-usage Output Fields (continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input (Load Balancer)</td>
<td>Performs error and sanity checks and check frames for PortMapping.</td>
<td>detail</td>
</tr>
<tr>
<td>Output (Load Balancer)</td>
<td>Sends frame to next processing CPU.</td>
<td>detail</td>
</tr>
<tr>
<td>Freeback (Load Balancer)</td>
<td>Handles freeback of credits from other CPUs.</td>
<td>detail</td>
</tr>
</tbody>
</table>

Sample Output

**show services link-services cpu-usage brief (AS PIC)**

```
user@host> show services link-services cpu-usage interface lsq-0/0/0 brief

<table>
<thead>
<tr>
<th>Role</th>
<th>1 Second Average</th>
<th>5 Second Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS</td>
<td>1.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Sequencer</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Fragmenter</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Total</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>
```

**show services link-services cpu-usage brief (MultiServices PIC)**

```
user@host> show services link-services cpu-usage interface lsq-0/0/0 brief

<table>
<thead>
<tr>
<th>Role</th>
<th>1 Second Average</th>
<th>5 Second Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Fragmenter</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Load Balancer</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Total</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>
```

**show services link-services cpu-usage detail (AS PIC)**

```
user@host> show services link-services cpu-usage interface lsq-0/0/0 detail

<table>
<thead>
<tr>
<th>QoS</th>
<th>Idle</th>
<th>Timer</th>
<th>System</th>
<th>Input</th>
<th>Output</th>
<th>Output Frags</th>
<th>Bypass</th>
<th>Free frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU0</td>
<td>99.1%</td>
<td>0.9%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>CPU1</td>
<td>99.8%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1 sec ave</td>
<td>99.5%</td>
<td>0.5%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>5 sec ave</td>
<td>99.5%</td>
<td>0.5%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Fragmenter</td>
<td>Idle</td>
<td>Timer</td>
<td>System</td>
<td>Drop</td>
<td>Frag</td>
<td>Reass</td>
<td>Free</td>
<td>frame</td>
</tr>
<tr>
<td>CPU0</td>
<td>96.6%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>3.3%</td>
<td>0.0%</td>
</tr>
<tr>
<td>CPU1</td>
<td>99.9%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>CPU2</td>
<td>99.9%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>CPU3</td>
<td>99.9%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>CPU4</td>
<td>99.9%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
CPU Usage

<table>
<thead>
<tr>
<th>CPU</th>
<th>1 sec ave</th>
<th>5 sec ave</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU5</td>
<td>99.9%</td>
<td>0.1%</td>
</tr>
<tr>
<td>CPU6</td>
<td>99.9%</td>
<td>0.1%</td>
</tr>
<tr>
<td>CPU7</td>
<td>99.9%</td>
<td>0.1%</td>
</tr>
<tr>
<td>CPU8</td>
<td>99.9%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Sequencer Usage

<table>
<thead>
<tr>
<th>Sequencer</th>
<th>Idle</th>
<th>System</th>
<th>Input</th>
<th>Input</th>
<th>Output</th>
<th>Retry</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU0</td>
<td>99.9%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>CPU1</td>
<td>100.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

QoS Usage

<table>
<thead>
<tr>
<th>QoS</th>
<th>Idle</th>
<th>Timer</th>
<th>System</th>
<th>Input</th>
<th>Output</th>
<th>Output</th>
<th>Bypass</th>
<th>Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU0</td>
<td>99.9%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>CPU1</td>
<td>99.9%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Fragmenter Usage

<table>
<thead>
<tr>
<th>Fragmenter</th>
<th>Idle</th>
<th>Timer</th>
<th>System</th>
<th>Drop</th>
<th>Frag</th>
<th>Reass</th>
<th>Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU0</td>
<td>99.9%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>CPU1</td>
<td>99.9%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Load-Balancer Usage

<table>
<thead>
<tr>
<th>Load-Balancer</th>
<th>Idle</th>
<th>System</th>
<th>Input</th>
<th>Output</th>
<th>Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU0</td>
<td>100.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>CPU1</td>
<td>100.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Time Interval</td>
<td>CPU</td>
<td>Memory</td>
<td>Disk</td>
<td>Network</td>
<td>Filesystem</td>
</tr>
<tr>
<td>--------------</td>
<td>-----</td>
<td>--------</td>
<td>------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>1 sec ave</td>
<td>100.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>5 sec ave</td>
<td>100.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
show services l2tp multilink

Syntax
show services l2tp multilink

<brief | detail | extensive | statistics>

<bundle-id number>

Release Information
Command introduced before Junos OS Release 7.4.

Description
(M10i and M7i routers only) Display L2TP output organized by multilink bundle.

Options

none—Same as brief.

brief | detail | extensive | statistics—(Optional) Display the specified level of output. Use the statistics option to display packets and bytes that have been encapsulated in the Multilink Protocol. Nonmultilink packets received on member sessions are not counted here.

bundle-id number—(Optional) Display L2TP multilink bundle information for only the specified bundle.

Required Privilege Level
view

Related Documentation
- L2TP Services Configuration Overview on page 904
- L2TP Minimum Configuration on page 905
- clear services l2tp multilink on page 1384

List of Sample Output
show services l2tp multilink extensive on page 1603

Output Fields
Table 71 on page 1600 lists the output fields for the show services l2tp multilink command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bundle ID</td>
<td>Bundle identifier.</td>
<td>All levels</td>
</tr>
<tr>
<td>Links</td>
<td>Number of links in the multilink bundle.</td>
<td>All levels</td>
</tr>
<tr>
<td>Bundle endpoint</td>
<td>Endpoint discriminator that represents the device transmitting the packet.</td>
<td>All levels</td>
</tr>
<tr>
<td>Input MRRU</td>
<td>Maximum packet size that the input interface can process.</td>
<td>detail</td>
</tr>
</tbody>
</table>
Table 71: `show services l2tp multilink` Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output MRRU</td>
<td>Maximum packet size that the output interface can process.</td>
<td>detail</td>
</tr>
<tr>
<td>Session local ID</td>
<td>Identifier of the local endpoint of the L2TP session, as assigned by the L2TP network server (LNS).</td>
<td>detail</td>
</tr>
<tr>
<td>Session remote ID</td>
<td>Identifier of the remote endpoint of the L2TP session, as assigned by the L2TP access concentrator (LAC).</td>
<td>detail</td>
</tr>
<tr>
<td>State</td>
<td>Status of the L2TP session:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Established—The session is operating.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• closed—The session is being closed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• destroyed—The session is being destroyed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• clean-up—The session is being cleaned up.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ins-ic-accept-new—A new session is being accepted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ins-ic-idle—The session has been created and is idle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ins-ic-reject-new—The new session is being rejected.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ins-ic-wait-connect—The session is waiting for the peer’s incoming call connected (ICCN) message.</td>
<td></td>
</tr>
<tr>
<td>Username</td>
<td>Name of the user logged in to the session.</td>
<td>detail</td>
</tr>
<tr>
<td>Mode</td>
<td>Mode of the interface representing the multilink bundle: dedicated or shared.</td>
<td>extensive</td>
</tr>
<tr>
<td>Local IP</td>
<td>IP address of the local endpoint of the Point-to-Point Protocol (PPP) session.</td>
<td>extensive</td>
</tr>
<tr>
<td>Remote IP</td>
<td>IP address of the remote endpoint of the PPP session.</td>
<td>extensive</td>
</tr>
<tr>
<td>Local name</td>
<td>Name of the LNS instance in which the session was created.</td>
<td>extensive</td>
</tr>
<tr>
<td>Remote name</td>
<td>Name of the LAC from which the session was created.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
Table 71: show services l2tp multilink Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local MRU</td>
<td>Maximum receive unit (MRU) setting of the local device, in bytes.</td>
<td>extensive</td>
</tr>
<tr>
<td>Remote MRU</td>
<td>MRU setting of the remote device, in bytes.</td>
<td>extensive</td>
</tr>
</tbody>
</table>

Statistics since | Date and time when collection of the following statistics began: extensive

- **Control Tx**—Amount of control information transmitted, in packets and bytes.
- **Control Rx**—Amount of control information received, in packets and bytes.
- **Data Tx**—Amount of data transmitted, in packets and bytes.
- **Data Rx**—Amount of data received, in packets and bytes.
- **Errors Tx**—Number of errors transmitted, in packets.
- **Errors Rx**—Number of errors received, in packets.
- **Lcp Echo Req Tx**—Number of LCP echo requests transmitted, in packets.
- **Lcp Echo Req Rx**—Number of LCP echo requests received, in packets.
- **Lcp Echo Rep Tx**—Number of LCP echo responses transmitted, in packets.
- **Lcp Echo Rep Rx**—Number of LCP echo responses received, in packets.
- **Lcp Echo Req Timeout**—Number of LCP echo requests that timed out.
- **Lcp Echo Req Error**—Number of errors received for LCP echo packets.
- **Lcp Echo Rep Error**—Number of errors transmitted for LCP echo packets.
- **MRRU**—Maximum packet size processed.
- **TX**—Number of packets transmitted.
- **RX**—Number of packets received.
- **link**—Link of the multilink bundle associated with the L2TP session.
Sample Output

show services l2tp multilink extensive

```
user@host> show services l2tp multilink extensive

Bundle ID: 1
Links: 2, Bundle endpoint: user@example.com
Input MRRU: 1524, Output MRRU: 1524
Session local ID: 46122, Session remote ID: 39307
  State: Established, Username: user1@example.com, Mode: dedicated
  Local IP: 10.58.255.129:1701, Remote IP: 10.58.255.131:1701
  Local name: router3, Remote name: router4
Session local ID: 4254, Session remote ID: 39308
  State: Established, Username: user2@example.com, Mode: dedicated
  Local IP: 10.1.255.1:1701, Remote IP: 10.1.255.2:1701
  Local name: router1, Remote name: router2
Statistics since: Mon May 17 11:47:35 2004

<table>
<thead>
<tr>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Tx</td>
<td>7</td>
</tr>
<tr>
<td>Control Rx</td>
<td>3</td>
</tr>
<tr>
<td>Data Tx</td>
<td>0</td>
</tr>
<tr>
<td>Data Rx</td>
<td>0</td>
</tr>
<tr>
<td>Errors Tx</td>
<td>0</td>
</tr>
<tr>
<td>Errors Rx</td>
<td>0</td>
</tr>
<tr>
<td>Lcp Echo Req Tx</td>
<td>0</td>
</tr>
<tr>
<td>Lcp Echo Req Rx</td>
<td>0</td>
</tr>
<tr>
<td>Lcp Echo Rep Tx</td>
<td>0</td>
</tr>
<tr>
<td>Lcp Echo Rep Rx</td>
<td>0</td>
</tr>
<tr>
<td>Lcp Echo Req Timeout</td>
<td>0</td>
</tr>
<tr>
<td>Lcp Echo Req Error</td>
<td>0</td>
</tr>
<tr>
<td>Lcp Echo Rep Error</td>
<td>0</td>
</tr>
</tbody>
</table>

MRRU 1486 droptime 0 maxfrag 0 minfrag 32 minmru 1482 maxqlen 3000
TX: Packets 0 Frags 0 Txseq 0x0
RX: Packets 24 Frags 24 Rxseq 0x18 mseq 23 maxdiff 1 reas 24
  fragments copied 0
link 0 : seq 0x17 mru 1482 encaplen 8 qlen 0 context 0xea01eb0
```
show services l2tp radius

Syntax

```
show services l2tp radius
<accounting (servers | statistics)>
<authentication (servers | statistics)>
<servers>
<statistics>
```

Release Information
Command introduced in Junos OS Release 9.0.

Description
(M7i, M10i, and M120 routers only) Display RADIUS servers and statistics information for the RADIUS servers configured on the router.

Options
You must include one of the following keywords to provide a valid completion for the command:

- **accounting (servers | statistics)**—(Optional) Display RADIUS servers or statistical accounting information only.
- **authentication (servers | statistics)**—(Optional) Display RADIUS servers or statistical authentication information only.
- **servers**—(Optional) Display RADIUS authentication and accounting server information only.
- **statistics**—(Optional) Display RADIUS authentication and accounting statistics information only.

Required Privilege
view

Related Documentation
- L2TP Services Configuration Overview on page 904
- L2TP Minimum Configuration on page 905

List of Sample Output
- show services l2tp radius servers on page 1606
- show services l2tp radius statistics on page 1607

Output Fields
Table 72 on page 1604 lists the output fields for the show services l2tp radius command. Output fields are listed in the approximate order in which they appear.

Table 72: show services l2tp radius Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>IP address of the server.</td>
</tr>
<tr>
<td>State</td>
<td>(servers keyword only) Present state of the server.</td>
</tr>
</tbody>
</table>
Table 72: show services l2tp radius Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP Port</td>
<td>Number of the UDP port used to send authentication or accounting messages to the server.</td>
</tr>
<tr>
<td>Retry Count</td>
<td>(servers keyword only) Number of times the RADIUS client resends a packet if no ACK is received.</td>
</tr>
<tr>
<td>Timeout</td>
<td>(servers keyword only) Length of time the client waits for an ACK before retransmission.</td>
</tr>
<tr>
<td>Pending Requests</td>
<td>(servers keyword only) Number of client pending authentication or accounting requests.</td>
</tr>
<tr>
<td>Maximum Sessions</td>
<td>(servers keyword only) Maximum number of pending requests on each RADIUS client before the server moves to the next RADIUS client, which is 200 times the maximum number of clients that can be created on a server (which is 12).</td>
</tr>
<tr>
<td>Dead Time</td>
<td>(servers keyword only) Interval to wait before retrying a server after it fails to send a response to an authentication or accounting request.</td>
</tr>
<tr>
<td>Secret Type</td>
<td>(servers keyword only) Secret type configured on the RADIUS server.</td>
</tr>
<tr>
<td>Profile</td>
<td>(servers keyword only) Name of profile configured for the RADIUS server.</td>
</tr>
<tr>
<td>Access requests</td>
<td>(statistics keyword only) Number of access requests sent to the server.</td>
</tr>
<tr>
<td>Rollover requests</td>
<td>(statistics keyword only) Number of requests coming into the server as a result of the previous server timing out.</td>
</tr>
<tr>
<td>Retransmissions</td>
<td>(statistics keyword only) Number of retransmissions.</td>
</tr>
<tr>
<td>Access accepts</td>
<td>(statistics keyword only) Number of access accept messages received from the server.</td>
</tr>
<tr>
<td>Access rejects</td>
<td>(statistics keyword only) Number of access reject messages received from the server.</td>
</tr>
<tr>
<td>Access challenges</td>
<td>(statistics keyword only) Number of access challenges received from the server.</td>
</tr>
<tr>
<td>Malformed responses</td>
<td>(statistics keyword only) Number of responses with attributes having an invalid length or unexpected attributes (such as two attributes when the response is required to have at most one).</td>
</tr>
<tr>
<td>Bad authenticators</td>
<td>(statistics keyword only) Number of responses in which the authenticator is incorrect for the matching request. This can occur if the RADIUS secrets for the client and server do not match.</td>
</tr>
<tr>
<td>Requests pending</td>
<td>(statistics keyword only) Number of requests waiting for a response.</td>
</tr>
<tr>
<td>Request timeouts</td>
<td>(statistics keyword only) Number of requests that timed out.</td>
</tr>
<tr>
<td>Unknown responses</td>
<td>(statistics keyword only) Number of unknown responses. The RADIUS response type in the header is invalid or unsupported.</td>
</tr>
</tbody>
</table>
Table 72: show services l2tp radius Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets dropped</td>
<td>(statistics keyword only) Number of packets dropped because they are too short or because the router receives a response for which there is no corresponding request. For example, if the router sends a request that times out, the router removes the request from the list and sends a new request. If the server is slow and sends a response to the first request after the router removes the request, the packet is dropped.</td>
</tr>
</tbody>
</table>

Sample Output

show services l2tp radius servers

```
user@host> show services l2tp radius servers

RADIUS Authentication Servers

<table>
<thead>
<tr>
<th>IP Address</th>
<th>State</th>
<th>Port</th>
<th>Retry</th>
<th>Count</th>
<th>Timeout</th>
<th>Requests</th>
<th>Maximum</th>
<th>Sessions</th>
<th>Dead Time</th>
<th>Secret Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.2.1</td>
<td>Active</td>
<td>1812</td>
<td>35</td>
<td>0</td>
<td>2400</td>
<td>300</td>
<td>radius-key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198.51.100.1</td>
<td>Active</td>
<td>1812</td>
<td>25</td>
<td>0</td>
<td>2400</td>
<td>300</td>
<td>radius-key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203.0.113.1</td>
<td>Active</td>
<td>1812</td>
<td>75</td>
<td>0</td>
<td>2400</td>
<td>300</td>
<td>radius-key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.28.30.174</td>
<td>Active</td>
<td>1812</td>
<td>2</td>
<td>25</td>
<td>2400</td>
<td>300</td>
<td>radius-key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.28.30.175</td>
<td>Active</td>
<td>1812</td>
<td>7</td>
<td>75</td>
<td>2400</td>
<td>300</td>
<td>radius-key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.28.30.176</td>
<td>Active</td>
<td>1812</td>
<td>4</td>
<td>55</td>
<td>2400</td>
<td>300</td>
<td>radius-key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.31.30.174</td>
<td>Active</td>
<td>1812</td>
<td>3</td>
<td>3</td>
<td>2400</td>
<td>300</td>
<td>none-set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.31.130.174</td>
<td>Active</td>
<td>1812</td>
<td>7</td>
<td>75</td>
<td>2400</td>
<td>300</td>
<td>radius-key</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RADIUS Accounting Servers

<table>
<thead>
<tr>
<th>IP Address</th>
<th>State</th>
<th>Port</th>
<th>Retry</th>
<th>Count</th>
<th>Timeout</th>
<th>Requests</th>
<th>Maximum</th>
<th>Sessions</th>
<th>Dead Time</th>
<th>Secret Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.2.1</td>
<td>Active</td>
<td>1813</td>
<td>35</td>
<td>0</td>
<td>2400</td>
<td>300</td>
<td>radius-key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198.51.100.1</td>
<td>Active</td>
<td>1813</td>
<td>25</td>
<td>0</td>
<td>2400</td>
<td>300</td>
<td>radius-key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203.0.113.1</td>
<td>Active</td>
<td>1813</td>
<td>75</td>
<td>0</td>
<td>2400</td>
<td>300</td>
<td>radius-key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.28.30.174</td>
<td>Active</td>
<td>1813</td>
<td>2</td>
<td>25</td>
<td>2400</td>
<td>300</td>
<td>radius-key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.28.30.175</td>
<td>Active</td>
<td>1813</td>
<td>7</td>
<td>75</td>
<td>2400</td>
<td>300</td>
<td>radius-key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.28.30.176</td>
<td>Active</td>
<td>1813</td>
<td>4</td>
<td>55</td>
<td>2400</td>
<td>300</td>
<td>radius-key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.31.30.174</td>
<td>Active</td>
<td>1813</td>
<td>3</td>
<td>3</td>
<td>2400</td>
<td>300</td>
<td>none-set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.31.130.174</td>
<td>Active</td>
<td>1813</td>
<td>7</td>
<td>75</td>
<td>2400</td>
<td>300</td>
<td>radius-key</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Profile: user1
```
show services l2tp radius statistics

user@host> show services l2tp radius statistics

<table>
<thead>
<tr>
<th>RADIUS Authentication Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server 192.0.2.1, UDP port: 1812</td>
</tr>
<tr>
<td>Access requests : 40</td>
</tr>
<tr>
<td>Rollover requests : 5</td>
</tr>
<tr>
<td>Retransmissions : 2</td>
</tr>
<tr>
<td>Access accepts : 39</td>
</tr>
<tr>
<td>Access rejects : 1</td>
</tr>
<tr>
<td>Access challenges : 3</td>
</tr>
<tr>
<td>Malformed responses : 0</td>
</tr>
<tr>
<td>Bad authenticators : 0</td>
</tr>
<tr>
<td>Requests pending : 1</td>
</tr>
<tr>
<td>Request timeouts : 0</td>
</tr>
<tr>
<td>Unknown responses : 0</td>
</tr>
<tr>
<td>Packets dropped : 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RADIUS Accounting Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server 172.31.130.174, UDP port: 1813</td>
</tr>
<tr>
<td>Total requests : 9</td>
</tr>
<tr>
<td>Start requests : 6</td>
</tr>
<tr>
<td>Interim requests : 1</td>
</tr>
<tr>
<td>Stop requests : 2</td>
</tr>
<tr>
<td>Rollover requests : 0</td>
</tr>
<tr>
<td>Retransmissions : 1</td>
</tr>
<tr>
<td>Total response : 9</td>
</tr>
<tr>
<td>Start responses : 6</td>
</tr>
<tr>
<td>Interim responses : 1</td>
</tr>
<tr>
<td>Stop responses : 2</td>
</tr>
<tr>
<td>Malformed responses : 0</td>
</tr>
<tr>
<td>Bad authenticators : 0</td>
</tr>
<tr>
<td>Requests pending : 1</td>
</tr>
<tr>
<td>Request timeouts : 0</td>
</tr>
<tr>
<td>Unknown responses : 0</td>
</tr>
<tr>
<td>Packets dropped : 0</td>
</tr>
</tbody>
</table>
show services l2tp session

Syntax

```
show services l2tp session
<brief | detail | extensive>
<interface interface-name>
<local-gateway gateway-address>
<local-gateway-name gateway-name>
<local-session-id session-id>
<local-tunnel-id tunnel-id>
<peer-gateway gateway-address>
<peer-gateway-name gateway-name>
<statistics>
<tunnel-group group-name>
<user username>
```

Release Information

Command introduced before Junos OS Release 7.4.
Support for LAC on MX Series routers introduced in Junos OS Release 10.4.
Support for LNS on MX Series routers introduced in Junos OS Release 11.4.

Description

(M10i and M7i routers only) Display information about active L2TP sessions for LNS.

(MX Series routers only) Display information about active L2TP sessions for LAC and LNS.

Options

```
one—Display standard information about all active L2TP sessions.
brief | detail | extensive—(Optional) Display the specified level of output.
interface interface-name—(Optional) Display L2TP session information for only the specified adaptive services or inline services interface. The interface type depends on the line card as follows:

• si-fpc/pic/port—MPCs on MX Series routers only. This option is not available for L2TP on M Series routers.
• sp-fpc/pic/port—AS or Multiservices PICs on M7i, M10i, and M120 routers only. This option is not available for L2TP on MX Series routers.

local-gateway gateway-address—(Optional) Display L2TP session information for only the specified local gateway address.

local-gateway-name gateway-name—(Optional) Display L2TP session information for only the specified local gateway name.

local-session-id session-id—(Optional) Display L2TP session information for only the specified local session identifier.

local-tunnel-id tunnel-id—(Optional) Display L2TP session information for only the specified local tunnel identifier.
```
peer-gateway gateway-address—(Optional) Display L2TP session information for only the specified peer gateway address.

peer-gateway-name gateway-name—(Optional) Display L2TP session information for only the specified peer gateway name.

statistics—(Optional) Display the number of control packets and bytes transmitted and received for the session. You cannot include this option with any of the level options, brief, detail, or extensive.

tunnel-group group-name—(Optional) Display L2TP session information for only the specified tunnel group. To display information about L2TP CPU and memory usage, you can include the tunnel group name in the show services service-sets memory-usage group-name and show services service-sets cpu-usage group-name commands. This option is not available for L2TP LAC on MX Series routers.

user username—(M Series routers only) (Optional) Display L2TP session information for only the specified username.

Required Privilege
Level view

Related Documentation
• L2TP Services Configuration Overview on page 904
• L2TP Minimum Configuration on page 905
• clear services l2tp session on page 1385

List of Sample Output
show services l2tp session (LNS on M Series Routers) on page 1613
show services l2tp session (LNS on MX Series Routers) on page 1613
show services l2tp session (LAC) on page 1613
show services l2tp session detail (LAC) on page 1613
show services l2tp session extensive (LAC) on page 1614
show services l2tp session extensive (LAC on MX Series Routers) on page 1614
show services l2tp session extensive (LNS on M Series Routers) on page 1615
show services l2tp session extensive (LNS on MX Series Routers) on page 1615
show services l2tp session statistics (MX Series Routers) on page 1616

Output Fields
Table 73 on page 1609 lists the output fields for the show services l2tp session command. Output fields are listed in the approximate order in which they appear.

Table 73: show services l2tp session Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>(LNS only) Name of an adaptive services interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Tunnel group</td>
<td>(LNS only) Name of a tunnel group.</td>
<td>All levels</td>
</tr>
<tr>
<td>Tunnel local ID</td>
<td>Identifier of the local endpoint of the tunnel, as assigned by the L2TP network server (LNS).</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 73: show services l2tp session Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session local ID</td>
<td>Identifier of the local endpoint of the L2TP session, as assigned by the LNS.</td>
<td>All levels</td>
</tr>
<tr>
<td>Session remote ID</td>
<td>Identifier of the remote endpoint of the L2TP session, as assigned by the L2TP access concentrator (LAC).</td>
<td>All levels</td>
</tr>
<tr>
<td>State</td>
<td>State of the L2TP session:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• Established—Session is operating. This is the only state supported for the LAC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• closed—Session is being closed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• destroyed—Session is being destroyed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• clean-up—Session is being cleaned up.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ins-ic-accept-new—New session is being accepted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ins-ic-idle—Session has been created and is idle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ins-ic-reject-new—New session is being rejected.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ins-ic-wait-connect—Session is waiting for the peer's incoming call connected (ICCN) message.</td>
<td></td>
</tr>
<tr>
<td>Bundle ID</td>
<td>(LNS only) Bundle identifier. Indicates the session is part of a multilink bundle. Sessions that have a blank Bundle field are not participating in the Multilink Protocol. Sessions in a multilink bundle might belong to different L2TP tunnels. For L2TP output organized by bundle ID, issue the show services l2tp multilink extensive command.</td>
<td>All levels</td>
</tr>
<tr>
<td>Mode</td>
<td>(LNS) Mode of the interface representing the session: shared or exclusive.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>(LAC) Mode of the interface representing the session: shared or dedicated. Only dedicated is currently supported for the LAC.</td>
<td></td>
</tr>
<tr>
<td>Local IP</td>
<td>IP address of local endpoint of the Point-to-Point Protocol (PPP) session.</td>
<td>extensive</td>
</tr>
<tr>
<td>Remote IP</td>
<td>IP address of remote endpoint of the PPP session.</td>
<td>extensive</td>
</tr>
<tr>
<td>Username</td>
<td>(LNS only) Name of the user logged in to the session.</td>
<td>All levels</td>
</tr>
<tr>
<td>Assigned IP address</td>
<td>(LNS only) IP address assigned to remote client.</td>
<td>extensive</td>
</tr>
<tr>
<td>Local name</td>
<td>For LNS, name of the LNS instance in which the session was created. For LAC, name of the LAC.</td>
<td>extensive</td>
</tr>
<tr>
<td>Remote name</td>
<td>For LNS, name of the LAC from which the session was created. For LAC, name of the LAC instance.</td>
<td>extensive</td>
</tr>
<tr>
<td>Local MRU</td>
<td>(LNS only) Maximum receive unit (MRU) setting of the local device, in bytes.</td>
<td>extensive</td>
</tr>
<tr>
<td>Remote MRU</td>
<td>(LNS only) MRU setting of the remote device, in bytes.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
Table 73: show services l2tp session Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx speed</td>
<td>Transmit speed of the session conveyed from the LAC to the LNS, in bits per second (bps) and the source method from which the speed is derived.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>Starting in Junos OS Release 14.1, either the initial (initial) line speed or both the initial and current (update) line speeds can be displayed on MX Series routers:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• When connection speed updates are not enabled, then only the initial line speed is displayed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• When connection speed updates are enabled, then both the initial and the current speeds are displayed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For Junos OS Release 17.2 and Release 17.3, only the current (update) line speed can be displayed on MX Series routers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starting in Junos OS Release 17.4R1, once again either the initial (initial) line speed or both the initial and current (update) line speeds can be displayed on MX Series routers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starting in Junos OS Release 15.1, when the Tx connect speed method is set to none, the value of zero (0) is displayed.</td>
<td></td>
</tr>
<tr>
<td>Rx speed</td>
<td>Receive speed of the session conveyed from the LAC to the LNS, in bits per second (bps) and the source method from which the speed is derived.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>Starting in Junos OS Release 14.1, either the initial (initial) line speed or both the initial and current (update) line speeds can be displayed on MX Series routers:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• When connection speed updates are not enabled, then only the initial line speed is displayed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• When connection speed updates are enabled, then both the initial and the current speeds are displayed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For Junos OS Release 17.2 and Release 17.3, only the current (update) line speed can be displayed on MX Series routers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starting in Junos OS Release 17.4R1, once again either the initial (initial) line speed or both the initial and current (update) line speeds can be displayed on MX Series routers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starting in Junos OS Release 15.1, when the Tx connect speed method is set to none, the value of zero (0) is displayed.</td>
<td></td>
</tr>
<tr>
<td>Bearer type</td>
<td>Type of bearer enabled:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• 0— Might indicate that the call was not received over a physical link (for example, when the LAC and PPP are located in the same subsystem).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1—Digital access requested.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2—Analog access requested.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 4—Asynchronous Transfer Mode (ATM) bearer support.</td>
<td></td>
</tr>
<tr>
<td>Framing type</td>
<td>Type of framing enabled:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• 1—Synchronous framing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2—Asynchronous framing</td>
<td></td>
</tr>
</tbody>
</table>
Table 73: `show services l2tp session` Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCP renegotiation</td>
<td>(LNS only) Whether Link Control Protocol (LCP) renegotiation is configured: On or Off.</td>
<td>extensive</td>
</tr>
<tr>
<td>Authentication</td>
<td>Type of authentication algorithm used: Challenge Handshake Authentication Protocol (CHAP) or Password Authentication Protocol (PAP).</td>
<td>extensive</td>
</tr>
<tr>
<td>Interface ID</td>
<td>(LNS only) Identifier used to look up the logical interface for this session.</td>
<td>extensive</td>
</tr>
<tr>
<td>Interface unit</td>
<td>Logical interface for this session.</td>
<td>All levels</td>
</tr>
<tr>
<td>Call serial number</td>
<td>Unique serial number assigned to the call.</td>
<td>extensive</td>
</tr>
<tr>
<td>Policer bandwidth</td>
<td>Maximum policer bandwidth configured for this session.</td>
<td>extensive</td>
</tr>
<tr>
<td>Policer burst size</td>
<td>Maximum policer burst size configured for this session.</td>
<td>extensive</td>
</tr>
<tr>
<td>Firewall filter</td>
<td>Configured firewall filter name.</td>
<td>extensive</td>
</tr>
<tr>
<td>Session encapsulation overhead</td>
<td>Overhead allowance configured for this session, in bytes.</td>
<td>extensive</td>
</tr>
<tr>
<td>Session cell overhead</td>
<td>Cell overhead activation (On or Off).</td>
<td>extensive</td>
</tr>
<tr>
<td>Create time</td>
<td>Date and time when the call was created.</td>
<td>extensive</td>
</tr>
<tr>
<td>Up time</td>
<td>Length of time elapsed since the call became active, in hours, minutes, and seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>Idle time</td>
<td>Length of time elapsed since the call became idle, in hours, minutes, and seconds.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
Table 73: show services l2tp session Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics since</td>
<td>Date and time when collection of the following statistics began:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Control Tx—Amount of control information transmitted, in packets and bytes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Control Rx—Amount of control information received, in packets and bytes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Data Tx—Amount of data transmitted, in packets and bytes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Data Rx—Amount of data received, in packets and bytes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Errors Tx—Number of errors transmitted, in packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Errors Rx—Number of errors received, in packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LCP echo req Tx—Number of LCP echo requests transmitted, in packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LCP echo req Rx—Number of LCP echo requests received, in packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LCP echo rep Tx—Number of LCP echo responses transmitted, in packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LCP echo rep Rx—Number of LCP echo responses received, in packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LCP echo Req timeout—Number of LCP echo requests that timed out.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LCP echo Req error—Number of errors received for LCP echo packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LCP echo Rep error—Number of errors transmitted for LCP echo packets.</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

show services l2tp session (LNS on M Series Routers)

```
user@host> show services l2tp session
Interface: sp-1/2/0, Tunnel group: group1, Tunnel local ID: 8802
Local  Remote  Interface State       Bundle Username
ID     ID          unit
37966    5         2 Established
```

show services l2tp session (LNS on MX Series Routers)

```
user@host> show services l2tp session
Tunnel local ID: 40553
Local  Remote  State     Interface unit   Interface Name
ID     ID                  unit
17967   1   Established   1073749824  si-5/2/0
```

show services l2tp session (LAC)

```
user@host> show services l2tp session
Tunnel local ID: 31889
Local  Remote  State     Interface unit   Interface Name
ID     ID                  unit
31694   1   Established   311           pp0
```

show services l2tp session detail (LAC)

```
user@host> show services l2tp session detail
```
show services l2tp session extensive (LAC)

<table>
<thead>
<tr>
<th>Tunnel local ID: 31889</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session local ID: 31694, Session remote ID: 1, Interface unit: 311</td>
</tr>
<tr>
<td>State: Established, Interface: pp0, Mode: Dedicated</td>
</tr>
<tr>
<td>Local IP: 203.0.113.2:1701, Remote IP: 203.0.113.1:1701</td>
</tr>
<tr>
<td>Local name: ce-lac, Remote name: ce-lns</td>
</tr>
<tr>
<td>Tx speed: 0, Rx speed: 0</td>
</tr>
<tr>
<td>Bearer type: 1, Framing type: 1</td>
</tr>
<tr>
<td>LCP renegotiation: N/A, Authentication: None, Interface ID: N/A</td>
</tr>
<tr>
<td>Interface unit: 311, Call serial number: 0</td>
</tr>
<tr>
<td>Policer bandwidth: 0, Policer burst size: 0</td>
</tr>
<tr>
<td>Policer exclude bandwidth: 0, Firewall filter: 0</td>
</tr>
<tr>
<td>Session encapsulation overhead: 0, Session cell overhead: 0</td>
</tr>
<tr>
<td>Create time: Tue Aug 24 14:38:23 2010, Up time: 01:06:25</td>
</tr>
<tr>
<td>Idle time: N/A</td>
</tr>
</tbody>
</table>

show services l2tp session extensive (LAC on MX Series Routers)

<table>
<thead>
<tr>
<th>Tunnel local ID: 31889</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session local ID: 31694, Session remote ID: 1</td>
</tr>
<tr>
<td>Interface unit: 311</td>
</tr>
<tr>
<td>State: Established, Mode: Dedicated</td>
</tr>
<tr>
<td>Local IP: 203.0.113.102:1701, Remote IP: 203.0.113.101:1701</td>
</tr>
<tr>
<td>Local name: ce-lac, Remote name: ce-lns</td>
</tr>
<tr>
<td>Tx speed: 256000, Rx speed: 128000</td>
</tr>
<tr>
<td>Bearer type: 1, Framing type: 1</td>
</tr>
<tr>
<td>LCP renegotiation: N/A, Authentication: None, Interface ID: N/A</td>
</tr>
<tr>
<td>Interface unit: 311, Call serial number: 0</td>
</tr>
<tr>
<td>Policer bandwidth: 0, Policer burst size: 0</td>
</tr>
<tr>
<td>Policer exclude bandwidth: 0, Firewall filter: 0</td>
</tr>
<tr>
<td>Session encapsulation overhead: 0, Session cell overhead: 0</td>
</tr>
<tr>
<td>Create time: Tue Aug 24 14:38:23 2010, Up time: 01:06:25</td>
</tr>
<tr>
<td>Idle time: N/A</td>
</tr>
</tbody>
</table>

show services l2tp session extensive (LNS on M Series Routers)

<table>
<thead>
<tr>
<th>Interface: sp-1/2/0, Tunnel group: group1, Tunnel local ID: 62746</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session local ID: 56793, Session remote ID: 53304</td>
</tr>
<tr>
<td>State: Established, Bundle ID: 5, Mode: shared</td>
</tr>
<tr>
<td>Local IP: 203.0.113.121:1701, Remote IP: 203.0.113.202:1701</td>
</tr>
<tr>
<td>Username: user@example.com, Assigned IP address: 203.0.113.51/32</td>
</tr>
<tr>
<td>Local MRU: 4000, Remote MRU: 1500, Tx speed: 64000, Rx speed: 64000</td>
</tr>
<tr>
<td>Bearer type: 2, Framing type: 1</td>
</tr>
<tr>
<td>LCP renegotiation: Off, Authentication: CHAP, Interface ID: unit_20</td>
</tr>
</tbody>
</table>
Interface unit: 20, Call serial number: 4137941434
Policer bandwidth: 64000, Policer burst size: 51200
Firewall filter: f1
Session encapsulation overhead: 16, Session cell overhead: On
Create time: Tue Mar 23 14:13:15 2004, Up time: 01:16:41
Idle time: 00:00:00
Statistics since: Tue Mar 23 14:13:13 2004

<table>
<thead>
<tr>
<th></th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Tx</td>
<td>4</td>
<td>88</td>
</tr>
<tr>
<td>Control Rx</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>Data Tx</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Data Rx</td>
<td>461</td>
<td>29.0k</td>
</tr>
<tr>
<td>Errors Tx</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Errors Rx</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Interface: sp-1/2/0, Tunnel group: group_company_dns, Tunnel local ID: 37266
Session local ID: 39962, Session remote ID: 53303
State: Established, Bundle ID: 5, Mode: shared
Local IP: 203.0.113.121:1701, Remote IP: 203.0.113.222:1701
Username: usr1@company.example.com, Assigned IP address: 203.0.113.3/24
Local name: router-1, Remote name: router-2
Local MRU: 4470, Remote MRU: 4470, Tx speed: 155000000, Rx speed: 155000000
Bearer type: 2, Framing type: 1
LCP renegotiation: Off, Authentication: CHAP, Interface ID: unit_31
Interface unit: 31, Call serial number: 4137941433
Policer bandwidth: 64000, Policer burst size: 51200
Firewall filter: f1
Create time: Tue Mar 23 14:13:17 2004, Up time: 01:16:39
Idle time: 01:16:36
Statistics since: Tue Mar 23 14:13:15 2004

<table>
<thead>
<tr>
<th></th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Tx</td>
<td>6</td>
<td>196</td>
</tr>
<tr>
<td>Control Rx</td>
<td>4</td>
<td>150</td>
</tr>
<tr>
<td>Data Tx</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Data Rx</td>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>Errors Tx</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Errors Rx</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

show services l2tp session extensive (LNS on MX Series Routers)

user@host> show services l2tp session extensive

Tunnel local ID: 40553
Session local ID: 17967, Session remote ID: 1
Interface unit: 107349824
State: Established
Interface: si-5/2/0
Mode: Dedicated
Local IP: 192.0.2.2:1701, Remote IP: 192.0.2.3:1701
Local name: lns-mx960, Remote name: testlac
Tx speed: initial 64000, Update 256000
Rx speed: initial 64000, Update 256000
Bearer type: 2, Framing type: 1
LCP renegotiation: Off, Authentication: None
Call serial number: 1
Create time: Mon Apr 25 20:27:50 2011, Up time: 00:01:48
Idle time: N/A
Statistics since: Mon Apr 25 20:27:50 2011

<table>
<thead>
<tr>
<th></th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Tx</td>
<td>4</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Control Rx</td>
<td>Data Tx</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>0</td>
</tr>
</tbody>
</table>

show services l2tp session statistics (MX Series Routers)

```bash
user@host> show services l2tp session statistics local session-id 1
Tunnel local ID: 17185
Session local ID: 1, Session remote ID: 14444, Interface unit: 1073788352
State: Established
```

<table>
<thead>
<tr>
<th></th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Tx</td>
<td>4 51</td>
<td></td>
</tr>
<tr>
<td>Data Rx</td>
<td>3 36</td>
<td></td>
</tr>
</tbody>
</table>
show services l2tp summary

Syntax

show services l2tp summary
<interface sp-fpc/pic/port>
<statistics>

Release Information

Command introduced before Junos OS Release 7.4.
Support for LAC on MX Series routers introduced in Junos OS Release 10.4.
Support for LNS on MX Series routers introduced in Junos OS Release 11.4.

Description

(M10i and M7i routers: LNS only. MX Series routers: LAC and LNS.) Display Layer 2 Tunneling Protocol (L2TP) summary information.

Options

none—Display complete L2TP summary information. For LNS on M Series routers, display L2TP summary information for all adaptive services interfaces. For LNS on MX Series routers, display L2TP summary information for all inline services interfaces.

interface sp-fpc/pic/port—(Optional) Display L2TP summary information for only the specified adaptive services interface. This option is not available for L2TP on MX Series routers.

statistics—(Optional) Display a summary of control packets and bytes transmitted and received.

Required Privilege Level

view

Related Documentation

• L2TP Services Configuration Overview on page 904
• L2TP Minimum Configuration on page 905

List of Sample Output

show services l2tp summary (LAC on M Series routers) on page 1620
show services l2tp summary (LAC on MX Series routers) on page 1621
show services l2tp summary (LNS on MX Series routers) on page 1621
show services l2tp summary (LNS on M Series routers) on page 1621
show services l2tp summary statistics (MX Series routers) on page 1621

Output Fields

Table 74 on page 1617 lists the output fields for the show services l2tp summary command. Output fields are listed in the approximate order in which they appear.

Table 74: show services l2tp summary Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative state</td>
<td>Administrative state of the tunnel is drain. In this state you cannot configure new sessions, destinations, or tunnels at the LAC or LNS.</td>
</tr>
</tbody>
</table>
Table 74: show services l2tp summary Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failover within a preference level</td>
<td>State of this tunnel selection method on the LAC. When enabled, tunnel selection fails over within a preference level. When disabled, tunnel selection drops to the next lower preference level. Not displayed for LNS on M Series routers.</td>
</tr>
<tr>
<td>Weighted load balancing</td>
<td>State of this tunnel selection method on the LAC. When enabled, the maximum session limit of a tunnel determines its weight within a preference level. Tunnel selection proceeds from greatest to least weight. When disabled, selection defaults to a round robin method. Not displayed for LNS on M Series routers.</td>
</tr>
<tr>
<td>Destination equal load balancing</td>
<td>State of this tunnel selection method on the LAC. When enabled, the LAC selects tunnels based on the session count for destinations and the tunnel session count. Not displayed for LNS on M Series routers.</td>
</tr>
<tr>
<td>Tunnel authentication challenge</td>
<td>State of tunnel authentication, indicating whether the LAC and LNS exchange an authentication challenge and response during the establishment of the tunnel. The state is Enabled when a secret is configured in the tunnel profile or on the RADIUS server in the Tunnel-Password attribute [69]. The state is Disabled when the secret is not present. Not displayed for LNS on M Series routers.</td>
</tr>
<tr>
<td>Calling number avp</td>
<td>When the state is Enabled, the LAC includes the value of the Calling Number AVP 22 in ICRQ packets sent to the LNS. When the state is Disabled, the attribute is not sent to the LNS. Not displayed for LNS on M Series routers.</td>
</tr>
<tr>
<td>Failover Protocol</td>
<td>When the state is enabled, the LAC operates in the default failover-protocol-fail-back-to-silent-failover manner. When the state is disabled, the disable-failover-protocol statement has been issued and the LAC operates only in silent failover mode. Not displayed for LNS on M Series routers.</td>
</tr>
</tbody>
</table>
| Tx connect speed method | The connection speed method configured to send the speed values in the L2TP Tx Connect Speed (AVP 24) and L2TP Rx Connect Speed (AVP 38). Possible values are:
 - **actual**
 This is the default value in Junos OS Releases 15.1, 16.1, 16.2, and 17.1. It is deprecated in Junos Releases 17.2 and higher.
 - **ancp**
 - **none**
 - **pppoe-ia-tag**
 - **service-profile**
 - **static**
 This is the default value in Junos Releases 13.3, 14.1, 14.2, 17.2 and higher. It is deprecated in Junos OS Releases 15.1, 16.1, 16.2, and 17.1. |
| Rx speed avp when equal | Indicates if the Rx connect speed when equal configuration is enabled or disabled. |
Table 74: show services l2tp summary Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel assignment id</td>
<td>Format of the tunnel name. Format of the tunnel name, based on RADIUS attributes returned from the AAA server:</td>
</tr>
<tr>
<td></td>
<td>• authentication-id—Name consists of only Tunnel Assignment-Id [82]. This is the default value.</td>
</tr>
<tr>
<td></td>
<td>• client-server-id—Name is a combination of Tunnel-Client-Auth-Id [90], Tunnel-Server-Endpoint [67], and Tunnel-Assignment-Id [82]. This format is available only on MX Series routers.</td>
</tr>
<tr>
<td>Tunnel Tx Address Change</td>
<td>Action taken by LAC when it receives a request from a peer to change the destination IP address, UDP port, or both:</td>
</tr>
<tr>
<td></td>
<td>• accept—Accepts change requests for the IP address or UDP port. This is the default action.</td>
</tr>
<tr>
<td></td>
<td>• ignore—Ignores all change requests.</td>
</tr>
<tr>
<td></td>
<td>• ignore-ip-address—Ignores change requests for the IP address but accepts them for the UDP port.</td>
</tr>
<tr>
<td></td>
<td>• ignore-udp-port—Ignores change requests for the UDP port but accepts them for the IP address.</td>
</tr>
<tr>
<td>Min Retransmission Timeout</td>
<td>Minimum number of seconds that the local peer waits for the initial response after transmitting an L2TP control packet. If no response has been received by the time the period expires, the local peer retransmits the packet.</td>
</tr>
<tr>
<td>for control packets</td>
<td></td>
</tr>
<tr>
<td>Min Retransmission Timeout</td>
<td>Minimum number of seconds that the local peer waits for the initial response after transmitting an L2TP control packet. If no response has been received by the time the period expires, the local peer retransmits the packet.</td>
</tr>
<tr>
<td>for control packets</td>
<td></td>
</tr>
<tr>
<td>Max Retransmissions for</td>
<td>Maximum number of times control messages are retransmitted for established tunnels.</td>
</tr>
<tr>
<td>Established Tunnel</td>
<td></td>
</tr>
<tr>
<td>Max Retransmissions for</td>
<td>Maximum number of times control messages are retransmitted for tunnels that are not established.</td>
</tr>
<tr>
<td>Not Established Tunnel</td>
<td></td>
</tr>
<tr>
<td>Tunnel Idle Timeout</td>
<td>Period that a tunnel can be inactive—that is, carrying no traffic—before it times out and is torn down.</td>
</tr>
<tr>
<td>Destruct Timeout</td>
<td>Period that the router attempts to maintain dynamic destinations, tunnels, and sessions after they have been destroyed.</td>
</tr>
<tr>
<td>Reassembly Service Set</td>
<td>Indicates active IP reassembly configured for the interface.</td>
</tr>
<tr>
<td>Destination Lockout Timeout</td>
<td>Timeout period for which all future destinations are locked out, meaning that they are not considered for selection when a new tunnel is created.</td>
</tr>
</tbody>
</table>
Table 74: show services l2tp summary Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Line Information</td>
<td>State of LAC global configuration for forwarding subscriber line information to the LNS, Enabled or Disabled. Indicates active IP reassembly configured for the interface. Starting in Junos OS Release 17.4R1, this information can also be displayed on the LNS for information it receives from the LAC.</td>
</tr>
<tr>
<td>IPv6 Services for LAC Sessions</td>
<td>State of LAC IPv6 service configuration for creating the IPv6 (inet6) address family for LAC subscribers, allowing the application of IPv6 firewall filters, Enabled or Disabled.</td>
</tr>
<tr>
<td>Speed Updates</td>
<td>State of LAC global configuration for including connection speed updates when it forwards subscriber line information to the LNS, Enabled or Disabled. Starting in Junos OS Release 17.4R1, this information can also be displayed on the LNS for updates it receives from the LAC.</td>
</tr>
<tr>
<td>Destinations</td>
<td>Number of L2TP destinations for the LAC. Not displayed for LNS on M Series routers.</td>
</tr>
<tr>
<td>Tunnels</td>
<td>Number of L2TP tunnels established on the router.</td>
</tr>
<tr>
<td>Sessions</td>
<td>Number of L2TP sessions established on the router.</td>
</tr>
<tr>
<td>Switched sessions</td>
<td>Number of L2TP tunnel-switched sessions established on the router.</td>
</tr>
<tr>
<td>Control</td>
<td>Count of L2TP control packets and bytes sent and received.</td>
</tr>
<tr>
<td>Data</td>
<td>Count of L2TP data packets and bytes sent and received.</td>
</tr>
<tr>
<td>Errors</td>
<td>Count of L2TP error packets and bytes sent and received.</td>
</tr>
</tbody>
</table>

Sample Output

show services l2tp summary (LAC on M Series routers)

