Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. in the United States and other countries. All other trademarks, service marks, registered marks, or registered service marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify, transfer, or otherwise revise this publication without notice.

Junos® OS Interfaces User Guide for Security Devices
Copyright © 2019 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License Agreement (“EULA”) posted at https://support.juniper.net/support/eula/. By downloading, installing or using such software, you agree to the terms and conditions of that EULA.
Table of Contents

About the Documentation | xxi

Documentation and Release Notes | xxi
Using the Examples in This Manual | xxi
 - Merging a Full Example | xxii
 - Merging a Snippet | xxiii
Documentation Conventions | xxiii
Documentation Feedback | xxvi
Requesting Technical Support | xxvi
 - Self-Help Online Tools and Resources | xxvii
 - Creating a Service Request with JTAC | xxvii

Overview

Introduction to Interfaces | 31

Understanding Interfaces | 31
Network Interfaces | 32
Services Interfaces | 33
Special Interfaces | 36
Interface Naming Conventions | 37
Understanding the Data Link Layer | 39
 - Physical Addressing | 40
 - Network Topology | 40
 - Error Notification | 40
 - Frame Sequencing | 40
 - Flow Control | 40
 - Data Link Sublayers | 40
 - MAC Addressing | 41

Physical Interface Properties | 42

Understanding Interface Physical Properties | 42
Understanding Bit Error Rate Testing | 44
Understanding Interface Clocking | 45
 Data Stream Clocking | 46
 Explicit Clocking Signal Transmission | 46
Understanding Frame Check Sequences | 46
 Cyclic Redundancy Checks and Checksums | 47
 Two-Dimensional Parity | 47
MTU Default and Maximum Values | 47
Understanding Jumbo Frames Support for Ethernet Interfaces | 50

Logical Interface Properties | 51
Understanding Interface Logical Properties | 51
Understanding Protocol Families | 52
 Common Protocol Suites | 52
 Other Protocol Suites | 53

Understanding IPv4 and IPv6 Protocol Family | 53
Understanding IPv4 Addressing | 54
 IPv4 Classful Addressing | 54
 IPv4 Dotted Decimal Notation | 55
 IPv4 Subnetting | 55
 IPv4 Variable-Length Subnet Masks | 56
Understanding IPv6 Address Space, Addressing, Address Format, and Address Types | 57
 Understanding IP Version 6 (IPv6) | 57
 Understanding IPv6 Address Types and How Junos OS for SRX Series Services Gateway Uses Them | 58
 IPv6 Address Scope | 59
 IPv6 Address Structure | 59
 Understanding IPv6 Address Space, Addressing, and Address Types | 59
 Understanding IPv6 Address Format | 60
Configuring the inet6 IPv6 Protocol Family | 61
Configuring VLAN Tagging | 63

Understanding Virtual LANs | 63

VLAN IDs and Ethernet Interface Types Supported on the SRX Series Devices | 65

Configuring VLAN Tagging | 66

Configuring Single-Tag Framing | 66
Configuring Dual Tagging | 67
Configuring Mixed Tagging | 67
Configuring Mixed Tagging Support for Untagged Packets | 68

Configuring DS1, DS3, and 1-Port Clear Channel DS3/E3 GPIM Interfaces

Configuring DS1 Interfaces | 73

Understanding T1 and E1 Interfaces | 73

T1 Overview | 74
E1 Overview | 74
T1 and E1 Signals | 74
Encoding | 75
T1 and E1 Framing | 76
T1 and E1 Loopback Signals | 76
Example: Configuring a T1 Interface | 77
Example: Deleting a T1 Interface | 80

Configuring DS3 Interfaces | 81

Understanding T3 and E3 Interfaces | 82

Multiplexing DS1 Signals | 82
DS2 Bit Stuffing | 83
DS3 Framing | 83
Example: Configuring a T3 Interface | 87
Example: Deleting a T3 Interface | 90

Configuring 1-Port Clear Channel DS3/E3 GPIM | 92

Understanding the 1-Port Clear Channel DS3/E3 GPIM | 92

Supported Features | 93
Interface Naming | 93
Physical Interface Settings | 93
Understanding IPv6 Support VDSL2 Interfaces | 187
Example: Configuring VDSL2 Interfaces (Basic) | 188
Example: Configuring VDSL2 Interfaces (Detail) | 196
Example: Configuring VDSL2 Interfaces in ADSL Mode (Basic) | 230
Example: Configuring VDSL2 Interfaces in ADSL Mode (Detail) | 237
Upgrading the VDSL PIC Firmware | 272

