Table of Contents

About the Documentation ... xiii
Documentation and Release Notes xiii
Using the Examples in This Manual xiii
Merging a Full Example .. xiv
Merging a Snippet .. xiv
Documentation Conventions ... xv
Documentation Feedback .. xvii
Requesting Technical Support xvii
Self-Help Online Tools and Resources xviii
Creating a Service Request with JTAC xviii

Part 1 Tunnel Services

Chapter 1

Overview ... 3
Tunnel Services Overview .. 3
Tunnel Interface Configuration on MX Series Routers Overview 6
Configuring Tunnel Interfaces on T4000 Routers 8
Configuring Tunnel Interfaces on an MX Series Router with a 16x10GE 3D MPC ... 9
Configuring Tunnel Interfaces on MX Series Routers with the MPC3E 10
Example: Configuring Tunnel Interfaces on the MPC3E 11
Configuring Tunnel Interfaces on MX Series Routers with MPC4E 13
Tunnel Interfaces on MX Series Routers with MPC7E-10G, MPC7E-MRATE, MX2K-MPC8E, and MX2K-MPC9E 13
Packet Forwarding Engine Mapping and Tunnel Bandwidth for MPC7E-MRATE .. 14
Packet Forwarding Engine Mapping and Tunnel Bandwidth for MPC7E-10G ... 14
Packet Forwarding Engine Mapping and Tunnel Bandwidth for MX2K-MPC8E ... 15
Packet Forwarding Engine Mapping and Tunnel Bandwidth for MX2K-MPC9E ... 15
Configuring Tunnel Interfaces on MX Series Routers with MPC7E-MRATE/MPC7E-10G .. 16
Configuring Tunnel Interfaces on MX Series Routers with MX2K-MPC8E 17
Configuring Tunnel Interfaces on MX Series Routers with MX2K-MPC9E 18
Example: Configuring Tunnel Interfaces on a Gigabit Ethernet 40-Port DPC 19
Example: Configuring Tunnel Interfaces on a 10-Gigabit Ethernet 4-Port DPC ... 19
Chapter 2 Encapsulating One Protocol Over Another Using GRE Interfaces 35
GRE Keepalive Time Overview ... 35
Configuring GRE Keepalive Time 36
Configuring Keepalive Time and Hold time for a GRE Tunnel Interface 37
Display GRE Keepalive Time Configuration 38
Display Keepalive Time Information on a GRE Tunnel Interface 38
Enabling Fragmentation on GRE Tunnels 39
Understanding Generic Routing Encapsulation on ACX Series 40
Overview of GRE .. 41
GRE Tunneling ... 41
Encapsulation and De-Encapsulation on the Router 41
Number of Source and Destination Tunnels Allowed on a Router 42
Configuration Limitations .. 42
Configuring Generic Routing Encapsulation Tunneling on ACX Series 43
Configuring a GRE Tunnel Port ... 43
Configuring Tunnels to Use Generic Routing Encapsulation 44
Chapter 3 Encapsulating One IP Packet Over Another Using IP-IP Interfaces 45
Configuring IPv6-over-IPv4 Tunnels 45
Example: Configuring an IPv6-over-IPv4 Tunnel 45
Chapter 4 Filtering Unicast Packets Through Multicast Tunnel Interfaces 47
Configuring Unicast Tunnels ... 47
Configuring a Key Number on GRE Tunnels 49
Enabling Packet Fragmentation on GRE Tunnels Prior to GRE Encapsulation .. 50
Specifying an MTU Setting for the Tunnel 50
Configuring a GRE Tunnel to Copy ToS Bits to the Outer IP Header 51
Enabling Fragmentation and Reassembly on Packets After GRE-Encapsulation ... 51
Support for IPv6 GRE tunnels .. 52
Examples: Configuring Unicast Tunnels 52
Restricting Tunnels to Multicast Traffic 54
<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Connecting Logical Systems Using Logical Tunnel Interfaces 55</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configuring Logical Tunnel Interfaces 55</td>
</tr>
<tr>
<td></td>
<td>Connecting Logical Systems .. 55</td>
</tr>
<tr>
<td></td>
<td>Guidelines for Configuring Logical Tunnels on ACX Series Routers 57</td>
</tr>
<tr>
<td></td>
<td>Configuring an Interface in the VRF Domain to Receive Multicast Traffic 60</td>
</tr>
<tr>
<td></td>
<td>Configuring a Proxy Logical Interface in the Global Domain 60</td>
</tr>
<tr>
<td></td>
<td>Associating the Proxy Logical Interface to a Logical Interface in a VRF Domain 61</td>
</tr>
<tr>
<td></td>
<td>Limitations .. 61</td>
</tr>
<tr>
<td></td>
<td>Example: Configuring Logical Tunnels 62</td>
</tr>
<tr>
<td></td>
<td>Redundant Logical Tunnels Overview 64</td>
</tr>
<tr>
<td></td>
<td>Redundant Logical Tunnel Configuration 65</td>
</tr>
<tr>
<td></td>
<td>Redundant Logical Tunnel Failure Detection and Failover 66</td>
</tr>
<tr>
<td></td>
<td>Configuring Redundant Logical Tunnels 67</td>
</tr>
<tr>
<td></td>
<td>Example: Configuring Redundant Logical Tunnels 68</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Configuring Layer 2 Ethernet Services over GRE Tunnel Interfaces 81</td>
</tr>
<tr>
<td></td>
<td>Layer 2 Services over GRE Tunnel Interfaces on MX Series with MPCs 81</td>
</tr>
<tr>
<td></td>
<td>Format of GRE Frames and Processing of GRE Interfaces for Layer 2 Ethernet Packets ... 82</td>
</tr>
<tr>
<td></td>
<td>Guidelines for Configuring Layer 2 Ethernet Traffic Over GRE Tunnels 82</td>
</tr>
<tr>
<td></td>
<td>Sample Scenarios of Configuring Layer 2 Ethernet Traffic Over GRE Tunnels 84</td>
</tr>
<tr>
<td></td>
<td>Configuring Layer 2 Services over GRE Logical Interfaces in Bridge Domains 85</td>
</tr>
<tr>
<td></td>
<td>Example: Configuring Layer 2 Services Over GRE Logical Interfaces in Bridge Domains 86</td>
</tr>
<tr>
<td></td>
<td>Example: Configuring Layer 2 Services Over GRE Logical Interfaces in Bridge Domains with IPv6 Transport 92</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Understanding Default PIM Tunnel Configurations 99</td>
</tr>
<tr>
<td></td>
<td>Configuring PIM Tunnels .. 99</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Facilitating VRF Table Lookup Using Virtual Loopback Tunnel Interfaces ... 101</td>
</tr>
<tr>
<td></td>
<td>Configuring Virtual Loopback Tunnels for VRF Table Lookup 101</td>
</tr>
<tr>
<td></td>
<td>Configuring Tunnel Interfaces for Routing Table Lookup 103</td>
</tr>
<tr>
<td></td>
<td>Example: Configuring a Virtual Loopback Tunnel for VRF Table Lookup 103</td>
</tr>
<tr>
<td></td>
<td>Example: Virtual Routing and Forwarding (VRF) and Service Configuration 104</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Enabling a VPN to Travel Through a Non-MPLS Network Using Dynamic Tunnels ... 107</td>
</tr>
<tr>
<td></td>
<td>Configuring Dynamic Tunnels ... 107</td>
</tr>
<tr>
<td>Part 2</td>
<td>Encryption Services ... 111</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Overview ... 111</td>
</tr>
<tr>
<td></td>
<td>Encryption Overview ... 111</td>
</tr>
<tr>
<td></td>
<td>Configuring an ES Tunnel Interface for a Layer 3 VPN 111</td>
</tr>
</tbody>
</table>
Chapter 14

Operational Commands

keepalive-time ... 149
key .. 150
multicast-only 150
peer-unit ... 151
peer-certificate-type 152
reassemble-packets 153
redundancy-group (Interfaces) 154
redundancy-group (Chassis - MX Series) . 155
routing-instance 156
routing-instances 157
routing-options 158
source ... 158
source ... 159
source-address 160
ttl .. 161
tunnel .. 162
tunnel .. 163
unit (Interfaces) 164
unit (Interfaces) 165
vni (Interfaces) 166
vxlan-gpe (FTI) 167

clear ike security-associations 170
clear ipsec security-associations 171
request ipsec switch 173
request security certificate enroll (Signed) . 174
request security certificate enroll (Unsigned) . 176
request security key-pair 177
request system certificate add 178
show ike security-associations 179
show interfaces (Encryption) 183
show interfaces (GRE) 189
show interfaces (IP-over-IP) 199
show interfaces (Logical Tunnel) 204
show interfaces (Multicast Tunnel) 209
show interfaces (PIM) 214
show interfaces (Virtual Loopback Tunnel) . 218
show interfaces fti 223
show ipsec certificates 232
show ipsec redundancy 235
show ipsec security-associations 238
show system certificate 241
List of Figures

<table>
<thead>
<tr>
<th>Part 1</th>
<th>Tunnel Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Overview</td>
</tr>
<tr>
<td></td>
<td>Figure 1: FTIs Connecting Remote Devices to a Virtual Private Cloud</td>
</tr>
<tr>
<td></td>
<td>Figure 2: Flexible Tunnel Interfaces Topology</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Encapsulating One Protocol Over Another Using GRE Interfaces</td>
</tr>
<tr>
<td></td>
<td>Figure 3: Keepalive Request Packet</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Connecting Logical Systems Using Logical Tunnel Interfaces</td>
</tr>
<tr>
<td></td>
<td>Figure 4: Redundant Logical Tunnels</td>
</tr>
<tr>
<td></td>
<td>Figure 5: Redundant Logical Tunnels</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 2</th>
<th>Encryption Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 11</td>
<td>Sending Encrypted Traffic Through Tunnels</td>
</tr>
<tr>
<td></td>
<td>Figure 6: Example: IPsec Tunnel Connecting Security Gateways</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Configuring Redundancy in Case of Service Failure</td>
</tr>
<tr>
<td></td>
<td>Figure 7: IPsec Tunnel Redundancy</td>
</tr>
</tbody>
</table>
List of Tables

About the Documentation ... xiii
Table 1: Notice Icons ... xv
Table 2: Text and Syntax Conventions xvi

Part 1 Tunnel Services

Chapter 1 Overview .. 3
Table 3: Tunnel Interface Types 4
Table 4: Packet Forwarding Engine Mapping and Tunnel Bandwidth for
MPC7E-MRATE .. 14
Table 5: Packet Forwarding Engine Mapping and Tunnel Bandwidth for
MPC7E-10G ... 14
Table 6: Packet Forwarding Engine Mapping and Tunnel Bandwidth for
MX2K-MPC8E ... 15
Table 7: Packet Forwarding Engine Mapping and Tunnel Bandwidth for
MX2K-MPC9E ... 15
Table 8: Packet Forwarding Engine Mapping and Tunnel Bandwidth for MPC1E
and MPC1-Q .. 21
Table 9: Packet Forwarding Engine Mapping and Tunnel Bandwidth for MPC2,
/MPC2E-Q, and MPC2E-EQ .. 22

Chapter 8 Facilitating VRF Table Lookup Using Virtual Loopback Tunnel
Interfaces .. 101
Table 10: Methods for Configuring Egress Filtering 101

Part 3 Configuration Statements and Operational Commands

Chapter 14 Operational Commands 169
Table 11: show ike security-associations Output Fields 179
Table 12: Encryption show interfaces Output Fields 183
Table 13: GRE show interfaces Output Fields 190
Table 14: IP-over-IP show interfaces Output Fields 199
Table 15: Logical Tunnel show interfaces Output Fields 204
Table 16: Multicast Tunnel show interfaces Output Fields 210
Table 17: PIM show interfaces Output Fields 214
Table 18: Virtual Loopback Tunnel show interfaces Output Fields 218
Table 19: FTI show interfaces Output Fields 223
Table 20: show ipsec certificates Output Fields 232
Table 21: show ipsec redundancy Output Fields 235
Table 22: show ipsec security-associations Output Fields 238
Table 23: show system certificate Output Fields 241
About the Documentation

- Documentation and Release Notes on page xiii
- Using the Examples in This Manual on page xiii
- Documentation Conventions on page xv
- Documentation Feedback on page xvii
- Requesting Technical Support on page xvii

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product documentation page on the Juniper Networks website at https://www.juniper.net/documentation/.

If the information in the latest release notes differs from the information in the documentation, follow the product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts. These books go beyond the technical documentation to explore the nuances of network architecture, deployment, and administration. The current list can be viewed at https://www.juniper.net/books.

Using the Examples in This Manual

If you want to use the examples in this manual, you can use the load merge or the load merge relative command. These commands cause the software to merge the incoming configuration into the current candidate configuration. The example does not become active until you commit the candidate configuration.

If the example configuration contains the top level of the hierarchy (or multiple hierarchies), the example is a full example. In this case, use the load merge command.

If the example configuration does not start at the top level of the hierarchy, the example is a snippet. In this case, use the load merge relative command. These procedures are described in the following sections.
Merging a Full Example

To merge a full example, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration example into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following configuration to a file and name the file `ex-script.conf`. Copy the `ex-script.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   system {
     scripts {
       commit {
         file ex-script.xsl;
       }
     }
   }
   interfaces {
     fxp0 {
       disable;
       unit 0 {
         family inet {
           address 10.0.0.1/24;
         }
       }
     }
   }
   ```

2. Merge the contents of the file into your routing platform configuration by issuing the `load merge` configuration mode command:

   ```
   [edit]
   user@host# load merge /var/tmp/ex-script.conf
   load complete
   ```

Merging a Snippet

To merge a snippet, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration snippet into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following snippet to a file and name the file `ex-script-snippet.conf`. Copy the `ex-script-snippet.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   commit {
     file ex-script-snippet.xsl; }
   ```
2. Move to the hierarchy level that is relevant for this snippet by issuing the following configuration mode command:

```
[edit]
user@host# edit system scripts
[edit system scripts]
```

3. Merge the contents of the file into your routing platform configuration by issuing the `load merge relative` configuration mode command:

```
[edit system scripts]
user@host# load merge relative /var/tmp/ex-script-snippet.conf
load complete
```

For more information about the `load` command, see CLI Explorer.

Documentation Conventions

Table 1 on page xv defines notice icons used in this guide.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Informational note</td>
<td>Indicates important features or instructions.</td>
</tr>
<tr>
<td></td>
<td>Caution</td>
<td>Indicates a situation that might result in loss of data or hardware damage.</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>Alerts you to the risk of personal injury or death.</td>
</tr>
<tr>
<td></td>
<td>Laser warning</td>
<td>Alerts you to the risk of personal injury from a laser.</td>
</tr>
<tr>
<td></td>
<td>Tip</td>
<td>Indicates helpful information.</td>
</tr>
<tr>
<td></td>
<td>Best practice</td>
<td>Alerts you to a recommended use or implementation.</td>
</tr>
</tbody>
</table>

Table 2 on page xvi defines the text and syntax conventions used in this guide.
Table 2: Text and Syntax Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents text that you type.</td>
<td>To enter configuration mode, type the <code>configure</code> command: <code>user@host> configure</code></td>
</tr>
<tr>
<td>Fixed-width text like this</td>
<td>Represents output that appears on the terminal screen.</td>
<td><code>user@host> show chassis alarms</code> No alarms currently active</td>
</tr>
<tr>
<td>Italic text like this</td>
<td>• Introduces or emphasizes important new terms. • Identifies guide names. • Identifies RFC and internet draft titles.</td>
<td>• A policy term is a named structure that defines match conditions and actions. • Junos OS CLI User Guide • RFC 1997, BGP Communities Attribute</td>
</tr>
<tr>
<td>Italic text like this</td>
<td>Represents variables (options for which you substitute a value) in commands or configuration statements.</td>
<td>Configure the machine’s domain name: <code>[edit] root@# set system domain-name domain-name</code></td>
</tr>
<tr>
<td>Text like this</td>
<td>Represents names of configuration statements, commands, files, and directories; configuration hierarchy levels; or labels on routing platform components.</td>
<td>• To configure a stub area, include the <code>stub</code> statement at the <code>[[edit protocols ospf area area-id]]</code> hierarchy level. • The console port is labeled <code>CONSOLE</code></td>
</tr>
<tr>
<td><code>< ></code> (angle brackets)</td>
<td>Encloses optional keywords or variables.</td>
<td><code>stub <default-metric metric>;</code></td>
</tr>
<tr>
<td>`</td>
<td>` (pipe symbol)</td>
<td>Indicates a choice between the mutually exclusive keywords or variables on either side of the symbol. The set of choices is often enclosed in parentheses for clarity.</td>
</tr>
<tr>
<td><code>#</code> (pound sign)</td>
<td>Indicates a comment specified on the same line as the configuration statement to which it applies.</td>
<td><code>rsvp # Required for dynamic MPLS only</code></td>
</tr>
<tr>
<td><code>[]</code> (square brackets)</td>
<td>Encloses a variable for which you can substitute one or more values.</td>
<td><code>community name members [community-ids]</code></td>
</tr>
<tr>
<td>Indention and braces <code>{ }</code></td>
<td>Identifies a level in the configuration hierarchy.</td>
<td><code>[edit] routing-options { static { route default { nexthop address; retain; } } }</code></td>
</tr>
<tr>
<td><code>:</code> (semicolon)</td>
<td>Identifies a leaf statement at a configuration hierarchy level.</td>
<td></td>
</tr>
</tbody>
</table>

GUI Conventions
Table 2: Text and Syntax Conventions (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents graphical user interface (GUI) items you click or select.</td>
<td>• In the Logical Interfaces box, select All Interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To cancel the configuration, click Cancel.</td>
</tr>
<tr>
<td>> (bold right angle bracket)</td>
<td>Separates levels in a hierarchy of menu selections.</td>
<td>In the configuration editor hierarchy, select Protocols>Ospf.</td>
</tr>
</tbody>
</table>

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation. You can use either of the following methods:

• Online feedback system—Click TechLibrary Feedback, on the lower right of any page on the Juniper Networks TechLibrary site, and do one of the following:

 ![TechLibrary Feedback](image)

 • Click the thumbs-up icon if the information on the page was helpful to you.
 • Click the thumbs-down icon if the information on the page was not helpful to you or if you have suggestions for improvement, and use the pop-up form to provide feedback.

 • E-mail—Send your comments to techpubs-comments@juniper.net. Include the document or topic name, URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC). If you are a customer with an active J-Care or Partner Support Service support contract, or are covered under warranty, and need post-sales technical support, you can access our tools and resources online or open a case with JTAC.

• Product warranties—For product warranty information, visit https://www.juniper.net/support/warranty/.

• JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week, 365 days a year.
Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called the Customer Support Center (CSC) that provides you with the following features:

- Find CSC offerings: https://www.juniper.net/customers/support/
- Search for known bugs: https://prsearch.juniper.net/
- Find product documentation: https://www.juniper.net/documentation/
- Find solutions and answer questions using our Knowledge Base: https://kb.juniper.net/
- Download the latest versions of software and review release notes: https://www.juniper.net/customers/csc/software/
- Search technical bulletins for relevant hardware and software notifications: https://kb.juniper.net/InfoCenter/
- Join and participate in the Juniper Networks Community Forum: https://www.juniper.net/company/communities/
- Create a service request online: https://myjuniper.juniper.net

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool: https://entitlementsearch.juniper.net/entitlementsearch/

Creating a Service Request with JTAC

You can create a service request with JTAC on the Web or by telephone.

- Visit https://myjuniper.juniper.net.
- Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see https://support.juniper.net/support/requesting-support/.
PART 1

Tunnel Services

- Overview on page 3
- Encapsulating One Protocol Over Another Using GRE Interfaces on page 35
- Encapsulating One IP Packet Over Another Using IP-IP Interfaces on page 45
- Filtering Unicast Packets Through Multicast Tunnel Interfaces on page 47
- Connecting Logical Systems Using Logical Tunnel Interfaces on page 55
- Configuring Layer 2 Ethernet Services over GRE Tunnel Interfaces on page 81
- Understanding Default PIM Tunnel Configurations on page 99
- Facilitating VRF Table Lookup Using Virtual Loopback Tunnel Interfaces on page 101
- Enabling a VPN to Travel Through a Non-MPLS Network Using Dynamic Tunnels on page 107
Tunnel Services Overview

By encapsulating arbitrary packets inside a transport protocol, tunneling provides a private, secure path through an otherwise public network. Tunnels connect discontinuous subnetworks and enable encryption interfaces, virtual private networks (VPNs), and MPLS. If you have a Tunnel Physical Interface Card (PIC) installed in your M Series or T Series router, you can configure unicast, multicast, and logical tunnels.

You can configure two types of tunnels for VPNs: one to facilitate routing table lookups and another to facilitate VPN routing and forwarding instance (VRF) table lookups.
For information about encryption interfaces, see “Configuring Encryption Interfaces” on page 113. For information about VPNs, see the Junos OS VPNs Library for Routing Devices. For information about MPLS, see the MPLS Applications Feature Guide.

On SRX Series devices, Generic Routing Encapsulation (GRE) and IP-IP tunnels use internal interfaces, gr-0/0/0 and ip-0/0/0, respectively. The Junos OS creates these interfaces at system bootup; they are not associated with physical interfaces.

The Juniper Networks Junos OS supports the tunnel types shown in the following table.

Table 3: Tunnel Interface Types

<table>
<thead>
<tr>
<th>Interface</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gr-0/0/0</td>
<td>Configurable generic routing encapsulation (GRE) interface. GRE allows the encapsulation of one routing protocol over another routing protocol. Within a router, packets are routed to this internal interface, where they are first encapsulated with a GRE packet and then re-encapsulated with another protocol packet to complete the GRE. The GRE interface is an internal interface only and is not associated with a physical interface. You must configure the interface for it to perform GRE.</td>
</tr>
<tr>
<td>gre</td>
<td>Internally generated GRE interface. This interface is generated by the Junos OS to handle GRE. You cannot configure this interface.</td>
</tr>
<tr>
<td>ip-0/0/0</td>
<td>Configurable IP-over-IP encapsulation (also called IP tunneling) interface. IP tunneling allows the encapsulation of one IP packet over another IP packet. Packets are routed to an internal interface where they are encapsulated with an IP packet and then forwarded to the encapsulating packet's destination address. The IP-IP interface is an internal interface only and is not associated with a physical interface. You must configure the interface for it to perform IP tunneling.</td>
</tr>
<tr>
<td>pip</td>
<td>Internally generated IP-over-IP interface. This interface is generated by the Junos OS to handle IP-over-IP encapsulation. It is not a configurable interface.</td>
</tr>
<tr>
<td>lt-0/0/0</td>
<td>The lt interface on M Series and T Series routers supports configuration of logical systems—the capability to partition a single physical router into multiple logical devices that perform independent routing tasks. On SRX Series devices, the lt interface is a configurable logical tunnel interface that interconnects logical systems. See the Junos OS Logical Systems Configuration Guide for Security Devices.</td>
</tr>
<tr>
<td>mt-0/0/0</td>
<td>Internally generated multicast tunnel interface. Multicast tunnels filter all unicast packets; if an incoming packet is not destined for a 224/8-or-greater prefix, the packet is dropped and a counter is incremented. Within a router, packets are routed to this internal interface for multicast filtering. The multicast tunnel interface is an internal interface only and is not associated with a physical interface. If your router has a Tunnel Services PIC, the Junos OS automatically configures one multicast tunnel interface (mt-) for each virtual private network (VPN) you configure. You do not need to configure multicast tunnel interfaces. However, you can configure properties on mt- interfaces, such as the multicast-only statement.</td>
</tr>
<tr>
<td>Interface</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>mtun</td>
<td>Internally generated multicast tunnel interface. This interface is generated by the Junos OS to handle multicast tunnel services. It is not a configurable interface.</td>
</tr>
<tr>
<td>pd-0/0/0</td>
<td>Configurable Protocol Independent Multicast (PIM) de-encapsulation interface. In PIM sparse mode, the first-hop router encapsulates packets destined for the rendezvous point router. The packets are encapsulated with a unicast header and are forwarded through a unicast tunnel to the rendezvous point. The rendezvous point then de-encapsulates the packets and transmits them through its multicast tree. Within a router, packets are routed to this internal interface for de-encapsulation. The PIM de-encapsulation interface is an internal interface only and is not associated with a physical interface. You must configure the interface for it to perform PIM de-encapsulation. NOTE: On SRX Series devices, this interface type is ppd0.</td>
</tr>
<tr>
<td>pe-0/0/0</td>
<td>Configurable PIM encapsulation interface. In PIM sparse mode, the first-hop router encapsulates packets destined for the rendezvous point router. The packets are encapsulated with a unicast header and are forwarded through a unicast tunnel to the rendezvous point. The rendezvous point then de-encapsulates the packets and transmits them through its multicast tree. Within a router, packets are routed to this internal interface for encapsulation. The PIM encapsulation interface is an internal interface only and is not associated with a physical interface. You must configure the interface for it to perform PIM encapsulation. NOTE: On SRX Series devices, this interface type is ppe0.</td>
</tr>
<tr>
<td>pimd</td>
<td>Internally generated PIM de-encapsulation interface. This interface is generated by the Junos OS to handle PIM de-encapsulation. It is not a configurable interface.</td>
</tr>
<tr>
<td>pime</td>
<td>Internally generated PIM encapsulation interface. This interface is generated by the Junos OS to handle PIM encapsulation. It is not a configurable interface.</td>
</tr>
<tr>
<td>vt-0/0/0</td>
<td>Configurable virtual loopback tunnel interface. Facilitates VRF table lookup based on MPLS labels. This interface type is supported on M Series and T Series routers, but not on SRX Series devices. To configure a virtual loopback tunnel to facilitate VRF table lookup based on MPLS labels, you specify a virtual loopback tunnel interface name and associate it with a routing instance that belongs to a particular routing table. The packet loops back through the virtual loopback tunnel for route lookup.</td>
</tr>
</tbody>
</table>

Starting in Junos OS Release 15.1, you can configure Layer 2 Ethernet services over GRE interfaces (gr-fpc/pic/port to use GRE encapsulation). To enable Layer 2 Ethernet packets to be terminated on GRE tunnels, you must configure the bridge domain protocol family on the gr-interfaces and associate the gr-interfaces with the bridge domain. You must configure the GRE interfaces as core-facing interfaces, and they must be access or trunk interfaces. To configure the bridge domain family on gr-interfaces, include the `family bridge` statement at the [edit interfaces gr-fpc/pic/port unit logical-unit-number] hierarchy.
level. To associate the `gr` interface with a bridge domain, include the `interface gr-fpc/pic/port` statement at the `[edit routing-instances routing-instance-name bridge-domains bridge-domain-name]` hierarchy level. You can associate GRE interfaces in a bridge domain with the corresponding VLAN ID or list of VLAN IDs in a bridge domain by including the `vlan-id (all | none | number)` statement or the `vlan-id-list [vlan-id-numbers]` statement at the `[edit bridge-domains bridge-domain-name]` hierarchy level. The VLAN IDs configured for the bridge domain must match with the VLAN IDs that you configure for GRE interfaces by using the `vlan-id (all | none | number)` statement or the `vlan-id-list [vlan-id-numbers]` statement at the `[edit interfaces gr-fpc/pic/port unit logical-unit-number]` hierarchy level. You can also configure GRE interfaces within a bridge domain associated with a virtual switch instance. Layer 2 Ethernet packets over GRE tunnels are also supported with the GRE key option. The `gre-keymatch` condition allows a user to match against the GRE key field, which is an optional field in GRE encapsulated packets. The key can be matched as a single key value, a range of key values, or both.

NOTE: Starting in Junos OS Release 16.1, Layer 2 Port mirroring to a remote collector over a GRE interface is supported.

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>Starting in Junos OS Release 16.1, Layer 2 Port mirroring to a remote collector over a GRE interface is supported.</td>
</tr>
<tr>
<td>15.1</td>
<td>Starting in Junos OS Release 15.1, you can configure Layer 2 Ethernet services over GRE interfaces (<code>gr-fpc/pic/port</code> to use GRE encapsulation).</td>
</tr>
</tbody>
</table>

Release History Table

Related Documentation

- GRE Keepalive Time Overview on page 35
- Configuring Unicast Tunnels on page 47
- Restricting Tunnels to Multicast Traffic on page 54
- Tunnel Interface Configuration on MX Series Routers Overview on page 6
- Configuring Tunnel Interfaces on T4000 Routers on page 8

Tunnel Interface Configuration on MX Series Routers Overview

Because MX Series routers do not support Tunnel Services PICs, you create tunnel interfaces on MX Series routers by including the following statements at the `[edit chassis]` hierarchy level:

```hex
[edit chassis]
fpc slot-number {
    pic number {
        tunnel-services {
            bandwidth (1g | 10g | 20g | 30g | 40g | 50g | 60g | 70g | 80g | 90g | 100g):
```

Copyright © 2019, Juniper Networks, Inc.
Where:

fpc slot-number is the slot number of the DPC, MPC, or MIC. On the MX80 router, possible values are 0 and 1. On other MX Series routers, if two SCBs are installed, the range is 0 through 11. If three SCBs are installed, the range is 0 through 5 and 7 through 11.

pic number is the slot number of the PIC. On MX80 routers, if the FPC is 0, the PIC number can only be 0. If the FPC is 1, the PIC range is 0 through 3. For all other MX Series routers, the range is 0 through 3.

bandwidth (1g | 10g | 20g | 30g | 40g | 50g | 60g | 70g | 80g | 90g | 100g) is the maximum amount of bandwidth, in gigabits, that is available for tunnel traffic on each Packet Forwarding Engine. For MPCs and MICs, this bandwidth is not reserved for tunnel traffic and can be shared by the network interfaces. For DPCs, this bandwidth is reserved and cannot be shared by the network interfaces.

NOTE:
When you use MPCs and MICs, tunnel interfaces are soft interfaces and allow as much traffic as the forwarding-path allows, so it is advantageous to set up tunnel services without artificially limiting traffic by use of the **bandwidth** option. However, you **must** specify **bandwidth** when configuring tunnel services for MX Series routers with DPCs or FPCs. The GRE key option is not supported on the tunnel interfaces for DPCs on MX960 routers.

If you specify a bandwidth that is not compatible, tunnel services are not activated. For example, you cannot specify a bandwidth of 1 Gbps for a Packet Forwarding Engine on a 10-Gigabit Ethernet 4-port DPC.

When you configure tunnel interfaces on the Packet Forwarding Engine of a 10-Gigabit Ethernet 4-port DPC, the Ethernet interfaces for that port are removed from service and are no longer visible in the command-line interface (CLI). The Packet Forwarding Engine of a 10-Gigabit Ethernet 4-port DPC supports either tunnel interfaces or Ethernet interfaces, but not both. Each port on the 10-Gigabit Ethernet 4-port DPC includes two LEDs, one for tunnel services and one for Ethernet services, to indicate which type of service is being used. On the Gigabit Ethernet 40-port DPC, you can configure both tunnel and Ethernet interfaces at the same time.

To verify that the tunnel interfaces have been created, issue the **show interfaces terse** operational mode command. For more information, see the **CLI Explorer**. The bandwidth that you specify determines the port number of the tunnel interfaces that are created. When you specify a bandwidth of **1g**, the port number is always 10. When you specify any other bandwidth, the port number is always 0.

NOTE:
When the tunnel bandwidth is unspecified in the Routing Engine CLI, the maximum tunnel bandwidth for an MPC3E is 60G.
NOTE: You cannot configure ingress queueing and tunnel services on the same MPC because doing so causes PFE forwarding to stop. You can configure and use each feature separately.

Related Documentation

- Example: Configuring Tunnel Interfaces on a Gigabit Ethernet 40-Port DPC on page 19
- Example: Configuring Tunnel Interfaces on a 10-Gigabit Ethernet 4-Port DPC on page 19
- Example: Configuring Tunnel Interfaces on the MPC3E on page 11
- bandwidth (Tunnel Services)
- tunnel-services (Chassis)

Configuring Tunnel Interfaces on T4000 Routers

To create tunnel interfaces on a T4000 Core Router, include the following statements at the [edit chassis] hierarchy level:

```
[edit chassis]
fpc slot-number {
  pic number {
    tunnel-services {
      bandwidth bandwidth-value;
    }
  }
}
```

`fpc slot-number` denotes the slot number of the FPC. On the T4000 router, the range is 0 through 7.

NOTE:

- This applies only to the T4000 Type 5 FPC. If any other type of FPC is configured in this slot, this configuration is ignored and no tunnel physical interface is created.

- When you use Type 5 FPCs, the tunnel interfaces are soft interfaces and allow as much traffic as the forwarding-path allows. So, it is advantageous to setup tunnel services without artificially limiting traffic by setting the bandwidth statement.

`pic number` on the T4000 router is 0 or 1.

`bandwidth bandwidth-value` is the amount of bandwidth to reserve for the tunnel traffic on each Packet Forwarding Engine. The bandwidth value accepted includes every multiple of 10g up to 100g.
If you specify a bandwidth that is not compatible, tunnel services are not activated. For example, you cannot specify a bandwidth of 1 Gbps for a Packet Forwarding Engine on a 100-Gigabit Ethernet PIC with CFP.

To verify that the tunnel interfaces have been created, issue the `show interfaces terse` operational mode command. For more information, see the Junos Interfaces Command Reference.

Related Documentation
- `bandwidth (Tunnel Services)`
- `tunnel-services (Chassis)`

Configuring Tunnel Interfaces on an MX Series Router with a 16x10GE 3D MPC

MX960, MX480, and M240 routers support the 16-port 10-Gigabit Ethernet MPC (16x10GE 3D MPC) fixed configuration Field Replaceable Unit (FRU). Each Packet Forwarding Engine on a 16x10GE MPC can support a full-duplex 10Gbps tunnel without losing line-rate capacity. For example, a full-duplex 10Gbps tunnel can be hosted on a 10-Gigabit-Ethernet port, while two other 10-Gigabit-Ethernet ports on the same PFE can concurrently forward line-rate traffic.

To configure an MPC and its corresponding Packet Forwarding Engine to use tunneling services, include the `tunnel-services` statement at the `[edit chassis fpc slot-number pic pic-number]` hierarchy level. The Junos OS creates tunnel interfaces `gr-fpc/pic/port.0`, `vt-fpc/pic/port.0`, and so on. You also configure the amount of bandwidth reserved for tunnel services.

```plaintext
[edit chassis]
fpc slot-number {
    pic number {
        tunnel-services {
            bandwidth 10g;
        }
    }
}
```

- `fpc slot-number` is the slot number of the MPC. If two SCBs are installed, the range is 0 through 11. If three SCBs are installed, the range is 0 through 5 and 7 through 11.

- `pic number` is the number of the Packet Forwarding Engine on the MPC. The range is 0 through 3.

- `bandwidth 10g` is the amount of bandwidth to reserve for tunnel traffic on each Packet Forwarding Engine.

In the following example, you create tunnel interfaces on Packet Forwarding Engine 0 of MPC 4 with 10 Gbps of bandwidth reserved for tunnel traffic. With this configuration, the tunnel interfaces created are `gr-4/0/0`, `pe-4/0/0`, `pd-4/0/0`, `vt-4/0/0`, and so on.

```plaintext
[edit chassis]
fpc 4 pic 0 {
    ...}
```
BecausetheMXSeriesroutersdonotsupportTunnelServicesPICs,youcreatetunnel
interfacesonMXSeriesroutersbyincludingthefollowingstatementsatthe[edit chassis]
hierarchylevel:

```
[edit chassis]
fpc slot-number {
    pic number{
        tunnel-services {
            bandwidth (1g | 10g | 20g | 40g);
        }
    }
}
```

fpc slot-number is the slot number of the DPC, MPC, or MIC. On the MX80 router, the
range is 0 through 1. On other MX series routers, if two SCBs are installed, the range is 0
through 11. If three SCBs are installed, the range is 0 through 5 and 7 through 11.

The *pic number* On MX80 routers, if the FPC is 0, the PIC number can only be 0. If the FPC
is 1, the PIC range is 0 through 3. For all other MX series routers, the range is 0 through 3.

bandwidth (1g | 10g | 20g | 40g) is the amount of bandwidth to reserve for tunnel traffic
on each Packet Forwarding Engine.

NOTE: When you use MPCs and MICs, tunnel interfaces are soft interfaces
and allow as much traffic as the forwarding-path allows, so it is advantageous
to setup tunnel services without artificially limiting traffic by use of the
bandwidth option. However, you must specify *bandwidth* when configuring
tunnel services for MX Series routers with DPCs or FPCs.

1g indicates that 1 gigabit per second of bandwidth is reserved for tunnel traffic.

10g indicates that 10 gigabits per second of bandwidth is reserved for tunnel traffic.

20g indicates that 20 gigabits per second of bandwidth is reserved for tunnel traffic.

40g indicates that 40 gigabits per second of bandwidth is reserved for tunnel traffic.
If you specify a bandwidth that is not compatible, tunnel services are not activated. For example, you cannot specify a bandwidth of 1 Gbps for a Packet Forwarding Engine on a 10-Gigabit Ethernet 4-port DPC.

To verify that the tunnel interfaces have been created, issue the `show interfaces terse` operational mode command. For more information, see the CLI Explorer. The bandwidth that you specify determines the port number of the tunnel interfaces that are created. When you specify a bandwidth of `1g`, the port number is always 10. When you specify any other bandwidth, the port number is always 0.

Related Documentation
- Example: Configuring Tunnel Interfaces on a Gigabit Ethernet 40-Port DPC on page 19
- Example: Configuring Tunnel Interfaces on a 10-Gigabit Ethernet 4-Port DPC on page 19
- Example: Configuring Tunnel Interfaces on the MPC3E on page 11
- `bandwidth (Tunnel Services)`
- `tunnel-services (Chassis)`
- `[edit chassis] Hierarchy Level`

Example: Configuring Tunnel Interfaces on the MPC3E

- Requirements for Configuration of Tunnel Interfaces on the MPC3E on page 11
- Ethernet Tunnel Configuration Overview on page 11
- Configuring a 20-Gigabit Ethernet Tunnel on page 12
- Configuring a Tunnel With Unspecified Bandwidth on page 12

Requirements for Configuration of Tunnel Interfaces on the MPC3E

This example requires MX Series routers with the MPC3E.

Ethernet Tunnel Configuration Overview

MX Series routers do not support Tunnel Services PICs. However, you can create one set of tunnel interfaces per pic slot up to a maximum of 4 slots from 0-3 on MX Series routers with the MPC3E.

To configure the tunnels, include the `tunnel-services` statement and an optional bandwidth of `(1g | 10g | 20g | 30g | 40g)` at the `[edit chassis]` hierarchy level.

NOTE: When no tunnel bandwidth is specified, the tunnel interface can have a maximum bandwidth of up to 60Gbps.

NOTE: A MIC need not be plugged in to the MPC3E to configure a tunnel interface.
Configuring a 20-Gigabit Ethernet Tunnel

Step-by-Step Procedure

In the following example, you create tunnel interfaces on PIC-slot 1 of MPC 0 with 20 gigabit per second of bandwidth reserved for tunnel traffic. With this configuration, the tunnel interfaces created are `gr-0/1/0`, `pe-0/1/0`, `pd-0/1/0`, `vt-0/1/0`, and so on.

1. To create a 20 gigabit per second tunnel interface, use the following configuration:

   ```
   [edit chassis]
   fpc 0 pic 1 {
     tunnel-services {
       bandwidth 20g;
     }
   }
   ```

Configuring a Tunnel With Unspecified Bandwidth

Step-by-Step Procedure

In the following example, you create a tunnel interface on PIC-slot 3 of MPC 0 with no bandwidth specified. The tunnel traffic can carry up to a maximum of 60Gbps depending on other traffic through the packet forwarding engine. With this configuration, the tunnel interfaces created are `gr-0/3/0`, `pe-0/3/0`, `pd-0/3/0`, `vt-0/3/0`, and so on.

1. To create a tunnel interface with no bandwidth specification, use the following configuration:

   ```
   [edit chassis]
   fpc 0 pic 3 {
     tunnel-services;
   }
   ```

Related Documentation

- Example: Configuring Tunnel Interfaces on a Gigabit Ethernet 40-Port DPC on page 19
- Example: Configuring Tunnel Interfaces on a 10-Gigabit Ethernet 4-Port DPC on page 19
- `bandwidth (Tunnel Services)`
- `tunnel-services (Chassis)`
- Tunnel Interface Configuration on MX Series Routers Overview on page 6
Configuring Tunnel Interfaces on MX Series Routers with MPC4E

MX Series routers do not support Tunnel Services PICs. However, you can create a set of tunnel interfaces per PIC slot up to a maximum of four slots from 0 through 3 on MX Series routers with MPC4E.

To configure the tunnel interfaces, include the `tunnel-services` statement and an optional bandwidth of \(1g\) \(10g\) \(20g\) \(30g\) \(40g\) at the `[edit chassis]` hierarchy level. When no tunnel bandwidth is specified, the tunnel interface can have a maximum bandwidth of up to 60 Gbps.

To verify that the tunnel interfaces have been created, issue the `show interfaces terse` operational mode command. For more information, see the CLI Explorer. The bandwidth that you specify determines the port number of the tunnel interfaces that are created. When you specify a bandwidth of \(1g\), the port number is always 10. When you specify any other bandwidth, the port number is always 0.

In the following example, you create tunnel interfaces on PIC 1 of MPC 4 with 40 Gbps of bandwidth reserved for tunnel traffic. `fpc slot-number` is the slot number of the MPC. In this configuration, the tunnel interfaces created are `gr-4/1/1`, `pe-4/1/1`, `pd-4/1/1`, `vt-4/1/1`, and so on.