```
user@host> show services l2tp summary
Administrative state is Drain
Failover within a preference level is Disabled
Weighted load balancing is Enabled
Destination equal load balancing is Disabled
Tunnel authentication challenge is Enabled
Calling number avp is Enabled
Failover Protocol is Disabled
Tunnel assignment id format is authentication-id
Destinations: 1 Tunnels: 1, Sessions: 1
   Tx packets   Rx packets Memory (bytes)
Control     260       144      11513856
```
show services l2tp summary (LAC on MX Series routers)

user@host> show services l2tp summary

Administrative state is Drain
Failover within a preference level is Disabled
Weighted load balancing is Disabled
Destination equal load balancing is Enabled
Tunnel authentication challenge is Enabled
Calling number avp is Enabled
Failover Protocol is Disabled
Tx Connect speed method is static
Rx speed avp when equal is enabled
Tunnel Tx Address Change is Accept
Min Retransmissions Timeout for control packets is 2 seconds
Max Retransmissions for Established Tunnel is 7
Max Retransmissions for Not Established Tunnel is 5
Tunnel Idle Timeout is 60 seconds
Destruct Timeout is 300 seconds
Destination Lockout Timeout is 300 seconds
Reassembly Service Set is ssnr3
Access Line Information is Enabled, Speed Updates is Enabled
IPv6 Services For LAC Sessions is Enabled
Destinations: 0, Tunnels: 0, Sessions: 0, Switched sessions: 0

show services l2tp summary (LNS on MX Series routers)

user@host> show services l2tp summary

Administrative state is Drain
Failover within a preference level is Disabled
Weighted load balancing is Disabled
Destination equal load balancing is Disabled
Tunnel authentication challenge is Enabled
Calling number avp is Enabled
Failover Protocol is Enabled
Tx Connect speed method is static
reassembly Service Set is ssnr3
Destinations: 4, Tunnels: 19, Sessions: 65, Switched sessions: 2
Access Line Information is Enabled, Speed Updates is Enabled

show services l2tp summary (LNS on M Series routers)

user@host> show services l2tp summary

Tunnels: 2, Sessions: 2, Errors: 0
Tx packets Rx packets Memory (bytes)
Control 6k 9k 688k
Data 70k 70k 3054

show services l2tp summary statistics (MX Series routers)

user@host> show services l2tp summary statistics

Administrative state is Drain
Failover within a preference level is Disabled
Weighted load balancing is Disabled
Destination equal load balancing is Disabled
Tunnel authentication challenge is Enabled
Calling number avp is Enabled
Failover Protocol is Enabled
Tx Connect speed method is advisory
Tunnel assignment id format is assignment-id
Tunnel Tx Address Change is Accept
Min Retransmissions Timeout for control packets is 4 seconds
Max Retransmissions for Established Tunnel is 7
Max Retransmissions for Not Established Tunnel is 5
Tunnel Idle Timeout is 60 seconds
Destruct Timeout is 300 seconds
Destination Lockout Timeout is 300 seconds
Destinations: 1, Tunnels: 1, Sessions: 31815, Switched sessions: 0

<table>
<thead>
<tr>
<th></th>
<th>Tx packets</th>
<th>Rx packets</th>
<th>Memory (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>90.4k</td>
<td>32.0k</td>
<td>245678080</td>
</tr>
<tr>
<td>Data</td>
<td>127.3k</td>
<td>100.8kk</td>
<td>0</td>
</tr>
<tr>
<td>Errors</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Copyright © 2019, Juniper Networks, Inc.
show services l2tp tunnel

Syntax
show services l2tp tunnel
<brief | detail | extensive>
<interface sp-fpc/pic/port>
<local-gateway gateway-address>
<local-gateway-name gateway-name>
<local-tunnel-id tunnel-id>
<peer-gateway gateway-address>
<peer-gateway-name gateway-name>
<statistics>
<tunnel-group group-name>

Release Information
Command introduced before Junos OS Release 7.4.

Description
(M10i and M7i routers only) Display information about active Layer 2 Tunneling Protocol (L2TP) tunnels for LNS.

(MX Series routers only) Display information about L2TP tunnels for LAC and LNS; the tunnels may or may not have active sessions.

Options
none—Display standard information about all active L2TP tunnels.

brief | detail | extensive—(Default) Display the specified level of output.

interface sp-fpc/pic/port—(Optional) Display L2TP tunnel information for only the specified adaptive services interface. This option is not available for L2TP on MX Series routers.

local-gateway gateway-address—(Optional) Display L2TP tunnel information for only the specified local gateway address.

local-gateway-name gateway-name—(Optional) Display L2TP tunnel information for only the specified local gateway name.

local-tunnel-id tunnel-id—(Optional) Display L2TP tunnel information for only the specified local tunnel identifier.

peer-gateway gateway-address—(Optional) Display L2TP tunnel information for only the specified peer gateway address.

peer-gateway-name gateway-name—(Optional) Display L2TP tunnel information for only the specified peer gateway name.

statistics—(Optional) Display the number of control packets and bytes transmitted and received for the tunnel. The statistics for a tunnel are retained until the tunnel is disconnected, rather than until the last session in the tunnel is cleared. Retaining the statistics enables them to increment in the event a new session subsequently uses the tunnel. You cannot include this option with any of the level options, brief, detail, or extensive.
tunnel-group group-name

(Optional) Display L2TP tunnel information for only the specified tunnel group.

Required Privilege

Level: `view`

Related Documentation

- L2TP Services Configuration Overview on page 904
- L2TP Minimum Configuration on page 905

List of Sample Output

- show services l2tp tunnel (LAC) on page 1626
- show services l2tp tunnel detail (LAC) on page 1626
- show services l2tp tunnel detail (LAC on MX Series Routers) on page 1626
- show services l2tp tunnel detail (LNS on MX Series Routers) on page 1627
- show services l2tp tunnel extensive (LAC) on page 1627
- show services l2tp tunnel extensive (LNS on M Series Routers) on page 1627
- show services l2tp tunnel extensive (LNS on MX Series Routers) on page 1628
- show services l2tp tunnel statistics (MX Series Routers) on page 1628

Output Fields

Table 75 on page 1624 lists the output fields for the `show services l2tp tunnel` command. Output fields are listed in the approximate order in which they appear.

Table 75: show services l2tp tunnel Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>(LNS only) Name of an adaptive services interface.</td>
</tr>
<tr>
<td>Tunnel group</td>
<td>(LNS only) Name of a tunnel group.</td>
</tr>
<tr>
<td>Local ID</td>
<td>On the LNS, number assigned by the LNS that identifies the local endpoint of the tunnel relative to the LNS: the LNS. On the LAC, number assigned by the LAC that identifies the local endpoint of the tunnel relative to the LAC: the LAC.</td>
</tr>
<tr>
<td>Remote ID</td>
<td>On the LNS, number assigned by the LAC that identifies the remote endpoint of the tunnel relative to the LNS: the LAC. On the LAC, number assigned by the LNS that identifies the remote endpoint of the tunnel relative to the LAC: the LNS.</td>
</tr>
<tr>
<td>Remote IP</td>
<td>IP address of the peer endpoint of the tunnel.</td>
</tr>
<tr>
<td>Sessions</td>
<td>Number of L2TP sessions established through the tunnel.</td>
</tr>
</tbody>
</table>
Table 75: show services l2tp tunnel Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>State of the L2TP tunnel:</td>
</tr>
<tr>
<td>• cc_responder_accept_new</td>
<td>The tunnel has received and accepted the start control connection request (SCCRQ).</td>
</tr>
<tr>
<td>• cc_responder_reject_new</td>
<td>The tunnel has received and rejected the SCCRQ.</td>
</tr>
<tr>
<td>• cc_responder_idle</td>
<td>The tunnel has just been created.</td>
</tr>
<tr>
<td>• cc_responder_wait_ctl_conn</td>
<td>The tunnel has sent the start control connection response (SCCRP) and is waiting for the start control connection connected (SCCCN) message.</td>
</tr>
<tr>
<td>• clean-up</td>
<td>The tunnel is being cleaned up.</td>
</tr>
<tr>
<td>• closed</td>
<td>The tunnel is being closed.</td>
</tr>
<tr>
<td>• destroyed</td>
<td>The tunnel is being destroyed.</td>
</tr>
<tr>
<td>• Drain</td>
<td>Creation of new sessions and destinations is disabled for this tunnel.</td>
</tr>
<tr>
<td>• Established</td>
<td>The tunnel is operating. This is the only state supported for the LAC.</td>
</tr>
<tr>
<td>• Terminate</td>
<td>The tunnel is terminating.</td>
</tr>
<tr>
<td>• Unknown</td>
<td>The tunnel is not connected to the router.</td>
</tr>
<tr>
<td>Tunnel Name</td>
<td>(LAC only) Name of the created tunnel. This value includes the destination name followed by the value of the RADIUS Tunnel-Assignment-ID VSA [82].</td>
</tr>
<tr>
<td>Local IP</td>
<td>IP address of the local endpoint of the tunnel.</td>
</tr>
<tr>
<td>Local name</td>
<td>Name used for local tunnel endpoint during tunnel negotiation.</td>
</tr>
<tr>
<td>Remote name</td>
<td>Name used for remote tunnel endpoint during tunnel negotiation.</td>
</tr>
<tr>
<td>Effective Peer Resync Mechanism</td>
<td>(LAC only) Peer resynchronization mechanism (PRM) in effect for the tunnel:</td>
</tr>
<tr>
<td>• Failover protocol</td>
<td></td>
</tr>
<tr>
<td>• Silent failover</td>
<td>Recovery takes place in the failed endpoint only using the proprietary silent failover protocol.</td>
</tr>
<tr>
<td>Nas Port Method</td>
<td>NAS port method (type), which indicates whether the LAC sends Cisco NAS Port Info AVP (100) in ICRQs to the LNS:</td>
</tr>
<tr>
<td>• cisco-avp</td>
<td>sends the AVP.</td>
</tr>
<tr>
<td>• none</td>
<td>does not send the AVP.</td>
</tr>
<tr>
<td>Tunnel Logical System</td>
<td>Logical system in which the L2TP tunnel is brought up.</td>
</tr>
<tr>
<td>Tunnel Routing Instance</td>
<td>Routing instance in which the L2TP tunnel is brought up.</td>
</tr>
<tr>
<td>Max sessions</td>
<td>Maximum number of sessions that can be established on this tunnel.</td>
</tr>
<tr>
<td>Window size</td>
<td>Number of control messages that can be sent without receipt of an acknowledgment.</td>
</tr>
<tr>
<td>Hello interval</td>
<td>Interval between the transmission of hello messages, in seconds.</td>
</tr>
</tbody>
</table>
Table 75: `show services l2tp tunnel` Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create time</td>
<td>Date and time when the tunnel was created. While the LNS and LAC are connected, this value should correspond to the when the call was created. If connection to the LAC is severed, the State changes to Unknown and the Create time value resets.</td>
</tr>
<tr>
<td>Up time</td>
<td>Amount of time elapsed since the tunnel became active, in hours, minutes, and seconds.</td>
</tr>
<tr>
<td>Idle time</td>
<td>Amount of time elapsed since the tunnel became idle, in hours, minutes, and seconds.</td>
</tr>
</tbody>
</table>

Statistics since Date and time when collection of the following statistics began:
- **Control Tx**—Amount of control information transmitted, in packets and bytes.
- **Control Rx**—Amount of control information received, in packets and bytes.
- **Data Tx**—Amount of data transmitted, in packets and bytes.
- **Data Rx**—Amount of data received, in packets and bytes.
- **Errors Tx**—Number of errors transmitted, in packets.
- **Errors Rx**—Number of errors received, in packets.

Sample Output

show services l2tp tunnel (LAC)

```
user@host> show services l2tp tunnel

+-----------------+------------------+-----------------+-----------------+---------+---------|
<table>
<thead>
<tr>
<th>Local ID</th>
<th>Remote ID</th>
<th>Remote IP</th>
<th>Sessions</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>17185</td>
<td>1</td>
<td>203.0.113.101:1701</td>
<td>1</td>
<td>Established</td>
</tr>
</tbody>
</table>
```

show services l2tp tunnel detail (LAC)

```
user@host> show services l2tp tunnel detail

Tunnel local ID: 31889, Tunnel remote ID: 1
Remote IP: 203.0.113.101:1701
Sessions: 1, State: Established
Tunnel Name: 1/tunnel-to-LNS-1
Local IP: 192.0.2.2:1701
Local name: ce-lac, Remote name: ce-lns
Effective Peer Resync Mechanism: silent failover
```

show services l2tp tunnel detail (LAC on MX Series Routers)

```
user@host> show services l2tp tunnel detail

Tunnel local ID: 17301, Tunnel remote ID: 1
Remote IP: 203.0.113.101:1701
Sessions: 1, State: Established
Tunnel Name: 2/tunnel-to-LNS-2
Local IP: 192.0.2.2:1701
Local name: ce-lac, Remote name: ce-lns
Effective Peer Resync Mechanism: silent failover
Tunnel Logical System: default, Tunnel Routing Instance: default
```
show services l2tp tunnel detail (LNS on MX Series Routers)

```plaintext
user@host> show services l2tp tunnel detail
Tunnel local ID: 17301, Tunnel remote ID: 1
  Remote IP: 198.51.100.15:1701
  Sessions: 1, State: Established
  Tunnel Name: 2/2
  Local IP: 198.51.100.5:1701
  Local name: ce-bras-mx240-e, Remote name: testlac2
  Effective Peer Resync Mechanism: silent failover
  Tunnel Logical System: default, Tunnel Routing Instance: vrf1
```

show services l2tp tunnel extensive (LAC)

```plaintext
user@host> show services l2tp tunnel extensive
Tunnel local ID: 17185, Tunnel remote ID: 1
  Remote IP: 203.0.113.101:1701
  Sessions: 1, State: Established
  Tunnel Name: 2/tunnel-to-LNS-2
  Local IP: 192.0.2.22:1701
  Local name: ce-lac, Remote name: ce-lns
  Effective Peer Resync Mechanism: failover protocol
  Max sessions: 32000, Window size: 4, Hello interval: 60
  Create time: Tue Nov 9 15:23:29 2010, Up time: 00:00:26
  Idle time: 00:00:00
```

show services l2tp tunnel extensive (LNS on M Series Routers)

```plaintext
user@host> show services l2tp tunnel extensive
Interface: sp-1/2/0, Tunnel group: group1
Tunnel local ID: 62746, Tunnel remote ID: 16930
  Remote IP: 203.0.113.202:1701
  Sessions: 1, State: Established
  Local IP: 203.0.113.121:1701
  Local name: router-1, Remote name: router-2
  Max sessions: 50, Window size: 32, Hello interval: 60
  Create time: Tue Mar 23 14:13:15 2004, Up time: 01:14:58
  Idle time: 01:14:55
  Statistics since: Tue Mar 23 14:13:13 2004
  Packets      Bytes
  Control Tx   80      1152
  Control Rx   3       272
  Data Tx      0       0
  Data Rx      450     28.0k
  Errors Tx    0
  Errors Rx    0

Interface: sp-1/2/0, Tunnel group: group_company_dns
Tunnel local ID: 37266, Tunnel remote ID: 36217
  Remote IP: 203.0.113.222:1701
  Sessions: 1, State: Established
  Local IP: 203.0.113.111:1701
  Local name: router-1, Remote name: router-2
  Max sessions: unlimited, Window size: 32, Hello interval: 60
  Create time: Tue Mar 23 14:13:15 2004, Up time: 01:14:59
  Idle time: 01:14:55
  Statistics since: Tue Mar 23 14:13:13 2004
```
show services l2tp tunnel extensive (LNS on MX Series Routers)

user@host> show services l2tp tunnel extensive

Tunnel local ID: 40553, Tunnel remote ID: 1
Remote IP: 192.0.2.3:1701
Sessions: 1, State: Established
Tunnel Name: 3/1838
Local IP: 203.0.113.2:1701
Local name: lns-mx960, Remote name: testlac
Effective Peer Resync Mechanism: silent failover
Nas Port Method: none
Tunnel Logical System: default, Tunnel Routing Instance: vrf1
Max sessions: 60000, Window size: 4, Hello interval: 60
Create time: Mon Apr 25 20:27:50 2011, Up time: 00:01:11
Idle time: 00:00:00, ToS Reflect: Enabled
Tunnel Group Name: tg1
Statistics since: Mon Apr 25 20:27:50 2011

<table>
<thead>
<tr>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Tx</td>
<td>81</td>
</tr>
<tr>
<td>Control Rx</td>
<td>3</td>
</tr>
<tr>
<td>Data Tx</td>
<td>0</td>
</tr>
<tr>
<td>Data Rx</td>
<td>1</td>
</tr>
<tr>
<td>Errors Tx</td>
<td>0</td>
</tr>
<tr>
<td>Errors Rx</td>
<td>0</td>
</tr>
</tbody>
</table>

show services l2tp tunnel statistics (MX Series Routers)

user@host> show services l2tp tunnel statistics

Tunnel local ID: 17185, Tunnel remote ID: 1
Sessions: 31.8k, State: Established
Statistics since: Mon Aug 1 13:21:38 2011

<table>
<thead>
<tr>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Tx</td>
<td>90.3k</td>
</tr>
<tr>
<td>Control Rx</td>
<td>32.0k</td>
</tr>
<tr>
<td>Data Tx</td>
<td>127.3k</td>
</tr>
<tr>
<td>Data Rx</td>
<td>100.8k</td>
</tr>
<tr>
<td>Errors Tx</td>
<td>0</td>
</tr>
<tr>
<td>Errors Rx</td>
<td>0</td>
</tr>
</tbody>
</table>
show services l2tp user

Syntax
show services l2tp user
 <brief | detail | extensive | statistics>
 <user username>

Release Information
Command introduced before Junos OS Release 7.4.

Description
(M10i and M7i routers only) Display a list of active Layer 2 Tunneling Protocol (L2TP) users.

Options
none—Display all active L2TP users.

brief | detail | extensive | statistics—(Optional) Display the specified level of output. Use the statistics option to display L2TP user statistics.

user username—(Optional) Display L2TP user information for only the specified username.

Required Privilege
view

Related Documentation
- L2TP Services Configuration Overview on page 904
- L2TP Minimum Configuration on page 905

List of Sample Output
show services l2tp user extensive on page 1631

Output Fields
Table 76 on page 1629 lists the output fields for the show services l2tp user command. Output fields are listed in the approximate order in which they appear.

Table 76: show services l2tp user Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an adaptive services interface.</td>
</tr>
<tr>
<td>Tunnel group</td>
<td>Name of a tunnel group.</td>
</tr>
<tr>
<td>Tunnel local ID</td>
<td>Local identifier of the tunnel, as assigned by the L2TP network server (LNS).</td>
</tr>
<tr>
<td>Session local ID</td>
<td>Local identifier of the session, as assigned by the L2TP network server (LNS).</td>
</tr>
<tr>
<td>Session remote ID</td>
<td>Remote identifier of the session, as assigned by the L2TP access concentrator (LAC).</td>
</tr>
</tbody>
</table>
Table 76: `show services l2tp user` Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>State of the L2TP session:</td>
</tr>
<tr>
<td></td>
<td>- Established—The session is operating.</td>
</tr>
<tr>
<td></td>
<td>- closed—The session is being closed.</td>
</tr>
<tr>
<td></td>
<td>- destroyed—The session is being destroyed.</td>
</tr>
<tr>
<td></td>
<td>- clean-up—The session is being cleaned up.</td>
</tr>
<tr>
<td></td>
<td>- Ins-ic-accept-new—A new session is being accepted.</td>
</tr>
<tr>
<td></td>
<td>- Ins-ic-idle—The session has been created and is idle.</td>
</tr>
<tr>
<td></td>
<td>- Ins-ic-reject-new—The new session is being rejected.</td>
</tr>
<tr>
<td></td>
<td>- Ins-ic-wait-connect—The session is waiting for the peer’s incoming call connected (ICCN) message.</td>
</tr>
<tr>
<td>Mode</td>
<td>Mode of the interface representing the session: <code>shared</code> or <code>exclusive</code>.</td>
</tr>
<tr>
<td>Local IP</td>
<td>IP address of the local endpoint of the tunnel.</td>
</tr>
<tr>
<td>Remote IP</td>
<td>IP address of the peer endpoint of the tunnel.</td>
</tr>
<tr>
<td>Username</td>
<td>Name of the user logged in to the session.</td>
</tr>
<tr>
<td>Assigned IP address</td>
<td>IP address assigned to remote client.</td>
</tr>
<tr>
<td>Local name</td>
<td>Name of the local device.</td>
</tr>
<tr>
<td>Remote name</td>
<td>Name of the remote device.</td>
</tr>
<tr>
<td>Local MRU</td>
<td>Maximum receive unit (MRU) setting of the local device, in bytes.</td>
</tr>
<tr>
<td>Remote MRU</td>
<td>MRU setting of the remote device, in bytes.</td>
</tr>
<tr>
<td>Tx speed</td>
<td>Transmit speed of the tunnel session, in bps.</td>
</tr>
<tr>
<td>Rx speed</td>
<td>Receive speed of the tunnel session, in bps.</td>
</tr>
<tr>
<td>Bearer type</td>
<td>Type of bearer enabled:</td>
</tr>
<tr>
<td></td>
<td>- 0—Might indicate that the call was not received over a physical link (for example, when the LAC and PPP are located in the same subsystem)</td>
</tr>
<tr>
<td></td>
<td>- 1—Digital access requested</td>
</tr>
<tr>
<td></td>
<td>- 2—Analog access requested</td>
</tr>
<tr>
<td></td>
<td>- 4—Asynchronous Transfer Mode (ATM) bearer support</td>
</tr>
<tr>
<td>Framing type</td>
<td>Type of framing enabled:</td>
</tr>
<tr>
<td></td>
<td>- 1—Synchronous framing</td>
</tr>
<tr>
<td></td>
<td>- 2—Asynchronous framing</td>
</tr>
<tr>
<td>LCP renegotiation</td>
<td>Whether Link Control Protocol (LCP) renegotiation is configured: On or Off.</td>
</tr>
</tbody>
</table>
Table 76: show services l2tp user Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication</td>
<td>Type of authentication algorithm used: Challenge Handshake Authentication Protocol (CHAP) or Password Authentication Protocol (PAP).</td>
</tr>
<tr>
<td>Interface ID</td>
<td>Name of the logical unit.</td>
</tr>
<tr>
<td>Interface unit</td>
<td>Logical unit number.</td>
</tr>
<tr>
<td>Call serial number</td>
<td>Unique serial number assigned to the call.</td>
</tr>
<tr>
<td>Create time</td>
<td>Date and time when the call was created.</td>
</tr>
<tr>
<td>Up time</td>
<td>Amount of time elapsed since the call became active, in hours, minutes, and seconds.</td>
</tr>
<tr>
<td>Idle time</td>
<td>Amount of time elapsed since the call became idle, in hours, minutes, and seconds.</td>
</tr>
<tr>
<td>Statistics since</td>
<td>Date and time when collection of the following statistics began:</td>
</tr>
<tr>
<td></td>
<td>• Control Tx—Amount of control information transmitted, in packets and bytes.</td>
</tr>
<tr>
<td></td>
<td>• Control Rx—Amount of control information received, in packets and bytes.</td>
</tr>
<tr>
<td></td>
<td>• Data Tx—Amount of data transmitted, in packets and bytes.</td>
</tr>
<tr>
<td></td>
<td>• Data Rx—Amount of data received, in packets and bytes.</td>
</tr>
<tr>
<td></td>
<td>• Errors Tx—Number of errors transmitted, in packets.</td>
</tr>
<tr>
<td></td>
<td>• Errors Rx—Number of errors received, in packets.</td>
</tr>
</tbody>
</table>

Sample Output

show services l2tp user extensive

```
user@host> show services l2tp user extensive
Interface: sp-1/2/0, Tunnel group: group1, Tunnel local ID: 62746
Session local ID: 56793, Session remote ID: 53304
State: Established, Mode: shared
Local IP: 10.128.1.1:1701, Remote IP: 10.128.1.2:1701
Username: usr1@example.com, Assigned IP address: 10.50.2.1/32
Local name: router-1, Remote name: router-2
Local MRU: 4000, Remote MRU: 1500, Tx speed: 64000, Rx speed: 64000
Bearer type: 2, Framing type: 1
LCP renegotiation: Off, Authentication: CHAP, Interface ID: unit_20
Interface unit: 20, Call serial number: 4137941434
Create time: Tue Mar 23 14:13:15 2004, Up time: 01:16:41
Idle time: 00:00:00
Statistics since: Tue Mar 23 14:13:13 2004

<table>
<thead>
<tr>
<th></th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Tx</td>
<td>4</td>
<td>88</td>
</tr>
<tr>
<td>Control Rx</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>Data Tx</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Data Rx</td>
<td>461</td>
<td>29.0k</td>
</tr>
<tr>
<td>Errors Tx</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Errors Rx</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Interface: sp-1/2/0, Tunnel group: group_company_dns, Tunnel local ID: 37266
Session local ID: 39962, Session remote ID: 53303
State: Established, Username: usr1@company_dns.com, Mode: shared
Local IP: 10.128.11.1:1701, Remote IP: 10.128.11.2:1701
Username: usr1@company_dns.com, Assigned IP address: 10.48.1.1/32
Local name: router-1, Remote name: router-2
Local MRU: 4470, Remote MRU: 4470, Tx speed: 155000000,
 Rx speed: 155000000
Bearer type: 2, Framing type: 1
LCP renegotiation: Off, Authentication: CHAP, Interface ID: unit_31
Interface unit: 31, Call serial number: 4137941433
Create time: Tue Mar 23 14:13:17 2004, Up time: 01:16:39
Idle time: 01:16:36
Statistics since: Tue Mar 23 14:13:15 2004

<table>
<thead>
<tr>
<th></th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Tx</td>
<td>6</td>
<td>196</td>
</tr>
<tr>
<td>Control Rx</td>
<td>4</td>
<td>150</td>
</tr>
<tr>
<td>Data Tx</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Data Rx</td>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>Errors Tx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Errors Rx</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
show services nat deterministic-nat internal-host

Syntax
```
show services nat deterministic-nat internal-host
  nat-address
  nat-port
```

Release Information
Command introduced in Junos OS Release 12.1.

Description
This command prints the internal host address and algorithmically determined port ranges for the specified NAT IP address and port number. The results are calculated on the PIC and the results are sent to RE.

Options
- **nat-address**—NAT address of the internal host.
- **nat-port**—NAT port of the internal host.

Required Privilege
- **Level** view

List of Sample Output
`show services nat deterministic-nat internal-host` on page 1633

Output Fields
Table 77 on page 1633 lists the output fields for the `nat deterministic-nat internal-host` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of a service interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of a service set. Individual empty service sets are not displayed, but if none of the service sets have any flows, a flow table header is printed for each service set.</td>
</tr>
<tr>
<td>Internal Host</td>
<td>Private IP address of a subscriber on the access network.</td>
</tr>
<tr>
<td>NAT IP address</td>
<td>NAT public IP address</td>
</tr>
<tr>
<td>NAT Port Start</td>
<td>Lowest port number in range of assigned ports.</td>
</tr>
<tr>
<td>NAT Port End</td>
<td>Highest port number in range of assigned ports.</td>
</tr>
</tbody>
</table>

Sample Output
```
show services nat deterministic-nat internal-host

user@host> show services nat deterministic-nat internal-host 203.0.113.1 2000
```
Service set: ssl
Interface: sp-2/0/0
NAT pool: pool1
Internal Host: 192.0.2.4, NAT IP Address: 203.0.113.1, NAT Port Start: 1792, NAT Port End: 2047
show services nat deterministic-nat nat-port-block

Syntax

```
show services nat deterministic-nat nat-port-block
internal-host
```

Release Information

Command introduced in Junos OS Release 12.1.

Description

Display the translated NAT address and port ranges for the given internal host.

Options

- `internal-host`—IP address of the internal host.

Required Privilege Level

`view`

List of Sample Output

`run show services nat deterministic-nat nat-port-block on page 1635`

Output Fields

Table 78 on page 1635 lists the output fields for the `show services nat deterministic-nat nat-port-block` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of a service interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of a service set. Individual empty service sets are not displayed, but if none of the service sets has any flows, a flow table header is printed for each service set.</td>
</tr>
<tr>
<td>Internal Host</td>
<td>Private IP address of a subscriber on the access network.</td>
</tr>
<tr>
<td>NAT IP address</td>
<td>NAT public IP address</td>
</tr>
<tr>
<td>NAT Port Start</td>
<td>Lowest port number in range of assigned ports.</td>
</tr>
<tr>
<td>NAT Port End</td>
<td>Highest port number in range of assigned ports.</td>
</tr>
</tbody>
</table>

Sample Output

```
run show services nat deterministic-nat nat-port-block
```

```
user@host> show services nat deterministic-nat nat-port-block 192.0.2.1
Service set: ssl
Interface: sp-2/0/0
NAT pool: pool1
Internal Host: 192.0.2.1, NAT IP Address: 203.0.113.1, NAT Port Start: 1024, NAT Port End: 1279
```
show services nat ipv6-multicast-interfaces

Syntax
show services nat ipv6-multicast-interfaces

Release Information
Command introduced in Junos OS Release 8.5.

Description
Displays a list of interfaces enabled for IPv6 multicast.

Required Privilege
Level view

List of Sample Output
show services nat ipv6-multicast-interfaces on page 1637

Output Fields
Table 79 on page 1637 lists the output fields for the show services nat
ipv6-multicast-interfaces command. Output fields are listed in the approximate order in
which they appear.

Table 79: show services nat ipv6-multicast-interfaces Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of a service interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Admin State</td>
<td>Configured IPv6 multicast capability of an interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Operational State</td>
<td>Operation IPv6 multicast status of an interface.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Sample Output
show services nat ipv6-multicast-interfaces

user@host> show services nat ipv6-multicast-interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin State</th>
<th>Operational State</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-5/1/9</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-5/1/8</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-5/1/7</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-5/1/6</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-5/1/5</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-5/1/4</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-5/1/3</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-5/1/2</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-5/1/1</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-5/0/9</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-5/0/8</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-5/0/7</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-5/0/6</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-5/0/5</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-5/0/4</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface</td>
<td>Status1</td>
<td>Status2</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>ge-5/0/3</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-5/0/2</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-5/0/1</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-5/0/0</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/3/9</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/3/8</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/3/7</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/3/6</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/3/5</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/3/4</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/3/3</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/3/2</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/3/1</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/3/0</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/2/9</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/2/8</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/2/7</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/2/6</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/2/5</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/2/4</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/2/3</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/2/2</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/2/1</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/2/0</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/1/9</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/1/8</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/1/7</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/1/6</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/1/5</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/1/4</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/1/3</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/1/2</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/1/1</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/0/9</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/0/8</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/0/7</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/0/6</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/0/5</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/0/4</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/0/3</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/0/2</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/0/1</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>ge-1/0/0</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>xe-0/3/0</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>xe-0/2/0</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>xe-0/1/0</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>xe-0/0/0</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
show services nat mappings

Syntax
show services nat mappings
 <brief | detail | summary>
 <nptv6 (ipv6-address | external ipv6-address | internal ipv6-address)>
 <pool-name>
 <address-pooling-paired | endpoint-independent | pcp>

Release Information
Command introduced in Junos OS Release 10.1.
 summary option introduced in Junos OS Release 11.1.
 address-pooling-paired option introduced in Junos OS Release 13.2.
 endpoint-independent option introduced in Junos OS Release 13.2.
 pcp option introduced in Junos OS Release 13.2.
 nptv6 option introduced in Junos OS Release 15.1.

Description
Display information about Network Address Translation (NAT) address, port, and port control protocol (PCP) mappings.

Options
none—Display standard information about all NAT pools.

 brief | detail | summary—(Optional) Display the specified level of output.

 nptv6—(Optional) Display information about the network prefix translation for IPv6 traffic.

 ipv6-address—(Optional) Display the network prefix translation details for the specified IPv6 address.

 external—(Optional) Display the external to internal address mapping for a given external address if the mapping exists for stateless network IPv6 prefix translation.

 internal—(Optional) Display the internal to external address mapping for a given internal address if the mapping exists for stateless network IPv6 prefix translation.

 pool-name—(Optional) Display detailed information about a specific NAT pool. Used only with detail level output.

 address-pooling-paired—(Optional) Display only information about address-pooling paired mappings.

 endpoint-independent—(Optional) Display only information about endpoint-independent mappings.

 pcp—(Optional) Display only information about port control protocol mappings.
NOTE: PCP requests with the prefer-failure option request a particular external IP address and port. When the request cannot be fulfilled, the mapping is not created. In this case, the subscriber does not have a mapped IP address. Such a subscriber is counted in the summary of the number of address mappings, but is not displayed in the list of address mappings, as shown in the following examples:

```
user@host# show services nat mappings summary
Service Interface: sp-2/0/0
Total number of address mappings: 1
Total number of endpoint independent port mappings: 0
Total number of endpoint independent filters: 0
```

```
user@host# show services nat mappings address-pooling-paired
[edit]
```

This is expected behavior because unfulfilled address mappings (IP of 0.0.0.0) are not displayed in the output of the second CLI command. These address mappings will time out based on configured or default values.

Required Privilege

- **Level**
- view

List of Sample Output

- show services nat mappings brief on page 1641
- show services nat mapping detail on page 1642
- show services nat mappings pool-name on page 1642
- show services nat mappings summary on page 1642
- show services nat mappings address-pooling-paired on page 1642
- show services nat mappings address-pooling-paired (mapping of active B4 for a subscriber) on page 1643
- show services nat mappings endpoint-independent on page 1643
- show services nat mappings pcp on page 1643
- show services nat mappings nptv6 internal on page 1643
- show services nat mappings nptv6 external on page 1643

Output Fields

Table 80 on page 1640 lists the output fields for the `show services nat mappings` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of a service interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of a service set. Individual empty service sets are not displayed, but if none of the service sets has any flows, a flow table header is printed for each service set.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 80: show services nat mappings Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT pool</td>
<td>Name of the NAT pool.</td>
<td>All levels</td>
</tr>
<tr>
<td>Address Mapping or Mapping</td>
<td>Mapping performed by NAT to conceal the network address.</td>
<td>All levels</td>
</tr>
<tr>
<td>No. of port mappings</td>
<td>Number of port mappings.</td>
<td>All levels</td>
</tr>
<tr>
<td>Port mapping</td>
<td>Port mapping performed by NAT.</td>
<td>detail</td>
</tr>
<tr>
<td>Flow Count</td>
<td>Number of flows.</td>
<td>detail</td>
</tr>
<tr>
<td>Total number of address mappings</td>
<td>Total number of address mappings, by service interface.</td>
<td>summary</td>
</tr>
<tr>
<td>Total number of endpoint independent port mappings:</td>
<td>Total number of port mappings by service interface.</td>
<td>summary</td>
</tr>
<tr>
<td>Total number of endpoint independent filters</td>
<td>Total number of independent filters that filter out only packets that are not destined to the internal address and port, regardless of the external IP address and port source, by service interface.</td>
<td>summary</td>
</tr>
<tr>
<td>Mapping State</td>
<td>NAT mapping state. The following states are possible:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ACTIVE—Indicates that the entry is active and in use.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TIMEOUT—Indicates that the mapping is not in use. After the mapping-timeout,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>configured at the edit services nat pool pool-name hierarchy level, lapses,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the mapping is deleted. This field also displays the number of seconds after which the timeout occurs.</td>
<td></td>
</tr>
<tr>
<td>Ports In Use</td>
<td>The number of ports used for a specific address-pooling paired mapping.</td>
<td></td>
</tr>
<tr>
<td>PCP Lifetime</td>
<td>Elapsed PCP lifetime in seconds.</td>
<td></td>
</tr>
<tr>
<td>PCP Client</td>
<td>Address of the PCP client sending the PCP request.</td>
<td></td>
</tr>
<tr>
<td>Session Count</td>
<td>Number of sessions currently using the mapping.</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

```
show services nat mappings brief

user@host> show services nat mappings brief
```
Interface: sp-2/3/0, Service set: s1

NAT pool: p1
Address Mapping: 2.1.20.10 ---> 34.34.34.34
No. of port mappings: 1

show services nat mapping detail

user@host> show services nat mapping detail
Interface: sp-2/3/0, Service set: s1

NAT pool: p1
Address Mapping: 2.1.20.10 ---> 34.34.34.34, No. of port mappings: 1
Port mapping: 49604 --> 1024, Flow Count: 2

show services nat mappings pool-name

user@host> show services nat mappings pool-name p1
Interface: sp-2/3/0, Service set: s1

NAT pool: p1
Address Mapping: 2.1.20.10 ---> 34.34.34.34
No. of port mappings: 1

show services nat mappings summary

user@host> show services nat mapping summary

<table>
<thead>
<tr>
<th>Service Interface</th>
<th>Total number of address mappings:</th>
<th>Total number of endpoint independent port mappings:</th>
<th>Total number of endpoint independent filters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp-1/0/0</td>
<td>790</td>
<td>1580</td>
<td>1580</td>
</tr>
<tr>
<td>sp-1/1/0</td>
<td>914</td>
<td>1828</td>
<td>1828</td>
</tr>
<tr>
<td>sp-4/0/0</td>
<td>688</td>
<td>1376</td>
<td>1376</td>
</tr>
<tr>
<td>sp-4/1/0</td>
<td>648</td>
<td>1296</td>
<td>1296</td>
</tr>
</tbody>
</table>

show services nat mappings address-pooling-paired

user@host> show services nat mappings address-pooling-paired
Interface: sp-3/0/0, Service set: NAPT44-SS1
NAT pool: napt44-SS1-p1
Mapping: 29.32.38.255 --> 192.168.75.23
show services nat mappings address-pooling-paired (mapping of active B4 for a subscriber)

```
user@host> show services nat mappings address-pooling-paired
Interface: sp-0/0/0, Service set: sset_1
NAT pool: nat_pool1
Mapping : 2001::          --> 33.33.33.2
Ports In Use :     1
Session Count :     9
Mapping State : Timeout
```

show services nat mappings endpoint-independent

```
user@host> show services nat mappings endpoint-independent
Interface: sp-3/0/0, Service set: NAPT44-SS1
NAT pool: napt44-SS1-p1
Mapping : 29.32.38.255:10000    --> 192.168.75.23:1024
Session Count : 1
Mapping State : Active
```

show services nat mappings pcp

```
user@host> show services nat mappings pcp
PCP Client : 172.16.0.1        PCP Lifetime : 45
Mapping : 29.32.38.255:10000    --> 192.168.75.23:1024
Session Count : 1
Mapping State : Active
```

show services nat mappings nptv6 internal

```
user@host> show services nat mappings nptv6 internal 1111:2222:3333:aaaa:bbbb::1
Interface       Service-set     NAT-Pool           Address Mapping
vms-0/1/0        ss_nptv6         ss_nptv6_pool   1111:2222:3333:aaaa:bbbb::1
-> aaaa:bbbb:cccc:dddd:bbbb::1
```

show services nat mappings nptv6 external

```
user@host> show services nat mappings nptv6 external aaaa:bbbb:cccc:dddd:bbbb::1
Interface       Service-set     NAT-Pool           Address Mapping
vms-0/1/0        ss_nptv6         ss_nptv6_pool   1111:2222:3333:aaaa:bbbb::1
-> aaaa:bbbb:cccc:dddd:bbbb::1
```
show services nat pool

Syntax

show services nat pool
 <brief | detail>
 <pool-name>
 pgcp <ports-per-session | remotely-controlled>

Release Information

Command introduced before Junos OS Release 7.4.
pgcd option added in Junos OS Release 8.5.

Description

Display information about Network Address Translation (NAT) pools.

NOTE: On MS-MPCs and MS-MICs, if the line cards receive a packet immediately after the active port block timeout interval has expired, a new port block is allocated and the old port block is released thereafter (if no more ports are being used from that block). In such a scenario, you might notice that the Max number of port blocks used field displays a higher value than the value shown for the Unique pool users field in the output of the show services nat pool detail command. This behavior is expected with port block allocation.

With MS-MPCs and MS-MICs, in the output of the show services nat pool detail command, the Max ports used and the Ports in use fields display values that indicate a higher number than the number of active subscribers on the member interfaces of an ams interface. This behavior of an increased value displayed for the number of ports allocated and maximum number of ports used is expected after you perform a Graceful Routing Engine switchover (GRES) and a restart of the MPC.

With MS-MPCs and MS-MICs on MX Series routers with AMS interfaces, it is observed that the subscriber and port count details are displayed only after a long time in the output of the show services nat pool detail command. This behavior is expected with NAT pool counters and occurs, regardless of port block allocation being configured.

Options

none—Display standard information about all NAT pools.

brief | detail—(Optional) Display the specified level of output.

pool-name—(Optional) Display information about the specified NAT pool.

pgcp—(Optional) Display information about a NAT pool that is exclusive to the BGF.

ports-per-session—(Optional) Display the number of ports allocated per session from the NAT pool.
remotely-controlled—(Optional) Display if the NAT pool is explicitly specified by the gateway controller.

Required Privilege Level
view

List of Sample Output
show services nat pool brief on page 1647
show services nat pool detail on page 1648
show services nat pool (Secured Port Block Allocation) on page 1648
show services nat pool detail (Deterministic Port Block Allocation) on page 1648
show services nat pool (Deterministic Port Block Allocation) on page 1649
show services nat pool detail (Port Block Allocation) on page 1649

Output Fields
Table 81 on page 1645 lists the output fields for the show services nat pool command. Output fields are listed in the approximate order in which they appear.