Configuring Ethernet Interfaces

Configuring Ethernet Interfaces | 277

Understanding Ethernet Interfaces | 277
- Ethernet Access Control and Transmission | 278
- Collisions and Detection | 278
- Collision Domains and LAN Segments | 279
- Broadcast Domains | 280
- Ethernet Frames | 280

Example: Creating an Ethernet Interface | 282

Understanding Static ARP Entries on Ethernet Interfaces | 283
Example: Configuring Static ARP Entries on Ethernet Interfaces | 283

Understanding Promiscuous Mode on Ethernet Interface | 287
- Understanding Promiscuous Mode on the SRX5K-MPC | 287

Example: Configuring Promiscuous Mode on the SRX5K-MPC | 288
Example: Deleting an Ethernet Interface | 294

Configuring Aggregated Ethernet Interfaces | 295

Understanding Aggregated Ethernet Interfaces | 296
- LAGs | 296
- LACP | 297

Configuring Aggregated Ethernet Interfaces | 298

Understanding Physical Interfaces for Aggregated Ethernet Interfaces | 299
Example: Associating Physical Interfaces with Aggregated Ethernet Interfaces | 299

Understanding Aggregated Ethernet Interface Link Speed | 301
Example: Configuring Aggregated Ethernet Link Speed | 301

Understanding Minimum Links for Aggregated Ethernet Interfaces | 302
Example: Configuring Aggregated Ethernet Minimum Links | 303
Deleting Aggregated Ethernet Interface | 304
Configuring Power over Ethernet | 413

Understanding Power over Ethernet | 413
SRX Series Services Gateway PoE Specifications | 414
PoE Classes and Power Ratings | 417
PoE Options | 418
Example: Configuring PoE on an Individual Interface | 419
Example: Configuring PoE on All Interfaces | 423
Example: Disabling a PoE Interface | 426

Configuring Interface Encapsulation

Interface Encapsulation Overview | 431

Understanding Physical Encapsulation on an Interface | 431
Understanding Frame Relay Encapsulation on an Interface | 432
Virtual Circuits | 433
Switched and Permanent Virtual Circuits | 433
Data-Link Connection Identifiers | 433
Congestion Control and Discard Eligibility | 433
Understanding Point-to-Point Protocol | 434
Link Control Protocol | 434
PPP Authentication | 435
Network Control Protocols | 436
Magic Numbers | 436
CSU/DSU Devices | 436
Understanding High-Level Data Link Control | 437
HDLC Stations | 437
HDLC Operational Modes | 437

Configuring GRE Keepalive Time | 438

Understanding GRE Keepalive Time | 439
Configuring GRE Keepalive Time | 439
Configuring Keepalive Time and Hold time for a GRE Tunnel Interface | 440
Display GRE Keepalive Time Configuration | 441
Display Keepalive Time Information on a GRE Tunnel Interface | 441
Example: GRE Configuration | 444
Example: Configuring GRE over IPsec Tunnels | 450
Example: Configuring a GRE Tunnel When the Tunnel Destination Is in a Routing Instance | 455

Configuring Point-to-Point Protocol over Ethernet | 461

Understanding Point-to-Point Protocol over Ethernet | 462

- PPPoE Discovery Stage | 463
- PPPoE Session Stage | 464

Understanding PPPoE Interfaces | 466

Example: Configuring PPPoE Interfaces | 466

Understanding PPPoE Ethernet Interfaces | 475

Example: Configuring PPPoE Encapsulation on an Ethernet Interface | 475

Understanding PPPoE ATM-over-ADSL and ATM-over-SHDSL Interfaces | 476

Example: Configuring PPPoE Encapsulation on an ATM-over-ADSL Interface | 477

Understanding CHAP Authentication on a PPPoE Interface | 480

Example: Configuring CHAP Authentication on a PPPoE Interface | 480

Verifying Credit-Flow Control | 483

Verifying PPPoE Interfaces | 484

Verifying R2CP Interfaces | 484

Displaying Statistics for PPPoE | 486

Setting Tracing Options for PPPoE | 487

Configuring Link Services Interfaces

Configuring Link Services Interfaces | 491

Link Services Interfaces Overview | 491

- Services Available on a Link Services Interface | 492
- Link Services Exceptions | 493
- Configuring Multiclass MLPPP | 494
- Queuing with LFI | 495
- Compressed Real-Time Transport Protocol Overview | 496
- Configuring Fragmentation by Forwarding Class | 496
Configuring Modem Interfaces

Configuring 3G Wireless Modems for WAN Connections | 609

- 3G Wireless Modem Overview | 609
- 3G Wireless Modem Configuration Overview | 610