1. To create a 40-Gbps tunnel interface, use the following configuration:

   ```
   [edit chassis]
   fpc 4 pic 1 {
     tunnel-services {
       bandwidth 40g;
     }
   }
   ```

Related Documentation

- `bandwidth (Tunnel Services)`
- `tunnel-services (Chassis)`
- Tunnel Interface Configuration on MX Series Routers Overview on page 6

Tunnel Interfaces on MX Series Routers with MPC7E-10G, MPC7E-MRATE, MX2K-MPC8E, and MX2K-MPC9E

MPC7E-10G, MPC7E-MRATE, MX2K-MPC8E, and MX2K-MPC9E support a total of four inline tunnel interfaces per MPC, one per PIC. You can create a set of tunnel interfaces per PIC slot up to a maximum of four slots (from 0 through 3) on MX Series routers with these MPCs. These PICs are referred to as pseudo tunnel PICs. You create tunnel interfaces on MX Series routers with MPC7E-10G, MPC7E-MRATE, MX2K-MPC8E, and MX2K-MPC9E by including the following statements at the `[edit chassis]` hierarchy level:

```
[edit chassis]
fpc slot-number {
```
Packet Forwarding Engine Mapping and Tunnel Bandwidth for MPC7E-MRATE

The tunnel bandwidth for MPC7E-MRATE is 1–120Gbps with an increment of 1Gbps. However, if you do not specify the bandwidth in the configuration, it is set to 120Gbps.

Table 4 on page 14 shows the mapping between the tunnel bandwidth and the Packet Forwarding Engines for MPC7-MRATE.

Table 4: Packet Forwarding Engine Mapping and Tunnel Bandwidth for MPC7E-MRATE

<table>
<thead>
<tr>
<th>Pseudo Tunnel PIC</th>
<th>Maximum Bandwidth per Tunnel PIC</th>
<th>PFE Mapping</th>
<th>Maximum Tunnel Bandwidth per PFE</th>
<th>Maximum PFE Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC0</td>
<td>120Gbps</td>
<td>PFE0</td>
<td>120Gbps</td>
<td>240Gbps</td>
</tr>
<tr>
<td>PIC1</td>
<td>120Gbps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC2</td>
<td>120Gbps</td>
<td>PFE1</td>
<td>120Gbps</td>
<td>240Gbps</td>
</tr>
<tr>
<td>PIC3</td>
<td>120Gbps</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Packet Forwarding Engine Mapping and Tunnel Bandwidth for MPC7E-10G

The tunnel bandwidth for MPC7E-10G is 1–120Gbps with an increment of 1Gbps. However, if you do not specify the bandwidth in the configuration, it is set to 120Gbps.

Table 5 on page 14 shows the mapping between the tunnel bandwidth and the Packet Forwarding Engines for MPC7E-10G.

Table 5: Packet Forwarding Engine Mapping and Tunnel Bandwidth for MPC7E-10G

<table>
<thead>
<tr>
<th>Pseudo Tunnel PIC</th>
<th>Maximum Bandwidth per Tunnel PIC</th>
<th>PFE Mapping</th>
<th>Maximum Tunnel Bandwidth per PFE</th>
<th>Maximum PFE Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC0</td>
<td>120Gbps</td>
<td>PFE0</td>
<td>120Gbps</td>
<td>200Gbps</td>
</tr>
<tr>
<td>PIC1</td>
<td>120Gbps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC2</td>
<td>120Gbps</td>
<td>PFE1</td>
<td>120Gbps</td>
<td>200Gbps</td>
</tr>
<tr>
<td>PIC3</td>
<td>120Gbps</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Packet Forwarding Engine Mapping and Tunnel Bandwidth for MX2K-MPC8E

The tunnel bandwidth for MX2K-MPC8E is 1–120Gbps with an increment of 1Gbps. However, if you do not specify the bandwidth in the configuration, it is set to 120Gbps.

Table 6 on page 15 shows the mapping between the tunnel bandwidth and the Packet Forwarding Engines for MX2K-MPC8E.

<table>
<thead>
<tr>
<th>Pseudo Tunnel PIC</th>
<th>Maximum Bandwidth per Tunnel PIC</th>
<th>Packet Forwarding Engine Mapping</th>
<th>Maximum Tunnel Bandwidth per PFE</th>
<th>Maximum PFE Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC0</td>
<td>120Gbps</td>
<td>PFE0</td>
<td>120Gbps</td>
<td>240Gbps</td>
</tr>
<tr>
<td>PIC1</td>
<td>120Gbps</td>
<td>PFE1</td>
<td>120Gbps</td>
<td>240Gbps</td>
</tr>
<tr>
<td>PIC2</td>
<td>120Gbps</td>
<td>PFE2</td>
<td>120Gbps</td>
<td>240Gbps</td>
</tr>
<tr>
<td>PIC3</td>
<td>120Gbps</td>
<td>PFE3</td>
<td>120Gbps</td>
<td>240Gbps</td>
</tr>
</tbody>
</table>

Packet Forwarding Engine Mapping and Tunnel Bandwidth for MX2K-MPC9E

The tunnel bandwidth for MX2K-MPC9E is 1–200Gbps with an increment of 1Gbps. However, if you do not specify the bandwidth in the configuration, it is set to 200Gbps.

Table 7 on page 15 shows the mapping between the tunnel bandwidth and the Packet Forwarding Engines for MX2K-MPC9E.

<table>
<thead>
<tr>
<th>Pseudo Tunnel PIC</th>
<th>Maximum Bandwidth per Tunnel PIC</th>
<th>Packet Forwarding Engine Mapping</th>
<th>Maximum Tunnel Bandwidth per PFE</th>
<th>Maximum PFE Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC0</td>
<td>200Gbps</td>
<td>PFE0</td>
<td>200Gbps</td>
<td>400Gbps</td>
</tr>
<tr>
<td>PIC1</td>
<td>200Gbps</td>
<td>PFE1</td>
<td>200Gbps</td>
<td>400Gbps</td>
</tr>
<tr>
<td>PIC2</td>
<td>200Gbps</td>
<td>PFE2</td>
<td>200Gbps</td>
<td>400Gbps</td>
</tr>
<tr>
<td>PIC3</td>
<td>200Gbps</td>
<td>PFE3</td>
<td>200Gbps</td>
<td>400Gbps</td>
</tr>
</tbody>
</table>

Related Documentation
- `tunnel-services`
- `bandwidth`
Configuring Tunnel Interfaces on MX Series Routers with MPC7E-MRATE/MPC7E-10G

MPCs support a total of four inline tunnels per MPC, one per PIC. You can create a set of tunnel interfaces per PIC slot up to a maximum of four slots from 0 through 3.

To configure the tunnel interfaces, include the `tunnel-services` statement and an optional bandwidth of 1 Gbps through 120Gbps at the `[edit chassis fpc fpc-slot pic number]` hierarchy level. If you do not specify the tunnel bandwidth then, the tunnel interface can have a maximum bandwidth of up to 120 Gbps.

```
[edit chassis]
fpc slot-number {
  pic number {
    tunnel-services {
      bandwidth ;
    }
  }
}
```

To verify that the tunnel interfaces have been created, issue the `show interfaces terse` operational mode command. For more information, see the CLI Explorer.

In the following example, you create tunnel interfaces on PIC 1 of MPC 5 with 40 Gbps of bandwidth reserved for tunnel traffic. `fpc slot-number` is the slot number of the MPC. In this configuration, the tunnel interfaces created are `gr-5/1/1, pe-5/1/1, pd-5/1/1, vt-5/1/1,` and so on.

To create a 40-Gbps tunnel interface, use the following configuration:

```
[edit chassis]
fpc 5 {
  pic 1 {
    tunnel-services {
      bandwidth 40G;
    }
  }
}
```

Related Documentation

- Tunnel Interfaces on MX Series Routers with MPC7E-10G, MPC7E-MRATE, MX2K-MPC8E, and MX2K-MPC9E on page 13
- Configuring Tunnel Interfaces on MX Series Routers with MX2K-MPC8E on page 17
- Configuring Tunnel Interfaces on MX Series Routers with MX2K-MPC9E on page 18
Configuring Tunnel Interfaces on MX Series Routers with MX2K-MPC8E

MX2K-MPC8E support a total of four inline tunnels per MPC, one per PIC. You can create a set of tunnel interfaces per PIC slot up to a maximum of four slots from 0 through 3.

To configure the tunnel interfaces, include the `tunnel-services` statement and an optional bandwidth of 1–120Gbps at the `[edit chassis fpc fpc-slot pic number]` hierarchy level. If you do not specify the tunnel bandwidth then, the tunnel interface can have a maximum bandwidth of up to 120 Gbps.

```
[edit chassis]
fpc slot-number {
    pic number {
        tunnel-services {
            bandwidth;
        }
    }
}
```

To verify that the tunnel interfaces have been created, issue the `show interfaces terse` operational mode command. For more information, see the CLI Explorer.

In the following example, you create tunnel interfaces on PIC 1 of MPC 5 with 40 Gbps of bandwidth reserved for tunnel traffic. `fpc slot-number` is the slot number of the MPC. In this configuration, the tunnel interfaces created are gr-5/1/1, pe-5/1/1, pd-5/1/1, vt-5/1/1, and so on.

To create a 40-Gbps tunnel interface, use the following configuration:

```
[edit chassis]
fpc 5 {
    pic 1 {
        tunnel-services {
            bandwidth 40g;
        }
    }
}
```

Related Documentation
- Tunnel Interfaces on MX Series Routers with MPC7E-10G, MPC7E-MRATE, MX2K-MPC8E, and MX2K-MPC9E on page 13
- Configuring Tunnel Interfaces on MX Series Routers with MPC7E-MRATE/MPC7E-10G on page 16
- Configuring Tunnel Interfaces on MX Series Routers with MX2K-MPC9E on page 18
Configuring Tunnel Interfaces on MX Series Routers with MX2K-MPC9E

MX2K-MPC9E supports a total of four inline tunnels per MPC, one per PIC. You can create a set of tunnel interfaces per PIC slot up to a maximum of four slots from 0 through 3.

To configure the tunnel interfaces, include the `tunnel-services` statement and an optional bandwidth in the range 1–200Gbps at the `[edit chassis fpc fpc-slot pic number]` hierarchy level. If you do not specify the tunnel bandwidth then, the tunnel interface can have a maximum bandwidth of up to 200 Gbps.

```plaintext
[edit chassis]
fpc slot-number {
    pic number {
        tunnel-services {
            bandwidth ;
        }
    }
}
```

To verify that the tunnel interfaces have been created, issue the `show interfaces terse` operational mode command. For more information, see the CLI Explorer.

In the following example, you create tunnel interfaces on PIC 1 of MPC 5 with 40 Gbps of bandwidth reserved for tunnel traffic. `fpc slot-number` is the slot number of the MPC. In this configuration, the tunnel interfaces created are gr-5/1/1, pe-5/1/1, pd-5/1/1, vt-5/1/1, and so on.

To create a 40-Gbps tunnel interface, use the following configuration:

```plaintext
[edit chassis]
fpc 5 {
    pic 1 {
        tunnel-services {
            bandwidth 40g;
        }
    }
}
```

Related Documentation

- Tunnel Interfaces on MX Series Routers with MPC7E-10G, MPC7E-MRATE, MX2K-MPC8E, and MX2K-MPC9E on page 13
- Configuring Tunnel Interfaces on MX Series Routers with MPC7E-MRATE/MPC7E-10G on page 16
- Configuring Tunnel Interfaces on MX Series Routers with MX2K-MPC8E on page 17
Example: Configuring Tunnel Interfaces on a Gigabit Ethernet 40-Port DPC

The following example shows how to create tunnel interfaces on Packet Forwarding Engine 1 of DPC 4 with 1 Gbps of bandwidth reserved for tunnel services. On a Gigabit Ethernet 40-port DPC, tunnel interfaces coexist with Ethernet interfaces. With this configuration, the Gigabit Ethernet interfaces are `ge-4/1/0` through `ge-4/1/9`. The tunnel interfaces created are `gr-4/1/10`, `pe-4/1/10`, `pd-4/1/10`, `vt-4/1/10` and so on.

```junos
[edit chassis]
fpc 4 pic 1 {
    tunnel-services {
        bandwidth 1g;
    }
}
```

Related Documentation
- Configuring the Junos OS to Support ILMI for Cell Relay Encapsulation on an ATM2 IQ PIC
- Example: Configuring Tunnel Interfaces on a 10-Gigabit Ethernet 4-Port DPC on page 19
- Example: Configuring Tunnel Interfaces on the MPC3E on page 11
- `bandwidth (Tunnel Services)`
- `tunnel-services (Chassis)`

Example: Configuring Tunnel Interfaces on a 10-Gigabit Ethernet 4-Port DPC

In this example, you create tunnel interfaces on Packet Forwarding Engine 0 of DPC 4 with 10 Gbps of bandwidth reserved for tunnel traffic. Ethernet and tunnel interfaces cannot coexist on the same Packet Forwarding Engine of a 10-Gigabit Ethernet 4-port DPC. With this configuration, the tunnel interfaces created are `gr-4/0/0`, `pe-4/0/0`, `pd-4/0/0`, `vt-4/0/0` and so on.

```junos
[edit chassis]
fpc 4 pic 0 {
    tunnel-services {
        bandwidth 10g;
    }
}
```

Related Documentation
- Example: Configuring Tunnel Interfaces on a Gigabit Ethernet 40-Port DPC on page 19
- Example: Configuring Tunnel Interfaces on the MPC3E on page 11
- `bandwidth (Tunnel Services)`
- `tunnel-services (Chassis)`
Tunnel Interfaces on MX Series Routers with MPC1 and MPC2

MPC1 and MPC2 on the MX series routers support the following tunnel interfaces:

- gr-x/y/z—for GRE tunnels over IP
- ip-x/y/z—for IP over IP tunnels
- mt-x/y/z—for multicast tunnels
- pe-x/y/z—for PIM encapsulator interface
- pd-x/y/z—for PIM decapsulator interface
- lt-x/y/z—for logical tunnel interface connecting logical routers
- vt-x/y/z—for VPN tunnel interface for looping back packets from core into the PE and doing additional lookup

NOTE: x maps to the FPC slot, y maps to PIC slot and z maps to the port.

The following MPCs provide tunnel support parity, replacing traditional tunnel and services PICs with tunnels that were supported on a virtual port on the MX Series Packet Forwarding Engine.

- MX-MPC1-3D (MPC1)
- MX-MPC1-3D-Q (MPC1Q)
- MX-MPC2-3D (MPC2)
- MX-MPC2-3D-Q (MPC2 Q)
- MX-MPC2-3D-EQ (MPC2 EQ)

MX Series routers support a virtual PIC and a virtual port, visible for tunnel configuration, and eliminating the need for a tunnel PIC. Traditional tunnel PIC features are supported, including:

- GRE keys
- GRE clear-dont-fragment-bit

On MPC1 and MPC2 there are no tunnel PICs. Instead the MX router reserves some bandwidth for tunneling. In the presence of tunnel traffic, all WAN ports are affected in case of oversubscription.

You create tunnel interfaces on MX Series routers by including the following statements at the [edit chassis] hierarchy level on a particular PIC. For example

```
[edit chassis]
fpc 0 {
  pic 0 {
    tunnel-services {
```
This configuration enables tunnel services with a bandwidth of 1Gbps on FPC 0 and PIC 0. With this configuration, the tunnel interfaces created are:

- vt-0/0/0, ip-0/0/0, and so on for PIC 0
- vt-0/1/0, ip-0/1/0 and so on for PIC 1

MPC1 and MPC2 support bandwidth of 1 Gbps and 10 Gbps. The tunnel interfaces with their associated configurations work when an MX-DPC is replaced by an MPC. The router creates tunnel devices based on the tunnel services configuration. Although the same Packet Forwarding Engine supports vt-0/0/0 and vt-0/1/0, two devices must be created to be compatible with the above configuration. The MPCs allows you to configure four tunnel MICs per MPC (to support vt-0/0/0, vt-0/1/0, vt-0/2/0, vt-0/3/0), although in reality there are only two physical MICs. This is achieved by creating logical MICs on the MPCs.

Packet Forwarding Engine Mapping and Tunnel Bandwidth for MPC1E and MPC1E-Q

The tunnel bandwidth for MPC1E and MPC1E-Q is 1Gbps or 10Gbps. However, if you do not specify the bandwidth in the configuration, it is set to 16Gbps.

Table 8 on page 21 shows the mapping between the tunnel bandwidth and the Packet Forwarding Engines for MPC1E and MPC1E-Q.

<table>
<thead>
<tr>
<th>Tunnel PIC</th>
<th>Maximum Bandwidth per Tunnel PIC</th>
<th>PFE Mapping</th>
<th>Maximum Tunnel Bandwidth per PFE</th>
<th>Maximum PFE Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC0</td>
<td>16Gbps</td>
<td>PFE0</td>
<td>16Gbps</td>
<td>40Gbps</td>
</tr>
<tr>
<td>PIC1</td>
<td>16Gbps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC2</td>
<td>16Gbps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC3</td>
<td>16Gbps</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Packet Forwarding Engine Mapping and Tunnel Bandwidth for MPC2E, MPC2E-Q, and MPC2E-EQ

The tunnel bandwidth for MPC2E, MPC2E-Q, and MPC2E-EQ is 1Gbps or 10Gbps. However, if you do not specify the bandwidth in the configuration, it is set to 16Gbps.
Table 9 on page 22 shows the mapping between the tunnel bandwidth and the Packet Forwarding Engines for MPC2E, MPC2E-Q, and MPC2E-EQ.

Table 9: Packet Forwarding Engine Mapping and Tunnel Bandwidth for MPC2, /MPC2E-Q, and MPC2E-EQ

<table>
<thead>
<tr>
<th>Tunnel PIC</th>
<th>Maximum Bandwidth per Tunnel PIC</th>
<th>PFE Mapping</th>
<th>Maximum Tunnel Bandwidth per PFE</th>
<th>Maximum PFE Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC0</td>
<td>16Gbps</td>
<td>PFE0</td>
<td>16Gbps</td>
<td>40Gbps</td>
</tr>
<tr>
<td>PIC1</td>
<td>16Gbps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC2</td>
<td>16Gbps</td>
<td>PFE1</td>
<td>16Gbps</td>
<td>40Gbps</td>
</tr>
<tr>
<td>PIC3</td>
<td>16Gbps</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related Documentation

Flexible Tunnel Interfaces Overview

A flexible tunnel interface (FTI) is a type of logical tunnel interface that uses static routing and BGP protocols to exchange routes over a tunnel that connects endpoints to MX Series routers. For example, you can use FTIs with VXLAN encapsulation between a router and a server hosting multiple virtual machines. FTIs can also be used between routers in two different data centers. FTIs support VXLAN encapsulation with Layer 2 pseudo-headers.

In the VXLAN encapsulation process, the Layer 2 address is populated with “pseudo” source (source MAC: 00-00-5E-00-52-00) and destination (destination MAC: 00-00-5E-00-52-01) MAC addresses without VLAN tagging; however, these addresses are ignored when the packets reach the remote endpoint. The remote endpoint is identified by the destination IP address and a specified destination UDP port number. The corresponding FTI on the remote endpoint is identified by the virtual network identifier (VNI) value, the source IP address of the tunnel, and the destination UDP port number. All of these values can be configured on an FTI with VXLAN encapsulation.

Figure 1: FTIs Connecting Remote Devices to a Virtual Private Cloud
Figure 1 on page 22 illustrates how an FTI works to provide connectivity into a virtual private cloud from a remote location. Individual flexible tunnels (1 through N) are provisioned for every customer. The customer-facing logical interface and the corresponding FTIs are configured to operate in one routing instance. The FTI uses BGP protocols (eBGP and iBGP) to carry packets from the customer device to the remote gateway and vice versa.

NOTE: FTI currently supports only VXLAN encapsulation with Layer 2 pseudo-headers.

Starting in Junos OS Release 18.3R1, flexible tunnel interfaces (FTIs) are supported on MX Series routers. FTIs can be configured as port-mirror destinations and they also support logical interface statistics streaming.

Benefits of Flexible Tunnel Interfaces

- Entropy and load balancing occur in transit. Unlike over tunnel encapsulations, such as IP in IP or generic routing encapsulation (GRE), VXLAN encapsulation supports passing of the hash computation result in the source port of the UDP datagram. This enables you to load-balance traffic efficiently in transit.
- FTIs have an extensible design that enables them to support multiple encapsulations.
- The vni attribute of the VXLAN encapsulation in FTIs helps in customer isolation.

Limitations of Flexible Tunnel Interfaces

- Policing follows the distributed forwarding model of the FTIs; therefore provisioned bandwidth limits are enforced at an individual Packet Forwarding Engine level. As a result, more traffic might be admitted.
- Currently, FTI-tunneled traffic is strictly routed in the inet.0 instance. Therefore, FTIs support only IPv4 traffic.
- The MX80 does not support FTIs.
- Class-of-service (CoS) configuration, including the configuration of rewrite rules and classifiers is not supported on FTIs.
- Time-to-live (TTL) on the tunnel header is set to the default value 100.
- Differentiated Services code point (DSCP) value is set to the default value 0, but internal forwarding class and loss priority fields are retained and can be used to rewrite DSCP in the egress interface rewrite rules.
- IP fragmentation is not supported on FTIs.
Starting in Junos OS Release 18.3R1, flexible tunnel interfaces (FTIs) are supported on MX Series routers. FTIs can be configured as port-mirror destinations and they also support logical interface statistics streaming.

Related Documentation
- Configuring Flexible Tunnel Interfaces on MX Series Routers on page 24
- show interfaces fti on page 223
- vxlan-gpe (FTI) on page 167
- vni (Interfaces) on page 166
- destination-udp-port (FTI) on page 139
- Example: Configuring Flexible Tunnel Interfaces on MX Series Routers on page 28

Configuring Flexible Tunnel Interfaces on MX Series Routers

You can configure flexible tunnel interfaces (FTIs) that support the Virtual Extensible LAN (VXLAN) encapsulation with Layer 2 pseudo-headers on MX Series routers. A flexible tunnel interface (FTI) is a point-to-point Layer 3 interface that can be used to create IPv4 and IPv6 overlays over an IPv4 transport network. A BGP protocol session can be configured to run over FTIs in order to distribute routing information.

The following sections describe how to configure FTIs on your device and to enable multiple encapsulations using the `vxlans-gpe` parameter under the mandatory `tunnel-endpoint vxlan` encapsulation identified with the `vni` and `destination-udp-port` values specified on an MX Series router:

- Configuring FTI on PE1 on page 24
- Verification on page 26

Configuring FTI on PE1

You can configure an FTI by including the `tunnel-endpoint vxlan` statement at the `[edit interfaces]` hierarchy level.

To configure an FTI and define its attributes for an IPv4 network:

1. In configuration mode, go to the `[edit interfaces]` hierarchy level.

   ```
   [edit]
   user@host# edit interfaces
   ```

2. Configure a logical unit for the interface and the encapsulation `vxlans-gpe`. The unit is a logical interface configured on the physical device. Specify the value of the unit from 0 through 8191. VXLAN is defined as an encapsulation format that encapsulates Ethernet frames in an outer UDP/IP transport.
NOTE: The capabilities of VXLAN-GPE are a super-set of what VXLAN without protocol extension offers. Therefore generic vxlan-gpe hierarchy is introduced to configure VXLAN tunnel encapsulation attributes; however, only regular VXLAN encapsulation without protocol extensions and pseudo Layer 2 MAC is used. The pseudo Layer 2 address is populated with “pseudo” source (source MAC: 00-00-5E-00-52-00) and destination (destination MAC: 00-00-5E-00-52-01) MAC addresses without VLAN tagging.

3. Configure the source address for the interface. The source address is the IPv4 address or address range of the encapsulator (the local ingress PE router).

```
[edit interfaces]
user@host# set interface-name unit logical-unit-number tunnel encapsulation vxlan-gpe
```

NOTE: The source address can be a global WAN address and loopback address (lo0) is not mandatory.

4. Configure the destination address for the interface. The destination address is the IPv4 address of the tunnel endpoint destination.

```
[edit interfaces]
user@host# set interface-name unit logical-unit-number tunnel encapsulation vxlan-gpe
```

```
source address
```

5. Configure `tunnel-endpoint` with the encapsulation `vxlan`. This step is mandatory to enable Layer 2 pseudo-header with VXLAN encapsulation.

```
[edit interfaces]
user@host# set interface-name unit logical-unit-number tunnel encapsulation vxlan-gpe
```

```
tunnel-endpoint vxlan
```

6. Specify the UDP port value of the destination to be used in the UDP header for the generated frames. The numeric value for `destination-udp-port` identifies the endpoint. Specify the value of `destination-udp-port` from 1 through 65,535.

```
[edit interfaces]
user@host# set interface-name unit logical-unit-number tunnel encapsulation vxlan-gpe
```

```
destination-udp-port port-number
```
7. Specify the virtual network identifier (VNI) value to be used to identify the encapsulation, **vxlan-gpe**. Specify the value of the **vni** from 0 through 16,777,214.

```
[edit interfaces]
user@host# set interface-name unit logical-unit-number tunnel encapsulation vxlan-gpe
  vni vni-number
```

8. Configure an IPv4 address of an interface (signified by family **inet**). For IPv6 address configuration, use the **inet6** family.

```
[edit interfaces]
user@host# set interface-name unit logical-unit-number family inet address address
```

If you are done configuring the device, enter **commit** from configuration mode.

Verification

Purpose Verify that the FTI is configured and verify its status.
In configuration mode, you can verify if FTI has been configured by executing the `show interfaces fti number` command.

```
user@host# show interfaces fti0
Physical interface: fti0, Enabled, Physical link is Up
   Interface index: 136, SNMP ifIndex: 504
      Type: FTI, Link-level type: Flexible-tunnel-Interface, MTU: Unlimited, Speed: Unlimited
     Device flags   : Present Running
   Interface flags: SNMP-Traps
     Link type      : Full-Duplex
    Link flags     : None
    Last flapped   : Never
       Input packets: 0
       Output packets: 0

Logical interface fti0.0 (Index 340) (SNMP ifIndex 581)
   Flags: Up Point-To-Point SNMP-Traps Encapsulation: VXLAN-GPEv4
   Destination UDP port: 4789, VNI: 1000, Source address: 5.5.5.5, Destination address: 6.6.6.6
       Input packets: 0
       Output packets: 0
   Protocol inet, MTU: Unlimited
    Max nh cache: 0, New hold nh limit: 0, Curr nh cnt: 0, Curr new hold cnt: 0, NH drop cnt: 0
   Flags: Sendcast-pkt-to-re
      Addresses, Flags: Is-Preferred Is-Primary
     Destination: 3.3.3/24, Local: 3.3.3.5, Broadcast: 3.3.3.255
```

Similarly, you can execute the `show interfaces fti0 detail`, `show interfaces fti0 extensive`, `show interfaces fti0 terse`, and `show interfaces fti0 statistics` commands to get more details FTIs. See `show interfaces fti`.

The `show interfaces fti0` command displays the status of the FTIs that have been configured with the new encapsulation `vxlan-gpe`. The output verifies that the FTI is configured and the physical link is `up`.

- **Related Documentation**
 - Flexible Tunnel Interfaces Overview on page 22
 - `show interfaces fti` on page 223
 - `vxlan-gpe (FTI)` on page 167
 - `vni (Interfaces)` on page 166
 - `destination-udp-port (FTI)` on page 139
 - Example: Configuring Flexible Tunnel Interfaces on MX Series Routers on page 28
Example: Configuring Flexible Tunnel Interfaces on MX Series Routers

- Requirements on page 28
- Overview on page 28
- Configuration on page 28
- Verification on page 32

Requirements

This example uses the following hardware and software components:

- An MX10003 and an MX Series 5G Universal Routing Platform.
- Junos OS Release 18.3 or later.

Overview

In this example, flexible tunnel interfaces are used to create a Layer 3 VPN overlay network between two routers. In the actual deployment, one of the endpoints can be the server in a data center or a data center gateway.

Consider a sample topology in which a gateway device, PE1, functions as a link between the enterprise customers to represent the customer side for an FTI tunnel. eBGP is used to distribute routes between customer edge (CE1) and provider edge (PE1) devices. IPv4 is used for transmission of test frames over the Layer 3 network. This test is used to transfer the traffic between CE1 and CE2. Logical interfaces on both the routers are configured with IPv4 addresses to create an FTI to transfer the traffic of network devices for the IPv4 service.

Figure 2 on page 28 shows the sample topology of how an FTI performs for a Layer 3 IPv4 service.

Figure 2: Flexible Tunnel Interfaces Topology

Configuration

In this example, you configure FTI for a Layer 3 IPv4 service that is between interface fti0 on PE1 and interface fti0 on PE2 to form a tunnel interface of the interconnecting routers.

- Configuring on PE1 on page 29
- Configuring on PE2 on page 30
- Results on page 31
To quickly configure this example, copy the following commands, paste them in a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level:

To Configure Parameters on PE1

```plaintext
set interfaces fti0 unit 0 tunnel encapsulation vxlan-gpe
set interfaces fti0 unit 0 tunnel encapsulation vxlan-gpe source address 198.51.100.0
set interfaces fti0 unit 0 tunnel encapsulation vxlan-gpe destination address 198.51.100.1
set interfaces fti0 unit 0 tunnel encapsulation vxlan-gpe tunnel-end-point vxlan
set interfaces fti0 unit 0 tunnel encapsulation vxlan-gpe destination-udp-port 4789
set interfaces fti0 unit 0 tunnel encapsulation vxlan-gpe vni 22701
set fti0 unit 0 family inet address 198.51.100.2
```

To Configure Parameters on PE2

```plaintext
set interfaces fti0 unit 0 tunnel encapsulation vxlan-gpe
set interfaces fti0 unit 0 tunnel encapsulation vxlan-gpe source address 198.51.100.1
set interfaces fti0 unit 0 tunnel encapsulation vxlan-gpe destination address 198.51.100.0
set interfaces fti0 unit 0 tunnel encapsulation vxlan-gpe tunnel-end-point vxlan
set interfaces fti0 unit 0 tunnel encapsulation vxlan-gpe destination-udp-port 4789
set interfaces fti0 unit 0 tunnel encapsulation vxlan-gpe vni 22701
set fti0 unit 0 family inet address 198.51.100.2
```

Configuring on PE1

Step-by-Step Procedure

The following steps require you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To configure the parameters on PE1:

1. In configuration mode, go to the [edit interfaces] hierarchy level:

   ```plaintext
   [edit]
   user@host# edit interfaces
   ```

2. Configure the FTI and a logical unit and specify the protocol family.

   ```plaintext
   [set interfaces]
   user@host# set fti0 unit 0 tunnel encapsulation vxlan-gpe
   ```

3. Specify the source address for the logical interface.

   ```plaintext
   [set interfaces]
   user@host# set fti0 unit 0 tunnel encapsulation vxlan-gpe source address 198.51.100.0
   ```
4. Specify the destination address for the logical interface.

```
[set interfaces]
user@host# set fti0 unit 0 tunnel encapsulation vxlan-gpe destination address 198.51.100.1
```

5. Set tunnel-endpoint with the encapsulation vxlan.

```
[set interfaces]
user@host# set fti0 unit 0 tunnel encapsulation vxlan-gpe tunnel-end-point vxlan
```

6. Specify the UDP port value of the destination to be used in the UDP header for the generated frames.

```
[set interfaces]
user@host# set fti0 unit 0 tunnel encapsulation vxlan-gpe destination-udp-port 4789
```

7. Specify the vni value to be used to identify the encapsulation vxlan-gpe on the interface.

```
[set interfaces]
user@host# set fti0 unit 0 tunnel encapsulation vxlan-gpe vni 22701
```

8. Specify the address type family for the interface.

```
[edit interfaces]
user@host# set fti0 unit 0 family inet address 198.51.100.3
```

Configuring on PE2

Step-by-Step Procedure

The following steps require you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To configure the parameters on PE2:

1. In configuration mode, go to the [edit interfaces] hierarchy level:

```
[edit]
user@host# edit interfaces
```

2. Configure the FTI and a logical unit and specify the protocol family.

```
[set interfaces]
user@host# set fti0 unit 0 tunnel encapsulation vxlan-gpe
```
3. Specify the source address for the logical interface.

```
[set interfaces]
user@host# set fti0 unit 0 tunnel encapsulation vxlan-gpe source address 198.51.100.1
```

4. Specify the destination address for the logical interface.

```
[set interfaces]
user@host# set fti0 unit 0 tunnel encapsulation vxlan-gpe destination address 198.51.100.0
```

5. Set `tunnel-endpoint` with the encapsulation `vxlan`.

```
[set interfaces]
user@host# set fti0 unit 0 tunnel encapsulation vxlan-gpe tunnel-end-point vxlan
```

6. Specify the UDP port value of the destination to be used in the UDP header for the generated frames.

```
[set interfaces]
user@host# set fti0 unit 0 tunnel encapsulation vxlan-gpe destination-udp-port 4789
```

7. Specify the `vni` value to be used to identify the encapsulation `vxlan-gpe` on the interface.

```
[set interfaces]
user@host# set fti0 unit 0 tunnel encapsulation vxlan-gpe vni 22701
```

8. Specify the address type family for the interface.

```
[edit interfaces]
user@host# set fti0 unit 0 family inet address 198.51.100.4
```

After the configuration is successfully completed, you can view the parameters by entering the `show fti0` command.

Results

In configuration mode, confirm your configuration on PE1 and PE2 by entering the `show` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
Parameters on PE1:

```plaintext
[edit interfaces]
fti0{
  unit 0 {
    tunnel {
      encapsulation vxlan-gpe {
        source {
          address 198.51.100.0;
        }
        destination {
          address 198.51.100.1;
        }
        tunnel-endpoint vxlan;
        destination-udp-port 4789;
        vni 22701;
      }
      family inet {
        address 198.51.100.2;
      }
    }
  }
}
```

Parameters on PE2:

```plaintext
[edit interfaces]
fti0{
  unit 0 {
    tunnel {
      encapsulation vxlan-gpe {
        source {
          address 198.51.100.0;
        }
        destination {
          address 198.51.100.1;
        }
        tunnel-endpoint vxlan;
        destination-udp-port 4789;
        vni 22701;
      }
      family inet {
        address 198.51.100.2;
      }
    }
  }
}
```

After you have configured the interface, enter the `commit` command in configuration mode.

Verification

- Verifying the Results on page 33
Verifying the Results

Purpose
Verify that the necessary and desired tunnel displays the values configured for the FTI test that is run on the flexible tunnel between PE1 and PE2.

Action
In operational mode, enter the `show interfaces fti0` command to display status of the FTIs that have been configured with the new encapsulation `vxlan-gpe`. The output verifies that the FTI is configured and the physical link is up.

Related Documentation
- Flexible Tunnel Interfaces Overview on page 22
- Configuring Flexible Tunnel Interfaces on MX Series Routers on page 24
- `show interfaces fti` on page 223
- `vni (Interfaces)` on page 166
Encapsulating One Protocol Over Another Using GRE Interfaces

- GRE Keepalive Time Overview on page 35
- Configuring GRE Keepalive Time on page 36
- Enabling Fragmentation on GRE Tunnels on page 39
- Understanding Generic Routing Encapsulation on ACX Series on page 40
- Configuring Generic Routing Encapsulation Tunneling on ACX Series on page 43

GRE Keepalive Time Overview

Generic routing encapsulation (GRE) tunnel interfaces do not have a built-in mechanism for detecting when a tunnel is down. You can enable keepalive messages to serve as the detection mechanism.

When you enable a GRE tunnel interface for keepalive messages, the interface sends out keepalive request packets to the remote endpoint at regular intervals. If the data path forwarding for the GRE tunnel works correctly at all points, keepalive response packets are returned to the originator. These keepalive messages are processed by the Routing Engine.

You can configure keepalive messages on the physical or logical GRE tunnel interface. If configured on the physical interface, keepalive messages are sent on all logical interfaces that are part of the physical interface. If configured on an individual logical interface, keepalives are sent only on that logical interface.

You configure how often keepalive messages are sent and the length of time that the interface waits for a keepalive response before marking the tunnel as operationally down.

The keepalive request packet is shown in Figure 3 on page 35.

Figure 3: Keepalive Request Packet

<table>
<thead>
<tr>
<th>Outer GRE header</th>
<th>Inner GRE header</th>
<th>Keepalive payload</th>
</tr>
</thead>
</table>

The keepalive payload includes information to ensure the keepalive response is correctly delivered to the application responsible for the GRE keepalive process.
The outer GRE header includes:

- Source IP Address—IP address of the endpoint that initiates the keepalive request
- Destination IP Address—IP address of the endpoint that receives the keepalive request
- GRE Protocol ID—IP

The inner GRE header includes:

- Source IP Address—IP address of the endpoint that receives the keepalive request
- Destination IP Address—IP address of the endpoint that initiates the keepalive request
- GRE Protocol ID—A value that the packet forwarding engine recognizes as a GRE keepalive packet

NOTE: Starting in Junos OS Release 17.3R1, you can configure IPv6 generic routing encapsulation (GRE) tunnel interfaces on MX Series routers. This lets you run a GRE tunnel over an IPv6 network. Packet payload families that can be encapsulated within the IPv6 GRE tunnels include IPv4, IPv6, MPLS, and ISO. Fragmentation and reassembly of the IPv6 delivery packets is not supported.

To configure an IPv6 GRE tunnel interface, specify IPv6 addresses for source and destination at the [interfaces gr-0/0/0 unit 0 tunnel] hierarchy level.

Keepalive is not supported for GRE IPv6.

Related Documentation

- Configuring GRE Keepalive Time on page 36
- keepalive-time on page 149
- hold-time on page 147

Configuring GRE Keepalive Time

- Configuring Keepalive Time and Hold time for a GRE Tunnel Interface on page 37
- Display GRE Keepalive Time Configuration on page 38
- Display Keepalive Time Information on a GRE Tunnel Interface on page 38
Configuring Keepalive Time and Hold time for a GRE Tunnel Interface

You can configure the keepalives on a generic routing encapsulation (GRE) tunnel interface by including both the `keepalive-time` statement and the `hold-time` statement at the `[edit protocols oam gre-tunnel interface interface-name]` hierarchy level.

NOTE: For proper operation of keepalives on a GRE interface, you must also include the `family inet` statement at the `[edit interfaces interface-name unit unit]` hierarchy level. If you do not include this statement, the interface is marked as down.

To configure a GRE tunnel interface:

1. Configure the GRE tunnel interface at `[edit interfaces interface-name unit unit-number]` hierarchy level, where the interface name is `gr-x/y/z`, and the family is set as `inet`.

   ```
   user@host# set interfaces interface-name unit unit-number family family-name
   ```

2. Configure the rest of the GRE tunnel interface options as explained in Configuring a GRE Tunnel Interface Between a PE and CE Router or Configuring a GRE Tunnel Interface Between PE Routers based on requirement.

To configure keepalive time for a GRE tunnel interface:

1. Configure the Operation, Administration, and Maintenance (OAM) protocol at the `[edit protocols]` hierarchy level for the GRE tunnel interface.

   ```
   [edit]
   user@host# edit protocols oam
   ```

2. Configure the GRE tunnel interface option for OAM protocol.

   ```
   [edit protocols oam]
   user@host# edit gre-tunnel interface interface-name
   ```

3. Configure the keepalive time from 1 through 50 seconds for the GRE tunnel interface.

   ```
   [edit protocols oam gre-tunnel interface interface-name]
   user@host# set keepalive-time seconds
   ```

4. Configure the hold time from 5 through 250 seconds. Note that the hold time must be at least twice the keepalive time.

   ```
   [edit protocols oam gre-tunnel interface interface-name]
   user@host# set hold-time seconds
   ```
Display GRE Keepalive Time Configuration

Purpose
Display the configured keepalive time value as 10 and hold time value as 30 on a GRE tunnel interface (for example, gr-1/1/10.1).

Action
To display the configured values on the GRE tunnel interface, run the `show oam gre-tunnel` command at the `[edit protocols]` hierarchy level:

```
[edit protocols]
user@host# show oam gre-tunnel
interface gr-1/1/10.1 {
    keepalive-time 10;
    hold-time 30;
}
```

Display Keepalive Time Information on a GRE Tunnel Interface

Purpose
Display the current status information of a GRE tunnel interface when keepalive time and hold time parameters are configured on it and when the hold time expires.

Action
To verify the current status information on a GRE tunnel interface (for example, gr-3/3/0.3), run the `show interfaces gr-3/3/0.3 terse` and `show interfaces gr-3/3/0.3 extensive` operational commands.

```
show interfaces gr-3/3/0.3 terse
user@host>  show interfaces gr-3/3/0.3 terse

Interface   Admin Link Proto    Local                 Remote
gr-3/3/0.3   up    up   inet     192.0.2.1/24 mpls

```

```
show interfaces gr-3/3/0.3 extensive
user@host>  show interfaces gr-3/3/0.3 extensive

Logical interface gr-3/3/0.3 (Index 73) (SNMP ifIndex 594) (Generation 900)
Flags: Point-To-Point SNMP-Traps 0x4000 IP-Header
Gre keepalives configured: On, Gre keepalives adjacency state: down
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Traffic statistics:
Input bytes : 15629992
Output bytes : 15912273
Input packets: 243813
Output packets: 179476
Local statistics:
Input bytes : 15322586
Output bytes : 15621359
Input packets: 238890
Output packets: 174767
Transit statistics:
```
NOTE:
When the hold time expires:

- The GRE tunnel will stay up even though the interface cannot send or receive traffic.

- The Link status will be Up and the Gre keepalives adjacency state will be Down.