Table 81: show services nat pool Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an adaptive services interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of a service set. Individual empty service sets are not displayed, but if none of the service sets has any flows, a flow table header is printed for each service set.</td>
<td>All levels</td>
</tr>
<tr>
<td>NAT pool</td>
<td>Name of the Network Address Translation pool.</td>
<td>All levels</td>
</tr>
<tr>
<td>Type or Translation type</td>
<td>Address translation type: basic-nat-pt, Y, Y, Y, Y, Y, Y, Y, Y.</td>
<td>All levels</td>
</tr>
<tr>
<td>Address or Address range</td>
<td>IPv4 address range of the pool.</td>
<td>All levels</td>
</tr>
<tr>
<td>Port or Port range</td>
<td>Port range of the pool. Applicable only for dynamic NAT pools. Not displayed for static NAT pools.</td>
<td>All levels</td>
</tr>
<tr>
<td>Ports used or Ports in use</td>
<td>Number of ports allocated in this pool with this name. Applicable only for dynamic NAT pools. Not displayed for static NAT pools.</td>
<td>All levels</td>
</tr>
<tr>
<td>Port block type</td>
<td>Type of port block allocation: secured or deterministic</td>
<td>All levels</td>
</tr>
<tr>
<td>Available addresses</td>
<td>Number of free addresses in the NAT pool.</td>
<td>detail</td>
</tr>
<tr>
<td>Configured port range</td>
<td>The range of ports configured to be used for NAT pool.</td>
<td>detail</td>
</tr>
<tr>
<td>Out of port errors</td>
<td>Number of port allocation errors. Applicable only for dynamic NAT pools. Not displayed for static NAT pools.</td>
<td>detail</td>
</tr>
<tr>
<td>Parity port errors</td>
<td>Number of port allocations that failed because a port number of the desired parity was not available.</td>
<td>detail</td>
</tr>
</tbody>
</table>
Table 81: show services nat pool Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preserve Range errors</td>
<td>Number of port allocations that failed because a port in the desired range was not available.</td>
<td>detail</td>
</tr>
<tr>
<td>Max ports used</td>
<td>Maximum number of ports used. Applicable only for dynamic NAT pools. Not displayed for static NAT pools.</td>
<td>detail</td>
</tr>
<tr>
<td>Addresses in use</td>
<td>Number of addresses in use for dynamic source address NAT pools.</td>
<td>detail</td>
</tr>
<tr>
<td>AP-P port allocation errors</td>
<td>When address pooling paired (AP-P) is configured, a private IP is paired to a public IP. This is a counter of translation errors where there are free ports available in the NAT pool, but none for the NAT IP to which the private IP is paired.</td>
<td>detail</td>
</tr>
<tr>
<td>AP-P port limit allocation errors</td>
<td>When AP-P is configured, this is a counter of out-of-port errors that are due to a configured limit for the number of allocated ports in the limit-ports-per-address statement at the [edit services nat pool nat-pool-name] hierarchy level.</td>
<td>detail</td>
</tr>
<tr>
<td>Memory allocation errors</td>
<td>Number of memory allocation failures.</td>
<td>detail</td>
</tr>
<tr>
<td>EIF Inbound session count</td>
<td>Current number of EIF inbound sessions.</td>
<td>detail</td>
</tr>
<tr>
<td>EIF Inbound session Limit exceeded drops</td>
<td>Number of inbound connections that were dropped because the EIF limit was exceeded.</td>
<td>detail</td>
</tr>
<tr>
<td>Port block size</td>
<td>Number of ports in a port block.</td>
<td>none brief</td>
</tr>
<tr>
<td>Max port blocks per address</td>
<td>Maximum number of port blocks per private address.</td>
<td>none brief</td>
</tr>
<tr>
<td>Active block timeout</td>
<td>Activity timeout of port block.</td>
<td>none brief</td>
</tr>
<tr>
<td>Effective port range</td>
<td>Effective range of port numbers.</td>
<td>none brief</td>
</tr>
<tr>
<td>Effective number of port blocks</td>
<td>Effective number of port blocks.</td>
<td>none brief</td>
</tr>
<tr>
<td>Effective number of ports</td>
<td>Effective number of ports.</td>
<td>none brief</td>
</tr>
<tr>
<td>Port block efficiency</td>
<td>Port block efficiency.</td>
<td>none brief</td>
</tr>
<tr>
<td>Port blocks limit exceeded errors</td>
<td>The total number of times when a request for more than the allowed port blocks allocated for a user arrives from a user.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 81: show services nat pool Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preserve range enabled</td>
<td>Whether the capability to preserve the privileged port range after translation is enabled. One of the following is displayed:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Is active—Preservation of port range is enabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Not active—Preservation of port range is not enabled.</td>
<td></td>
</tr>
<tr>
<td>AP-P out of port errors</td>
<td>When AP-P is configured, a private IP is paired to a public IP. This is a counter of translation errors where there are free ports available in the NAT pool, but none for the NAT IP to which the private IP is paired.</td>
<td>detail</td>
</tr>
<tr>
<td>MAX number of port blocks used</td>
<td>The maximum number of port blocks used.</td>
<td>All levels</td>
</tr>
<tr>
<td>Current number of port blocks in use</td>
<td>Current count of the port blocks that are being used.</td>
<td>detail</td>
</tr>
<tr>
<td>Port block allocation errors</td>
<td>The consolidated number of port block allocation errors.</td>
<td>All levels</td>
</tr>
<tr>
<td>Port block memory allocation errors</td>
<td>The number of memory allocation errors for port blocks.</td>
<td>All levels</td>
</tr>
<tr>
<td>DetNat subscriber exceeded port limits</td>
<td>The number of times a subscriber exceeded its port limits for a NAT pool that uses deterministic port block allocation.</td>
<td>All levels</td>
</tr>
<tr>
<td>Unique pool users</td>
<td>The number of different users of the NAT pools.</td>
<td>All levels</td>
</tr>
<tr>
<td>Current EIFInbound flows count</td>
<td>Current count of EIF inbound flows, including all EIF flows per pool.</td>
<td>detail</td>
</tr>
<tr>
<td>EIF flow limit exceeded drops</td>
<td>Current number of flow drops due to exceeded flow limit. This number is per pool, not per EIF mapping.</td>
<td>detail</td>
</tr>
</tbody>
</table>

Sample Output

```
show services nat pool brief

user@host> show services nat pool brief

Interface: ms-1/0/0, Service set: s1
<table>
<thead>
<tr>
<th>NAT pool</th>
<th>Type</th>
<th>Address</th>
<th>Port</th>
<th>Ports used</th>
</tr>
</thead>
<tbody>
<tr>
<td>dest-pool</td>
<td>DNAT-44</td>
<td>10.10.10.2-10.10.10.2</td>
<td>Port</td>
<td>0</td>
</tr>
<tr>
<td>napt-pool</td>
<td>NAPT-44</td>
<td>50.50.50.1-50.50.50.254</td>
<td>1024-63487</td>
<td>0</td>
</tr>
<tr>
<td>source-dynamic-pool</td>
<td>DYNAMIC NAT44</td>
<td>40.40.40.1-40.40.40.254</td>
<td>Port</td>
<td>0</td>
</tr>
<tr>
<td>source-static-pool</td>
<td>BASIC NAT44</td>
<td>30.30.30.1-30.30.30.254</td>
<td>Port</td>
<td>0</td>
</tr>
</tbody>
</table>
```
show services nat pool detail

```
user@host> show services nat pool detail
Interface: ms-4/0/0, Service set: ss1
   NAT pool: srcpool, Translation type: NAPT-44
   Address range: 100.0.0.1-100.0.0.254
   Available addresses: 254
   Configured port range: 1024-65535
   Port range: 1024-65535, Ports in use: 0, Out of port errors: 0
   Parity port errors: 0, Preserve Range errors: 0
   Max ports used: 0
   AP-P port allocation errors: 0, AP-P port limit allocation errors: 0
   Memory allocation errors: 0
   EIF Inbound session count: 0
   EIF Inbound session Limit exceeded drops: 0
```

show services nat pool (Secured Port Block Allocation)

```
user@host> show services nat pool
Interface: sp-2/0/0, Service set: in
   NAT pool          Type    Address                         Port        Ports used
   mypool            dynamic 3.3.3.3-3.3.3.10                512-65535   0
                          3.3.3.15-3.3.3.20
                          3.3.3.25-3.3.3.30
                          3.3.3.95-3.3.3.200
   Port block size: 64, Max port blocks per address: 1, Active block timeout: 86400,
   Effective port range: 1024-65471,
   Effective number of port blocks: 126882, Effective number of ports: 8120448, Port
   block efficiency: nan

Interface: sp-2/1/0, Service set: in1
   NAT pool          Type    Address                         Port        Ports used
   mypool1           dynamic 9.9.9.1-9.9.9.254               512-65535   0
   Port block size: 64, Max port blocks per address: 1, Active block timeout: 86400,
   Effective port range: 1024-65471,
   Effective number of port blocks: 255778, Effective number of ports: 16369792,
   Port block efficiency: nan
```

show services nat pool detail (Deterministic Port Block Allocation)

```
user@host> show services nat pool detail
Interface: sp-2/0/0, Service set: ss1
   NAT pool: napt_pool, Translation type: dynamic
   Address range: 5.5.5.1-5.5.5.254
   Configured port range: 1-60000, Preserve range enabled: Is active
   Port range: 2000-2002, Ports in use: 2, Out of port errors: 0, Max ports used: 2
   AP-P out of port errors: 188
   Max number of port blocks used: 1, Current number of port blocks in use: 1,
   Port block allocation errors: 0,
   Port block memory allocation errors: 0
   DetNAT subscriber exceeded port limits: 1
   Unique pool users: 1
```
show services nat pool (Deterministic Port Block Allocation)

```plaintext
user@host> show services nat pool

Interface: sp-2/0/0, Service set: ss2
NAT pool          Type    Address                         Port        Ports Used
pba               dynamic 33.33.33.1-33.33.33.128         512-65535   6604
Port block type: Deterministic port block, Port block size: 200
```

show services nat pool detail (Port Block Allocation)

```plaintext
user@host> show services nat pool detail

Interface: sp-2/0/0, Service set: s
NAT pool: napt_pool, Translation type: dynamic
Address range: 44.1.1.1-44.1.1.1
Configured port range: 1-60000
Port range: 1024-65535, Ports in use: 0, Out of port errors: 0,
Max ports used: 0
AP-P out-of-port errors: 0
Current EIF Inbound flows count: 0
EIF flow limit exceeded drops: 0
```
show services pcp statistics

Syntax

```
show services pcp statistics
```

Release Information

Command introduced in Junos OS Release 13.2

Description

Display information PCP mappings.

Required Privilege Level

view

List of Sample Output

```
show services pcp statistics pcp on page 1651
```

Output Fields

Table 82 on page 1650 lists the output fields for the **show services pcp statistics** command. Output fields are listed in the approximate order in which they appear.

Table 82: show services pcp statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services PIC Name</td>
<td>Name of a service interface.</td>
</tr>
<tr>
<td>Protocol Statistics</td>
<td>Overall PCP statistics, consisting of: operational, option, and results statistics.</td>
</tr>
<tr>
<td>Operational Statistics</td>
<td>Operational statistics group.</td>
</tr>
<tr>
<td>Map request received</td>
<td>Total PCP MAP requests received from PCP clients.</td>
</tr>
<tr>
<td>Peer request received</td>
<td>Number of peer requests received.</td>
</tr>
<tr>
<td>Option Statistics</td>
<td>Number of requests using available options.</td>
</tr>
<tr>
<td>Unprocessed requests received</td>
<td>Number of requests received with no option specified.</td>
</tr>
<tr>
<td>Third party requests received</td>
<td>Number of third-party requests received.</td>
</tr>
<tr>
<td>Prefer fail option received</td>
<td>Number of prefer fail requests received.</td>
</tr>
<tr>
<td>Filter option received</td>
<td>Number of filter option requests received.</td>
</tr>
<tr>
<td>Other options counters</td>
<td>Number of packets received with options other than prefer-fail and third-party.</td>
</tr>
<tr>
<td>Other optional received</td>
<td></td>
</tr>
<tr>
<td>Results Statistics</td>
<td>Information about the results of PCP requests.</td>
</tr>
<tr>
<td>PCP success</td>
<td>Number of PCP MAP requests successfully processed by the server.</td>
</tr>
</tbody>
</table>
Table 82: show services pcp statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCP unsupported version</td>
<td>Number of PCP packets received with version other than 1.</td>
</tr>
<tr>
<td>Not authorized</td>
<td>Number of unauthorized MAP delete requests.</td>
</tr>
<tr>
<td>Bad requests</td>
<td>Number of requests with invalid PCP packets.</td>
</tr>
<tr>
<td>Unsupported opcode</td>
<td>Number of packets that have an unsupported opcode.</td>
</tr>
<tr>
<td>Unsupported option</td>
<td>Number of packets that have an unsupported option.</td>
</tr>
<tr>
<td>Bad option</td>
<td>Number of packet that have a malformed option.</td>
</tr>
<tr>
<td>Network failure</td>
<td>Number of times a mapping could not be provided due to a network failure.</td>
</tr>
<tr>
<td>Out of resources</td>
<td>Number of times a mapping could not be provided because the PCP server ran out of pool resources.</td>
</tr>
<tr>
<td>Unsupported protocol</td>
<td>Number of requests for which the protocol was neither TCP nor UDP.</td>
</tr>
<tr>
<td>User exceeded quota</td>
<td>Number of requests for which the PCP client requested more than the configured number of ports.</td>
</tr>
<tr>
<td>Cannot provide external</td>
<td>Number of requests for which the PCP server cannot provide the external address or port requested by the client.</td>
</tr>
<tr>
<td>Address mismatch</td>
<td>Number of requests for which the PCP client IP address and the layer-3 source IP do not match.</td>
</tr>
<tr>
<td>Excessive number of remote peers</td>
<td>This counter is not currently used.</td>
</tr>
<tr>
<td>Processing error</td>
<td>Number of requests with malformed PCP packets information, such as an invalid IP address in a third-party request.</td>
</tr>
<tr>
<td>Other result counters</td>
<td>Not currently used.</td>
</tr>
</tbody>
</table>

Sample Output

```
show services pcp statistics pcp

user@host> show services pcp statistics pcp
Services PIC Name:    sp-2/1/0
Protocol Statistics:
Operational Statistics
    Map request received : 0
    Peer request received: 0
```
<table>
<thead>
<tr>
<th>Counter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other operational counters</td>
<td>0</td>
</tr>
<tr>
<td>Option Statistics</td>
<td></td>
</tr>
<tr>
<td>Unprocessed requests received</td>
<td>0</td>
</tr>
<tr>
<td>Third party requests received</td>
<td>0</td>
</tr>
<tr>
<td>Prefer fail option received</td>
<td>0</td>
</tr>
<tr>
<td>Filter option received</td>
<td>0</td>
</tr>
<tr>
<td>Other options counters</td>
<td>0</td>
</tr>
<tr>
<td>Option optional received</td>
<td>0</td>
</tr>
<tr>
<td>Result Statistics</td>
<td></td>
</tr>
<tr>
<td>PCP success</td>
<td>0</td>
</tr>
<tr>
<td>PCP unsupported version</td>
<td>0</td>
</tr>
<tr>
<td>Not authorized</td>
<td>0</td>
</tr>
<tr>
<td>Bad requests</td>
<td>0</td>
</tr>
<tr>
<td>Unsupported opcode</td>
<td>0</td>
</tr>
<tr>
<td>Unsupported option</td>
<td>0</td>
</tr>
<tr>
<td>Bad option</td>
<td>0</td>
</tr>
<tr>
<td>Network failure</td>
<td>0</td>
</tr>
<tr>
<td>Out of resources</td>
<td>0</td>
</tr>
<tr>
<td>Unsupported protocol</td>
<td>0</td>
</tr>
<tr>
<td>User exceeded quota</td>
<td>0</td>
</tr>
<tr>
<td>Cannot provide external</td>
<td>0</td>
</tr>
<tr>
<td>Address mismatch</td>
<td>0</td>
</tr>
<tr>
<td>Excessive number of remote peers</td>
<td>0</td>
</tr>
<tr>
<td>Processing error</td>
<td>0</td>
</tr>
<tr>
<td>Other result counters</td>
<td>0</td>
</tr>
</tbody>
</table>
show services redundancy-group

Syntax

```
show services redundancy-group
<rg-id>
<brief | extensive | terse>
```

Release Information

Statement introduced in Junos OS Release 16.1 on MX Series.

Description

Display redundancy group status information for all redundancy groups or a specified redundancy group.

Options

- `rg-id`—(Optional) Name of a specific redundancy group.
- `brief | extensive | terse`—(Optional) Display the specified level of output. When no level is specified, display terse level output.

 Default: terse

Required Privilege

View

List of Sample Output

- `show services redundancy-group terse on page 1658`
- `show services redundancy-group brief (Health Status Passed) on page 1658`
- `show services redundancy-group brief (Health Status Failed) on page 1659`
- `show services redundancy-group extensive on page 1659`

Output Fields

Table 83 on page 1653 lists the output fields for the `show services redundancy-group` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICCP process connection</td>
<td>Status of the connection between the srd and iccld.</td>
<td>all levels</td>
</tr>
<tr>
<td></td>
<td>• Connected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Not connected</td>
<td></td>
</tr>
<tr>
<td>Redundancy Group ID</td>
<td>Identifier of the redundancy group.</td>
<td>all levels</td>
</tr>
<tr>
<td>Number of peer RG connections</td>
<td>Total number of peers in the redundancy group.</td>
<td>brief, extensive</td>
</tr>
<tr>
<td>Local RG IP</td>
<td>IP address of the local redundancy group.</td>
<td>all levels</td>
</tr>
<tr>
<td>RS ID</td>
<td></td>
<td>terse</td>
</tr>
</tbody>
</table>

Copyright © 2019, Juniper Networks, Inc.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local RS state</td>
<td>State of the local redundancy set.</td>
<td>terse</td>
</tr>
<tr>
<td></td>
<td>- MASTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- STANDBY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- INITIALIZING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- STANDBY (WARNED)</td>
<td></td>
</tr>
<tr>
<td>Peer RS state</td>
<td>State of the peer redundancy set.</td>
<td>terse</td>
</tr>
<tr>
<td></td>
<td>- MASTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- STANDBY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- INITIALIZING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- STANDBY (WARNED)</td>
<td></td>
</tr>
<tr>
<td>Peer RG IP</td>
<td>Peer redundancy group IP address.</td>
<td>all</td>
</tr>
<tr>
<td>Status</td>
<td>Status of redundancy group connection with this peer.</td>
<td>terse</td>
</tr>
<tr>
<td></td>
<td>- Connected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Not Connected</td>
<td></td>
</tr>
<tr>
<td>Number of peer RG</td>
<td>Total number of peers in the redundancy group.</td>
<td>brief</td>
</tr>
<tr>
<td>connections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redundancy Set ID</td>
<td>Identifier of the redundancy set.</td>
<td>brief, extensive</td>
</tr>
<tr>
<td>Connection status</td>
<td>Status of the connection between the srd and iccpd.</td>
<td>brief, extensive</td>
</tr>
<tr>
<td></td>
<td>- Connected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Not Connected</td>
<td></td>
</tr>
<tr>
<td>Redundancy Set state</td>
<td>State of the local redundancy set state.</td>
<td>brief, extensive</td>
</tr>
<tr>
<td></td>
<td>- INITIALIZING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- MASTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- STANDBY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- STANDBY (WARNED)</td>
<td></td>
</tr>
<tr>
<td>Redundancy Set peer</td>
<td>State of the peer redundancy set state.</td>
<td>brief, extensive</td>
</tr>
<tr>
<td>state</td>
<td>- INITIALIZING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- MASTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- STANDBY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- STANDBY (WARNED)</td>
<td></td>
</tr>
<tr>
<td>Redundancy Set health</td>
<td></td>
<td>brief, extensive</td>
</tr>
<tr>
<td>status</td>
<td>- Passed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Failed</td>
<td></td>
</tr>
<tr>
<td>Number of Monitored</td>
<td>Number of monitored interfaces that are down.</td>
<td>brief, extensive</td>
</tr>
<tr>
<td>interface down</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 83: show services redundancy-group Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed Interfaces</td>
<td>List of all monitored interfaces that are down.</td>
<td>brief, extensive</td>
</tr>
<tr>
<td>Service Set</td>
<td>Service set used for stateful sync.</td>
<td>brief, extensive</td>
</tr>
<tr>
<td>Service Interface</td>
<td>Service set used for</td>
<td>brief, extensive</td>
</tr>
<tr>
<td>Type</td>
<td>Type of redundancy and stateful sync for the listed service interface.</td>
<td>brief, extensive</td>
</tr>
<tr>
<td></td>
<td>• Inter-chassis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Intra-chassis</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>Role of the listed service interface.</td>
<td>brief, extensive</td>
</tr>
<tr>
<td></td>
<td>• active</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• backup</td>
<td></td>
</tr>
<tr>
<td>Connection</td>
<td>Status of connection with peer service PIC.</td>
<td>brief, extensive</td>
</tr>
<tr>
<td></td>
<td>• Up</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Down</td>
<td></td>
</tr>
<tr>
<td>Synchronization</td>
<td>Type of synchronization. When all eligible sessions are still synchronizing, it is</td>
<td>brief, extensive</td>
</tr>
<tr>
<td></td>
<td>cold synchronization. When all current existing sessions are synchronized, it is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a HOT synchronization, When long lived sessions are eligible, they are synchronized.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hot—All current existing sessions are synced. When long-lived sessions are</td>
<td></td>
</tr>
<tr>
<td></td>
<td>eligible, they are synchronized.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cold—Eligible sessions are in the processing of synchronizing.</td>
<td></td>
</tr>
<tr>
<td>ICCP process connection</td>
<td>Number of completed opens of ICCP process connections.</td>
<td>extensive</td>
</tr>
<tr>
<td>open complete count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICCP process connection</td>
<td>Number of completed closes of ICCP process connections.</td>
<td></td>
</tr>
<tr>
<td>close complete count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICCP packet sent count</td>
<td>Number of ICCP packets sent.</td>
<td>extensive</td>
</tr>
<tr>
<td>ICCP packet receive count</td>
<td>Number of ICCP packets received.</td>
<td>extensive</td>
</tr>
<tr>
<td>ICCP process keepalive</td>
<td>Number of ICCP process keepalive messages received.</td>
<td>extensive</td>
</tr>
<tr>
<td>receive count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICCP process keepalive</td>
<td>Number of ICCP process keepalive messages sent.</td>
<td>extensive</td>
</tr>
<tr>
<td>send count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICCP redundancy group</td>
<td>Number of redundancy group add messages received by srd</td>
<td>extensive</td>
</tr>
<tr>
<td>add count</td>
<td>from ICCP.</td>
<td></td>
</tr>
</tbody>
</table>
Table 83: show services redundancy-group Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICCP redundancy group delete count</td>
<td>Number of redundancy group delete messages received by srd from ICCP.</td>
<td>extensive</td>
</tr>
<tr>
<td>RG connection up count</td>
<td>Number of redundancy group connection up messages received by srd from ICCP.</td>
<td>extensive</td>
</tr>
<tr>
<td>RG connection down count</td>
<td>Number of redundancy group connection down messages received by srd from ICCP.</td>
<td>extensive</td>
</tr>
<tr>
<td>RG join count</td>
<td>Number of redundancy group join messages sent from srd to ICCP.</td>
<td>extensive</td>
</tr>
<tr>
<td>RG data receive count</td>
<td>Number of packets of messages received by srd from a peer.</td>
<td>extensive</td>
</tr>
<tr>
<td>RG data sent count</td>
<td>Number of packets of messages sent from srd to a peer.</td>
<td>extensive</td>
</tr>
<tr>
<td>RG connect message sent count</td>
<td>Number of connect messages sent from srd to ICCP.</td>
<td>extensive</td>
</tr>
<tr>
<td>RG connect message receive count</td>
<td>Number of connect messages received by srd from ICCP.</td>
<td>extensive</td>
</tr>
<tr>
<td>RG disconnect message sent count</td>
<td>Number of disconnect messages sent from srd to ICCP.</td>
<td>extensive</td>
</tr>
<tr>
<td>RG disconnect message receive count</td>
<td>Number of disconnect messages received by srd from ICCP.</td>
<td>extensive</td>
</tr>
<tr>
<td>RG ack sent count</td>
<td>Number of RG ack messages sent.</td>
<td>extensive</td>
</tr>
<tr>
<td>RG nack sent count</td>
<td>Number of RG nack messages sent.</td>
<td>extensive</td>
</tr>
<tr>
<td>RG nack receive count</td>
<td>Number of RG nack messages received.</td>
<td>extensive</td>
</tr>
<tr>
<td>Transition Events Received</td>
<td>Number of transition events received in each of the following categories:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Acquire mastership auto</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Acquire mastership manual</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Release mastership auto</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Release mastership manual</td>
<td></td>
</tr>
</tbody>
</table>
Table 83: show services redundancy-group Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition Events Ignored</td>
<td>Number of transition events ignored in each of the following categories:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Acquire mastership auto</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Acquire mastership manual</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Release mastership auto</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Release mastership manual</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In a high-availability or redundancy pair of SDGs, in which one SDG is the master</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and the other is the standby, when perform a double failover of the SDGs, the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>second failover event is not ignored, which is the expected behavior. The</td>
<td></td>
</tr>
<tr>
<td></td>
<td>event is not disregarded because it arrives as a critical redundancy-event based</td>
<td></td>
</tr>
<tr>
<td></td>
<td>on the redundancy-policy. However, because the SDG is already be in Standby state</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the finite state machine transitions to the Standby-Warning state until it</td>
<td></td>
</tr>
<tr>
<td></td>
<td>recovers. Therefore, the event is honored and not ignored. Although there was</td>
<td></td>
</tr>
<tr>
<td></td>
<td>no mastership transition, it is because of a valid reason that the SDG is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>already in Standby state. The redundancy-event is associated with to a mastership</td>
<td></td>
</tr>
<tr>
<td></td>
<td>release policy based on the configuration and the Release mastership field under</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the Transition Events Ignored column displays a number that corresponds to the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>redundancy event. The services redundancy daemon (SRD) finite state machine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>quickly recovers (transitions from Standby-Warning to Standby) during restart-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>routing because the rpd restart-handling and recovery are fast and the following</td>
<td></td>
</tr>
<tr>
<td></td>
<td>critical event is not ignored. However, disabling or deactivating the interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>results in the FSM remaining in Standby-Warning until the interface is up. Any</td>
<td></td>
</tr>
<tr>
<td></td>
<td>critical events during the time when the interface is down are ignored because</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the state is already Standby-Warning and does not transition to a different state</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In summary, the following is the manner in which critical events are analyzed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>during state transitions:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Standby -> Standby Warned = Critical Event Not ignored [valid state transition]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Standby Warned -> Standby Warned = Critical Event ignored [no state transition]</td>
<td></td>
</tr>
<tr>
<td>Monitored Events Received</td>
<td>Number of monitored events received in each of the following categories:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Link-down</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Routing restart/abort</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Route update error</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Peer mastership-acquire</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Peer mastership-release</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2019, Juniper Networks, Inc.
Table 83: show services redundancy-group Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitored Events Ignored</td>
<td>Number of monitored events ignored in each of the following categories:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Link-down</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Routing restart/abort</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Route update error</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Peer mastership-acquire</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Peer mastership-release</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

show services redundancy-group terse

```
user@host> show services redundancy-group terse
ICCP process connection : Connected
Redundancy Group ID     : 1
Number of peer RG connections : 1
Local RG IP             : 172.19.39.70
RS ID                   : 1
Local RS state          : MASTER
Peer RS state           : STANDBY
Peer RG IP              : 172.19.39.69
Status                  : Connected
```

show services redundancy-group brief (Health Status Passed)

```
user@host> show services redundancy-group brief
ICCP process connection : Connected
Redundancy Group ID     : 1
Number of peer RG connections : 1
Local RG IP             : 172.19.39.70
Redundancy Set ID       : 1
Connection status       : Connected
Redundancy Set state    : MASTER
Redundancy Set peer state : STANDBY
Peer RG IP              : 172.19.39.69
Redundancy Set health status : Passed
Service Set : IPv6-SFW
  Service interface     | Type     | Role   | Connection | Synchronization |
  ms-1/3/0              | Inter-chassis | active | Up         | Hot            |
  ms-1/2/0              | Inter-chassis | active | Up         | Hot            |
  ms-1/1/0              | Inter-chassis | active | Up         | Hot            |
  ms-1/0/0              | Inter-chassis | active | Up         | Hot            |
Service Set : NAPT44-SS1-SS4
  Service interface     | Type     | Role   | Connection | Synchronization |
  ms-1/3/0              | Inter-chassis | active | Up         | Hot            |
  ms-1/2/0              | Inter-chassis | active | Up         | Hot            |
```
show services redundancy-group brief (Health Status Failed)

user@host> show services redundancy-group brief

ICCP Process Connection : Connected
Redundancy Group ID : 1
Number of Members : 2
Redundancy Set ID : 1
 Remote IP address : 203.0.113.2
 Connection Status : Connected
 Redundancy Set State : STANDBY (WAIT)
 Redundancy Set Peer State : MASTER
 Redundancy Set Health Status : Failed
 Number of Monitored interface down : 1

Failed Interfaces

ms-2/3/0 Service Set : ss2
 Service Interface Type Role Connection Synchronization
 ms-2/2/0 Inter-chassis backup Up Hot
 ms-2/1/0 Inter-chassis backup Down Off
 ms-2/0/0 Inter-chassis backup Down Off

Service Set : ss_new

ms-2/3/0 Service Interface Type Role Connection Synchronization

show services redundancy-group extensive

user@host> show services redundancy-group extensive

ICCP process connection : Connected
ICCP process connection close count : 0
ICCP process connection open complete count : 1
ICCP packet sent count : 7303
ICCP packet receive count : 7321
ICCP process keepalive receive count : 7253
ICCP process keepalive sent count : 7253
ICCP redundancy group add count : 0
ICCP redundancy group delete count : 0
Redundancy Group ID : 1
 Number of peer RG connections : 1
 Local RG IP : 172.19.39.70
 RG connection up count : 4
 RG connection down count : 2
 RG join count : 4
 RG data receive count : 37
 RG data sent count : 0
 RG connect message sent count : 4
 RG connect message receive count : 4
 RG disconnect message sent count : 0
 RG disconnect message receive count : 4
 RG ack sent count : 4
 RG nack sent count : 0
<table>
<thead>
<tr>
<th>Service Set</th>
<th>IPv6-SFW</th>
<th>Service interface</th>
<th>Type</th>
<th>Role</th>
<th>Connection</th>
<th>Synchronization</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms-1/3/0</td>
<td>Inter-chassis</td>
<td>active</td>
<td>Up</td>
<td>Hot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ms-1/2/0</td>
<td>Inter-chassis</td>
<td>active</td>
<td>Up</td>
<td>Hot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ms-1/1/0</td>
<td>Inter-chassis</td>
<td>active</td>
<td>Up</td>
<td>Hot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ms-1/0/0</td>
<td>Inter-chassis</td>
<td>active</td>
<td>Up</td>
<td>Hot</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service Set</th>
<th>NAPT44-SS1-SS4</th>
<th>Service interface</th>
<th>Type</th>
<th>Role</th>
<th>Connection</th>
<th>Synchronization</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms-1/3/0</td>
<td>Inter-chassis</td>
<td>active</td>
<td>Up</td>
<td>Hot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ms-1/2/0</td>
<td>Inter-chassis</td>
<td>active</td>
<td>Up</td>
<td>Hot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ms-1/1/0</td>
<td>Inter-chassis</td>
<td>active</td>
<td>Up</td>
<td>Hot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ms-1/0/0</td>
<td>Inter-chassis</td>
<td>active</td>
<td>Up</td>
<td>Hot</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transition events</th>
<th>Received</th>
<th>Ignored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquire mastership auto</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Acquire mastership manual</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Release mastership auto</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Release mastership manual</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitored events</th>
<th>Received</th>
<th>Ignored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link-down</td>
<td>145</td>
<td>31</td>
</tr>
<tr>
<td>Routing restart/abort</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Route update error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peer mastership-acquire</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Peer mastership-release</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
show services service-sets cpu-usage

Syntax

`show services service-sets cpu-usage`
`<interface interface-name>`
`<service-set service-set-name>`

Release Information

Command introduced before Junos OS Release 7.4. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description

Displays serviceset CPU usage as a percentage. The command is supported only on Adaptive Services PICs (SP PICs).

Options

- `none`—Display CPU usage for all adaptive services interfaces and service sets.
- `interface interface-name`—(Optional) Display CPU usage for a particular interface. On M Series and T Series routers, the `interface-name` parameter can have the value `sp-fpc/pic/port` or `rspnumber`.
- `service-set service-set-name`—(Optional) Display CPU usage for a particular service set. For the Layer 2 Tunneling Protocol (L2TP), you can use a tunnel group to represent a service set.

Required Privilege Level

`view`

List of Sample Output

`show services service-sets cpu-usage` on page 1662

Output Fields

Table 84 on page 1661 lists the output fields for the `show services service-sets cpu-usage` command. Output fields are listed in the approximate order in which they appear.

Table 84: show services service-sets cpu-usage Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an adaptive services interface</td>
</tr>
<tr>
<td>Service set (system category)</td>
<td>Name of the CPU usage category:</td>
</tr>
<tr>
<td></td>
<td>• idp_recommended—Name of the service sets (displays all the service sets attached to the service PICs)</td>
</tr>
<tr>
<td></td>
<td>• Idle</td>
</tr>
<tr>
<td></td>
<td>• System</td>
</tr>
<tr>
<td></td>
<td>• Receive</td>
</tr>
<tr>
<td></td>
<td>• Transmit</td>
</tr>
<tr>
<td>CPU utilization %</td>
<td>Percentage of the CPU resources being used</td>
</tr>
</tbody>
</table>
Sample Output

```
show services service-sets cpu-usage
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Service set (system category)</th>
<th>CPU utilization %</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp-4/1/0</td>
<td>idp_recommended</td>
<td>18.20 %</td>
</tr>
<tr>
<td>sp-4/1/0</td>
<td>Idle</td>
<td>44.69 %</td>
</tr>
<tr>
<td>sp-4/1/0</td>
<td>System</td>
<td>7.01 %</td>
</tr>
<tr>
<td>sp-4/1/0</td>
<td>Receive</td>
<td>15.10 %</td>
</tr>
<tr>
<td>sp-4/1/0</td>
<td>Transmit</td>
<td>15.00 %</td>
</tr>
</tbody>
</table>
show services service-sets memory-usage

Syntax

```plaintext
show services service-sets memory-usage
  <interface interface-name>
  <service-set service-set-name>
  <zone>
```

Release Information

Command introduced before Junos OS Release 7.4. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description

Display service set memory usage.

Options

- `none`—Display service set memory usage.
- `interface interface-name`—(Optional) Display memory usage for a particular interface. On M Series and T Series routers, the `interface-name` can be `sp-fpc/pic/port`, or `emspnumber`.

NOTE: This command is not supported on Multilink Protocol–based services PICs.

The interface option is not supported on Multiservice PICs.

- `service-set service-set-name`—(Optional) Display memory usage for a particular service set. For Layer 2 Tunneling Protocol (L2TP), you can use a tunnel group to represent a service set.
- `zone`—(Optional) Display the memory usage zone of the adaptive services interface or an individual service set.

Required Privilege Level

- `view`

List of Sample Output

- `show services service-sets memory-usage` on page 1664
- `show services service-sets memory-usage zone` on page 1664
- `show services service-sets memory-usage interface` on page 1664

Output Fields

- Table 85 on page 1664 lists the output fields for the `show services service-sets memory-usage` command. Output fields are listed in the approximate order in which they appear.
Table 85: `show services service-sets memory-usage` Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an adaptive services interface</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of a service set</td>
</tr>
<tr>
<td>Bytes Used</td>
<td>Number of bytes of memory being used</td>
</tr>
<tr>
<td>Memory zone</td>
<td>Memory zone in which the adaptive services interface is currently operating:</td>
</tr>
<tr>
<td></td>
<td>• Green—All new flows are allowed.</td>
</tr>
<tr>
<td></td>
<td>• Yellow—Unused memory is reclaimed. All new flows are allowed.</td>
</tr>
<tr>
<td></td>
<td>• Orange—New flows are allowed only for service sets that are using less than their equal share of memory.</td>
</tr>
<tr>
<td></td>
<td>• Red—No new flows are allowed.</td>
</tr>
</tbody>
</table>

Sample Output

show services service-sets memory-usage

```bash
user@host> show services service-sets memory-usage
Interface   Service set       Bytes Used  
ms-4/0/0    N/A               14817036   
ms-4/1/0    N/A               14691700   
```

show services service-sets memory-usage zone

```bash
user@host> show services service-sets memory-usage zone
Interface   Memory zone
```

show services service-sets memory-usage interface

```bash
user@host> show services service-sets memory-usage interface ms-4/1/0
Interface   Service Set       Bytes Used  
ms-4/1/0    N/A               14691700   
```
show services service-set statistics ids drops

Syntax

```
show services service-set statistics ids drops
<interface interface-name>
<service-set service-set-name>
```

Release Information

Command introduced in Junos OS Release 17.1 on MX Series.

Description

Display statistics for packet drops resulting from header-integrity, suspicious packet pattern, and session-limit checks performed by an MS-MPC or MS-MIC.

Options

- `none`—Display statistics for all configured service interfaces and service sets.

- `interface interface-name`—(Optional) Display statistics for the specified services interface.

Required Privilege Level

`view`

Related Documentation

- Configuring Protection Against Network Attacks on an MS-MPC on page 515

List of Sample Output

show services service-set statistics ids drops on page 1670

Output Fields

Table 86 on page 1665 lists the output fields for the `show services service-set integrity-drops` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an adaptive services interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of a service set.</td>
</tr>
<tr>
<td>Errors</td>
<td>Total errors, categorized by protocol:</td>
</tr>
<tr>
<td></td>
<td>- IP—Total IP version 4 errors.</td>
</tr>
<tr>
<td></td>
<td>- TCP—Total Transmission Control Protocol (TCP) errors.</td>
</tr>
<tr>
<td></td>
<td>- UDP—Total User Datagram Protocol (UDP) errors.</td>
</tr>
<tr>
<td></td>
<td>- ICMP—Total Internet Control Message Protocol (ICMP) errors.</td>
</tr>
</tbody>
</table>
Table 86: show services service-set statistics ids drops Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Errors</td>
<td></td>
</tr>
</tbody>
</table>
Table 86: show services service-set statistics ids drops Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of IPv4 errors for the following categories:</td>
<td></td>
</tr>
<tr>
<td>• IP packet length inconsistencies — IP packet length did not match the Layer 2 reported length.</td>
<td></td>
</tr>
<tr>
<td>• Minimum IP header length check failures — Minimum IP header length is 20 bytes. The received packet contained less than 20 bytes.</td>
<td></td>
</tr>
<tr>
<td>• Reassembled packet exceeds maximum IP length — After fragment reassembly, the reassembled IP packet length exceeded 65,535.</td>
<td></td>
</tr>
<tr>
<td>• Illegal source address 0 — Source address is not a valid address. Invalid addresses are loopback, broadcast, multicast, and reserved addresses. Source address 0, however, is allowed to support BOOTP and the destination address 0xffffffff.</td>
<td></td>
</tr>
<tr>
<td>• Illegal destination address — Destination address was not a valid address. The address is reserved.</td>
<td></td>
</tr>
<tr>
<td>• TTL zero errors — Received packet had a time-to-live (TTL) value of 0.</td>
<td></td>
</tr>
<tr>
<td>• Illegal IP protocol number 0 or 255 — IP protocol is 0 or 255.</td>
<td></td>
</tr>
<tr>
<td>• Land attack — IP source address is the same as the destination address.</td>
<td></td>
</tr>
<tr>
<td>• Non-IP packets — Packet did not conform to the IP standard.</td>
<td></td>
</tr>
<tr>
<td>• IP option — Packet had a non-allowed IP option.</td>
<td></td>
</tr>
<tr>
<td>• Non-IPv4 packets — Packet was not of the IPv4 type.</td>
<td></td>
</tr>
<tr>
<td>• Non-IPv6 packets — Packet was not of the IPv6 type.</td>
<td></td>
</tr>
<tr>
<td>• Bad checksum — Packet had an invalid IP checksum.</td>
<td></td>
</tr>
<tr>
<td>• Illegal IP fragment length — Illegal fragment length. All fragments (other than the last fragment) must have a length that is a multiple of 8 bytes.</td>
<td></td>
</tr>
<tr>
<td>• IP fragment overlap — Fragments had overlapping fragment offsets.</td>
<td></td>
</tr>
<tr>
<td>• IP fragment limit exceeded — Configured number of allowed fragments for a packet was exceeded.</td>
<td></td>
</tr>
<tr>
<td>• IP fragment reassembly timeout — Some of the fragments for an IP packet were not received in time, and the reassembly handler dropped partial fragments. Whenever a fragment is received, it is maintained in a chain until all other fragments are received. If other fragments do not arrive within the configured value of reassembly-timeout, this packet is dropped and the value of the counter shown in this field is incremented. If other fragments arrive in time but the total number of fragments is more than the configured value of fragment-limit, all the fragments (of this packet) are dropped and the value of the counter shown in this field is incremented.</td>
<td></td>
</tr>
<tr>
<td>• IPv4 bad options — Packet IP header contained IPv4 option that is not allowed.</td>
<td></td>
</tr>
<tr>
<td>• IPv6 bad extension headers — Packet contained IPv6 extension header type that is not allowed.</td>
<td></td>
</tr>
<tr>
<td>• session-limit exceeded for source — Number of concurrent sessions from an individual source address or subnet exceeded limit.</td>
<td></td>
</tr>
<tr>
<td>• session-limit exceeded for destination — Number of concurrent sessions to an individual destination address or subnet exceeded limit.</td>
<td></td>
</tr>
</tbody>
</table>
Table 86: show services service-set statistics ids drops Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>limit.</td>
<td></td>
</tr>
<tr>
<td>• connections/second limit exceeded for source</td>
<td>Number of connections per second for an individual source address or subnet exceeded limit.</td>
</tr>
<tr>
<td>• connections/second limit exceeded for destination</td>
<td>Number of connections per second for an individual destination address or subnet exceeded limit.</td>
</tr>
<tr>
<td>• packets/second limit exceeded for source</td>
<td>Number of packets per second for an individual source address or subnet exceeded limit.</td>
</tr>
<tr>
<td>• packet/second limit exceeded for destination</td>
<td>Number of packets per second for an individual destination address or subnet exceeded limit.</td>
</tr>
<tr>
<td>• Unknown</td>
<td>Unknown fragments.</td>
</tr>
</tbody>
</table>

TCP Errors

Number of TCP protocol errors for the following categories:

- TCP header length inconsistencies—Minimum TCP header length is 20 bytes, and the IP packet received did not contain at least 20 bytes.
- Source or destination port number is zero—TCP source or destination port was zero.
- Illegal sequence number, flags combination—Packet had any type of TCP header anomaly.
- TCP winnuke—TCP segments destined for port 139 with the urgent (URG) flag set.
- TCP SYN Fragment—TCP SYN packet was a fragment.
- TCP connection closed due to SYN defense—Unestablished TCP connection closed because open-timeout value expired.
- TCP session-limit exceeded for source—Number of concurrent TCP sessions from an individual source address or subnet exceeded limit.
- TCP session-limit exceeded for destination—Number of concurrent TCP sessions to an individual destination address or subnet exceeded limit.
- TCP connections/second limit exceeded for source—Number of TCP connections per second for an individual source address or subnet exceeded limit.
- TCP connections/second limit exceeded for destination—Number of TCP connections per second for an individual destination address or subnet exceeded limit.
- TCP packets/second limit exceeded for source—Number of TCP packets per second for an individual source address or subnet exceeded limit.
- TCP packet/second limit exceeded for destination—Number of TCP packets per second for an individual destination address or subnet exceeded limit.
Table 86: show services service-set statistics ids drops Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP Errors</td>
<td>Number of UDP protocol errors for the following categories:</td>
</tr>
<tr>
<td></td>
<td>• IP data length less than minimum UDP header length (8 bytes)—Minimum UDP header length is 8 bytes. The received IP packets contained less than 8 bytes.</td>
</tr>
<tr>
<td></td>
<td>• Source or destination port is zero—UDP source or destination port was 0.</td>
</tr>
<tr>
<td></td>
<td>• UDP session-limit exceeded for source—Number of concurrent UDP sessions from an individual source address or subnet exceeded limit.</td>
</tr>
<tr>
<td></td>
<td>• UDP session-limit exceeded for destination—Number of concurrent UDP sessions to an individual destination address or subnet exceeded limit.</td>
</tr>
<tr>
<td></td>
<td>• UDP connections/second limit exceeded for source—Number of UDP connections per second for an individual source address or subnet exceeded limit.</td>
</tr>
<tr>
<td></td>
<td>• UDP connections/second limit exceeded for destination—Number of UDP connections per second for an individual destination address or subnet exceeded limit.</td>
</tr>
<tr>
<td></td>
<td>• UDP packets/second limit exceeded for source—Number of UDP packets per second for an individual source address or subnet exceeded limit.</td>
</tr>
<tr>
<td></td>
<td>• UDP packet/second limit exceeded for destination—Number of UDP packets per second for an individual destination address or subnet exceeded limit.</td>
</tr>
<tr>
<td>ICMP Errors</td>
<td>Number of ICMP protocol errors for the following categories:</td>
</tr>
<tr>
<td></td>
<td>• IP data length less than minimum ICMP header length (8 bytes)—ICMP header length contained less than 8 bytes.</td>
</tr>
<tr>
<td></td>
<td>• ICMP error length inconsistencies—ICMP error packet length was outside range of 48 bytes through 576 bytes.</td>
</tr>
<tr>
<td></td>
<td>• ICMP fragments—ICMP packet was an IP fragment.</td>
</tr>
<tr>
<td></td>
<td>• ICMP session-limit exceeded for source—Number of concurrent ICMP sessions from an individual source address or subnet exceeded limit.</td>
</tr>
<tr>
<td></td>
<td>• ICMP session-limit exceeded for destination—Number of concurrent ICMP sessions to an individual destination address or subnet exceeded limit.</td>
</tr>
<tr>
<td></td>
<td>• ICMP connections/second limit exceeded for source—Number of ICMP connections per second for an individual source address or subnet exceeded limit.</td>
</tr>
<tr>
<td></td>
<td>• ICMP connections/second limit exceeded for destination—Number of ICMP connections per second for an individual destination address or subnet exceeded limit.</td>
</tr>
<tr>
<td></td>
<td>• ICMP packets/second limit exceeded for source—Number of ICMP packets per second for an individual source address or subnet exceeded limit.</td>
</tr>
<tr>
<td></td>
<td>• ICMP packet/second limit exceeded for destination—Number of ICMP packets per second for an individual destination address or subnet exceeded limit.</td>
</tr>
</tbody>
</table>
Sample Output

```
show services service-set statistics ids drops

user@host> show services service-set statistics ids drops

Interface: ms-1/0/0
Service set: sset1
Errors:
   IP: 0, TCP: 0
   UDP: 0, ICMP: 0
IP errors:
   IP packet length inconsistencies: 0
   Illegal source address: 0
   Illegal destination address: 0
   TTL zero errors: 0, Illegal IP protocol number (0 or 255): 0
   Land attack: 0
   Non-IPv4 packets: 0
   Non-IPv6 packets: 0
   Bad checksum: 0
   Illegal IP fragment length: 0
   IP fragment overlap: 0
   IP fragment reassembly timeout: 0
   IP fragment limit exceeded: 0
   IPv4 bad options: 0
   IPv6 bad extension headers: 0
   session-limit exceeded for source: 0
   session-limit exceeded for destination: 0
   connections/second limit exceeded for source: 0
   connections/second limit exceeded for destination: 0
   packets/second limit exceeded for source: 0
   packet/second limit exceeded for destination: 0
   Unknown: 0
TCP errors:
   TCP header length inconsistencies: 0
   Source or destination port number is zero: 0
   Illegal sequence number and flags combinations: 0
   TCP winnuke: 0
   TCP SYN Fragment: 0
   TCP connection closed due to SYN defense: 0
   TCP session-limit exceeded for source: 0
   TCP session-limit exceeded for destination: 0
   TCP connections/second limit exceeded for source: 0
   TCP connections/second limit exceeded for destination: 0
   TCP packets/second limit exceeded for source: 0
   TCP packet/second limit exceeded for destination: 0
UDP errors:
   IP data length less than minimum UDP header length (8 bytes): 0
   Source or destination port number is zero: 0
   UDP session-limit exceeded for source: 0
   UDP session-limit exceeded for destination: 0
   UDP connections/second limit exceeded for source: 0
   UDP connections/second limit exceeded for destination: 0
   UDP packets/second limit exceeded for source: 0
   UDP packet/second limit exceeded for destination: 0
ICMP errors:
   IP data length less than minimum ICMP header length (8 bytes): 0
   ICMP error length inconsistencies: 0
   ICMP fragments: 0
   ICMP session-limit exceeded for source: 0
```
ICMP session-limit exceeded for destination: 0
ICMP connections/second limit exceeded for source: 0
ICMP connections/second limit exceeded for destination: 0
ICMP packets/second limit exceeded for source: 0
ICMP packet/second limit exceeded for destination: 0
show services service-sets statistics ids session-limits counters

Syntax