- Understanding the Dialer Interface | 612
 - Dialer Interface Configuration Rules | 612
 - Dialer Interface Authentication Support for GSM HSDPA 3G Wireless Modems | 613
 - Dialer Interface Functions | 613
 - Dialer Interface Operating Parameters | 613

- Example: Configuring the Dialer Interface | 614

- Understanding the 3G Wireless Modem Physical Interface | 621

- Example: Configuring the 3G Wireless Modem Interface | 622

- Understanding the GSM Profile | 623

- Example: Configuring the GSM Profile | 624

- Unlocking the GSM 3G Wireless Modem | 625

Configuring CDMA EV-DO Modem Cards | 627

- Understanding Account Activation for CDMA EV-DO Modem Cards | 627
 - Obtaining Electronic Serial Number (ESN) | 628
 - Account Activation Modes | 629

- Activating the CDMA EV-DO Modem Card Manually | 630

- Activating the CDMA EV-DO Modem Card with IOTA Provisioning | 633

- Activating the CDMA EV-DO Modem Card with OTASP Provisioning | 634

Configuring USB Modems for Dial Backup | 635

- USB Modem Interface Overview | 636

- USB Modem Interfaces | 636

- Dialer Interface Rules | 637

- How the Device Initializes USB Modems | 637

- USB Modem Configuration Overview | 639

- Example: Configuring a USB Modem Interface | 641

- Example: Configuring Dialer Interfaces and Backup Methods for USB Modem Dial Backup | 645

- Example: Configuring a Dialer Interface for USB Modem Dial-In | 653

- Example: Configuring PAP on Dialer Interfaces | 655
Example: Configuring CHAP on Dialer Interfaces | 657

Configuring DOCSIS Mini-PIM Interfaces | 658

DOCSIS Mini-PIM Interface Overview | 658
Software Features Supported on DOCSIS Mini-PIMs | 660
Example: Configuring the DOCSIS Mini-PIM Interfaces | 662

Configuring Serial Interfaces | 667

Serial Interfaces Overview | 668
Serial Transmissions | 669
Signal Polarity | 670
Serial Clocking Modes | 670
Serial Line Protocols | 671
Example: Configuring a Serial Interface | 674
Example: Deleting a Serial Interface | 678
Understanding the 8-Port Synchronous Serial GPIM | 679
Supported Features | 679
Example: Configuring an 8-Port Synchronous Serial GPIM in Back-to-Back SRX650 Services Gateways | 681

Configuration Statements and Operational Commands

Configuration Statements | 703

accept-source-mac | 707
access-point name | 708
apply-groups | 709
activation-delay | 710
arp (Interfaces) | 711
arp-resp | 715
authentication-method (Interfaces) | 716
bandwidth (Interfaces) | 717
bundle (Interfaces) | 718
cbr rate | 719
callback | 720
callback-wait-period | 721
caller | 722
cellular-options | 723
classifiers (CoS) | 724
client-identifier (Interfaces) | 725
code-points (CoS) | 726
compression-device (Interfaces) | 727
credit (Interfaces) | 728
data-rate | 729
deactivation-delay | 730
disable (PoE) | 731
dialer-options | 732
dialin | 733
dial-string | 734
dhcp (Interfaces) | 735
duration (PoE) | 736
family inet (Interfaces) | 737
family inet6 | 741
flag (Interfaces) | 744
flexible-vlan-tagging (Interfaces) | 745
flow-control (Interfaces) | 746
flow-monitoring (Services) | 747
forwarding-classes (CoS) | 749
fpc (Interfaces) | 752
gratuitous-arp-reply | 753
gsm-options | 754
guard-band (PoE) | 755
hold-time (Redundant Ethernet Interfaces) | 756
hub-assist | 757
idle-timeout | 758
incoming-map | 759
initial-route-check | 760
inline-jflow (Forwarding Options) | 761
interface (PIC Bundle) | 762
interface (PoE) | 763
interfaces (CoS) | 765
interval (Interfaces) | 767
interval (PoE) | 768
isdn-options | 769
ipv4-template (Services) | 770
ipv6-template (Services) | 771
lacp (Interfaces) | 772
latency (Interfaces) | 773
lease-time | 774
line-rate (Interfaces) | 775
link-speed (Interfaces) | 776
load-interval | 777
load-threshold | 778
loopback (Aggregated Ethernet, Fast Ethernet, and Gigabit Ethernet) | 779
loss-priority (CoS Loss Priority) | 781
loss-priority (CoS Rewrite Rules) | 782
loss-priority-maps (CoS Interfaces) | 783
loss-priority-maps (CoS) | 784
management (PoE) | 785
maximum-power (PoE) | 786
media-type (Interfaces) | 787
minimum-links (Interfaces) | 788
modem-options | 789
mtu | 790
native-vlan-id | 791
next-hop-tunnel | 794
no-dns-propagation | 795
option-refresh-rate (Services) | 796
pic-mode (Chassis T1 Mode) | 797
periodic (Interfaces) | 798
pool | 799
ppp-over-ether | 800
pppoe | 801
pppoe-options | 802
priority (PoE) | 804
profile (Access) | 805
profiles | 808
promiscuous-mode (Interfaces) | 809
quality (Interfaces) | 810
r2cp | 811
radio-router (Interfaces) | 812
redial-delay | 813
redundancy-group (Interfaces) | 814
redundant-ether-options | 815
redundant-parent (Interfaces Fast Ethernet) | 817
redundant-parent (Interfaces Gigabit Ethernet) | 818
request pppoe connect | 819
request pppoe disconnect | 820
resource (Interfaces) | 821
retransmission-attempt (DHCP Client) | 822
retransmission-interval (DHCP Client) | 823
roaming-mode | 824
scheduler-map (CoS Virtual Channels) | 825
select-profile | 826
server-address | 827
shaping-rate (CoS Interfaces) | 828
simple-filter (Interfaces) | 830
sip-password | 831
sip-user-id | 832
source-address-filter (Interfaces) | 833
source-filtering (Interfaces) | 834
speed (Interfaces) | 835
speed (Gigabit Ethernet interface) | 836
spid1 | 838
spid2 | 839
static-tei-val | 840
switch-type | 841
t310 | 842
tei-option | 843
telemetries (PoE) | 844
template-refresh-rate (Services) | 845
threshold (Interfaces) | 846
traceoptions (Interfaces) | 847
update-server | 848
vbr rate | 849
vdsl-profile | 850
vendor-id (Interfaces) | 851
watch-list | 852
web-authentication (Interfaces) | 853
wlan | 854