Enabling Fragmentation on GRE Tunnels

To enable fragmentation of IPv4 packets in generic routing encapsulation (GRE) tunnels, include the `clear-dont-fragment-bit` statement and a maximum transmission unit (MTU) setting for the tunnel as part of an existing GRE configuration at the `[edit interfaces]` hierarchy level:

```
[edit interfaces]
gr-fpc/pic/port {
    unit logical-unit-number {
        clear-dont-fragment-bit;
        ...
        family inet {
            mtu 1000;
            ...
        }
    }
}
This statement clears the Don’t Fragment (DF) bit in the packet header, regardless of
the packet size. If the packet size exceeds the tunnel MTU value, the packet is fragmented
before encapsulation. The maximum MTU size configurable on the AS or Multiservices
PIC is 9192 bytes.

NOTE: The clear-dont-fragment-bit statement is supported only on MX Series
routers and all M Series routers except the M320 router.

Fragmentation is enabled only on IPv4 packets being encapsulated in IPv4-based GRE
tunnels.

NOTE: This configuration is supported only on GRE tunnels on AS or
Multiservices interfaces. If you commit gre-fragmentation as the encapsulation
type on a standard Tunnel PIC interface, the following console log message
appears when the PIC comes online:

gr-fpc/pic/port: does not support this encapsulation

The Packet Forwarding Engine updates the IP identification field in the outer
IP header of GRE-encapsulated packets, so that reassembly of the packets
is possible after fragmentation. The previous CLI constraint check that
required you to configure either the clear-dont-fragment-bit statement or a
tunnel key with the allow-fragmentation statement is no longer enforced.

When you configure the clear-dont-fragment-bit statement on an interface
with the MPLS protocol family enabled, you must specify an MTU value. This
MTU value must not be greater than maximum supported value (9192).

Related
Documentation
• Configuring Unicast Tunnels on page 47

Understanding Generic Routing Encapsulation on ACX Series

Generic routing encapsulation (GRE) provides a private, secure path for transporting
packets through an otherwise public network by encapsulating (or tunneling) the packets.

This topic describes:

• Overview of GRE on page 41
• GRE Tunneling on page 41
• Configuration Limitations on page 42
Overview of GRE

GRE encapsulates data packets and redirects them to a device that de-encapsulates them and routes them to their final destination. This allows the source and destination routers to operate as if they have a virtual point-to-point connection with each other (because the outer header applied by GRE is transparent to the encapsulated payload packet). For example, GRE tunnels allow routing protocols such as RIP and OSPF to forward data packets from one router to another router across the Internet. In addition, GRE tunnels can encapsulate multicast data streams for transmission over the Internet.

GRE is described in RFC 2784 (obsoletes earlier RFCs 1701 and 1702). The routers support RFC 2784, but not completely. (For a list of limitations, see “Configuration Limitations” on page 42.)

As a tunnel source router, the router encapsulates a payload packet for transport through the tunnel to a destination network. The payload packet is first encapsulated in a GRE packet, and then the GRE packet is encapsulated in a delivery protocol. The router performing the role of a tunnel remote router extracts the tunneled packet and forwards the packet to its destination.

NOTE: Service chaining for GRE, NAT, and IPSec services on ACX1100–AC and ACX500 routers is not supported.

GRE Tunneling

Data is routed by the system to the GRE endpoint over routes established in the route table. (These routes can be statically configured or dynamically learned by routing protocols such as RIP or OSPF.) When a data packet is received by the GRE endpoint, it is de-encapsulated and routed again to its destination address.

GRE tunnels are stateless—that is, the endpoint of the tunnel contains no information about the state or availability of the remote tunnel endpoint. Therefore, the router operating as a tunnel source router cannot change the state of the GRE tunnel interface to down if the remote endpoint is unreachable.

For details about GRE tunneling, see:

- Encapsulation and De-Encapsulation on the Router on page 41
- Number of Source and Destination Tunnels Allowed on a Router on page 42

Encapsulation and De-Encapsulation on the Router

Encapsulation—A router operating as a tunnel source router encapsulates and forwards GRE packets as follows:

1. When a router receives a data packet (payload) to be tunneled, it sends the packet to the tunnel interface.
2. The tunnel interface encapsulates the data in a GRE packet and adds an outer IP header.

3. The IP packet is forwarded on the basis of the destination address in the outer IP header.

De-encapsulation—A router operating as a tunnel remote router handles GRE packets as follows:

1. When the destination router receives the IP packet from the tunnel interface, the outer IP header and GRE header are removed.

2. The packet is routed based on the inner IP header.

Number of Source and Destination Tunnels Allowed on a Router

ACX routers support as many as 64 GRE tunnels between routers transmitting IPv4 or IPv6 payload packets over GRE.

Configuration Limitations

Some GRE tunneling features are not currently available on ACX Series routers. Be aware of the following limitations when you are configuring GRE on an ACX router:

- Unsupported features—GRE on the ACX routers does not support the following features:
  - Virtual routing over GRE
  - Bidirectional Forwarding Detection (BFD) protocol over GRE distributed mode
  - MPLS over GRE tunnels
  - GRE keepalives
  - GRE keys, payload packet fragmentation, and sequence numbers for fragmented packets
  - BGP dynamic tunnels
  - RFC 1701 and RFC 1702
  - RFC 2890—Key and sequence number extensions to GRE
  - IPv6 as delivery header
  - GRE path MTU discovery
  - Load balancing when NNI is ECMP
  - Interface statistics on GRE interfaces
  - Class of service and firewall on GRE tunnel

- Routing Protocol—ACX routers do not support routing protocols on GRE interfaces. You need to disable routing on GRE interfaces under the [edit protocols] hierarchy. For example,
Configuring Generic Routing Encapsulation Tunneling on ACX Series

Tunneling provides a private, secure path for transporting packets through an otherwise public network by encapsulating packets inside a transport protocol known as an IP encapsulation protocol. Generic routing encapsulation (GRE) is an IP encapsulation protocol that is used to transport packets over a network. Information is sent from one network to the other through a GRE tunnel.

GRE tunneling is accomplished through routable tunnel endpoints that operate on top of existing physical and other logical endpoints. GRE tunnels connect one endpoint to another and provide a clear data path between them.

This topic describes:

1. Configuring a GRE Tunnel Port on page 43
2. Configuring Tunnels to Use Generic Routing Encapsulation on page 44

Configuring a GRE Tunnel Port

To configure GRE tunnels on a router, you convert a network port or uplink port on the router to a GRE tunnel port for tunnel services. Each physical tunnel port, named \texttt{gr-fpc/pic/port}, can have one or more logical interfaces, each of which is a GRE tunnel.

After conversion to a GRE tunnel port, the physical port cannot be used for network traffic.

To configure a GRE tunnel port on an ACX router, you need to create logical tunnel interfaces and the bandwidth in gigabits per second to reserve for tunnel services. Include the \texttt{tunnel-services bandwidth (1g | 10g)} statement at the [edit chassis fpc slot-number pic number] hierarchy level.
To configure a GRE tunnel port on the ACX5000 line of routers, use any unused physical port on the router to create a logical tunnel interface as shown below:

```
user@host# edit chassis
fpc 0 {
 pic 0 {
 tunnel-services {
 port port-number;
 }
 }
}
```

This also creates a gr- interface.

### Configuring Tunnels to Use Generic Routing Encapsulation

Normally, a GRE tunnel port comes up as soon as it is configured and stays up as long as a valid tunnel source address exists or an interface is operational. Each logical interface you configure on the port can be configured as the source or as the endpoint of a GRE tunnel.

To configure a tunnel port to use GRE:

1. Configure a physical GRE port with a logical interface name and address:
   - For IPv4 over GRE, specify the protocol family `inet`:
     ```
 [edit interfaces]
 user@host# set gr-fpc/pic/port unit number family inet address
     ```
   - For IPv6 over GRE, specify the protocol family `inet6`:
     ```
 [edit interfaces]
 user@host# set gr-fpc/pic/port unit number family inet6 address
     ```

2. Specify the tunnel source address for the logical interface:
   ```
 [edit interfaces]
 user@host# set gr-fpc/pic/port unit number tunnel source source-address
   ```

3. Specify the destination address:
   ```
 [edit interfaces]
 user@host# set gr-fpc/pic/port unit number tunnel destination destination-address
   ```

### Related Documentation

- Understanding Generic Routing Encapsulation on ACX Series on page 40
- Configuring Unicast Tunnels on page 47
CHAPTER 3

Encapsulating One IP Packet Over Another Using IP-IP Interfaces

- Configuring IPv6-over-IPv4 Tunnels on page 45
- Example: Configuring an IPv6-over-IPv4 Tunnel on page 45

Configuring IPv6-over-IPv4 Tunnels

If you have a Tunnel PIC installed in your M Series or T Series router, you can configure IPv6-over-IPv4 tunnels. To define a tunnel, you configure a unicast tunnel across an existing IPv4 network infrastructure. IPv6/IPv4 packets are encapsulated in IPv4 headers and sent across the IPv4 infrastructure through the configured tunnel. You manually configure configured tunnels on each end point.

On SRX Series devices, Generic Routing Encapsulation (GRE) and IP-IP tunnels use internal interfaces, gr-0/0/0 and ip-0/0/0, respectively. The Junos OS creates these interfaces at system bootup; they are not associated with a physical interface.

IPv6-over-IPv4 tunnels are defined in RFC 2893, Transition Mechanisms for IPv6 Hosts and Routers. For information about configuring a unicast tunnel, see "Configuring Unicast Tunnels" on page 47. For an IPv6-over-IPv4 tunnel configuration example, see "Example: Configuring an IPv6-over-IPv4 Tunnel" on page 45.

Example: Configuring an IPv6-over-IPv4 Tunnel

Configure a tunnel on both sides of the connection.

```
Configuration on Router 1
[edit]
interfaces {
 gr-1/0/0 {
 unit 0 {
 tunnel {
 source 10.19.2.1;
 destination 10.19.3.1;
 }
 }
 }
}
```
Configuration on Router 2

```conf
[edit]
interfaces {
 gr-1/0/0 {
 unit 0 {
 tunnel {
 source 10.19.3.1;
 destination 10.19.2.1;
 }
 family inet6 {
 address 2001:DB8::2:1/126;
 }
 }
 }
}
```

Related Documentation

- Tunnel Services Overview on page 3
- Configuring IPv6-over-IPv4 Tunnels on page 45
CHAPTER 4
Filtering Unicast Packets Through Multicast Tunnel Interfaces

- Configuring Unicast Tunnels on page 47
- Examples: Configuring Unicast Tunnels on page 52
- Restricting Tunnels to Multicast Traffic on page 54

Configuring Unicast Tunnels

To configure a unicast tunnel, you configure a gr- interface (to use GRE encapsulation) or an ip- interface (to use IP-IP encapsulation) and include the tunnel and family statements:

```plaintext
gr-fpc/pic/port or ip-fpc/pic/port {
 unit logical-unit-number {
 copy-tos-to-outer-ip-header;
 reassemble-packets;
 tunnel {
 allow-fragmentation;
 destination destination-address;
 do-not-fragment;
 key number;
 routing-instance {
 destination routing-instance-name;
 }
 source address;
 ttl number;
 }
 family family {
 address address {
 destination address;
 }
 }
 }
}
```

You can configure these statements at the following hierarchy levels:

- [edit interfaces]
• [edit logical-systems logical-system-name interfaces]

You can configure multiple logical units for each GRE or IP-IP interface, and you can configure only one tunnel per unit.

NOTE: On M Series and T Series routers, you can configure the interface on a service PIC or a tunnel PIC. On MX Series routers, configure the interface on a Multiservices DPC.

Each tunnel interface must be a point-to-point interface. Point to point is the default interface connection type, so you do not need to include the point-to-point statement in the logical interface configuration.

You must specify the tunnel's destination and source addresses. The remaining statements are optional.

NOTE: For transit packets exiting the tunnel, forwarding path features, such as reverse path forwarding (RPF), forwarding table filtering, source class usage, destination class usage, and stateless firewall filtering, are not supported on the interfaces you configure as tunnel sources, but are supported on tunnel-pic interfaces.

However, class-of-service (CoS) information obtained from the GRE or IP-IP header is carried over the tunnel and is used by the re-entering packets. For more information, see the Class of Service Feature Guide for Routing Devices and EX9200 Switches.

To prevent an invalid configuration, the Junos OS disallows setting the address specified by the source or destination statement at the [edit interfaces gr-fpc/pic/port unit logical-unit-number tunnel] hierarchy level to be the same as the interface's own subnet address, specified by the address statement at the [edit interfaces gr-fpc/pic/port unit logical-unit-number family family-name] hierarchy level.

To set the time-to-live (TTL) field that is included in the encapsulating header, include the ttl statement. If you explicitly configure a TTL value for the tunnel, you must configure it to be one larger than the number of hops in the tunnel. For example, if the tunnel has seven hops, you must configure a TTL value of 8.

You must configure at least one family on the logical interface. To enable MPLS over GRE tunnel interfaces, you must include the family mpls statement in the GRE interface configuration. In addition, you must include the appropriate statements at the [edit protocols] hierarchy level to enable Resource Reservation Protocol (RSVP), MPLS, and label-switched paths (LSPs) over GRE tunnels. Unicast tunnels are bidirectional.

A configured tunnel cannot go through Network Address Translation (NAT) at any point along the way to the destination. For more information, see “Examples: Configuring Unicast Tunnels” on page 52 and the MPLS Applications Feature Guide.
For a GRE tunnel, the default is to set the ToS bits in the outer IP header to all zeros. To have the Routing Engine copy the ToS bits from the inner IP header to the outer, include thecopy-tos-bits-to-outer-ip-headerstatement. (This inner-to-outer ToS bits copying is already the default behavior for IP-IP tunnels.)

For GRE tunnel interfaces on Adaptive Services or Multiservices interfaces, you can configure additional tunnel attributes, as described in the following sections:

• Configuring a Key Number on GRE Tunnels on page 49
• Enabling Packet Fragmentation on GRE Tunnels Prior to GRE Encapsulation on page 50
• Specifying an MTU Setting for the Tunnel on page 50
• Configuring a GRE Tunnel to Copy ToS Bits to the Outer IP Header on page 51
• Enabling Fragmentation and Reassembly on Packets After GRE-Encapsulation on page 51
• Support for IPv6 GRE tunnels on page 52

Configuring a Key Number on GRE Tunnels

For Adaptive Services and Multiservices interfaces on M Series and T Series routers, you can assign a key value to identify an individual traffic flow within a GRE tunnel, as defined in RFC 2890,Key and Sequence Number Extensions to GRE. However, only one key is allowed for each tunnel source and destination pair.

Each IP version 4 (IPv4) packet entering the tunnel is encapsulated with the GRE tunnel key value. Each IPv4 packet exiting the tunnel is verified by the GRE tunnel key value and de-encapsulated. The Adaptive Services or Multiservices PIC drops packets that do not match the configured key value.

To assign a key value to a GRE tunnel interface, include thekeystatement:

```
key number;
```

You can include this statement at the following hierarchy levels:

• [edit interfaces interface-name unit logical-unit-number tunnel]
• [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number tunnel]

The key number can be 0 through 4,294,967,295. You must configure the same GRE tunnel key value on tunnel endpoints.

The following example illustrates the use of the key statement in a GRE tunnel configuration:

```
interfaces {
gr-1/2/0 {
 unit 0 {
 tunnel {
 source 10.58.255.193;
 destination 10.58.255.195;
 }
 }
}
```
Enabling Packet Fragmentation on GRE Tunnels Prior to GRE Encapsulation

For GRE tunnel interfaces on Adaptive Services and Multiservices interfaces only, you can enable fragmentation of IPv4 packets before they are GRE-encapsulated in GRE tunnels.

By default, IPv4 traffic transmitted over GRE tunnels is not fragmented. To enable fragmentation of IPv4 packets in GRE tunnels, include the clear-dont-fragment-bit statement:

```plaintext
clear-dont-fragment-bit;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`

When you include the clear-dont-fragment-bit statement in the configuration, the don't-fragment (DF) bit is cleared on all packets, even packets that do not exceed the tunnel maximum transmission unit (MTU). If the packet's size exceeds the tunnel's MTU value, the packet is fragmented before encapsulation. If the packet's size does not exceed the tunnel's MTU value, the packet is not fragmented.

You can also clear the DF bit in packets transmitted over IP Security (IPsec) tunnels. For more information, see Configuring IPsec Rules.

Specifying an MTU Setting for the Tunnel

To enable key numbers and fragmentation on GRE tunnels (as described in "Configuring a Key Number on GRE Tunnels" on page 49 and "Enabling Packet Fragmentation on GRE Tunnels Prior to GRE Encapsulation" on page 50), you must also specify an MTU setting for the tunnel.

To specify an MTU setting for the tunnel, include the mtu statement:

```plaintext
mtu bytes;
```

You can include this statement at the following hierarchy levels:
• [edit interfaces gr-fpc/pic/port unit logical-unit-number family inet]
• [edit logical-system logical-system-name interfaces gr-fpc/pic/port unit logical-unit-number family inet]

For more information about MTU settings, see the Junos OS Network Interfaces Library for Routing Devices.

Configuring a GRE Tunnel to Copy ToS Bits to the Outer IP Header

Unlike IP-IP tunnels, GRE tunnels do not copy the ToS bits to the outer IP header by default. To have the Routing Engine copy the inner ToS bits to the outer IP header (which is required for some tunneled routing protocols) on packets sent by the Routing Engine, include the `copy-tos-to-outer-ip-header` statement at the logical unit hierarchy level of a GRE interface. This example copies the inner ToS bits to the outer IP header on a GRE tunnel:

```
[edit interfaces]
gr-0/0/0 {
 unit 0 {
 copy-tos-to-outer-ip-header;
 family inet;
 }
}
```

Enabling Fragmentation and Reassembly on Packets After GRE-Encapsulation

You can enable the fragmentation and reassembly of packets after they are GRE-encapsulated for a GRE tunnel. When the size of a GRE-encapsulated packet is greater than the MTU of a link that the packet passes through, the GRE-encapsulated packet is fragmented. You configure the GRE interface at the endpoint of the tunnel to reassemble the fragmented GRE-encapsulated packets before they are processed further on the network.

For each tunnel you configure on an interface, you can enable or disable fragmentation of GRE-encapsulated packets by including the `allow-fragmentation` or `do-not-fragment` statement:

```
allow-fragmentation;
do-not-fragment;
```

You can configure these statements at the following hierarchy levels:

• [edit interfaces interface-name unit logical-unit-number tunnel]
• [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number tunnel]

If you configure `allow-fragmentation` on a tunnel, the DF bit is not set in the outer IP header of the GRE-encapsulated packet, enabling fragmentation. By default, GRE-encapsulated packets that exceed the MTU size of a link are not fragmented and are dropped.
To enable reassembly of fragmented GRE-encapsulated packets on the GRE interface at the endpoint of the tunnel, include the `reassemble-packets` statement:

```
reassemble-packets;
```

You can configure this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`

Starting with Junos OS Release 17.1R1, you can configure fragmentation and reassembly of GRE-encapsulated packets on GRE tunnel interfaces on MX Series routers with MPC2E-NGs, MPC3E-NGs, MPC5Es, and MPC6Es.

Starting with Junos OS Release 14.2, you can configure fragmentation and reassembly of GRE-encapsulated packets on GRE tunnel interfaces on MX Series routers with MPC1s, MPC2s, MPC3s, MPC4s, and MPC-16X10GEs.

In Junos OS Release Release 14.1 and earlier, fragmentation and reassembly of GRE-encapsulated packets is supported only on MX Series routers with MS-DPCs.

**Support for IPv6 GRE tunnels**

Starting in Junos OS Release 17.3R1, you can configure IPv6 generic routing encapsulation (GRE) tunnel interfaces on MX Series routers. This lets you run a GRE tunnel over an IPv6 network. Packet payload families that can be encapsulated within the IPv6 GRE tunnels include IPv4, IPv6, MPLS, and ISO. Fragmentation and reassembly of the IPv6 delivery packets is not supported.

To configure an IPv6 GRE tunnel interface, specify IPv6 addresses for `source` and `destination` at the `[interfaces gr-0/0/0 unit 0 tunnel]` hierarchy level, specify `family inet6` at the `[interfaces gr-0/0/0 unit 0]` hierarchy level, and specify an IPv6 address for `address` at the `[interfaces gr-0/0/0/0 unit 0 family inet6]` hierarchy level.

**Examples: Configuring Unicast Tunnels**

Configure two unnumbered IP-IP tunnels:

```
[edit interfaces]
ip-0/3/0 {
 unit 0 {
 tunnel {
 source 192.168.4.18;
 destination 192.168.4.253;
 }
 }
}
```
family inet;
}
unit 1 [
    tunnel {
        source 192.168.4.18;
        destination 192.168.4.254;
    }
    family inet;
}
]

Configure numbered tunnel interfaces by including an address at the `[edit interfaces ip-0/3/0 unit (0 | 1) family inet] hierarchy level:

```
[edit interfaces]
ip-0/3/0 {
 unit 0 {
 tunnel {
 source 192.168.4.18;
 destination 192.168.4.253;
 }
 family inet {
 address 10.5.5.1/30;
 }
 }
 unit 1 {
 tunnel {
 source 192.168.4.18;
 destination 192.168.4.254;
 }
 family inet {
 address 10.6.6.100/30;
 }
 }
}
```

Configure an MPLS over GRE tunnel by including the `family mpls` statement at the `[edit interfaces gr-1/2/0 unit 0] hierarchy level:

```
[edit interfaces]
gr-1/2/0 {
 unit 0 {
 tunnel {
 source 192.168.1.1;
 destination 192.168.1.2;
 }
 family inet {
 address 10.1.1.1/30;
 }
 family mpls;
 }
}
Restricting Tunnels to Multicast Traffic

For interfaces that carry IPv4 or IP version 6 (IPv6) traffic, you can configure a tunnel interface to allow multicast traffic only. To configure a multicast-only tunnel, include the `multicast-only` statement:

```
multicast-only;
```

You can configure this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number family family]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family family]`

Multicast tunnels filter all unicast packets; if an incoming packet is not destined for a 224/8 or greater prefix, the packet is dropped and a counter is incremented.

You can configure this property on GRE, IP-IP, PIM, and multicast tunnel (mt) interfaces only.

NOTE: If your router has a Tunnel Services PIC, the Junos OS automatically configures one multicast tunnel interface (mt) for each virtual private network (VPN) you configure. You do not need to configure multicast tunnel interfaces.
CHAPTER 5

Connecting Logical Systems Using Logical Tunnel Interfaces

- Configuring Logical Tunnel Interfaces on page 55
- Guidelines for Configuring Logical Tunnels on ACX Series Routers on page 57
- Configuring an Interface in the VRF Domain to Receive Multicast Traffic on page 60
- Example: Configuring Logical Tunnels on page 62
- Redundant Logical Tunnels Overview on page 64
- Configuring Redundant Logical Tunnels on page 67
- Example: Configuring Redundant Logical Tunnels on page 68

Configuring Logical Tunnel Interfaces

Logical tunnel (lt-) interfaces provide quite different services depending on the host router:

- On M Series, MX Series, and T Series routers, logical tunnel interfaces allow you to connect logical systems, virtual routers, or VPN instances. M Series and T Series routers must be equipped with a Tunnel Services PIC or an Adaptive Services Module (only available on M7i routers). MX Series routers must be equipped with a Trio MPC/MIC module. For more information about connecting these applications, see the Junos OS VPNs Library for Routing Devices.

- On SRX Series Services Gateways, the logical tunnel interface is used to interconnect logical systems. See the Logical Systems and Tenant Systems Feature Guide for Security Devices for information about using the logical tunnel interface on the SRX Series.

- On ACX Series routers, logical tunnel interfaces allow you to connect a bridge domain and a pseudowire. Logical systems are not supported on ACX Series routers.

Connecting Logical Systems

To connect two logical systems, you configure a logical tunnel interface on both logical systems. Then you configure a peer relationship between the logical tunnel interfaces, thus creating a point-to-point connection.
To configure a point-to-point connection between two logical systems, configure the logical tunnel interface by including the `lt-fpc/pic/port` statement:

```
lt-fpc/pic/port {
    unit logical-unit-number {
        encapsulation encapsulation;
        peer-unit unit-number; # peering logical system unit number
        dlci dlci-number;
        family (inet | inet6 | iso | mpls);
    }
}
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces]`
- `[edit logical-systems logical-system-name interfaces]`

When configuring logical tunnel interfaces, note the following:

- You can configure each logical tunnel interface with one of the following encapsulation types: Ethernet, Ethernet circuit cross-connect (CCC), Ethernet VPLS, Frame Relay, Frame Relay CCC, VLAN, VLAN CCC, or VLAN VPLS.
- You can configure the IP, IPv6, International Organization for Standardization (ISO), or MPLS protocol family.
- Do not reconfigure a logical tunnel interface that is an anchor point with pseudowire devices stacked above it unless you first deactivate all broadband subscribers that are using the pseudowire subscriber interface.
- The peering logical interfaces must belong to the same logical tunnel interface derived from the Tunnel Services PIC or Adaptive Services Module.
- You can configure only one peer unit for each logical interface. For example, unit 0 cannot peer with both unit 1 and unit 2.
- To enable the logical tunnel interface, you must configure at least one physical interface statement.
- Logical tunnels are not supported with Adaptive Services, Multiservices, or Link Services PICs (but they are supported on the Adaptive Services Module on M7i routers, as noted above).
- On M Series routers other than the M40e router, logical tunnel interfaces require an Enhanced Flexible PIC Concentrator (FPC).
- On MX Series routers, logical tunnel interfaces require Trio MPC/MIC modules. They do not require a Tunnel Services PIC in the same system.

For more information about configuring logical systems, see the Junos OS Routing Protocols Library.

Related Documentation:

- Tunnel Services Overview on page 3
- Example: Configuring Logical Tunnels on page 62
Guidelines for Configuring Logical Tunnels on ACX Series Routers

Observe the following guidelines while configuring logical tunnel (lt-) interfaces on ACX Series routers:

- You can use a logical tunnel interface to connect only bridge domains and pseudowires.
- Logical tunnel interfaces cannot interconnect the following links:
 - Pseudowire and a routing instance (Pseudowire terminating on a VRF)
 - Two routing instances
 - VPLS instance and a routing instance
 - Two VPLS instances
 - Two Bridge domains
 - Bridge domain and a VPLS instance
- Only one logical tunnel (physical interface) per bandwidth type (1 Gbps or 10 Gbps) can be configured on ACX routers. However, you can specify up to two logical tunnel interfaces (one with 1 Gb bandwidth and another with 10 Gb bandwidth) on ACX routes.
- Guaranteed bandwidth for logical tunnels is 1 Gbps and certain platforms support up to an additional 10 Gbps bandwidth. All the services configured using logical tunnel interfaces share this bandwidth.

 The bandwidth configured on the logical tunnel interface is shared between upstream and downstream traffic on that interface. The effective bandwidth available for the service is half the configured bandwidth.
- Multiple logical tunnel interfaces to enable configuration of separate services on each logical interface to obtain increased bandwidth for each individual interface separately or the bundling of individual logical tunnel interfaces is not supported.
- You can configure Ethernet VLAN, Ethernet CCC, VLAN bridge on Ethernet interfaces, and VLAN on circuit cross-connects (CCC) as encapsulation types on logical tunnel interfaces. Other encapsulation types such as Ethernet, VLAN, Ethernet VPLS, or VLAN VPLS are not supported.
- When the encapsulation configured on the logical interface units is one of the supported types such as Ethernet VLAN or VLAN bridge, you can enable only bridge domains or CCC protocols on logical tunnel interfaces. Other address families or protocols such as IPv4, IPv5, MPLS, or OSPF are not supported.
- Classifier, rewrite and ingress policer configuration are supported on logical tunnel interfaces. Fixed, BA-based, and multifield classifiers are supported on the lt-interfaces at the physical interface-level.

 802.1p, 802.1ad, TOS and DSCP based BA classifiers are supported. Remarking rules can be configured at the port level on the LT interface. 802.1p, 802.1ad, TOS and DSCP fields in the packet can be rewritten in the LT interface. Ingress policers are supported.
Simple, Single-rate tricolor marking (srTCM), two-rate tricolor marking (trTCM) policers are supported. Egress policers are not supported.

- Default classifiers do not work properly when lt- interfaces are configured on non-Ethernet PICs.
- Port-level queuing is supported; up to eight queues per lt- interface are supported. These eight queues are shared between the upstream and downstream traffic traversing through the lt- interface. If the configured bandwidth on the lt- interface is not adequate for the upstream and downstream traffic of the services configured on the interface, a failure occurs with traffic propagation because multiple lt- interfaces are not supported.
- Eight forwarding classes (0-7) are mapped to the eight queues based on the global system configuration. The remainder of the scheduler configuration, buffer-size, transmit-rate, shaping-rate, priority and WRED or drop profiles maps can be configured on the lt- interface queues.
- The following firewall filter types are supported on lt- interfaces:
 - Logical interface-level filters
 - Bridge family filters
 - CCC family filters

All firewall configurations are supported. The scaling limitation with such filters is the same as the existing firewall filter restrictions.

- OAM is not supported on lt- interfaces.
- Similar to other physical interfaces, the number of logical interfaces that can be supported on logical tunnel physical interfaces is 30.
- When a bridge domain is configured with a VLAN ID (bridge domain has normalized VLANs), the difference is behavior between MX and ACX Series routers is that the MX router does not match the user-vlan-id in output filter, whereas the ACX router matches the user-vlan-id specified in the output filter.
- If the logical tunnel interface is created using non Ethernet PICs, then default classifier is not bound to the interface.

To create logical tunnel interfaces and the bandwidth in gigabits per second to reserve for tunnel services, include the tunnel-services bandwidth (1g | 10g) statement at the [edit chassis fpc slot-number pic number] hierarchy level:

```
[edit interfaces]
lt-fpc/pic/port {
    unit logical-unit-number {
        encapsulation encapsulation;
        peer-unit unit-number; # peering logical system unit number
dcli dcli-number;
        family (inet | inet6 | iso | mpls);
    }
}
```
The ACX5048 and ACX5096 routers support `ethernet-vpls` and `vlan-vpls` encapsulations. These encapsulations are supported only on logical tunnel interface and are required for configuring hierarchial VPLS.

You can use any unused physical port on the ACX5048 and ACX5096 routers to create a logical tunnel interface as shown below:

```bash
user@host# edit chassis
fpc 0 {
  pic 0 {
    tunnel-services {
      port port-number;
    }
  }
}
```

The following sample configuration allows you to encapsulate `vlan-ccc` to `vlan-vpls` using LT interface in ACX5048 and ACX5096 routers:

```bash
user@host# edit chassis
lt-0/0/1 {
  unit 0 {
    encapsulation vlan-ccc;
    vlan-id 1;
    peer-unit 1;
  }
  unit 1 {
    encapsulation vlan-vpls;
    vlan-id 1;
    peer-unit 0;
  }
}
```

Related Documentation

- Configuring Logical Tunnel Interfaces on page 55
Configuring an Interface in the VRF Domain to Receive Multicast Traffic

You can configure an ACX Series router to receive multicast traffic in a VRF domain. In an IPTV solution, IPTV sources and receivers can be spread across different end points of a network in a VRF domain. To receive the multicast traffic at the receiver’s side, it is necessary for the multicast traffic to be tunneled across the network to reach the end receiving device or the subscriber. This tunneling is usually done using the Multicast Virtual Private Network (MVPN) technology.

ACX Series routers do not support MVPN technology. An alternate method for receiving the multicast traffic in the VRF domain in ACX Series router is by associating a global logical interface to a logical interface in the VRF domain. The global logical interface acts as a proxy for receiving the multicast traffic on the logical interface in the VRF domain. To associate a global logical interface to a logical interface in the VRF domain, you need to configure an IRB interface in a global domain to act as a proxy for the logical interface in the VRF domain.

- Configuring a Proxy Logical Interface in the Global Domain on page 60
- Associating the Proxy Logical Interface to a Logical Interface in a VRF Domain on page 61
- Limitations on page 61

Configuring a Proxy Logical Interface in the Global Domain

To configure a proxy logical interface in the global domain, you need to create logical tunnel (lt-) interface and IRB interface and then associate the IRB interface to a bridge domain. The following is an example to configure a proxy logical interface in the global domain:

1. Create a logical tunnel (lt-) interface.

 [edit]
 user@host# set chassis aggregated-devices ethernet device-count 1
 user@host# set chassis fpc 0 pic 0 tunnel-services bandwidth 1g
 user@host# set interfaces lt-0/0/10 unit 0 encapsulation vlan-bridge
 user@host# set interfaces lt-0/0/10 unit 0 vlan-id 101
 user@host# set interfaces lt-0/0/10 unit 0 peer-unit 1
 user@host# set interfaces lt-0/0/10 unit 1 encapsulation vlan-ccc
 user@host# set interfaces lt-0/0/10 unit 1 vlan-id 101
 user@host# set interfaces lt-0/0/10 unit 1 peer-unit 0

2. Create an IRB interface.

 [edit]
 user@host# set interfaces irb unit 0 family inet address 192.168.1.2/24

3. Associate the IRB interface to a bridge domain.
Associating the Proxy Logical Interface to a Logical Interface in a VRF Domain

To associate the proxy logical interface to a logical interface in a VRF domain, you need to run the following PFE commands:

- **test pfe acx vrf-mc-leak enable** — Enables proxy association.

- **test pfe acx entry add VRF-logical-interface-name logical-tunnel-logical-interface-name IRB-logical-interface-name IRB-IP-address + 1** — Creates an association between proxy logical interface and the logical interface in a VRF domain.

- **test pfe acx vrf-mc-leak disable** — Disables proxy association.

- **test pfe acx entry del VRF-logical-interface-name logical-tunnel-logical-interface-name IRB-logical-interface-name IRB-IP-address + 1** — Deletes the association between the proxy logical interface and the logical interface in a VRF domain.

- **show pfe vrf-mc-leak** — Displays the association entries between proxy logical interface and the logical interface in a VRF domain.

NOTE: When the router or PFE is rebooted, the proxy associations of logical interfaces is removed and you need to once again create the proxy associations of logical interface.

Limitations

The following limitations need to be considered for receiving multicast traffic in a VRF domain:

- Maximum of 5 proxy associations of logical interfaces can be configured.

- VRF IPv6 multicast is not supported.

- AE interface as a VRF interface (requesting multicast traffic) is not be supported.

- Multicast traffic cannot be forwarded from the logical interface in a VRF domain if the first hop router is an ACX router.

Related Documentation
Example: Configuring Logical Tunnels

Configure three logical tunnels:

```
[edit interfaces]
lt-4/2/0 {
    description “Logical tunnel interface connects three logical systems”;
}
[edit logical-systems]
lr1 {
    interfaces lt-4/2/0 {
        unit 12 {
            peer-unit 21; #Peering with lr2
            encapsulation frame-relay;
            dlci 612;
            family inet;
        }
        unit 13 {
            peer-unit 31; #Peering with lr3
            encapsulation frame-relay-ccc;
            dlci 613;
        }
    }
}
lr2 {
    interfaces lt-4/2/0 {
        unit 21 {
            peer-unit 12; #Peering with lr1
            encapsulation frame-relay-ccc;
            dlci 612;
        }
        unit 23 {
            peer-unit 32; #Peering with lr3
            encapsulation frame-relay;
            dlci 623;
        }
    }
}
lr3 {
    interfaces lt-4/2/0 {
        unit 31 {
            peer-unit 13; #Peering with lr1
            encapsulation frame-relay;
            dlci 613;
            family inet;
        }
        unit 32 {
            peer-unit 23; #Peering with lr2
            encapsulation frame-relay-ccc;
            dlci 623;
        }
    }
}
```
Related Documentation

- Tunnel Services Overview on page 3
- Configuring Logical Tunnel Interfaces on page 55
Redundant Logical Tunnels Overview
You can connect two devices, such as an access-facing device and a core-facing device, through logical tunnels. To provide redundancy for the tunnels, you can create and configure multiple physical logical tunnels and add them to a virtual redundant logical tunnel.

NOTE: Redundant logical tunnels are supported only on MX Series routers with MPCs. MX Series Virtual Chassis does not support redundant logical tunnels.

NOTE: Redundant logical tunnels are not supported currently in MX Series Virtual Chassis.

For example, in an MPLS access network, you can configure multiple pseudowires between an access node and an MX Series router with MPCs and add them to a redundant logical tunnel. You can then add multiple logical tunnels to the redundant logical tunnel. Figure 4 on page 65 shows a redundant logical tunnel between the access node and the MX Series router.

Figure 4: Redundant Logical Tunnels

The redundant logical tunnel has peer logical interfaces at each end, rlt0.0 and rlt0.1. You can configure router features on these interfaces for the redundant logical tunnel and its members.

Each member logical tunnel has peer logical interfaces. In Figure 4 on page 65, lt-0/0/10.0 and lt-0/0/10.1 are peers.

The MX Series router performs IP lookup in the Layer 3 VPN routing and forwarding (VRF) table on the router where the pseudowires that are grouped in logical tunnels terminate.
In Junos OS Releases 14.1R1 and earlier, you can create up to 16 redundant logical tunnels, depending on the number of Packet Forwarding Engines and the number of loopback interfaces on each Packet Forwarding Engine on your device. Starting in Junos OS Release 14.2 and for 13.3R3 and 14.1R2, the valid range for device-count is from 1 to 255.

You can add up to 32 logical tunnels as members of a redundant logical tunnel.

When you add more than two members to the redundant logical tunnel, they are in active mode. The traffic is load-balanced over all the tunnel members.

When you add only two members to the redundant logical tunnel, you can configure the members in one of these ways:

- Both members in active mode
- One member in active mode and the other in backup mode

Redundant Logical Tunnel Failure Detection and Failover

A logical tunnel fails and is removed from the redundant logical tunnel group, and the backup logical tunnel becomes active due to one of these events:

- A hardware failure on the MPC module occurs.
- An MPC failure occurs due to a microkernel crash.
- The MPC module is administratively shut down and removed from the redundant logical tunnel.
- A power failure on the MPC module occurs.

NOTE: You can decrease the time it takes for failure detection and failover to occur. Configure the `enhanced-ip` statement at the [edit chassis network-services] hierarchy level to enable Packet Forwarding Engine liveness detection.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2</td>
<td>Starting in Junos OS Release 14.2 and for 13.3R3 and 14.1R2, the valid range for device-count is from 1 to 255.</td>
</tr>
</tbody>
</table>

Related Documentation

- Example: Configuring Redundant Logical Tunnels on page 68
- Pseudowire Subscriber Logical Interfaces Overview
- Configuring Logical Tunnel Interfaces on page 55
- Configuring Redundant Logical Tunnels on page 67
- Configuring a Pseudowire Subscriber Logical Interface Device
Configuring Redundant Logical Tunnels

Use redundant logical tunnels to provide redundancy for logical tunnels between two devices, such as an access-facing device and a core-facing device.

When configuring redundant logical tunnel interfaces, note the following:

- Starting in Junos OS Release 13.3, you can configure redundant logical tunnels only on MX Series routers with MPCs.

In Junos OS Releases 14.1R1 and earlier, you can create up to 16 redundant logical tunnels, depending on the number of Packet Forwarding Engines and the number of loopback interfaces on each Packet Forwarding Engine on your device. Starting in Junos OS Release 14.2 and for 13.3R3 and 14.1R2, the valid range for device-count is from 1 to 255. The command is shown below.

```plaintext
set chassis redundancy-group interface-type redundant-logical-tunnel device-count [number];
```

You can add up to 32 logical tunnels as members.

- When a logical tunnel with an existing configuration joins a redundant logical tunnel, you must configure the redundant logical tunnel with the settings from the existing configuration.

- You can add member logical tunnels to a parent logical tunnel for redundancy.

- When you add more than two logical tunnels to the redundant logical tunnel, the members are in active mode by default.

- When you add only two members, you can configure the members in one of these ways:
 - Both members in active mode
 - One member in active mode and the other in backup mode

To configure a redundant logical tunnel between two devices:

1. Create the logical tunnel and redundant logical tunnel interfaces.

   ```plaintext
   [edit chassis]
   user@host# set redundancy-group interface-type redundant-logical-tunnel device-count count
   user@host# set fpc slot-number pic number tunnel-services bandwidth 1g
   ```

2. Bind the member logical tunnels to the redundant logical tunnel.

   ```plaintext
   [edit interfaces]
   user@host# set interface-name redundancy-group member-interface interface-name
   ```

3. Configure the redundant logical tunnel interfaces.
4. Attach the redundant logical tunnel interface to a Layer 2 circuit.

5. Add the peer redundant logical tunnel interface to a Layer 3 VRF instance.

6. Configure MPLS and LDP in the pseudowires and the Layer 3 VPN.

   ```
   [edit protocols]
   user@host# set mpls no-cspf
   user@host# set mpls interface all
   user@host# set ldp interface all
   ```

7. Configure BGP in the Layer 3 VPN.

8. Configure OSPF on the core-facing interfaces and the router local loopback interface.

9. Set the policy options for BGP.

10. Set the router ID and the autonomous system (AS) number.

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2</td>
<td>Starting in Junos OS Release 14.2 and for 13.3R3 and 14.1R2, the valid range for device-count is from 1 to 255.</td>
</tr>
<tr>
<td>13.3</td>
<td>Starting in Junos OS Release 13.3, you can configure redundant logical tunnels only on MX Series routers with MPCs.</td>
</tr>
</tbody>
</table>

Related Documentation

- Example: Configuring Redundant Logical Tunnels on page 68
- Redundant Logical Tunnels Overview on page 64

Example: Configuring Redundant Logical Tunnels

This example shows how to configure redundant logical tunnels in an MPLS access network.

- Requirements on page 68
- Overview on page 69
- Configuration on page 70
- Verification on page 76

Requirements

In Junos OS Release 13.3 or later, you can configure redundant logical tunnels only on MX Series routers with MPCs.
Overview

When a logical tunnel with an existing configuration joins a redundant logical tunnel, you must configure the redundant logical tunnel with the settings from the existing configuration.

You can add member logical tunnels to a parent logical tunnel for redundancy.