```
show services service-sets statistics ids session-limits counters <interface interface-name>
```

Release Information

Command introduced in Junos OS Release 17.1 on MX Series.

Description

Display counters for session drops and packet drops resulting from session-limit checks performed by an IDS rule on an MS-MPC or MS-MIC.

Options

- **none**—Display statistics for all configured services interfaces.
- **interface interface-name**—(Optional) Display statistics for the specified services interface.

Required Privilege Level

view

Related Documentation

- Configuring Protection Against Network Attacks on an MS-MPC on page 515
- show services service-sets statistics ids session-limits counters interface on page 1676

List of Sample Output

show services service-sets statistics ids session-limits counters interface on page 1676

Output Fields

Table 87 on page 1672 lists the output fields for the `show services service-set statistics ids session-limits counters` command. Output fields are listed in the approximate order in which they appear.

Table 87: show services service-sets statistics ids session-limits counters Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the service interface assigned to the service set.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of the service set to which the IDS rule is applied.</td>
</tr>
<tr>
<td>Ingress General Info</td>
<td>Information for IDS rules for the service set in the ingress direction.</td>
</tr>
<tr>
<td>Match-direction</td>
<td>Displays input.</td>
</tr>
<tr>
<td>Rule name</td>
<td>Name of the IDS rule.</td>
</tr>
<tr>
<td>Term name</td>
<td>Name of the term in the IDS rule.</td>
</tr>
</tbody>
</table>
Table 87: show services service-sets statistics ids session-limits counters Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress TCP Counters</td>
<td>Session-limit TCP counters in the ingress direction for the following:</td>
</tr>
<tr>
<td>Sessions allowed</td>
<td>Number of TCP sessions allowed by the IDS rule.</td>
</tr>
<tr>
<td>Sessions ignored</td>
<td>Number of TCP sessions that did not undergo IDS processing because traffic matched a stateful firewall rule that included accept skip-ids.</td>
</tr>
<tr>
<td>Sessions dropped due to maximum reached</td>
<td>Number of TCP sessions dropped because the number of TCP sessions exceeded the limit.</td>
</tr>
<tr>
<td>Sessions dropped due to high rate</td>
<td>Number of TCP sessions dropped because the number of TCP connections per second exceeded the limit.</td>
</tr>
<tr>
<td>Sessions dropped due to suspicious packets</td>
<td>Number of TCP sessions dropped because suspicious TCP packets were found.</td>
</tr>
<tr>
<td>Packets allowed</td>
<td>Number of TCP packets that the IDS rule allowed.</td>
</tr>
<tr>
<td>Packets dropped due to high pps</td>
<td>Number of TCP packets dropped because the number of TCP packets per second exceeded the limit.</td>
</tr>
<tr>
<td>Ingress UDP Counters</td>
<td>Session-limit UDP counters in the ingress direction for the following:</td>
</tr>
<tr>
<td>Sessions allowed</td>
<td>Number of UDP sessions allowed by the IDS rule.</td>
</tr>
<tr>
<td>Sessions ignored</td>
<td>Number of UDP sessions that did not undergo IDS processing because traffic matched a stateful firewall rule that included accept skip-ids.</td>
</tr>
<tr>
<td>Sessions dropped due to maximum reached</td>
<td>Number of UDP sessions dropped because the number of UDP sessions exceeded the limit.</td>
</tr>
<tr>
<td>Sessions dropped due to high rate</td>
<td>Number of UDP sessions dropped because the number of UDP connections per second exceeded the limit.</td>
</tr>
<tr>
<td>Sessions dropped due to suspicious packets</td>
<td>Number of UDP sessions dropped because suspicious UDP packets were found.</td>
</tr>
<tr>
<td>Packets allowed</td>
<td>Number of UDP packets that the IDS rule allowed.</td>
</tr>
<tr>
<td>Packets dropped due to high pps</td>
<td>Number of UDP packets dropped because the number of TCP packets per second exceeded the limit.</td>
</tr>
<tr>
<td>Ingress ICMP Counters</td>
<td>Session-limit ICMP counters in the ingress direction for the following:</td>
</tr>
<tr>
<td>Sessions allowed</td>
<td>Number of ICMP sessions allowed by the IDS rule.</td>
</tr>
<tr>
<td>Sessions ignored</td>
<td>Number of ICMP sessions that did not undergo IDS processing because traffic matched a stateful firewall rule that included accept skip-ids.</td>
</tr>
<tr>
<td>Sessions dropped due to maximum reached</td>
<td>Number of ICMP sessions dropped because the number of ICMP sessions exceeded the limit.</td>
</tr>
<tr>
<td>Sessions dropped due to high rate</td>
<td>Number of ICMP sessions dropped because the number of ICMP connections per second exceeded the limit.</td>
</tr>
<tr>
<td>Sessions dropped due to suspicious packets</td>
<td>Number of ICMP sessions dropped because suspicious ICMP packets were found.</td>
</tr>
<tr>
<td>Packets allowed</td>
<td>Number of ICMP packets that the IDS rule allowed.</td>
</tr>
<tr>
<td>Packets dropped due to high pps</td>
<td>Number of ICMP packets dropped because the number of ICMP packets per second exceeded the limit.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Ingress Other-Protocols Counters</td>
<td>Session-limit counters in the ingress direction for protocols other than TCP, UDP, and ICMP for the following:</td>
</tr>
<tr>
<td></td>
<td>• Sessions allowed—Number of sessions allowed by the IDS rule.</td>
</tr>
<tr>
<td></td>
<td>• Sessions ignored—Number of sessions that did not undergo IDS processing because traffic matched a stateful firewall rule that included accept skip-ids.</td>
</tr>
<tr>
<td></td>
<td>• Sessions dropped due to maximum reached—Number of sessions dropped because the number of sessions exceeded the limit.</td>
</tr>
<tr>
<td></td>
<td>• Sessions dropped due to high rate—Number of sessions dropped because the number of connections per second exceeded the limit.</td>
</tr>
<tr>
<td></td>
<td>• Sessions dropped due to suspicious packets—Number of sessions dropped because suspicious packets were found.</td>
</tr>
<tr>
<td></td>
<td>• Packets allowed—Number of packets that the IDS rule allowed.</td>
</tr>
<tr>
<td></td>
<td>• Packets dropped due to high pps—Number of packets dropped because the number of packets per second exceeded the limit.</td>
</tr>
<tr>
<td>Egress General Info</td>
<td>Information for IDS rules for the service set in the egress direction.</td>
</tr>
<tr>
<td></td>
<td>• Match-direction—Displays output.</td>
</tr>
<tr>
<td></td>
<td>• Rule name—Name of the IDS rule.</td>
</tr>
<tr>
<td></td>
<td>• Term name—Name of the term in the IDS rule.</td>
</tr>
<tr>
<td>Egress TCP Counters</td>
<td>Session-limit TCP counters in the egress direction for the following:</td>
</tr>
<tr>
<td></td>
<td>• Sessions allowed—Number of TCP sessions allowed by the IDS rule.</td>
</tr>
<tr>
<td></td>
<td>• Sessions ignored—Number of TCP sessions that did not undergo IDS processing because traffic matched a stateful firewall rule that included accept skip-ids.</td>
</tr>
<tr>
<td></td>
<td>• Sessions dropped due to maximum reached—Number of TCP sessions dropped because the number of TCP sessions exceeded the limit.</td>
</tr>
<tr>
<td></td>
<td>• Sessions dropped due to high rate—Number of TCP sessions dropped because the number of TCP connections per second exceeded the limit.</td>
</tr>
<tr>
<td></td>
<td>• Sessions dropped due to suspicious packets—Number of TCP sessions dropped because suspicious TCP packets were found.</td>
</tr>
<tr>
<td></td>
<td>• Packets allowed—Number of TCP packets that the IDS rule allowed.</td>
</tr>
<tr>
<td></td>
<td>• Packets dropped due to high pps—Number of TCP packets dropped because the number of TCP packets per second exceeded the limit.</td>
</tr>
</tbody>
</table>
Table 87: `show services service-sets statistics ids session-limits counters` Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egress UDP Counters</td>
<td>Session-limit UDP counters in the egress direction for the following:</td>
</tr>
<tr>
<td></td>
<td>• Sessions allowed—Number of UDP sessions allowed by the IDS rule.</td>
</tr>
<tr>
<td></td>
<td>• Sessions ignored—Number of UDP sessions that did not undergo IDS processing because traffic matched a stateful firewall rule that included <code>accept skip-ids</code>.</td>
</tr>
<tr>
<td></td>
<td>• Sessions dropped due to maximum reached—Number of UDP sessions dropped because the number of UDP sessions exceeded the limit.</td>
</tr>
<tr>
<td></td>
<td>• Sessions dropped due to high rate—Number of UDP sessions dropped because the number of UDP connections per second exceeded the limit.</td>
</tr>
<tr>
<td></td>
<td>• Sessions dropped due to suspicious packets—Number of UDP sessions dropped because suspicious UDP packets were found.</td>
</tr>
<tr>
<td></td>
<td>• Packets allowed—Number of UDP packets that the IDS rule allowed.</td>
</tr>
<tr>
<td></td>
<td>• Packets dropped due to high pps—Number of UDP packets dropped because the number of TCP packets per second exceeded the limit.</td>
</tr>
<tr>
<td>Egress ICMP Counters</td>
<td>Session-limit ICMP counters in the egress direction for the following:</td>
</tr>
<tr>
<td></td>
<td>• Sessions allowed—Number of ICMP sessions allowed by the IDS rule.</td>
</tr>
<tr>
<td></td>
<td>• Sessions ignored—Number of ICMP sessions that did not undergo IDS processing because traffic matched a stateful firewall rule that included <code>accept skip-ids</code>.</td>
</tr>
<tr>
<td></td>
<td>• Sessions dropped due to maximum reached—Number of ICMP sessions dropped because the number of ICMP sessions exceeded the limit.</td>
</tr>
<tr>
<td></td>
<td>• Sessions dropped due to high rate—Number of ICMP sessions dropped because the number of ICMP connections per second exceeded the limit.</td>
</tr>
<tr>
<td></td>
<td>• Sessions dropped due to suspicious packets—Number of ICMP sessions dropped because suspicious ICMP packets were found.</td>
</tr>
<tr>
<td></td>
<td>• Packets allowed—Number of ICMP packets that the IDS rule allowed.</td>
</tr>
<tr>
<td></td>
<td>• Packets dropped due to high pps—Number of ICMP packets dropped because the number of ICMP packets per second exceeded the limit.</td>
</tr>
<tr>
<td>Egress Other-Protocols Counters</td>
<td>Session-limit counters in the egress direction for protocols other than TCP, UDP, and ICMP for the following:</td>
</tr>
<tr>
<td></td>
<td>• Sessions allowed—Number of sessions allowed by the IDS rule.</td>
</tr>
<tr>
<td></td>
<td>• Sessions ignored—Number of sessions that did not undergo IDS processing because traffic matched a stateful firewall rule that included <code>accept skip-ids</code>.</td>
</tr>
<tr>
<td></td>
<td>• Sessions dropped due to maximum reached—Number of sessions dropped because the number of sessions exceeded the limit.</td>
</tr>
<tr>
<td></td>
<td>• Sessions dropped due to high rate—Number of sessions dropped because the number of connections per second exceeded the limit.</td>
</tr>
<tr>
<td></td>
<td>• Sessions dropped due to suspicious packets—Number of sessions dropped because suspicious packets were found.</td>
</tr>
<tr>
<td></td>
<td>• Packets allowed—Number of packets that the IDS rule allowed.</td>
</tr>
<tr>
<td></td>
<td>• Packets dropped due to high pps—Number of packets dropped because the number of packets per second exceeded the limit.</td>
</tr>
</tbody>
</table>
Sample Output

show services service-sets statistics ids session-limits counters interface

user@host> show services service-sets statistics ids session-limits counters interface mams-4/0/0

Interface: mams-4/0/0
Service set: ams_ssl
 Ingress General Info:
 Match-direction: input
 Rule name: ids_rule_1
 Term name: 0
 Ingress TCP Counters:
 Sessions allowed: 1000
 Sessions ignored: 0
 Sessions dropped due to maximum reached: 0
 Sessions dropped due to high rate: 0
 Sessions dropped due to suspicious packets: 0
 Packets allowed: 1000
 Packets dropped due to high pps: 0
 Ingress UDP Counters:
 Sessions allowed: 1000
 Sessions ignored: 0
 Sessions dropped due to maximum reached: 0
 Sessions dropped due to high rate: 0
 Sessions dropped due to suspicious packets: 0
 Packets allowed: 1000
 Packets dropped due to high pps: 0
 Ingress ICMP Counters:
 Sessions allowed: 100
 Sessions ignored: 0
 Sessions dropped due to maximum reached: 50
 Sessions dropped due to high rate: 0
 Sessions dropped due to suspicious packets: 0
 Packets allowed: 100
 Packets dropped due to high pps: 0
 Ingress Other-Protocols Counters:
 Sessions allowed: 0
 Sessions ignored: 0
 Sessions dropped due to maximum reached: 0
 Sessions dropped due to high rate: 0
 Sessions dropped due to suspicious packets: 0
 Packets allowed: 0
 Packets dropped due to high pps: 0

Egress General Info:
 Match-direction: output
Egress TCP Counters:
 Sessions allowed: 0
 Sessions ignored: 0
 Sessions dropped due to maximum reached: 0
 Sessions dropped due to high rate: 0
 Sessions dropped due to suspicious packets: 0
 Packets allowed: 0
 Packets dropped due to high pps: 0
Egress UDP Counters:
 Sessions allowed: 0
 Sessions ignored: 0
 Sessions dropped due to maximum reached: 0
 Sessions dropped due to high rate: 0
Sessions dropped due to suspicious packets: 0
Packets allowed: 0
Packets dropped due to high pps: 0

Egress ICMP Counters:
 Sessions allowed: 0
 Sessions ignored: 0
 Sessions dropped due to maximum reached: 0
 Sessions dropped due to high rate: 0
 Sessions dropped due to suspicious packets: 0
 Packets allowed: 1
 Packets dropped due to high pps: 0

Egress Other-Protocols Counters:
 Sessions allowed: 0
 Sessions ignored: 0
 Sessions dropped due to maximum reached: 0
 Sessions dropped due to high rate: 0
 Sessions dropped due to suspicious packets: 0
 Packets allowed: 0
 Packets dropped due to high pps: 0
show services service-sets statistics integrity-drops

Syntax

```
show services service-sets statistics integrity-drops
<interface interface-name>
<service-set service-set-name>
```

Release Information

Command introduced in Junos OS Release 13.1
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description

Display integrity-drops statistics for one adaptive services interface, for all adaptive services interfaces, or for one service-set. You can configure use the output of this command to verify the packet header for anomalies in IP, TCP, UDP, and IGMP information and to examine any anomalies and errors.

Options

`none`—Display integrity-drops statistics for all configured adaptive service interfaces/service-set.

`service-set service-set-name`—(Optional) Display integrity-drops statistics for the specified service-set

`interface interface-name`—(Optional) Display integrity-drops statistics for the specified adaptive services interface.

Required Privilege Level

`view`

Related Documentation

- clear services service-sets statistics integrity-drops on page 1412
- List of Sample Output

List of Sample Output

show services service-sets statistics integrity-drops on page 1681

Output Fields

Table 86 on page 1665 lists the output fields for the `show services service-sets integrity-drops` command. Output fields are listed in the approximate order in which they appear.

Table 88: show services service-sets integrity-drops Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an adaptive services interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of a service set.</td>
</tr>
</tbody>
</table>
Table 88: show services service-sets integrity-drops Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Errors</td>
<td>Total errors, categorized by protocol:</td>
</tr>
<tr>
<td></td>
<td>• IP—Total IP version 4 errors.</td>
</tr>
<tr>
<td></td>
<td>• TCP—Total Transmission Control Protocol (TCP) errors.</td>
</tr>
<tr>
<td></td>
<td>• UDP—Total User Datagram Protocol (UDP) errors.</td>
</tr>
<tr>
<td></td>
<td>• ICMP—Total Internet Control Message Protocol (ICMP) errors.</td>
</tr>
</tbody>
</table>
Table 88: show services service-sets integrity-drops Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Errors</td>
<td>IPv4 errors:</td>
</tr>
<tr>
<td></td>
<td>• IP packet length inconsistencies—IP packet length does not match the Layer 2 reported length.</td>
</tr>
<tr>
<td></td>
<td>• Minimum IP header length check failures—Minimum IP header length is 20 bytes. The received packet contains less than 20 bytes.</td>
</tr>
<tr>
<td></td>
<td>• Reassembled packet exceeds maximum IP length—After fragment reassembly, the reassembled IP packet length exceeds 65,535.</td>
</tr>
<tr>
<td></td>
<td>• Illegal source address 0—Source address is not a valid address. Invalid addresses are, loopback, broadcast, multicast, and reserved addresses. Source address 0, however, is allowed to support BOOTP and the destination address 0xffffffff.</td>
</tr>
<tr>
<td></td>
<td>• Illegal destination address—Destination address is not a valid address. The address is reserved.</td>
</tr>
<tr>
<td></td>
<td>• TTL zero errors—Received packet had a time-to-live (TTL) value of 0.</td>
</tr>
<tr>
<td></td>
<td>• Illegal IP protocol number 0 or 255—IP protocol is 0 or 255.</td>
</tr>
<tr>
<td></td>
<td>• Land attack—IP source address is the same as the destination address.</td>
</tr>
<tr>
<td></td>
<td>• Non-IP packets—Packet did not conform to the IP standard.</td>
</tr>
<tr>
<td></td>
<td>• IP option—Packet dropped because of a nonallowed IP option.</td>
</tr>
<tr>
<td></td>
<td>• Non-IPv4 packets—Packet was not of the IPv4 type.</td>
</tr>
<tr>
<td></td>
<td>• Non-IPv6 packets—Packet was not of the IPv6 type.</td>
</tr>
<tr>
<td></td>
<td>• Bad checksum—Packet had an invalid IP checksum.</td>
</tr>
<tr>
<td></td>
<td>• Illegal IP fragment length—Illegal fragment length. All fragments (other than the last fragment) must have a length that is a multiple of 8 bytes.</td>
</tr>
<tr>
<td></td>
<td>• IP fragment overlap—Fragments have overlapping fragment offsets.</td>
</tr>
<tr>
<td></td>
<td>• IP fragment limit exceeded—Fragments dropped because the configured number of allowed fragments for a packet was exceeded.</td>
</tr>
<tr>
<td></td>
<td>• IP fragment reassembly timeout—Some of the fragments for an IP packet were not received in time, and the reassembly handler dropped partial fragments. Whenever a fragment is received, it is maintained in a chain until all other fragments are received. If other fragments do not arrive within the configured value of reassembly-timeout, this packet is dropped and the value of the counter shown in this field is incremented. If other fragments arrive in time but the total number of fragments is more than the configured value of fragment-limit, all the fragments (of this packet) are dropped and the value of the counter shown in this field is incremented.</td>
</tr>
<tr>
<td></td>
<td>• Unknown—Unknown fragments.</td>
</tr>
</tbody>
</table>
Table 88: show services service-sets integrity-drops Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP Errors</td>
<td>TCP protocol errors:</td>
</tr>
<tr>
<td>TCP header length inconsistencies</td>
<td>Minimum TCP header length is 20 bytes, and the IP packet received does not contain at least 20 bytes.</td>
</tr>
<tr>
<td>Source or destination port number is zero</td>
<td>TCP source or destination port is zero.</td>
</tr>
<tr>
<td>Illegal sequence number, flags combination</td>
<td>Dropped because of TCP errors, such as an illegal sequence number, which causes an illogical combination of flags to be set.</td>
</tr>
<tr>
<td>UDP Errors</td>
<td>UDP protocol errors:</td>
</tr>
<tr>
<td>IP data length less than minimum UDP header length (8 bytes)</td>
<td>Minimum UDP header length is 8 bytes. The received IP packets contain less than 8 bytes.</td>
</tr>
<tr>
<td>Source or destination port is zero</td>
<td>UDP source or destination port is 0.</td>
</tr>
<tr>
<td>ICMP Errors</td>
<td>ICMP protocol errors:</td>
</tr>
<tr>
<td>IP data length less than minimum ICMP header length (8 bytes)</td>
<td>ICMP header length is 8 bytes. This counter is incremented when received IP packets contain less than 8 bytes.</td>
</tr>
<tr>
<td>ICMP error length inconsistencies</td>
<td>Minimum length of an ICMP error packet is 48 bytes, and the maximum length is 576 bytes. This counter is incremented when the received ICMP error falls outside this range.</td>
</tr>
</tbody>
</table>

Sample Output

show services service-sets statistics integrity-drops

user@host> show services service-sets statistics integrity-drops

| Interface: ms-1/0/0 |
| Service set: sset1 |
| Errors: |
| IP: 0, TCP: 0 |
| UDP: 0, ICMP: 0 |
| IP errors: |
| IP packet length inconsistencies: 0 |
| Illegal source address: 0 |
| Illegal destination address: 0 |
| TTL zero errors: 0, Illegal IP protocol number (0 or 255): 0 |
| Land attack: 0 |
| Non-IPv4 packets: 0 |
| Non-IPv6 packets: 0 |
| Bad checksum: 0 |
| Illegal IP fragment length: 0 |
| IP fragment overlap: 0 |
| IP fragment limit exceeded: 0 |
| IP fragment reassembly timeout: 0 |
| Unknown: 0 |
TCP errors:
 TCP header length inconsistencies: 0
 Source or destination port number is zero: 0
 Illegal sequence number and flags combinations: 0
UDP errors:
 IP data length less than minimum UDP header length (8 bytes): 0
 Source or destination port number is zero: 0
ICMP errors:
 IP data length less than minimum ICMP header length (8 bytes): 0
 ICMP error length inconsistencies: 0
show services service-sets statistics packet-drops

Syntax

show services service-sets statistics packet-drops
<internface interface-name>

Release Information

Command introduced in Junos OS Release 7.4.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers
MX240, MX480 and MX960 with the MX-SPC3 services card.

Description

Display the number of dropped packets for service sets exceeding CPU limits or memory
limits.

Options

none—Display the number of dropped service sets packets for all adaptive services
interfaces.

interface interface-name—(Optional) Display the number of dropped service sets packets
for a particular interface. On M Series and T Series routers, interface-name can be
ms-fpc/pic/port, sp-fpc/pic/port, or rspnumber.

Required Privilege Level

view

Related Documentation

• clear services flow-collector statistics

List of Sample Output

show services service-sets statistics packet-drops interface on page 1684

Output Fields

Table 86 on page 1665 lists the output fields for the show services service-sets packet-drops
command. Output fields are listed in the approximate order in which they appear.

Table 89: show services service-sets packet-drops Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an adaptive services interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of a service set.</td>
</tr>
<tr>
<td>CPU limit Drops</td>
<td>Number of packets dropped because the service set exceeded the average CPU limit.</td>
</tr>
<tr>
<td>Memory limit Drops</td>
<td>Number of packets dropped because the service set exceeded the memory limit.</td>
</tr>
<tr>
<td>Flow limit Drops</td>
<td>Number of packets dropped because the service set exceeded the flow limit.</td>
</tr>
</tbody>
</table>
Sample Output

`show services service-sets statistics packet-drops interface`

```
user@host> show services service-sets statistics packet-drops interface sp-1/0/0

<table>
<thead>
<tr>
<th>Interface</th>
<th>Service Set</th>
<th>Cpu limit Drops</th>
<th>Memory limit Drops</th>
<th>Flow limit Drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp-1/0/0</td>
<td>sset1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Copyright © 2019, Juniper Networks, Inc.
show services service-sets statistics syslog

Syntax
```
show services service-sets statistics syslog
@interface interface-name>
<service-set service-set-name>
<brief | detail>
```

Release Information
Command introduced in Junos OS Release 11.1.

Description
Display the system log statistics with optional filtering by interface and service set name.

Options
- **none**—Display the system log statistics for all services interfaces and all service sets.
- **brief**—(Default) (Optional) Display abbreviated system log statistics.
- **detail**—(Optional) Display detailed system log statistics.
- **interface interface-name**—(Optional) Display the system log statistics for a specific adaptive service interface. On M Series and T Series routers, `interface-name` can be `ms-fpc/pic/port`, `sp-fpc/pic/port`, or `rspnumber`.
- **service-set service-set name**—(Optional) Display the system log statistics for a specific named service-set.

Required Privilege
view

Related Documentation
- clear services service-sets statistics syslog on page 1414

List of Sample Output
- show services service-sets statistics syslog brief on page 1688
- show services service-sets statistics syslog detail on page 1689

Output Fields
Table 90 on page 1685 lists the output fields for the `show services service-sets statistics syslog` command. Output fields are listed in the approximate order in which they appear.

Table 90: show services service-sets statistics syslog Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of a services interface.</td>
<td>all</td>
</tr>
<tr>
<td>Rate limit</td>
<td>Maximum number of messages per second written to the interface’s system log.</td>
<td>all</td>
</tr>
<tr>
<td>Sent</td>
<td>Number of messages sent that are not associated with a service set.</td>
<td>all</td>
</tr>
</tbody>
</table>
Table 90: show services service-sets statistics syslog Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dropped</td>
<td>Number of messages dropped that are not associated with a service set.</td>
<td>all</td>
</tr>
<tr>
<td>Service-set</td>
<td>Name of a service set.</td>
<td>all</td>
</tr>
<tr>
<td>Sent</td>
<td>Number of sent messages that are associated with the service set.</td>
<td>all</td>
</tr>
<tr>
<td>Dropped</td>
<td>Number of dropped messages that are associated with the service set.</td>
<td>all</td>
</tr>
</tbody>
</table>

Session open logs

The following information is displayed for system log messages for session open events that are logged and are associated with the service set:

- **Sent**—Number of messages sent.
- **Dropped**—Number of messages dropped. Counts are given for these drop reasons:
 - low priority—Priority of the message was too low for the message to be sent.
 - no class set—Specific classes of event messages were configured and this class was not selected.
 - above rate limit—Maximum number of system log messages per second was exceeded.

Session close logs

The following information is displayed for system log messages for session close events that are logged and are associated with the service set:

- **Sent**—Number of messages sent.
- **Dropped**—Number of messages dropped. Counts are given for these drop reasons:
 - low priority—Priority of the message was too low for the message to be sent.
 - no class set—Specific classes of event messages were configured and this class was not selected.
 - above rate limit—Maximum number of system log messages per second was exceeded.
Table 90: show services service-sets statistics syslog Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level</th>
</tr>
</thead>
</table>
| **Packet logs** | The following information is displayed for system log messages for packet events that are logged and are associated with the service set:
 - **Sent**—Number of messages sent.
 - **Dropped**—Number of messages dropped. Counts are given for these drop reasons:
 - **low priority**—Priority of the message was too low for the message to be sent.
 - **no class set**—Specific classes of event messages were configured and this class was not selected.
 - **above rate limit**—Maximum number of system log messages per second was exceeded. |
| **Stateful firewall logs** | The following information is displayed for system log messages for stateful firewall events that are logged and are associated with the service set:
 - **Sent**—Number of messages sent.
 - **Dropped**—Number of messages dropped. Counts are given for these drop reasons:
 - **low priority**—Priority of the message was too low for the message to be sent.
 - **no class set**—Specific classes of event messages were configured and this class was not selected.
 - **above rate limit**—Maximum number of system log messages per second was exceeded. |
| **ALG logs** | The following information is displayed for system log messages for ALG events that are logged and are associated with the service set:
 - **Sent**—Number of messages sent.
 - **Dropped**—Number of messages dropped. Counts are given for these drop reasons:
 - **low priority**—Priority of the message was too low for the message to be sent.
 - **no class set**—Specific classes of event messages were configured and this class was not selected.
 - **above rate limit**—Maximum number of system log messages per second was exceeded. |
Table 90: `show services service-sets statistics syslog` Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT logs</td>
<td>The following information is displayed for system log messages for NAT events that are logged and are associated with the service set:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Sent—Number of messages sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Dropped—Number of messages dropped. Counts are given for these drop reasons:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‣ low priority—Priority of the message was too low for the message to be sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‣ no class set—Specific classes of event messages were configured and this class was not selected.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‣ above rate limit—Maximum number of system log messages per second was exceeded.</td>
<td></td>
</tr>
</tbody>
</table>

IDS logs	The following information is displayed for system log messages for IDS events that are logged and are associated with the service set:	detail
	• **Sent**—Number of messages sent.	
	• **Dropped**—Number of messages dropped. Counts are given for these drop reasons:	
	‣ **low priority**—Priority of the message was too low for the message to be sent.	
	‣ **no class set**—Specific classes of event messages were configured and this class was not selected.	
	‣ **above rate limit**—Maximum number of system log messages per second was exceeded.	

Other logs	The following information is displayed for system log messages for other types of events that are logged and are associated with the service set:	detail
	• **Sent**—Number of messages sent.	
	• **Dropped**—Number of messages dropped. Counts are given for these drop reasons:	
	‣ **low priority**—Priority of the message was too low for the message to be sent.	
	‣ **no class set**—Specific classes of event messages were configured and this class was not selected.	
	‣ **above rate limit**—Maximum number of system log messages per second was exceeded.	

Sample Output

`show services service-sets statistics syslog brief`

```bash
user@host> show services service-sets statistics syslog brief
Interface: sp-1/1/0
  Rate limit: 200000
```
Sample Output

show services service-sets statistics syslog detail

user@host> show services service-sets statistics syslog detail

Interface: ms-2/1/0
 Rate limit: 0
 Sent: 0
 Dropped: 0
 Service-set: sset1
 Sent: 0
 Dropped: 0
Session open logs:
 Sent: 0
 Dropped: 0 (low priority: 0, none severity: 0, no class set: 0, above rate limit: 0)
Session close logs:
 Sent: 0
 Dropped: 0 (low priority: 0, none severity: 0, no class set: 0, above rate limit: 0)
Packet logs:
 Sent: 0
 Dropped: 0 (low priority: 0, none severity: 0, no class set: 0, above rate limit: 0)
Stateful firewall logs:
 Sent: 0
 Dropped: 0 (low priority: 0, none severity: 0, no class set: 0, above rate limit: 0)
ALG logs:
 Sent: 0
 Dropped: 0 (low priority: 0, none severity: 0, no class set: 0, above rate limit: 0)
NAT logs:
 Sent: 0
 Dropped: 0 (low priority: 0, none severity: 0, no class set: 0, above rate limit: 0)
IDS logs:
 Sent: 0
 Dropped: 0 (low priority: 0, none severity: 0, no class set: 0, above rate limit: 0)
PCP MAP logs:
 Sent: 0
<table>
<thead>
<tr>
<th>Log Type</th>
<th>Sent</th>
<th>Dropped</th>
<th>Low Priority</th>
<th>None Severity</th>
<th>No Class Set</th>
<th>Above Rate Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCP protocol logs:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PCP protocol error logs:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PCP debug logs:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other logs:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
show services service-sets statistics tcp

Syntax
show services service-sets statistics tcp
<interface interface-name>
<service-set service-set-name>

Release Information
Command introduced in Junos OS Release 17.2.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description
Display TCP-related statistics.

Options
interface interface-name—Name of adaptive services interface.

service-set service-set-name—Name of service set.

Required Privilege
view

Related Documentation
 Configuring TFO on page 55

List of Sample Output
show services service-sets statistics tcp on page 1691

Output Fields
Sample Output

show services service-sets statistics tcp

user@host> show services service-sets statistics tcp
Interface: ms-2/1/0
Service set: ssl
TCP open/close statistics:
 TCP first packet non-syn: 0
 TCP first packet reset: 0
 TCP first packet FIN: 0
 TCP non syn discard: 0
 TCP extension alloc fail: 0
 TFO SYN with cookie request: 0
 TFO SYN with cookie: 0
 TFO SYN ACK with cookie: 0
 TFO packets forwarded: 0
 TFO packets dropped: 0
 TFO packets stripped: 0
show services service-sets statistics tcp-mss

Syntax

show services service-sets statistics tcp-mss
<interface interface-name>

Release Information

Command introduced in Junos OS Release 9.5.

Description

(M Series and T Series routers only) Display TCP maximum segment size (MSS) statistics for service sets.

Options

none—Display service set TCP MSS information for all adaptive services interfaces.

interface interface-name—(Optional) Display TCP MSS statistics for a particular interface. The interface-name can be ms-fpc/pic/port, sp-fpc/pic/port, or rsp number.

Required Privilege Level

view

List of Sample Output

show services service-sets statistics tcp-mss on page 1692

Output Fields

Table 91 on page 1692 lists the output fields for the show services service-sets statistics tcp-mss command. Output fields are listed in the approximate order in which they appear.

Table 91: show services service-sets statistics tcp-mss Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the adaptive services interface.</td>
</tr>
<tr>
<td>Service Set</td>
<td>Name of the configured service set.</td>
</tr>
<tr>
<td>SYN Received</td>
<td>Number of TCP SYN packets received.</td>
</tr>
<tr>
<td>SYN Modified</td>
<td>Number of TCP SYN packets with the MSS value modified to match the MSS value specified in the TCP MSS configuration.</td>
</tr>
</tbody>
</table>

Sample Output

show services service-sets statistics tcp-mss

user@host> show services service-sets statistics tcp-mss

<table>
<thead>
<tr>
<th>Interface</th>
<th>Service Set</th>
<th>SYN Received</th>
<th>SYN Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp-1/2/0</td>
<td>asq_ipsec_svc_0</td>
<td>500</td>
<td>220</td>
</tr>
</tbody>
</table>
show services service-sets summary

Syntax

```
show services service-sets summary
<interface interface-name>
```

Release Information

Command introduced before Junos OS Release 7.4.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description

Display service set summary information.

Options

- `none`—Display service set summary information for all adaptive services interfaces.
- `interface interface-name`—(Optional) Display service set summary information for a particular interface. On M Series and T Series routers, `interface-name` can be `ms-fpc/pic/port`, `sp-fpc/pic/port`, or `rspnumber`.

Required Privilege Level

view

List of Sample Output

- `show services service-sets summary` on page 1694
- `show services service-sets summary interface` on page 1694

Output Fields

Table 92 on page 1693 lists the output fields for the `show services service-sets summary` command. Output fields are listed in the approximate order in which they appear.

Table 92: `show services service-sets summary` Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an adaptive services interface</td>
</tr>
<tr>
<td>Service type</td>
<td>Type of adaptive service, such as stateful firewall (SFW), Network Address Translation (NAT), intrusion detection service (IDS), Layer 2 Tunneling Protocol (L2TP), Compressed Real-Time Transport Protocol (CRTP), or IP Security (IPsec)</td>
</tr>
<tr>
<td>Service sets configured</td>
<td>Total number of service sets configured on the PIC that use internal service set IDs and do not consume external service sets, including CRTP and L2TP</td>
</tr>
<tr>
<td>Bytes used</td>
<td>Bytes used by a particular service or all services</td>
</tr>
<tr>
<td>Policy bytes used</td>
<td>Policy bytes used by a particular service or all services</td>
</tr>
<tr>
<td>CPU utilization</td>
<td>Percentage of the CPU resources being used</td>
</tr>
</tbody>
</table>
Sample Output

show services service-sets summary

```
user@host> show services service-sets summary

<table>
<thead>
<tr>
<th>Interface</th>
<th>configured</th>
<th>Bytes used</th>
<th>Policy bytes used</th>
<th>utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms-4/0/0</td>
<td>1</td>
<td>14821556</td>
<td>855124</td>
<td>4.53 %</td>
</tr>
<tr>
<td>ms-4/1/0</td>
<td>1</td>
<td>14691700</td>
<td>855068</td>
<td>4.49 %</td>
</tr>
</tbody>
</table>
```

show services service-sets summary interface

```
user@host> show services service-sets summary interface sp-1/3/0

Interface: sp-1/3/0

<table>
<thead>
<tr>
<th>Service type</th>
<th>configured</th>
<th>Bytes used</th>
<th>CPU utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW/NAT/IDS</td>
<td>1</td>
<td>54</td>
<td>N/A</td>
</tr>
<tr>
<td>L2TP</td>
<td>1</td>
<td>58</td>
<td>N/A</td>
</tr>
<tr>
<td>CRTP</td>
<td>1</td>
<td>58</td>
<td>N/A</td>
</tr>
<tr>
<td>System</td>
<td>0</td>
<td>920831</td>
<td>N/A</td>
</tr>
<tr>
<td>Idle</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>921001</td>
<td>N/A</td>
</tr>
</tbody>
</table>
```
show services sessions

Syntax

```
show services sessions
<brief | extensive | terse>
<application-protocol protocol>
<count>
<destination-port destination-port>
<destination-prefix destination-prefix>
<interface interface-name>
<limit number>
<protocol protocol>
<service-set service-set>
<source-port source-port>
<source-prefix source-prefix>
<utilization>
```

Release Information

Command introduced in Junos OS Release 10.4. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description

Display session information.

NOTE: On MX Series routers (with interchassis redundancy configured), the idle timeout for every flow is displayed in the show services session extensive and show services flows extensive commands.

Options

- none—Display standard information about all sessions.
- brief | extensive | terse—(Optional) Display the specified level of output.
- application-protocol protocol—(Optional) Display information about one of the following application protocols:
 - bootp—Bootstrap protocols
 - dce-rpc—Distributed Computing Environment-Remote Procedure Call protocols
 - dce-rpc-portmap—Distributed Computing Environment-Remote Procedure Call protocols portmap service
 - dns—Domain Name System protocol
 - exec—Remote Execution Protocol
 - ftp—File Transfer Protocol
 - h323—H.323
 - icmp—ICMP
• icmpv6—ICMPv6
• liop—Internet Inter-ORB Protocol
• ike-esp-nat—IKE ALG
• ip—IP
• login—LOGIN
• netbios—NETBIOS
• netshow—NETSHOW
• pptp—Point-to-Point Tunneling Protocol
• realaudio—RealAudio
• rpc—Remote Procedure Call protocol
• rpc-portmap—Remote Procedure Call protocol portmap service
• rtsp—Real-Time Streaming Protocol
• rsh—Remote Shell
• sip—Session Initiation Protocol
• shell—Shell
• snmp—SNMP
• sql—SQLNet
• talk—Talk Program
• tftp—Trivial File Transfer Protocol
• traceroute—Traceroute
• winframe—WinFrame

NOTE: You can use the none option with the show services sessions count application-protocol command to display information about sessions other than ALG sessions.

count—(Optional) Display a count of the matching entries.

destination-port destination-port—(Optional) Display information for the specified destination port. The range of values is from 0 to 65,535.

destination-prefix destination-prefix—(Optional) Display information for the specified destination prefix.
interface interface-name—(Optional) Display information about the specified interface. On M Series and T Series routers, interface-name can be ms-fpc/pic/port or rspnumber. On J Series routers, interface-name is ms-pim/0/port.

limit number—(Optional) Maximum number of entries to display.

protocol protocol—(Optional) Display information about one of the following IP types:

- number—Numeric protocol value from 0 to 255
- ah—IPsec Authentication Header protocol
- egp—An exterior gateway protocol
- esp—IPsec Encapsulating Security Payload protocol
- gre—A generic routing encapsulation protocol
- icmp—Internet Control Message Protocol
- icmp6—Internet Control Message Protocol version 6
- igmp—Internet Group Management Protocol
- ipip—IP-within-IP Encapsulation Protocol
- ospf—Open Shortest Path First protocol
- pim—Protocol Independent Multicast protocol
- rsdp—Resource Reservation Protocol
- sctp—Stream Control Transmission Protocol
- tcp—Transmission Control Protocol
- udp—User Datagram Protocol

service-set service-set—(Optional) Display information for the specified service set.

source-port source-port—(Optional) Display information for the specified source port. The range of values is from 0 to 65,535.

source-prefix source-prefix—(Optional) Display information for the specified source prefix.

utilization—(Optional) Display statistical details about session utilization.
Output Fields Table 93 on page 1698 lists the output fields for the `show services sessions` command. Output fields are listed in the approximate order in which they appear.