Operational Commands | 859

- clear oam ethernet connectivity-fault-management path-database | 861
- clear dhcpv6 server binding (Local Server) | 862
- clear ethernet-switching statistics mac-learning | 863
- clear interfaces statistics swfabx | 864
- clear ipv6 neighbors | 865
- clear lacp statistics interfaces | 866
- restart (Reset) | 867
- request modem wireless create-profile | 872
- request modem wireless fota | 874
- request modem wireless sim-lock | 875
- request modem wireless sim-unlock | 877
- show chassis fpc (View) | 879
- show chassis hardware (View) | 890
- show ethernet-switching mac-learning-log | 910
- show ethernet-switching table | 916
- show igmp-snooping route (View) | 947
- show interfaces | 949
- show interfaces diagnostics optics | 1056
- show interfaces flow-statistics | 1062
- show interfaces queue | 1068
- show interfaces statistics (View) | 1074
- show interfaces terse zone | 1075
show ipv6 neighbors | 1076
show lacp interfaces (View) | 1078
show lacp statistics interfaces (View) | 1083
show modem wireless firmware | 1085
show modem wireless network | 1088
show modem wireless profiles | 1091
show oam ethernet link-fault-management | 1093
show pppoe interfaces | 1102
show pppoe statistics | 1107
show poe telemetries | 1110
show services accounting | 1112
show services accounting aggregation (View) | 1115
show services accounting aggregation template (View) | 1116
show services accounting flow-detail (View) | 1117
show wlan access-points | 1118
speed (Chassis Cluster) | 1124
About the Documentation

Use this guide to configure and monitor Network interfaces, Service interfaces, and Special interfaces for Juniper security devices.

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product documentation page on the Juniper Networks website at https://www.juniper.net/documentation/.

If the information in the latest release notes differs from the information in the documentation, follow the product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts. These books go beyond the technical documentation to explore the nuances of network architecture, deployment, and administration. The current list can be viewed at https://www.juniper.net/books.

Using the Examples in This Manual

If you want to use the examples in this manual, you can use the `load merge` or the `load merge relative` command. These commands cause the software to merge the incoming configuration into the current candidate configuration. The example does not become active until you commit the candidate configuration.

If the example configuration contains the top level of the hierarchy (or multiple hierarchies), the example is a full example. In this case, use the `load merge` command.
If the example configuration does not start at the top level of the hierarchy, the example is a snippet. In this case, use the load merge relative command. These procedures are described in the following sections.

Merging a Full Example

To merge a full example, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration example into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following configuration to a file and name the file ex-script.conf. Copy the ex-script.conf file to the /var/tmp directory on your routing platform.