On MX Series routers with MPCs, you can configure redundant logical tunnels as follows:

- In Junos OS Releases 14.1R1 and earlier, you can create up to 16 redundant logical tunnels, depending on the number of Packet Forwarding Engines and the number of loopback interfaces on each Packet Forwarding Engine on your device. Starting in Junos OS Release 14.2 and for 13.3R3 and 14.1R2, the valid range for device-count is from 1 to 255. The command is shown below.

 set chassis redundancy-group interface-type redundant-logical-tunnel device-count [number];

- You can add up to 32 logical tunnels as members.
- When you add more than two logical tunnels to a redundant logical tunnel, the members are in active mode by default.
- When you add only two members, you can configure the members in one of these ways:
 - Both members in active mode
 - One member in active mode and the other in backup mode

Topology

Figure 4 on page 65 shows a redundant logical tunnel between the access node and the MX Series router in an MPLS access network.
The redundant logical tunnel has peer logical interfaces at each end, rlt0.0 and rlt0.1. You can configure router features on these interfaces for the redundant logical tunnel and its members.

Each member logical tunnel has peer logical interfaces on the access-facing and core-facing devices. In Figure 4 on page 65, lt-0/0/10.0 and lt-0/0/10.1 are peers.

The MX Series router performs IP lookup in the Layer 3 VPN routing and forwarding (VRF) table on the router where the pseudowires that are grouped in logical tunnels terminate.

Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```
set chassis redundancy-group interface-type redundant-logical-tunnel device-count 4
set chassis fpc 1 pic 0 tunnel-services bandwidth 1g
set chassis fpc 2 pic 2 tunnel-services bandwidth 1g
set interfaces rlt0 redundancy-group member-interface lt-1/0/10
set interfaces rlt0 redundancy-group member-interface lt-2/0/10
set interfaces rlt0 unit 0 description "Towards Layer 2 Circuit"
set interfaces rlt0 unit 0 encapsulation vlan-ccc
set interfaces rlt0 unit 0 vlan-id 600
set interfaces rlt0 unit 0 peer-unit 1
set interfaces rlt0 unit 0 family ccc
set interfaces rlt0 unit 1 description "Towards Layer 3 VRF"
set interfaces rlt0 unit 1 encapsulation vlan
set interfaces rlt0 unit 1 vlan-id 600
set interfaces rlt0 unit 1 peer-unit 0
set interfaces rlt0 unit 1 family inet address 10.10.2.2/24
set protocols l2circuit neighbor 192.0.2.2 interface rlt0.0 virtual-circuit-id 100
```
set protocols l2circuit neighbor 192.0.2.2 interface rlt0.0 no-control-word
set routing-instances pe-vrf instance-type vrf
set routing-instances pe-vrf interface rlt0.1
set routing-instances pe-vrf route-distinguisher 65056:1
set routing-instances pe-vrf vrf-import VPN-A-Import
set routing-instances pe-vrf vrf-export VPN-A-Export
set routing-instances pe-vrf vrf-table-label
set routing-instances pe-vrf protocols ospf export VPN-A-Import
set routing-instances pe-vrf protocols ospf area 0.0.0.0 interface rlt0.1
set protocols mpls no-cspf
set protocols mpls interface all
set protocols ldp interface all
set protocols bgp export local-routes
set protocols bgp group internal type internal
set protocols bgp group internal local-address 198.51.100.3
set protocols bgp group internal family inet any
set protocols bgp group internal family inet-vpn unicast
set protocols bgp group internal neighbor 203.0.113.4
set protocols ospf area 0.0.0.0 interface ge-5/3/8.0
set protocols ospf area 0.0.0.0 interface ge-5/2/5.0
set protocols ospf area 0.0.0.0 interface lo0.3 passive
set policy-options policy-statement VPN-A-Export term a then community add VPN-A
set policy-options policy-statement VPN-A-Export term a then accept
set policy-options policy-statement VPN-A-Export term b then reject
set policy-options policy-statement VPN-A-Import term a from protocol bgp
set policy-options policy-statement VPN-A-Import term a from community VPN-A
set policy-options policy-statement VPN-A-Import term a then accept
set policy-options policy-statement VPN-A-Import term b then reject
set policy-options policy-statement local-routes then accept
set policy-options community VPN-A members target:100:100
set routing-options router-id 198.51.100.3
set routing-options autonomous-system 65056

Step-by-Step Procedure

In this example, all the logical tunnels are in active mode.

1. Create the logical tunnel and redundant logical tunnel interfaces.

 [edit chassis]
 user@host# set redundancy-group interface-type redundant-logical-tunnel
device-count 4
 user@host# set fpc 1 pic 0 tunnel-services bandwidth 1g
 user@host# set fpc 2 pic 2 tunnel-services bandwidth 1g

2. Bind the member logical tunnels to the redundant logical tunnel.

 [edit interfaces]
 user@host# set rlt0 redundancy-group member-interface lt-1/0/10
 user@host# set rlt0 redundancy-group member-interface lt-2/0/10

3. Configure the redundant logical tunnel interfaces.
4. Attach rlt0.0 to a Layer 2 circuit.

 [edit protocols]
 user@host# set l2circuit neighbor 192.0.2.2 interface rlt0.0 virtual-circuit-id 100
 user@host# set l2circuit neighbor 192.0.2.2 interface rlt0.0 no-control-word

5. Add rlt0.1 to a Layer 3 VRF instance.

 [edit routing-instances]
 user@host# set pe-vrf instance-type vrf
 user@host# set pe-vrf interface rlt0.1
 user@host# set pe-vrf route-distinguisher 65056:1
 user@host# set pe-vrf vrf-import VPN-A-Import
 user@host# set pe-vrf vrf-export VPN-A-Export
 user@host# set pe-vrf vrf-table-label
 user@host# set pe-vrf protocols ospf export VPN-A-Import
 user@host# set pe-vrf protocols ospf area 0.0.0.0 interface rlt0.1

6. Configure MPLS and LDP in the pseudowires and the Layer 3 VPN.

 [edit protocols]
 user@host# set mpls no-cspf
 user@host# set mpls interface all
 user@host# set ldp interface all

7. Configure BGP in the Layer 3 VPN.

 [edit protocols]
 user@host# set bgp export local-routes
 user@host# set bgp group internal type internal
 user@host# set bgp group internal local-address 198.51.100.3
 user@host# set bgp group internal family inet any
 user@host# set bgp group internal family inet-vpn unicast
 user@host# set bgp group internal neighbor 203.0.113.4

8. Configure OSPF on the core-facing interfaces and the router local loopback interface.
9. Set the policy options for BGP.

 [edit protocol-options]
 user@host# set policy-statement VPN-A-Export term a then community add VPN-A
 user@host# set policy-statement VPN-A-Export term a then accept
 user@host# set policy-statement VPN-A-Export term b then reject
 user@host# set policy-statement VPN-A-Import term a from protocol bgp
 user@host# set policy-statement VPN-A-Import term a from community VPN-A
 user@host# set policy-statement VPN-A-Import term a then accept
 user@host# set policy-statement VPN-A-Import term b then reject
 user@host# set policy-statement local-routes then accept
 user@host# set community VPN-A members target:100:100

10. Set the router ID and the autonomous system (AS) number.

 [edit routing-options]
 user@host# set router-id 198.51.100.3
 user@host# set autonomous-system 65056

Results

From configuration mode, confirm your configuration by entering the following commands:

- show chassis
- show interfaces
- show policy-options
- show protocols
- show routing-instances
- show routing-options

If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@host# show chassis
redundancy-group {
 interface-type {
 redundant-logical-tunnel {
 device-count 4;
 }
 }
}
fpc 1 {
 pic 0 {
 tunnel-services {
 bandwidth 1g;
 }
 }
}
fpc 1 {
 pic 2 {
 tunnel-services {
 bandwidth 1g;
 }
 }
}
user@host# show interfaces rl0
redundancy-group {
 member-interface lt-1/0/10;
 member-interface lt-2/0/10;
}
unit 0 {
 description "Towards Layer 2 Circuit";
 encapsulation vlan-ccc;
 vlan-id 600;
 peer-unit 1;
 family ccc;
}
unit 1 {
 description "Towards Layer 3 VRF";
 encapsulation vlan;
 vlan-id 600;
 peer-unit 0;
 family inet {
 address 10.10.10.2/24;
 }
}
user@host# show protocols l2circuit
neighbor 192.0.2.2 {
 interface rl0.0 {
 virtual-circuit-id 100;
 no-control-word;
 }
}
user@host# show protocols
mpls {
 no-cspf;
 interface all;
}
bgp {
 export local-routes;
 group internal {

type internal;
local-address 198.51.100.3;
family inet {
 any;
}
family inet-vpn {
 unicast;
 neighbor 203.0.113.4;
}
}
ospf {
 area 0.0.0.0 {
 interface ge-5/3/8.0;
 interface ge-5/2/5.0;
 interface lo0.3 {
 passive;
 }
 }
}
}
ldp {
 interface all;
}
l2circuit {
 neighbor 192.0.2.2 {
 interface rlt0.0 {
 virtual-circuit-id 100;
 no-control-word;
 }
 }
}

user@host# routing-instances
pe-vrf {
 instance-type vrf;
 interface rlt0.1;
 route-distinguisher 65056:1;
 vrf-import VPN-A-Import;
 vrf-export VPN-A-Export;
 vrf-table-label;
 protocols {
 ospf {
 export VPN-A-Import;
 area 0.0.0.0 {
 interface rlt0.1;
 }
 }
 }
}

user@host# policy-options
policy-statement VPN-A-Export {
 term a {
 then {
community add VPN-A;
 accept;
} } term b {
 then reject;
}
} policy-statement VPN-A-Import {
 term a {
 from {
 protocol bgp;
 community VPN-A;
 } then accept;
 }
 term b {
 then reject;
 }
} policy-statement local-routes {
 then accept;
} community VPN-A members target:100:100;

user@host# routing-options
router-id 198.51.100.3;
autonomous-system 65056;

Verification

Confirm that the configuration is working properly.

- Verifying the Redundant Logical Tunnel Configuration on page 76
- Verifying the Layer 2 Circuit on page 77
- Verifying OSPF Neighbors on page 77
- Verifying the BGP Group on page 78
- Verifying the BGP Routes in the Routing Table on page 78

Verifying the Redundant Logical Tunnel Configuration

Purpose Verify that the redundant logical tunnel with the child logical tunnel interfaces are created with the correct encapsulations.
Action user@host# run show interfaces terse | match rlt0

<table>
<thead>
<tr>
<th>Interface</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lt-1/0/10.0</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>lt-1/0/10.1</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>lt-2/0/10.0</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>lt-2/0/10.1</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>rlt0</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>rlt0.0</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>rlt0.1</td>
<td>up</td>
<td>up</td>
</tr>
</tbody>
</table>

Verifying the Layer 2 Circuit

Purpose Verify that the Layer 2 circuit is up.

Action user@host# run show l2circuit connections

Layer-2 Circuit Connections:

Legend for connection status (St)
EI -- encapsulation invalid NP -- interface h/w not present
MM -- mtu mismatch Dn -- down
EM -- encapsulation mismatch VC-Dn -- Virtual circuit Down
CM -- control-word mismatch Up -- operational
VM -- vlan id mismatch CF -- Call admission control failure
OL -- no outgoing label IB -- TDM incompatible bitrate
NC -- intf encaps not CCC/TCC TM -- TDM misconfiguration
BK -- Backup Connection ST -- Standby Connection
CB -- rcvd cell-bundle size bad SP -- Static Pseudowire
LD -- local site signaled down RS -- remote site standby
RD -- remote site signaled down HS -- Hot-standby Connection
XX -- unknown

Legend for interface status
Up -- operational
Dn -- down

Neighbor: 192.0.2.2

<table>
<thead>
<tr>
<th>Interface</th>
<th>Type</th>
<th>St</th>
<th>Time last up</th>
<th># Up trans</th>
</tr>
</thead>
<tbody>
<tr>
<td>rlt0.0(vc 100)</td>
<td>rmt</td>
<td>Up</td>
<td>Aug 8 00:28:04 2013</td>
<td>1</td>
</tr>
</tbody>
</table>
Remote PE: 192.0.2.2, Negotiated control-word: No
Incoming label: 299776, Outgoing label: 299776
Negotiated PW status TLV: No
Local interface: rlt0.0, Status: Up, Encapsulation: VLAN

Verifying OSPF Neighbors

Purpose Verify that routers are adjacent and able to exchange OSPF data.
Verifying the BGP Group

Purpose
Verify that the BGP group is created.

Action
```
user@host# run show bgp group internal
```

<table>
<thead>
<tr>
<th>Group Type: Internal</th>
<th>AS: 65056</th>
<th>Local AS: 65056</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: internal</td>
<td>Index: 0</td>
<td>Flags: <Export Eval></td>
</tr>
<tr>
<td>Export: [local-routes]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holdtime: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total peers: 1</td>
<td></td>
<td>Established: 1</td>
</tr>
<tr>
<td>203.0.113.4+179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inet.0: 1/6/3/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inet.2: 0/0/0/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bgp.13vpn.0: 2/2/2/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pe-vrf.inet.0: 2/2/2/0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verifying the BGP Routes in the Routing Table

Purpose
Verify that the BGP routes are in the pe-vrf.inet.0 routing table.
Action

```
user@host# run show route protocol bgp table pe-vrf.inet.0
```

| pe-vrf.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden) |
| + = Active Route, - = Last Active, *= Both |

198.168.50.0/24	*[^BGP/170] 01:18:14, localpref 100, from 203.0.113.4
	AS path: I, validation-state: unverified
	> to 198.168.30.2 via ge-5/2/5.0, Push 16

198.168.51.0/24	*[^BGP/170] 01:18:14, MED 2, localpref 100, from 203.0.113.4
	AS path: I, validation-state: unverified
	> to 198.168.30.2 via ge-5/2/5.0, Push 16

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2</td>
<td>Starting in Junos OS Release 14.2 and for 13.3R3 and 14.1R2, the valid range for device-count is from 1 to 255. The command is shown below.</td>
</tr>
</tbody>
</table>

Related Documentation

- Configuring Redundant Logical Tunnels on page 67
- Redundant Logical Tunnels Overview on page 64
CHAPTER 6

Configuring Layer 2 Ethernet Services over GRE Tunnel Interfaces

- Layer 2 Services over GRE Tunnel Interfaces on MX Series with MPCs on page 81
- Format of GRE Frames and Processing of GRE Interfaces for Layer 2 Ethernet Packets on page 82
- Guidelines for Configuring Layer 2 Ethernet Traffic Over GRE Tunnels on page 83
- Sample Scenarios of Configuring Layer 2 Ethernet Traffic Over GRE Tunnels on page 84
- Configuring Layer 2 Services over GRE Logical Interfaces in Bridge Domains on page 85
- Example: Configuring Layer 2 Services Over GRE Logical Interfaces in Bridge Domains on page 86
- Example: Configuring Layer 2 Services Over GRE Logical Interfaces in Bridge Domains with IPv6 Transport on page 92

Layer 2 Services over GRE Tunnel Interfaces on MX Series with MPCs

Starting in Junos OS Release 15.1, you can configure Layer 2 Ethernet services over GRE interfaces (gr-fpc/pic/port to use GRE encapsulation).

Starting in Release 19.1R1, Junos OS supports Layer 2 Ethernet services over GRE interfaces (to use GRE encapsulation) with IPv6 traffic.

The outputs of the show bridge mac-table and show vpls mac-table commands have been enhanced to display the MAC addresses learned on a GRE logical interface and the status of MAC address learning properties in the MAC address and MAC flags fields. Also, the L2 Routing Instance and L3 Routing Instance fields are added to the output of the show interfaces gr command to display the names of the routing instances associated with the GRE interfaces are displayed.

To enable Layer 2 Ethernet packets to be terminated on GRE tunnels, you must configure the bridge domain protocol family on the gr- interfaces and associate the gr- interfaces with the bridge domain. You must configure the GRE interfaces as core-facing interfaces, and they must be access or trunk interfaces. To configure the bridge domain family on gr- interfaces, include the family bridge statement at the [edit interfaces gr-fpc/pic/port unit logical-unit-number] hierarchy level. To associate the gr- interface with a bridge
domain, include the `interface gr-fpc/pic/port` statement at the `[edit routing-instances routing-instance-name bridge-domains bridge-domain-name]` hierarchy level.

You can associate GRE interfaces in a bridge domain with the corresponding VLAN ID or list of VLAN IDs in a bridge domain by including the `vlan-id (all | none | number)` statement or the `vlan-id-list [vlan-id-numbers]` statement at the `[edit bridge-domains bridge-domain-name]` hierarchy level. The VLAN IDs configured for the bridge domain must match with the VLAN IDs that you configure for GRE interfaces by using the `vlan-id (all | none | number)` statement or the `vlan-id-list [vlan-id-numbers]` statement at the `[edit interfaces gr-fpc/pic/port unit logical-unit-number]` hierarchy level. You can also configure GRE interfaces within a bridge domain associated with a virtual switch instance. Layer 2 Ethernet packets over GRE tunnels are also supported with the GRE key option. The gre-key match condition allows a user to match against the GRE key field, which is an optional field in GRE encapsulated packets. The key can be matched as a single key value, a range of key values, or both.

Related Documentation
- Guidelines for Configuring Layer 2 Ethernet Traffic Over GRE Tunnels on page 83
- Configuring Layer 2 Services over GRE Logical Interfaces in Bridge Domains on page 85

Format of GRE Frames and Processing of GRE Interfaces for Layer 2 Ethernet Packets

The GRE frame contains the outer MAC header, outer IP header, GRE header, original layer 2 frame, and frame checksum (FCS).

In the outer MAC header, the following fields are present:

- The outer destination MAC address is set as the next-hop MAC address
- The outer source MAC address is set as the source address of the MX Series router that functions as the gateway
- The outer VLAN tag information

In the outer IP header, the following fields are contained:

- The outer source address is set as the source address of the MX Series router gateway
- The outer destination address is set as the remote GRE tunnel address
- The outer protocol type is set as 47 (encapsulation type is GRE)
- The VLAN ID configuration within the bridge domain updates the VLAN ID of the original Layer 2 header

The gr-interface supports GRE encapsulation over IPv4 and IPv6, which is supported over Layer 3 over GRE. Support for bridging over GRE enables you to configure bridge domain families on gr-interfaces and also enable integrated routing and bridging (IRB) on gr-interfaces. The device control daemon (dcd) that controls the physical and logical interface processes enables the processing of bridge domain families under the GRE interfaces. The kernel supports IRB to send and receive packets on IRB interfaces.
The Packet Forwarding Engine supports the Layer 2 encapsulation and decapsulation over GRE interfaces. The chassis daemon is responsible for creating the GRE physical interface when an FPC comes online and triggering the deletion of the GRE interfaces when the FPC goes offline. The kernel receives the GRE logical interface that is added over the underlying physical interface and propagates the GRE logical interface to other clients, including the Packet Forwarding Engine to create the Layer 2 over GRE data path in the hardware. In addition, it adds the GRE logical interface into a bridge domain. The Packet Forwarding Engine receives interprocess communication message (IPC) from the kernel and adds the interface into the forwarding plane. The existing MTU size for the GRE interface is increased by 22 bytes for the L2 header addition (6 DMac + 6 SMac + 4 CVLAN + 4 SVLAN + 2 EtherType).

Related Documentation

- Layer 2 Services over GRE Tunnel Interfaces on MX Series with MPCs on page 81
- Guidelines for Configuring Layer 2 Ethernet Traffic Over GRE Tunnels on page 83
- Configuring Layer 2 Services over GRE Logical Interfaces in Bridge Domains on page 85

Guidelines for Configuring Layer 2 Ethernet Traffic Over GRE Tunnels

Observe the following guidelines while configuring Layer 2 packets to be transmitted over GRE tunnel interfaces on MX Series routers with MPCs:

- For integrated routing and bridging (IRB) to work, at least one Layer 2 interface must be up and active, and it must be associated with the bridge domain as an IRB interface along with a GRE Layer 2 logical interface. This configuration is required to leverage the existing broadcast infrastructure of Layer 2 with IRB.

- Graceful Routing Engine switchover (GRES) is supported and unified ISSU is not currently supported.

- MAC addresses learned from the GRE networks are learned on the bridge domain interfaces associated with the gr-fpc/pic/port.unit logical interface. The MAC addresses are learned on GRE logical interfaces and the Layer 2 token used for forwarding is the token associated with the GRE interface. Destination MAC lookup yields an L2 token, which causes the next-hop lookup. This next-hop is used to forward the packet.

- The GRE tunnel encapsulation and decapsulation next-hops are enhanced to support this functionality. The GRE tunnel encapsulation next-hop is used to encapsulate the outer IP and GRE headers with the incoming L2 packet. The GRE tunnel decapsulation next-hop is used to decapsulate the outer IP and GRE headers, parse the inner Layer 2 packet, and set the protocol as bridge for further bridge domain properties processing in the Packet Forwarding Engine.

- The following packet flows are supported:
 - As part of Layer 2 packet flows, L2 unicast from L2 to GRE, L2 unicast from GRE to L2, Layer 2 broadcast, unknown unicast, and multicast (L2 BUM) from L2 to GRE, and L2 BUM from GRE to L2 are supported.
As part of Layer 3 packet flows, L3 Unicast from L2 to GRE, L3 Unicast from GRE to L2, L3 Multicast from L2 to GRE, L3 Multicast from GRE to L2, and L3 Multicast from Internet to GRE and L2 are supported.

- Support for L2 control protocols is not available.
- At the GRE decapsulation side, packets destined to the tunnel IP are processed and decapsulated by the forwarding plane, and inner L2 packets are processed. MAC learned packets are generated for control plane processing for newly learned MAC entries. However, these entries are throttled for MAC learning.
- 802.1x authentication can be used to validate the individual endpoints and protect them from unauthorized access.
- With the capability to configure bridge domain families on GRE tunnel interfaces, the maximum number of GRE interfaces supported depends on the maximum number of tunnel devices allocated, where each tunnel device can host up to 4000 logical interfaces. The maximum number of logical tunnel interfaces supported is not changed with the support for Layer 2 GRE tunnels. For example, in a 4x10 MIC on MX960 routers, 8000 tunnel logical interfaces can be created.
- The tunnels are pinned to a specific Packet Forwarding Engine instance.
- Statistical information for GRE Layer 2 tunnels is displayed in the output of the `show interfaces gr-fpc/pic/port` command.
- Only trunk and access mode configuration is supported for the bridge family of GRE interfaces; subinterface style configuration is not supported.
- You can enable a connection to a traditional Layer 2 network. Connection to a VPLS network is not currently supported. IRB in bridge domains with GRE interfaces is supported.
- Virtual switch instances are supported.
- Configuration of the GRE Key and using it to perform the hash load-balancing at the GRE tunnel-initiated and transit routers is supported.

Related Documentation
- Layer 2 Services over GRE Tunnel Interfaces on MX Series with MPCs on page 81
- Sample Scenarios of Configuring Layer 2 Ethernet Traffic Over GRE Tunnels on page 84

Sample Scenarios of Configuring Layer 2 Ethernet Traffic Over GRE Tunnels

You can configure Layer 2 Ethernet services over GRE interfaces (`gr-fpc/pic/port` to use GRE encapsulation). This topic contains the following sections that illustrate sample network deployments that support Layer 2 packets over GRE tunnel interfaces:

GRE Tunnels with an MX Series Router as the Gateway in Layer 3

You can configure an MX Series router as the gateway that contains GRE tunnels configured to connect to legacy switches on the one end and to a Layer 3 network on
the other end. The Layer 3 network in turn can be linked with multiple servers on a LAN where the GRE tunnel is terminated from the WAN.

GRE Tunnels With an MX Series Router as the Gateway and Aggregator

You can configure an MX Series router as the gateway with GRE tunnels configured and also with aggregation specified. The gateway can be connected to legacy switches on one end of the network and the aggregator can be connected to a top-of-rack (ToFR) switch, as a QFX Series device, which handles GRE tunneled packets with load balancing. The ToR switch can be connected, in turn, over a Layer 3 GRE tunnel to several servers in data centers.

GRE Tunnels with MX Series Gateways for Enterprise and Data Center Servers

You can configure an MX Series router as the gateway with GRE tunnels configured. Over the Internet, GRE tunnels connect multiple gateways, which are MX routers, to servers in enterprises where the GRE tunnel is terminated from the WAN on one end, and to servers in data centers on the other end.

The following configuration scenarios are supported for Layer 2 Ethernet over GRE tunnels:

- In a Layer 2 Ethernet over GRE with VPLS environment, an MX Series router supports Layer 2 over GRE tunnels (without the MPLS layer) and terminate these tunnels into a VPLS or an routed VLAN interface (RVI) into a L3VPN. The tunnels serve to cross the cable modem termination system (CMTS) and cable modem CM infrastructure transparently, up to the MX Series router that serves as the gateway. Every GRE tunnel terminates over a VLAN interface, a VPLS instance, or an IRB interface.

- In a Layer 2 Ethernet over GRE without VPLS environment, Layer 2 VPN encapsulations are needed for conditions that do not involve these protocols. Certain data center users terminate the other end of GRE tunnels directly on the servers on the LAN, while an MX Series router functions as the gateway router between the WAN and LAN. This type of termination of tunnels enables users to build overlay networks within the data center without having to configure end-user VLANs, IP addresses, and other network parameters on the underlying switches. Such a setup simplifies data center network design and provisioning.

Related Documentation

- Layer 2 Services over GRE Tunnel Interfaces on MX Series with MPCs on page 81
- Guidelines for Configuring Layer 2 Ethernet Traffic Over GRE Tunnels on page 83

Configuring Layer 2 Services over GRE Logical Interfaces in Bridge Domains

You can configure Layer 2 Ethernet services over GRE interfaces (gr-fpc/pic/port to use GRE encapsulation).

To configure a GRE tunnel interface, associate it in a bridge domain within a virtual-switch instance, and specify the amount of bandwidth reserved for tunnel services traffic:

1. Configure GRE tunnel interface and specify the amount of bandwidth to reserve for tunnel traffic on each Packet Forwarding Engine.
2. Configure the interfaces and their VLAN IDs.

```
[edit]
user@host# set interfaces gr-interface-name unit logical-unit-number family family-name address address
user@host# set interfaces gr-interface-name unit logical-unit-number family family-name interface-mode trunk
user@host# set interfaces gr-interface-name unit logical-unit-number family family-name vlan-id-list vlan-id-list
user@host# set interfaces gr-interface-name unit logical-unit-number tunnel source source-address
tunnel destination destination-address
```

3. Create a virtual switch instance with a bridge domain and associate the GRE logical interfaces.

```
[edit routing-instances]
user@host# set routing-instance-name instance-type virtual-switch
user@host# set routing-instance-name interface interface-name unit logical-unit-number
user@host# set routing-instance-name bridge-domains bridge-domain-name vlan-id vlan-id
```

The VLAN IDs configured for the bridge domain must match with the VLAN IDs that you configure for GRE interfaces by using the `vlan-id (all | none | number)` statement or the `vlan-id-list [vlan-id-numbers]` statement at the `[edit interfaces gr-fpc/pic/port unit logical-unit-number]` hierarchy level.

Related Documentation
- Layer 2 Services over GRE Tunnel Interfaces on MX Series with MPCs on page 81
- Example: Configuring Layer 2 Services Over GRE Logical Interfaces in Bridge Domains on page 86

Example: Configuring Layer 2 Services Over GRE Logical Interfaces in Bridge Domains

This example illustrates how you can configure GRE logical interfaces in a bridge domain. You can also configure a virtual switch instance associated with a bridge domain and include GRE interfaces in the bridge domain. This type of configuration enables you to specify Layer 2 Ethernet packets to be terminated on GRE tunnels. In a Layer 2 Ethernet over GRE with VPLS environment, an MX Series router supports Layer 2 over GRE tunnels (without the MPLS layer) and terminate these tunnels into a VPLS or an routed VLAN interface (RVI) into a L3VPN. The tunnels serve to cross the cable modem termination system (CMTS) and cable modem CM infrastructure transparently, up to the MX Series...
router that serves as the gateway. Every GRE tunnel terminates over a VLAN interface, a VPLS instance, or an IRB interface.

- Requirements on page 87
- Overview on page 87
- Configuration on page 87
- Verification on page 90

Requirements

This example uses the following hardware and software components:

- An MX Series router
- Junos OS Release 15.1R1 or later running on an MX Series router with MPCs.

Overview

GRE encapsulates packets into IP packets and redirects them to an intermediate host, where they are de-encapsulated and routed to their final destination. Because the route to the intermediate host appears to the inner datagrams as one hop, Juniper Networks EX Series Ethernet switches can operate as if they have a virtual point-to-point connection with each other. GRE tunnels allow routing protocols like RIP and OSPF to forward data packets from one switch to another switch across the Internet. In addition, GRE tunnels can encapsulate multicast data streams for transmission over the Internet.

Ethernet frames have all the essentials for networking, such as globally unique source and destination addresses, error control, and so on. Ethernet frames can carry any kind of packet. Networking at Layer 2 is protocol independent (independent of the Layer 3 protocol). If more of the end-to-end transfer of information from a source to a destination can be done in the form of Ethernet frames, more of the benefits of Ethernet can be realized on the network. Networking at Layer 2 can be a powerful adjunct to IP networking, but it is not usually a substitute for IP networking.

Consider a sample network topology in which a GRE tunnel interface is configured with the bandwidth set as 10 gigabits per second for tunnel traffic on each Packet Forwarding Engine. The GRE interface, gr-0/1/10.0, is specified with the source address of 192.0.2.2 and the destination address of 192.0.2.1. Two gigabit Ethernet interfaces, ge-0/1/2.0 and ge-0/1/6.0, are also configured. A virtual switch instance, VS1, is defined and a bridge domain, bd0, is associated with VS1. The bridge domain contains the VLAN ID of 10. The GRE interface is configured as a trunk interface and associated with the bridge domain, bd0. With such a setup, Layer 2 Ethernet services can be terminated over GRE tunnel interfaces in virtual switch instances that contain bridge domains.

Configuration

To configure a GRE tunnel interface, associate it in a bridge domain within a virtual-switch instance, and specify the amount of bandwidth reserved for tunnel services traffic.

CLI Quick Configuration To quickly configure this example, copy the following commands, paste them in a text file, remove any line breaks, change any details necessary to match your network
configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level:

```
set chassis fpc 0 pic 1 tunnel-services bandwidth 1g
set chassis network-services enhanced-ip
set interfaces ge-0/1/2 unit 0 family inet address 192.0.2.2/30
set interfaces ge-0/1/6 unit 0 family bridge interface-mode trunk
set interfaces ge-0/1/6 unit 0 family bridge vlan-id-list 1-100
set interfaces gr-0/1/10 unit 0 tunnel source 192.0.2.2
set interfaces gr-0/1/10 unit 0 tunnel destination 192.0.2.1
set interfaces gr-0/1/10 unit 0 family bridge interface-mode trunk
set interfaces gr-0/1/10 unit 0 family bridge vlan-id-list 1-100
set routing-instances VS1 instance-type virtual-switch
set routing-instances VS1 bridge-domains bd0 vlan-id 10
set routing-instances VS1 interface ge-0/1/6.0
set routing-instances VS1 interface gr-0/1/10.0
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the CLI User Guide.

To configure GRE logical tunnel interfaces for Layer 2 services in bridge domains:

1. Configure GRE tunnel interface and specify the amount of bandwidth to reserve for tunnel traffic on each Packet Forwarding Engine.

   ```
   [edit]
   user@host# set chassis fpc 0 pic 1 tunnel-services bandwidth 1g
   user@host# set chassis network-services enhanced-ip
   ```

2. Configure the interfaces and their VLAN IDs.

   ```
   [edit]
   user@host# set interfaces ge-0/1/2 unit 0 family inet address 192.0.2.2/30
   user@host# set interfaces ge-0/1/6 unit 0 family bridge interface-mode trunk
   user@host# set interfaces ge-0/1/6 unit 0 family bridge vlan-id-list 1-100
   user@host# set interfaces gr-0/1/10 unit 0 tunnel source 192.0.2.2
   user@host# set interfaces gr-0/1/10 unit 0 tunnel destination 192.0.2.1
   user@host# set interfaces gr-0/1/10 unit 0 family bridge interface-mode trunk
   user@host# set interfaces gr-0/1/10 unit 0 family bridge vlan-id-list 1-100
   ```

3. Configure the bridge domain in a virtual switch instance and associate the GRE interface with it.

   ```
   [edit]
   user@host# set routing-instances VS1 instance-type virtual-switch
   user@host# set routing-instances VS1 bridge-domains bd0 vlan-id 10
   user@host# set routing-instances VS1 interface ge-0/1/6.0
   user@host# set routing-instances VS1 interface gr-0/1/10.0
   ```
Results Display the results of the configuration:

```
user@host> show configuration

classic {  
fpc 0 {    
  pic 1 {    
    tunnel-services {    
      bandwidth 1g;    
    }    
  }    
  network-services enhanced-ip;
}  
interfaces {    
ge-0/1/2 {    
  unit 0 {    
    family inet {    
      address 192.0.2.2/30;
    }    
  }    
}    
ge-0/1/6 {    
  unit 0 {    
    family bridge {    
      interface-mode trunk;    
      vlan-id-list 1-100;
    }    
  }    
}    
gr-0/1/10 {    
  unit 0 {    
    tunnel {    
      source 192.0.2.2;    
      destination 192.0.2.1;
    }    
    family bridge {    
      interface-mode trunk;    
      vlan-id-list 1-100;
    }    
  }    
}  
}  
VS-1 {    
  instance-type virtual-switch;    
  interface ge-0/1/6.0;    
  interface gr-0/1/10.0;    
  bridge-domains {    
    bd0 {    
      vlan-id 10;
    }    
  }    
}  
```
Verification

To confirm that the configuration is working properly, perform these tasks:

- Verifying the MAC Addresses Learned on GRE Interfaces on page 90
- Verifying the MAC Address Learning Status on page 90

Verifying the MAC Addresses Learned on GRE Interfaces

Purpose Display the MAC addresses learned on a GRE logical interface.

Action From operational mode, use the `show bridge mac-table` command

```
MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : default-switch
Bridging domain : vlan-1, VLAN : 1
MAC address flags Logical interface
00:00:5e:00:53:f7  D,SE  gr-1/2/10.0
00:00:5e:00:53:32  D,SE  gr-1/2/10.0
00:00:5e:00:53:21  DL  ge-1/0/0.0
00:00:5e:00:53:11  DL  ge-1/1/0.0
```

Meaning The output displays MAC addresses learned on GRE logical tunnels.

Verifying the MAC Address Learning Status

Purpose Display the status of MAC address learning properties in the MAC address and MAC flags fields.

Action From operational mode, enter the `show vpls mac-table` command.

```
MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : vpls_4site:1000
Bridging domain : vpls_4site:1000, MAC flags Logical interface
00:00:5e:00:53:33  D,SE  gr-1/2/10.1
00:00:5e:00:53:10  DL  ge-1/0/0.1
00:00:5e:00:53:23  DL  ge-1/1/0.1
```
<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Device</th>
<th>Interface Index</th>
<th>Protocol Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:5e:00:53:f4</td>
<td>D,SE</td>
<td>ge-4/2/0.1000</td>
<td>1000mbps</td>
</tr>
<tr>
<td>00:00:5e:00:53:02</td>
<td>D,SE</td>
<td>lsi.1052004</td>
<td></td>
</tr>
<tr>
<td>00:00:5e:00:53:03</td>
<td>D,SE</td>
<td>lsi.1048840</td>
<td></td>
</tr>
<tr>
<td>00:00:5e:00:53:04</td>
<td>D,SE</td>
<td>lsi.1052005</td>
<td></td>
</tr>
<tr>
<td>00:00:5e:00:53:33</td>
<td>D,SE</td>
<td>gr-1/2/10.10</td>
<td></td>
</tr>
</tbody>
</table>

Meaning

The output displays the status of MAC address learning properties in the MAC address and MAC flags fields. The output displays the names of the routing instances associated with the GRE interfaces are displayed.

Related Documentation

- Layer 2 Services over GRE Tunnel Interfaces on MX Series with MPCs on page 81
- Configuring Layer 2 Services over GRE Logical Interfaces in Bridge Domains on page 85
Example: Configuring Layer 2 Services Over GRE Logical Interfaces in Bridge Domains with IPv6 Transport

This example illustrates how you can configure GRE logical interfaces in a bridge domain. You can also configure a virtual switch instance associated with a bridge domain and include GRE interfaces in the bridge domain. This type of configuration enables you to specify Layer 2 Ethernet packets to be terminated on GRE tunnels. In a Layer 2 Ethernet over GRE with VPLS environment, an MX Series router supports Layer 2 over GRE tunnels (without the MPLS layer) and terminate these tunnels into a VPLS or an routed VLAN interface (RVI) into a L3VPN. The tunnels serve to cross the cable modem termination system (CMTS) and cable modem CM infrastructure transparently, up to the MX Series router that serves as the gateway. Every GRE tunnel terminates over a VLAN interface, a VPLS instance, or an IRB interface.

- Requirements on page 92
- Overview on page 92
- Configuration on page 93
- Verification on page 97

Requirements

This example uses the following hardware and software components:

- Two MX Series routers
- Junos OS Release 19.1R1 or later running on MX Series routers with MPCs.

Overview

GRE encapsulated IPv6 packets are redirected to an intermediate host where GRE header is decapsulated and routed to the IPv6 destination.

Consider a sample network topology with two devices. On device 1, GRE tunnel interface is configured with the bandwidth set as 1 gigabits per second for tunnel traffic on each Packet Forwarding Engine. The GRE interface, gr-0/0/10.0, is specified with the source address of 2001:DB8::2:1 and the destination address of 2001:DB8::3:1. Two interfaces, ae0 and xe-0/0/19, are also configured. A virtual switch instance, VS1, is defined and a bridge domain, bd1, is associated with VS1. The bridge domain contains the VLAN ID of 20. The GRE interface is configured as a trunk interface and associated with the bridge domain, bd1. With such a setup, Layer 2 Ethernet services can be terminated over GRE tunnel interfaces in virtual switch instances that contain bridge domains.

On device 2, GRE tunnel interface is configured with the bandwidth set as 1 gigabits per second for tunnel traffic on each Packet Forwarding Engine. The GRE interface, gr-0/0/10.0, is specified with the source address of 2001:DB8::21:1 and the destination address of 2001:DB8::31:1. Two interfaces, ae0 and xe-0/0/1, are also configured. A virtual switch instance, VS1, is defined and a bridge domain, bd1, is associated with VS1. The bridge domain contains the VLAN ID of 20. The GRE interface is configured as an access interface and associated with the bridge domain, bd1.
Configuration

To configure a GRE tunnel interface, associate it in a bridge domain within a virtual-switch instance, and specify the amount of bandwidth reserved for tunnel services traffic.

- [xref target has no title]

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them in a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level:

For Device 1:

```plaintext
set chassis aggregated-devices ethernet device-count 2
set chassis fpc 0 pic 0 tunnel-services bandwidth 1g
set chassis network-services enhanced-ip
set interfaces ae0 unit 0 family inet6 address 2001:DB8::1/32;
set interfaces xe-0/0/19 unit 0 family bridge interface-mode trunk
set interfaces xe-0/0/19 unit 0 family bridge vlan-id-list 20-21
set interfaces xe-1/0/2 gigether-options 802.3 ad e0
set interfaces xe-1/0/3 gigether-options 802.3 ad e0
set interfaces gr-0/0/10.0 unit 0 tunnel source 2001:DB8::2:1
set interfaces gr-0/0/10.0 unit 0 tunnel destination 2001:DB8::3:1/32
set interfaces gr-0/0/10.0 unit 0 family bridge interface-mode trunk
set interfaces gr-0/0/10.0 unit 0 family bridge vlan-id-list 20-30
set routing-instances VS1 instance-type virtual-switch
set routing-instances VS1 bridge-domains bd1 vlan-id 20
set routing-instances VS1 interface xe-0/0/19.0
set routing-instances VS1 interface gr-0/0/10.0
```

For device 2:

```plaintext
set chassis aggregated-devices ethernet device-count 2
set chassis fpc 0 pic 0 tunnel-services bandwidth 1g
set chassis network-services enhanced-ip
set interfaces ae0 unit 0 family inet6 address 2001:DB8::11/32;
set interfaces xe-0/0/1 unit 0 family bridge interface-mode trunk
set interfaces xe-0/0/1 unit 0 family bridge vlan-id-list 20-21
set interfaces xe-1/0/2 gigether-options 802.3 ad e0
set interfaces xe-1/0/3 gigether-options 802.3 ad e0
set interfaces gr-0/0/10.0 unit 0 tunnel source 2001:DB8::21:1
set interfaces gr-0/0/10.0 unit 0 tunnel destination 2001:DB8::31:1/32
set interfaces gr-0/0/10.0 unit 0 family bridge interface-mode access
set interfaces gr-0/0/10.0 unit 0 family bridge vlan-id-list 20-30
set routing-instances VS1 instance-type virtual-switch
set routing-instances VS1 bridge-domains bd1 vlan-id 20
set routing-instances VS1 interface xe-0/0/1.0
set routing-instances VS1 interface gr-0/0/10.0
```
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure GRE logical tunnel interfaces over IPv6 for Layer 2 services in bridge domains for Device1 and Device2:

1. Configure GRE tunnel interface and specify the amount of bandwidth to reserve for tunnel traffic on each Packet Forwarding Engine of Device1.