Table 93: show services sessions Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the interface.</td>
<td>application-protocol</td>
</tr>
<tr>
<td>Session</td>
<td>Session ID that uniquely identifies the session.</td>
<td>All levels</td>
</tr>
<tr>
<td>ALG</td>
<td>Name of the application.</td>
<td>terse</td>
</tr>
<tr>
<td>Flags</td>
<td>Session flag for the ALG:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• 0x1—Found an existing session.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 0x2—Reached session or flow limit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 0x3—No memory available for new sessions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 0x4—No free session ID available.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 0x0000—No session ID found.</td>
<td></td>
</tr>
<tr>
<td>IP Action</td>
<td>Flag indicating whether IP action has been set for the</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>session.</td>
<td></td>
</tr>
<tr>
<td>Offload</td>
<td>Flag indicating whether the session has been offloaded</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>to the Packet Forwarding Engine.</td>
<td></td>
</tr>
<tr>
<td>Asymmetric</td>
<td>Flag indicating whether the session is uni-directional.</td>
<td>terse</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of a service set. Individual empty service sets</td>
<td>count</td>
</tr>
<tr>
<td></td>
<td>are not displayed.</td>
<td></td>
</tr>
<tr>
<td>Sessions Count</td>
<td>Number of sessions.</td>
<td>count</td>
</tr>
</tbody>
</table>

Sample Output

```
show services sessions

user@host>  show services sessions
ms-2/0/0
Session: 293, ALG: 16, Flags: 0x0040, IP Action: no, Offload: no
UDP     10.10.10.2:43677 ->    10.20.20.1:53  Forward  I        1
UDP    10.20.20.1:53    ->        192.0.2.1:43677 Forward  O        1
```
show services sessions brief

The output for the `show services flows brief` command is identical to that for the `show services sessions` command. For sample output, see `show services sessions on page 1698`.

show services sessions extensive

user@host> show services sessions extensive

ms-0/1/0

Session: 2, ALG: 0, Flags: 0x0080, IP Action: no, Offload: no
NAT Plugin Data:
 NAT Action: Translation Type - DYNAMIC NAT44
 NAT source 192.0.21.2 -> 10.10.10.127
 TCP 192.0.2.2:52145 -> 198.51.100.2:23 Forward I
 Byte count: 1483
 Flow role: Unknown, Timeout: 0
 TCP 198.51.100.2:23 -> 10.10.10.127:52145 Forward O
 Byte count: 2712
 Flow role: Unknown, Timeout: 0

show services sessions terse

user@router> show services sessions terse

ms-1/1/0

Session: 1, ALG: ftp, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no
TCP 10.2.2.2:52138 -> 10.1.1.2:21 Forward I 33
TCP 10.1.1.2:21 -> 10.2.2.2:52138 Forward O 31

show services sessions application-protocol

This command has the same output for the rpc, dce-rpc, rpc-portmap and dce-rpc-portmap ALGs.

user@router> show services sessions application-protocol dce-rpc

Interface name: ms-1/1/0
Session: 8, ALG: portmapper, Flags: 0x1800, IP Action: no, Offload: no
Session: 7, ALG: portmapper, Flags: 0x1800, IP Action: no, Offload: no
UDP 192.168.203.198:954 ->192.168.203.194:613 Forward I 1
UDP 192.168.203.194:613 ->192.168.203.198:954 Forward O 1

Session: 6, ALG: portmapper, Flags: 0x1800, IP Action: no, Offload: no
UDP 192.168.203.198:53836 ->192.168.203.194:613 Forward I 1
UDP 192.168.203.194:613 ->192.168.203.198:53836 Forward O 0

Session: 5, ALG: portmapper, Flags: 0x1000, IP Action: no, Offload: no
UDP 192.168.203.198:59813 ->192.168.203.194:111 Forward I 1
UDP 192.168.203.194:111 ->192.168.203.198:59813 Forward O 0

Session: 4, ALG: portmapper, Flags: 0x1800, IP Action: no, Offload: no
UDP 192.168.203.198:36595 ->192.168.203.194:2049 Forward I 1
UDP 192.168.203.194:2049 ->192.168.203.198:36595 Forward O 0

Session: 3, ALG: portmapper, Flags: 0x1000, IP Action: no, Offload: no
UDP 192.168.203.198:56050 ->192.168.203.194:111 Forward I 1
UDP 192.168.203.194:111 ->192.168.203.198:56050 Forward O 0

```
user@router> show services sessions application-protocol dns

Interface name: ms-2/0/0
Session: 293, ALG: 16, Flags: 0x0040, IP Action: no, Offload: no
UDP   198.51.100.2:43677 ->    203.0.113.10:53    Forward  I        1
UDP   203.0.113.10:53    ->        192.0.2.1:43677 Forward  O        1

Session: 53, ALG: 16, Flags: 0x0040, IP Action: no, Offload: no
UDP   198.51.100.2:37494 ->    203.0.113.10:53    Forward  I        1
UDP   203.0.113.10:53    ->        192.0.2.1:37494 Forward  O        1

Session: 66, ALG: 16, Flags: 0x0040, IP Action: no, Offload: no
UDP   198.51.100.2:48161 ->    203.0.113.10:53    Forward  I        1
UDP   203.0.113.10:53    ->        192.0.2.1:48161 Forward  O        1

Session: 17, ALG: 16, Flags: 0x0040, IP Action: no, Offload: no
UDP   198.51.100.2:38908 ->    203.0.113.10:53    Forward  I        1
UDP   203.0.113.10:53    ->        192.0.2.1:38908 Forward  O        1

Session: 42, ALG: 16, Flags: 0x0040, IP Action: no, Offload: no
UDP   198.51.100.2:58189 ->    203.0.113.10:53    Forward  I        1
UDP   203.0.113.10:53    ->        192.0.2.1:58189 Forward  O        1
```

```
user@router> show services sessions application-protocol ftp

Interface name: ms-4/1/0
Session: 1, ALG: 1, Flags: 0x0040, IP Action: no, Offload: no
TCP       192.0.2.129:32843 ->       198.51.100.129:21    Forward  I       26
TCP       198.51.100.129:21    ->        192.0.2.0:32843 Forward  O       30

```

```
user@router> show services sessions application-protocol ike-esp-nat

Service Set: ss_ipv4, Session: 33554435, ALG: ike-esp-nat, Flags: 0x0000, IP
Action: no, Offload: no, Asymmetric: no
UDP   192.0.2.2:500  ->         198.51.100.2:500 Forward I 8
UDP   198.51.100.2:500  ->         203.0.113.1:57730 Forward O

```

```
user@router> show services sessions application-protocol pptp

Interface name: ms-2/0/0
Session: 3, ALG: pptp, Flags: 0x2800, IP Action: no, Offload: no, Asymmetric: no
GRE        203.0.113.138:0     ->    203.0.113.138:0     Forward  O
```
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Source IP: Port</th>
<th>Destination IP: Port</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRE</td>
<td>192.0.2.794:0</td>
<td>203.0.113.138:0:65000</td>
<td>Forward I</td>
</tr>
<tr>
<td>GRE</td>
<td>192.0.2.794:0</td>
<td>203.0.113.138:0:49913</td>
<td>Forward I</td>
</tr>
<tr>
<td>GRE</td>
<td>203.0.113.138:0:49913</td>
<td>192.0.2.794:65001</td>
<td>Forward 0</td>
</tr>
<tr>
<td>TCP</td>
<td>192.0.2.794:1511</td>
<td>203.0.113.138:0:1723</td>
<td>Forward I</td>
</tr>
<tr>
<td>TCP</td>
<td>203.0.113.138:0:1723</td>
<td>192.0.2.794:1511</td>
<td>Forward 0</td>
</tr>
<tr>
<td>UDP</td>
<td>203.0.113.66:5004</td>
<td>198.51.100.66:3989</td>
<td>Forward O</td>
</tr>
<tr>
<td>UDP</td>
<td>198.51.100.66:3989</td>
<td>203.0.113.66:5004</td>
<td>Forward I</td>
</tr>
<tr>
<td>TCP</td>
<td>203.0.113.10:1023</td>
<td>198.51.100.2:1020</td>
<td>Forward O</td>
</tr>
<tr>
<td>TCP</td>
<td>198.51.100.2:1020</td>
<td>203.0.113.10:1023</td>
<td>Forward I</td>
</tr>
<tr>
<td>UDP</td>
<td>198.51.100.130:6000</td>
<td>192.0.2.129:12682</td>
<td>Forward I</td>
</tr>
<tr>
<td>TCP</td>
<td>198.51.100.130:5060</td>
<td>192.0.2.130:5060</td>
<td>Forward I</td>
</tr>
<tr>
<td>TCP</td>
<td>192.0.2.130:5060</td>
<td>198.51.100.162:5060</td>
<td>Forward O</td>
</tr>
<tr>
<td>TCP</td>
<td>203.0.113.162:36888</td>
<td>192.0.2.1:33294</td>
<td>Forward I</td>
</tr>
</tbody>
</table>

show services sessions application-protocol rtsp

Interface name: ms-0/1/0

<table>
<thead>
<tr>
<th>Session</th>
<th>ALG: rtsp, Flags: 0x0800, IP Action: no, Offload: no</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP</td>
<td>203.113.66:5004 -> 198.51.100.66:3989 Forward 0 152</td>
</tr>
<tr>
<td>UDP</td>
<td>198.51.100.66:3989 -> 192.0.2.161:5004 Forward I 0</td>
</tr>
<tr>
<td>TCP</td>
<td>203.0.113.10:1023 -> 198.51.100.2:1020 Forward 0 4</td>
</tr>
<tr>
<td>TCP</td>
<td>198.51.100.2:1020 -> 203.0.113.10:1023 Forward I 3</td>
</tr>
<tr>
<td>UDP</td>
<td>203.0.113.10:514 -> 198.51.100.2:1021 Forward 0 1331</td>
</tr>
</tbody>
</table>

show services sessions application-protocol rsh

Interface name: ms-2/0/0

<table>
<thead>
<tr>
<th>Session</th>
<th>ALG: 2, Flags: 0x0840, IP Action: no, Offload: no</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>203.113.10:1023 -> 198.51.100.2:1020 Forward 0 4</td>
</tr>
<tr>
<td>TCP</td>
<td>198.51.100.2:1020 -> 203.0.113.10:1023 Forward I 3</td>
</tr>
<tr>
<td>TCP</td>
<td>198.51.100.2:1021 -> 203.0.113.10:514 Forward I 1331</td>
</tr>
</tbody>
</table>

show services sessions application-protocol sip

Interface name: ms-2/0/0

<table>
<thead>
<tr>
<th>Session</th>
<th>ALG: sip, Flags: 0x0800, IP Action: no, Offload: no</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP</td>
<td>198.51.100.130:6000 -> 192.0.2.129:12682 Forward I 246</td>
</tr>
<tr>
<td>UDP</td>
<td>192.0.2.129:12682 -> 198.51.100.162:6000 Forward 0</td>
</tr>
<tr>
<td>UDP</td>
<td>198.51.100.130:5060 -> 192.0.2.130:5060 Forward I 10</td>
</tr>
</tbody>
</table>

show services sessions application-protocol sql

Interface name: ms-2/0/0

<table>
<thead>
<tr>
<th>Session</th>
<th>ALG: sqlnet, Flags: 0x0800, IP Action: no, Offload: no</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>198.51.100.2:39754 -> 203.0.113.138:0:1408 Forward I 26</td>
</tr>
<tr>
<td>TCP</td>
<td>203.0.113.138:0:1408 -> 192.0.2.1:39754 Forward 0 23</td>
</tr>
</tbody>
</table>

show services sessions application-protocol talk

Interface name: ms-0/2/0

<table>
<thead>
<tr>
<th>Session</th>
<th>ALG: 65, Flags: 0x0800, IP Action: no, Offload: no</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>203.113.162:36888 -> 192.0.2.2:33294 Forward 0 4</td>
</tr>
<tr>
<td>TCP</td>
<td>192.0.2.1:33294 -> 203.113.162:36888 Forward I 1701</td>
</tr>
</tbody>
</table>
show services sessions count

```
user@host> show services sessions count

<table>
<thead>
<tr>
<th>Interface</th>
<th>Service set</th>
<th>Sessions count</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms-1/1/0</td>
<td>ss</td>
<td>2</td>
</tr>
</tbody>
</table>
```

show services sessions destination-port

```
user@router> show services sessions destination-port 21

<table>
<thead>
<tr>
<th>ms-1/1/0</th>
<th></th>
<th>Sessions count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Session: 1, ALG: ftp, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>TCP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2.2.2:52138 -&gt; 10.1.1.2:21</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>TCP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.1.1.2:21 -&gt; 10.2.2.2:52138</td>
<td>24</td>
</tr>
</tbody>
</table>
```

show services sessions destination-prefix

```
user@router> show services sessions destination-prefix 10.1.1.2

<table>
<thead>
<tr>
<th>ms-1/1/0</th>
<th></th>
<th>Sessions count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Session: 1, ALG: ftp, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>TCP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2.2.2:52138 -&gt; 10.1.1.2:21</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>TCP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.1.1.2:21 -&gt; 10.2.2.2:52138</td>
<td>24</td>
</tr>
</tbody>
</table>
```

show services sessions interface

```
user@router> show services sessions interface ms-1/1/0

<table>
<thead>
<tr>
<th>ms-1/1/0</th>
<th></th>
<th>Sessions count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Session: 1, ALG: ftp, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>TCP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2.2.2:52138 -&gt; 10.1.1.2:21</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>TCP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.1.1.2:21 -&gt; 10.2.2.2:52138</td>
<td>29</td>
</tr>
</tbody>
</table>
```

show services sessions protocol

```
user@router> show services sessions protocol tcp

<table>
<thead>
<tr>
<th>ms-1/1/0</th>
<th></th>
<th>Sessions count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Session: 1, ALG: ftp, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>TCP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2.2.2:52138 -&gt; 10.1.1.2:21</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>TCP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.1.1.2:21 -&gt; 10.2.2.2:52138</td>
<td>29</td>
</tr>
</tbody>
</table>
```
show services sessions service-set

Command:
```
user@router> show services sessions service-set sample
```

<table>
<thead>
<tr>
<th>ms-1/1/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session: 1, ALG: ftp, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no</td>
</tr>
<tr>
<td>TCP 10.2.2.2:52138 -> 10.1.1.2:21 Forward I 33</td>
</tr>
<tr>
<td>TCP 10.1.1.2:21 -> 10.2.2.2:52138 Forward O 31</td>
</tr>
</tbody>
</table>

show services sessions source-port

Command:
```
user@router> show services sessions source-port 21
```

<table>
<thead>
<tr>
<th>ms-1/1/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session: 1, ALG: ftp, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no</td>
</tr>
<tr>
<td>TCP 10.2.2.2:52138 -> 10.1.1.2:21 Forward I 33</td>
</tr>
<tr>
<td>TCP 10.1.1.2:21 -> 10.2.2.2:52138 Forward O 31</td>
</tr>
</tbody>
</table>

show services sessions source-prefix

Command:
```
user@router> show services sessions source-prefix 10.2.2.2
```

<table>
<thead>
<tr>
<th>ms-1/1/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session: 1, ALG: ftp, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no</td>
</tr>
<tr>
<td>TCP 10.2.2.2:52138 -> 10.1.1.2:21 Forward I 33</td>
</tr>
<tr>
<td>TCP 10.1.1.2:21 -> 10.2.2.2:52138 Forward O 31</td>
</tr>
</tbody>
</table>
show services sessions (Aggregated Multiservices)

Syntax
```
show services sessions
  <brief | extensive | terse>
  <application-protocol protocol>
  <count>
  <destination-port destination-port>
  <destination-prefix destination-prefix>
  <interface interface-name>
  <limit number>
  <protocol protocol>
  <service-set service-set>
  <source-port source-port>
  <source-prefix source-prefix>
```

Release Information
Statement introduced in Junos OS Release 16.1 on MX Series. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-MX-SPC3 services card.

Description
Display the session information for each service set in each member interface of the AMS interface.

Options
- **none**—Display standard information about all sessions.
- **brief | extensive | terse**—(Optional) Display the specified level of output.
- **application-protocol**—(Optional) Display information about one of the following application protocols:
 - **ftp**—File Transfer Protocol
 - **icmp**—Internet Control Message Protocol
 - **pptp**—Point-to-Point Tunneling Protocol
 - **rtsp**—Real-Time Streaming Protocol
 - **sqlnet**—SQL *Net
 - **tcp**—Transmission Control Protocol
 - **traceroute**—Traceroute
 - **tftp**—Trivial File Transfer Protocol
 - **udp**—User Datagram Protocol
- **count**—(Optional) Display a count of the matching entries.
- **destination-port destination-port**—(Optional) Display information for a particular destination port. The range of values is from 0 through 65,535.
destination-prefix destination-prefix — (Optional) Display information for a particular destination prefix.

interface interface-name — (Optional) Display information about a particular interface.
 On M Series and T Series routers, interface-name can be ms-fpc/pic/port or rsnumber.
 On J Series routers, interface-name is ms-pim/0/port.

limit number — (Optional) Maximum number of entries to display.

protocol protocol — (Optional) Display information about one of the following IP types:
 - number — Numeric protocol value from 0 through 255
 - ah — IPsec Authentication Header protocol
 - egp — An exterior gateway protocol
 - esp — IPsec Encapsulating Security Payload protocol
 - gre — A generic routing encapsulation protocol
 - icmp — Internet Control Message Protocol
 - icmp6 — Internet Control Message Protocol version 6
 - igmp — Internet Group Management Protocol
 - ipip — IP-over-IP encapsulation protocol
 - ospf — Open Shortest Path First protocol
 - pim — Protocol Independent Multicast protocol
 - rsvp — Resource Reservation Protocol
 - sctp — Stream Control Transmission Protocol
 - tcp — Transmission Control Protocol
 - udp — User Datagram Protocol

service-set service-set — (Optional) Display information for a particular service set.

source-port source-port — (Optional) Display information for a particular source port.
 The range of values is from 0 through 65,535.

source-prefix source-prefix — (Optional) Display information for a particular source prefix.

Required Privilege

Level view

List of Sample Output
 show services sessions brief on page 1707
 show services sessions interface mams-5/0/0 extensive on page 1707
 show services sessions terse on page 1709
 show services sessions count on page 1710
Output Fields Table 93 on page 1698 lists the output fields for the **show services sessions** command. Output fields are listed in the approximate order in which they appear.

Table 94: show services sessions Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the member interface (mams-) and the aggregated multiservices interface (ams) to which it belongs.</td>
</tr>
<tr>
<td>Session ID</td>
<td>Session ID that uniquely identifies the session.</td>
</tr>
<tr>
<td>ALG</td>
<td>Name of the application.</td>
</tr>
<tr>
<td>Flags</td>
<td>Session flag for the ALG:</td>
</tr>
<tr>
<td></td>
<td>• 0x1—Found an existing session.</td>
</tr>
<tr>
<td></td>
<td>• 0x2—Reached session or flow limit.</td>
</tr>
<tr>
<td></td>
<td>• 0x3—No memory available for new sessions.</td>
</tr>
<tr>
<td></td>
<td>• 0x4—No free session ID available.</td>
</tr>
<tr>
<td>IP Action</td>
<td>Flag indicating whether IP action has been set for the session.</td>
</tr>
<tr>
<td>Offload</td>
<td>Flag indicating whether the session has been offloaded to the Packet Forwarding Engine.</td>
</tr>
<tr>
<td>Asymmetric</td>
<td>Flag indicating whether the session is unidirectional.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of a service set. Individual empty service sets are not displayed.</td>
</tr>
<tr>
<td>Sessions Count</td>
<td>Number of sessions.</td>
</tr>
<tr>
<td>Flow or Flow Prot</td>
<td>Protocol used for this session.</td>
</tr>
<tr>
<td>Source</td>
<td>Source prefix of the flow in the format source-prefix:port. For ICMP flows, port information is not displayed.</td>
</tr>
<tr>
<td>Dest</td>
<td>Destination prefix of the flow. For ICMP flows, port information is not displayed.</td>
</tr>
<tr>
<td>State</td>
<td>Status of the flow:</td>
</tr>
<tr>
<td></td>
<td>• Drop—Drop all packets in the flow without response.</td>
</tr>
<tr>
<td></td>
<td>• Forward—Forward the packet in the flow without looking at it.</td>
</tr>
<tr>
<td></td>
<td>• Reject—Drop all packets in the flow with response.</td>
</tr>
<tr>
<td></td>
<td>• Watch—Inspect packets in the flow.</td>
</tr>
<tr>
<td></td>
<td>• Bypass—Bypass packets in the flow.</td>
</tr>
<tr>
<td></td>
<td>• Unknown—Unknown flow status.</td>
</tr>
<tr>
<td>Packet Direction</td>
<td>Direction of the flow: ingress (I), egress (O), or unknown.</td>
</tr>
<tr>
<td>Frm count</td>
<td>Number of frames in the flow.</td>
</tr>
</tbody>
</table>
Sample Output

show services sessions brief

```plaintext
user@host> show services sessions brief

mams-1/0/0 (ams0)
Service Set: napt_set, Session: 16777217, ALG: none, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no
UDP 30.30.30.2:63 -> 40.40.40.2:63  Forward I  85689
UDP 40.40.40.2:63 -> 30.30.30.160:6000  Forward O  0
```

show services sessions interface mams-5/0/0 extensive

```plaintext
user@host> show services sessions interface mams-5/0/0 extensive

mams-1/0/0 (ams0)
Service Set: napt_set, Session: 16777235, ALG: none, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no
NAT Plugin Data:
  NAT Action: Translation Type - NAPT-44
  Byte count: 83030
  Flow role: Initiator, Timeout: 0
  Byte count: 0
  Flow role: Responder, Timeout: 0
Service Set: napt_set, Session: 16777234, ALG: none, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no
NAT Plugin Data:
  NAT Action: Translation Type - NAPT-44
  NAT source 30.30.30.57:63 -> 30.30.30.163:6003
  Byte count: 83030
  Flow role: Initiator, Timeout: 0
  UDP 40.40.40.57:63 -> 30.30.30.163:6003  Forward O  0
  Byte count: 0
  Flow role: Responder, Timeout: 0
[...output truncated...]
mams-1/1/0 (ams0)
Service Set: napt_set, Session: 16777234, ALG: none, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no
NAT Plugin Data:
  NAT Action: Translation Type - NAPT-44
  Byte count: 83030
  Flow role: Initiator, Timeout: 0
  UDP 40.40.40.63:63 -> 30.30.30.165:6004  Forward O  0
  Byte count: 0
  Flow role: Responder, Timeout: 0
Service Set: napt_set, Session: 16777233, ALG: none, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no
NAT Plugin Data:
  NAT Action: Translation Type - NAPT-44
```
<table>
<thead>
<tr>
<th>Source IP</th>
<th>Destination IP</th>
<th>Type</th>
<th>Flow Role</th>
<th>Timeout</th>
<th>Byte Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.30.30.60:63</td>
<td>30.30.30.164:6004</td>
<td>UDP</td>
<td>I</td>
<td>0</td>
<td>83030</td>
</tr>
<tr>
<td>30.30.30.64:63</td>
<td>30.30.30.168:6002</td>
<td>UDP</td>
<td>I</td>
<td>0</td>
<td>83030</td>
</tr>
<tr>
<td>30.30.30.56:63</td>
<td>30.30.30.171:6000</td>
<td>UDP</td>
<td>I</td>
<td>0</td>
<td>83030</td>
</tr>
<tr>
<td>30.30.30.61:63</td>
<td>30.30.30.172:6001</td>
<td>UDP</td>
<td>I</td>
<td>0</td>
<td>83030</td>
</tr>
<tr>
<td>30.30.30.52:63</td>
<td>30.30.30.175:6002</td>
<td>UDP</td>
<td>I</td>
<td>0</td>
<td>83030</td>
</tr>
</tbody>
</table>

NAT Plugin Data:
- Translation Type: NAPT-44
- NAT Action: Translation Type - NAPT-44
- NAT Source: 30.30.30.60:63
- NAT Destination: 30.30.30.164:6004
- Byte Count: 83030
- Flow Role: Initiator
- Timeout: 0
- Session: 16777232
- ALG: none
- Flags: 0x2000
- IP Action: no
- Offload: no
- Asymmetric: no

[...output truncated...]

Copyright © 2019, Juniper Networks, Inc.
show services sessions terse

user@router> show services sessions terse

mams-1/0/0 (ams0)
Service Set: napt_set, Session: 16777235, ALG: none, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no
UDP 40.40.40.62:63 -> 30.30.30.176:6003 Forward 0 0
Service Set: napt_set, Session: 16777234, ALG: none, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no
UDP 30.30.30.57:63 -> 40.40.40.57:63 Forward I 2541
UDP 40.40.40.57:63 -> 30.30.30.163:6003 Forward 0 0
Service Set: napt_set, Session: 16777233, ALG: none, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no
UDP 30.30.30.50:63 -> 40.40.40.50:63 Forward I 2541
UDP 40.40.40.50:63 -> 30.30.30.162:6003 Forward 0 0
[...output truncated...]

mams-1/1/0 (ams0)
Service Set: napt_set, Session: 16777234, ALG: none, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no
UDP 30.30.30.63:63 -> 40.40.40.63:63 Forward I 2543
UDP 40.40.40.63:63 -> 30.30.30.165:6004 Forward 0 0
Service Set: napt_set, Session: 16777233, ALG: none, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no
UDP 30.30.30.60:63 -> 40.40.40.60:63 Forward I 2543
UDP 40.40.40.60:63 -> 30.30.30.164:6004 Forward 0 0
Service Set: napt_set, Session: 16777232, ALG: none, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no
UDP 30.30.30.59:63 -> 40.40.40.59:63 Forward I 2543
UDP 40.40.40.59:63 -> 30.30.30.167:6003 Forward 0 0
[...output truncated...]

mams-5/0/0 (ams0)
Service Set: napt_set, Session: 16777225, ALG: none, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no
UDP 30.30.30.64:63 -> 40.40.40.64:63 Forward I 2543
UDP 40.40.40.64:63 -> 30.30.30.171:6001 Forward 0 0
Service Set: napt_set, Session: 16777224, ALG: none, Flags: 0x2000, IP Action: no, Offload: no, Asymmetric: no
UDP 30.30.30.58:63 -> 40.40.40.58:63 Forward I 2543
UDP 40.40.40.58:63 -> 30.30.30.166:6003 Forward 0 0
[...output truncated...]

Copyright © 2019, Juniper Networks, Inc.
show services sessions count

<table>
<thead>
<tr>
<th>Interface</th>
<th>Service set</th>
<th>Sessions count</th>
</tr>
</thead>
<tbody>
<tr>
<td>mams-1/0/0</td>
<td>napt_set</td>
<td>19</td>
</tr>
<tr>
<td>mams-1/0/0</td>
<td>ssl</td>
<td>0</td>
</tr>
<tr>
<td>mams-1/1/0</td>
<td>napt_set</td>
<td>18</td>
</tr>
<tr>
<td>mams-1/1/0</td>
<td>ssl</td>
<td>0</td>
</tr>
<tr>
<td>mams-5/0/0</td>
<td>napt_set</td>
<td>9</td>
</tr>
<tr>
<td>mams-5/0/0</td>
<td>ssl</td>
<td>0</td>
</tr>
<tr>
<td>mams-5/1/0</td>
<td>napt_set</td>
<td>17</td>
</tr>
<tr>
<td>mams-5/1/0</td>
<td>ssl</td>
<td>0</td>
</tr>
</tbody>
</table>
show services sessions analysis

Syntax

show services sessions analysis
<interface interface-name>

Release Information
Statement introduced in Junos OS Release 17.1 on MX Series MS-MPC. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description
Display session statistics.

Options
none—Display standard information about all session statistics.
interface interface-name—(Optional) Display information about the specified interface.

Required Privilege
view

List of Sample Output
show services sessions analysis interface on page 1713

Output Fields
Table 95 on page 1711 lists the output fields for the show services sessions analysis command. Output fields are listed in the approximate order in which they appear.

Table 95: show services sessions analysis Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services PIC Name</td>
<td>FPC and PIC slots for the services PIC on which the sessions are running.</td>
</tr>
<tr>
<td>Session Analysis Statistics:</td>
<td></td>
</tr>
<tr>
<td>Total Sessions Active</td>
<td>Total active sessions in the MS-PIC including TCP, UDP, ICMP and Softwires.</td>
</tr>
<tr>
<td>Total TCP Sessions Active</td>
<td>Total active TCP sessions in the MS-PIC.</td>
</tr>
<tr>
<td>Total UDP Sessions Active</td>
<td>Total active UDP session in the MS-PIC.</td>
</tr>
<tr>
<td>Total Other Sessions Active</td>
<td>Total other active sessions in the MS-PIC including ICMP and softwires.</td>
</tr>
<tr>
<td>Total Predicted Sessions Active</td>
<td>Predicted sessions are created only by the ALG traffic using the L3/L4 information available.</td>
</tr>
<tr>
<td>Created Sessions per Second</td>
<td>Session setup rate at the time of running the command.</td>
</tr>
</tbody>
</table>
Table 95: show services sessions analysis Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deleted Sessions per Second</td>
<td>Session deletion rate at the time of running the command.</td>
</tr>
<tr>
<td>Peak Total Sessions Active</td>
<td>Highest number of active sessions since the last PIC restart or since the last</td>
</tr>
<tr>
<td></td>
<td>time session statistics are flushed.</td>
</tr>
<tr>
<td>Peak Total TCP Sessions Active</td>
<td>Highest number of active TCP sessions since the last PIC restart or since the</td>
</tr>
<tr>
<td></td>
<td>last time session stats are flushed.</td>
</tr>
<tr>
<td>Peak Total UDP Sessions Active</td>
<td>Highest number of active UDP sessions since the last PIC restart or since the</td>
</tr>
<tr>
<td></td>
<td>last time session statistics are flushed.</td>
</tr>
<tr>
<td>Peak Total Other Sessions Active</td>
<td>Highest number of other active sessions since the last PIC restart or since the</td>
</tr>
<tr>
<td></td>
<td>last time session statistics are flushed.</td>
</tr>
<tr>
<td>Peak Created Sessions per Second</td>
<td>Maximum session setup rate observed since the last PIC restart or since the</td>
</tr>
<tr>
<td></td>
<td>last time session statistics are flushed.</td>
</tr>
<tr>
<td>Peak Deleted Sessions per Second</td>
<td>Maximum session deletion rate observed since the last PIC restart or from the</td>
</tr>
<tr>
<td></td>
<td>last time session statistics are flushed.</td>
</tr>
<tr>
<td>Packets received</td>
<td>Total number of packets received by the MS-PIC.</td>
</tr>
<tr>
<td>Packets transmitted</td>
<td>Total number of packets transmitted by the MS-PIC.</td>
</tr>
<tr>
<td>Slow path forward</td>
<td>Number of packets forwarded in the slow path (that is, after the successful rule</td>
</tr>
<tr>
<td></td>
<td>match and session creation).</td>
</tr>
<tr>
<td>Slow path discard</td>
<td>Number of packets discarded before the session creation.</td>
</tr>
<tr>
<td>Session Rate Data: Number of Samples</td>
<td>Number of samples used to calculate the session rate since the last PIC restart</td>
</tr>
<tr>
<td></td>
<td>or since the last time session statistics are flushed.</td>
</tr>
<tr>
<td>Session Rate Distribution(sec)</td>
<td></td>
</tr>
<tr>
<td>Session Operation :Creation</td>
<td>Number of sampling intervals during which a number of sessions in the indicated</td>
</tr>
<tr>
<td></td>
<td>range were created during the current sampling period.</td>
</tr>
<tr>
<td>Session Operation :Deletion</td>
<td>Number of sampling intervals during which a number of sessions in the indicated</td>
</tr>
<tr>
<td></td>
<td>range were deleted during the current sampling period.</td>
</tr>
<tr>
<td>Session Lifetime Distribution(sec):</td>
<td>Number of TCP, UDP, and HTTP sessions whose length was in the indicated range in</td>
</tr>
<tr>
<td></td>
<td>seconds.</td>
</tr>
</tbody>
</table>
Sample Output

```
show services sessions analysis interface

user@host> show services sessions analysis interface ms-5/1/0

Services PIC Name:    ms-5/1/0

Session Analysis Statistics:

  Total sessions Active                   :0
  Total TCP Sessions Active               :0
    Tcp sessions from gate                :0
    Tunneled TCP sessions                 :0
    Regular TCP sessions                  :0
    IPV4 active Session                   :0
    IPV6 active Session                   :0
  Total UDP sessions Active               :0
    UDP sessions from gate                :0
    Tunneled UDP sessions                 :0
    Regular UDP sessions                  :0
    IPV4 active Session                   :0
    IPV6 active Session                   :0
  Total Other sessions Active             :0
    IPV4 active Session                   :0
    IPV6 active Session                   :0
  Created sessions per Second             :0
  Deleted sessions per Second             :0
  Peak Total sessions Active              :0
  Peak Total TCP sessions Active          :0
  Peak Total UDP sessions Active          :0
  Peak Total Other sessions Active        :0
  Peak Created Sessions per Second        :0
  Peak Deleted Sessions per Second        :0
  Packets received                        :0
  Packets transmitted                     :0
  Slow path forward                       :0
  Slow path discard                       :0

Session Rate Data:
  Number of Samples: 3518

Session Rate Distribution(sec)

  Session Operation :Creation

  400000+            :0
  350001  - 400000   :0
  300001  - 350000   :0
  250001  - 300000   :0
  200001  - 250000   :0
  150001  - 200000   :0
  50001   - 150000   :0
  40001   - 50000    :0
  30001   - 40000    :0
  20001   - 30000    :0
  10001   - 20000    :0
  1001    - 10000    :0
  1       - 1000     :0
  0       :3518
```
Session Operation: Deletion

<table>
<thead>
<tr>
<th>Range</th>
<th>TCP</th>
<th>UDP</th>
<th>HTTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>400000+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>350001 - 400000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>300001 - 350000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>250001 - 300000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200001 - 250000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>150001 - 200000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50001 - 150000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40001 - 50000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30001 - 40000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20001 - 30000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10001 - 20000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1001 - 10000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 - 1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>3518</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Session Lifetime Distribution (sec):

<table>
<thead>
<tr>
<th>Range</th>
<th>TCP</th>
<th>UDP</th>
<th>HTTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>240+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>120 - 240</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>60 - 120</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30 - 60</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15 - 30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5 - 15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 - 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 - 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
show services sessions tcp-log

Syntax

```
show services sessions tcp-log interface interface-name
```

Release Information

Command introduced in Junos OS Release 19.1 for MX Series.

Description

Display information about the tcp log session details.

Required Privilege

view

Output Fields

Table 96 on page 1715 lists the output fields for the `show services sessions tcp-log interface interface-name` command. Output fields are listed in the approximate order in which they appear.

Table 96: show services sessions tcp-log interface Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service-set</td>
<td>Name of a service set.</td>
</tr>
<tr>
<td>TCP</td>
<td>TCP log session details.</td>
</tr>
</tbody>
</table>

Sample Output

```
user@router> show services sessions tcp-log interface interface-name
Service Set: junos-tcplog, Session: 33554434, ALG: None, Flags: 0x200000, IP Action: no, Offload: no, Asymmetric: no
TCP 18.1.1.1 -> 22.1.1.2 Forward I 6
TCP 22.1.1.2 -> 18.1.1.1 Forward 0 6
```
show services softwire

Syntax
```
show services softwire
<count>
```

Release Information
Command introduced in Junos OS Release 10.4.
`count` option added in Junos OS Release 11.2.

Description
Display information about softwire services. Information is displayed on both 6rd and DS-Lite services.

Options
- `count` *interface-name* — (Optional) Display the current softwire counts for a service set for both DS-Lite and 6rd.

Required Privilege
- **Level**: `view`

List of Sample Output
- show services softwire on page 1716
- show services softwire count on page 1717

Output Fields
Table 97 on page 1716 lists the output fields for the `command-name` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface for which information is displayed.</td>
<td>All levels</td>
</tr>
<tr>
<td>Service Set</td>
<td>Service set containing the softwire rules for the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Softwire</td>
<td>Name of the softwire concentrator.</td>
<td>All levels</td>
</tr>
<tr>
<td>Direction</td>
<td>Direction of the flow.</td>
<td>All levels</td>
</tr>
<tr>
<td>Flow count</td>
<td>Number of flows.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Sample Output

```
user@host> show services softwire
Interface: sp-3/0/0, Service set: v6rd-dom1-dom3-service-set
Softwire 10.10.10.2 -> 192.0.2.1 Direction I Flow count 13
```
show services softwire count

user@host> show services softwire count

<table>
<thead>
<tr>
<th>Interface</th>
<th>Service set</th>
<th>DS-Lite</th>
<th>6RD</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp-0/0/0</td>
<td>dslite-svc-set1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
show services softwire flows

Syntax

```
show services softwire flows
(<interface interface-name> <service-set service-set-name>|
count <interface interface-name> <service-set service-set-name>|
ds-lite <B4 b4-address> <AFTR aftr-address>|
v6rd <initiator initiator-ip-address> <concentrator concentrator-ip-address>)
```

Release Information

Command introduced in Junos OS Release 10.2.

Description

Display statistics information about the softwire flows.

NOTE: Starting with Junos OS Release 14.1R4, the IPv6 prefix length associated with a subscriber’s basic broadband bridging device that is subject to a limited number of sessions (ds-lite-ipv6-prefix-length attribute) is taken into account while the session count is calculated and displayed in the output of the show services softwire flows command. Until Junos OS Release 14.1R3, only IPv4 flows were counted and IPv6 flows were not considered for the statistics about softwire flows.

Options

- `interface interface-name`—(Optional) Display statistics information about the specified interface only.
- `service-set service-set-name`—(Optional) Display statistics information about the specified service set only.
- `count <interface interface-name> <service-set service-set-name>`—(Optional) Display flow count information only, with optional filtering by interface and service set.
- `ds-lite <B4 b4-address> <AFTR aftr-address>`—(Optional) Display DS-Lite flow information, with optional filtering by B4 (softwire initiator) and AFTR (softwire concentrator).
- `v6rd <initiator initiator-ip-address> <concentrator concentrator-ip-address>`—(Optional) Display v6rd flow information, with optional filtering by the softwire initiator and software concentrator.

Required Privilege Level

view

List of Sample Output

- show services softwire flows on page 1719
- show services softwire flows count on page 1720
- show services softwire flows ds-lite B4 on page 1720
- show services softwire flows ds-lite AFTR on page 1720
- services softwire flows ds-lite AFTR and B4 on page 1720
Output Fields Table 98 on page 1719 lists the output fields for the `show services softwire flows` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of the service set.</td>
</tr>
<tr>
<td>Flow</td>
<td>Description of flow, including protocol input and output interface addresses.</td>
</tr>
<tr>
<td>State</td>
<td>Flow state. Value is:</td>
</tr>
<tr>
<td></td>
<td>• Forward</td>
</tr>
<tr>
<td>Dir</td>
<td>Flow direction. Values are:</td>
</tr>
<tr>
<td></td>
<td>• I—inbound</td>
</tr>
<tr>
<td></td>
<td>• O—outbound</td>
</tr>
<tr>
<td>Frm count</td>
<td>Number of frames transferred.</td>
</tr>
<tr>
<td>NAT dest</td>
<td>NAT translation of the decapsulated address.</td>
</tr>
<tr>
<td>Softwire</td>
<td>For outbound flows, the address of the local software initiator (B4 for DS-Lite) is shown first, followed by the address of the software concentrator (AFTR for DS-Lite). For inbound flows, the address of the software concentrator is shown first, followed by the address of the software initiator.</td>
</tr>
</tbody>
</table>

Sample Output

`show services softwire flows`

```
user@host> show services softwire flows
Interface: sp-0/0/0, Service set: dslite-svc-set1

<table>
<thead>
<tr>
<th>Flow</th>
<th>State</th>
<th>Dir</th>
<th>Frm count</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>200.200.200.2:80</td>
<td>-&gt; 33.33.33.1:1066</td>
<td>Forward</td>
</tr>
<tr>
<td>NAT dest</td>
<td>33.33.33.1:1066</td>
<td>-&gt; 20.20.1.2:1025</td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td>1001::1</td>
<td>-&gt; 2001::2</td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td>20.20.1.2:1025</td>
<td>-&gt; 200.200.2.80</td>
<td>Forward</td>
</tr>
<tr>
<td>NAT source</td>
<td>20.20.1.2:1025</td>
<td>-&gt; 33.33.33.1:1066</td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td>2001::2</td>
<td>-&gt; 1001::1</td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td>20.20.1.2:1025</td>
<td>-&gt; 200.200.2.80</td>
<td>Forward</td>
</tr>
<tr>
<td>NAT source</td>
<td>20.20.1.2:1025</td>
<td>-&gt; 33.33.33.1:1065</td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td>2001::3</td>
<td>-&gt; 1001::1</td>
<td></td>
</tr>
<tr>
<td>DS-LITE</td>
<td>2001::2</td>
<td>-&gt; 1001::1</td>
<td>Forward</td>
</tr>
<tr>
<td>TCP</td>
<td>200.200.2.80</td>
<td>-&gt; 33.33.33.1:1065</td>
<td>Forward</td>
</tr>
<tr>
<td>NAT dest</td>
<td>33.33.33.1:1065</td>
<td>-&gt; 20.20.1.2:1025</td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td>1001::1</td>
<td>-&gt; 2001::3</td>
<td></td>
</tr>
<tr>
<td>DS-LITE</td>
<td>2001::3</td>
<td>-&gt; 1001::1</td>
<td>Forward</td>
</tr>
</tbody>
</table>
```
show services softwire flows count

<table>
<thead>
<tr>
<th>Interface</th>
<th>Service set</th>
<th>Flow count</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp-0/0/0</td>
<td>dslite-svc-set1</td>
<td>6</td>
</tr>
</tbody>
</table>

show services softwire flows ds-lite B4

<table>
<thead>
<tr>
<th>Interface: sp-0/0/0, Service set: dslite-svc-set1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
</tr>
<tr>
<td>TCP 200.200.200.2:80 -> 33.33.33.1:1066</td>
</tr>
<tr>
<td>NAT dest 33.33.33.1:1066 -> 20.20.1.2:1025</td>
</tr>
<tr>
<td>Softwire 1001::1 -> 2001::2</td>
</tr>
<tr>
<td>TCP 20.20.1.2:1025 -> 200.200.200.2:80</td>
</tr>
<tr>
<td>NAT source 20.20.1.2:1025 -> 33.33.33.1:1066</td>
</tr>
<tr>
<td>Softwire 2001::2 -> 1001::1</td>
</tr>
<tr>
<td>DS-LITE 2001::2 -> 1001::1</td>
</tr>
</tbody>
</table>

show services softwire flows ds-lite AFTR

<table>
<thead>
<tr>
<th>Interface: sp-0/0/0, Service set: dslite-svc-set1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
</tr>
<tr>
<td>TCP 200.200.200.2:80 -> 33.33.33.1:1066</td>
</tr>
<tr>
<td>NAT dest 33.33.33.1:1066 -> 20.20.1.2:1025</td>
</tr>
<tr>
<td>Softwire 1001::1 -> 2001::2</td>
</tr>
<tr>
<td>TCP 20.20.1.2:1025 -> 200.200.200.2:80</td>
</tr>
<tr>
<td>NAT source 20.20.1.2:1025 -> 33.33.33.1:1066</td>
</tr>
<tr>
<td>Softwire 2001::2 -> 1001::1</td>
</tr>
<tr>
<td>TCP 20.20.1.2:1025 -> 200.200.200.2:80</td>
</tr>
<tr>
<td>NAT source 20.20.1.2:1025 -> 33.33.33.1:1065</td>
</tr>
<tr>
<td>Softwire 2001::3 -> 1001::1</td>
</tr>
<tr>
<td>DS-LITE 2001::2 -> 1001::1</td>
</tr>
</tbody>
</table>

services softwire flows ds-lite AFTR and B4

<table>
<thead>
<tr>
<th>Interface: sp-0/0/0, Service set: dslite-svc-set1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
</tr>
<tr>
<td>TCP 200.200.200.2:80 -> 33.33.33.1:1066</td>
</tr>
<tr>
<td>NAT dest 33.33.33.1:1066 -> 20.20.1.2:1025</td>
</tr>
<tr>
<td>Softwire 1001::1 -> 2001::2</td>
</tr>
<tr>
<td>TCP 20.20.1.2:1025 -> 200.200.200.2:80</td>
</tr>
<tr>
<td>NAT source 20.20.1.2:1025 -> 33.33.33.1:1066</td>
</tr>
<tr>
<td>Softwire 2001::2 -> 1001::1</td>
</tr>
<tr>
<td>DS-LITE 2001::2 -> 1001::1</td>
</tr>
</tbody>
</table>
show services softwire statistics

Syntax

```
show services softwire statistics
<ds-lite>
<ds-lite>
<interface interface-name>
<v6rd>
```

Release Information

Command introduced in Junos OS Release 10.4.

Description

Display information about softwire services.

Options

- `ds-lite` — (Optional) Display only DS-Lite.
- `interface interface-name` — (Optional) Name of the interface servicing the softwire. When you omit this option, data for all interfaces are shown.
- `v6rd` — (Optional) Display only 6rd statistics.

Required Privilege

`view`

List of Sample Output

- `show services softwire statistics on page 1724`
- `show services softwire statistics ds-lite on page 1726`

Output Fields

Table 99 on page 1721 lists the output fields for the command-name command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service PIC Name</td>
<td>Name of service PIC for which statistics are shown.</td>
<td>statistics</td>
</tr>
<tr>
<td>Softwires Created</td>
<td>Number of softwires created.</td>
<td>statistics</td>
</tr>
<tr>
<td>Softwires Created for EIF/HP</td>
<td>Number of softwires created for endpoint-independent filtering (EIF) or hairpinning (HP).</td>
<td>statistics for ds-lite only</td>
</tr>
<tr>
<td>Softwires Deleted</td>
<td>Number of softwires deleted.</td>
<td>statistics</td>
</tr>
<tr>
<td>Softwires Flows Created</td>
<td>Number of flows created.</td>
<td>statistics</td>
</tr>
<tr>
<td>Softwires Flows Deleted</td>
<td>Number of flows deleted.</td>
<td>statistics</td>
</tr>
</tbody>
</table>
Table 99: command-name Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow Path Packets Processed</td>
<td>Number of packets processed as initial packets in a softwire session. These packets require a rule lookup and setting up of flows; this processing of an initial packet in a flow is called the slow path.</td>
<td>statistics</td>
</tr>
<tr>
<td>Slow Path Packets Processed for EIF/HP</td>
<td>Number of slow path EIF/HP packets processed.</td>
<td>statistics for ds-lite only</td>
</tr>
<tr>
<td>Fast Path Packets Processed</td>
<td>Number of packets processed that are not slow path.</td>
<td>statistics</td>
</tr>
<tr>
<td>Fast Path Encapsulated</td>
<td>Number of packets encapsulated in the fast path.</td>
<td>statistics</td>
</tr>
<tr>
<td>Softwire EIF Accept</td>
<td>Number of packets that matched an EIF entry that initiated the creation of a DS-Lite tunnel. The EIF entry was previously triggered by a DS-Lite packet.</td>
<td>statistics for ds-lite only</td>
</tr>
<tr>
<td>Rule Match Succeeded</td>
<td>Number of packets that matched a softwire rule.</td>
<td>statistics</td>
</tr>
<tr>
<td>Rule Match Failed</td>
<td>Number of packets that did not match any softwire rule.</td>
<td>statistics</td>
</tr>
<tr>
<td>IPv6 Packets Fragmented</td>
<td>Number of packets fragmented by the services PIC.</td>
<td>statistics for ds-lite only</td>
</tr>
<tr>
<td>IPv4 Client Fragments</td>
<td>Number of IPv4 fragments received from the client end over the softwire tunnel destined to the server.</td>
<td>statistics for ds-lite only</td>
</tr>
<tr>
<td>IPv4 Server First Fragments</td>
<td>Number of IPv4 first fragments received from the server destined to go over the softwire tunnel to the client.</td>
<td>statistics for ds-lite only</td>
</tr>
<tr>
<td>IPv4 Server More Fragments</td>
<td>Number of IPv4 other fragments (excluding first and last fragment) received from the server destined to go over the softwire tunnel to the client.</td>
<td>statistics for ds-lite only</td>
</tr>
<tr>
<td>IPv4 Server Last Fragments</td>
<td>Number of IPv4 last fragments received from the server destined to go over the softwire tunnel to the client.</td>
<td>statistics for ds-lite only</td>
</tr>
<tr>
<td>ICMPv4 Packets sent</td>
<td>Number of ICMPv4 packets sent to the softwire concentrator.</td>
<td>statistics</td>
</tr>
<tr>
<td>ICMPv4 Error Packets sent</td>
<td>Number of ICMPv4 error packets sent to the softwire concentrator.</td>
<td>statistics</td>
</tr>
<tr>
<td>ICMPv6 Packets sent</td>
<td>Number of ICMPv6 packets sent to the softwire concentrator.</td>
<td>statistics</td>
</tr>
<tr>
<td>Dropped ICMPv6 packets destined to AFTR</td>
<td>Number of ICMPv6 packets dropped instead of sending to the softwire concentrator.</td>
<td>statistics</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Software Creation Failed</td>
<td>Number of softwire creation failures.</td>
<td>statistics for ds-lite and 6rd</td>
</tr>
<tr>
<td>Software Creation Failed for EIF/HP</td>
<td>Number of softwire creation failures for EIF/HP.</td>
<td>statistics for ds-lite only</td>
</tr>
<tr>
<td>Flow Creation Failed</td>
<td>Number of flow creation failures.</td>
<td>statistics</td>
</tr>
<tr>
<td>Flow Creation Failed for EIF/HP</td>
<td>Number of flow creation failures for EIF/HP.</td>
<td>statistics for ds-lite only</td>
</tr>
<tr>
<td>Flow Creation Failed - Retry</td>
<td>Number of flow creations retried after failure.</td>
<td>statistics</td>
</tr>
<tr>
<td>Slow Path Failed</td>
<td>Number of failures detected in the slow path.</td>
<td>statistics</td>
</tr>
<tr>
<td>Slow Path Failed - Retry</td>
<td>Number of times processing of a packet was reprocessed in the slow path.</td>
<td>statistics</td>
</tr>
<tr>
<td>Packet not IPv4-in-IPv6</td>
<td>Number of IPv4 packets not encapsulated in IPv6.</td>
<td>statistics for ds-lite only</td>
</tr>
<tr>
<td>IPv6 Fragmentation Error</td>
<td>Number of IPv6 packets with fragmentation errors.</td>
<td>statistics</td>
</tr>
<tr>
<td>Slow Path Failed-IPv6 Next Header Offset</td>
<td>Number of IPv6 header errors detected in slow path processing.</td>
<td>statistics for ds-lite only</td>
</tr>
<tr>
<td>Decapsulated Packet not IPv4</td>
<td>Number of packets without IPv4 inner header.</td>
<td>statistics for ds-lite only</td>
</tr>
<tr>
<td>Decap Failed - IPv6 Next Header Offset</td>
<td>Decapsulation failure due to an unexpected inner header.</td>
<td>statistics for ds-lite only</td>
</tr>
<tr>
<td>Decap Failed - IPv4 L3 Integrity</td>
<td>Decapsulation failure due to incorrect Layer 3 data, such as not an IP packet, bad source or destination address, checksum error, or protocol error.</td>
<td>statistics for ds-lite only</td>
</tr>
<tr>
<td>Decap Failed - IPv4 L4 Integrity</td>
<td>Decapsulation failure due to incorrect Layer 4 data, such as errors in TCP, UDP, or TCP headers.</td>
<td>statistics for ds-lite only</td>
</tr>
<tr>
<td>No Softwire ID</td>
<td>Number of times a softwire ID was not found.</td>
<td>statistics</td>
</tr>
<tr>
<td>No Flow Extension</td>
<td>Number of times flow extensions were not found.</td>
<td>statistics</td>
</tr>
<tr>
<td>ICMPv4 Dropped Packets</td>
<td>Number of ICMPv4 packets dropped.</td>
<td>statistics</td>
</tr>
</tbody>
</table>
Table 99: command-name Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet not IPv6-in-IPv4</td>
<td>Number of IPv6 packets not encapsulated in IPv4.</td>
<td>statistics for v6rd only</td>
</tr>
<tr>
<td>Decapsulated Packet not IPv6</td>
<td>Number of packets without an IPv6 inner header.</td>
<td>statistics for v6rd only</td>
</tr>
<tr>
<td>Encapsulation Failed - No packet memory</td>
<td>Failed to encapsulate IPv6 packets in IPv4 due to low memory.</td>
<td>statistics for v6rd only</td>
</tr>
<tr>
<td>Flow limit exceeded</td>
<td>Flow not created because configured maximum flows per softwire is exceeded.</td>
<td>statistics</td>
</tr>
<tr>
<td>Session limit exceeded</td>
<td>Flow not created because configured maximum DS-Lite softwire sessions per IPv6 prefix is exceeded.</td>
<td>statistics for ds-lite only</td>
</tr>
</tbody>
</table>

Sample Output

show services softwire statistics

```
user@host> show services softwire statistics

DS-Lite Statistics:

  Service PIC Name:                             :sp-0/0/0

  Statistics
  ------------
    Softwires Created                           :0
    Softwires Created for EIF/HP                :0
    Softwires Deleted                           :0
    Softwires Flows Created                     :0
    Softwires Flows Deleted                     :0
    Slow Path Packets Processed                :0
    Slow Path Packets Processed for EIF/HP      :0
    Fast Path Packets Processed                :0
    Fast Path Packets Encapsulated              :0
    Softwire EIF Accept                         :0
    Rule Match Succeeded                        :0
    Rule Match Failed                           :0
    IPv6 Packets Fragmented                     :0
    IPv4 Client Fragments                       :0
    IPv4 Server First Fragments                 :0
    IPv4 Server More Fragments                  :0
    IPv4 Server Last Fragments                  :0
    ICMPv4 Packets sent                         :0
    ICMPv4 Error Packets sent                   :0
    ICMPv6 Packets sent                         :0
    Dropped ICMPv6 packets destined to AFTR     :0

  Transient Errors
  ---------------
```

Copyright © 2019, Juniper Networks, Inc.
Flow Creation Failed - Retry :0
Flow Creation Failed - Retry for EIF/HP :0
Slow Path Failed - Retry :0

Errors

Softwire Creation Failed :0
Softwire Creation Failed for EIF/HP :0
Flow Creation Failed :0
Flow Creation Failed For EIF/HP :0
Slow Path Failed :0
Packet not IPv4-in-IPv6 :0
IPv6 Fragmentation Error :0
Softwire Creation Failed - IPv6 Next Header Offset :0
Decapsulated Packet not IPv4 :0
Decap Failed - IPv6 Next Header Offset :0
Decap Failed - IPv4 L3 Integrity :0
Decap Failed - IPv4 L4 Integrity :0
No Softwire ID :0
No Flow Extension :0
Flow Limit Exceeded :0

6rd Statistics:

Service PIC Name : sp-0/0/0

Statistics

Softwires Created :0
Softwires Deleted :0
Softwires Flows Created :0
Softwires Flows Deleted :0
Slow Path Packets Processed :0
Fast Path Packets Processed :0
Fast Path Packets Encapsulated :0
Rule Match Failed :0
Rule Match Succeeded :0

Transient Errors

Flow Creation Failed - Retry :0
Slow Path Failed - Retry :0

Errors

Softwire Creation Failed :0
Flow Creation Failed :0
Slow Path Failed :0
Packet not IPv6-in-IPv4 :0
Slow Path Failed - IPv6 Next Header Offset :0
Decapsulated Packet not IPv6 :0
Encapsulation Failed - No packet memory :0
No Softwire ID :0
show services softwire statistics ds-lite

user@host> show services softwire statistics ds-lite

DS-Lite Statistics:

Service PIC Name: sp-0/0/0

Statistics

Softwires Created :0
Softwires Created for EIF/HP :0
Softwires Deleted :0
Softwires Flows Created :0
Softwires Flows Deleted :0
Slow Path Packets Processed :0
Slow Path Packets Processed for EIF/HP :0
Fast Path Packets Processed :0
Fast Path Packets Encapsulated :0
Softwire EIF Accept :0
Rule Match Succeeded :0
Rule Match Failed :0
IPv6 Packets Fragmented :0
IPv4 Client Fragments :0
IPv4 Server First Fragments :0
IPv4 Server More Fragments :0
IPv4 Server Last Fragments :0
ICMPv4 Packets sent :0
ICMPv4 Error Packets sent :0
ICMPv6 Packets sent :0
Dropped ICMPv6 packets destined to AFTR :0

Transient Errors

Flow Creation Failed - Retry :0
Flow Creation Failed - Retry for EIF/HP :0
Slow Path Failed - Retry :0

Errors

Softwire Creation Failed :0
Softwire Creation Failed for EIF/HP :0
Flow Creation Failed :0
Flow Creation Failed For EIF/HP :0
Slow Path Failed :0
Packet not IPv4-in-IPv6 :0
IPv6 Fragmentation Error :0
Softwire Creation Failed - IPv6 Next Header Offset :0
Decapsulated Packet not IPv4 :0
Decap Failed - IPv6 Next Header Offset :0
Decap Failed - IPv4 L3 Integrity :0
Decap Failed - IPv4 L4 Integrity :0
No Softwire ID :0
<table>
<thead>
<tr>
<th>Condition</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Flow Extension</td>
<td>0</td>
</tr>
<tr>
<td>Flow Limit Exceeded</td>
<td>0</td>
</tr>
<tr>
<td>Session Limit Exceeded</td>
<td>0</td>
</tr>
</tbody>
</table>
show services stateful-firewall conversations

Syntax

```
show services stateful-firewall conversations
<br>brief | extensive | terse>
<br>application-protocol protocol>
<br>destination-port destination-port>
<br>destination-prefix destination-prefix>
<br>interface interface-name>
<br>limit number>
<br>pgcp>
<br>protocol protocol>
<br>service-set service-set>
<br>source-port source-port>
<br>source-prefix source-prefix>
```

Release Information

Command introduced before Junos OS Release 7.4.
pgcp option introduced in Junos OS Release 8.4.