   ```
   [edit]
   user@host# set chassis aggregated-devices ethernet device-count 2
   user@host# set chassis fpc 0 pic 0 tunnel-services bandwidth 1g
   user@host# set chassis network-services enhanced-ip
   ```

2. Configure the interfaces and their VLAN IDs.

   ```
   [edit]
   user@host# set interfaces ae0 unit 0 family inet6 address 2001:DB8::1/32;
   user@host# set interfaces xe-0/0/19.0 unit 0 family bridge interface-mode trunk
   user@host# set interfaces xe-0/0/19.0 unit 0 family bridge vlan-id-list 20-21
   user@host# set interfaces xe-1/0/2 gigether-options 802.3ad ae0
   user@host# set interfaces xe-1/0/3 gigether-options 802.3ad ae0
   user@host# set interfaces gr-0/0/10.0 unit 0 tunnel source 2001:DB8::2:1
   user@host# set interfaces gr-0/0/10.0 unit 0 tunnel destination 2001:DB8::3:1
   user@host# set interfaces gr-0/0/10.0 unit 0 family bridge interface-mode trunk
   user@host# set interfaces gr-0/0/10.0 unit 0 family bridge vlan-id-list 20-30
   ```

3. Configure the bridge domain in a virtual switch instance and associate the GRE interface with it.

   ```
   [edit]
   user@host# set routing-instances VS1 instance-type virtual-switch
   user@host# set routing-instances VS1 bridge-domains bd1 vlan-id 20
   user@host# set routing-instances VS1 interface xe-0/0/19.0
   user@host# set routing-instances VS1 interface gr-0/0/10.0
   ```

4. Configure GRE tunnel interface and specify the amount of bandwidth to reserve for tunnel traffic on each Packet Forwarding Engine of Device2.

   ```
   [edit]
   user@host# set chassis aggregated-devices ethernet device-count 2
   user@host# set chassis fpc 0 pic 0 tunnel-services bandwidth 1g
   user@host# set chassis network-services enhanced-ip
   ```

5. Configure the interfaces and their VLAN IDs.

   ```
   [edit]
   user@host# set interfaces ae0 unit 0 family inet6 address 2001:DB8::11/32;
   user@host# set interfaces xe-0/0/1 unit 0 family bridge interface-mode trunk
   ```
user@host# set interfaces xe-0/0/1 unit 0 family bridge vlan-id-list 20-21
user@host# set interfaces xe-1/0/2 gigether-options 802.3ad ae0
user@host# set interfaces xe-1/0/3 gigether-options 802.3ad ae0
user@host# set interfaces gr-0/0/10.0 unit 0 tunnel source 2001:DB8::2:1
user@host# set interfaces gr-0/0/10.0 unit 0 tunnel destination 2001:DB8::3:1/32
user@host# set interfaces gr-0/0/10.0 unit 0 family bridge interface-mode trunk
user@host# set interfaces gr-0/0/10.0 unit 0 family bridge vlan-id-list 20-30

6. Configure the bridge domain in a virtual switch instance and associate the GRE interface with it.

[edit]
user@host# set routing-instances VS1 instance-type virtual-switch
user@host# set routing-instances VS1 bridge-domains bd1 vlan-id 20
user@host# set routing-instances VS1 bridge-domains routing-interface irb.0
user@host# set routing-instances VS1 interface xe-0/0/1.0
user@host# set routing-instances VS1 interface gr-0/0/10.0

Results

Display the results of the configuration on Device 1:

user@host> show configuration
chassis {
 fpc 0 {
 pic 0 {
 tunnel-services {
 bandwidth 1g;
 }
 }
 network-services enhanced-ip;
 }
 interfaces {
 ae0 {
 unit 0 {
 family inet6 {
 address 2001:DB8::1:1/32;
 }
 }
 }
 xe-0/0/19 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 20-21;
 }
 }
 }
 }
 gr-0/0/10 {
 unit 0 {
 tunnel {
 source 2001:DB8::2:1;
 destination 2001:DB8::3:1;
 }
 family bridge {
interface-mode trunk;
 vlan-id-list 20-30;
}
}

VS-1 {
 instance-type virtual-switch;
 interface xe-0/0/19.0;
 interface gr-0/0/10.0;
 bridge-domains {
 bd1 {
 vlan-id 20;
 }
 }
}

Display the results of the configuration on Device 2:

user@host> show configuration

chassis {
 fpc 0 {
 pic 0 {
 tunnel-services {
 bandwidth 1g;
 }
 }
 }
 network-services enhanced-ip;
}

interfaces {
 ae0 {
 unit 0 {
 family inet6 {
 address 2001:DB8::11:1/32;
 }
 }
 }
 xe-0/0/1 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 20-21;
 }
 }
 }
 gr-0/0/10 {
 unit 0 {
 tunnel {
 source 2001:DB8::21:1;
 destination 2001:DB8::31:1;
 }
 family bridge {
 interface-mode access;
 vlan-id-list 20-30;
 }
 }
 }
}
VS-1 {
 instance-type virtual-switch;
 interface xe-0/0/1.0;
 interface gr-0/0/10.0;
 bridge-domains {
 bd1 {
 vlan-id 20;
 }
 }
}

Verification

To confirm that the configuration is working properly, perform these tasks:

- Verifying the MAC Addresses Learned on GRE Interfaces on page 97

Verifying the MAC Addresses Learned on GRE Interfaces

Purpose
Display the MAC addresses learned on a GRE logical interface.

Action
From operational mode, use the `show bridge mac-table` command

MAC flags
- S - static MAC
- D - dynamic MAC
- L - locally learned
- C - Control MAC
- SE - Statistics enabled
- NM - Non configured MAC
- R - Remote PE MAC

Routing instance : VS1
Bridging domain : bd1, VLAN : 20

<table>
<thead>
<tr>
<th>MAC address</th>
<th>MAC flags</th>
<th>Logical interface</th>
<th>NH</th>
<th>RTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:00:11:11:11</td>
<td>D</td>
<td>gr-0/0/10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:11:11:12</td>
<td>D</td>
<td>gr-0/0/10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:11:11:13</td>
<td>D</td>
<td>gr-0/0/10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:11:11:14</td>
<td>D</td>
<td>gr-0/0/10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:11:11:15</td>
<td>D</td>
<td>gr-0/0/10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:11:11:16</td>
<td>D</td>
<td>gr-0/0/10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:11:11:17</td>
<td>D</td>
<td>gr-0/0/10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:11:11:18</td>
<td>D</td>
<td>gr-0/0/10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:11:11:19</td>
<td>D</td>
<td>gr-0/0/10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:11:11:1a</td>
<td>D</td>
<td>gr-0/0/10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:22:22:22</td>
<td>D</td>
<td>xe-0/0/19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:22:22:23</td>
<td>D</td>
<td>xe-0/0/19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:22:22:24</td>
<td>D</td>
<td>xe-0/0/19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:22:22:25</td>
<td>D</td>
<td>xe-0/0/19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:22:22:26</td>
<td>D</td>
<td>xe-0/0/19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:22:22:27</td>
<td>D</td>
<td>xe-0/0/19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:22:22:28</td>
<td>D</td>
<td>xe-0/0/19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:22:22:29</td>
<td>D</td>
<td>xe-0/0/19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:22:22:2a</td>
<td>D</td>
<td>xe-0/0/19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:00:22:22:2b</td>
<td>D</td>
<td>xe-0/0/19.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Meaning The output displays MAC addresses learned on GRE logical tunnels.
CHAPTER 7

Understanding Default PIM Tunnel Configurations

- Configuring PIM Tunnels on page 99

Configuring PIM Tunnels

PIM tunnels are enabled automatically on routers that have a tunnel PIC and on which you enable PIM sparse mode. You do not need to configure the tunnel interface.

PIM tunnels are unidirectional.

In PIM sparse mode, the first-hop router encapsulates packets destined for the rendezvous point (RP) router. The packets are encapsulated with a unicast header and are forwarded through a unicast tunnel to the RP. The RP then de-encapsulates the packets and transmits them through its multicast tree. To perform the encapsulation and de-encapsulation, the first-hop and RP routers must be equipped with Tunnel PICs.

The Junos OS creates two interfaces to handle PIM tunnels:

- **pe**—Encapsulates packets destined for the RP. This interface is present on the first-hop router.
- **pd**—De-encapsulates packets at the RP. This interface is present on the RP.

NOTE: The pe and pd interfaces do not support class-of-service (CoS) configurations.

Related Documentation

- Tunnel Services Overview on page 3
Facilitating VRF Table Lookup Using Virtual Loopback Tunnel Interfaces

- Configuring Virtual Loopback Tunnels for VRF Table Lookup on page 101
- Configuring Tunnel Interfaces for Routing Table Lookup on page 103
- Example: Configuring a Virtual Loopback Tunnel for VRF Table Lookup on page 103
- Example: Virtual Routing and Forwarding (VRF) and Service Configuration on page 104

Configuring Virtual Loopback Tunnels for VRF Table Lookup

To enable egress filtering, you can either configure filtering based on the IP header, or you can configure a virtual loopback tunnel on routers equipped with a Tunnel PIC. Table 10 on page 101 describes each method.

Table 10: Methods for Configuring Egress Filtering

<table>
<thead>
<tr>
<th>Method</th>
<th>Interface Type</th>
<th>Configuration Guidelines</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter traffic based on the IP header</td>
<td>Nonchannelized Point-to-Point Protocol / High Level Data Link Control (PPP/HDLC) core-facing SONET/SDH interfaces</td>
<td>Include the <code>vrf-table-label</code> statement at the <code>[edit routing-instances instance-name]</code> hierarchy level. For more information, see the Junos OS VPNs Library for Routing Devices.</td>
<td>There is no restriction on customer-edge (CE) router-to-provider edge (PE) router interfaces.</td>
</tr>
<tr>
<td>Configure a virtual loopback tunnel on routers equipped with a Tunnel PIC</td>
<td>All interfaces</td>
<td>See the guidelines in this section.</td>
<td>Router must be equipped with a Tunnel PIC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>There is no restriction on the type of core-facing interface used or CE router-to-PE router interface used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>You cannot configure a virtual loopback tunnel and the <code>vrf-table-label</code> statement at the same time.</td>
</tr>
</tbody>
</table>
You can configure a virtual loopback tunnel to facilitate VRF table lookup based on MPLS labels. You might want to enable this functionality so you can do either of the following:

- Forward traffic on a PE router to CE device interface, in a shared medium, where the CE device is a Layer 2 switch without IP capabilities (for example, a metro Ethernet switch).

 The first lookup is done based on the VPN label to determine which VRF table to refer to, and the second lookup is done on the IP header to determine how to forward packets to the correct end hosts on the shared medium.

- Perform egress filtering at the egress PE router.

 The first lookup on the VPN label is done to determine which VRF table to refer to, and the second lookup is done on the IP header to determine how to filter and forward packets. You can enable this functionality by configuring output filters on the VRF interfaces.

To configure a virtual loopback tunnel to facilitate VRF table lookup based on MPLS labels, you specify a virtual loopback tunnel interface name and associate it with a routing instance that belongs to a particular routing table. The packet loops back through the virtual loopback tunnel for route lookup. To specify a virtual loopback tunnel interface name, you configure the virtual loopback tunnel interface at the [edit interfaces] hierarchy level and include the family inet and family mpls statements:

```plaintext
vt-fpc/pic/port {
  unit 0 {
    family inet;
    family mpls;
  }
  unit 1 {
    family inet;
  }
}
```

To associate the virtual loopback tunnel with a routing instance, include the virtual loopback tunnel interface name at the [edit routing-instances] hierarchy level:

```plaintext
interface vt-fpc/pic/port;
```

NOTE: On virtual loopback tunnel interfaces, none of the logical interface statements except the family statement is supported. Note that you can configure only inet and mpls families, and you cannot configure IPv4 or IPv6 addresses on virtual loopback tunnel interfaces. Also, virtual loopback tunnel interfaces do not support class-of-service (CoS) configurations.

Related Documentation

- Tunnel Services Overview on page 3
- Example: Configuring a Virtual Loopback Tunnel for VRF Table Lookup on page 103
Configuring Tunnel Interfaces for Routing Table Lookup

To configure tunnel interfaces to facilitate routing table lookups for VPNs, you specify a tunnel’s endpoint IP addresses and associate them with a routing instance that belongs to a particular routing table. This enables the Junos OS to search in the appropriate routing table for the route prefix, because the same prefix can appear in multiple routing tables. To configure the destination VPN, include the `routing-instance` statement:

```yaml
routing-instance {  
  destination routing-instance-name;  
}
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces gr-fpc/pic/port unit logical-unit-number tunnel]`
- `[edit logical-systems logical-system-name interfaces gr-fpc/pic/port unit logical-unit-number tunnel]`

This configuration indicates that the tunnel’s destination address is in routing instance `routing-instance-name`. By default, the tunnel route prefixes are assumed to be in the default Internet routing table `inet.0`.

NOTE: If you configure a virtual loopback tunnel interface and the `vrf-table-label` statement on the same routing instance, the `vrf-table-label` statement takes precedence over the virtual loopback tunnel interface. For more information, see “Configuring Virtual Loopback Tunnels for VRF Table Lookup” on page 101.

For more information about VPNs, see the Junos OS VPNs Library for Routing Devices.

Related Documentation
- Tunnel Services Overview on page 3
- `destination (Routing Instance)` on page 136

Example: Configuring a Virtual Loopback Tunnel for VRF Table Lookup

Configure a virtual loopback tunnel for VRF table lookup:

```yaml
[edit routing-instances]
routing-instance-1 {  
  instance-type vrf;  
  interface vt-1/0/0.0;  
  interface so-0/2/2.0;  
  route-distinguisherer 2:3;  
  vrf-import VPN-A-import;  
  vrf-export VPN-A-export;  
  routing-options {  
  }
```
static {
 route 10.0.0.0/8 next-hop so-0/2/2.0;
}
}

routing-instance-2 {
 instance-type vrf;
 interface vt-1/0/0.1;
 interface so-0/3/2.0;
 route-distinguisher 4:5;
 vrf-import VPN-B-import;
 vrf-export VPN-B-export;
 routing-options {
 static {
 route 10.0.0.0/8 next-hop so-0/3/2.0;
 }
 }
}

[edit interfaces]
vt-1/0/0 {
 unit 0 {
 family inet;
 family mpls;
 }
 unit 1 {
 family inet;
 }
}

Related Documentation
- Tunnel Services Overview on page 3
- Configuring Virtual Loopback Tunnels for VRF Table Lookup on page 101

Example: Virtual Routing and Forwarding (VRF) and Service Configuration

The following example combines virtual routing and forwarding (VRF) and services configuration:

[edit policy-options]
policy-statement test-policy {
 term t1 {
 then reject;
 }
}
[edit routing-instances]
test {
 interface ge-0/2/0.0;
 interface sp-1/3/0.20;
 instance-type vrf;
 route-distinguisher 10.58.255.1:37;
 vrf-import test-policy;
 vrf-export test-policy;
routing-options {
 static {
 route 0.0.0.0/0 next-table inet.0;
 }
}

[edit interfaces]
ge-0/2/0 {
 unit 0 {
 family inet {
 service {
 input service-set nat-me;
 output service-set nat-me;
 }
 }
 }
}
ge-0/2/0 {
 unit 0 {
 family inet {
 service {
 input service-set nat-me;
 output service-set nat-me;
 }
 }
 }
}

[edit interfaces]
sp-1/3/0 {
 unit 0 {
 family inet;
 }
 unit 20 {
 family inet;
 service-domain inside;
 }
 unit 21 {
 family inet;
 service-domain outside;
 }
}

[edit services]
stateful-firewall {
 rule allow-any-input {
 match-direction input;
 term t1 {
 then accept;
 }
 }
}

[edit services]
nat {
 pool hide-pool {
 address 10.58.16.100;
 port automatic;
 }
 rule hide-all-input {
 match-direction input;
 term t1 {
 then {
 translated {
 source-pool hide-pool;
 translation-type source napt-44;
 }
 }
 }
 }
}
service-set nat-me {
 stateful-firewall-rules allow-any-input;
 nat-rules hide-all-input;
 interface-service {
 service-interface sp-1/3/0.20;
 }
}

Enabling a VPN to Travel Through a Non-MPLS Network Using Dynamic Tunnels

Configuring Dynamic Tunnels

A VPN that travels through a non-MPLS network requires a GRE tunnel. This tunnel can be either a static tunnel or a dynamic tunnel. A static tunnel is configured manually between two PE routers. A dynamic tunnel is configured using BGP route resolution.

When a router receives a VPN route that resolves over a BGP next hop that does not have an MPLS path, a GRE tunnel can be created dynamically, allowing the VPN traffic to be forwarded to that route. Only GRE IPv4 tunnels are supported.

To configure a dynamic tunnel between two PE routers, include the `dynamic-tunnels` statement:

```
dynamic-tunnels {  
    tunnel-name {  
      destination-networks prefix;  
      source-address address;  
    }  
}
```

You can configure this statement at the following hierarchy levels:

- [edit routing-options]
- [edit routing-instances routing-instance-name routing-options]
- [edit logical-systems logical-system-name routing-options]
- [edit logical-systems logical-system-name routing-instances routing-instance-name routing-options]

Related Documentation

- Tunnel Services Overview on page 3
- dynamic-tunnels on page 141
- Junos OS Routing Protocols Library
- Junos OS VPNs Library for Routing Devices
PART 2

Encryption Services

- Overview on page 111
- Sending Encrypted Traffic Through Tunnels on page 113
- Configuring Redundancy in Case of Service Failure on page 121
CHAPTER 10

Overview

- Encryption Overview on page 111
- Configuring an ES Tunnel Interface for a Layer 3 VPN on page 111

Encryption Overview

The IP Security (IPsec) architecture provides a security suite for the IP version 4 (IPv4) and IP version 6 (IPv6) network layers. The suite provides functionality such as authentication of origin, data integrity, confidentiality, replay protection, and nonrepudiation of source. It also defines mechanisms for key generation and exchange, management of security associations, and support for digital certificates.

IPsec defines a security association (SA) and key management framework that can be used with any network layer protocol. The SA specifies what protection policy to apply to traffic between two IP-layer entities. For more information, see the Junos OS Administration Library. The standards are defined in the following RFCs:

- RFC 2401, Security Architecture for the Internet Protocol
- RFC 2406, IP Encapsulating Security Payload (ESP)

Configuring an ES Tunnel Interface for a Layer 3 VPN

To configure an ES tunnel interface for a Layer 3 VPN, you need to configure an ES tunnel interface on the provider edge (PE) router and on the customer edge (CE) router. You also need to configure IPsec on the PE and CE routers. For more information about configuring an ES tunnel for a Layer 3 VPN, see the Junos OS VPNs Library for Routing Devices.
Related Documentation

- Encryption Overview on page 111
- Configuring Encryption Interfaces on page 113
- Configuring Filters for Traffic Transiting the ESP IC on page 115
- Configuring ESP IC Redundancy on page 121
- Configuring IPsec Tunnel Redundancy on page 122
CHAPTER 11

Sending Encrypted Traffic Through Tunnels

- Configuring Encryption Interfaces on page 113
- Configuring Filters for Traffic Transiting the ES PIC on page 115

Configuring Encryption Interfaces

When you configure the encryption interface, you associate the configured SA with a logical interface. This configuration defines the tunnel, including the logical unit, tunnel addresses, maximum transmission unit (MTU), optional interface addresses, and the name of the IPSec SA to apply to traffic. To configure an encryption interface, include the following statements at the [edit interfaces es-fpc/pic/port unit logical-unit-number] hierarchy level:

```
family inet {
  ipsec-sa ipsec-sa; # name of security association to apply to packet
  address address; # local interface address inside local VPN
  destination address; # destination address inside remote VPN
}
tunnel {
  source source-address;
  destination destination-address;
}
```

The addresses configured as the tunnel source and destination are the addresses in the outer IP header of the tunnel.

NOTE: You must configure the tunnel source address locally on the router, and the tunnel destination address must be a valid address for the security gateway terminating the tunnel.

The ES Physical Interface Card (PIC) is supported on M Series and T Series routers.

The SA must be a valid tunnel-mode SA. The interface address and destination address listed are optional. The destination address allows the user to configure a static route to
encrypt traffic. If a static route uses that destination address as the next hop, traffic is forwarded through the portion of the tunnel in which encryption occurs.

Specifying the Security Association Name for Encryption Interfaces

The security association is the set of properties that defines the protocols for encrypting Internet traffic. To configure encryption interfaces, you specify the SA name associated with the interface by including the `ipsec-sa` statement at the `[edit interfaces es-fpc/pic/port unit logical-unit-number family inet]` hierarchy level:

```
ipsec-sa sa-name;
```

For information about configuring the security association, see “Configuring Filters for Traffic Transiting the ESPIC” on page 115.

Configuring the MTU for Encryption Interfaces

The protocol MTU value for encryption interfaces must always be less than the default interface MTU value of 3900 bytes; the configuration fails to commit if you select a greater value. To set the MTU value, include the `mtu` statement at the `[edit interfaces interface-name unit logical-unit-number family inet]` hierarchy level:

```
mtu bytes;
```

For more information, see the Junos OS Network Interfaces Library for Routing Devices.

Example: Configuring an Encryption Interface

Configure an IPsec tunnel as a logical interface on the ESPIC. The logical interface specifies the tunnel through which the encrypted traffic travels. The `ipsec-sa` statement associates the security profile with the interface.

```
[edit interfaces]
es-0/0/0 { 
   unit 0 { 
      tunnel { 
         source 10.5.5.5; # tunnel source address 
         destination 10.6.6.6; # tunnel destination address 
      } 
      family inet { 
         ipsec-sa manual-sa1; # name of security association to apply to packet 
         mtu 3800; 
         address 10.1.1.8/32 { # local interface address inside local VPN 
            destination 10.2.2.254; # destination address inside remote VPN 
         } 
      } 
   } 
}
```

Related Documentation

- Encryption Overview on page 111
- Configuring Filters for Traffic Transiting the ES PIC on page 115
- Configuring ES PIC Redundancy on page 121
Configuring Filters for Traffic Transiting the ES PIC

This section contains the following topics:

- Traffic Overview on page 115
- Configuring the Security Association on page 116
- Configuring an Outbound Traffic Filter on page 117
- Applying the Outbound Traffic Filter on page 118
- Configuring an Inbound Traffic Filter on page 118
- Applying the Inbound Traffic Filter to the Encryption Interface on page 119

Traffic Overview

Traffic configuration defines the traffic that must flow through the tunnel. You configure outbound and inbound firewall filters, which identify and direct traffic to be encrypted and confirm that decrypted traffic parameters match those defined for the given tunnel. The outbound filter is applied to the LAN or WAN interface for the incoming traffic you want to encrypt. The inbound filter is applied to the ES PIC to check the policy for traffic coming in from the remote host. Because of the complexity of configuring a router to forward packets, no automatic checking is done to ensure that the configuration is correct.

NOTE: The valid firewall filters statements for IPsec are destination-port, source-port, protocol, destination-address, and source-address.

In Figure 6 on page 115, Gateway A protects the network 10.1.1.0/24, and Gateway B protects the network 10.2.2.0/24. The gateways are connected by an IPsec tunnel. For more information about firewalls, see the *Routing Policies, Firewall Filters, and Traffic Policers Feature Guide*.

Figure 6: Example: IPsec Tunnel Connecting Security Gateways

The SA and ES interface for security Gateway A are configured as follows:

```
[edit security ipsec]
security-association manual-sa1 { manual {
    direction bidirectional {
        protocol esp;
    }
}
```
spi 2312;
authentication {
 algorithm hmac-md5-96;
 key ascii-text 1234123412341234;
}
encryption {
 algorithm 3des-cbc;
 key ascii-text 123456789009876543211234;
}
]
}[edit interfaces es-0/1/0]
unit 0 {
 tunnel {
 source 10.5.5.5;
 destination 10.6.6.6;
 }
 family inet {
 ipsec-sa manual-sa1;
 address 10.1.1.8/32 {
 destination 10.2.2.254;
 }
 }
}

Configuring the Security Association

To configure the SA, include the security-association statement at the [edit security] hierarchy level:

security-association name {
 mode (tunnel | transport);
 manual {
 direction (inbound | outbound | bi-directional) {
 auxiliary-spi auxiliary-spi-value;
 spi spi-value;
 protocol (ah | esp | bundle);
 authentication {
 algorithm (hmac-md5-96 | hmac-sha1-96);
 key (ascii-text key | hexadecimal key);
 }
 encryption {
 algorithm (des-cbc | 3des-cbc);
 key (ascii-text key | hexadecimal key);
 }
 }
 dynamic {
 replay-window-size (32 | 64);
 ipsec-policy policy-name;
 }
 }
}
For more information about configuring an SA, see the Junos OS Administration Library. For information about applying the SA to an interface, see “Specifying the Security Association Name for Encryption Interfaces” on page 114.

Configuring an Outbound Traffic Filter

To configure the outbound traffic filter, include the `filter` statement at the `[edit firewall]` hierarchy level:

```plaintext
filter filter-name {
    term term-name {
        from {
            match-conditions;
        }
        then {
            action;
            action-modifiers;
        }
    }
}
```

For more information, see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.

Example: Configuring an Outbound Traffic Filter

Firewall filters for outbound traffic direct the traffic through the desired IPsec tunnel and ensure that the tunneled traffic goes out the appropriate interface (see Figure 6 on page 115). Here, an outbound firewall filter is created on security Gateway A; it identifies the traffic to be encrypted and adds it to the input side of the interface that carries the internal virtual private network (VPN) traffic:

```plaintext
[edit firewall]
filter ipsec-encrypt-policy-filter {
    term term1 {
        from {
            source-address { # local network
                10.1.1.0/24;
            }
            destination-address { # remote network
                10.2.2.0/24;
            }
        }
        then ipsec-sa manual-sa1; # apply SA name to packet
    }
    term default {
        then accept;
    }
}
```
NOTE: The source address, port, and protocol on the outbound traffic filter must match the destination address, port, and protocol on the inbound traffic filter. The destination address, port, and protocol on the outbound traffic filter must match the source address, port, and protocol on the inbound traffic filter.

Applying the Outbound Traffic Filter

After you have configured the outbound firewall filter, you apply it by including the filter statement at the [edit interfaces interface-name unit logical-unit-number family inet] hierarchy level:

```plaintext
filter {
    input filter-name;
}
```

Example: Applying the Outbound Traffic Filter

Apply the outbound traffic filter. The outbound filter is applied on the Fast Ethernet interface at the [edit interfaces fe-0/0/1 unit 0 family inet] hierarchy level. Any packet matching the IPSec action term (term 1) on the input filter (ipsec-encrypt-policy-filter), configured on the Fast Ethernet interface, is directed to the ES PIC interface at the [edit interfaces es-0/1/0 unit 0 family inet] hierarchy level. So, if a packet arrives from the source address 10.1.1.0/24 and goes to the destination address 10.2.2.0/24, the Packet Forwarding Engine directs the packet to the ES PIC interface, which is configured with the manual-sa1 SA. The ES PIC receives the packet, applies the manual-sa1 SA, and sends the packet through the tunnel.

The router must have a route to the tunnel end point; add a static route if necessary.

```plaintext
[edit interfaces]
fe-0/0/1 {
    unit 0 {
        family inet {
            filter {
                input ipsec-encrypt-policy-filter;
            }
            address 10.1.1.254/24;
        }
    }
}
```

Configuring an Inbound Traffic Filter

To configure an inbound traffic filter, include the filter statement at the [edit firewall] hierarchy level:

```plaintext
filter filter-name {
    term term-name {
```
Example: Configuring an Inbound Traffic Filter

Configure an inbound firewall filter. This filter performs the final IPsec policy check and is created on security gateway A. The policy check ensures that only packets that match the traffic configured for this tunnel are accepted.

```
[edit firewall]
filter ipsec-decrypt-policy-filter {
    term term1 [ # perform policy check
        from {
            source-address { # remote network
                10.2.2.0/24;
            }
            destination-address { # local network
                10.1.1.0/24;
            }
        }
        then accept;
    }
}
```

For more information, see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.

Applying the Inbound Traffic Filter to the Encryption Interface

After you create the inbound firewall filter, you can apply it to the ES PIC. To apply the filter to the ES PIC, include the `filter` statement at the `[edit interfaces es-1/fpc/pic/port unit logical-unit-number family inet filter]` hierarchy level:

```
[edit interfaces es-1/2/0unit0familyinet]
filter {
    input filter;
}
```

The input filter is the name of the filter applied to received traffic. For a configuration example, see “Example: Configuring an Inbound Traffic Filter” on page 119. For more information about firewall filters, see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.

Example: Applying the Inbound Traffic Filter to the Encryption Interface

Apply the inbound firewall filter (ipsec-decrypt-policy-filter) to the decrypted packet to perform the final policy check. The IPsec manual-sa SA is referenced at the `[edit interfaces es-1/2/0 unit 0 family inet]` hierarchy level and decrypts the incoming packet.
The Packet Forwarding Engine directs IPsec packets to the ES PIC. It uses the packet’s security parameter index (SPI), protocol, and destination address to look up the SA configured on one of the ES interfaces. The IPsec manual-sa1 SA is referenced at the [edit interfaces es-1/2/0 unit 0 family inet] hierarchy level and is used to decrypt the incoming packet. When the packets are processed (decrypted, authenticated, or both), the input firewall filter (ipsec-decrypt-policy-filter) is applied on the decrypted packet to perform the final policy check. term1 defines the decrypted (and verified) traffic and performs the required policy check. For information about term1, see “Example: Configuring an Inbound Traffic Filter” on page 119.

NOTE: The inbound traffic filter is applied after the ES PIC has processed the packet, so the decrypted traffic is defined as any traffic that the remote gateway is encrypting and sending to this router. IKE uses this filter to determine the policy required for a tunnel. This policy is used during the negotiation with the remote gateway to find the matching SA configuration.

```bash
[edit interfaces]
es-1/2/0 {
    unit 0 {
        tunnel {
            source 10.5.5.5; # tunnel source address
            destination 10.6.6.6; # tunnel destination address
        }
        family inet {
            filter {
                input ipsec-decrypt-policy-filter;
            }
            ipsec-sa manual-sa1; # SA name applied to packet address 10.1.1.8/32 { # local interface address inside local VPN destination 10.2.2.254; # destination address inside remote VPN
            }
        }
    }
}
```

Related Documentation

- Encryption Overview on page 111
- Configuring Encryption Interfaces on page 113
- Configuring ES PIC Redundancy on page 121
- Configuring IPsec Tunnel Redundancy on page 122
Configuring Redundancy in Case of Service Failure

- Configuring ESPIC Redundancy on page 121
- Configuring IPsec Tunnel Redundancy on page 122

Configuring ESPIC Redundancy

You can configure ESPIC redundancy on M Series and T Series routers that have multiple ESPICs. With ESPIC redundancy, one ESPIC is active and another ESPIC is on standby. When the primary ESPIC has a servicing failure, the backup becomes active, inherits all the tunnels and SAs, and acts as the new next hop for IPsec traffic. Reestablishment of tunnels on the backup ESPIC does not require new Internet Key Exchange (IKE) negotiations. If the primary ESPIC comes online, it remains in standby and does not preempt the backup. To determine which PIC is currently active, use the `show ipsec redundancy` command.

NOTE: ESPIC redundancy is supported on M Series and T Series routers.

To configure an ESPIC as the backup, include the `backup-interface` statement at the `[edit interfaces es-fpc/pic/port es-options]` hierarchy level:

```
backup-interface es-fpc/pic/port;
```

Example: Configuring ES PIC Redundancy

After you create the inbound firewall filter, apply it to the master ESPIC. Here, the inbound firewall filter (`ipsec-decrypt-policy-filter`) is applied on the decrypted packet to perform the final policy check. The IPsec `manual-sa` SA is referenced at the `[edit interfaces es-1/2/0 unit 0 family inet]` hierarchy level and decrypts the incoming packet. This example does not show SA and filter configuration. For information about SA and filter configuration, see the Junos OS Administration Library, the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide, and “Example: Configuring an Inbound Traffic Filter” on page 119.

```
[edit interfaces]
```
You can configure IPsec tunnel redundancy by specifying a backup destination address. The local router sends keepalives to determine the remote site’s reachability. When the peer is no longer reachable, a new tunnel is established. For up to 60 seconds during failover, traffic is dropped without notification being sent. *Figure 7 on page 122* shows IPsec primary and backup tunnels.

Figure 7: IPsec Tunnel Redundancy

To configure IPsec tunnel redundancy, include the `backup-destination` statement at the `[edit interfaces unit logical-unit-number tunnel]` hierarchy level:

```
backup-destination address;
destination address;
```
source address;

NOTE: Tunnel redundancy is supported on M Series and T Series routers.
The primary and backup destinations must be on different routers.
The tunnels must be distinct from each other and policies must match.

For more information about tunnels, see “Tunnel Interface Configuration on MX Series Routers Overview” on page 6.

Related Documentation
- Encryption Overview on page 111
- Configuring Encryption Interfaces on page 113
- Configuring Filters for Traffic Transiting the ES PIC on page 115
- Configuring ES PIC Redundancy on page 121
PART 3

Configuration Statements and Operational Commands

- Configuration Statements on page 127
- Operational Commands on page 169
CHAPTER 13

Configuration Statements

- address (Interfaces) on page 128
- allow-fragmentation on page 129
- apply-groups-except on page 130
- backup-destination on page 131
- backup-interface on page 131
- clear-dont-fragment-bit (Interfaces GRE Tunnels) on page 132
- copy-tos-to-outer-ip-header on page 133
- core-facing on page 134
- destination (Interfaces) on page 135
- destination (Routing Instance) on page 136
- destination (Tunnel Remote End) on page 137
- destination-networks on page 138
- destination-udp-port (FTI) on page 139
- do-not-fragment on page 140
- dynamic-tunnels on page 141
- es-options on page 142
- family on page 143
- family bridge on page 144
- family bridge (GRE Interfaces) on page 145
- filter on page 146
- hold-time (OAM) on page 147
- interfaces on page 148
- ipsec-sa on page 148
- keepalive-time on page 149
- key on page 150
- multicast-only on page 150
- peer-unit on page 151
- peer-certificate-type on page 152
`address (Interfaces)`

Syntax
```
address address {
  destination address;
}
```

Hierarchy Level
```
[edit interfaces interface-name unit logical-unit-number family family]
```

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Configure the interface address.

Options
- `address`—Address of the interface.

The remaining statement is explained separately. See CLI Explorer.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Encryption Interfaces on page 113
allow-fragmentation

Syntax

allow-fragmentation;

Hierarchy Level

[edit interfaces gr-fpc/pic/port unit logical-unit-number tunnel],
[edit logical-systems logical-system-name interfaces gr-fpc/pic/port unit logical-unit-number tunnel]

Release Information

Statement introduced in Junos OS Release 9.2.
Statement introduced in Junos OS Release 15.1X53-D10 for QFX10000 switches.

Description

For a generic routing encapsulation (GRE) tunnel, enable fragmentation of GRE-encapsulated packets whose size exceeds the maximum transmission unit (MTU) value of a link that the packet passes through. The don’t-fragment (DF) bit is not set in the outer IP header of GRE-encapsulated packets.

To enable the reassembly of fragmented GRE-encapsulated packets on GRE tunnel interfaces at the endpoint of the GRE tunnel, include the reassemble-packets statement for the interface.

Default

If you do not include the allow-fragmentation statement, fragmentation of GRE-encapsulated packets is disabled.

Required Privilege

Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

• reassemble-packets on page 153
• Enabling Fragmentation and Reassembly on Packets After GRE-Encapsulation on page 51
• Junos OS Services Interfaces Library for Routing Devices
apply-groups-except

Syntax

apply-groups-except values;

Hierarchy Level

[edit interfaces]

Release Information

Statement introduced in Junos OS Release 15.1.

Description

Disable inheritance of a configuration group.

Options

value—.

Required Privilege Level

configure—To enter configuration mode, but other required privilege levels depend on where the statement is located in the configuration hierarchy.

Related Documentation

- groups
 - Disabling Inheritance of a Junos OS Configuration Group
- Tunnel Services Overview on page 3
- Tunnel Interface Configuration on MX Series Routers Overview on page 6
backup-destination

Syntax

backup-destination destination-address;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number tunnel],[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number tunnel]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 15.1X53-D10 for QFX10000 switches.

Description

For tunnel interfaces, specify the remote address of the backup tunnel.

Options

destination-address—Address of the remote side of the connection.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

• destination (Interfaces) on page 135
• destination (Tunnel Remote End) on page 137
• Configuring IPsec Tunnel Redundancy on page 122

backup-interface

Syntax

backup-interface interface-name;

Hierarchy Level

[edit interfaces interface-name es-options]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure a backup ES Physical Interface Card (PIC). When the primary ES PIC has a servicing failure, the backup becomes active, inherits all the tunnels and security associations (SAs), and acts as the new next hop for IPsec traffic.

Options

interface-name—Name of ES interface to serve as the backup.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

• Configuring ES PIC Redundancy on page 121
clear-dont-fragment-bit (Interfaces GRE Tunnels)

<table>
<thead>
<tr>
<th>Syntax</th>
<th>clear-dont-fragment-bit;</th>
</tr>
</thead>
</table>

| Hierarchy Level | [edit interfaces gr-fpc/pic/port unit logical-unit-number], [edit logical-systems logical-system-name interfaces gr-fpc/pic/port unit logical-unit-number] |

<table>
<thead>
<tr>
<th>Release Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement introduced before Junos OS Release 7.4.</td>
</tr>
<tr>
<td>Statement introduced in 10.0R2 for 16x10GE MPC</td>
</tr>
<tr>
<td>Statement introduced in 13.2R4 for Multiservices MPC</td>
</tr>
<tr>
<td>Statement introduced in Junos OS Release 10.2 for MPC1 and MPC1Q.</td>
</tr>
<tr>
<td>Statement introduced in Junos OS Release 10.1 for MPC2 and variants.</td>
</tr>
<tr>
<td>Statement introduced in Junos OS Release 11.2R4 for MPC1E and MPC1E Q.</td>
</tr>
<tr>
<td>Statement introduced in Junos OS Release 11.2R4 for MPC2E and variants</td>
</tr>
<tr>
<td>Statement introduced in Junos OS Release 12.1 for MPC3E and variants</td>
</tr>
<tr>
<td>Statement introduced in Junos OS Release 12.2 for MPC2E P</td>
</tr>
<tr>
<td>Statement introduced in Junos OS Release 12.3R2 for MPC4E and variants</td>
</tr>
<tr>
<td>Statement introduced in Junos OS Release 13.3R2 and later for MPC5E and variants</td>
</tr>
<tr>
<td>Statement introduced in Junos OS Release 14.1R4, 14.2R3 and Junos Continuity 15.1 for MPC2E NG and variants</td>
</tr>
<tr>
<td>Statement introduced in Junos OS Release 14.1R4, 14.2R3 and Junos Continuity 15.1 for MPC3E NG and variants</td>
</tr>
<tr>
<td>Statement introduced in Junos OS Release 15.1F4 with Junos Continuity and 16.1R1 and later for MPC7E and variants</td>
</tr>
<tr>
<td>Statement introduced in Junos OS Release 15.1F7 for MPC6E</td>
</tr>
<tr>
<td>Statement introduced in Junos OS Release 15.1F7 for MPC8E</td>
</tr>
<tr>
<td>Statement introduced in Junos OS Release 15.1F7 for MPC9E</td>
</tr>
<tr>
<td>Statement introduced in Junos OS Release 17.3 for MX10003 MPC (Multi-Rate)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear the Don't Fragment (DF) bit on all IP version 4 (IPv4) packets entering the generic routing encapsulation (GRE) tunnel on Adaptive Services (AS) or Multiservices interfaces. If the encapsulated packet size exceeds the tunnel maximum transmission unit (MTU), the packet is fragmented before encapsulation. The statement is supported only on MX Series routers and all M Series routers except the M320 router.</td>
</tr>
<tr>
<td>When you configure the clear-dont-fragment-bit statement on an interface with the MPLS protocol family enabled, you must specify an MTU value. This MTU value must not be greater than maximum supported value, which is 9192.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Privilege Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface—To view this statement in the configuration.</td>
</tr>
<tr>
<td>interface-control—To add this statement to the configuration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Enabling Fragmentation on GRE Tunnels on page 39</td>
</tr>
</tbody>
</table>
copy-tos-to-outer-ip-header

Syntax

```
copy-tos-to-outer-ip-header;
```

Hierarchy Level

```
[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]
```

Release Information

Statement introduced in Junos OS Release 8.2.

Description

For GRE tunnel interfaces only, enable the inner IP header’s ToS bits to be copied to the outer IP packet header.

To verify that this option is enabled at the interface level, use the `show interfaces interface-name detail` command.

Default

If you omit this statement, the ToS bits in the outer IP header are set to 0.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

* Configuring a GRE Tunnel to Copy ToS Bits to the Outer IP Header on page 51
core-facing

Syntax
core-facing;

Hierarchy Level
[edit interfaces interface-name unit logical-unit-number family family],

Release Information
Statement introduced in Junos OS Release 15.1.

Description
Specifies that the VLAN is physically connected to a core-facing ISP router and ensures that the network does not improperly treat the interface as a client interface. When specified, the interface is inserted into the core-facing default mesh group where traffic from pseudowires that belong to the default mesh group is not forwarded on the core-facing link.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

Related Documentation
- Junos OS Broadband Subscriber Management and Services Library
- Tunnel Services Overview on page 3
- Tunnel Interface Configuration on MX Series Routers Overview on page 6
destination (Interfaces)

Syntax

```
destination address;
```

Hierarchy Level

```
[edit interfaces interface-name unit logical-unit-number tunnel],
[edit interfaces interface-name unit logical-unit-number family inet address address],
[edit interfaces interface-name unit logical-unit-number tunnel],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet address address]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For CoS on ATM interfaces, specify the remote address of the connection.

For point-to-point interfaces only, specify the address of the interface at the remote end of the connection.

For tunnel and encryption interfaces, specify the remote address of the tunnel.

Options

address—Address of the remote side of the connection.

Required Privilege

Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Linear RED Profiles on ATM Interfaces
- Multilink and Link Services Logical Interface Configuration Overview
- Configuring Encryption Interfaces on page 113
- Configuring Traffic Sampling on MX, M and T Series Routers
- Configuring Flow Monitoring on T Series and M Series Routers and EX9200 Switches
- Configuring Unicast Tunnels on page 47
destination (Routing Instance)

Syntax

`destination routing-instance-name;`

Hierarchy Level

```
[edit interfaces interface-name unit logical-unit-number tunnel routing-instance]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Specify the destination routing instance that points to the routing table containing the tunnel destination address.

Default

The default Internet routing table `inet.0`.

Options

`routing-instance-name`—Name of the destination routing instance.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Tunnel Interfaces for Routing Table Lookup on page 103
destination (Tunnel Remote End)

<table>
<thead>
<tr>
<th>Syntax</th>
<th>destination destination-address;</th>
</tr>
</thead>
</table>

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number tunnel],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number tunnel]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1 for EX Series switches.

Description

For tunnel interfaces, specify the remote address of the tunnel.

Options

- **destination-address**—Address of the remote side of the connection.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Unicast Tunnels on page 47
- Configuring Traffic Sampling on MX, M and T Series Routers
- Configuring Flow Monitoring on T Series and M Series Routers and EX9200 Switches
destination-networks

Syntax

```destination-networks prefix;```

**Hierarchy Level**

```[edit logical-systems logical-system-name routing-instances routing-instance-name routing-options dynamic-tunnels tunnel-name],
[edit logical-systems logical-system-name routing-options dynamic-tunnels tunnel-name rsvp-te entry],
[edit logical-systems logical-system-name routing-options dynamic-tunnels tunnel-name],
[edit routing-instances routing-instance-name routing-options dynamic-tunnels tunnel-name],
[edit routing-instances routing-instance-name routing-options dynamic-tunnels tunnel-name rsvp-te entry],
[edit routing-options dynamic-tunnels tunnel-name],
[edit routing-options dynamic-tunnels tunnel-name rsvp-te entry]```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.3 for ACX Series routers.

Description

Specify the IPv4 prefix range for the destination network. Only tunnels within the specified IPv4 prefix range can be created.

Options

- `prefix`—Destination prefix of the network.

Required Privilege Level

- `routing`—To view this statement in the configuration.
- `routing-control`—To add this statement to the configuration.

Related Documentation

- *Configuring GRE Tunnels for Layer 3 VPNs*
- *Configuring Dynamic Tunnels on page 107*
- *Configuring RSVP Automatic Mesh*
destination-udp-port (FTI)

Syntax

destination-udp-port destination-udp-port;

Hierarchy Level

[edit interfaces name unit name tunnel encapsulation vxlan-gpe]

Release Information

Statement introduced in Junos OS Release 18.3R1 for MX Series routers.

Description

Assign a numeric value to write to the destination-udp-port-field to identify a Virtual Extensible LAN (VXLAN).

Range: 1 through 65,535

Required Privilege Level

routing

Related Documentation

• Flexible Tunnel Interfaces Overview on page 22
• Configuring Flexible Tunnel Interfaces on MX Series Routers on page 24
• show interfaces fti on page 223
• vni (Interfaces) on page 166
• Example: Configuring Flexible Tunnel Interfaces on MX Series Routers on page 28
do-not-fragment

<table>
<thead>
<tr>
<th>Syntax</th>
<th>do-not-fragment;</th>
</tr>
</thead>
</table>

| Hierarchy Level | [edit interfaces gr-fpc/pic/port unit logical-unit-number tunnel], |
| | [edit logical-systems logical-system-name interfaces gr-fpc/pic/port unit logical-unit-number tunnel] |

| | Statement introduced in Junos OS Release 15.1X53-D10 for QFX10000 switches. |

| Description | For a generic routing encapsulation (GRE) tunnel, disable fragmentation of GRE-encapsulated packets. This sets the do-not-fragment (DF) bit in the outer IP header of the GRE-encapsulated packets so that they do not get fragmented anywhere in the path. When the size of a GRE-encapsulated packet is greater than the MTU of a link that the packet passes through, the GRE-encapsulated packet is dropped. |

| Default | By default, fragmentation of GRE-encapsulated packets is disabled. |

| Required Privilege Level | interface—To view this statement in the configuration. |
| | interface-control—To add this statement to the configuration. |

| Related Documentation | allow-fragmentation on page 129 |
| | reassemble-packets on page 153 |
| | Enabling Fragmentation and Reassembly on Packets After GRE-Encapsulation on page 51 |
| | Junos OS Services Interfaces Library for Routing Devices |
Dynamic Tunnels

Syntax

```
dynamic-tunnels tunnel-name {
    destination-networks prefix;
    gre;
    rsvp-te entry-name {
        destination-networks network-prefix;
        label-switched-path-template (Multicast) {
            default-template;
            template-name;
        }
    }
    source-address address;
    traceoptions {
        file filename <files> <size> <(world-readable | no-world-readable)>;
        flag (all | kernel | task | tunnel) {
            detail detail;
            disable disable;
            receive receive;
            send send;
        }
    }
    tunnel-attributes name {
        dynamic-tunnel-anchor-pfe dynamic-tunnel-anchor-pfe;
        dynamic-tunnel-anti-spoof (off | on);
        dynamic-tunnel-mtu dynamic-tunnel-mtu;
        dynamic-tunnel-source-prefix dynamic-tunnel-source-prefix;
        dynamic-tunnel-type V4oV6;
    }
}
```

Hierarchy Level

- `[edit logical-systems logical-system-name routing-instances routing-instance-name routing-options]`
- `[edit logical-systems logical-system-name routing-options]`
- `[edit routing-instances routing-instance-name routing-options]`
- `[edit routing-options]`

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.3 for ACX Series routers.

Description

Configure a dynamic tunnel between two PE routers.

NOTE: ACX Series routers do not support the `gre` statement.

Configure dynamic IPv4-over-IPv6 tunnels and define their attributes to forward IPv4 traffic over an IPv6-only network. IPv4 traffic is tunneled from customer premises equipment to IPv4-over-IPv6 gateways. You must also configure `extended-nexthop`...
option at [edit protocols bgp family inet unicast] hierarchy level to allow BGP to route IPv4 address families over an IPv6 session.

Options

gre—Enable dynamic generic routing encapsulation type tunnel mode for IPv4

Values:

- **next-hop-based-tunnel**—Enable next hop base dynamic-tunnel for steering IPv4 traffic with IPv6 next hop address.

source-address—Specify the source address of the tunnel.

tunnel-name—Name of the dynamic tunnel.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

Level

routin—to view this statement in the configuration.

routin—control—to add this statement to the configuration.

Related Documentation

- extended-nexthop
- tunnel-attributes
- Example: Configuring a Two-Tiered Virtualized Data Center for Large Enterprise Networks
- Understanding Redistribution of IPv4 Routes with IPv6 Next Hop into BGP

es-options

Syntax

```
es-options {
  backup-interface interface-name;
}
```

Hierarchy Level

[edit interfaces interface-name]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

On ES interfaces, configure ES interface-specific interface properties.

The **backup-interface** statement is explained separately.

Required Privilege

Level

interface—to view this statement in the configuration.

interface-control—to add this statement to the configuration.

Related Documentation

- Configuring ES PIC Redundancy on page 121
family

Syntax

family family {
 ipsec-sa sa-name;
}

Hierarchy Level

department interfaces interface-name unit logical-unit-number}

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure protocol family information for the logical interface.

Options

family—Protocol family:

- ccc—Circuit cross-connect protocol suite
- inet—IP version 4 suite
- inet6—IP version 6 suite
- iso—Open Systems Interconnection (OSI) International Organization for Standardization (ISO) protocol suite
- mlfr-end-to-end—Multilink Frame Relay FRF.15
- mlfr-uni-nni—Multilink Frame Relay FRF.16
- multilink-ppp—Multilink Point-to-Point Protocol
- mpls—MPLS
- tcc—Translational cross-connect protocol suite
- tnp—Trivial Network Protocol
- vpls—Virtual private LAN service

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Encryption Interfaces on page 113
- Junos OS Network Interfaces Library for Routing Devices for other statements that do not affect services interfaces.
family bridge

Syntax

family bridge {
 apply-groups value;
 apply-groups-except value;
 core-facing;
 interface-mode access | trunk;
 inner-vlan-id-list inner-vlan-id-range;
 storm-control;
 vlan-id vlan-id;
 vlan-id-list vlan-id-range;
}

Hierarchy Level

[edit interfaces]
[edit logical-systems name interfaces]

Release Information

Statement introduced in Junos OS Release 15.1. Starting in Junos OS release 17.4R1 for MX Series routers, support for storm control was added for logical systems.

Description

Family bridge is used when you want a port that has more than one logical unit, each with the same or different encapsulations. Bridge domains are associated with GRE interface with the corresponding BD VLAN.

Options

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

system—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

- Tunnel Services Overview on page 3
- Tunnel Interface Configuration on MX Series Routers Overview on page 6
family bridge (GRE Interfaces)

Syntax

family bridge {
 interface-mode (access | trunk);
 core-facing;
 vlan-id number;
 vlan-id-list vlan-list;
}

Hierarchy Level
[edit interfaces gr-fpc/pic/port.unit]

Release Information
Statement at the [edit interfaces gr-fpc/pic/port.unit] hierarchy level introduced in Junos OS Release 15.1 for MX Series routers.

Description
Configure the bridge domain family on GRE interfaces. To enable Layer 2 Ethernet packets to be terminated on GRE tunnels, you must configure the bridge domain protocol family on the gr- interfaces and associate the gr- interfaces with the bridge domain. You must configure the GRE interfaces as core-facing interfaces, and they must be access or trunk interfaces. To configure the bridge domain family on gr- interfaces, include the family bridge statement at the [edit interfaces gr-fpc/pic/port unit logical-unit-number] hierarchy level.

Options

interface-mode—Specify the type of VLAN tagging on packets that the interface accepts.

access—Configure a logical interface to accept untagged packets. Specify the VLAN to which this interface belongs using the vlan-id statement.

trunk—Configure a single logical interface to accept packets tagged with any VLAN ID specified with the vlan-id or vlan-id-list statement.

core-facing—Specify that the VLAN is physically connected to a core-facing ISP router and ensures that the network does not improperly treat the interface as a client interface. When specified, the interface is inserted into the core-facing default mesh group where traffic from pseudowires that belong to the default mesh group is not forwarded on the core-facing link.

vlan-id number—Individual VLAN IDs separated by a space.

vlan-id-list vlan-list—Starting VLAN ID and ending VLAN ID in an inclusive range. Separate the starting VLAN ID and ending VLAN ID with a hyphen.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation
• Layer 2 Services over GRE Tunnel Interfaces on MX Series with MPCs on page 81
filter

Syntax

```plaintext
filter {
  input filter-name;
  output filter-name;
}
```

Hierarchy Level

```plaintext
[edit interfaces interface-name unit logical-unit-number family inet]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Define the filters to be applied on an interface.

Options

- `input filter-name`—Identifier for the input filter.
- `output filter-name`—Identifier for the output filter.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- Configuring Filters for Traffic Transiting the ES PIC on page 115
hold-time (OAM)

<table>
<thead>
<tr>
<th>Syntax</th>
<th>hold-time seconds;</th>
</tr>
</thead>
</table>

Hierarchy Level

[edit protocols oam],
[edit protocols oam gre-tunnel interface interface-name]

Release Information
Statement introduced in Junos OS Release 10.2.

Description
Length of time the originating end of a GRE tunnel waits for keepalive packets from the other end of the tunnel before marking the tunnel as operationally down.

Options
- **seconds**—Hold-time value.
 - Default: 5 seconds
 - Range: 5 through 250 seconds

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- GRE Keepalive Time Overview on page 35
- Configuring GRE Keepalive Time on page 36
- keepalive-time on page 149
interfaces

Syntax

```
interfaces [ ... ]
```

Hierarchy Level

```
[edit]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure interfaces on the router.

Default

The management and internal Ethernet interfaces are automatically configured. You must configure all other interfaces.

Required Privilege

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- [Junos OS Network Interfaces Library for Routing Devices](#)

ipsec-sa

Syntax

```
ipsec-sa sa-name;
```

Hierarchy Level

```
[edit interfaces es-fpc/pic/port unit logical-unit-number family inet]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Specify the IP Security (IPsec) SA name associated with the interface.

Options

- `sa-name`—IPsec SA name.

Required Privilege

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- Configuring Encryption Interfaces on page 113
- [Junos OS Administration Library](#)
keenlive-time

Syntax

```
keenlive-time seconds;
```

Hierarchy Level

```
[edit protocols oam],
[edit protocols oam gre-tunnel interface interface-name],
[edit protocols oam gre-tunnel interface interface-name.unit-number]
```

Release Information

Statement introduced in Junos OS Release 10.2.

Description

Time difference between consecutive keepalive packets in a GRE tunnel.

NOTE: Support for GRE keepalive packets on MPC line cards became available as of Junos OS Release 11.4.

Options

- **seconds**—Keepalive time value.
 - **Default:** 1 second
 - **Range:** 1 through 50 seconds

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- GRE Keepalive Time Overview on page 35
- Configuring GRE Keepalive Time on page 36
- **hold-time on page 147**
key

Syntax

`key number;`

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number tunnel],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number tunnel]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Identify an individual traffic flow within a tunnel, as defined in RFC 2890, *Key and Sequence Number Extensions to GRE*. On M Series and T Series routers, you can configure the GRE interface on an Adaptive Services, Multiservices, or Tunnel PIC. On MX Series routers, configure the interface on a Multiservices DPC.

Options

`number`—Value of the key.

Range: 0 through 4,294,967,295

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- Configuring a Key Number on GRE Tunnels on page 49

multicast-only

Syntax

`multicast-only;`

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number family inet],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure the unit and family so that the interface can transmit and receive multicast traffic only. You can configure this property on the IP family only.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- Restricting Tunnels to Multicast Traffic on page 54
- `tunnel` on page 163
peer-unit

Syntax
peer-unit unit-number;

Hierarchy Level
[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Configure a peer relationship between two logical systems.

Options
unit-number—Peering logical system unit number.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Logical Tunnel Interfaces on page 55
peer-certificate-type

Syntax
```
peer-certificate-type (pkcs7 | x509-signature);
```

<table>
<thead>
<tr>
<th>Hierarchy Level</th>
<th><code>[edit services ipsec-vpn ike policy policy-name]</code></th>
</tr>
</thead>
</table>

Release Information
Statement introduced in Release 15.1 for MX Series routers.

Description
(MX Series routers only) Specify a preferred type of certificate (PKCS7 or X509). By default, X509 encoding format is used. With the flexibility to configure the encoding format in which certificate requests are sent to the peer, you can determine the type of certificate to be used depending on the type supported by the peer. For example, if the peer does not support PKCS7, certificate authentication cannot occur unless you configure the same type on MX Series routers as the initiator or sender.

Options
- `pkcs7`—Public-Key Cryptography Standard #7.
- `x509-signature`—X509 is an ITU-T standard for public key infrastructure.

Required Privilege
- `system`—To view this statement in the configuration.
- `system-control`—To add this statement to the configuration.

Related Documentation
- *Configuring IKE Policies*
reassemble-packets

Syntax
reassemble-packets;

Hierarchy Level
[edit interfaces gr-fpc/pic/port unit logical-unit-number],
[edit logical-systems logical-system-name interfaces gr-fpc/pic/port unit logical-unit-number]

Release Information
Statement introduced in Junos OS Release 9.2.

Description
Enable reassembly of fragmented generic routing encapsulation (GRE) encapsulated packets on GRE tunnel interfaces at the endpoint of the GRE tunnel.

GRE-encapsulated packets are fragmented if the allow-fragmentation statement is configured for the GRE tunnel and the size of the GRE-encapsulated packet exceeds the maximum transmission unit (MTU) value of a link that the packet passes through.

Default
If you do not include the reassemble-packets statement, the GRE tunnel interface does not reassemble fragmented GRE-encapsulated packets.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Enabling Fragmentation and Reassembly on Packets After GRE-Encapsulation on page 51
redundancy-group (Interfaces)

| Syntax | redundancy-group {
| | member-interface interface-name {
| | (active | backup):
| | }
| | }
| Hierarchy Level | [edit interfaces interface-name]
| Release Information | Statement introduced in Junos OS Release 13.3.
| Description | Configure member tunnels of redundant logical or virtual tunnels only on MX Series 5G Universal Routing Platforms.
| Options | active—Set the interface to the active mode.
| | backup—Set the interface to the backup mode.
| | The remaining statement is explained separately. See CLI Explorer.
| Required Privilege Level | interface—To view this statement in the configuration.
| | interface-control—To view this statement in the configuration.
| Related Documentation | • Redundant Virtual Tunnels Providing Resiliency in Delivering Multicast Traffic Overview
| | • Configuring Redundant Virtual Tunnels to Provide Resiliency in Delivering Multicast Traffic
| | • Example: Configuring Redundant Virtual Tunnels to Provide Resiliency in Delivering Multicast Traffic
| | • Example: Configuring Redundant Logical Tunnels on page 68
| | • Configuring Redundant Logical Tunnels on page 67
| | • Redundant Logical Tunnels Overview on page 64
| | • redundancy-group on page 155
redundancy-group (Chassis - MX Series)

Syntax
```
redundancy-group {
  interface-type {
    redundant-logical-tunnel {
      device count;
    }
    redundant-virtual-tunnel {
      device count;
    }
  }
}
```

Hierarchy Level
[edit chassis]

Release Information
Statement introduced in Junos OS Release 13.3.

Description
Configure redundant logical tunnels, redundant virtual tunnels, or both on MX Series 5G Universal Routing Platforms.

The remaining statements are explained separately. See [CLI Explorer](#).

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- [Redundant Virtual Tunnels Providing Resiliency in Delivering Multicast Traffic Overview](#)
- [Configuring Redundant Virtual Tunnels to Provide Resiliency in Delivering Multicast Traffic](#)
- [Example: Configuring Redundant Virtual Tunnels to Provide Resiliency in Delivering Multicast Traffic](#)
- [redundancy-group (Interfaces) on page 154](#)
routing-instance

Syntax

```plaintext
routing-instance {
  destination routing-instance-name;
}
```

Hierarchy Level

- [edit interfaces interface-name unit logical-unit-number tunnel],
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number tunnel]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 15.1X53-D10 for QFX10000 switches.

Description

Specify the destination routing instance that points to the routing table containing the tunnel destination address.

Default

The default Internet routing table `inet.0`.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Tunnel Interfaces for Routing Table Lookup on page 103
routing-instances

Syntax

```
routing-instances routing-instance-name { ... }
```

Hierarchy Level

```
[edit],
[edit logical-systems logical-system-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure an additional routing entity for a router or switch. You can create multiple instances of BGP, IS-IS, OSPF, OSPF version 3 (OSPFv3), and RIP for a router or switch.

Default

Routing instances are disabled for the router or switch.

Options

`routing-instance-name`—Name of the routing instance, a maximum of 31 characters. The remaining statements are explained separately.

Required Privilege Level

- `routing`—To view this statement in the configuration.
- `routing-control`—To add this statement to the configuration.

Related Documentation

- Configuring EVPN Routing Instances
- Configuring Routing Instances on PE Routers in VPNs
routing-options

Syntax

```
routing-options [ ... ]
```

For information on the complete list of `routing-options`, see the [Protocol-Independent Routing Properties Feature Guide](#).

Hierarchy Level

```
[edit],
[edit logical-systems logical-system-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name],
[edit routing-instances routing-instance-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description

Configure protocol-independent routing properties.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

Related Documentation

- [Protocol-Independent Routing Properties Feature Guide](#)

source

Syntax

```
source source-address;
```

Hierarchy Level

```
[edit interfaces interface-name unit logical-unit-number family inet address address],
[edit interfaces interface-name unit logical-unit-number tunnel]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For tunnel and encryption interfaces, specify the source address.

Options

- `source-address`—Address of the source side of the connection.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Encryption Interfaces on page 113
- Configuring Traffic Sampling on MX, M and T Series Routers
- Configuring Flow Monitoring on T Series and M Series Routers and EX9200 Switches
source

Syntax

```plaintext
source source-address;
```

Hierarchy Level (EX, NFX, OCX1100 and QFX Series)

```plaintext
[edit interfaces interface-name unit logical-unit-number tunnel]
```

Hierarchy Level (M-series and T-series)

```plaintext
[edit interfaces interface-name unit logical-unit-number tunnel address],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number tunnel address]
```

Release Information

- Statement introduced before Junos OS Release 7.4.
- Statement introduced in Junos OS Release 12.1 for EX Series switches.
- Statement introduced in Junos OS Release 13.2 for the QFX Series.
- Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Specify the source address of the tunnel.

Default

If you do not specify a source address, the tunnel uses the unit's primary address as the source address of the tunnel.

Options

- `source-address`—Address of the local side of the tunnel. This is the address that is placed in the outer IP header's source field.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- Tunnel Services Overview on page 3
- `multicast-only`
- `primary (Address on Interface)`
- Junos OS Services Interfaces Library for Routing Devices
source-address

<table>
<thead>
<tr>
<th>Syntax</th>
<th>source-address address;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierarchy Level</td>
<td>[edit logical-systems logical-system-name routing-instances routing-instance-name routing-options dynamic-tunnels tunnel-name], [edit logical-systems logical-system-name routing-options dynamic-tunnels tunnel-name], [edit routing-instances routing-instance-name routing-options dynamic-tunnels tunnel-name], [edit routing-options dynamic-tunnels tunnel-name]</td>
</tr>
<tr>
<td>Description</td>
<td>Configure the tunnel source address.</td>
</tr>
<tr>
<td>Options</td>
<td>address—Name of the source address.</td>
</tr>
<tr>
<td>Required Privilege Level</td>
<td>routing—To view this statement in the configuration. routing-control—To add this statement to the configuration.</td>
</tr>
<tr>
<td>Related Documentation</td>
<td>Configuring Dynamic Tunnels on page 107</td>
</tr>
</tbody>
</table>
ttl

<table>
<thead>
<tr>
<th>Syntax</th>
<th>ttl value;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierarchy Level</td>
<td>[edit interfaces interface-name unit number tunnel]</td>
</tr>
<tr>
<td>Description</td>
<td>Set the time-to-live value bit in the header of the outer IP packet.</td>
</tr>
</tbody>
</table>
| **Options** | value—Time-to-live value.
Range: 0 through 255
Default: 64 |
| **Required Privilege Level** | interface—To view this statement in the configuration. interface-control—To add this statement to the configuration. |
| **Related Documentation** | • Tunnel Services Overview on page 3 |
tunnel

Syntax

```
tunnel {
  backup-destination destination-address;
  destination destination-address;
  routing-instance {
    destination routing-instance-name;
  }
  source source-address;
  ttl number;
}
```

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure a tunnel. You can use the tunnel for unicast and multicast traffic or just for multicast traffic. You can also use tunnels for encrypted traffic or virtual private networks (VPNs).

The remaining statements are explained separately. See [CLI Explorer](#).

Required Privilege Level

- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

Related Documentation

- Configuring Encryption Interfaces on page 113
- Tunnel Services Overview on page 3
- Junos OS VPNs Library for Routing Devices
tunnel

Syntax
```
tunnel {
  allow-fragmentation;
  backup-destination address;
  destination destination-address;
  do-not-fragment;
  key number;
  routing-instance {
    destination routing-instance-name;
  }
  source source-address;
  traffic-class traffic-class-value;
  ttl number;
}
```

Hierarchy Level
```
[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]
```

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1 for EX Series switches.

Description
Configure a tunnel. You can use the tunnel for unicast and multicast traffic or just for multicast traffic. You can also use tunnels for encrypted traffic or virtual private networks (VPNs).

The remaining statements are explained separately. See [CLI Explorer](#).

Required Privilege Level
- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

Related Documentation
- Configuring Encryption Interfaces on page 113
unit (Interfaces)

Syntax

```plaintext
unit logical-unit-number {
  family inet {
    ipsec-sa sa-name;
  }
  tunnel {
    backup-destination destination-address;
    destination destination-address;
    routing-instance {
      destination routing-instance-name;
    }
    source source-address;
    ttl number;
  }
}
```

Hierarchy Level

```plaintext
[edit interfaces interface-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure a logical interface on the physical device. You must configure a logical interface to be able to use the physical device.

Options

`logical-unit-number`—Number of the logical unit.

Range: 0 through 16,384

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Encryption Interfaces on page 113
- Junos OS Network Interfaces Library for Routing Devices
- Junos OS Network Interfaces Library for Routing Devices for other statements that do not affect services interfaces.
unit (Interfaces)

Syntax

unit logical-unit-number [
 peer-unit unit-number;
 reassemble-packets;
 tunnel {
 allow-fragmentation;
 backup-destination address;
 destination destination-address;
 do-not-fragment;
 key number;
 routing-instance {
 destination routing-instance-name;
 }
 source source-address;
 ttl number;
 }
]

Hierarchy Level

[edit interfaces interface-name],
[edit logical-systems logical-system-name interfaces interface-name]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 15.1X53-D10 for QFX10000 switches.

Description

Configure a logical interface on the physical device. You must configure a logical interface to be able to use the physical device.

Options

logical-unit-number—Number of the logical unit.

Range: 0 through 16,384

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Junos OS Network Interfaces Library for Routing Devices for other statements that do not affect services interfaces.
vni (Interfaces)

Syntax

| vni [0–16777214] |

Hierarchy Level

[edit interfaces name unit name tunnel encapsulation vxlan-gpe]

Release Information

Statement introduced in Junos OS Release 18.3R1 for MX Series routers.

Description

Assign a numeric value to identify a Virtual Extensible LAN (VXLAN). All members of a VXLAN must use the same virtual network identifier (VNI).

Options

vni—Value to specify in the vni attribute.

- **Range:** For flexible tunnel interfaces, the range supported is 0 through 16,772,144 for all MX Series routers (except MX80).

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

Related Documentation

- Understanding VXLANs
- Flexible Tunnel Interfaces Overview on page 22
- Configuring Flexible Tunnel Interfaces on MX Series Routers on page 24
- Example: Configuring Flexible Tunnel Interfaces on MX Series Routers on page 28
- show interfaces fti on page 223
vxlan-gpe (FTI)

Syntax

```bash
vxlan-gpe {
  destination {
    address address;
  }
  destination-udp-port destination-udp-port;
  source {
    address address;
    interface interface;
  }
  tunnel-endpoint vxlan;
  vni vni;
}
```

Hierarchy Level

- [edit dynamic-profiles]
 - name interfaces name unit name tunnel encapsulation]
- [edit interfaces name unit name tunnel encapsulation]

Release Information

Statement introduced in Junos OS Release 18.3R1 for MX Series routers.

Description

Virtual Extensible LAN (VXLAN) is defined as an encapsulation format that encapsulates Ethernet frames in an outer UDP/IP transport. The `vxlan-gpe` encapsulation refers to the header `gpe` added to the encapsulation `vxlan` to extend the existing VXLAN protocol to provide support for multiprotocol encapsulation.

Options

- `destination-udp-port`—Value to write to the destination-udp-port field.
 - **Range:** 1 through 65,535

- `tunnel-endpoint`—Tunnel endpoint type.
 - **Values:**
 - `vxlan`—To configure VXLAN tunnel endpoint.
 - `vni`—Value to specify in the `vni` attribute.
 - **Range:** 0 through 16,777,214

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- `interface`

Related Documentation

- Flexible Tunnel Interfaces Overview on page 22
- Configuring Flexible Tunnel Interfaces on MX Series Routers on page 24
- `show interfaces fti` on page 223
• vni (Interfaces) on page 166
• Example: Configuring Flexible Tunnel Interfaces on MX Series Routers on page 28
CHAPTER 14

Operational Commands

- clear ike security-associations
- clear ipsec security-associations
- request ipsec switch
- request security certificate enroll (Signed)
- request security certificate enroll (Unsigned)
- request security key-pair
- request system certificate add
- show ike security-associations
- show interfaces (Encryption)
- show interfaces (GRE)
- show interfaces (IP-over-IP)
- show interfaces (Logical Tunnel)
- show interfaces (Multicast Tunnel)
- show interfaces (PIM)
- show interfaces (Virtual Loopback Tunnel)
- show interfaces fti
- show ipsec certificates
- show ipsec redundancy
- show ipsec security-associations
- show system certificate
clear ike security-associations

Syntax
clear ike security-associations
<destination-ip-address>

Release Information
Command introduced before Junos OS Release 7.4.

Description
(Encryption interface on M Series and T Series routers only) Clear information about the current Internet Key Exchange (IKE) security association. This command is valid for dynamic security associations only. For IKEv2, this command creates new security associations for IKE SA and IPSEC SAs.

Options
none—Clear all IKE security associations.

destination-ip-address—(Optional) Clear the IKE security association at the specified destination address.

Required Privilege Level
view

Related Documentation
- show ike security-associations on page 179

List of Sample Output
- clear ike security-associations on page 170

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output
clear ike security-associations

user@host> clear ike security-associations
clear ipsec security-associations

Syntax
clear ipsec security-associations
<sa-name>

Release Information
Command introduced before Junos OS Release 7.4.

Description
(Encryption interface on M Series and T Series routers only) Clear information about the current IP Security (IPsec) security association. This command is valid for dynamic security associations only. For IKEv1, this command creates new security associations for IKE SA and IPSEC SAs.

Options
none—Clear all IPsec security associations.

sa-name—(Optional) Clear the specified security association.

Required Privilege
view

Related Documentation
- show ipsec security-associations on page 238

List of Sample Output
clear ipsec security-associations on page 171

Output Fields
See the show ipsec security-associations for an explanation of output fields.

Sample Output
clear ipsec security-associations

The following output from the show ipsec security-associations detail command is displayed before and after the clear ipsec security-associations command is issued:

```
user@host> show ipsec security-associations detail
Security association: sa-dynamic, Interface family: Up
Direction: inbound, SPI: 242379418, State: Installed
Mode: tunnel, Type: dynamic
Protocol: ESP, Authentication: hmac-md5-96, Encryption: None
Soft lifetime: Expires in 22979 seconds
Hard lifetime: Expires in 28739 seconds

Direction: outbound, SPI: 368592771, State: Installed
Mode: tunnel, Type: dynamic
Protocol: ESP, Authentication: hmac-md5-96, Encryption: None
Soft lifetime: Expires in 22979 seconds
Hard lifetime: Expires in 28739 seconds

user@host> clear ipsec security-associations
```
user@host> **show ipsec security-associations detail**

Security association: sa-dynamic, Interface family: Up

Direction: inbound, SPI: 1031597683, State: Installed
Mode: tunnel, Type: dynamic
Protocol: ESP, Authentication: hmac-md5-96, Encryption: None
Soft lifetime: Expires in 23037 seconds
Hard lifetime: Expires in 28797 seconds

Direction: outbound, SPI: 1618419878, State: Installed
Mode: tunnel, Type: dynamic
Protocol: ESP, Authentication: hmac-md5-96, Encryption: None
Soft lifetime: Expires in 23037 seconds
Hard lifetime: Expires in 28797 seconds
request ipsec switch

Syntax
request ipsec switch (interface <es-fpc/pic/port> | security-associations <sa-name>)

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description
(Encryption interface on M Series, PTX Series, and T Series routers and EX Series switches only) Manually switch from the primary to the backup encryption services interface, or switch from the primary to the backup IP Security (IPsec) tunnel.

Options
interface <es-fpc/pic/port>—Switch to the backup encryption interface.
security-associations <sa-name>—Switch to the backup tunnel.

Required Privilege
view

Related Documentation
- show ipsec redundancy on page 235

List of Sample Output
request ipsec switch security-associations on page 173

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output
request ipsec switch security-associations

user@host> request ipsec switch security-associations sa-private
request security certificate enroll (Signed)

Syntax
```
request security certificate enroll filename filename subject subject
alternative-subject alternative-subject certification-authority certification-authority encoding (binary | pem) key-file key-file domain-name domain-name
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description
(Encryption interface on M Series and T Series routers and EX Series switches only)
Obtain a signed certificate from a certificate authority (CA). The signed certificate validates the CA and the owner of the certificate. The results are saved in a specified file to the `/var/etc/ikecert` directory.

NOTE: For FIPS mode, the digital security certificates must be compliant with the National Institute of Standards and Technology (NIST) SP 800-131A standard. The request security key-pair command is deprecated and not available with Junos in FIPS mode because it generates RSA and DSA keys with sizes of 512 and 1024 bits that are not compliant with the NIST SP 800-131A standard.

Options
- **filename filename**—File that stores the certificate.
- **subject subject**—Distinguished name (dn), which consists of a set of components—for example, an organization (o), an organization unit (ou), a country (c), and a locality (l).
- **alternative-subject alternative-subject**—Tunnel source address.
- **certification-authority certification-authority**—Name of the certificate authority profile in the configuration.
- **encoding (binary | pem)**—File format used for the certificate. The format can be a binary file or privacy-enhanced mail (PEM), an ASCII base64-encoded format. The default format is binary.
- **key-file key-file**—File containing a local private key.
- **domain-name domain-name**—Fully qualified domain name.

Required Privilege Level
maintenance

List of Sample Output
request security certificate enroll filename subject alternative-subject certification-authority key-file domain-name (Signed) on page 175
Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

request security certificate enroll filename subject alternative-subject certification-authority key-file domain-name (Signed)

```
user@host> request security certificate enroll filename host.crt subject c=uk,o=london alternative-subject 10.50.1.4 certification-authority verisign key-file host-1.prv domain-name host.example.com

CA name: example.com CA file: ca_verisign
local pub/private key pair: host.prv
subject: c=uk,o=london domain name: host.example.com
alternative subject: 10.50.1.4
Encoding: binary
Certificate enrollment has started. To view the status of your enrollment, check the key management process (kmd) log file at /var/log/kmd. <------------
```
request security certificate enroll (Unsigned)

Syntax

```plaintext
request security certificate enroll filename filename ca-file ca-file ca-name ca-name encoding (binary | perm) url url
```

Release Information

Description

(Encryption interface on M Series and T Series routers and EX Series switches only) Obtain a certificate from a certificate authority (CA). The results are saved in a specified file to the `/var/etc/ikecert` directory.

Options

- `filename` — File that stores the public key certificate.
- `ca-file` — Name of the certificate authority profile in the configuration.
- `ca-name` — Name of the certificate authority.
- `encoding (binary | pem)` — File format used for the certificate. The format can be a binary file or privacy-enhanced mail (PEM), an ASCII base64-encoded format. The default value is `binary`.
- `url` — Certificate authority URL.

Required Privilege Level

`maintenance`

List of Sample Output

`request security certificate enroll filename ca-file ca-name url (Unsigned)` on page 176

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

```
user@host> request security certificate enroll filename ca_verisign ca-file verisign ca-name example.com urxyzcompany URL

http://<verisign ca-name xycompany url>/cgi-bin/pkiclient.exe CA name: example.com
CA file: verisign Encoding: binary
Certificate enrollment has started. To view the status of your enrollment, check the key management process (kmd) log file at /var/log/kmd. <------
```
request security key-pair

Syntax

```
request security key-pair filename
<size key-size>
<type (rsa | dsa)>
```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description

(Encryption interface on M Series and T Series routers and EX Series switches only)
Generate a public and private key pair for a digital certificate.

NOTE: The request security-certificates command is deprecated and are not available with Junos in FIPS mode because security certificates are not compliant with the NIST SP 800-131A standard.

Options

- `filename`—Name of a file in which to store the key pair.
- `size key-size`—(Optional) Key size, in bits. The key size can be 512, 1024, or 2048. The default value is 1024.
- `type`—(Optional) Algorithm used to encrypt the key:
 - `rsa`—RSA algorithm. This is the default.
 - `dsa`—Digital signature algorithm with Secure Hash Algorithm (SHA).

Required Privilege Level

maintenance

List of Sample Output

request security key-pair on page 177

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

```
request security key-pair

user@host> request security key-pair security-key-file
```
request system certificate add

Syntax
request system certificate add (filename | terminal)

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 11.1 for the QFX Series.

Description
(Encryption interface on M Series and T Series routers, PTX Series, and QFX Series switches only) Add a certificate provided by the Juniper Networks certificate authority (CA).

Options
filename—Filename (URL, local, or remote).
terminal—Use login terminal.

Required Privilege Level
maintenance

List of Sample Output
request system certificate add terminal on page 178

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output
request system certificate add terminal

user@host> request system certificate add terminal
show ike security-associations

Syntax

```
show ike security-associations
<brief | detail>
<peer-address>
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

(Encryption interface on M Series and T Series routers only) Display information about Internet Key Exchange (IKE) security associations.

Options

- `none`—Display standard information about all IKE security associations.
- `brief | detail`—(Optional) Display the specified level of output.
- `peer-address`—(Optional) Display IKE security associations for the specified peer address.

Required Privilege

`view`

Related Documentation

- clear ike security-associations on page 170

List of Sample Output

- show ike security-associations on page 182
- show ike security-associations detail on page 182

Output Fields

Table 11 on page 179 lists the output fields for the `show ike security-associations` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKE peer</td>
<td>Remote end of the IKE negotiation.</td>
<td>detail</td>
</tr>
<tr>
<td>Role</td>
<td>Part played in the IKE session. The router triggering the IKE negotiation is the</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>initiator, and the router accepting the first IKE exchange packets is the responder.</td>
<td></td>
</tr>
<tr>
<td>Remote Address</td>
<td>Responder’s address.</td>
<td>none specified</td>
</tr>
<tr>
<td>State</td>
<td>State of the IKE security association:</td>
<td>none specified</td>
</tr>
<tr>
<td></td>
<td>• Matured—The IKE security association is established.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Not matured—The IKE security association is in the process of negotiation.</td>
<td></td>
</tr>
<tr>
<td>Initiator cookie</td>
<td>When the IKE negotiation is triggered, a random number is sent to the remote node.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Of the numerous security services available, protection against denial of service (DoS) is one of the most difficult to address. A "cookie" or anticlogging token (ACT) is aimed at protecting the computing resources from attack without spending excessive CPU resources to determine the cookie’s authenticity. An exchange prior to CPU-intensive public key operations can thwart some DoS attempts (such as simple flooding with invalid IP source addresses).