Description

Display information about stateful firewall conversations.

Options

none—Display standard information about all stateful firewall conversations.

brief | extensive | terse—(Optional) Display the specified level of output.

application-protocol protocol—(Optional) Display information about one of the following application protocols:

- **bootp**—Bootstrap protocol
- **dce-rpc**—Distributed Computing Environment-Remote Procedure Call protocols
- **dce-rpc-portmap**—Distributed Computing Environment-Remote Procedure Call protocols portmap service
- **dns**—Domain Name System protocol
- **exec**—Exec
- **ftp**—File Transfer Protocol
- **h323**—H.323 standards
- **icmp**—Internet Control Message Protocol
- **iiop**—Internet Inter-ORB Protocol
- **login**—Login
- **netbios**—NetBIOS
- **netshow**—NetShow
- **realaudio**—RealAudio
- **rpc**—Remote Procedure Call protocol
• **rpc-portmap**—Remote Procedure Call protocol portmap service
• **rtsp**—Real-Time Streaming Protocol
• **shell**—Shell
• **sip**—Session Initiation Protocol
• **snmp**—Simple Network Management Protocol
• **sqlnet**—SQLNet
• **tftp**—Trivial File Transfer Protocol
• **traceroute**—Traceroute
• **winframe**—WinFrame

destination-port destination-port—(Optional) Display information for a particular destination port. The range of values is 0 to 65535.

destination-prefix destination-prefix—(Optional) Display information for a particular destination prefix.

interface interface-name—(Optional) Display information about a particular interface. On M Series and T Series routers, the **interface-name** can be sp-fpc/pic/port or rspnumber.

limit number—(Optional) Maximum number of entries to display.

pgcp—(Optional) Display information about stateful firewall conversations for Packet Gateway Control Protocol (PGCP) flows.

protocol protocol—(Optional) Display information about one of the following IP types:

 • **number**—Numeric protocol value from 0 to 255
 • **ah**—IPsec Authentication Header protocol
 • **egp**—An exterior gateway protocol
 • **esp**—IPsec Encapsulating Security Payload protocol
 • **gre**—A generic routing encapsulation protocol
 • **icmp**—Internet Control Message Protocol
 • **igmp**—Internet Group Management Protocol
 • **ipip**—IP-within-IP Encapsulation Protocol
 • **ospf**—Open Shortest Path First protocol
 • **pim**—Protocol Independent Multicast protocol
 • **rsvp**—Resource Reservation Protocol
 • **sctp**—Stream Control Protocol
- tcp—Transmission Control Protocol
- udp—User Datagram Protocol

service-set service-set—(Optional) Display information for the specific service set.

source-port source-port—(Optional) Display information for a particular source port. The range of values is 0 to 65535.

source-prefix source-prefix—(Optional) Display information for a particular source prefix.

Required Privilege

Level

view

List of Sample Output

- show services stateful-firewall conversations on page 1731
- show services stateful-firewall conversations destination-port on page 1731

Output Fields

Table 100 on page 1730 lists the output fields for the **show services stateful-firewall conversations** command. Output fields are listed in the approximate order in which they appear.

Table 100: show services stateful-firewall conversations Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an adaptive services interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of a service set. Individual empty service sets are not displayed, but if no service set has any flows, a flow table header is printed for each service set.</td>
</tr>
<tr>
<td>Conversation</td>
<td>Information about a group of related flows.</td>
</tr>
<tr>
<td></td>
<td>• ALG Protocol—Application-level gateway protocol.</td>
</tr>
<tr>
<td></td>
<td>• Number of initiators—Number of flows that initiated a session.</td>
</tr>
<tr>
<td></td>
<td>• Number of responders—Number of flows that responded in a session.</td>
</tr>
<tr>
<td>Flow or Flow Prot</td>
<td>Protocol used for this flow.</td>
</tr>
<tr>
<td>Source</td>
<td>Source prefix of the flow, in the format source-prefix-port.</td>
</tr>
<tr>
<td>Destination</td>
<td>Destination prefix of the flow.</td>
</tr>
<tr>
<td>State</td>
<td>Status of the flow:</td>
</tr>
<tr>
<td></td>
<td>• Drop—Drop all packets in the flow without response.</td>
</tr>
<tr>
<td></td>
<td>• Forward—Forward the packet in the flow without looking at it.</td>
</tr>
<tr>
<td></td>
<td>• Reject—Drop all packets in the flow with response.</td>
</tr>
<tr>
<td></td>
<td>• Watch—Inspect packets in the flow.</td>
</tr>
<tr>
<td>Dir</td>
<td>Direction of the flow: input (I) or output (O).</td>
</tr>
</tbody>
</table>
Table 100: show services stateful-firewall conversations Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source NAT</td>
<td>Original and translated source IPv4 or IPv6 addresses are displayed if Network Address Translation (NAT) is configured on this particular flow or conversation.</td>
</tr>
<tr>
<td>Frm Count</td>
<td>Number of frames in the flow.</td>
</tr>
<tr>
<td>Destin NAT</td>
<td>Original and translated destination IPv4 or IPv6 addresses are displayed if NAT is configured on this particular flow or conversation.</td>
</tr>
<tr>
<td>Byte count</td>
<td>Number of bytes forwarded in the flow.</td>
</tr>
<tr>
<td>TCP established</td>
<td>Whether a TCP connection was established: Yes or No.</td>
</tr>
<tr>
<td>TCP window size</td>
<td>Negotiated TCP connection window size, in bytes.</td>
</tr>
<tr>
<td>TCP acknowledge</td>
<td>TCP acknowledgment sequence number.</td>
</tr>
<tr>
<td>TCP tickle</td>
<td>Whether TCP inquiry mode is on (enabled or disabled) and the time remaining to send the next inquiry, in seconds.</td>
</tr>
<tr>
<td>Master flow</td>
<td>Flow that initiated the conversation.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Lifetime of the flow, in seconds.</td>
</tr>
</tbody>
</table>

Sample Output

```
show services stateful-firewall conversations

user@host> show services stateful-firewall conversations
Interface: sp-1/3/0, Service set: green
Conversation: ALG Protocol: any, Number of initiators: 1, Number of responders: 1

<table>
<thead>
<tr>
<th>Flow Prot</th>
<th>Source</th>
<th>Dest</th>
<th>State</th>
<th>Dir</th>
<th>Frm count</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>10.58.255.50:33005-&gt;</td>
<td>10.58.255.178:23</td>
<td>Forward</td>
<td>I</td>
<td>13</td>
</tr>
<tr>
<td>Source NAT</td>
<td>10.58.255.50:33005-&gt;</td>
<td>10.59.16.100:4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destin NAT</td>
<td>10.58.255.178:23</td>
<td>-&gt; 0.0.0.0:4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byte count</td>
<td>918</td>
<td>TCP established, TCP window size: 65535, TCP acknowledge: 2502627025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP tickle</td>
<td>enabled, 0 seconds,</td>
<td>Master flow, Timeout: 30 seconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td>10.58.255.178:23</td>
<td>-&gt; 10.59.16.100:4000</td>
<td>Forward</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

show services stateful-firewall conversations destination-port

user@host> show services stateful-firewall conversations destination-port 21
Interface: sp-0/3/0, Service set: svc_set_trust

Interface: sp-0/3/0, Service set: svc_set_untrust
```

Copyright © 2019, Juniper Networks, Inc.
Conversation: ALG protocol: ftp
Number of initiators: 1, Number of responders: 1

<table>
<thead>
<tr>
<th>Flow</th>
<th>Source</th>
<th>Destination</th>
<th>State</th>
<th>Dir</th>
<th>Frm count</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>10.50.20.2:21</td>
<td>10.50.10.2:2143</td>
<td>Watch</td>
<td>O</td>
<td>0</td>
</tr>
<tr>
<td>TCP</td>
<td>10.50.10.2:2143</td>
<td>10.50.20.2:21</td>
<td>Watch</td>
<td>I</td>
<td>0</td>
</tr>
<tr>
<td>TCP</td>
<td>10.50.20.2:21</td>
<td>10.50.10.2:2143</td>
<td>Watch</td>
<td>I</td>
<td>0</td>
</tr>
</tbody>
</table>
show services stateful-firewall flow-analysis

Syntax

```
show services stateful-firewall flow-analysis
<interface interface-name>
```

Release Information

Command introduced in Junos OS Release 10.4R1.

Description

Display stateful firewall flow statistics.

Options

```
none—Display standard information about all stateful firewall flow statistics.
interface interface-name—(Optional) Display information about a particular interface.
```

Required Privilege Level

`view`

List of Sample Output

```
show services stateful-firewall flow-analysis on page 1734
show services stateful-firewall flow-analysis interface sp-3/0/0 on page 1735
```

Output Fields

Table 95 on page 1711 lists the output fields for the `show services stateful-firewall flow-analysis` command. Output fields are listed in the approximate order in which they appear.

Table 101: show services stateful-firewall flow-analysis Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Flows Active</td>
<td>Total active flows in the MS-PIC including TCP, UDP, ICMP and Softwires.</td>
</tr>
<tr>
<td>Total TCP Flows Active</td>
<td>Total active TCP flows in the MS-PIC.</td>
</tr>
<tr>
<td>Total UDP Flows Active</td>
<td>Total active UDP flows in the MS-PIC.</td>
</tr>
<tr>
<td>Total Other Flows Active</td>
<td>Total other active flows in the MS-PIC including ICMP and softwires.</td>
</tr>
<tr>
<td>Total Predicted Flows Active</td>
<td>Predicted flows are created only by the ALG traffic using the L3/L4 information available.</td>
</tr>
<tr>
<td>Created Flows per Second</td>
<td>Flow setup rate at the time of running the command.</td>
</tr>
<tr>
<td>Deleted Flows per Second</td>
<td>Flow deletion rate at the time of running the command.</td>
</tr>
<tr>
<td>Peak Total Flows Active</td>
<td>The highest number of active flows since the last PIC restart or since the last time flow statistics are flushed.</td>
</tr>
<tr>
<td>Peak Total TCP Flows Active</td>
<td>The highest number of active TCP flows since the last PIC restart or since the last time flow stats are flushed.</td>
</tr>
</tbody>
</table>
Table 101: `show services stateful-firewall flow-analysis` Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Total UDP Flows Active</td>
<td>The highest number of active UDP flows since the last PIC restart or since the</td>
</tr>
<tr>
<td></td>
<td>last time flow statistics are flushed.</td>
</tr>
<tr>
<td>Peak Total Other Flows Active</td>
<td>The highest number of other active flows since the last PIC restart or since the</td>
</tr>
<tr>
<td></td>
<td>last time flow statistics are flushed.</td>
</tr>
<tr>
<td>Peak Created Flows per Second</td>
<td>The maximum flow setup rate observed since the last PIC restart or since the</td>
</tr>
<tr>
<td></td>
<td>last time flow statistics are flushed.</td>
</tr>
<tr>
<td>Peak Deleted Flows per Second</td>
<td>The maximum flow deletion rate observed since the last PIC restart or from the</td>
</tr>
<tr>
<td></td>
<td>last time flow statistics are flushed.</td>
</tr>
<tr>
<td>Average HTTP Flow Lifetime(ms)</td>
<td>Average HTTP Flow Lifetime in millisecond.</td>
</tr>
<tr>
<td>Packets received</td>
<td>The total number of packets received by the MS-PIC.</td>
</tr>
<tr>
<td>Packets transmitted</td>
<td>The total number of packets transmitted by the MS-PIC.</td>
</tr>
<tr>
<td>Slow path forward</td>
<td>The number of packets forwarded in the slow path (i.e. after the successful rule</td>
</tr>
<tr>
<td></td>
<td>match and flow creation).</td>
</tr>
<tr>
<td>Slow path discard</td>
<td>The number of packets discarded before the flow creation.</td>
</tr>
<tr>
<td>Flow Rate Data: Number of Samples</td>
<td>The number of samples used to calculate the flow rate, since the last PIC restart</td>
</tr>
<tr>
<td></td>
<td>or since the last time flow statistics are flushed.</td>
</tr>
<tr>
<td>Flow Rate Distribution(sec) Flow</td>
<td>Histogram of the samples used for flow rate calculation.</td>
</tr>
<tr>
<td>Operation :Creation Flow</td>
<td></td>
</tr>
<tr>
<td>Operation :Deletion</td>
<td></td>
</tr>
<tr>
<td>Flow Lifetime Distribution(sec):</td>
<td>Histogram of the samples used to calculate the flow lifetime in sec.</td>
</tr>
</tbody>
</table>

Sample Output

```
show services stateful-firewall flow-analysis

Services PIC Name: sp-3/0/0

Flow Analysis Statistics:
- Total Flows Active: 40
- Total TCP Flows Active: 0
- Total UDP Flows Active: 40
- Total Other Flows Active: 0
- Total Predicted Flows Active: 0
- Created Flows per Second: 0
- Deleted Flows per Second: 0
```

Peak Total Flows Active : 40
Peak Total TCP Flows Active : 0
Peak Total UDP Flows Active : 40
Peak Total Other Flows Active : 0
Peak Created Flows per Second : 20
Peak Deleted Flows per Second : 20
Average HTTP Flow Lifetime (ms) : 0
Packets received : 48682539117
Packets transmitted : 48682502703
Slow path forward : 6550
Slow path discard : 0

Flow Rate Data:
Number of Samples: 19720
Flow Rate Distribution (sec)
Flow Operation : Creation
300000+ : 0
250000 - 300000 : 0
200000 - 250000 : 0
160000 - 200000 : 0
150000 - 160000 : 0
50000 - 150000 : 0
40000 - 50000 : 0
30000 - 40000 : 0
20000 - 30000 : 0
10000 - 20000 : 0
1000 - 10000 : 0
0 - 1000 : 19720
Flow Operation : Deletion
300000+ : 0
250000 - 300000 : 0
200000 - 250000 : 0
160000 - 200000 : 0
150000 - 160000 : 0
50000 - 150000 : 0
40000 - 50000 : 0
30000 - 40000 : 0
20000 - 30000 : 0
10000 - 20000 : 0
1000 - 10000 : 0
0 - 1000 : 19720

Flow Lifetime Distribution (sec):

TCP	UDP	HTTP
240+ : 0 | 0 | 0
120 - 240 : 0 | 0 | 0
60 - 120 : 0 | 0 | 0
30 - 60 : 0 | 0 | 0
15 - 30 : 0 | 6530 | 0
5 - 15 : 0 | 0 | 0
1 - 5 : 0 | 6530 | 0
0 - 1 : 0 | 6530 | 0

Sample Output

```
show services stateful-firewall flow-analysis interface sp-3/0/0

Services PIC Name: sp-3/0/0  
Flow Analysis Statistics:  
  Total Flows Active : 40

```
<table>
<thead>
<tr>
<th>Flow Rate Data:</th>
<th>Number of Samples: 22139</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rate Distribution (sec)</td>
<td>Flow Operation : Creation</td>
</tr>
<tr>
<td>300000+</td>
<td>:0</td>
</tr>
<tr>
<td>250000 - 300000</td>
<td>:0</td>
</tr>
<tr>
<td>200000 - 250000</td>
<td>:0</td>
</tr>
<tr>
<td>160000 - 200000</td>
<td>:0</td>
</tr>
<tr>
<td>150000 - 160000</td>
<td>:0</td>
</tr>
<tr>
<td>50000 - 150000</td>
<td>:0</td>
</tr>
<tr>
<td>40000 - 50000</td>
<td>:0</td>
</tr>
<tr>
<td>30000 - 40000</td>
<td>:0</td>
</tr>
<tr>
<td>20000 - 30000</td>
<td>:0</td>
</tr>
<tr>
<td>10000 - 20000</td>
<td>:0</td>
</tr>
<tr>
<td>1000 - 10000</td>
<td>:0</td>
</tr>
<tr>
<td>0 - 1000</td>
<td>:22139</td>
</tr>
<tr>
<td>Flow Operation : Deletion</td>
<td></td>
</tr>
<tr>
<td>300000+</td>
<td>:0</td>
</tr>
<tr>
<td>250000 - 300000</td>
<td>:0</td>
</tr>
<tr>
<td>200000 - 250000</td>
<td>:0</td>
</tr>
<tr>
<td>160000 - 200000</td>
<td>:0</td>
</tr>
<tr>
<td>150000 - 160000</td>
<td>:0</td>
</tr>
<tr>
<td>50000 - 150000</td>
<td>:0</td>
</tr>
<tr>
<td>40000 - 50000</td>
<td>:0</td>
</tr>
<tr>
<td>30000 - 40000</td>
<td>:0</td>
</tr>
<tr>
<td>20000 - 30000</td>
<td>:0</td>
</tr>
<tr>
<td>10000 - 20000</td>
<td>:0</td>
</tr>
<tr>
<td>1000 - 10000</td>
<td>:0</td>
</tr>
<tr>
<td>0 - 1000</td>
<td>:22139</td>
</tr>
<tr>
<td>Flow Lifetime Distribution (sec):</td>
<td>TCP</td>
</tr>
<tr>
<td>240+</td>
<td>:0</td>
</tr>
<tr>
<td>120 - 240</td>
<td>:0</td>
</tr>
<tr>
<td>60 - 120</td>
<td>:0</td>
</tr>
<tr>
<td>30 - 60</td>
<td>:0</td>
</tr>
<tr>
<td>15 - 30</td>
<td>:0</td>
</tr>
<tr>
<td>5 - 15</td>
<td>:0</td>
</tr>
<tr>
<td>1 - 5</td>
<td>:0</td>
</tr>
<tr>
<td>0 - 1</td>
<td>:0</td>
</tr>
</tbody>
</table>
show services stateful-firewall flows

Syntax
show services stateful-firewall flows
<brief | extensive | summary | terse>
<application-protocol protocol>
<count>
<destination-port destination-port>
<destination-prefix destination-prefix>
<interface interface-name>
<limit number>
<protocol protocol>
<service-set service-set>
<source-port source-port>
<source-prefix source-prefix>

Release Information
Command introduced before Junos OS Release 7.4.
pgcp option introduced in Junos OS Release 8.4.
application-protocol option introduced in Junos OS Release 10.4.

Description
Display stateful firewall flow table entries. When the interface is used for softwire processing, the type of softwire concentrator (DS-LITE or 6rd) is shown, and frame counts are provided.

Options
none—Display standard information about all stateful firewall flows.

brief | extensive | summary | terse—(Optional) Display the specified level of output.

application-protocol application-protocol—(Optional) Display information about one of the following application-level gateway (ALG) protocol types:

- bootp—Bootstrap protocol
- dce-rpc—Distributed Computing Environment (DCE) remote procedure call (RPC) protocol
- dce-rpc-portmap—Distributed Computing Environment (DCE) remote procedure call (RPC) portmap protocol
- dns—Domain Name Service protocol
- exec—Remote execution protocol
- ftp—File Transfer Protocol
- h323—H.323 protocol

NOTE: Use this option to select Microsoft Remote Procedure Call (MSRPC).
• **icmp**—Internet Control Message Protocol
• **iiop**—Internet Inter-ORB Protocol
• **ip**—Internet protocol
• **netbios**—NetBIOS protocol
• **netshow**—Netshow protocol
• **pptp**—Point-to-Point Tunneling Protocol
• **realaudio**—RealAudio protocol
• **rpc**—Remote Procedure Call protocol

NOTE: Use this option to select Sun Microsystems Remote Procedure Call protocol (SunRPC).

• **rpc-portmap**—Remote Procedure Call portmap protocol
• **rtsp**—Real-Time Streaming Protocol
• **sip**—Session Initiation Protocol
• **snmp**—Simple Network Management Protocol
• **talk**—Talk protocol
• **tftp**—Trivial File Transfer Protocol
• **traceroute**—Traceroute
• **winframe**—WinFrame

count—(Optional) Display a count of the matching entries.

destination-port destination-port—(Optional) Display information for a particular destination port. The range of values is from 0 to 65535.

destination-prefix destination-prefix—(Optional) Display information for a particular destination prefix.

interface interface-name—(Optional) Display information about a particular interface. On M Series and T Series routers, **interface-name** can be **ms-fpc/pic/port** or **rsnumber**.

limit number—(Optional) Maximum number of entries to display.

protocol protocol—(Optional) Display information about one of the following IP types:

• **number**—Numeric protocol value from 0 to 255
• **ah**—IPsec Authentication Header protocol
• **egp**—An exterior gateway protocol
- esp—IPsec Encapsulating Security Payload protocol
- gre—A generic routing encapsulation protocol
- icmp—Internet Control Message Protocol
- igmp—Internet Group Management Protocol
- ipip—IP-within-IP Encapsulation Protocol
- ospf—Open Shortest Path First protocol
- pim—Protocol Independent Multicast protocol
- rsvp—Resource Reservation Protocol
- sctp—Stream Control Protocol
- tcp—Transmission Control Protocol
- udp—User Datagram Protocol

service-set service-set—(Optional) Display information for a particular service set.

source-port source-port—(Optional) Display information for a particular source port.
The range of values is from 0 to 65535.

source-prefix source-prefix—(Optional) Display information for a particular source prefix.

Required Privilege Level

view

Related Documentation

- clear services stateful-firewall flows on page 1418

List of Sample Output

- show services stateful-firewall flows on page 1740
- show services stateful-firewall flows (For Softwire Flows) on page 1740
- show services stateful-firewall flows brief on page 1741
- show services stateful-firewall flows extensive on page 1741
- show services stateful-firewall flows count on page 1741
- show services stateful-firewall flows destination port on page 1742
- show services stateful-firewall flows source port on page 1742
- show services stateful-firewall flows (Twice NAT) on page 1742

Output Fields

Table 102 on page 1739 lists the output fields for the **show services stateful-firewall flows** command. Output fields are listed in the approximate order in which they appear.

Table 102: show services stateful-firewall flows Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the interface.</td>
</tr>
</tbody>
</table>
Table 102: show services stateful-firewall flows Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service set</td>
<td>Name of a service set. Individual empty service sets are not displayed. If no service set has any flows, a flow table header is displayed for each service set.</td>
</tr>
<tr>
<td>Flow Count</td>
<td>Number of flows in a session.</td>
</tr>
<tr>
<td>Flow or Flow Prot</td>
<td>Protocol used for this flow.</td>
</tr>
<tr>
<td>Source</td>
<td>Source prefix of the flow in the format source-prefix:port. For ICMP flows, port information is not displayed.</td>
</tr>
<tr>
<td>Dest</td>
<td>Destination prefix of the flow. For ICMP flows, port information is not displayed.</td>
</tr>
<tr>
<td>State</td>
<td>Status of the flow:</td>
</tr>
<tr>
<td></td>
<td>• Drop—Drop all packets in the flow without response.</td>
</tr>
<tr>
<td></td>
<td>• Forward—Forward the packet in the flow without looking at it.</td>
</tr>
<tr>
<td></td>
<td>• Reject—Drop all packets in the flow with response.</td>
</tr>
<tr>
<td></td>
<td>• Watch—Inspect packets in the flow.</td>
</tr>
<tr>
<td>Dir</td>
<td>Direction of the flow: input (I) or output (O). For any configured stateful firewall rule, the reverse flow is dynamically created, so you will see an input and an output flow.</td>
</tr>
<tr>
<td>Frm count</td>
<td>Number of frames in the flow. If this value is zero, then that flow does not yet exist.</td>
</tr>
</tbody>
</table>

Sample Output

show services stateful-firewall flows

On the MX Series router, both input (I) and output (O) flow entries appear, even if traffic only flows in one direction. This applies to both NAT and non-NAT cases.

```
user@host> show services stateful-firewall flows
Interface: ms-1/3/0, Service set: green

<table>
<thead>
<tr>
<th>Flow</th>
<th>Prot</th>
<th>Source</th>
<th>Dest</th>
<th>State</th>
<th>Dir</th>
<th>Frm count</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>10.58.255.178:23</td>
<td>-&gt; 10.59.16.100:4000</td>
<td>Forward</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td>10.58.255.50:33005</td>
<td>-&gt; 10.58.255.178:23</td>
<td>Forward</td>
<td>I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Source NAT</td>
<td>10.58.255.50:33005</td>
<td>-&gt; 10.59.16.100:4000</td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destin NAT</td>
<td>10.58.255.178:23</td>
<td>-&gt; 0.0.0.0:4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

show services stateful-firewall flows (For Softwire Flows)

When a service set includes softwire processing, the following output format is used for the softwire flows:

```
user@host> show services stateful-firewall flows
Interface: sp-0/1/0, Service set: dslite-svc-set2

<table>
<thead>
<tr>
<th>Flow</th>
<th>State</th>
<th>Dir</th>
<th>Frm count</th>
</tr>
</thead>
</table>
```
show services stateful-firewall flows brief

The output for the `show services stateful-firewall flows brief` command is identical to that for the `show services stateful-firewall flows` command. For sample output, see `show services stateful-firewall flows`.

show services stateful-firewall flows extensive

```
user@host> show services stateful-firewall flows extensive

Interface: ms-0/3/0, Service set: ss_nat

Flow count
TCP 16.1.0.1:2330 -> 16.49.0.1:21  Forward  I  8
  NAT source  16.1.0.1:2330 -> 16.41.0.1:2330
  NAT dest    16.49.0.1:21 -> 16.99.0.1:21
  Byte count: 455, TCP established, TCP window size: 57344
  TCP acknowledge: 3251737524, TCP tickle enabled, tcp_tickle: 0
  Flow role: Master, Timeout: 720
TCP 16.99.0.1:21 -> 16.41.0.1:2330  Forward  O  5
  NAT source  16.99.0.1:21 -> 16.49.0.1:21
  NAT dest    16.41.0.1:2330 -> 16.1.0.1:2330
  Byte count: 480, TCP established, TCP window size: 57344
  TCP acknowledge: 463128048, TCP tickle enabled, tcp_tickle: 0
  Flow role: Responder, Timeout: 720
```

show services stateful-firewall flows count

```
user@host> show services stateful-firewall flows count

Interface          Service set       Flow Count
ms-1/3/0           green             2
```
show services stateful-firewall flows destination port

```
user@host> show services stateful-firewall flows destination-port 21
```

<table>
<thead>
<tr>
<th>Interface: ms-0/3/0, Service set: svc_set_trust</th>
<th>State</th>
<th>Dir</th>
<th>Frm count</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>Watch</td>
<td>O</td>
<td>0</td>
</tr>
<tr>
<td>TCP</td>
<td>Watch</td>
<td>O</td>
<td>0</td>
</tr>
</tbody>
</table>

show services stateful-firewall flows source port

```
user@host> show services stateful-firewall flows source-port 2143
```

<table>
<thead>
<tr>
<th>Interface: ms-0/3/0, Service set: svc_set_trust</th>
<th>State</th>
<th>Dir</th>
<th>Frm count</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>Watch</td>
<td>O</td>
<td>0</td>
</tr>
<tr>
<td>TCP</td>
<td>Watch</td>
<td>O</td>
<td>0</td>
</tr>
</tbody>
</table>

show services stateful-firewall flows (Twice NAT)

```
user@host> show services stateful-firewall flows
```

<table>
<thead>
<tr>
<th>Flow</th>
<th>State</th>
<th>Dir</th>
<th>Frm count</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP</td>
<td>Watch</td>
<td>I</td>
<td>20</td>
</tr>
<tr>
<td>NAT source</td>
<td>40.0.0.8:23439</td>
<td>-></td>
<td>80.0.0.1:16485</td>
</tr>
<tr>
<td>NAT dest</td>
<td>80.0.0.1:16485</td>
<td>-></td>
<td>192.16.1.10:22415</td>
</tr>
<tr>
<td>UDP</td>
<td>Watch</td>
<td>O</td>
<td>20</td>
</tr>
<tr>
<td>NAT source</td>
<td>192.16.1.10:22415</td>
<td>-></td>
<td>172.16.1.10:1028</td>
</tr>
<tr>
<td>NAT dest</td>
<td>172.16.1.10:1028</td>
<td>-></td>
<td>40.0.0.8:23439</td>
</tr>
</tbody>
</table>
show services stateful-firewall sip-call

Syntax

show services stateful-firewall sip-call
 <brief | extensive | terse>
 <application-protocol protocol>
 <destination-port destination-port>
 <destination-prefix destination-prefix>
 <interface interface-name>
 <limit number>
 <protocol protocol>
 <service-set service-set>
 <source-port source-port>
 <source-prefix source-prefix>

Release Information

Command introduced in Junos OS Release 7.4.

Description

Display stateful firewall Session Initiation Protocol (SIP) call information.

Options

count—(Optional) Display a count of the matching entries.

 brief—(Optional) Display brief SIP call information.

 extensive—(Optional) Display detailed SIP call information.

 terse—(Optional) Display terse SIP call information.

 application-protocol—(Optional) Display information about one of the following application protocols:

 • bootp—(SIP only) Bootstrap protocol
 • dce-rpc—(SIP only) Distributed Computing Environment-Remote Procedure Call protocols
 • dce-rpc-portmap—(SIP only) Distributed Computing Environment-Remote Procedure Call protocols portmap service
 • dns—(SIP only) Domain Name System protocol
 • exec—(SIP only) Exec
 • ftp—(SIP only) File Transfer Protocol
 • h323—H.323 standards
 • icmp—Internet Control Message Protocol
 • liop—Internet Inter-ORB Protocol
 • login—Login
 • netbios—NetBIOS
 • netshow—NetShow
- **realaudio**—RealAudio
- **rpc**—Remote Procedure Call protocol
- **rpc-portmap**—Remote Procedure Call protocol portmap service
- **rtsp**—Real-Time Streaming Protocol
- **shell**—Shell
- **sip**—Session Initiation Protocol
- **snmp**—Simple Network Management Protocol
- **sqlnet**—SQLNet
- **tftp**—Trivial File Transfer Protocol
- **traceroute**—Traceroute
- **winframe**—WinFrame

destination-port *(destination-port)*—(Optional) Display information for a particular destination port. The range of values is from 0 to 65535.

destination-prefix *(destination-prefix)*—(Optional) Display information for a particular destination prefix.

interface *(interface-name)*—(Optional) Display information about a particular adaptive services interface. On M Series and T Series routers, *(interface-name)* can be *sp-fpc/pic/port* or *rspanumber*.

limit *(number)*—(Optional) Maximum number of entries to display.

protocol—(Optional) Display information about one of the following IP types:

- **ah**—IPsec Authentication Header protocol
- **egp**—An exterior gateway protocol
- **esp**—IPsec Encapsulating Security Payload protocol
- **gre**—A generic routing encapsulation protocol
- **icmp**—Internet Control Message Protocol
- **igmp**—Internet Group Management Protocol
- **ipip**—IP-within-IP Encapsulation Protocol
- **ipv6**—IPv6 within IP
- **ospf**—Open Shortest Path First protocol
- **pim**—Protocol Independent Multicast protocol
- **rsvp**—Resource Reservation Protocol
- **sctp**—Stream Control Protocol
tcp—Transmission Control Protocol
 udp—User Datagram Protocol

service-set service-set—(Optional) Display information for a particular service set.

source-port source-port—(Optional) Display information for a particular source port.
 The range of values is from 0 to 65535.

source-prefix source-prefix—(Optional) Display information for a particular source prefix.

Required Privilege

Level

view

Related Documentation

- clear services stateful-firewall sip-call on page 1421

List of Sample Output

show services stateful-firewall sip-call extensive on page 1746

Output Fields

Table 103 on page 1745 lists the output fields for the show services stateful-firewall sip-call command. Output fields are listed in the approximate order in which they appear.

Table 103: show services stateful-firewall sip-call Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an adaptive services interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of a service set.</td>
</tr>
<tr>
<td>From</td>
<td>Initiator address.</td>
</tr>
<tr>
<td>To</td>
<td>Responder address.</td>
</tr>
<tr>
<td>Call ID</td>
<td>SIP call identification string.</td>
</tr>
<tr>
<td>Number of initiator flows</td>
<td>Number of control, contact, or media initiator flows.</td>
</tr>
<tr>
<td>Number of responder flows</td>
<td>Number of control, contact, or media responder flows.</td>
</tr>
<tr>
<td>protocol</td>
<td>Protocol used for this flow.</td>
</tr>
<tr>
<td>source-prefix</td>
<td>Source prefix of the flow in the format source-prefix:port</td>
</tr>
<tr>
<td>destination-prefix</td>
<td>Destination prefix of the flow.</td>
</tr>
</tbody>
</table>
Table 103: show services stateful-firewall sip-call Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>Status of the flow:</td>
</tr>
<tr>
<td></td>
<td>• Drop—Drop all packets in the flow without a response.</td>
</tr>
<tr>
<td></td>
<td>• Forward—Forward the packet in the flow without examining it.</td>
</tr>
<tr>
<td></td>
<td>• Reject—Drop all packets in the flow with a response.</td>
</tr>
<tr>
<td></td>
<td>• Unknown—Unknown status.</td>
</tr>
<tr>
<td></td>
<td>• Watch—Inspect packets in the flow.</td>
</tr>
<tr>
<td>direction</td>
<td>Direction of the flow: input (I), output (O), or unknown (U).</td>
</tr>
<tr>
<td>frame-count</td>
<td>Number of frames in the flow.</td>
</tr>
<tr>
<td>Byte count</td>
<td>Number of bytes forwarded in the flow.</td>
</tr>
<tr>
<td>Flow role</td>
<td>Role of the flow that is under evaluation: Initiator, Master, Responder, or Unknown.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Lifetime of the flow, in seconds.</td>
</tr>
</tbody>
</table>

Sample Output

```plaintext
show services stateful-firewall sip-call extensive

user@host> show services stateful-firewall sip-call extensive

Interface: sp-0/3/0, Service set: test_sip_777

From: : 6507771234@10.200.100.1:0;000ff73ac89900021bb231dc-3ef68435
To: : 4085512340@10.200.100.1:0;0011bb65c2a30007777b0f0c-5748b749
Call ID: : 000ff73a-c8990004-0741adac-3e027c7e@10.20.70.2
Number of control initiator flows: : 1, Number of control responder flows: : 1
UDP         10.20.70.2:50354 ->   10.200.100.1:5060  Watch    I
    2
    Byte count: 1112
    Flow role: Master, Timeout: 30
    UDP         10.200.100.1:5060  ->  10.20.170.111:50354 Watch    O
    0
    Byte count: 0
    Flow role: Responder, Timeout: 30
    UDP         0.0.0.0:0     ->  10.20.170.111:5060  Watch    O
    7
    Byte count: 2749
    Flow role: Responder, Timeout: 30
Number of contact initiator flows: 1, Number of contact responder flows: 1
UDP         0.0.0.0:0     ->  10.20.140.11:5060  Watch    I
    1
    Byte count: 409
    Flow role: Master, Timeout: 30
    UDP         10.20.140.11:31864 ->  10.20.170.111:18808 Forward  O
    622
    Byte count: 124400
```
<table>
<thead>
<tr>
<th>Flow role: Master, Timeout: 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP 0.0.0.0:0 -> 10.20.170.111:18809 Forward O 0 Byte count: 0</td>
</tr>
<tr>
<td>Flow role: Initiator, Timeout: 30</td>
</tr>
<tr>
<td>Number of media initiator flows: 4, Number of media responder flows: 0</td>
</tr>
<tr>
<td>UDP 10.20.70.2:18808 -> 10.20.140.11:31864 Forward I 628 Byte count: 125600</td>
</tr>
<tr>
<td>Flow role: Initiator, Timeout: 30</td>
</tr>
<tr>
<td>UDP 0.0.0.0:0 -> 10.20.140.11:31865 Forward I 0 Byte count: 0</td>
</tr>
<tr>
<td>Flow role: Initiator, Timeout: 30</td>
</tr>
<tr>
<td>0 0.0.0.0:0 -> 0.0.0.0:0 Unknown U 0 Byte count: 0</td>
</tr>
<tr>
<td>Flow role: Unknown, Timeout: 0</td>
</tr>
<tr>
<td>0 0.0.0.0:0 -> 0.0.0.0:0 Unknown U</td>
</tr>
</tbody>
</table>

Interface: sp-0/3/0, Service set: test_sip_888
show services stateful-firewall sip-register

Syntax

show services stateful-firewall sip-register
 <brief | extensive | terse>
 <application-protocol protocol>
 <destination-port destination-port>
 <destination-prefix destination-prefix>
 <interface interface-name>
 <limit number>
 <protocol protocol>
 <service-set service-set>
 <source-port source-port>
 <source-prefix source-prefix>

Release Information

Command introduced in Junos OS Release 7.4.

Description

Display stateful firewall Session Initiation Protocol (SIP) register information.

Options

 count—(Optional) Display a count of the matching entries.

 brief—(Optional) Display brief SIP register information.

 extensive—(Optional) Display detailed SIP register information.

 terse—(Optional) Display terse SIP register information.

 application-protocol—(Optional) Display information about one of the following application protocols:

 - bootp—(SIP only) Bootstrap protocol
 - dce-rpc—(SIP only) Distributed Computing Environment-Remote Procedure Call protocols
 - dce-rpc-portmap—(SIP only) Distributed Computing Environment-Remote Procedure Call protocols portmap service
 - dns—(SIP only) Domain Name System protocol
 - exec—(SIP only) Exec
 - ftp—(SIP only) File Transfer Protocol
 - h323—H.323 standards
 - icmp—Internet Control Message Protocol
 - liop—Internet Inter-ORB Protocol
 - login—Login
 - netbios—NetBIOS
 - netshow—NetShow
- realaudio—RealAudio
- rpc—Remote Procedure Call protocol
- rpc-portmap—Remote Procedure Call protocol portmap service
- rtsp—Real-Time Streaming Protocol
- shell—Shell
- sip—Session Initiation Protocol
- snmp—Simple Network Management Protocol
- sqlnet—SQLNet
- tftp—Trivial File Transfer Protocol
- traceroute—Traceroute
- winframe—WinFrame

destination-port destination-port—(Optional) Display information for a particular destination port.

destination-prefix destination-prefix—(Optional) Display information for a particular destination prefix. The range of values is from 0 to 65535.

interface interface-name—(Optional) Display information about a particular interface. On M Series and T Series routers, the interface-name can be sp-fpc/pic/port or rspnumber.

limit number—(Optional) Maximum number of entries to display.

protocol—(Optional) Display information about one of the following IP types:

- ah—IPsec Authentication Header protocol
- egp—An exterior gateway protocol
- esp—IPsec Encapsulating Security Payload protocol
- gre—A generic routing encapsulation protocol
- icmp—Internet Control Message Protocol
- igmp—Internet Group Management Protocol
- ipip—IP-within-IP Encapsulation Protocol
- ipv6—IPv6 within IP
- ospf—Open Shortest Path First protocol
- pim—Protocol Independent Multicast protocol
- rsvp—Resource Reservation Protocol
- sctp—Stream Control Protocol
- **tcp**—Transmission Control Protocol
- **udp**—User Datagram Protocol

service-set service-set—(Optional) Display information for a particular service set.

source-port source-port—(Optional) Display information for a particular source port.
- The range of values is from 0 to 65535.

source-prefix source-prefix—(Optional) Display information for a particular source prefix.

Required Privilege Level
- view

Related Documentation
- [clear services stateful-firewall sip-register on page 1424](#)

List of Sample Output
- [show services stateful-firewall sip-register extensive on page 1751](#)

Output Fields
- Table 104 on page 1750 lists the output fields for the **show services stateful-firewall sip-register** command. Output fields are listed in the approximate order in which they appear.

Table 104: show services stateful-firewall sip-register Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an adaptive services interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of a service set.</td>
</tr>
<tr>
<td>SIP Register</td>
<td>Register information header.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol used for this flow.</td>
</tr>
<tr>
<td>Registered IP</td>
<td>Register IP address.</td>
</tr>
<tr>
<td>Port</td>
<td>Register port number.</td>
</tr>
<tr>
<td>Expiration timeout</td>
<td>Configured lifetime, in seconds.</td>
</tr>
<tr>
<td>Timeout remaining</td>
<td>Lifetime remaining, in seconds.</td>
</tr>
<tr>
<td>From</td>
<td>Initiator address.</td>
</tr>
<tr>
<td>To</td>
<td>Responder address.</td>
</tr>
<tr>
<td>Call ID</td>
<td>SIP call identification string.</td>
</tr>
</tbody>
</table>
Sample Output

show services stateful-firewall sip-register extensive

user@host> show services stateful-firewall sip-register extensive
Interface: sp-0/3/0, Service set: test_sip_777

Expiration timeout: 36000, Timeout remaining: 35544
From: : 6507771234@10.200.100.1:0;
To: : 6507771234@10.200.100.1:0;
Call ID: : 000ff73a-c8990002-23b1d942-2balf91f010.20.70.2

Interface: sp-0/3/0, Service set: test_sip_888

Expiration timeout: 36000, Timeout remaining: 35549
From: : 8881234@10.200.100.1:0;
To: : 8881234@10.200.100.1:0;
Call ID: : 00112096-81fc0002-23b38905-7cb41f62@10.20.71.2
show services stateful-firewall statistics

Syntax