Table 11: show ike security-associations Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responder cookie</td>
<td>The remote node generates its own random number and sends it back to the</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>initiator as a verification that the packets were received.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Of the numerous security services available, protection against denial of service</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(DoS) is one of the most difficult to address. A “cookie” or anticlogging token</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(ACT) is aimed at protecting the computing resources from attack without</td>
<td></td>
</tr>
<tr>
<td></td>
<td>spending excessive CPU resources to determine the cookie’s authenticity. An</td>
<td></td>
</tr>
<tr>
<td></td>
<td>exchange prior to CPU-intensive public key operations can thwart some DoS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>attempts (such as simple flooding with invalid IP source addresses).</td>
<td></td>
</tr>
<tr>
<td>Exchange type</td>
<td>Specifies the number of messages in an IKE exchange, and the payload types</td>
<td>All Levels</td>
</tr>
<tr>
<td></td>
<td>that are contained in each message. Each exchange type provides a particular</td>
<td></td>
</tr>
<tr>
<td></td>
<td>set of security services, such as anonymity of the participants, perfect forward</td>
<td></td>
</tr>
<tr>
<td></td>
<td>secrecy of the keying material, and authentication of the participants. Junos OS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>supports two types of exchanges:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Main—The exchange is done with six messages. Main encrypts the payload,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>protecting the identity of the neighbor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aggressive—The exchange is done with three messages. Aggressive does</td>
<td></td>
</tr>
<tr>
<td></td>
<td>not encrypt the payload, leaving the identity of the neighbor unprotected.</td>
<td></td>
</tr>
<tr>
<td>Authentication method</td>
<td>Type of authentication determines which payloads are exchanged and when</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>they are exchanged. The Junos OS supports only pre-shared keys.</td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td>Prefix and port number of the local end.</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>Remote Prefix and port number of the remote end.</td>
<td>detail</td>
</tr>
<tr>
<td>Lifetime</td>
<td>Number of seconds remaining until the IKE security association expires.</td>
<td>detail</td>
</tr>
<tr>
<td>Algorithms</td>
<td>Header for the IKE algorithms output.</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Authentication—Type of authentication algorithm used: des5 or sha1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Encryption—Type of encryption algorithm used: des-cbc, 3des-cbc, or None.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pseudo random function—Function that generates highly unpredictable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>random numbers: hmac-md5 or hmac-sha1.</td>
<td></td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Number of bytes and packets received and transmitted on the IKE security</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>association.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input bytes, Output bytes—Number of bytes received and transmitted on</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the IKE security association.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets, Output packets—Number of packets received and transmitted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>on the IKE security association.</td>
<td></td>
</tr>
</tbody>
</table>
Table 11: show ike security-associations Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags</td>
<td>Notification to the key management process of the status of the IKE negotiation:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• caller notification sent—Caller program notified about the completion of the IKE negotiation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• waiting for done—Negotiation is done. The library is waiting for the remote end retransmission timers to expire.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• waiting for remove—Negotiation has failed. The library is waiting for the remote end retransmission timers to expire before removing this negotiation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• waiting for policy manager—Negotiation is waiting for a response from the policy manager.</td>
<td></td>
</tr>
<tr>
<td>IPsec security associates</td>
<td>Number of IPsec security associations created and deleted with this IKE security association.</td>
<td>detail</td>
</tr>
<tr>
<td>Phase 2 negotiations in progress</td>
<td>Number of phase 2 IKE negotiations in progress and status information:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Negotiation type—Type of phase 2 negotiation. The Junos OS currently supports quick mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Message ID—Unique identifier for a phase 2 negotiation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Local identity—Identity of the local phase 2 negotiation. The format is id-type-name (proto-name:port-number,[0..id-data-len] = iddata-presentation)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Remote identity—Identity of the remote phase 2 negotiation. The format is id-type-name (proto-name:port-number,[0..id-data-len] = iddata-presentation)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Flags—Notification to the key management process of the status of the IKE negotiation:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• caller notification sent—Caller program notified about the completion of the IKE negotiation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• waiting for done—Negotiation is done. The library is waiting for the remote end retransmission timers to expire.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• waiting for remove—Negotiation has failed. The library is waiting for the remote end retransmission timers to expire before removing this negotiation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• waiting for policy manager—Negotiation is waiting for a response from the policy manager.</td>
<td></td>
</tr>
</tbody>
</table>
Sample Output

```bash
show ike security-associations

user@host> show ike security-associations

Remote Address  State         Initiator cookie  Responder cookie  Exchange type
192.0.2.4         Matured       93870456fa000011  723a20713700003e  Main

show ike security-associations detail

user@host> show ike security-associations detail

IKE peer 192.0.2.4
  Role: Initiator, State: Matured
  Initiator cookie: cf22bd81a7000001, Responder cookie: fe83795c2800002e
  Exchange type: Main, Authentication method: Pre-shared-keys
  Local: 192.0.2.5:500, Remote: 192.0.2.4:500
  Lifetime: Expires in 187 seconds
  Algorithms:
    Authentication : md5
    Encryption      : 3des-cbc
    Pseudo random function: hmac-md5
  Traffic statistics:
    Input bytes : 1000
    Output bytes : 1280
    Input packets: 5
    Output packets: 9
  Flags: Caller notification sent
  IPsec security associations: 2 created, 0 deleted
  Phase 2 negotiations in progress: 1
  Negotiation type: Quick mode, Role: Initiator, Message ID: 3582889153
    Local: 192.0.2.5:500, Remote: 192.0.2.4:500
    Local identity: ipv4_subnet(tcp:80,[0..7]=10.1.1.0/24)
    Remote identity: ipv4_subnet(tcp:100,[0..7]=10.1.2.0/24)
    Flags: Caller notification sent, Waiting for done
```
show interfaces (Encryption)

Syntax

```
show interfaces es-fpc/pic/port:channel
<brief | detail | extensive | terse>
<descriptions>
<media>
<snmp-index snmp-index>
<statistics>
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

(M Series and T Series routers only) Display status information about the specified encryption interface.

Options

```
es-fpc/pic/port:channel—Display standard status information about the specified encryption interface.

brief | detail | extensive | terse—(Optional) Display the specified level of output.

descriptions—(Optional) Display interface description strings.

media—(Optional) Display media-specific information about network interfaces.

snmp-index snmp-index—(Optional) Display information for the specified SNMP index of the interface.

statistics—(Optional) Display static interface statistics.
```

Required Privilege

view

List of Sample Output

- show interfaces (Encryption) on page 186
- show interfaces brief (Encryption) on page 186
- show interfaces detail (Encryption) on page 186
- show interfaces extensive (Encryption) on page 187

Output Fields

Table 12 on page 183 lists the output fields for the show interfaces (Encryption) command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface. Possible values are described in the "Enabled Field" section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Table 12: Encryption show interfaces Output Fields
Table 12: Encryption show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface index</td>
<td>Physical interface's index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Type</td>
<td>Encapsulation being used on the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation being used on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Speed</td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td>Device flags</td>
<td>Information about the physical device. Possible values are described in the “Link Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface flags</td>
<td>Information about the interface. Possible values are described in the “Interface Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Input rate</td>
<td>Input rate in bits per second (bps) and packets per second (pps).</td>
<td>None specified</td>
</tr>
<tr>
<td>Output rate</td>
<td>Output rate in bps and pps.</td>
<td>None specified</td>
</tr>
<tr>
<td>Hold-times</td>
<td>Current interface hold-time up and hold-time down, in milliseconds.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Statistics last cleared</td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the physical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Egress queues</td>
<td>Total number of egress queues supported on the specified interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Queue counters</td>
<td>CoS queue number and its associated user-configured forwarding class name.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>

- **Input bytes, Output bytes**—Number of bytes received and transmitted on the interface.
- **Input packets, Output packets**—Number of packets received and transmitted on the interface.
- **Anti-replay failures**—Total number of antireplay failures seen on all tunnels configured on the ESPIC.
- **Authentication**—Total number of authentication failures seen on all tunnels configured on the ESPIC.
- **Queued packets**—Number of queued packets.
- **Transmitted packets**—Number of transmitted packets.
- **Dropped packets**—Number of packets dropped by the ASIC's RED mechanism.
Table 12: Encryption show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical interface</td>
<td>Name of the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Index</td>
<td>Logical interface index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>SNMP ifindex</td>
<td>Logical interface SNMP interface index number.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the logical interface. Possible values are described in the “Logical Interface Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>IP-Header</td>
<td>IP header of the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Encapsulation on the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>protocol-family</td>
<td>Protocol family configured on the logical interface. If the protocol is inet, the IP address of the interface is also displayed.</td>
<td>brief</td>
</tr>
<tr>
<td>Input packets</td>
<td>Number of packets received on the logical interface.</td>
<td>None specified</td>
</tr>
<tr>
<td>Output packets</td>
<td>Number of packets transmitted on the logical interface.</td>
<td>None specified</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Total number of bytes and packets received and transmitted on the logical interface. These statistics are the sum of the local and transit statistics. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second) for this counter to stabilize.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Local statistics</td>
<td>Statistics for traffic received from and transmitted to the Routing Engine. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second) for this counter to stabilize.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Transit statistics</td>
<td>Statistics for traffic transiting the router. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second) for this counter to stabilize.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol family configured on the logical interface, such as iso, inet6, mpls.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Route table</td>
<td>Routing table in which the logical interface address is located. For example, 0 refers to the routing table inet.0.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the protocol family flags. Possible values are described in the “Family Flags” section under Common Output Fields Description.</td>
<td>detail extensive none</td>
</tr>
</tbody>
</table>
Table 12: Encryption show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addresses, Flags</td>
<td>Information about the address flags. Possible values are described in the "Addresses Flags" section under Common Output Fields Description.Address</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Destination</td>
<td>IP address of the remote side of the connection.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Local</td>
<td>IP address of the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Broadcast address of the logical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>

Sample Output

show interfaces (Encryption)

```
user@host> show interfaces es-0/3/0

Physical interface: es-0/3/0, Enabled, Physical link is Up
   Interface index: 138, SNMP ifIndex: 71
   Type: IPSEC, Link-level type: IPSEC-over-IP, MTU: 3900, Speed: 800mbps
   Device flags   : Present Running
   Interface flags: Point-To-Point SNMP-Traps
   Input rate     : 0 bps (0 pps)
   Output rate    : 0 bps (0 pps)

   Logical interface es-0/3/0.0 (Index 70) (SNMP ifIndex 45)
      Flags: Hardware-Down Point-To-Point SNMP-Traps
      IP-Header 10.0.10.2:10.0.10.1::df:64:00000000 Encapsulation: IPSEC
      Input packets : 0
      Output packets: 0
      Protocol inet, MTU: 3800
      Flags: None
      Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
      Destination: 10.10.0.2, Local: 10.10.0.1
```

show interfaces brief (Encryption)

```
user@host> show interfaces es-0/3/0 brief

Physical interface: es-0/3/0, Enabled, Physical link is Up
   Type: IPSEC, Link-level type: IPSEC-over-IP, MTU: 3900, Speed: 800mbps
   Device flags   : Present Running
   Interface flags: Point-To-Point SNMP-Traps

   Logical interface es-0/3/0.0
      Flags: Hardware-Down Point-To-Point SNMP-Traps
      IP-Header 10.0.10.2:10.0.10.1::df:64:00000000 Encapsulation: IPSEC
      inet 10.10.0.1 --> 10.10.0.2s
```

show interfaces detail (Encryption)

```
user@host> show interfaces es-0/3/0 detail
```
show interfaces extensive (Encryption)

user@host> show interfaces es-0/3/0 extensive

Physical interface: es-0/3/0, Enabled, Physical link is Up
Interface index: 138, SNMP ifIndex: 71, Generation: 21
Type: IPSEC, Link-level type: IPSEC-over-IP, MTU: 3900, Speed: 800mbps
Hold-times : Up 0 ms, Down 0 ms
Device flags : Present Running
Interface flags: Point-To-Point SNMP-Traps
Statistics last cleared: Never
Traffic statistics:
Input bytes : 0 0 bps
Output bytes : 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps
Anti-replay failures : 0
Authentication failures : 0
Egress queues: 4 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
0 best-effort 0 0 0
1 expedited-fo 0 0 0
2 assured-forw 0 0 0
3 network-cont 0 0 0

Logical interface es-0/3/0.0 (Index 70) (SNMP ifIndex 45) (Generation 9)
Flags: Hardware-Down Point-To-Point SNMP-Traps
IP-Header 10.0.10.2:10.0.10.1::df:64:00000000 Encapsulation: IPSEC
Traffic statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0
Local statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0
Transit statistics:
Input bytes : 0 0 bps
Output bytes : 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps
Protocol inet, MTU: 3800, Generation: 22, Route table: 0
Flags: None
Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
Destination: 10.10.0.2, Local: 10.10.0.1, Broadcast: Unspecified,
Generation: 26
Statistics last cleared: Never

Traffic statistics:

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bps</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pps</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pps</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Anti-replay failures : 0
Authentication failures : 0
Egress queues: 4 supported, 4 in use

<table>
<thead>
<tr>
<th>Queue counters</th>
<th>Queued packets</th>
<th>Transmitted packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 expedited-f0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 assured-f0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 network-cont</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Logical interface es-0/3/0.0 (Index 70) (SNMP ifIndex 45) (Generation 9)
Flags: Hardware-Down Point-To-Point SNMP-Traps
IP-Header 10.0.10.2:10.0.10.1::df:64:00000000 Encapsulation: IPSEC

Traffic statistics:

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bps</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pps</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pps</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Local statistics:

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bps</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pps</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pps</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Transit statistics:

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bps</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pps</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pps</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Protocol inet, MTU: 3800, Generation: 22, Route table: 0
Flags: None
Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
Destination: 10.10.0.2, Local: 10.10.0.1, Broadcast: Unspecified, Generation: 26
show interfaces (GRE)

Syntax

```
show interfaces interface-type
<brief | detail | extensive | terse>
<descriptions>
<media>
<snmp-index snmp-index>
<statistics>
```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 12.1 for EX Series switches.
Command introduced in Junos OS Release 13.2 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.
Command introduced before Junos OS Release 17.3R1.

Description

Display status information about the specified generic routing encapsulation (GRE) interface.

Options

- `interface-type`—On M Series and T Series routers and EX Series switches, the interface type is `gr-fpc/pic/port`.
- `brief | detail | extensive | terse`—(Optional) Display the specified output level of interface information.
- `descriptions`—(Optional) Display interface description strings.
- `media`—(Optional) Display media-specific information about network interfaces.
- `snmp-index snmp-index`—(Optional) Display information for the specified SNMP index of the interface.

NOTE: You can configure generic routing encapsulation (GRE) interfaces (`gre-x/y/z`) only for GMPLS control channels. GRE interfaces are not supported or configurable for other applications. For more information about GMPLS, see the MPLS Applications Feature Guide.

Required Privilege

- Level: view

List of Sample Output

- show interfaces (GRE) on page 194
- show interfaces brief (GRE) on page 194
- show interfaces detail (GRE) on page 194
- show interfaces (Layer 2 Services Over GRE Interfaces) on page 195
- show interfaces extensive (Layer 2 Services Over GRE Interfaces) on page 195
show interfaces detail (GRE) on an EX4200 Virtual Chassis Member Switch on page 196
show interfaces extensive (GRE) on page 197
show interfaces gr-2/0/10 for GRE IPv6 tunnel on page 197

Output Fields: Table 13 on page 190 lists the output fields for the `show interfaces (GRE)` command. Output fields are listed in the approximate order in which they appear.

Table 13: GRE show interfaces Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Interface</td>
<td>Physical Interface Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface. Possible values are described in the “Enabled Field”</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>section under Common Output Fields Description.</td>
<td></td>
</tr>
<tr>
<td>Interface index</td>
<td>Physical interface's index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Type</td>
<td>Type of interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation used on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Speed</td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td>Hold-times</td>
<td>Current interface hold-time up and hold-time down, in milliseconds.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Device Flags</td>
<td>Information about the physical device. Possible values are described in the “Device Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface Flags</td>
<td>Information about the interface. Possible values are described in the “Interface Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Input rate</td>
<td>Input rate in bits per second (bps) and packets per second (pps).</td>
<td>None specified</td>
</tr>
<tr>
<td>Output rate</td>
<td>Output rate in bps and pps.</td>
<td>None specified</td>
</tr>
<tr>
<td>Statistics last cleared</td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>

Copyright © 2019, Juniper Networks, Inc.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic statistics</td>
<td>The number of and the rate at which input and output bytes and packets are received and transmitted on the physical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Input bytes—Number of bytes received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output bytes—Number of bytes transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets—Number of packets received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output packets—Number of packets transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td>Logical Interface</td>
<td>Name of the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Index</td>
<td>Logical interface index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>Logical interface SNMP interface index number.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the logical interface. Possible values listed in the “Logical Interface Flags” section under Common Output Fields Description. describe general information about the logical interface. GRE-specific information about the logical interface is indicated by the presence or absence of the following value in this field:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• Reassemble-Pkts—If the Flags field includes this string, the GRE tunnel is configured to reassemble tunnel packets that were fragmented after tunnel encapsulation.</td>
<td></td>
</tr>
<tr>
<td>IP-Header</td>
<td>IP header of the logical interface. If the tunnel key statement is configured, this information is included in the IP Header entry.</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>GRE-specific information about the logical interface is indicated by the presence or absence of the following value in this field:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• df—If the IP-Header field includes this string immediately following the 16 bits of identification information (that is, if df: displays after the twelfth byte), the GRE tunnel is configured to allow fragmentation of GRE packets after encapsulation.</td>
<td></td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Encapsulation on the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>L2 Routing Instance</td>
<td>Name of the Layer 2 routing instance associated with the GRE interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>L3 Routing Instance</td>
<td>Name of the Layer 3 routing instance associated with the GRE interface.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 13: GRE show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
</table>
| Copy-tos-to-outer-ip-header | Status of type of service (ToS) bits in the GRE packet header:
- **On**—ToS bits were copied from the payload packet header into the header of the IP packet sent through the GRE tunnel.
- **Off**—ToS bits were not copied from the payload packet header and are set to 0 in the GRE packet header.

NOTE: EX Series switches do not support copying ToS bits to the encapsulated packet, so the value of this field is always **Off** in switch output. | detail extensive |
| Gre keepalives configured | Indicates whether a GRE keepalive time and hold time are configured for the GRE tunnel.

NOTE: EX Series switches do not support configuration of GRE tunnel keepalive times and hold times, so the value of this field is always **Off** in switch output. | detail extensive |
Gre keepalives adjacency state	Status of the other end of the GRE tunnel: Up or Down. If keepalive messages are not received by either end of the GRE tunnel within the hold-time period, the GRE keepalive adjacency state is down even when the GRE tunnel is up.	detail extensive
Input packets	Number of packets received on the logical interface.	None specified
Output packets	Number of packets transmitted on the logical interface.	None specified
Traffic statistics	Total number of bytes and packets received and transmitted on the logical interface. These statistics are the sum of the local and transit statistics. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second) for this counter to stabilize.	
- **Input rate**—Rate of bits and packets received on the interface.
- **Output rate**—Rate of bits and packets transmitted on the interface. | detail extensive |
| Local statistics | Statistics for traffic received from and transmitted to the Routing Engine. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second) for this counter to stabilize. | detail extensive |
| Transit statistics | Statistics for traffic transiting the router. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second) for this counter to stabilize. | detail extensive |
| Protocol | Protocol family configured on the logical interface, such as **iso**, **inet6**, or **mpls**. | detail extensive |
| protocol-family | Protocol family configured on the logical interface. If the protocol is **inet**, the IP address of the interface is also displayed. | brief |
| MTU | MTU size on the logical interface. | detail extensive |
| Generation | Unique number for use by Juniper Networks technical support only. | detail extensive |
Table 13: GRE show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route table</td>
<td>Routing table in which the logical interface address is located. For example, 0</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>refers to the routing table inet.0.</td>
<td></td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the protocol family flags. Possible values are described in the</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>“Family Flags” section under Common Output Fields Description.</td>
<td>none</td>
</tr>
<tr>
<td>Addresses,</td>
<td>Information about the address flags. Possible values are described in the “</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Addresses Flags” section under Common Output Fields Description.</td>
<td>none</td>
</tr>
<tr>
<td>Destination</td>
<td>IP address of the remote side of the connection.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Local</td>
<td>IP address of the logical interface.</td>
<td>none</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Broadcast address of the logical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Sample Output

show interfaces (GRE)

user@host> show interfaces gr-1/2/0

Physical interface: gr-0/0/0, Enabled, Physical link is Up
Interface index: 132, SNMP ifIndex: 26
Type: GRE, Link-level type: GRE, MTU: Unlimited, Speed: 800mbps
Device flags : Present Running
Interface flags: Point-To-Point SNMP-Traps
Input rate : 0 bps (0 pps)
Output rate : 0 bps (0 pps)

Logical interface gr-0/0/0.0 (Index 68) (SNMP ifIndex 47)
Flags: Point-To-Point SNMP-Traps

IP-Header 192.0.2.2:192.0.2.1:47:df:64:0000000000000000 Encapsulation: GRE-NULL

Input packets : 0
Output packets: 0
Protocol inet, MTU: 1476
Flags: None
Addresses, Flags: Is-Primary
Local: 198.51.100.1

show interfaces brief (GRE)

user@host> show interfaces gr-1/2/0 brief

Physical interface: gr-1/2/0, Enabled, Physical link is Up
Type: GRE, Link-level type: GRE, MTU: Unlimited, Speed: 800mbps
Device flags : Present Running
Interface flags: Point-To-Point SNMP-Traps

Logical interface gr-1/2/0.0
Flags: Hardware-Down Point-To-Point SNMP-Traps 0x4000
IP-Header 10.10.0.2:10.10.0.1:47:df:64:0000000000000000 Encapsulation: GRE-NULL
inet 10.100.0.1/30
mpls

show interfaces detail (GRE)

user@host> show interfaces gr-1/2/0 detail

Physical interface: gr-0/0/0, Enabled, Physical link is Up
Interface index: 132, SNMP ifIndex: 26, Generation: 13
Type: GRE, Link-level type: GRE, MTU: Unlimited, Speed: 800mbps
Hold-times : Up 0 ms, Down 0 ms
Device flags : Present Running
Interface flags: Point-To-Point SNMP-Traps
Statistics last cleared: Never
Traffic statistics:
Input bytes : 0 0 bps
Output bytes : 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps

Logical interface gr-0/0/0.0 (Index 68) (SNMP ifIndex 47) (Generation 8)
show interfaces (Layer 2 Services Over GRE Interfaces)

user@host> show interfaces gr-2/2/10
show interfaces gr-2/2/10
Physical interface: gr-2/2/10, Enabled, Physical link is Up
Interface index: 214, SNMP ifIndex: 690
Type: GRE, Link-level type: GRE, MTU: Unlimited, Speed: 1000mbps
Device flags : Present Running
Interface flags: Point-To-Point SNMP-Traps
Input rate : 0 bps (0 pps)
Output rate : 0 bps (0 pps)

Logical interface gr-2/2/10.0 (Index 342) (SNMP ifIndex 10834)
 Flags: Up Point-To-Point SNMP-Traps 0x4000 Encapsulation: ENET2
 L2 Routing Instance: vs1, L3 Routing Instance: default
 Copy-tos-to-outer-ip-header: Off
 Gre keepalives configured: Off, Gre keepalives adjacency state: down
 Input packets : 2
 Output packets: 0
 Protocol bridge, MTU: 1476
 Flags: Sendbcast-pkt-to-re
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 6/8, Local: 6.0.0.1, Broadcast: 6.255.255.255

show interfaces extensive (Layer 2 Services Over GRE Interfaces)

user@host> show interfaces gr-2/2/10.0 extensive

 Flags: SNMP-Traps Encapsulation: ENET2
 L2 Routing Instance: vs1, L3 Routing Instance: default
 Traffic statistics:
show interfaces detail (GRE) on an EX4200 Virtual Chassis Member Switch

user@host> show interfaces gr-2/0/15 detail

Physical interface: gr-2/0/15, Enabled, Physical link is Up
Interface index: 195, SNMP ifIndex: 846, Generation: 198
Type: GRE, Link-level type: GRE, MTU: Unlimited, Speed: 1000mbps
Hold-times : Up 0 ms, Down 0 ms
Current address: 00:00:5e:00:53:d2, Hardware address: 00:00:5e:00:53:d2
Device flags : Present Running
Interface flags: Point-To-Point SNMP-Traps
Statistics last cleared: 2011-09-14 17:43:15 UTC (00:00:18 ago)
Traffic statistics:
 Input bytes : 5600636 0 bps
 Output bytes : 5600636 0 bps
 Input packets: 20007 0pps
 Output packets: 20007 0pps
IPv6 transit statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Logical interface gr-2/0/15.0 (Index 75) (SNMP ifIndex 847) (HW Token 4093)
 (Generation 140)
 Flags: Point-To-Point SNMP-Traps 0x0
 Encapsulation: GRE-NULL
 Copy-tos-to-outer-ip-header: Off
 Gre keepalives configured: Off, Gre keepalives adjacency state: down
Traffic statistics:
 Input bytes : 5600886
 Output bytes : 2881784
 Input packets: 20010
 Output packets: 10018
Local statistics:
 Input bytes : 398
 Output bytes : 264
 Input packets: 5
 Output packets: 3
Transit statistics:
 Input bytes : 5600488 0 bps
 Output bytes : 2881520 0 bps
show interfaces extensive (GRE)

The output for the `show interfaces extensive` command is identical to that for the `show interfaces detail` command. For sample output, see `show interfaces detail (GRE)` on page 194 and `show interfaces detail (GRE)` on an EX4200 Virtual Chassis Member Switch on page 196.

show interfaces gr-2/0/10 for GRE IPv6 tunnel

```
user@host> show interfaces gr-2/0/10
show interfaces gr-2/0/10
Physical interface: gr-2/0/10, Enabled, Physical link is Up
  Interface index: 140, SNMP ifIndex: 559
  Type: GRE, Link-level type: GRE, MTU: Unlimited, Speed: 1000mbps
  Device flags : Present Running
  Interface flags: Point-To-Point SNMP-Traps
  Input rate     : 4952 bps (3 pps)
  Output rate    : 200 bps (0 pps)

Logical interface gr-2/0/10.0 (Index 355) (SNMP ifIndex 857)
  Flags: Up Point-To-Point SNMP-Traps 0x4000 IP-Header
```
Encapsulation: GRE-NULL

Copy-to-outer-ip-header: Off, Copy-to-outer-ip-header-transit: Off
Gre keepalives configured: Off, Gre keepalives adjacency state: down
Input packets: 60
Output packets: 83
Protocol inet, MTU: 9082
Max nh cache: 0, New hold nh limit: 0, Curr nh cnt: 0, Curr new hold cnt: 0,
NH drop cnt: 0
Flags: Sendbcast-pkt-to-re
Addresses, Flags: Is-Preferred Is-Primary
Protocol iso, MTU: 9082
Protocol inet6, MTU: 9082
Max nh cache: 0, New hold nh limit: 0, Curr nh cnt: 0, Curr new hold cnt: 0,
NH drop cnt: 0
Addresses, Flags: Is-Preferred Is-Primary
Destination: 1400::14:0:13:0/120, Local: 1400::14:0:13:1
Addresses, Flags: Is-Preferred
Destination: fe80::/64, Local: fe80::2a0:a520:2875:4992
Protocol mpls, MTU: 9070, Maximum labels: 3
Flags: Is-Primary
show interfaces (IP-over-IP)

Syntax

```
show interfaces interface-type
<brief | detail | extensive | terse>
<descriptions>
<media>
<snmp-index snmp-index>
<statistics>
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

Display status information about the specified IP-over-IP interface.

Options

- **interface-type**—On M Series and T Series routers, the interface type is `ip-fpc/pic/port`.
- **brief | detail | extensive | terse**—(Optional) Display the specified level of output.
- **descriptions**—(Optional) Display interface description strings.
- **media**—(Optional) Display media-specific information about network interfaces.
- **snmp-index snmp-index**—(Optional) Display information for the specified SNMP index of the interface.
- **statistics**—(Optional) Display static interface statistics.

Required Privilege

Level

view

List of Sample Output

```
show interfaces (IP-over-IP) on page 201
show interfaces brief (IP-over-IP) on page 202
show interfaces detail (IP-over-IP) on page 202
show interfaces extensive (IP-over-IP) on page 203
```

Output Fields

Table 14 on page 199 lists the output fields for the `show interfaces (IP-over-IP)` command. Output fields are listed in the approximate order in which they appear.

Table 14: IP-over-IP show interfaces Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface index</td>
<td>Physical interface's index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
</tbody>
</table>
Table 14: IP-over-IP show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP ifindex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Type</td>
<td>Type of interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation used on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Speed</td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td>Hold-times</td>
<td>Current interface hold-time up and hold-time down, in milliseconds.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Device flags</td>
<td>Information about the physical device. Possible values are described in the "Device Flags" section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface flags</td>
<td>Information about the interface. Possible values are described in the "Interface Flags" section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Input rate</td>
<td>Input rate in bits per second (bps) and packets per second (pps).</td>
<td>None specified</td>
</tr>
<tr>
<td>Output rate</td>
<td>Output rate in bps and pps.</td>
<td>None specified</td>
</tr>
<tr>
<td>Statistics last cleared</td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the physical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>- Input bytes — Number of bytes received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Output bytes — Number of bytes transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Input packets — Number of packets received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Output packets — Number of packets transmitted on the interface.</td>
<td></td>
</tr>
</tbody>
</table>

Logical Interface

Logical interface	Name of the logical interface.	All levels
Index	Logical interface index number, which reflects its initialization sequence.	detail extensive none
SNMP ifIndex	Logical interface SNMP interface index number.	detail extensive none
Generation	Unique number for use by Juniper Networks technical support.	detail extensive
Flags	Information about the logical interface. Possible values are described in the "Logical Interface Flags" section under Common Output Fields Description.	All levels
IP Header	IP header of the logical interface.	All levels
Table 14: IP-over-IP show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encapsulation</td>
<td>Encapsulation on the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Input packets</td>
<td>Number of packets received on the logical interface.</td>
<td>None specified</td>
</tr>
<tr>
<td>Output packets</td>
<td>Number of packets transmitted on the logical interface.</td>
<td>None specified</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Total number of bytes and packets received and transmitted on the logical interface. These statistics are the sum of the local and transit statistics. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second) for this counter to stabilize.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input rate—Rate of bits and packets received on the interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Output rate—Rate of bits and packets transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td>Local statistics</td>
<td>Statistics for traffic received from and transmitted to the Routing Engine. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second) for this counter to stabilize.</td>
<td></td>
</tr>
<tr>
<td>Transit statistics</td>
<td>Statistics for traffic transiting the router. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second) for this counter to stabilize.</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol family configured on the logical interface, such as iso, inet6, or mpls.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Protocol-family</td>
<td>Protocol family configured on the logical interface. If the protocol is inet, the IP address of the interface is also displayed.</td>
<td>brief</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Route table</td>
<td>Routing table in which the logical interface address is located. For example, 0 refers to the routing table inet.0.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the protocol family flags. Possible values are described in the “Family Flags” section under Common Output Fields Description.</td>
<td>detail extensive none</td>
</tr>
</tbody>
</table>

Sample Output

show interfaces (IP-over-IP)

```bash
user@host> show interfaces ip-0/0/0
Physical interface: ip-0/0/0, Enabled, Physical link is Up
  Interface index: 133, SNMP ifIndex: 27
  Type: IPIP, Link-level type: IP-over-IP, MTU: Unlimited, Speed: 800mbps
  Device flags : Present Running
  Interface flags: SNMP-Traps
```
show interfaces brief (IP-over-IP)

user@host> show interfaces ip-0/0/0 brief

Physical interface: ip-0/0/0, Enabled, Physical link is Up
Type: IPIP, Link-level type: IP-over-IP, MTU: Unlimited, Speed: 800mbps
Device flags : Present Running
Interface flags: SNMP-Traps

Logical interface ip-0/0/0.0
Flags: Point-To-Point SNMP-Traps 16384
IP-Header 192.0.2.1:192.0.2.2:4:df:64:00000000 Encapsulation: IPv4-NULL
Input packets : 0
Output packets: 0
Protocol inet, MTU: 1480
Flags: None

show interfaces detail (IP-over-IP)

user@host> show interfaces ip-0/0/0 detail

Physical interface: ip-0/0/0, Enabled, Physical link is Up
Interface index: 133, SNMP ifIndex: 27, Generation: 14
Type: IPIP, Link-level type: IP-over-IP, MTU: Unlimited, Speed: 800mbps
Hold-times : Up 0 ms, Down 0 ms
Device flags : Present Running
Interface flags: SNMP-Traps
Statistics last cleared: Never
Traffic statistics:
Input bytes : 0 0 bps
Output bytes : 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps

Logical interface ip-0/0/0.0 (Index 69) (SNMP ifIndex 49) (Generation 9)
Flags: Point-To-Point SNMP-Traps 16384
IP-Header 192.0.2.1:192.0.2.2:4:df:64:00000000 Encapsulation: IPv4-NULL
Traffic statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0
Local statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0
Transit statistics:
Input bytes : 0 0 bps
Output bytes : 0 0 bps
Input packets: 0 0 pps
show interfaces extensive (IP-over-IP)

The output for the show interfaces extensive command is identical to that for the show interfaces detail command. For sample output, see show interfaces detail (IP-over-IP) on page 202.
show interfaces (Logical Tunnel)

Syntax

show interfaces interface-type
<brief | detail | extensive | terse>
<descriptions>
<media>
<snmp-index snmp-index>
<statistics>

Release Information
Command introduced before Junos OS Release 7.4.

Description
Display status information about the specified logical tunnel interface.

Options

interface-type—On M Series and T Series routers, the interface type is lt-fpc/pic/port.

brief | detail | extensive | terse—(Optional) Display the specified level of output.

descriptions—(Optional) Display interface description strings.

media—(Optional) Display media-specific information about network interfaces.

snmp-index snmp-index—(Optional) Display information for the specified SNMP index of the interface.

statistics—(Optional) Display static interface statistics.

Required Privilege
view

List of Sample Output
show interfaces extensive (Logical Tunnel) on page 208

Output Fields
Table 15 on page 204 lists the output fields for the show interfaces (logical tunnel) command. Output fields are listed in the approximate order in which they appear.

Table 15: Logical Tunnel show interfaces Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface. Possible values are described in the “Enabled Field” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface index</td>
<td>Physical interface index number, which reflects its initialization sequence.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 15: Logical Tunnel show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Type</td>
<td>Type of interface. Software-Pseudo indicates a standard software interface with no associated hardware device.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation used on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Clocking</td>
<td>Reference clock source: Internal or External when configured. Otherwise, Unspecified.</td>
<td>All levels</td>
</tr>
<tr>
<td>Speed</td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td>Device flags</td>
<td>Information about the physical device. Possible values are described in the “Device Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface flags</td>
<td>Information about the interface. Possible values are described in the “Interface Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link type</td>
<td>Type of link.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link flags</td>
<td>Information about the link. Possible values are described in the “Link Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Physical info</td>
<td>Information about the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Hold-times</td>
<td>Current interface hold-time up and hold-time down, in milliseconds.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Current address</td>
<td>Configured MAC address.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Hardware address</td>
<td>Hardware MAC address.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Alternate link address</td>
<td>Backup link address.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Last flapped</td>
<td>Date, time, and how long ago the interface went from down to up. The format is Last flapped: year-month-day hour:minute:second timezone (hour:minute:second ago). For example, Last flapped: 2002-04-26 10:52:40 PDT (04:33:20 ago).</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Statistics last cleared</td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 15: Logical Tunnel show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the physical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Input bytes, Output bytes—Number of bytes received and transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets, Output packets—Number of packets received and transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td>Input errors</td>
<td>Input errors on the interface. The following paragraphs explain the counters whose meaning might not be obvious:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Errors—Sum of the incoming frame aborts and FCS errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drops—Number of packets dropped by the input queue of the I/O Manager ASIC. If the interface is saturated, this number increments once for every packet that is dropped by the ASIC’s RED mechanism.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Framing errors—Number of packets received with an invalid frame checksum (FCS).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Runts—Number of frames received that are smaller than the runt threshold.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Giants—Number of frames received that are larger than the giant threshold.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Policed discards—Number of frames that the incoming packet match code discarded because they were not recognized or not of interest. Usually, this field reports protocols that the Junos OS does not handle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resource errors—Sum of transmit drops.</td>
<td></td>
</tr>
<tr>
<td>Output errors</td>
<td>Output errors on the interface. The following paragraphs explain the counters whose meaning might not be obvious:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Carrier transitions—Number of times the interface has gone from down to up. This number does not normally increment quickly, increasing only when the cable is unplugged, the far-end system is powered down and then up, or another problem occurs. If the number of carrier transitions increments quickly (perhaps once every 10 seconds), the cable, the far-end system, or the PIC is malfunctioning.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Errors—Sum of the outgoing frame aborts and FCS errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drops—Number of packets dropped by the output queue of the I/O Manager ASIC. If the interface is saturated, this number increments once for every packet that is dropped by the ASIC’s RED mechanism.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MTU errors—Number of packets larger than the MTU threshold.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resource errors—Sum of transmit drops.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logical Interface</th>
<th>All levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical interface</td>
<td>Name of the logical interface.</td>
</tr>
<tr>
<td>Index</td>
<td>Logical interface index number, which reflects its initialization sequence.</td>
</tr>
<tr>
<td>SNMP ifindex</td>
<td>SNMP interface index number.</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
</tr>
</tbody>
</table>

Tunnel and Encryption Services Interfaces Feature Guide for Routing Devices

Copyright © 2019, Juniper Networks, Inc.
Table 15: Logical Tunnel show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags</td>
<td>Information about the logical interface. Possible values are described in the “Logical Interface Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Encapsulation on the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Total number of bytes and packets received and transmitted on the logical interface. These statistics are the sum of the local and transit statistics. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second) for this counter to stabilize.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Input bytes—Rate of bytes received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output bytes—Rate of bytes transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets—Rate of packets received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output packets—Rate of packets transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td>Local statistics</td>
<td>Statistics for traffic received from and transmitted to the Routing Engine. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second) for this counter to stabilize.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Transit statistics</td>
<td>Statistics for traffic transiting the router. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second) for this counter to stabilize.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol family configured on the logical interface, such as iso, inet6, mpls.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Route table</td>
<td>Route table in which this address exists. For example, Route table:0 refers to inet.0.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the protocol family flags. Possible values are described in the “Family Flags” section under Common Output Fields Description.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Addresses, Flags</td>
<td>Information about the address flags. Possible values are described in the “Addresses Flags” section under Common Output Fields Description.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Destination</td>
<td>IP address of the remote side of the connection.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Local</td>
<td>IP address of the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Broadcast address of the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Sample Output

show interfaces extensive (Logical Tunnel)

user@host> show interfaces lt-1/0/0 extensive

Physical interface: lt-1/0/0, Enabled, Physical link is Up
 Interface index: 143, SNMP ifIndex: 70, Generation: 26
 Type: Logical-tunnel, Link-level type: Logical-tunnel, MTU: 0,
 Clocking: Unspecified, Speed: 800mbps
 Device flags : Present Running
 Interface flags: Point-To-Point SNMP-Traps
 Link type : Unspecified
 Link flags : None
 Physical info : 13
 Hold-times : Up 0 ms, Down 0 ms
 Current address: 00:00:5e:00:53:7e, Hardware address: Unspecified
 Alternate link address: Unspecified
 Last flapped : 2004-03-03 15:53:52 PST (22:08:46 ago)
 Statistics last cleared: Never

Traffic statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps

Input errors:
 Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0,
 Policed discards: 0

Output errors:
 Carrier transitions: 1, Errors: 0, Drops: 0, MTU errors: 0

Logical interface lt-1/0/0.0 (Index 66) (SNMP ifIndex 467) (Generation 3024)
 Flags: Point-To-Point SNMP-Traps 16384 DLCI 100 Encapsulation: FR-NLPID

Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Local statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Transit statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps

Protocol inet, MTU: 4470, Generation: 7034, Route table: 0
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.1.1.24, Local: 10.1.1.1, Broadcast: Unspecified,
 Generation: 2054
show interfaces (Multicast Tunnel)

Syntax
show interfaces interface-type
 brief | detail | extensive | terse
 <descriptions>
 <media>
 <snmp-index snmp-index>
 <statistics>

Release Information
Command introduced before Junos OS Release 7.4.

Description
Display status information about the specified multicast tunnel interface and its logical encapsulation and de-encapsulation interfaces.

Options
- **interface-type**—On M Series and T Series routers, the interface type is `mt-fpc/pic/port`.
- **brief | detail | extensive | terse**—(Optional) Display the specified level of output.
- **descriptions**—(Optional) Display interface description strings.
- **media**—(Optional) Display media-specific information about network interfaces.
- **snmp-index snmp-index**—(Optional) Display information for the specified SNMP index of the interface.
- **statistics**—(Optional) Display static interface statistics.

Additional Information
The multicast tunnel interface has two logical interfaces: encapsulation and de-encapsulation. These interfaces are automatically created by the Junos OS for every multicast-enabled VPN routing and forwarding (VRF) instance. The encapsulation interface carries multicast traffic traveling from the edge interface to the core interface. The de-encapsulation interface carries traffic coming from the core interface to the edge interface.

Required Privilege
- **Level**
 - view
List of Sample Output
show interfaces (Multicast Tunnel) on page 211
show interfaces brief (Multicast Tunnel) on page 211
show interfaces detail (Multicast Tunnel) on page 211
show interfaces extensive (Multicast Tunnel) on page 211
show interfaces (Multicast Tunnel Encapsulation) on page 213
show interfaces (Multicast Tunnel De-Encapsulation) on page 213

Output Fields
Table 16 on page 210 lists the output fields for the show interfaces (Multicast Tunnel) command. Output fields are listed in the approximate order in which they appear.

Table 16: Multicast Tunnel show interfaces Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface. Possible values are described in the “Enabled Field” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface index</td>
<td>Physical interface’s index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Type</td>
<td>Type of interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation used on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Speed</td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td>Hold-times</td>
<td>Current interface hold-time up and hold-time down, in milliseconds.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Device flags</td>
<td>Information about the physical device. Possible values are described in the “Device Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface flags</td>
<td>Information about the interface. Possible values are described in the “Interface Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Input Rate</td>
<td>Input rate in bits per second (bps) and packets per second (pps).</td>
<td>None specified</td>
</tr>
<tr>
<td>Output Rate</td>
<td>Output rate in bps and pps.</td>
<td>None specified</td>
</tr>
<tr>
<td>Statistics last cleared</td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 16: Multicast Tunnel show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Input bytes</td>
<td>Number of bytes received on the interface.</td>
<td></td>
</tr>
<tr>
<td>Output bytes</td>
<td>Number of bytes transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td>Input packets</td>
<td>Number of packets received on the interface.</td>
<td></td>
</tr>
<tr>
<td>Output packets</td>
<td>Number of packets transmitted on the interface.</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

show interfaces (Multicast Tunnel)

```
user@host> show interfaces mt-1/2/0
Physical interface: mt-1/2/0, Enabled, Physical link is Up
Interface index: 145, SNMP ifIndex: 41
Type: Multicast-GRE, Link-level type: GRE, MTU: Unlimited, Speed: 800mbps
Device flags : Present Running
Interface flags: SNMP-Traps
Input rate     : 0 bps (0 pps)
Output rate    : 0 bps (0 pps)
```

show interfaces brief (Multicast Tunnel)

```
user@host> show interfaces mt-1/2/0 brief
Physical interface: mt-1/2/0, Enabled, Physical link is Up
Type: Multicast-GRE, Link-level type: GRE, MTU: Unlimited, Speed: 800mbps
Device flags : Present Running
Interface flags: SNMP-Traps
```

show interfaces detail (Multicast Tunnel)

```
user@host> show interfaces mt-1/2/0 detail
Physical interface: mt-1/2/0, Enabled, Physical link is Up
Interface index: 145, SNMP ifIndex: 41, Generation: 28
Type: Multicast-GRE, Link-level type: GRE, MTU: Unlimited, Speed: 800mbps
Hold-times : Up 0 ms, Down 0 ms
Device flags : Present Running
Interface flags: SNMP-Traps
Statistics last cleared: Never
Traffic statistics:
  Input bytes : 170664562  560000 bps
  Output bytes: 112345376  368176 bps
  Input packets: 2439107   1000 pps
  Output packets: 2439120  1000 pps
```

show interfaces extensive (Multicast Tunnel)

```
user@host> show interfaces mt-1/2/0 extensive
```
Physical interface: mt-1/2/0, Enabled, Physical link is Up
 Interface index: 141, SNMP ifIndex: 529, Generation: 144
 Type: Multicast-GRE, Link-level type: GRE, MTU: Unlimited, Speed: 800mbps
 Hold-times : Up 0 ms, Down 0 ms
 Device flags : Present Running
 Interface flags: SNMP-Traps
 Statistics last cleared: Never
 Traffic statistics:
 Input bytes : 170664562 560000 bps
 Output bytes : 112345376 368176 bps
 Input packets: 2439107 1000 pps
 Output packets: 2439120 1000 pps
 IPv6 transit statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Logical interface mt-1/2/0.32768 (Index 83) (SNMP ifIndex 556) (Generation 148)
 Flags: Point-To-Point SNMP-Traps 0x4000 IP-Header
 192.0.2.1:10.0.0.6:47:df:64:0000000800000000 Encapsulation: GRE-NULL
 Traffic statistics:
 Input bytes : 170418430
 Output bytes : 112070294
 Input packets: 2434549
 Output packets: 2435593
 IPv6 transit statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Local statistics:
 Input bytes : 0
 Output bytes : 80442
 Input packets: 0
 Output packets: 1031

Transit statistics:
 Input bytes : 170418430 560000 bps
 Output bytes : 111989852 368176 bps
 Input packets: 2434549 1000 pps
 Output packets: 2434562 1000 pps
 IPv6 transit statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Protocol inet, MTU: 1572, Generation: 182, Route table: 4
 Flags: None

Protocol inet6, MTU: 1572, Generation: 183, Route table: 4
 Flags: None

Logical interface mt-1/2/0.1081344 (Index 84) (SNMP ifIndex 560) (Generation 149)
 Flags: Point-To-Point SNMP-Traps 0x6000 Encapsulation: GRE-NULL
 Traffic statistics:
 Input bytes : 246132
 Output bytes : 355524
 Input packets: 4558
 Output packets: 4558
 IPv6 transit statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

 Local statistics:
 Input bytes : 246132
 Output bytes : 0
 Input packets: 4558
 Output packets: 0

 Transit statistics:
 Input bytes : 0 0 bps
 Output bytes : 355524 0 bps
 Input packets: 0 0 pps
 Output packets: 4558 0 pps

 IPv6 transit statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

 Protocol inet, MTU: Unlimited, Generation: 184, Route table: 4
 Flags: None
 Protocol inet6, MTU: Unlimited, Generation: 185, Route table: 4
 Flags: None

 show interfaces (Multicast Tunnel Encapsulation)

 user@host> show interfaces mt-3/1/0.32768
 Logical interface mt-3/1/0.32768 (Index 67) (SNMP ifIndex 0)
 Flags: Point-To-Point SNMP-Traps 0x4000
 IP-Header 198.51.100.1:10.255.70.15:47:df:64:0000000800000000
 Encapsulation: GRE-NULL
 Input packets : 0
 Output packets: 2
 Protocol inet, MTU: Unlimited
 Flags: None

 show interfaces (Multicast Tunnel De-Encapsulation)

 user@host> show interfaces mt-3/1/0.49152
 Logical interface mt-3/1/0.49152 (Index 74) (SNMP ifIndex 0)
 Flags: Point-To-Point SNMP-Traps 0x6000 Encapsulation: GRE-NULL
 Input packets : 0
 Output packets: 2
 Protocol inet, MTU: Unlimited
 Flags: None
show interfaces (PIM)

Syntax

show interfaces interface-type
 <brief | detail | extensive | terse>
 <descriptions>
 <media>
 <snmp-index snmp-index>
 <statistics>

Release Information

Command introduced before Junos OS Release 7.4.