```
show services stateful-firewall statistics
   <application-protocol protocol>
   <brief | detail | extensive | summary>
   <interface interface-name>
   <service-set service-set>
```

Release Information
Command introduced before Junos OS Release 7.4.

Description
Display stateful firewall statistics.

Options

- **none**—Display standard information about all stateful firewall statistics.
- **brief | detail | extensive | summary**—(Optional) Display the specified level of output.
- **interface interface-name**—(Optional) Display information about a particular interface. On M Series and T Series routers, the `interface-name` can be `ms-fpc/pic/port` or `rspnumber`.
- **service-set service-set**—(Optional) Display information about a particular service set.

Required Privilege

view

Related Documentation
- clear services stateful-firewall statistics on page 1427

List of Sample Output
show services stateful-firewall statistics extensive on page 1759

Output Fields

Table 105 on page 1752 lists the output fields for the `show services stateful-firewall statistics` command. Output fields are listed in the approximate order in which they appear.

Table 105: show services stateful-firewall statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an adaptive services interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of a service set.</td>
</tr>
<tr>
<td>New flows</td>
<td>Rule match counters for new flows:</td>
</tr>
<tr>
<td></td>
<td>• Rule Accepts—New flows accepted.</td>
</tr>
<tr>
<td></td>
<td>• Rule Discards—New flows discarded.</td>
</tr>
<tr>
<td></td>
<td>• Rule Rejects—New flows rejected.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Existing flow types packet counters</td>
<td>Rule match counters for existing flows:</td>
</tr>
<tr>
<td></td>
<td>• Accepts—Match existing forward or watch flow.</td>
</tr>
<tr>
<td></td>
<td>• Drop—Match existing discard flow.</td>
</tr>
<tr>
<td></td>
<td>• Rejects—Match existing reject flow.</td>
</tr>
<tr>
<td>Hairpinning Counters</td>
<td>Hairpinning counters:</td>
</tr>
<tr>
<td></td>
<td>• Slow Path Hairpinned Packets—Slow path packets that were hairpinned back to the internal network.</td>
</tr>
<tr>
<td></td>
<td>• Fast Path Hairpinned Packets—Fast path packets that were hairpinned back to the internal network.</td>
</tr>
<tr>
<td>Drops</td>
<td>Drop counters:</td>
</tr>
<tr>
<td></td>
<td>• IP option—Packets dropped in IP options processing.</td>
</tr>
<tr>
<td></td>
<td>• TCP SYN defense—Packets dropped by SYN defender.</td>
</tr>
<tr>
<td></td>
<td>• NAT ports exhausted—Hide mode. The router has no available Network Address Translation (NAT) ports for a given address or pool.</td>
</tr>
<tr>
<td></td>
<td>• Sessions dropped due to subscriber flow limit—Sessions dropped because the subscriber’s flow limit was exceeded.</td>
</tr>
<tr>
<td>Errors</td>
<td>Total errors, categorized by protocol:</td>
</tr>
<tr>
<td></td>
<td>• IP—Total IP version 4 errors.</td>
</tr>
<tr>
<td></td>
<td>• TCP—Total Transmission Control Protocol (TCP) errors.</td>
</tr>
<tr>
<td></td>
<td>• UDP—Total User Datagram Protocol (UDP) errors.</td>
</tr>
<tr>
<td></td>
<td>• ICMP—Total Internet Control Message Protocol (ICMP) errors.</td>
</tr>
<tr>
<td></td>
<td>• Non-IP packets—Total non-IPv4 errors.</td>
</tr>
</tbody>
</table>
| | • ALG—Total application-level gateway (ALG) errors
Table 105: show services stateful-firewall statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 errors:</td>
<td></td>
</tr>
<tr>
<td>IP packet length inconsistencies—IP packet length does not match the Layer 2 reported length.</td>
<td></td>
</tr>
<tr>
<td>Minimum IP header length check failures—Minimum IP header length is 20 bytes. The received packet contains less than 20 bytes.</td>
<td></td>
</tr>
<tr>
<td>Reassembled packet exceeds maximum IP length—After fragment reassembly, the reassembled IP packet length exceeds 65,535.</td>
<td></td>
</tr>
<tr>
<td>Illegal source address 0—Source address is not a valid address. Invalid addresses are, loopback, broadcast, multicast, and reserved addresses. Source address 0, however, is allowed to support BOOTP and the destination address 0xffffffff.</td>
<td></td>
</tr>
<tr>
<td>Illegal destination address 0—Destination address is not a valid address. The address is reserved.</td>
<td></td>
</tr>
<tr>
<td>TTL zero errors—Received packet had a time-to-live (TTL) value of 0.</td>
<td></td>
</tr>
<tr>
<td>Illegal IP protocol number (0 or 255)—IP protocol is 0 or 255.</td>
<td></td>
</tr>
<tr>
<td>Land attack—IP source address is the same as the destination address.</td>
<td></td>
</tr>
<tr>
<td>Non-IPv4 packets—Packet was not IPv4. (Only IPv4 is supported.)</td>
<td></td>
</tr>
<tr>
<td>Bad checksum—Packet had an invalid IP checksum.</td>
<td></td>
</tr>
<tr>
<td>Illegal IP fragment length—Illegal fragment length. All fragments (other than the last fragment) must have a length that is a multiple of 8 bytes.</td>
<td></td>
</tr>
<tr>
<td>IP fragment overlap—Fragments have overlapping fragment offsets.</td>
<td></td>
</tr>
<tr>
<td>IP fragment reassembly timeout—Some of the fragments for an IP packet were not received in time, and the reassembly handler dropped partial fragments.</td>
<td></td>
</tr>
<tr>
<td>IP fragment limit exceeded: 0—Fragments that exceeded the limit.</td>
<td></td>
</tr>
<tr>
<td>Unknown: 0—Unknown fragments.</td>
<td></td>
</tr>
</tbody>
</table>
Table 105: show services stateful-firewall statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP Errors</td>
<td></td>
</tr>
</tbody>
</table>
TCP protocol errors:

- **TCP header length inconsistencies**—Minimum TCP header length is 20 bytes, and the IP packet received does not contain at least 20 bytes.
- **Source or destination port number is zero**—TCP source or destination port is zero.
- **Illegal sequence number and flags combinations**—Dropped because of TCP errors, such as an illegal sequence number, which causes an illogical combination of flags to be set.
- **SYN attack (multiple SYN messages seen for the same flow)**—Multiple SYN packets received for the same flow are treated as a SYN attack. The packets might be retransmitted SYN packets and therefore valid, but a large number is cause for concern.
- **First packet not a SYN message**—First packets for a connection are not SYN packets. These packets might originate from previous connections or from someone performing an ACK/FIN scan.
- **TCP port scan (TCP handshake, RST seen from server for SYN)**—In the case of a SYN defender, if an RST (reset) packet is received instead of a SYN/ACK message, someone is probably trying to scan the server. This behavior can result in false alarms if the RST packet is not combined with an intrusion detection service (IDS).
- **Bad SYN cookie response**—SYN cookie generates a SYN/ACK message for all incoming SYN packets. If the ACK received for the SYN/ACK message does not match, this counter is incremented.
- **TCP reconstructor sequence number error**—This counter is incremented in the following cases:
 - The TCP seqno is 0 and all the TCP flags are also 0.
 - The TCP seqno is 0 and FIN/PSH/URG TCP flags are set.
- **TCP reconstructor retransmissions**—This counter is incremented for the retransmitted packets during connection 3-way handshake.
- **TCP partially opened connection timeout (SYN)**—This counter is incremented when the SYN Defender is enabled and the 3-way handshake is not completed within the SYN DEFENDER TIMEOUT. The connection will be closed and resources will be released by sending RST to the responder.
- **TCP partially opened connection timeout (SYN-ACK)**—This counter is incremented when the SYN Defender is enabled and the 3-way handshake is not completed within the SYN DEFENDER TIMEOUT. The connection will be closed and resources will be released by sending RST to the responder.
- **TCP partially closed connection reuse**—Not supported.
- **TCP 3-way error - client sent SYN+ACK**—A SYN/ACK should be sent by the server on receiving a SYN. This counter is incremented when the first message received from the initiator is SYN+ACK.
- **TCP 3-way error - server sent ACK**—ACK should be sent by the client on receiving a SYN/ACK from the server. This counter is incremented when the ACK is received from the Server instead of from the Client.
- **TCP 3-way error - SYN seq number retransmission mismatch**—This counter is incremented when the SYN is received again with a different sequence number from the first SYN sequence number.
- **TCP 3-way error - RST seq number mismatch**—A reset could be received from either side. The server could send a RST on receiving a SYN or the client could send a RST on receiving SYN/ACK. This counter is incremented when the
Table 105: show services stateful-firewall statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RST</td>
<td>is received either from the client or server with a non-matching sequence number.</td>
</tr>
<tr>
<td>• TCP 3-way error - FIN received</td>
<td>This counter is incremented when the FIN is received during the 3-way handshake.</td>
</tr>
<tr>
<td>• TCP 3-way error - invalid flags (PSH, URG, ECE, CWR)</td>
<td>This counter is incremented when any of the PSH, URG, ECE, or CWR flags were received during the 3-way handshake.</td>
</tr>
<tr>
<td>• TCP 3-way error - SYN rcvd but no client flows</td>
<td>This counter is incremented when SYN is received but not from the connection initiator. The counter is not incremented in the case of simultaneous open, when the SYN is received in both the directions.</td>
</tr>
<tr>
<td>• TCP 3-way error - first packet SYN+ACK</td>
<td>The first packet received was SYN+ACK instead of SYN.</td>
</tr>
<tr>
<td>• TCP 3-way error - first packet FIN+ACK</td>
<td>The first packet received was FIN+ACK instead of SYN.</td>
</tr>
<tr>
<td>• TCP 3-way error - first packet FIN</td>
<td>The first packet received was FIN instead of SYN.</td>
</tr>
<tr>
<td>• TCP 3-way error - first packet RST</td>
<td>The first packet received was RST instead of SYN.</td>
</tr>
<tr>
<td>• TCP 3-way error - first packet ACK</td>
<td>The first packet received was ACK instead of SYN.</td>
</tr>
<tr>
<td>• TCP 3-way error - first packet invalid flags (PSH, URG, ECE, CWR)</td>
<td>The first packet received had invalid flags.</td>
</tr>
<tr>
<td>• TCP Close error - no final ACK</td>
<td>This counter is incremented when ACK is not received after the FINs are received from both directions.</td>
</tr>
<tr>
<td>• TCP Resumed Flow</td>
<td>Plain ACKs create flows if rule match permits, and these are classified as TCP Resumed Flows. This counter is incremented in the case of a TCP Resumed Flow.</td>
</tr>
</tbody>
</table>

UDP Errors

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP data length less than minimum UDP header length (8 bytes)</td>
<td>Minimum UDP header length is 8 bytes. The received IP packets contain less than 8 bytes.</td>
</tr>
<tr>
<td>Source or destination port is zero</td>
<td>UDP source or destination port is 0.</td>
</tr>
<tr>
<td>UDP port scan (ICMP error seen for UDP flow)</td>
<td>ICMP error is received for a UDP flow. This could be a genuine UDP flow, but it is counted as an error.</td>
</tr>
</tbody>
</table>

ICMP Errors

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP data length less than minimum ICMP header length (8 bytes)</td>
<td>ICMP header length is 8 bytes. This counter is incremented when received IP packets contain less than 8 bytes.</td>
</tr>
<tr>
<td>ICMP error length inconsistencies</td>
<td>Minimum length of an ICMP error packet is 48 bytes, and the maximum length is 576 bytes. This counter is incremented when the received ICMP error falls outside this range.</td>
</tr>
<tr>
<td>Duplicate ping sequence number</td>
<td>Received ping packet has a duplicate sequence number.</td>
</tr>
<tr>
<td>Mismatched ping sequence number</td>
<td>Received ping packet has a mismatched sequence number.</td>
</tr>
<tr>
<td>No matching flow</td>
<td>No matching existing flow was found for the ICMP error.</td>
</tr>
</tbody>
</table>
Table 105: show services stateful-firewall statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALG errors</td>
<td>Accumulation of all the application-level gateway protocol (ALG) drops counted separately in the ALG context:</td>
</tr>
<tr>
<td></td>
<td>• BOOTP—Bootstrap protocol errors</td>
</tr>
<tr>
<td></td>
<td>• DCE-RPC—Distributed Computing Environment-Remote Procedure Call protocols errors</td>
</tr>
<tr>
<td></td>
<td>• DCE-RPC portmap—Distributed Computing Environment-Remote Procedure Call protocols portmap service errors</td>
</tr>
<tr>
<td></td>
<td>• DNS—Domain Name System protocol errors</td>
</tr>
<tr>
<td></td>
<td>• Exec—Exec errors</td>
</tr>
<tr>
<td></td>
<td>• FTP—File Transfer Protocol errors</td>
</tr>
<tr>
<td></td>
<td>• H323—H.323 standards errors</td>
</tr>
<tr>
<td></td>
<td>• ICMP—Internet Control Message Protocol errors</td>
</tr>
<tr>
<td></td>
<td>• IIOP—Internet Inter-ORB Protocol errors</td>
</tr>
<tr>
<td></td>
<td>• Login—Login errors</td>
</tr>
<tr>
<td></td>
<td>• NetBIOS—NetBIOS errors</td>
</tr>
<tr>
<td></td>
<td>• Netshow—NetShow errors</td>
</tr>
<tr>
<td></td>
<td>• Real Audio—RealAudio errors</td>
</tr>
<tr>
<td></td>
<td>• RPC—Remote Procedure Call protocol errors</td>
</tr>
<tr>
<td></td>
<td>• RPC portmap—Remote Procedure Call protocol portmap service errors</td>
</tr>
<tr>
<td></td>
<td>• RTSP—Real-Time Streaming Protocol errors</td>
</tr>
<tr>
<td></td>
<td>• Shell—Shell errors</td>
</tr>
<tr>
<td></td>
<td>• SIP—Session Initiation Protocol errors</td>
</tr>
<tr>
<td></td>
<td>• SNMP—Simple Network Management Protocol errors</td>
</tr>
<tr>
<td></td>
<td>• SQLNet—SQLNet errors</td>
</tr>
<tr>
<td></td>
<td>• TFTP—Trivial File Transfer Protocol errors</td>
</tr>
<tr>
<td></td>
<td>• Traceroute—Traceroute errors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drop Flows</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Maximum Ingress Drop flows allowed—Maximum number of ingress flow drops allowed.</td>
</tr>
<tr>
<td></td>
<td>• Maximum Egress Drop flows allowed—Maximum number of egress flow drops allowed.</td>
</tr>
<tr>
<td></td>
<td>• Current Ingress Drop flows—Current number of ingress flow drops.</td>
</tr>
<tr>
<td></td>
<td>• Current Egress Drop flows—Current number of egress flow drops.</td>
</tr>
<tr>
<td></td>
<td>• Ingress Drop Flow limit drops count—Number of ingress flow drops due to maximum number of ingress flow drops being exceeded.</td>
</tr>
<tr>
<td></td>
<td>• Egress Drop Flow limit drops count—Number of egress flow drops due to maximum number of egress flow drops being exceeded.</td>
</tr>
</tbody>
</table>
Sample Output

show services stateful-firewall statistics extensive

```
user@host> show services stateful-firewall statistics extensive
Interface: ms-1/3/0
Service set: interface-svc-set
New flows:
  Rule Accepts: 907, Rule Discards: 0, Rule Rejects: 0
Existing flow types packet counters:
  Accepts: 3535, Drop: 0, Rejects: 0
Hairpinning counters:
  Slow Path Hairpinned Packets: 0, Fast Path Hairpinned Packets: 0
Drops:
  IP option: 0, TCP SYN defense: 0
  NAT ports exhausted: 0, Sessions dropped due to subscriber flow limit: 0
Errors:
  IP: 0, TCP: 0
  UDP: 0, ICMP: 0
  Non-IP packets: 0, ALG: 0
  IP errors:
    IP packet length inconsistencies: 0
    Minimum IP header length check failures: 0
    Reassembled packet exceeds maximum IP length: 0
    Illegal source address: 0
    Illegal destination address: 0
    TTL zero errors: 0, Illegal IP protocol number (0 or 255): 0
    Land attack: 0
    Non-IPv4 packets: 0, Bad checksum: 0
    Illegal IP fragment length: 0
    IP fragment overlap: 0
    IP fragment reassembly timeout: 0
    IP fragment limit exceeded: 0
    Unknown: 0
TCP errors:
  TCP header length inconsistencies: 0
  Source or destination port number is zero: 0
  Illegal sequence number and flags combination: 0
  SYN attack (multiple SYN messages seen for the same flow): 0
  First packet not a SYN message: 0
  TCP port scan (TCP handshake, RST seen from server for SYN): 0
  Bad SYN cookie response: 0
  TCP reconstructor sequence number error: 0
  TCP reconstructor retransmissions: 0
  TCP partially opened connection timeout (SYN): 0
  TCP partially opened connection timeout (SYN-ACK): 0
  TCP partially closed connection reuse: 0
  TCP 3-way error - client sent SYN+ACK: 0
  TCP 3-way error - server sent ACK: 0
  TCP 3-way error - SYN seq number retransmission mismatch: 0
  TCP 3-way error - RST seq number mismatch: 0
  TCP 3-way error - FIN received: 0
  TCP 3-way error - invalid flags (PSH, URG, ECE, CWR): 0
  TCP 3-way error - SYN received but no client flows: 0
  TCP 3-way error - first packet SYN+ACK: 0
  TCP 3-way error - first packet FIN+ACK: 0
  TCP 3-way error - first packet FIN: 0
  TCP 3-way error - first packet RST: 0
  TCP 3-way error - first packet ACK: 0
```
TCP 3-way error - first packet invalid flags (PSH, URG, ECE, CWR): 0
TCP Close error - no final ACK: 0
TCP Resumed Flow: 0

UDP errors:
- IP data length less than minimum UDP header length (8 bytes): 0
- Source or destination port is zero: 0
- UDP port scan (ICMP error seen for UDP flow): 0

ICMP errors:
- IP data length less than minimum ICMP header length (8 bytes): 0
- ICMP error length inconsistencies: 0
- Duplicate ping sequence number: 0
- Mismatched ping sequence number: 0
- No matching flow: 0

ALG errors:
- BOOTP: 0, DCE-RPC: 0, DCE-RPC portmap: 0
- DNS: 0, Exec: 0, FTP: 0
- H323: 0, ICMP: 0, IIOP: 0
- Login: 0, NetBIOS: 0, Netshow: 0
- Real Audio: 0, RPC: 0, RPC portmap: 0
- RTSP: 0, Shell: 0, SIP: 0
- SNMP: 0, SQLNet: 0, TFTP: 0
- Traceroute: 0

Drop Flows:
- Maximum Ingress Drop flows allowed: 20
- Maximum Egress Drop flows allowed: 20
- Current Ingress Drop flows: 0
- Current Egress Drop flows: 0
- Ingress Drop Flow limit drops count: 0
- Egress Drop Flow limit drops count: 0

If max-drop-flows is not configured, the following is shown
Drop Flows:
- Maximum Ingress Drop flows allowed: Default
- Maximum Egress Drop flows allowed: Default
show services stateful-firewall statistics application-protocol sip

Syntax
show services stateful-firewall application-protocol sip

Release Information
Command introduced in Junos OS Release 7.4.

Description
Display stateful firewall Session Initiation Protocol (SIP) statistics.

Options
This command has no options.

Required Privilege Level
view

List of Sample Output
show services stateful-firewall statistics application-protocol-sip on page 1762

Output Fields
Table 106 on page 1761 lists the output fields for the show services stateful-firewall statistics application-protocol-sip command. Output fields are listed in the approximate order in which they appear.

Table 106: show services stateful-firewall statistics application-protocol-sip Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of an adaptive services interface.</td>
</tr>
<tr>
<td>Service set</td>
<td>Name of the service set flow.</td>
</tr>
<tr>
<td>ALG</td>
<td>Name of the application-layer gateway.</td>
</tr>
<tr>
<td>Active SIP call count</td>
<td>Number of active SIP calls.</td>
</tr>
<tr>
<td>Active SIP registration count</td>
<td>Number of active SIP registrations.</td>
</tr>
<tr>
<td>REGISTER</td>
<td>Number of new, invalid, and retransmitted register requests sent to the SIP registrar.</td>
</tr>
<tr>
<td>INVITE</td>
<td>Number of new, invalid, and retransmitted invite messages sent by user agent clients.</td>
</tr>
<tr>
<td>ReINVITE</td>
<td>Number of new, invalid, and retransmitted reinvite messages sent by user agent clients.</td>
</tr>
<tr>
<td>ACK</td>
<td>Number of new, invalid, and retransmitted ACK messages received (in response to a SIP Call Invite message).</td>
</tr>
<tr>
<td>BYE</td>
<td>Number of new, invalid, and retransmitted requests to terminate SIP dialogues.</td>
</tr>
<tr>
<td>CANCEL</td>
<td>Number of new, invalid, and retransmitted SIP request cancellations.</td>
</tr>
<tr>
<td>SUBSCRIBE</td>
<td>Number of new, invalid, and retransmitted SIP requests to subscribe for event notifications.</td>
</tr>
</tbody>
</table>
Table 106: show services stateful-firewall statistics application-protocol-sip Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTIFY</td>
<td>Number of new, invalid, and retransmitted event notifications in SIP dialogues.</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>Number of new, invalid, and retransmitted requests to query SIP capabilities.</td>
</tr>
<tr>
<td>INFO</td>
<td>Number of new, invalid, and retransmitted requests carrying application-level information.</td>
</tr>
<tr>
<td>UPDATE</td>
<td>Number of new, invalid, and retransmitted SIP dialogue updates.</td>
</tr>
<tr>
<td>REFER</td>
<td>Number of new, invalid, and retransmitted requests to the recipient to contact a third party.</td>
</tr>
<tr>
<td>Provisional responses</td>
<td>Number of new, invalid, and retransmitted responses from the user agent server to indicate the progress of a SIP transaction.</td>
</tr>
<tr>
<td>OK responses to INVITEs</td>
<td>OK responses sent from the user agent clients to user agent servers in response to Invite messages. The server can then return an ACK message.</td>
</tr>
<tr>
<td>OK responses to non-INVITEs</td>
<td>OK responses to SIP messages other than an Invite message.</td>
</tr>
<tr>
<td>Redirection responses</td>
<td>Responses from the user agent server to a user agent client requesting the client to contact a different SIP uniform resource identifier (URI).</td>
</tr>
<tr>
<td>Request failure responses</td>
<td>Responses that indicate a definite failure from a particular server. The client must not retry the same request without modification after receiving this response.</td>
</tr>
<tr>
<td>Server failure responses</td>
<td>Responses that indicate a server failure.</td>
</tr>
<tr>
<td>Global failure responses</td>
<td>Responses that indicate a server has definitive information about a particular user, not just the particular instance indicated in the Request URI.</td>
</tr>
<tr>
<td>Invalid responses</td>
<td>Responses that are invalid.</td>
</tr>
<tr>
<td>Response (all) retransmits</td>
<td>Retransmissions of all responses.</td>
</tr>
<tr>
<td>Parser</td>
<td>Syntax errors, content errors, and unknown methods counted by the message parser.</td>
</tr>
</tbody>
</table>

Sample Output

```
show services stateful-firewall statistics application-protocol-sip

Interface: sp-0/3/0
Service set: test_sip_777, ALG: SIP
Active SIP call count: 0, Active SIP registration count: 1
| REGISTER | 2 | New |
| INVITE   | 1 | Invalid |
|          |   | Retransmit |
```

Copyright © 2019, Juniper Networks, Inc.
<table>
<thead>
<tr>
<th>Method</th>
<th>New</th>
<th>Invalid</th>
<th>Retransmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGISTER</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INVITE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ReINVITE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ACK</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BYE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CANCEL</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SUBSCRIBE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NOTIFY</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INFO</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UPDATE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>REFER</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Provisional responses (18x): 1, OK responses to INVITEs: 2
OK responses to non-INVITEs: 2, Redirection (3xx) responses: 0
Request failure (4xx) responses: 0, Server failure (5xx) responses: 0
Global failure (6xx) responses: 0, Invalid responses: 0
Response (all) retransmits: 0
Parser:
Syntax errors: 0, Content errors: 0, Unknown methods: 0
Service set: test_sip_888, ALG: SIP
Active SIP call count: 0, Active SIP registration count: 1
show services stateful-firewall subscriber-analysis

Syntax
show services stateful-firewall subscriber-analysis
<interface interface-name>

Release Information
Command introduced in Junos OS Release 11.4.

Description
Display information about the number of active subscribers on the service physical interface card (PIC).

Options
none—Display standard information about all active subscribers on the PIC.

interface interface-name—(Optional) Display information about a particular interface.

Required Privilege
view

List of Sample Output
show services stateful-firewall subscriber-analysis on page 1765
show services stateful-firewall subscriber-analysis on page 1765

Output Fields
Table 107 on page 1764 lists the output fields for the show services stateful-firewall subscriber-analysis command. Output fields are listed in the approximate order in which they appear.

Table 107: show services stateful-firewall subscriber-analysis Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services PIC Name</td>
<td>Name of an adaptive services interface.</td>
</tr>
<tr>
<td>Total Subscribers Active</td>
<td>Total number of subscribers currently active on the service PIC.</td>
</tr>
<tr>
<td>Created Subscribers per Second</td>
<td>Rate at which subscribers are currently being created on the service PIC.</td>
</tr>
<tr>
<td>Deleted Subscribers per Second</td>
<td>Rate at which subscribers are currently being deleted on the service PIC.</td>
</tr>
<tr>
<td>Peak Total Subscribers Active</td>
<td>Highest number of subscribers that were active during the lifetime of the service PIC.</td>
</tr>
<tr>
<td>Peak Created Subscribers per Second</td>
<td>Highest rate at which subscribers were being created during the lifetime of the service PIC.</td>
</tr>
<tr>
<td>Peak Deleted Subscribers per Second</td>
<td>Highest rate at which subscribers were being deleted during the lifetime of the service PIC.</td>
</tr>
<tr>
<td>Number of Samples</td>
<td>The current sampling period lifetime.</td>
</tr>
<tr>
<td>Subscriber Operation: Creation</td>
<td>Number of sampling intervals during which a number of subscribers in the indicated range were created during the current sampling period.</td>
</tr>
</tbody>
</table>
Table 107: show services stateful-firewall subscriber-analysis Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscriber Operation: Deletion</td>
<td>Number of sampling intervals during which a number of subscribers in the indicated range were deleted during the current sampling period.</td>
</tr>
</tbody>
</table>

Sample Output

show services stateful-firewall subscriber analysis

```
user@host> show services stateful-firewall subscriber analysis
Services PIC Name:    sp-2/0/0
Subscriber Analysis Statistics:
  Total Subscribers Active               :100000
  Created Subscribers per Second         :0
  Deleted Subscribers per Second         :0
  Peak Total Subscribers Active          :100000
  Peak Created Subscribers per Second    :2389
  Peak Deleted Subscribers per Second    :0

Subscriber Rate Data:
  Number of Samples: 55

Subscriber Rate Distribution(sec)
  Subscriber Operation :Creation
      300000+            :0
      250000  - 300000   :0
      200000  - 250000   :0
      160000  - 200000   :0
      150000  - 160000   :0
      50000  - 150000    :0
      40000  -  50000    :0
      30000  -  40000    :0
      20000  -  30000    :0
      10000  -  20000    :0
      1000  -  10000     :42
      0  -   1000       :1

Subscriber Operation :Deletion
      300000+            :0
      250000  - 300000   :0
      200000  - 250000   :0
      160000  - 200000   :0
      150000  - 160000   :0
      50000  - 150000    :0
      40000  -  50000    :0
      30000  -  40000    :0
      20000  -  30000    :0
```

show services stateful-firewall subscriber-analysis

```
user@host> show services stateful-firewall subscriber analysis
Services PIC Name:    sp-2/0/0
Subscriber Analysis Statistics:
```
Total Subscribers Active : 23547
Created Subscribers per Second : 2389
Deleted Subscribers per Second : 0
Peak Total Subscribers Active : 23547
Peak Created Subscribers per Second : 2389
Peak Deleted Subscribers per Second : 0

Subscriber Rate Data:
Number of Samples: 16

Subscriber Rate Distribution (sec)

Subscriber Operation: Creation

300000+ : 0
250000 - 300000 : 0
200000 - 250000 : 0
160000 - 200000 : 0
150000 - 160000 : 0
50000 - 150000 : 0
40000 - 50000 : 0
30000 - 40000 : 0
20000 - 30000 : 0
10000 - 20000 : 0
1000 - 10000 : 9
0 - 1000 : 1

Subscriber Operation: Deletion

300000+ : 0
250000 - 300000 : 0
200000 - 250000 : 0
160000 - 200000 : 0
150000 - 160000 : 0
50000 - 150000 : 0
40000 - 50000 : 0
30000 - 40000 : 0
20000 - 30000 : 0
10000 - 20000 : 0
1000 - 10000 : 0
0 - 1000 : 0
show services subscriber analysis

Syntax

```
show services subscriber analysis
@interface interface-name
```

Release Information

Statement introduced in Junos OS Release 17.1 on MX Series MS-MPC. Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description

Display information about the number of active subscribers on the services PIC.

Options

```
none—Display standard information about all active subscribers on the PIC.
interface interface-name—(Optional) Display information about the specified interface.
```

Required Privilege

```
Level: view
```

List of Sample Output

```
show services subscriber analysis interface on page 1768
```

Output Fields

Table 107 on page 1764 lists the output fields for the show services subscriber analysis command. Output fields are listed in the approximate order in which they appear.

Table 108: show services subscriber analysis Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services PIC Name</td>
<td>Name of an adaptive services interface.</td>
</tr>
<tr>
<td>Subscriber Analysis Statistics:</td>
<td></td>
</tr>
<tr>
<td>Total Subscribers Active</td>
<td>Total number of subscribers currently active on the service PIC.</td>
</tr>
<tr>
<td>Created Subscribers per Second</td>
<td>Rate at which subscribers are currently being created on the service PIC.</td>
</tr>
<tr>
<td>Deleted Subscribers per Second</td>
<td>Rate at which subscribers are currently being deleted on the service PIC.</td>
</tr>
<tr>
<td>Peak Total Subscribers Active</td>
<td>Highest number of subscribers that were active during the lifetime of the service PIC.</td>
</tr>
<tr>
<td>Peak Created Subscribers per Second</td>
<td>Highest rate at which subscribers were being created during the lifetime of the service PIC.</td>
</tr>
<tr>
<td>Peak Deleted Subscribers per Second</td>
<td>Highest rate at which subscribers were being deleted during the lifetime of the service PIC.</td>
</tr>
<tr>
<td>Number of Samples</td>
<td>Number of samples during the current sampling period lifetime.</td>
</tr>
<tr>
<td>Subscriber Rate Distribution(sec)</td>
<td></td>
</tr>
</tbody>
</table>
Table 108: show services subscriber analysis Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscriber Operation: Creation</td>
<td>Number of sampling intervals during which a number of subscribers in the indicated range were created during the current sampling period.</td>
</tr>
<tr>
<td>Subscriber Operation: Deletion</td>
<td>Number of sampling intervals during which a number of subscribers in the indicated range were deleted during the current sampling period.</td>
</tr>
</tbody>
</table>

Sample Output

```
show services subscriber analysis interface

user@host> show services subscriber analysis interface ms-5/1/0

Services PIC Name:  ms-5/1/0

Subscriber Analysis Statistics:

  Total Subscribers Active               :0
  Created Subscribers per Second         :0
  Deleted Subscribers per Second         :0
  Peak Total Subscribers Active          :0
  Peak Created Subscribers per Second    :0
  Peak Deleted Subscribers per Second    :0

Subscriber Rate Data:

  Number of Samples: 3916

  Subscriber Rate Distribution(sec)

  Subscriber Operation :Creation
    400000+            :0
    350001  - 400000   :0
    300001  - 350000   :0
    250001  - 300000   :0
    200001  - 250000   :0
    160001  - 200000   :0
    150001  - 160000   :0
    50001  - 150000    :0
    40001  -  50000   :0
    30001  -  40000   :0
    20001  -  30000   :0
    10001  -  20000   :0
    1001  -  10000   :0
    1   -  10000   :0
       0    :3916

  Subscriber Operation :Deletion
    400000+            :0
    350001  - 400000   :0
    300001  - 350000   :0
    250001  - 300000   :0
    200001  - 250000   :0
    160001  - 200000   :0
```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10001 - 10000</td>
<td>:0</td>
<td></td>
</tr>
<tr>
<td>1000 - 1000</td>
<td>:0</td>
<td></td>
</tr>
<tr>
<td>1 - 1000</td>
<td>:0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 :3916</td>
<td></td>
</tr>
</tbody>
</table>
show services tcp-log connections

Syntax
```
show services tcp-log connections interface interface-name
```

Release Information
Command introduced in Junos OS Release 19.1 for MX Series.

Description
Display the TCP connection status for the specified interface.

Required Privilege Level
view

Output Fields
Table 109 on page 1770 lists the output fields for the `show services sessions tcp-log connections interface interface-name` command. Output fields are listed in the approximate order in which they appear.

Table 109: show services sessions tcp-log connections interface Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session Id</td>
<td>TCP connection status including the state, source IP address, destination IP address, and destination port.</td>
</tr>
</tbody>
</table>

Sample Output

```
user@router>show services tcp-log connections interface interface-name

user@router>show services tcp-log connections interface interface-name
Session Id: 1744830467 State: Established
  1.1.1.1 -> 40.0.0.2 : 10214
```
show services traffic-load-balance statistics

Syntax
show services traffic-load-balance statistics
<extensive>
<group group-name>
<instance instance-name>
<num-instances number>
<real-service real-service-name>
<summary>
<virtual-service virtual-service-name>

Release Information
Statement introduced in Junos OS Release 16.1 on MX Series.
num-instances option added in Junos OS Release 16.1R6 and 18.2R1 on MX Series.

Description
The basic form of the command displays the list of real servers associated with this group and traffic statistics, including packet count and byte count.

Options
none—Display information about the load-balancing statistics in brief.

extensive—(Optional) Display extensive information about the traffic load-balancing statistics.

group group-name—(Optional) Display load-balancing statistics for a specified group of load-balancer servers.

instance instance-name—(Optional) Display load-balancing statistics for a specific traffic load balancer (TLB) instance.

num-instances number—(Optional) Display load-balancing statistics for a specified number of TLB instances.

real-service real-service-name—(Optional) Display load-balancing statistics for a specified load balancer serve.

summary—(Optional) Display summary information about the traffic load-balancing statistics.

virtual-service virtual-service-name—(Optional) Display load-balancing statistics for a specified TLB virtual service.

Required Privilege
view

List of Sample Output
show services traffic-load-balance statistics on page 1777
show services traffic-load-balance statistics extensive on page 1778
show services traffic-load-balance statistics summary on page 1781
Output Fields Table 110 on page 1772 lists the output fields for the show services traffic-load-balance statistics command. Output fields are listed in the approximate order in which they appear.

Table 110: show services traffic-load-balance statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic load balance instance name</td>
<td>Name of the traffic load balancer (TLB) instance that contains the load-distribution-related configuration settings.</td>
<td>All levels</td>
</tr>
<tr>
<td>Multi services interface name</td>
<td>Name of the services interface used for the TLB instance to provide one-to-one redundancy for server health monitoring.</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>For MS-MPC services card, this is the name of the aggregated multiservices (AMS) interface or “ms-slot/pic/port”.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For USF and SPC3 services card, this is the name of the VMS interface or “vms-slot/pic/port”.</td>
<td></td>
</tr>
<tr>
<td>Interface state</td>
<td>Inter-process communications (IPC) status between the TLB daemon (traffic-dird) and the health checking daemon (net-monitord).</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• DOWN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UP</td>
<td></td>
</tr>
<tr>
<td>Interface type</td>
<td>Logical interface type.</td>
<td>All levels</td>
</tr>
<tr>
<td>Route hold timer</td>
<td>Time that the programmed VIP routes are kept intact after connectivity between traffic-dird and net-monitord daemons is lost. If connectivity is not reestablished within this time, all the VIP routes are withdrawn.</td>
<td>All levels</td>
</tr>
<tr>
<td>Traffic load balance virtual svc name</td>
<td>Name of the virtual service for the TLB instance. The virtual service provides an address that is associated with the group of servers to which traffic is directed.</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>extensive</td>
<td></td>
</tr>
<tr>
<td>Virtual service</td>
<td>Name of the virtual service for the TLB instance. The virtual service provides an address that is associated with the group of servers to which traffic is directed.</td>
<td>summary</td>
</tr>
<tr>
<td>Routing instance name</td>
<td>Name of the routing instance used for the virtual service.</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>extensive</td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td>IP address of the virtual service.</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>extensive</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>IP address of the virtual service.</td>
<td>summary</td>
</tr>
<tr>
<td>Sts</td>
<td>Operational state of the virtual service.</td>
<td>summary</td>
</tr>
<tr>
<td>Packet Sent</td>
<td>Number of packets originating from the clients that the TLB instance virtual service processes for load balancing to next-hop servers.</td>
<td>summary</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>Byte Sent</td>
<td>Number of bytes originating from the clients that the TLB instance virtual service processes for load balancing to next-hop servers.</td>
<td>summary</td>
</tr>
<tr>
<td>PacketRecv</td>
<td>Number of packets returning from the next-hop servers that the TLB instance virtual service processes and forwards to the clients.</td>
<td>summary</td>
</tr>
<tr>
<td>ByteRecv</td>
<td>Number of bytes returning from the next-hop servers that the TLB instance virtual service processes and forwards to the clients.</td>
<td>summary</td>
</tr>
<tr>
<td>Virtual service mode</td>
<td>Virtual service processing mode.</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>• layer-2-direct-server-return—Virtual service is in transparent mode with Layer 2 direct server return (DSR)</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• direct-server-return—Virtual service is in transparent mode with Layer 3 direct server return (DSR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• translated—Virtual service is in translated mode.</td>
<td></td>
</tr>
<tr>
<td>Traffic load balance group name</td>
<td>Server group name used for the virtual service.</td>
<td>none</td>
</tr>
<tr>
<td>Health check interface subunit</td>
<td>Number of the subunit of the multiservice interface used for health checking.</td>
<td>none</td>
</tr>
<tr>
<td>Traffic load balance group down count</td>
<td>Number of times the status of the TLB server group was down.</td>
<td>extensive</td>
</tr>
<tr>
<td>Protocol</td>
<td>Virtual service protocol, either tcp or udp. In translated mode, packets destined to the virtual service IP address + port number + protocol are load balanced and then replaced by the real service IP address and server listening port number.</td>
<td>none</td>
</tr>
<tr>
<td>Port Number</td>
<td>Virtual service port number. In translated mode, packets destined to the virtual service IP address + port number + protocol are load balanced and then replaced by the real service IP address and server listening port number.</td>
<td>none</td>
</tr>
<tr>
<td>Server Listening Port Number</td>
<td>Real service port number that replaces the virtual service port number. In translated mode, packets destined to the virtual service IP address + port number + protocol are load balanced and then replaced by the real service IP address and server listening port number.</td>
<td>none</td>
</tr>
<tr>
<td>Demux Nexthop index</td>
<td>Index number of the demultiplexing next hop for the virtual service. Index number is unique for a VIP, routing-instance, and protocol combination. The demultiplexing next hop is responsible for port-based demultiplexing of traffic to the load-balancing next hop for session distribution.</td>
<td>none</td>
</tr>
<tr>
<td>DFW client-id</td>
<td>Client connection identifier assigned to the TLB daemon (traffic-dird) by the firewall daemon (dfwd) when the daemons are successfully connected.</td>
<td>extensive</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Traffic load balance group warmup time</td>
<td>Time, in seconds, that passes after the traffic-dir daemon comes up until the traffic-dir programs the distribution table on the Packet Forwarding Engine.</td>
<td>extensive</td>
</tr>
<tr>
<td>Traffic load balance group auto-rejoin</td>
<td>Indicates whether the option that allows a server to rejoin the group automatically when it comes up is enabled or not.</td>
<td>extensive</td>
</tr>
<tr>
<td>Route metric</td>
<td>Routing metric assigned to the virtual service. A lower metric makes a route more preferred.</td>
<td>extensive</td>
</tr>
<tr>
<td>Virtual service down count</td>
<td>Number of times the status of the virtual service was down.</td>
<td>extensive</td>
</tr>
<tr>
<td>Traffic load balance hash method</td>
<td>Hash key parameter used for load balancing. Hash keys supported in the ingress direction are protocol, source IP address, and destination IP address.</td>
<td>extensive</td>
</tr>
<tr>
<td>Next hop index</td>
<td>Index number of the next-hop for the virtual service. A group of servers function as a pool for next-hop session distribution.</td>
<td>extensive</td>
</tr>
<tr>
<td>Up time</td>
<td>Period of time for which the virtual service is up, in the format number-of-days hh:mm:ss.</td>
<td>extensive</td>
</tr>
<tr>
<td>Real Server Up count</td>
<td>Starting in Junos OS Release 16.1R6 and 18.2R1, number of real servers that are up for the specified virtual service or server group.</td>
<td>extensive</td>
</tr>
<tr>
<td>Real Server Down count</td>
<td>Starting in Junos OS Release 16.1R6 and 18.2R1, number of real servers that are down for the specified virtual service or server group.</td>
<td>extensive</td>
</tr>
<tr>
<td>Total packet sent count</td>
<td>Number of packets originating from the clients that the TLB instance virtual service processes for load balancing to next-hop servers.</td>
<td>extensive</td>
</tr>
<tr>
<td>Total byte sent count</td>
<td>Number of bytes originating from the clients that the TLB instance virtual service processes for load balancing to next-hop servers.</td>
<td>extensive</td>
</tr>
<tr>
<td>Total packet received count</td>
<td>Number of packets returning from the next-hop servers that the TLB instance virtual service processes and forwards to the clients.</td>
<td>extensive</td>
</tr>
<tr>
<td>Total byte received count</td>
<td>Number of bytes returning from the next-hop servers that the TLB instance virtual service processes and forwards to the clients.</td>
<td>extensive</td>
</tr>
<tr>
<td>Network monitoring profile count</td>
<td>Number of network monitoring profiles that are used to monitor the health of servers used in TLB session distribution.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
Table 110: show services traffic-load-balance statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active real service count</td>
<td>Number of real services that are functional and active.</td>
<td>extensive</td>
</tr>
<tr>
<td>Total real service count</td>
<td>Total number of real services in different states.</td>
<td>extensive</td>
</tr>
<tr>
<td>Network monitoring profile index</td>
<td>Unique index number associated with the network monitoring profile. Network monitoring profiles are used to monitor the health of servers used in TLB session distribution.</td>
<td>extensive</td>
</tr>
<tr>
<td>Network monitoring profile name</td>
<td>Name configured for the network monitoring profile.</td>
<td>extensive</td>
</tr>
<tr>
<td>Probe type</td>
<td>Probe type used to examine the health of servers. TLB supports ICMP, TCP, and HTTP health check probes to monitor the health of servers in a group.</td>
<td>extensive</td>
</tr>
<tr>
<td>Probe interval</td>
<td>Frequency, in number of seconds, at which health check probes are sent.</td>
<td>extensive</td>
</tr>
<tr>
<td>Probe failure retry count</td>
<td>Number of failure retries, after which the real service is tagged as down.</td>
<td>extensive</td>
</tr>
<tr>
<td>Probe recovery retry count</td>
<td>Number of successful retries after which the real service is tagged as up.</td>
<td>extensive</td>
</tr>
<tr>
<td>Real service</td>
<td>Name of the TLB server (also referred to as real service). The name is the identifier for a server to which sessions can be distributed using the server distribution table in conjunction with the session distribution API.</td>
<td>none</td>
</tr>
<tr>
<td>Address</td>
<td>IP address of the configured real service.</td>
<td>none</td>
</tr>
<tr>
<td>Sts</td>
<td>Operational state of the TLB server.</td>
<td>none</td>
</tr>
<tr>
<td>Packet Sent</td>
<td>Number of packets originating from the clients that the TLB instance virtual service sends to the real service.</td>
<td>none</td>
</tr>
<tr>
<td>Byte Sent</td>
<td>Number of bytes originating from the clients that the TLB instance virtual service sends to the real service next-hop server.</td>
<td>none</td>
</tr>
<tr>
<td>PacketRecv</td>
<td>Number of packets returning from the real service next-hop server that the TLB instance virtual service processes and forwards to the clients.</td>
<td>none</td>
</tr>
<tr>
<td>ByteRecv</td>
<td>Number of bytes returning from the real service next-hop server that the TLB instance virtual service processes and forwards to the clients.</td>
<td>none</td>
</tr>
<tr>
<td>Traffic load balance real svc name</td>
<td>Name of the real service used for traffic load-balancing.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
Table 110: `show services traffic-load-balance statistics` Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing instance name</td>
<td>Name of the routing instance on which the real service is configured.</td>
<td>extensive</td>
</tr>
<tr>
<td>IP address</td>
<td>IP address of the configured real service.</td>
<td>extensive</td>
</tr>
<tr>
<td>Traffic load balance group name</td>
<td>Name of the server group for real service.</td>
<td>extensive</td>
</tr>
<tr>
<td>Admin state</td>
<td>Administrative state of the real service, such as Up or Down.</td>
<td>extensive</td>
</tr>
<tr>
<td>Oper state</td>
<td>Operational state of the real service, such as Up or Down.</td>
<td>extensive</td>
</tr>
<tr>
<td>Network monitoring probe up count</td>
<td>Number of probes for which the status of the server whose health is checked is observed to be up. If a server group is configured for dual health check, a real service is declared to be UP only if both health-check probes are simultaneously UP; otherwise a real service declared to be DOWN.</td>
<td>extensive</td>
</tr>
<tr>
<td>Network monitoring probe down count</td>
<td>Number of probes for which the status of the server whose health is checked is observed to be down.</td>
<td>extensive</td>
</tr>
<tr>
<td>Total join event count</td>
<td>Number of events that caused a server that was previously down and later operational to rejoin a group of real services for load-balancing.</td>
<td>extensive</td>
</tr>
<tr>
<td>Total up event count</td>
<td>Number of TLB events that identified a virtual service or real service to be up.</td>
<td>extensive</td>
</tr>
<tr>
<td>Total down event count</td>
<td>Number of TLB events that identified a virtual service or real service to be down.</td>
<td>extensive</td>
</tr>
<tr>
<td>Real Service packet sent count</td>
<td>Number of packets originating from the clients that the TLB instance virtual service sends to the real service.</td>
<td>extensive</td>
</tr>
<tr>
<td>Real Service byte sent count</td>
<td>Number of bytes originating from the clients that the TLB instance virtual service sends to the real service next-hop server.</td>
<td>extensive</td>
</tr>
<tr>
<td>Real Service packet received count</td>
<td>Number of packets returning from the real service next-hop server that the TLB instance virtual service processes and forwards to the clients.</td>
<td>extensive</td>
</tr>
<tr>
<td>Real Service byte received count</td>
<td>Number of bytes returning from the real service next-hop server that the TLB instance virtual service processes and forwards to the clients.</td>
<td>extensive</td>
</tr>
<tr>
<td>Total probe sent</td>
<td>Number of health-monitoring probes sent from the TLB health check daemon.</td>
<td>extensive</td>
</tr>
<tr>
<td>Total probe success</td>
<td>Number of health-monitoring probes sent from the TLB health check daemon that were successful.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
Table 110: show services traffic-load-balance statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total probe fail</td>
<td>Number of health-monitoring probes attempted to be sent from the TLB health check daemon that failed.</td>
<td>extensive</td>
</tr>
<tr>
<td>Total probe sent fail</td>
<td>Number of health-monitoring probes attempted to be sent from the TLB health check daemon that were unsuccessfully initiated.</td>
<td>extensive</td>
</tr>
<tr>
<td>Probe state</td>
<td>Status of the health-check probe, such as Up or Down.</td>
<td>extensive</td>
</tr>
<tr>
<td>Probe sent</td>
<td>Number of health-check probe requests transmitted from the TLB health check daemon.</td>
<td>extensive</td>
</tr>
<tr>
<td>Probe success</td>
<td>Number of successful health-check probe requests transmitted from the TLB health check daemon.</td>
<td>extensive</td>
</tr>
<tr>
<td>Probe fail</td>
<td>Number of failed health-check probe requests transmitted from the TLB health check daemon.</td>
<td>extensive</td>
</tr>
<tr>
<td>Probe sent failed</td>
<td>Number of times the TLB health check daemon was unable to initiate transmission of a extensive health-check probe.</td>
<td>extensive</td>
</tr>
<tr>
<td>Probe consecutive success</td>
<td>Number of health-check probe requests transmitted from the TLB health check daemon that were consecutively successful.</td>
<td>extensive</td>
</tr>
<tr>
<td>Probe consecutive fail</td>
<td>Number of health-check probe requests transmitted from the TLB health check daemon that failed for two successive times.</td>
<td>extensive</td>
</tr>
</tbody>
</table>

Sample Output