Description

Display status information about the specified Protocol Independent Multicast (PIM) de-encapsulation or PIM encapsulation interface, respectively.

Options

interface-type—On M Series and T Series routers, the PIM de-encapsulation interface type is `pd-fpc/pic/port` and the PIM encapsulation interface type is `pe-fpc/pic/port`.

brief | detail | extensive | terse—(Optional) Display the specified level of output.

descriptions—(Optional) Display interface description strings.

media—(Optional) Display media-specific information about network interfaces.

snmp-index snmp-index—(Optional) Display information for the specified SNMP index of the interface.

statistics—(Optional) Display static interface statistics.

Required Privilege

view

List of Sample Output

show interfaces (PIM De-Encapsulation) on page 215
show interfaces brief (PIM De-Encapsulation) on page 215
show interfaces detail (PIM De-Encapsulation) on page 216
show interfaces extensive (PIM De-Encapsulation) on page 216
show interfaces (PIM Encapsulation) on page 216
show interfaces brief (PIM Encapsulation) on page 217
show interfaces detail (PIM Encapsulation) on page 217
show interfaces extensive (PIM Encapsulation) on page 217

Output Fields

Table 17 on page 214 lists the output fields for the show interfaces (PIM de-encapsulation or encapsulation) command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Interface</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 17: PIM show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface. Possible values are described in the “Enabled Field” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface index</td>
<td>Physical interface's index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Type</td>
<td>Type of interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation used on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Speed</td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td>Hold-times</td>
<td>Current interface hold-time up and hold-time down, in milliseconds.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Device flags</td>
<td>Information about the physical device. Possible values are described in the “Device Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface flags</td>
<td>Information about the interface. Possible values are described in the “Interface Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Input Rate</td>
<td>Input rate in bits per second (bps) and packets per second (pps).</td>
<td>None specified</td>
</tr>
<tr>
<td>Output Rate</td>
<td>Output rate in bps and pps.</td>
<td>None specified</td>
</tr>
<tr>
<td>Statistics last cleared</td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the physical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>- Input bytes—Number of bytes received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Output bytes—Number of bytes transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Input packets—Number of packets received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Output packets—Number of packets transmitted on the interface.</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

show interfaces (PIM De-Encapsulation)

```
user@host> show interfaces pd-0/0/0
```
show interfaces brief (PIM De-Encapsulation)

user@host> show interfaces pd-0/0/0 brief

show interfaces detail (PIM De-Encapsulation)

user@host> show interfaces pd-0/0/0 detail

show interfaces extensive (PIM Encapsulation)

user@host> show interfaces pd-0/0/0 extensive

show interfaces (PIM Encapsulation)

user@host> show interfaces pe-0/0/0
show interfaces brief (PIM Encapsulation)

user@host> show interfaces pe-0/0/0 brief

Physical interface: pe-0/0/0, Enabled, Physical link is Up
Type: PIME, Link-level type: PIM-Encapsulator, MTU: Unlimited, Speed: 800mbps
Device flags : Present Running
Interface flags: SNMP-Traps

show interfaces detail (PIM Encapsulation)

user@host> show interfaces pe-0/0/0 detail

Physical interface: pe-0/0/0, Enabled, Physical link is Up
Interface index: 131, SNMP ifIndex: 26, Generation: 12
Type: PIME, Link-level type: PIM-Encapsulator, MTU: Unlimited, Speed: 800mbps
Hold-times : Up 0 ms, Down 0 ms
Device flags : Present Running
Interface flags: SNMP-Traps
Statistics last cleared: Never
Traffic statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps

show interfaces extensive (PIM Encapsulation)

user@host> show interfaces pe-0/0/0 extensive

Physical interface: pe-0/0/0, Enabled, Physical link is Up
Interface index: 131, SNMP ifIndex: 26, Generation: 12
Type: PIME, Link-level type: PIM-Encapsulator, MTU: Unlimited, Speed: 800mbps
Hold-times : Up 0 ms, Down 0 ms
Device flags : Present Running
Interface flags: SNMP-Traps
Statistics last cleared: Never
Traffic statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
show interfaces (Virtual Loopback Tunnel)

Syntax

show interfaces vt-fpc/pic/port
 <brief | detail | extensive | terse>
 <descriptions>
 <media>
 <snmp-index snmp-index>
 <statistics>

Release Information
Command introduced before Junos OS Release 7.4.

Description
Display status information about the specified virtual loopback tunnel interface.

Options
vt-fpc/pic/port—Display standard information about the specified virtual loopback tunnel interface.

brief | detail | extensive | terse—(Optional) Display the specified level of output.

descriptions—(Optional) Display interface description strings.

media—(Optional) Display media-specific information about network interfaces.

snmp-index snmp-index—(Optional) Display information for the specified SNMP index of the interface.

statistics—(Optional) Display static interface statistics.

Required Privilege
Level
view

List of Sample Output
show interfaces (Virtual Loopback Tunnel) on page 220
show interfaces brief (Virtual Loopback Tunnel) on page 221
show interfaces detail (Virtual Loopback Tunnel) on page 221
show interfaces extensive (Virtual Loopback Tunnel) on page 222

Output Fields
Table 18 on page 218 lists the output fields for the show interfaces (virtual loopback tunnel) command. Output fields are listed in the approximate order in which they appear.

Table 18: Virtual Loopback Tunnel show interfaces Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface. Possible values are described in the “Enabled Field” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface index</td>
<td>Physical interface's index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Type</td>
<td>Type of interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation used on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Speed</td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td>Hold-times</td>
<td>Current interface hold-time up and hold-time down, in milliseconds.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Device flags</td>
<td>Information about the physical device. Possible values are described in the “Device Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Input Rate</td>
<td>Input rate in bits per second (bps) and packets per second (pps).</td>
<td>None specified</td>
</tr>
<tr>
<td>Output Rate</td>
<td>Output rate in bps and pps.</td>
<td>None specified</td>
</tr>
<tr>
<td>Statistics last cleared</td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the physical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Logical Interface</td>
<td></td>
<td>All levels</td>
</tr>
<tr>
<td>Logical interface</td>
<td>Name of the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Index</td>
<td>Logical interface index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>Logical interface SNMP interface index number.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the logical interface. Possible values are described in the “Interface Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Encapsulation on the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Input packets</td>
<td>Number of packets received on the logical interface.</td>
<td>None specified</td>
</tr>
</tbody>
</table>
Table 18: Virtual Loopback Tunnel show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output packets</td>
<td>Number of packets transmitted on the logical interface.</td>
<td>None specified</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Bandwidth allotted to the logical interface, in kilobytes per second.</td>
<td>All levels</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Total number of bytes and packets received and transmitted on the logical interface. These statistics are the sum of the local and transit statistics. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second) for this counter to stabilize.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>• Input bytes</td>
<td>Number of bytes received on the interface.</td>
<td></td>
</tr>
<tr>
<td>• Output bytes</td>
<td>Number of bytes transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td>• Input packets</td>
<td>Number of packets received on the interface.</td>
<td></td>
</tr>
<tr>
<td>• Output packets</td>
<td>Number of packets transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td>Transit statistics</td>
<td>Statistics for traffic transiting the router. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second) for this counter to stabilize.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>protocol-family</td>
<td>Protocol family configured on the logical interface. Possible values are described in the “Family Flags” section under Common Output Fields Description.</td>
<td>brief</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol family configured on the logical interface. Possible values are described in the “Family Flags” section under Common Output Fields Description.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit size on the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Maximum labels</td>
<td>Maximum number of MPLS labels configured for the MPLS protocol family on the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Route Table</td>
<td>Routing table in which the logical interface address is located. For example, 0 refers to the routing table inet.0.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about protocol family flags. Possible values are described in the “Family Flags” section under Common Output Fields Description.</td>
<td>detail extensive none</td>
</tr>
</tbody>
</table>

Sample Output

show interfaces (Virtual Loopback Tunnel)

```
user@host> show interfaces vt-1/2/0

Physical interface: vt-1/2/0, Enabled, Physical link is Up
Interface index: 144, SNMP ifIndex: 40
  Type: Loopback, Link-level type: Virtual-loopback-tunnel, MTU: Unlimited,
  Speed: 800mbps
  Device flags   : Present Running
  Input rate     : 0 bps (0 pps)
```
show interfaces brief (Virtual Loopback Tunnel)

```
user@host> show interfaces vt-1/2/0 brief
Physical interface: vt-1/2/0, Enabled, Physical link is Up
  Type: Loopback, Link-level type: Virtual-loopback-tunnel, MTU: Unlimited, Speed: 800mbps
  Device flags : Present Running

Logical interface vt-1/2/0.0
  Flags: Point-To-Point 16384 Encapsulation: Virtual-loopback-tunnel
  inet
  mpls
```

show interfaces detail (Virtual Loopback Tunnel)

```
user@host> show interfaces vt-1/2/0 detail
Physical interface: vt-1/2/0, Enabled, Physical link is Up
  Interface index: 144, SNMP ifIndex: 40, Generation: 27
  Type: Loopback, Link-level type: Virtual-loopback-tunnel, MTU: Unlimited, Speed: 800mbps
  Hold-times : Up 0 ms, Down 0 ms
  Device flags : Present Running
  Statistics last cleared: Never
  Traffic statistics:
  Input bytes : 0 0 bps
  Output bytes : 0 0 bps
  Input packets: 0 0 pps
  Output packets: 0 0 pps

Logical interface vt-1/2/0.0 (Index 76) (SNMP ifIndex 57) (Generation 17)
  Flags: Point-To-Point 16384 Encapsulation: Virtual-loopback-tunnel
  Traffic statistics:
  Input bytes : 0
  Output bytes : 0
  Input packets: 0
  Output packets: 0
  Transit statistics:
  Input bytes : 0 0 bps
  Output bytes : 0 0 bps
  Input packets: 0 0 pps
  Output packets: 0 0 pps
  Protocol inet, MTU: Unlimited, Generation: 33, Route table: 0
  Flags: None
  Protocol mpls, MTU: Unlimited, Maximum labels: 3, Generation: 34, Route table: 0
  Flags: None
```
show interfaces extensive (Virtual Loopback Tunnel)

user@host> show interfaces vt-1/2/0 extensive

Physical interface: vt-1/2/0, Enabled, Physical link is Up
 Interface index: 144, SNMP ifIndex: 40, Generation: 27
 Type: Loopback, Link-level type: Virtual-loopback-tunnel, MTU: Unlimited,
 Speed: 800mbps
 Hold-times : Up 0 ms, Down 0 ms
 Device flags : Present Running
 Statistics last cleared: Never
 Traffic statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps

Logical interface vt-1/2/0.0 (Index 76) (SNMP ifIndex 57) (Generation 17)
 Flags: Point-To-Point 16384 Encapsulation: Virtual-loopback-tunnel
 Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Transit statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
 Protocol inet, MTU: Unlimited, Generation: 33, Route table: 0
 Flags: None
 Protocol mpls, MTU: Unlimited, Maximum labels: 3, Generation: 34, Route table: 0
 Flags: None
show interfaces fti

Syntax

```
show interfaces fti number
<detail | extensive | terse | statistics >
```

Release Information

Command introduced in Junos OS Release 18.3R1 for MX series Routers.

Description

(MX Series routers only) Display status information about the specified FTIs.

Options

- `fti number` — Display standard information about the specified FTIs.
- `brief | detail | extensive | terse` — (Optional) Display the specified level of output.
- `descriptions` — (Optional) Display interface description strings.
- `statistics` — (Optional) Display FTI statistics.

Required Privilege Level

view

Related Documentation

- Flexible Tunnel Interfaces Overview on page 22
- Configuring Flexible Tunnel Interfaces on MX Series Routers on page 24
- Example: Configuring Flexible Tunnel Interfaces on MX Series Routers on page 28
- vni (Interfaces) on page 166

List of Sample Output

- `show interfaces (Flexible Tunnel Interfaces)` on page 227
- `show interfaces detail (Flexible Tunnel Interfaces)` on page 228
- `show interfaces extensive (Flexible Tunnel Interfaces)` on page 229
- `show interfaces terse (Flexible Tunnel Interfaces)` on page 230
- `show interfaces statistics (Flexible Tunnel Interfaces)` on page 231

Output Fields

Table 19 on page 223 lists the output fields for the `show interfaces (Flexible Tunnel Interfaces)` command. Output fields are listed in the approximate order in which they appear.

Table 19: FTI show interfaces Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Interface</td>
<td>Name of the physical interface and state of the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface and state of the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the physical interface. Possible values are described in the “Enabled Field” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>Interface index</td>
<td>Index number of the physical interface, which reflects its initialization sequence.</td>
<td>All levels</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation being used on the physical interface. Possible values: Flexible-tunnel-Interfaces</td>
<td>All levels</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Clocking</td>
<td>Reference clock source of the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Speed</td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td>Device flags</td>
<td>Information about the physical device. Possible values are described in the “Device Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface flags</td>
<td>Information about the interface. Possible values are described in the “Interfaces Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link-type</td>
<td>Data transmission type.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link-flags</td>
<td>Information about the link. Possible values are described in the “Link Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Last flapped</td>
<td>Date, time, and how long ago the interface went from down to up or from up to down. The format is Last flapped: year-month-day hours:minutes:seconds timezone (hours:minutes:seconds ago). For example, Last flapped: 2002-04-26 10:52:40 PDT (04:33:20 ago).</td>
<td>All levels</td>
</tr>
<tr>
<td>Input packets</td>
<td>Number of packets received on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Output packets</td>
<td>Number of packets transmitted on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Physical-info</td>
<td>Information about the physical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Hold-times</td>
<td>Current interface hold-time up and hold-time down. Value is in milliseconds.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 19: FTI show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damping</td>
<td>Provides a smoothing of the up and down transitions (flapping) on an interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• halflife— Decay half-life. The number of seconds after which the accumulated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>interface penalty counter is reduced by half if the interface remains stable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• max-suppress— Maximum hold-down time. The maximum number of seconds that an</td>
<td></td>
</tr>
<tr>
<td></td>
<td>interface can be suppressed irrespective of how unstable the interface has been.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• reuse— Reuse threshold. When the accumulated interface penalty counter falls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>below this number, the interface is no longer suppressed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• suppress— Cutoff (suppression) threshold. When the accumulated interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>penalty counter exceeds this number, the interface is suppressed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• state— Interface damping state. If damping is enabled on an interface, it</td>
<td></td>
</tr>
<tr>
<td></td>
<td>is suppressed during interface flaps that match the configured damping parameters.</td>
<td></td>
</tr>
<tr>
<td>Current address</td>
<td>Configured MAC address.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Hardware address</td>
<td>Hardware MAC address.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Alternate-link-address</td>
<td>Backup link address.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Statistics last cleared</td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive, statistics</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the physical</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input bytes— Number of bytes and rate, in bps, at which bytes are received</td>
<td></td>
</tr>
<tr>
<td></td>
<td>on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output bytes— Number of bytes and rate, in bps, at which bytes are</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets— Number of packets and rate, in pps, at which packets are</td>
<td></td>
</tr>
<tr>
<td></td>
<td>received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output packets— Number of packets and rate, in pps, at which packets are</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td>Input errors</td>
<td>Input errors on the interface:</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Errors— Sum of incoming frame aborts and frame checksum (FCS) errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drops— Number of packets dropped by the input queue of the I/O Manager</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASIC. If the interface is saturated, this number increments once for every packet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>that is dropped by the ASIC’s random early detection (RED) mechanism.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Framing errors— Number of packets received with an invalid FCS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Runts— Number of frames received that are smaller than the runt threshold.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Giants— Number of frames received that are larger than the giant threshold.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Policed discards— Number of frames that the incoming packet match code</td>
<td></td>
</tr>
<tr>
<td></td>
<td>discarded because they were not recognized or were not of interest. Usually, this</td>
<td></td>
</tr>
<tr>
<td></td>
<td>field reports protocols that Junos OS does not handle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resource errors— Sum of transmit drops.</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2019, Juniper Networks, Inc.
Table 19: FTI show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output errors</td>
<td>Output errors on the interface. The following paragraphs explain the counters whose meaning might not be obvious:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Carrier transitions — Number of times the interface has gone from down to up.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This number does not normally increment quickly, increasing only when the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cable is unplugged, the far-end system is powered down and then up, or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>another problem occurs. If the number of carrier transitions increments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>quickly (perhaps once every 10 seconds), then the cable, the far-end</td>
<td></td>
</tr>
<tr>
<td></td>
<td>system, or the PIC is malfunctioning.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Errors — Sum of the outgoing frame aborts and FCS errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drops — Number of packets dropped by the output queue of the I/O Manager</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASIC. If the interface is saturated, this number increments once for every</td>
<td></td>
</tr>
<tr>
<td></td>
<td>packet that is dropped by the ASIC’s RED mechanism.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MTU errors — Number of packets whose size exceeded the MTU of the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resource errors — Sum of transmit drops.</td>
<td></td>
</tr>
<tr>
<td>IPv6 transit statistics</td>
<td>Number of IPv6 transit bytes and packets received and transmitted on the</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Logical Interface</td>
<td>physical interface if IPv6 statistics tracking is enabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input bytes — Number of bytes received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output bytes — Number of bytes transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets — Number of packets received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output packets — Number of packets transmitted on the interface.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logical interface</th>
<th>Name of the logical interface.</th>
<th>All levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Index number of the logical interface (which reflects its initialization sequence).</td>
<td>detail extensive</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP interface index number of the logical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the logical interface. Possible values are described in the</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>“Logical Interface Flags Field” section under Common Output Fields Description.</td>
<td></td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Encapsulation on the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Destination UDP Port</td>
<td>Value to write to the destination-udp-port field.</td>
<td>All levels</td>
</tr>
<tr>
<td>VNI</td>
<td>Value to write to the vni attribute</td>
<td>All levels</td>
</tr>
<tr>
<td>Source address</td>
<td>IP address of the source side of the connection.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 19: FTI show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Statistics</td>
<td>Statistics for traffic transiting the router.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>- Input bytes—Number of bytes received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Output bytes—Number of bytes transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Input packets—Number of packets received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Output packets—Number of packets transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td>Protocol inet, MTU</td>
<td>Protocol family configured on the logical interface. If the protocol is inet, the IP address of the interface is also displayed. MTU is the maximum transmission unit size on the logical interface</td>
<td>All levels</td>
</tr>
<tr>
<td>Max nh cache</td>
<td>Maximum interface neighbor discovery next-hop cache size.</td>
<td>All levels</td>
</tr>
<tr>
<td>New hold nh limit</td>
<td>Maximum number of new unresolved nexthops.</td>
<td>All levels</td>
</tr>
<tr>
<td>Curr nh cnts</td>
<td>Current number of resolved next-hop addresses.</td>
<td>All levels</td>
</tr>
<tr>
<td>Curr new hold cnt</td>
<td>Current number of unresolved next-hop addresses.</td>
<td>All levels</td>
</tr>
<tr>
<td>NH drop cnt</td>
<td>Number of neighbor discovery requests not serviced</td>
<td>All levels</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the logical interface. Possible values are described in the “Logical Interface Flags” section under Common Output Fields Description.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Route Table</td>
<td>Routing table in which the logical interface address is located. For example, 0 refers to the routing table inet.0.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about protocol family flags. Possible values are described in the “Family Flags Field” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Addresses, Flags</td>
<td>Information about address flags. Possible values are described in the “Addresses Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Destination address</td>
<td>IP address of the remote side of the connection.</td>
<td>All levels</td>
</tr>
<tr>
<td>Local</td>
<td>IP address of the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Broadcast address of the logical interface.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>

Sample Output

show interfaces (Flexible Tunnel Interfaces)

```plaintext
user@host> show interfaces fti0
Physical interface: fti0, Enabled, Physical link is Up
    Interface index: 136, SNMP ifIndex: 504
    Type: FTI, Link-level type: Flexible-tunnel-Interface, MTU: Unlimited, Speed: Unlimited
```
Device flags : Present Running
Interface flags: SNMP-Traps
Link type : Full-Duplex
Link flags : None
Last flapped : Never
Input packets : 0
Output packets: 0

Logical interface fti0.0 (Index 340) (SNMP ifIndex 581)
Flags: Up Point-To-Point SNMP-Traps Encapsulation: VXLAN-GPEv4
Destination UDP port: 4789, VNI: 1000, Source address: 5.5.5.5, Destination address: 6.6.6.6
Input packets : 0
Output packets: 0
Protocol inet, MTU: Unlimited
Max nh cache: 0, New hold nh limit: 0, Curr nh cnt: 0, Curr new hold cnt: 0,
NH drop cnt: 0
Flags: Sendbcast-pkt-to-re
Addresses, Flags: Is-Preferred Is-Primary
Destination: 3.3.3/24, Local: 3.3.3.5, Broadcast: 3.3.3.255

show interfaces detail (Flexible Tunnel Interfaces)

user@host> show interfaces fti0 detail

Physical interface: fti0, Enabled, Physical link is Up
Interface index: 136, SNMP ifIndex: 504, Generation: 139
Type: FTI, Link-level type: Flexible-tunnel-Interface, MTU: Unlimited, Clocking: Unspecified,
Speed: Unlimited
Device flags : Present Running
Interface flags: SNMP-Traps
Link type : Full-Duplex
Link flags : None
Physical info : Unspecified
Hold-times : Up 0 ms, Down 0 ms
Damping : half-life: 0 sec, max-suppress: 0 sec, reuse: 0, suppress: 0,
state: unsuppressed
Current address: Unspecified, Hardware address: Unspecified
Alternate link address: Unspecified
Last flapped : Never
Statistics last cleared: Never
Traffic statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0
IPv6 transit statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0

Logical interface fti0.0 (Index 340) (SNMP ifIndex 581) (Generation 149)
Flags: Up Point-To-Point SNMP-Traps Encapsulation: VXLAN-GPEv4
Destination UDP port: 4789, VNI: 1000, Source address: 5.5.5.5, Destination address: 6.6.6.6
Traffic statistics:
Input bytes : 0
Output bytes : 0
show interfaces extensive (Flexible Tunnel Interfaces)

user@host> show interfaces fti0 extensive

Physical interface: fti0, Enabled, Physical link is Up
 Interface index: 136, SNMP ifIndex: 504, Generation: 139
 Type: FTI, Link-level type: Flexible-tunnel-Interface, MTU: Unlimited, Clocking: Unspecified,
 Speed: Unlimited
 Device flags : Present Running
 Interface flags: SNMP-Traps
Link type : Full-Duplex
Link flags : None
Physical info : Unspecified
Hold-times : Up 0 ms, Down 0 ms
Damping : half-life: 0 sec, max-suppress: 0 sec, reuse: 0, suppress: 0,
show interfaces statistics (Flexible Tunnel Interfaces)

user@host> show interfaces fti0 statistics

Physical interface: fti0, Enabled, Physical link is Up
 Interface index: 136, SNMP ifIndex: 504
 Type: FTI, Link-level type: Flexible-tunnel-Interface, MTU: Unlimited, Speed: Unlimited
 Device flags : Present Running
 Interface flags: SNMP-Traps
 Link type : Full-Duplex
 Link flags : None
 Last flapped : Never
 Statistics last cleared: Never
 Input packets : 0
 Output packets: 0
 Input errors: 0, Output errors: 0

Logical interface fti0.0 (Index 340) (SNMP ifIndex 581)
 Flags: Up Point-To-Point SNMP-Traps Encapsulation: VXLAN-GPEv4
 Destination UDP port: 4789, VNI: 1000, Source address: 5.5.5.5, Destination address: 6.6.6.6
 Input packets : 3
 Output packets: 3
 Protocol inet, MTU: Unlimited
 Max nh cache: 0, New hold nh limit: 0, Curr nh cnt: 0, Curr new hold cnt: 0, NH drop cnt: 0
 Flags: Sendcast-pkt-to-re
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 3.3.3/24, Local: 3.3.3.5, Broadcast: 3.3.3.255
show ipsec certificates

Syntax
```
show ipsec certificates
  <brief | detail>
  <crl crl-name | serial-number>
```

Release Information
Command introduced before Junos OS Release 7.4.

Description
(Encryption interface on M Series and T Series routers only) Display information about the IPsec certificate database.

Options

- **none**—Display standard information about all of the entries in the IPsec certificate database.

- **brief | detail**—(Optional) Display the specified level of output.

- **crl crl-name | serial-number**—(Optional) Display information about the entries on the certificate revocation list (CRL) or for the specified serial number. A CRL is a timestamped list identifying revoked certificates. The CRL is signed by a certificate authority (CA) or CRL issuer and made freely available in a public repository. Each revoked certificate is identified in a CRL by its certificate serial number.

Required Privilege Level
view

Related Documentation
- clear ipsec security-associations on page 171

List of Sample Output
```
show ipsec certificates detail on page 233
```

Output Fields
Table 20 on page 232 lists the output fields for the `show ipsec certificates` command. Output fields are listed in the approximate order in which they appear.

Table 20: show ipsec certificates Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database</td>
<td>Display information about the IPsec certificate database.</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• Total entries—Number of database entries, including entries that are not trusted or that are in the process of being deleted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Active entries—Number of database entries, excluding entries that are marked as deleted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Locked entries—Number of statically configured database entries that cannot expire, such as CA certificates that are root or trusted.</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Distinguished name for the certificate for C, O, CN, as described in RFC 3280, Internet x.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 20: show ipsec certificates Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Identification number of the database entry. ID is generated by the internal certificate database.</td>
<td>All levels</td>
</tr>
<tr>
<td>References</td>
<td>Reference number the certificate manager has for the particular entry.</td>
<td>detail</td>
</tr>
<tr>
<td>Serial</td>
<td>Unique serial number assigned to each certificate by the CA.</td>
<td>All levels</td>
</tr>
<tr>
<td>Flags</td>
<td>State of the certificate.</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Trusted—Passed validity checks.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Not trusted—Failed validity checks.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Root—Entry is locked and may have been learned through IKE or a locally configured CA certificate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Non-root—Entry is not locked.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Crl-issuer—Entity issues CRLs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Non-crl-issuer—Entity does not issue CRLs.</td>
<td></td>
</tr>
<tr>
<td>Validity period starts</td>
<td>Start time that the certificate is valid, in the format yyyy dd, hh:mm:ss GMT.</td>
<td>detail</td>
</tr>
<tr>
<td>Validity period ends</td>
<td>End time that the certificate is valid, in the format yyyy dd, hh:mm:ss GMT.</td>
<td>detail</td>
</tr>
<tr>
<td>Alternative name information</td>
<td>Auxiliary identity for the certificate: dns-name, email-address, ip-address, or uri</td>
<td>detail</td>
</tr>
<tr>
<td>Issuer</td>
<td>Information about the entity that has signed and issued the CRL as described in RFC 2459, Internet X.509 Public Key Infrastructure Certificate and CRL Profile.</td>
<td>detail</td>
</tr>
</tbody>
</table>

Sample Output

show ipsec certificates detail

```
user@host> show ipsec certificates detail
Database: Total entries: 3 Active entries: 4 Locked entries: 1
Subject: C=us, O=x
    ID: 5, References: 0, Serial: 22314868
    Flags: Trusted Non-root Crl-issuer
    Validity period starts: 2003 Mar 1st, 01:20:42 GMT
    Validity period ends: 2003 Mar 31st, 01:50:42 GMT
    Alternative name information:
        IP address: 10.20.210.1
    Issuer: C=FI, O=Company-ABC, CN=Company ABC class 2

Subject: C=us, O=x
    ID: 4, References: 0, Serial: 22315496
    Flags: Trusted Non-root Crl-issuer
    Validity period starts: 2003 Mar 1st, 01:21:45 GMT
    Validity period ends: 2003 Mar 31st, 01:51:45 GMT
    Alternative name information:
        IP address: 10.20.210.20
```
Issuer: C=FI, O=Company-ABC, CN=Company ABC class 2
Subject: C=FI, O=SSH Company-ABC, CN=Company ABC class 2
ID: 1, References: 1, Serial: 1538512
Flags: Trusted Root Non-crl-issuer
Validity period starts: 2001 Aug 1st, 07:08:32 GMT
Validity period ends: 2004 Aug 1st, 07:08:32 GMT
Alternative name information:
 Email address: certifier-support@ssh.com
Issuer: C=FI, O=Company-ABC, CN=Company ABC class 2
show ipsec redundancy

Syntax

```
show ipsec redundancy (interface <es-fpc/pic/port> | security-associations <sa-name>)
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

(Encryption interface on M Series and T Series routers only) Display information about IPsec redundancy.

Options

- `interface <es-fpc/pic/port>`—Display information about all encryption interfaces, or optionally, about a particular encryption interface.
- `security-associations <sa-name>`—Display information about all remote tunnels, or optionally, about a particular remote tunnel.

Required Privilege Level

`view`

Related Documentation

- `request ipsec switch on page 173`

List of Sample Output

- `show ipsec redundancy interface on page 237`
- `show ipsec redundancy security-associations on page 237`

Output Fields

Table 21 on page 235 lists the output fields for the `show ipsec redundancy` command. Output fields are listed in the approximate order in which they appear.

Table 21: show ipsec redundancy Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure counter</td>
<td>Number of times a PIC switched between primary and backup interfaces, or the number of times the tunnel switched between the primary and remote peers since the software has been activated.</td>
</tr>
<tr>
<td>Primary interface</td>
<td>Name of the interface configured to be the primary interface.</td>
</tr>
<tr>
<td>Backup interface</td>
<td>Name of the interface configured to be the backup interface.</td>
</tr>
<tr>
<td>State</td>
<td>State of the primary or backup interface can be Active, Offline, or Standby. Both ES PICs are initialized to Offline. For primary and remote peers, State can be Active or Standby. Both peers are in a state of Standby by default (there is not yet a connection between the two peers).</td>
</tr>
<tr>
<td>Security association</td>
<td>Name of the security association.</td>
</tr>
<tr>
<td>Local IP</td>
<td>Local IP address.</td>
</tr>
<tr>
<td>Primary remote IP</td>
<td>IP address of the configured primary remote peer.</td>
</tr>
</tbody>
</table>
Table 21: `show ipsec redundancy Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backup remote IP</td>
<td>IP address of the configured backup remote peer.</td>
</tr>
</tbody>
</table>
Sample Output

show ipsec redundancy interface

```
user@host> show ipsec redundancy interface
  Failure counter: 0
  Primary interface: es-1/3/0, State: Active
  Backup interface : es-1/1/0, State: Standby
```

show ipsec redundancy security-associations

```
user@host> show ipsec redundancy security-associations sa-dynamic
  Security association: sa-dynamic, Failure counter: 0
  Local IP: 192.0.2.4
  Primary remote IP: 198.51.100.5, State: Standby
  Backup remote IP : 192.0.2.3, State: Standby
```
show ipsec security-associations

Syntax
```
show ipsec security-associations
<brief | detail>
<sa-name>
```

Release Information
Command introduced before Junos OS Release 7.4.

Description
Display information about the IPsec security associations applied to the local or transit traffic stream.

Options
- none—Display standard information about all IPsec security associations.
- brief | detail—(Optional) Display the specified level of output.
- sa-name—(Optional) Display the specified IPsec security association.

Required Privilege
view

List of Sample Output
- show ipsec security-associations sa-name on page 240
- show ipsec security-associations sa-name detail on page 240

Output Fields
Table 22 on page 238 lists the output fields for the `show ipsec security-associations` command. Output fields are listed in the approximate order in which they appear.

Table 22: show ipsec security-associations Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security association</td>
<td>Name of the security association.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface family</td>
<td>Status of the interface family of the security association. If the interface</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>family field is absent, it is a transport mode security association. The</td>
<td></td>
</tr>
<tr>
<td></td>
<td>interface family can have one of three options:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Up—The security association is referenced in the interface family and the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>interface family is up.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Down—The security association is referenced in the interface family and the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>interface family is down.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No reference—The security association is not referenced in the interface family.</td>
<td></td>
</tr>
<tr>
<td>Local gateway</td>
<td>Gateway address of the local system.</td>
<td>All levels</td>
</tr>
<tr>
<td>Remote gateway</td>
<td>Gateway address of the remote system.</td>
<td>All levels</td>
</tr>
<tr>
<td>Local identity</td>
<td>Prefix and port number of the local end</td>
<td>All levels</td>
</tr>
<tr>
<td>Remote identity</td>
<td>Prefix and port number of the remote end</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 22: show ipsec security-associations Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>Direction of the security association: inbound or outbound.</td>
<td>All levels</td>
</tr>
<tr>
<td>SPI</td>
<td>Value of the security parameter index.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
| **AUX-SPI** | Value of the auxiliary security parameter index.
- When the value is **AH** or **ESP**, **AUX-SPI** is always **0**.
- When the value is **AH+ESP**, **AUX-SPI** is always a positive integer. | All levels |
| **State** | Status of the security association:
- **Installed**—The security association is installed in the security association database. (For transport mode security associations, the value of **State** must always be **Installed**.)
- **Not installed**—The security association is not installed in the security association database. | detail |
| **Mode** | Mode of the security association:
- **transport**—Protects single host-to-host protections.
- **tunnel**—Protects connections between security gateways. | All levels |
| **Type** | Type of security association:
- **manual**—Security parameters require no negotiation. They are static, and are configured by the user.
- **dynamic**—Security parameters are negotiated by the IKE protocol. Dynamic security associations are not supported in transport mode. | All levels |
| **Protocol** | Protocol supported:
- **transport mode**—Supports Encapsulation Security Protocol (ESP) or Authentication Header (AH).
- **tunnel mode**—Supports ESP or AH+ESP. | All levels |
| **Authentication** | Type of authentication used: **hmac-md5-96**, **hmac-sha1-96**, or **None**. | detail |
| **Encryption** | Type of encryption used: **des-cbc**, **3des-csc**, or **None**. | detail |
| **Soft lifetime** | (dynamic output only) Each lifetime of a security association has two display options, hard and soft, one of which must be present for a dynamic security association. The **hard lifetime** specifies the lifetime of the SA. The **soft lifetime**, which is derived from the hard lifetime, informs the IPsec key management system that the SA is about to expire. This allows the key management system to negotiate a new SA before the hard lifetime expires.
- **Expires in seconds**—Number of seconds left until the security association expires.
- **Expires in kilobytes**—Number of kilobytes left until the security association expires. | detail |
Table 22: `show ipsec security-associations` Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-replay service</td>
<td>State of the service that prevents packets from being replayed: Enabled or Disabled.</td>
<td>detail</td>
</tr>
<tr>
<td>Replay window size</td>
<td>Configured size, in packets, of the antireplay service window: 32 or 64. The antireplay window size protects the receiver against replay attacks by rejecting old or duplicate packets. If the replay window size is 0, the antireplay service is disabled.</td>
<td>detail</td>
</tr>
</tbody>
</table>

Sample Output

`show ipsec security-associations sa-name`

```
user@host> show ipsec security-associations sa-cosmic brief
Security association: sa-cosmic, Interface family: Up
Local gateway: 192.0.2.1, Remote gateway: 198.51.100.1
Local identity: ipv4_subnet(any:0,[0..7]=0.0.0.0/0)
Remote identity: ipv4_subnet(any:0,[0..7]=0.0.0.0/0)
Direction SPI AUX-SPI Mode Type Protocol
inbound 2908734119 0 tunnel dynamic AH
outbound 3494029335 0 tunnel dynamic AH
```

`show ipsec security-associations sa-name detail`

```
user@host> show ipsec security-associations sa-cosmic detail
Security association: sa-cosmic, Interface family: Up
Local gateway: 192.0.2.1, Remote gateway: 198.51.100.1
Local identity: ipv4_subnet(any:0,[0..7]=0.0.0.0/0)
Remote identity: ipv4_subnet(any:0,[0..7]=0.0.0.0/0)
Direction: inbound, SPI: 2908734119, AUX-SPI: 0, State: Installed
Mode: tunnel, Type: dynamic
Soft lifetime: Expired
Hard lifetime: Expires in 120 seconds
Anti-replay service: Disabled

Direction: outbound, SPI: 3494029335, AUX-SPI: 0, State: Installed
Mode: tunnel, Type: dynamic
Soft lifetime: Expired
Hard lifetime: Expires in 120 seconds
Anti-replay service: Disabled
```
show system certificate

Syntax
```
show system certificate
<certificate-id>
```

Release Information
- Command introduced before Junos OS Release 7.4.
- Command introduced in Junos OS Release 11.1 for the QFX Series.
- Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
(Encryption interface on M Series, T Series routers, QFX Series, and OCX Series switches only) Display installed certificates signed by the Juniper Networks certificate authority.

Options
- **none**—Display all installed certificates signed by the Juniper Networks certificate authority.
- **certificate-id**—(Optional) Display the details of a particular certificate.

Required Privilege Level
- maintenance

List of Sample Output
- show system certificate on page 242
- show system certificate (QFX Series) on page 242

Output Fields
Table 23 on page 241 lists the output fields for the show system certificate command. Output fields are listed in the approximate order in which they appear.

Table 23: show system certificate Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate identifier</td>
<td>Unique identifier associated with a certificate. The certificate identifier is the common name of the subject.</td>
</tr>
<tr>
<td>Issuer Subject</td>
<td>Information about the certificate issuer and the distinguished name (DN) of the issuer, respectively:</td>
</tr>
<tr>
<td></td>
<td>• Organization—Name of the owner’s organization.</td>
</tr>
<tr>
<td></td>
<td>• Organizational unit—Name of the owner’s department.</td>
</tr>
<tr>
<td></td>
<td>• Country—Two-character country code in which the owner’s system is located.</td>
</tr>
<tr>
<td></td>
<td>• State—State in the USA in which the owner is using the certificate.</td>
</tr>
<tr>
<td></td>
<td>• Locality—City in which the owner’s system is located.</td>
</tr>
<tr>
<td></td>
<td>• Common name—Name of the owner of the certificate.</td>
</tr>
<tr>
<td></td>
<td>• E-mail address—E-mail address of the owner of the certificate.</td>
</tr>
<tr>
<td>Validity</td>
<td>When a certificate is valid.</td>
</tr>
<tr>
<td>Signature algorithm</td>
<td>Encryption algorithm applied to the installed certificate.</td>
</tr>
</tbody>
</table>
Table 23: show system certificate Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public key algorithm</td>
<td>Encryption algorithm applied to the public key.</td>
</tr>
</tbody>
</table>

Sample Output

show system certificate

user@host> **show system certificate**

Certificate identifier: Dallas-v3
Issuer:
Organization: Juniper Networks, Organizational unit: Juniper CA,
Country: US, State: CA, Locality: Sunnyvale, Common name: Dallas CA,
E-mail address: ca@example.com
Subject:
Organization: Juniper Networks, Organizational unit: Juniper CA,
Country: US, State: CA, Locality: Sunnyvale, Common name: Dallas-v3,
E-mail address: ca@example.com
Validity:
Not before: Mar 13 03:23:25 2004 GMT
Not after: Mar 24 03:23:25 2014 GMT
Signature algorithm: sha1WithRSAEncryption
Public key algorithm: dsaEncryption

show system certificate (QFX Series)

user@host> **show system certificate**

Certificate identifier: Dallas-v3
Issuer:
Organization: Juniper Networks, Organizational unit: Juniper CA,
Country: US, State: CA, Locality: Sunnyvale, Common name: Dallas CA,
E-mail address: ca@example.com
Subject:
Organization: Juniper Networks, Organizational unit: Juniper CA,
Country: US, State: CA, Locality: Sunnyvale, Common name: Dallas-v3,
E-mail address: ca@example.com
Validity:
Not before: Mar 13 03:23:25 2004 GMT
Not after: Mar 24 03:23:25 2014 GMT
Signature algorithm: sha1WithRSAEncryption
Public key algorithm: dsaEncryption