```plaintext
show services traffic-load-balance statistics

user@host> show services traffic-load-balance statistics

Traffic load balance instance name : lb1
Multi services interface name : ms-3/0/0
Interface state : UP
Interface type : Multi services
Route hold timer : 180
Traffic load balance virtual svc name : v1
IP address : 0.0.0.0
Virtual service mode : Layer-2 based Direct Server Return mode
Routing instance name : internal-client-vrf
Traffic load balance group name : g1
Health check interface subunit : 40
Demux Nexthop index : N/A
Nexthop index : 840
Up time : 2d 19:09
Real Server Up count : 1
Real Server Down count : 1
Total packet sent count : 0
Total byte sent count : 0
```
Traffic Load Balance General Information
DFW client-id : 39
Traffic load balance instance name : lb1
Multi services interface name : ms-3/0/0
Interface state : UP
Interface type : Multi services
Route hold timer : 180

Traffic Load Balance virtual svc name : v1
IP address : 0.0.0.0
Virtual service mode : Layer-2 based Direct Server Return mode
Routing instance name : internal-client-vrf
Traffic load balance group name : g1
Traffic load balance group warmup time : 15
Traffic load balance group auto-rejoin : TRUE
Health check interface subunit : 40
Traffic load balance group down count : 1
Route metric : 1
Virtual service down count : 1
Traffic load balance hash method : source
Network monitoring profile count : 1
Active real service count : 2
Total real service count : 2
Demux Nexthop index : N/A
Nexthop index : 840
Up time : 2d 19:09
Total packet sent count : 0
Total byte sent count : 0

show services traffic-load-balance statistics extensive
Total packet received count : 0
Total byte received count : 0
Network monitoring profile index : 1
Network monitoring profile name : prof1
Probe type : ICMP
Probe interval : 5
Probe failure retry count : 5
Probe recovery retry count : 3

Traffic load balance real svc name : r11
Routing instance name : server-vrf10
IP address : 203.0.113.11
Traffic load balance group name : g1
Admin state : UP
Oper state : UP
Network monitoring probe up count : 1
Network monitoring probe down count : 0
Total rejoin event count : 0
Total up event count : 1
Total down event count : 0
Real Service packet sent count : 0
Real Service byte sent count : 0
Total probe sent : 47939
Total probe success : 47918
Total probe fail : 21
Total probe sent failed : 0
Network monitoring profile index : 1
Network monitoring profile name : prof1
Probe type : ICMP
Probe state : UP
Probe sent : 47939
Probe success : 47918
Probe fail : 21
Probe sent failed : 0
Probe consecutive success : 10090
Probe consecutive fail : 0

Traffic load balance real svc name : r10
Routing instance name : server-vrf10
IP address : 203.0.113.10
Traffic load balance group name : g1
Admin state : UP
Oper state : UP
Network monitoring probe up count : 1
Network monitoring probe down count : 0
Total rejoin event count : 0
Total up event count : 1
Total down event count : 0
Real Service packet sent count : 0
Real Service byte sent count : 0
Total probe sent : 47939
Total probe success : 47917
Total probe fail : 22
Total probe sent failed : 0
Network monitoring profile index : 1
Network monitoring profile name : prof1
Probe type : ICMP
Probe state : UP
Probe sent : 47939
Probe success : 47917
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe fail</td>
<td>22</td>
</tr>
<tr>
<td>Probe sent failed</td>
<td>0</td>
</tr>
<tr>
<td>Probe consecutive success</td>
<td>10090</td>
</tr>
<tr>
<td>Probe consecutive fail</td>
<td>0</td>
</tr>
<tr>
<td>Traffic load balance virtual svc name</td>
<td>v2</td>
</tr>
<tr>
<td>IP address</td>
<td>192.0.2.11</td>
</tr>
<tr>
<td>Virtual service mode</td>
<td>Translate mode</td>
</tr>
<tr>
<td>Routing instance name</td>
<td>msp-tproxy-forwarding1</td>
</tr>
<tr>
<td>Traffic load balance group name</td>
<td>g2</td>
</tr>
<tr>
<td>Traffic load balance group warmup time</td>
<td>15</td>
</tr>
<tr>
<td>Traffic load balance group auto-rejoin</td>
<td>TRUE</td>
</tr>
<tr>
<td>Health check interface subunit</td>
<td>50</td>
</tr>
<tr>
<td>Traffic load balance group down count</td>
<td>1</td>
</tr>
<tr>
<td>Protocol</td>
<td>tcp</td>
</tr>
<tr>
<td>Port number</td>
<td>8080</td>
</tr>
<tr>
<td>Server Listening Port Number</td>
<td>8084</td>
</tr>
<tr>
<td>Route metric</td>
<td>1</td>
</tr>
<tr>
<td>Virtual service down count</td>
<td>1</td>
</tr>
<tr>
<td>Traffic load balance hash method</td>
<td>source-destination</td>
</tr>
<tr>
<td>Network monitoring profile count</td>
<td>1</td>
</tr>
<tr>
<td>Active real service count</td>
<td>2</td>
</tr>
<tr>
<td>Total real service count</td>
<td>2</td>
</tr>
<tr>
<td>Demux Nexthop index</td>
<td>536</td>
</tr>
<tr>
<td>Nexthop index</td>
<td>539</td>
</tr>
<tr>
<td>Up time</td>
<td>2d 19:07</td>
</tr>
<tr>
<td>Total packet sent count</td>
<td>0</td>
</tr>
<tr>
<td>Total byte sent count</td>
<td>0</td>
</tr>
<tr>
<td>Total packet received count</td>
<td>0</td>
</tr>
<tr>
<td>Total byte received count</td>
<td>0</td>
</tr>
<tr>
<td>Network monitoring profile index</td>
<td>1</td>
</tr>
<tr>
<td>Network monitoring profile name</td>
<td>prof1</td>
</tr>
<tr>
<td>Probe type</td>
<td>ICMP</td>
</tr>
<tr>
<td>Probe interval</td>
<td>5</td>
</tr>
<tr>
<td>Probe failure retry count</td>
<td>5</td>
</tr>
<tr>
<td>Probe recovery retry count</td>
<td>3</td>
</tr>
<tr>
<td>Traffic load balance real svc name</td>
<td>r12</td>
</tr>
<tr>
<td>Routing instance name</td>
<td>server-vrf10</td>
</tr>
<tr>
<td>IP address</td>
<td>203.0.113.12</td>
</tr>
<tr>
<td>Traffic load balance group name</td>
<td>g2</td>
</tr>
<tr>
<td>Admin state</td>
<td>UP</td>
</tr>
<tr>
<td>Oper state</td>
<td>UP</td>
</tr>
<tr>
<td>Network monitoring probe up count</td>
<td>1</td>
</tr>
<tr>
<td>Network monitoring probe down count</td>
<td>0</td>
</tr>
<tr>
<td>Total rejoin event count</td>
<td>0</td>
</tr>
<tr>
<td>Total up event count</td>
<td>1</td>
</tr>
<tr>
<td>Total down event count</td>
<td>0</td>
</tr>
<tr>
<td>Real Service packet sent count</td>
<td>0</td>
</tr>
<tr>
<td>Real Service byte sent count</td>
<td>0</td>
</tr>
<tr>
<td>Real Service packet received count</td>
<td>0</td>
</tr>
<tr>
<td>Real Service byte received count</td>
<td>0</td>
</tr>
<tr>
<td>Total probe sent</td>
<td>47939</td>
</tr>
<tr>
<td>Total probe success</td>
<td>47916</td>
</tr>
<tr>
<td>Total probe fail</td>
<td>23</td>
</tr>
<tr>
<td>Total probe sent failed</td>
<td>0</td>
</tr>
<tr>
<td>Network monitoring profile index</td>
<td>1</td>
</tr>
<tr>
<td>Network monitoring profile name</td>
<td>prof1</td>
</tr>
<tr>
<td>Probe type</td>
<td>ICMP</td>
</tr>
<tr>
<td>Probe state</td>
<td>UP</td>
</tr>
<tr>
<td>Traffic load balance instance name</td>
<td>tlb_sdg</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Multi services interface name</td>
<td>ms-8/3/0</td>
</tr>
<tr>
<td>Interface state</td>
<td>UP</td>
</tr>
<tr>
<td>Interface type</td>
<td>Multi services</td>
</tr>
<tr>
<td>Route hold timer</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Virtual service</th>
<th>Address</th>
<th>Sts</th>
<th>Packet Sent</th>
<th>Byte Sent</th>
<th>Packet Recv</th>
<th>Byte Recv</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS-VIP1-TCP</td>
<td>198.51.100.1</td>
<td>Up</td>
<td>13182260</td>
<td>709736171</td>
<td>11951566</td>
<td>732469940</td>
</tr>
<tr>
<td>DNS-VIP1-UDP</td>
<td>198.51.100.1</td>
<td>Up</td>
<td>2683203</td>
<td>16367383</td>
<td>2683101</td>
<td>262943898</td>
</tr>
<tr>
<td>HTTP-80-ADDRESS-VIP</td>
<td>203.0.113.156</td>
<td>Up</td>
<td>363080548</td>
<td>25152313876</td>
<td>282072340</td>
<td>280409712450</td>
</tr>
<tr>
<td>HTTP-8080-ADDR-VIP</td>
<td>203.0.113.157</td>
<td>Up</td>
<td>363198700</td>
<td>25318638843</td>
<td>282030640</td>
<td>280388777605</td>
</tr>
<tr>
<td>Secure-Ent-443-VIP</td>
<td>203.0.113.158</td>
<td>Up</td>
<td>30561467</td>
<td>3012763619</td>
<td>28007583</td>
<td>3992807922</td>
</tr>
<tr>
<td>Simple-Ent-80-VIP</td>
<td>203.0.113.159</td>
<td>Up</td>
<td>155857682</td>
<td>11558785554</td>
<td>89649255</td>
<td>79217609518</td>
</tr>
</tbody>
</table>

show services traffic-load-balance statistics summary

user@host> show services traffic-load-balance statistics summary

<table>
<thead>
<tr>
<th>Traffic load balance instance name</th>
<th>tlb_sdg_v6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi services interface name</td>
<td>ms-8/3/0</td>
</tr>
<tr>
<td>Interface state</td>
<td>UP</td>
</tr>
<tr>
<td>Interface type</td>
<td>Multi services</td>
</tr>
<tr>
<td>Route hold timer</td>
<td>180</td>
</tr>
<tr>
<td>Virtual service</td>
<td>Address</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>DNS-VIP1-TCP-V6</td>
<td>2001:db8:a::300</td>
</tr>
<tr>
<td>DNS-VIP1-UDP-V6</td>
<td>2001:db8:a::300</td>
</tr>
<tr>
<td>HTTP-80-ADDR-VIP-V6</td>
<td>2001:db8:a::100</td>
</tr>
<tr>
<td>HTTP-8080-ADD-VIP-V6</td>
<td>2001:db8:a::100</td>
</tr>
<tr>
<td>Sec-Ent-443-VIP-V6</td>
<td>2001:db8:a::200</td>
</tr>
</tbody>
</table>
show services url-filter dns-resolution profile

Syntax

show services url-filter dns-resolution profile profile-name <template template-name>
<fpc-slot fpc-slot pic-slot pic-slot>

Release Information

Command introduced in Junos OS Release 17.2.

Description

Display URL filter domain name system (DNS) resolution information.

URL filtering resolves the blacklisted domains. The total number of domains are divided into chunks of 50 domains per chunk. The filter term in the command output is the name of a chunk.

NOTE: Starting in Junos OS Release 18.3R1, the show services url-filter dns-resolution profile command is deprecated and has been replaced by the show services web-filter dns-resolution profile command.

Options

fpc-slot fpc-slot pic-slot pic-slot—(Optional) Specify the FPC and PIC for which you want URL filter information displayed.

profile profile-name—Specify the profile for which you want URL filter information displayed.

template template-name—(Optional) Specify the template for which you want URL filter information displayed.

Required Privilege Level

view

Related Documentation

- show services url-filter dns-resolution-statistics profile template on page 1786
- show services url-filter statistics profile template on page 1791
- Configuring URL Filtering on page 50

List of Sample Output

show services url-filter dns-resolution profile on page 1784

Output Fields

Table 111 on page 1783 lists the output fields for the show services url-filter dns-resolution profile command. Output fields are listed in the approximate order in which they appear.

Table 111: show services url-filter dns-resolution profile Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile</td>
<td>Name of profile.</td>
</tr>
</tbody>
</table>

Copyright © 2019, Juniper Networks, Inc.
Table 111: show services url-filter dns-resolution profile Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td>Name of template.</td>
</tr>
<tr>
<td>Filter Term</td>
<td>Name of the domains chunk. All domains are divided into chunks of 50 domains per chunk.</td>
</tr>
<tr>
<td>IPv4 Address Count</td>
<td>The number of IPv4 addresses resolved for all domains under the filter term.</td>
</tr>
<tr>
<td>IPv6 Address Count</td>
<td>The number of IPv6 addresses resolved for all domains under the filter term.</td>
</tr>
<tr>
<td>Domain Name</td>
<td>Name of domain.</td>
</tr>
<tr>
<td>IPv4 Records</td>
<td>Listing of IPv4 addresses.</td>
</tr>
<tr>
<td>IPv6 Records</td>
<td>Listing of IPv6 addresses.</td>
</tr>
</tbody>
</table>

Sample Output

show services url-filter dns-resolution profile

```plaintext
user@host> show services url-filter dns-resolution profile p1
URL filtering DNS resolution:
Profile: p1
Template: t1

1). Filter Term: URLF_t1_0004
   IPv4 Address Count: 20
   IPv6 Address Count: 20

   1 ). Domain Name: www.facebook.com
       IPv4 Records:
       31.13.77.36
       31.13.76.68

       IPv6 Records:
       2a03:2880:f122:83:face:b00c:0:25de
       2a03:2880:f111:83:face:b00c:0:25de

   2 ). Domain Name: www.youtube.com
       IPv4 Records:
       216.58.193.78
       216.58.194.206

       IPv6 Records:
       2607:f8b0:400a:800::200e
       2607:f8b0:4005:809::200e
```
3). Domain Name: www.netflix.com

IPv4 Records:
 50.112.200.248
 52.10.96.2
 52.25.242.211
 52.39.87.182
 52.38.44.92
 52.36.125.176
 52.40.2.42
 52.42.184.64
 52.5.80.199
 52.206.203.18
 52.5.231.14
 52.21.94.89
 52.71.118.87
 52.201.133.109
 52.71.122.233
 52.203.136.33

IPv6 Records:
 2620:108:700f::342a:b840
 2620:108:700f::3644:fc64
 2620:108:700f::3459:2ce1
 2620:108:700f::3459:c025
 2620:108:700f::3459:f556
 2620:108:700f::3459:c5c5
 2620:108:700f::3644:c2a0
 2620:108:700f::342a:df11
 2406:da00:ff00::3404:d29c
 2406:da00:ff00::3415:a86e
 2406:da00:ff00::3415:fd4a
 2406:da00:ff00::3414:91d2
 2406:da00:ff00::3403:73dd
 2406:da00:ff00::22c7:d016
 2406:da00:ff00::3400:290b
 2406:da00:ff00::3213:c65f
show services url-filter dns-resolution-statistics profile template

Syntax
show services url-filter dns-resolution-statistics profile profile-name template template-name
(extensive | summary)

Release Information
Command introduced in Junos Os Release 17.2.

Description
Display URL filter domain name system (DNS) resolution statistics.

NOTE: Starting in Junos OS Release 18.3R1, the show services url-filter
dns-resolution-statistics profile template command is deprecated and has
been replaced by the show services web-filter dns-resolution-statistics profile
template command.

Options
(extensive | summary)—Specify the level of detail of information you want displayed.

profile profile-name—Specify the profile for which you want URL filter information displayed.

template template-name—Specify the template for which you want URL filter information displayed.

Required Privilege
view

Related Documentation
• show services url-filter dns-resolution profile on page 1783
• show services url-filter statistics profile template on page 1791
• Configuring URL Filtering on page 50

List of Sample Output
show services url-filter dns-resolution-statistics profile template summary on page 1788
show services url-filter dns-resolution-statistics profile template extensive on page 1788

Output Fields
Table 112 on page 1786 lists the output fields for the show services url-filter
dns-resolution-statistics profile template command. Output fields are listed in the
approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile</td>
<td>Name of profile.</td>
<td>all</td>
</tr>
<tr>
<td>Template</td>
<td>Name of template.</td>
<td>all</td>
</tr>
</tbody>
</table>
Table 112: show services url-filter dns-resolution-statistics profile template Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS start time</td>
<td>Start time of the DNS resolution.</td>
<td>summary</td>
</tr>
<tr>
<td>Next DNS start time</td>
<td>Start time of the next DNS resolution.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of resolved A addresses</td>
<td>Number of resolved IPv4 addresses.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of resolved AAAA addresses</td>
<td>Number of resolved IPv6 addresses.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of unresolved A addresses</td>
<td>Number of unresolved IPv4 addresses.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of unresolved AAAA addresses</td>
<td>Number of unresolved IPv6 addresses.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of resolved A domains</td>
<td>Number of resolved IPv4 domains.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of resolved AAAA domains</td>
<td>Number of resolved IPv6 domains.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of unresolved A domains</td>
<td>Number of unresolved IPv4 domains.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of unresolved AAAA domains</td>
<td>Number of unresolved IPv6 domains.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of requests sent</td>
<td>Number of DNS requests sent.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of responses received</td>
<td>Number of DNS responses received.</td>
<td>summary</td>
</tr>
<tr>
<td>Domain Name</td>
<td>Name of domain.</td>
<td>extensive</td>
</tr>
<tr>
<td>IPv4 Address information</td>
<td>IPv4 address information includes the following fields:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• DNS server IP—IPv4 address of DNS server.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Req Sent—Number of DNS requests sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resp Received—Number of DNS responses received.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DNS retries—Number of times no DNS response was received and so retried.</td>
<td></td>
</tr>
</tbody>
</table>
Table 112: show services url-filter dns-resolution-statistics profile template Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Address information</td>
<td>IPv6 address information includes the following fields:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>- DNS server IP—IPv6 address of DNS server.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Req Sent—Number of DNS requests sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Resp Received—Number of DNS responses received.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- DNS retries—Number of times no DNS response was received and so retried.</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

show services url-filter dns-resolution-statistics profile template summary

```
user@host> show services url-filter dns-resolution-statistics profile1 template t1 summary
URL filtering DNS resolution statistics:
Profile: p1
Template: t1

<table>
<thead>
<tr>
<th>DNS start time</th>
<th>May 01 16:40:24 PDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next DNS start time</td>
<td>May 01 17:40:24 PDT</td>
</tr>
<tr>
<td>Number of resolved A domains</td>
<td>114</td>
</tr>
<tr>
<td>Number of resolved AAAA domains</td>
<td>114</td>
</tr>
<tr>
<td>Number of unresolved A domains</td>
<td>0</td>
</tr>
<tr>
<td>Number of unresolved AAAA domains</td>
<td>0</td>
</tr>
<tr>
<td>Number of requests sent</td>
<td>246</td>
</tr>
<tr>
<td>Number of responses received</td>
<td>228</td>
</tr>
</tbody>
</table>
```

show services url-filter dns-resolution-statistics profile template extensive

```
user@host> show services url-filter dns-resolution-statistics profile p1 template t1 extensive
URL filtering DNS resolution statistics:
Profile: p1
Template: t1

1) Domain Name: www.facebook.com

   IPv4 Address information:
   DNS server IP       8.8.8.8
   Req Sent            20
   Resp Received       20
   DNS retries         0

   IPv4 Address information:
   DNS server IP       172.29.131.60
   Req Sent            21
   Resp Received       20
   DNS retries         0
```
IPv6 Address information:
DNS server IP 8.8.8.8
Req Sent 25
Resp Received 20
DNS retries 0

IPv6 Address information:
DNS server IP 172.29.131.60
Req Sent 24
Resp Received 20
DNS retries 0

2) Domain Name: www.youtube.com

IPv4 Address information:
DNS server IP 8.8.8.8
Req Sent 21
Resp Received 20
DNS retries 0

IPv4 Address information:
DNS server IP 172.29.131.60
Req Sent 21
Resp Received 20
DNS retries 0

IPv6 Address information:
DNS server IP 8.8.8.8
Req Sent 21
Resp Received 20
DNS retries 0

IPv6 Address information:
DNS server IP 172.29.131.60
Req Sent 21
Resp Received 20
DNS retries 0

3) Domain Name: www.netflix.com

IPv4 Address information:
DNS server IP 8.8.8.8
Req Sent 21
Resp Received 20
DNS retries 0

IPv4 Address information:
DNS server IP 172.29.131.60
Req Sent 21
Resp Received 20
DNS retries 0

IPv6 Address information:
DNS server IP 8.8.8.8
Req Sent 21
Resp Received 20
DNS retries 0

IPv6 Address information:
DNS server IP 172.29.131.60
Req Sent 21
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resp Received</td>
<td>20</td>
</tr>
<tr>
<td>DNS retries</td>
<td>0</td>
</tr>
</tbody>
</table>
show services url-filter statistics profile template

Syntax

```
show services url-filter statistics profile profile-name template template-name
<fp-c-slot fpc-slot pic-slot pic-slot>
```

Release Information

Command introduced in Junos Os Release 17.2.

Description

Display URL filter statistics.

NOTE: Starting in Junos OS Release 18.3R1, the `show services url-filter statistics profile template` command is deprecated and has been replaced by the `show services web-filter statistics profile template` command.

Required Privilege

```
view
```

Related Documentation

- show services url-filter dns-resolution profile on page 1783
- show services url-filter dns-resolution-statistics profile template on page 1786
- Configuring URL Filtering on page 50

List of Sample Output

show services url-filter statistics profile template on page 1792

Output Fields

Table 113 on page 1791 lists the output fields for the `show services url-filter statistics profile template` command. Output fields are listed in the approximate order in which they appear.

Table 113: show services url-filter statistics profile template Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept</td>
<td>Action counters for accepted packets.</td>
</tr>
<tr>
<td>Custom page</td>
<td>Action counters for custom page sent to recipient.</td>
</tr>
<tr>
<td>Http code</td>
<td>Action counters for HTTP status code response.</td>
</tr>
<tr>
<td>Redirect url</td>
<td>Action counters for redirect URL response.</td>
</tr>
<tr>
<td>TCP reset</td>
<td>Action counters for TCP reset. Connection is closed.</td>
</tr>
<tr>
<td>Bypass session count</td>
<td>Number of sessions not blocked by URL filtering because the match criteria was not met.</td>
</tr>
</tbody>
</table>
Table 113: show services url-filter statistics profile template Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPV4 Disable IP Blocking</td>
<td>Action counters for IPv4 packets that were accepted because filtering is disabled for HTTP traffic that contains an embedded IP address belonging to a blacklisted domain name in the URL filter database.</td>
</tr>
<tr>
<td>IPV6 Disable IP Blocking</td>
<td>Action counters for IPv6 packets that were accepted because filtering is disabled for HTTP traffic that contains an embedded IP address belonging to a blacklisted domain name in the URL filter database.</td>
</tr>
<tr>
<td>session count</td>
<td>The session of activity that a user with a unique IP address spends on a website during a specified period of time. A session, in this case, would be the packets going to the service PIC from the Packet Forwarding Engine and then back to the service PIC.</td>
</tr>
<tr>
<td>uplink packet count</td>
<td>Number of packets going from the Packet Forwarding Engine to the service PIC.</td>
</tr>
<tr>
<td>uplink bytes</td>
<td>Number of bytes passing uplink.</td>
</tr>
<tr>
<td>downlink packet count</td>
<td>Number of packets going from the service PIC to the service Packet Forwarding Engine.</td>
</tr>
<tr>
<td>downlink bytes</td>
<td>Number of bytes passing downlink.</td>
</tr>
</tbody>
</table>

Sample Output

show services url-filter statistics profile template

user@host> show services url-filter statistics profile p1 template t1

URL filtering action counters:

Accept session count : 0
Accept uplink packet count : 0
Accept uplink bytes : 0
Accept downlink packet count : 0
Accept downlink bytes : 0

Custom page session count : 0
Custom page uplink packet count : 0
Custom page uplink bytes : 0
Custom page downlink packet count : 0
Custom page downlink bytes : 0

Http scode session count : 0
Http scode uplink packet count : 0
Http scode uplink bytes : 0
Http scode downlink packet count : 0
Http scode downlink bytes : 0

Redirect url session count : 0
Redirect url uplink packet count : 0
<table>
<thead>
<tr>
<th>Table Entry</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redirect url uplink bytes</td>
<td>0</td>
</tr>
<tr>
<td>Redirect url downlink packet count</td>
<td>0</td>
</tr>
<tr>
<td>Redirect url downlink bytes</td>
<td>0</td>
</tr>
<tr>
<td>Tcp reset session count</td>
<td>0</td>
</tr>
<tr>
<td>Tcp reset uplink packet count</td>
<td>0</td>
</tr>
<tr>
<td>Tcp reset uplink bytes</td>
<td>0</td>
</tr>
<tr>
<td>Tcp reset downlink packet count</td>
<td>0</td>
</tr>
<tr>
<td>Tcp reset downlink bytes</td>
<td>0</td>
</tr>
<tr>
<td>Bypass session count</td>
<td>0</td>
</tr>
<tr>
<td>IPV4 Disable IP Blocking Sessions</td>
<td>0</td>
</tr>
<tr>
<td>IPV4 Disable IP Blocking uplink packets</td>
<td>0</td>
</tr>
<tr>
<td>IPV4 Disable IP Blocking uplink bytes</td>
<td>0</td>
</tr>
<tr>
<td>IPV4 Disable IP Blocking downlink packets</td>
<td>0</td>
</tr>
<tr>
<td>IPV4 Disable IP Blocking downlink bytes</td>
<td>0</td>
</tr>
<tr>
<td>IPV6 Disable IP Blocking Sessions</td>
<td>0</td>
</tr>
<tr>
<td>IPV6 Disable IP Blocking uplink packets</td>
<td>0</td>
</tr>
<tr>
<td>IPV6 Disable IP Blocking uplink bytes</td>
<td>0</td>
</tr>
<tr>
<td>IPV6 Disable IP Blocking downlink packets</td>
<td>0</td>
</tr>
<tr>
<td>IPV6 Disable IP Blocking downlink bytes</td>
<td>0</td>
</tr>
</tbody>
</table>
show services web-filter dns-resolution profile

Syntax

```
show services web-filter dns-resolution profile profile-name <template template-name>
<fpc-slot fpc-slot pic-slot pic-slot>
```

Release Information

Command introduced in Junos OS Release 18.3R1.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description

Display URL filter domain name system (DNS) resolution information.

URL filtering resolves the blacklisted domains. The total number of domains are divided into chunks of 50 domains per chunk. The filter term in the command output is the name of a chunk.

Options

- `fpc-slot fpc-slot pic-slot pic-slot`—(Optional) Specify the FPC and PIC for which you want URL filter information displayed.
- `profile profile-name`—Specify the profile for which you want URL filter information displayed.
- `template template-name`—(Optional) Specify the template for which you want URL filter information displayed.

Required Privilege Level

view

Related Documentation

- show services web-filter dns-resolution-statistics profile template on page 1797
- show services web-filter statistics profile on page 1802
- Configuring URL Filtering on page 50

List of Sample Output

show services web-filter dns-resolution profile on page 1795

Output Fields

Table 114 on page 1794 lists the output fields for the show services web-filter dns-resolution profile command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile</td>
<td>Name of profile.</td>
</tr>
<tr>
<td>Template</td>
<td>Name of template.</td>
</tr>
<tr>
<td>Filter Term</td>
<td>Name of the domains chunk. All domains are divided into chunks of 50 domains per chunk.</td>
</tr>
</tbody>
</table>
Table 114: `show services web-filter dns-resolution profile` Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 Address Count</td>
<td>The number of IPv4 addresses resolved for all domains under the filter term.</td>
</tr>
<tr>
<td>IPv6 Address Count</td>
<td>The number of IPv6 addresses resolved for all domains under the filter term.</td>
</tr>
<tr>
<td>Domain Name</td>
<td>Name of domain.</td>
</tr>
<tr>
<td>IPv4 Records</td>
<td>Listing of IPv4 addresses.</td>
</tr>
<tr>
<td>IPv6 Records</td>
<td>Listing of IPv6 addresses.</td>
</tr>
</tbody>
</table>

Sample Output

```
show services web-filter dns-resolution profile

user@host> show services web-filter dns-resolution profile p1
URL filtering DNS resolution:
Profile: p1
Template: t1

1). Filter Term: URLF_t1_0004
   IPv4 Address Count: 20
   IPv6 Address Count: 20
   1 ). Domain Name: www.facebook.com
       IPv4 Records:
           31.13.77.36
           31.13.76.68
       IPv6 Records:
           2a03:2880:f122:83:face:b00c:0:25de
           2a03:2880:f111:83:face:b00c:0:25de

2 ). Domain Name: www.youtube.com
       IPv4 Records:
           216.58.193.78
           216.58.194.206
       IPv6 Records:
           2607:f8b0:400a:800::200e
           2607:f8b0:4005:809::200e

3 ). Domain Name: www.netflix.com
       IPv4 Records:
           50.112.200.248
           52.10.96.2
           52.25.242.211
```
show services web-filter dns-resolution-statistics profile template

Syntax

```
show services web-filter dns-resolution-statistics profile profile-name template template-name
```

Release Information

Command introduced in Junos OS Release 18.3R1.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description

Display URL filter domain name system (DNS) resolution statistics.

Options

`(extensive | summary)`—Specify the level of detail of information you want displayed.

- `profile profile-name`—Specify the profile for which you want URL filter information displayed.
- `template template-name`—Specify the template for which you want URL filter information displayed.

Required Privilege

View

Related Documentation

- show services web-filter dns-resolution profile on page 1794
- show services web-filter statistics profile on page 1802
- Configuring URL Filtering on page 50

List of Sample Output

- show services web-filter dns-resolution-statistics profile template summary on page 1799
- show services web-filter dns-resolution-statistics profile template extensive on page 1799

Output Fields

Table 115 on page 1797 lists the output fields for the `show services web-filter dns-resolution-statistics profile template` command. Output fields are listed in the approximate order in which they appear.

Table 115: show services web-filter dns-resolution-statistics profile template Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile</td>
<td>Name of profile.</td>
<td>all</td>
</tr>
<tr>
<td>Template</td>
<td>Name of template.</td>
<td>all</td>
</tr>
<tr>
<td>DNS start time</td>
<td>Start time of the DNS resolution.</td>
<td>summary</td>
</tr>
</tbody>
</table>
Table 115: show services web-filter dns-resolution-statistics profile template Output

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next DNS start time</td>
<td>Start time of the next DNS resolution.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of resolved A addresses</td>
<td>Number of resolved IPv4 addresses.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of resolved AAAA addresses</td>
<td>Number of resolved IPv6 addresses.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of unresolved A addresses</td>
<td>Number of unresolved IPv4 addresses.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of unresolved AAAA addresses</td>
<td>Number of unresolved IPv6 addresses.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of resolved A domains</td>
<td>Number of resolved IPv4 domains.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of resolved AAAA domains</td>
<td>Number of resolved IPv6 domains.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of unresolved A domains</td>
<td>Number of unresolved IPv4 domains.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of unresolved AAAA domains</td>
<td>Number of unresolved IPv6 domains.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of requests sent</td>
<td>Number of DNS requests sent.</td>
<td>summary</td>
</tr>
<tr>
<td>Number of responses received</td>
<td>Number of DNS responses received.</td>
<td>summary</td>
</tr>
<tr>
<td>Domain Name</td>
<td>Name of domain.</td>
<td>extensive</td>
</tr>
<tr>
<td>IPv4 Address information</td>
<td>IPv4 address information includes the following fields:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• DNS server IP—IPv4 address of DNS server.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Req Sent—Number of DNS requests sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resp Received—Number of DNS responses received.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DNS retries—Number of times no DNS response was received and so retried.</td>
<td></td>
</tr>
</tbody>
</table>
Table 115: show services web-filter dns-resolution-statistics profile template Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Address information</td>
<td>IPv6 address information includes the following fields:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• DNS server IP—IPv6 address of DNS server.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Req Sent—Number of DNS requests sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resp Received—Number of DNS responses received.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DNS retries—Number of times no DNS response was received and so retried.</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

show services web-filter dns-resolution-statistics profile template summary

user@host> show services web-filter dns-resolution-statistics profile1 template t1 summary

URL filtering DNS resolution statistics:
Profile: p1
Template: t1

DNS start time : May 01 16:40:24 PDT
Next DNS start time : May 01 17:40:24 PDT
Number of resolved A domains : 114
Number of resolved AAAA domains : 114
Number of unresolved A domains : 0
Number of unresolved AAAA domains : 0
Number of requests sent : 246
Number of responses received : 228

show services web-filter dns-resolution-statistics profile template extensive

user@host> show services web-filter dns-resolution-statistics profile p1 template t1 extensive

URL filtering DNS resolution statistics:
Profile: p1
Template: t1

1) Domain Name: www.facebook.com

IPV4 Address information:
DNS server IP 8.8.8.8
Req Sent 20
Resp Received 20
DNS retries 0

IPV4 Address information:
DNS server IP 172.29.131.60
Req Sent 21
Resp Received 20
DNS retries 0
IPv6 Address information:
 DNS server IP 8.8.8.8
 Req Sent 25
 Resp Received 20
 DNS retries 0

IPv6 Address information:
 DNS server IP 172.29.131.60
 Req Sent 24
 Resp Received 20
 DNS retries 0

2) Domain Name: www.youtube.com

IPv4 Address information:
 DNS server IP 8.8.8.8
 Req Sent 21
 Resp Received 20
 DNS retries 0

IPv4 Address information:
 DNS server IP 172.29.131.60
 Req Sent 21
 Resp Received 20
 DNS retries 0

IPv6 Address information:
 DNS server IP 8.8.8.8
 Req Sent 21
 Resp Received 20
 DNS retries 0

IPv6 Address information:
 DNS server IP 172.29.131.60
 Req Sent 21
 Resp Received 20
 DNS retries 0

3) Domain Name: www.netflix.com

IPv4 Address information:
 DNS server IP 8.8.8.8
 Req Sent 21
 Resp Received 20
 DNS retries 0

IPv4 Address information:
 DNS server IP 172.29.131.60
 Req Sent 21
 Resp Received 20
 DNS retries 0

IPv6 Address information:
 DNS server IP 8.8.8.8
 Req Sent 21
 Resp Received 20
 DNS retries 0

IPv6 Address information:
 DNS server IP 172.29.131.60
 Req Sent 21
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resp Received</td>
<td>20</td>
</tr>
<tr>
<td>DNS retries</td>
<td>0</td>
</tr>
</tbody>
</table>
show services web-filter statistics profile

Syntax

```
show services web-filter statistics profile profile-name
  <dns-filter-template template-name>
  <dns-filter-term term-name>
  <fpc-slot fpc-slot pic-slot pic-slot pic-slot>
  <url-filter-template template-name>
```

Release Information

Command introduced in Junos OS Release 18.3R1.
Support added in Junos OS Release 19.3R1 for Next Gen Services on MX Series routers MX240, MX480 and MX960 with the MX-SPC3 services card.

Description

Display statistics for DNS request filtering and URL filtering for the specified filter profile.

Options

- `dns-filter-template template-name`—(Optional) Display statistics for the specified DNS filter template.
- `dns-filter-term term-name`—(Optional) Display statistics for the specified term in the DNS filter template.
- `fpc-slot fpc-slot pic-slot pic-slot pic-slot`—(Optional) Display statistics for the specified services PIC.
- `profile profile-name`—Display statistics for the specified filter profile.
- `url-filter-template template-name`—(Optional) Display statistics for the specified URL filter template.

Required Privilege

Level view

Related Documentation

- DNS Request Filtering for Blacklisted Website Domains on page 39
- Configuring URL Filtering on page 50

List of Sample Output

```
show services web-filter statistics profile dns-filter-template on page 1803
show services web-filter statistics profile on page 1804
```

Output Fields

```
Table 116 on page 1802 lists the output fields for the show services web-filter statistics profile command. Output fields are listed in the approximate order in which they appear.
```

Table 116: show services web-filter statistics profile Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP Counters</td>
<td>Number of UDP DNS requests, responses, and log only responses for DNS request filtering for queries of types A, AAAA, MX, CNAME, SRV, TXT, and MISC.</td>
</tr>
</tbody>
</table>
Table 116: show services web-filter statistics profile Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP Counters</td>
<td>Number of TCP DNS requests, responses, and log only responses for DNS request filtering for queries of types A, AAAA, MX, CNAME, SRV, TXT, and MISC.</td>
</tr>
<tr>
<td>Accept</td>
<td>Action counters for accepted packets for URL filtering.</td>
</tr>
<tr>
<td>Custom page</td>
<td>Action counters for custom page sent to recipient for URL filtering.</td>
</tr>
<tr>
<td>Http code</td>
<td>Action counters for HTTP status code response for URL filtering.</td>
</tr>
<tr>
<td>Redirect url</td>
<td>Action counters for redirect URL response for URL filtering.</td>
</tr>
<tr>
<td>TCP reset</td>
<td>Action counters for TCP reset for URL filtering. Connection is closed.</td>
</tr>
<tr>
<td>Bypass session count</td>
<td>Number of sessions not blocked by URL filtering because the match criteria was not met for URL filtering.</td>
</tr>
<tr>
<td>IPV4 Disable IP Blocking</td>
<td>Action counters for IPv4 packets that were accepted because filtering is disabled for HTTP traffic that contains an embedded IP address belonging to a blacklisted domain name in the URL filter database.</td>
</tr>
<tr>
<td>IPV6 Disable IP Blocking</td>
<td>Action counters for IPv6 packets that were accepted because filtering is disabled for HTTP traffic that contains an embedded IP address belonging to a blacklisted domain name in the URL filter database.</td>
</tr>
<tr>
<td>session count</td>
<td>The session of activity that a user with a unique IP address spends on a website during a specified period of time for URL filtering. A session, in this case, would be the packets going to the service PIC from the Packet Forwarding Engine and then back to the service PIC.</td>
</tr>
<tr>
<td>uplink packet count</td>
<td>Number of packets going from the Packet Forwarding Engine to the service PIC for URL filtering.</td>
</tr>
<tr>
<td>uplink bytes</td>
<td>Number of bytes passing uplink for URL filtering.</td>
</tr>
<tr>
<td>downlink packet count</td>
<td>Number of packets going from the service PIC to the service Packet Forwarding Engine for URL filtering.</td>
</tr>
<tr>
<td>downlink bytes</td>
<td>Number of bytes passing downlink for URL filtering.</td>
</tr>
<tr>
<td>UDP DNS</td>
<td>Number of UDP DNS requests, responses, and log only responses for DNS request filtering for queries of types A, AAAA, MX, CNAME, SRV, TXT, and MISC.</td>
</tr>
<tr>
<td>TCP DNS</td>
<td>Number of TCP DNS requests, responses, and log only responses for DNS request filtering for queries of types A, AAAA, MX, CNAME, SRV, TXT, and MISC.</td>
</tr>
</tbody>
</table>

Sample Output

```text
show services web-filter statistics profile dns-filter-template

user@host> show services web-filter statistics profile pdns dns-filter-template tdns
```
Sample Output

show services web-filter statistics profile

user@host> show services web-filter statistics profile Profile1

URL filtering action counters:

Accept session count : 0
Accept uplink packet count : 0
Accept uplink bytes : 0
Accept downlink packet count: 0
Accept downlink bytes : 0

Custom page session count : 0
Custom page uplink packet count: 0
Custom page uplink bytes : 0
Custom page downlink packet count: 0
Custom page downlink bytes : 0

Http scode session count : 0
Http scode uplink packet count: 0
Http scode uplink bytes : 0
Http scode downlink packet count: 0
Http scode downlink bytes : 0

Redirect url session count : 0
Redirect url uplink packet count: 0
Redirect url uplink bytes : 0
Redirect url downlink packet count: 0
Redirect url downlink bytes : 0

Tcp reset session count : 0
Tcp reset uplink packet count: 0
Tcp reset uplink bytes : 0
Tcp reset downlink packet count: 0
Tcp reset downlink bytes : 0
<table>
<thead>
<tr>
<th>Count</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tcp reset downlink bytes</td>
<td>0</td>
</tr>
<tr>
<td>Bypass session count</td>
<td>0</td>
</tr>
<tr>
<td>IPV4 Disable IP Blocking Sessions</td>
<td>0</td>
</tr>
<tr>
<td>IPV4 Disable IP Blocking uplink packets</td>
<td>0</td>
</tr>
<tr>
<td>IPV4 Disable IP Blocking uplink bytes</td>
<td>0</td>
</tr>
<tr>
<td>IPV4 Disable IP Blocking downlink packets</td>
<td>0</td>
</tr>
<tr>
<td>IPV4 Disable IP Blocking downlink bytes</td>
<td>0</td>
</tr>
<tr>
<td>IPV6 Disable IP Blocking Sessions</td>
<td>0</td>
</tr>
<tr>
<td>IPV6 Disable IP Blocking uplink packets</td>
<td>0</td>
</tr>
<tr>
<td>IPV6 Disable IP Blocking uplink bytes</td>
<td>0</td>
</tr>
<tr>
<td>IPV6 Disable IP Blocking downlink packets</td>
<td>0</td>
</tr>
<tr>
<td>IPV6 Disable IP Blocking downlink bytes</td>
<td>0</td>
</tr>
</tbody>
</table>

DNS filtering counters:

<table>
<thead>
<tr>
<th>UDP DNS A req count</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP DNS A resp count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS A log only count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS AAAA req count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS AAAA resp count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS AAAA log only count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS MX req count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS MX resp count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS MX log only count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS CNAME req count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS CNAME resp count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS CNAME log only count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS SRV req count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS SRV resp count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS SRV log only count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS TXT req count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS TXT resp count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS TXT log only count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS ANY req count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS ANY resp count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS ANY log only count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS MISC req count</td>
<td>0</td>
</tr>
<tr>
<td>UDP DNS MISC resp count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS A req count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS A resp count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS A log only count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS AAAA req count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS AAAA resp count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS AAAA log only count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS MX req count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS MX resp count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS MX log only count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS CNAME req count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS CNAME resp count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS CNAME log only count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS SRV req count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS SRV resp count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS SRV log only count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS TXT req count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS TXT resp count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS TXT log only count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS ANY req count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS ANY resp count</td>
<td>0</td>
</tr>
<tr>
<td>Description</td>
<td>Count</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>TCP DNS ANY log only count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS MISC req count</td>
<td>0</td>
</tr>
<tr>
<td>TCP DNS MISC log only count</td>
<td>0</td>
</tr>
</tbody>
</table>