   ```conf
   system {
     scripts {
       commit {
         file ex-script.xsl;
       }
     }
     interfaces {
       fxp0 {
         disable;
         unit 0 {
           family inet {
             address 10.0.0.1/24;
           }
         }
       }
     }
   }
   ```

2. Merge the contents of the file into your routing platform configuration by issuing the load merge configuration mode command:

   ```bash
   [edit]
   user@host# load merge /var/tmp/ex-script.conf
   load complete
   ```
Merging a Snippet

To merge a snippet, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration snippet into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following snippet to a file and name the file `ex-script-snippet.conf`. Copy the `ex-script-snippet.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   commit {
     file ex-script-snippet.xsl; }
   ```

2. Move to the hierarchy level that is relevant for this snippet by issuing the following configuration mode command:

   ```
   [edit]
   user@host# edit system scripts
   [edit system scripts]
   ```

3. Merge the contents of the file into your routing platform configuration by issuing the `load merge relative` configuration mode command:

   ```
   [edit system scripts]
   user@host# load merge relative /var/tmp/ex-script-snippet.conf
   load complete
   ```

 For more information about the `load` command, see CLI Explorer.

Documentation Conventions

Table 1 on page xxiv defines notice icons used in this guide.
Table 1: Notice Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Informational note</td>
<td>Indicates important features or instructions.</td>
</tr>
<tr>
<td></td>
<td>Caution</td>
<td>Indicates a situation that might result in loss of data or hardware damage.</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>Alerts you to the risk of personal injury or death.</td>
</tr>
<tr>
<td></td>
<td>Laser warning</td>
<td>Alerts you to the risk of personal injury from a laser.</td>
</tr>
<tr>
<td></td>
<td>Tip</td>
<td>Indicates helpful information.</td>
</tr>
<tr>
<td></td>
<td>Best practice</td>
<td>Alerts you to a recommended use or implementation.</td>
</tr>
</tbody>
</table>

Table 2 on page xxiv defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents text that you type.</td>
<td>To enter configuration mode, type the <code>configure</code> command: <code>user@host> configure</code></td>
</tr>
<tr>
<td>Fixed-width text like this</td>
<td>Represents output that appears on the terminal screen.</td>
<td><code>user@host> show chassis alarms</code> No alarms currently active</td>
</tr>
<tr>
<td>Italic text like this</td>
<td>• Introduces or emphasizes important new terms. • Identifies guide names. • Identifies RFC and Internet draft titles.</td>
<td>• A policy term is a named structure that defines match conditions and actions. • Junos OS CLI User Guide • RFC 1997, BGP Communities Attribute</td>
</tr>
</tbody>
</table>
Table 2: Text and Syntax Conventions (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italic text like this</td>
<td>Represents variables (options for which you substitute a value) in commands or configuration statements.</td>
<td>Configure the machine’s domain name:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[edit]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>root@# set system domain-name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>domain-name</td>
</tr>
<tr>
<td>Text like this</td>
<td>Represents names of configuration statements, commands, files, and directories; configuration hierarchy levels; or labels on routing platform components.</td>
<td>• To configure a stub area, include the stub statement at the [edit protocols ospf area area-id] hierarchy level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The console port is labeled CONSOLE.</td>
</tr>
<tr>
<td>< > (angle brackets)</td>
<td>Encloses optional keywords or variables.</td>
<td>stub <default-metric metric>;</td>
</tr>
<tr>
<td></td>
<td>(pipe symbol)</td>
<td>Indicates a choice between the mutually exclusive keywords or variables on either side of the symbol. The set of choices is often enclosed in parentheses for clarity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(string1</td>
</tr>
<tr>
<td># (pound sign)</td>
<td>Indicates a comment specified on the same line as the configuration statement to which it applies.</td>
<td>rsvp [# Required for dynamic MPLS only</td>
</tr>
<tr>
<td>[] (square brackets)</td>
<td>Encloses a variable for which you can substitute one or more values.</td>
<td>community name members [community-ids]</td>
</tr>
<tr>
<td>Indention and braces ({ })</td>
<td>Identifies a level in the configuration hierarchy.</td>
<td>[edit]</td>
</tr>
<tr>
<td>: (semicolon)</td>
<td>Identifies a leaf statement at a configuration hierarchy level.</td>
<td>routing-options {</td>
</tr>
<tr>
<td></td>
<td></td>
<td>static {</td>
</tr>
<tr>
<td></td>
<td></td>
<td>route default {</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nexthop address;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>retain;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>}</td>
</tr>
</tbody>
</table>

GUI Conventions
Table 2: Text and Syntax Conventions (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents graphical user interface (GUI) items you click or select.</td>
<td>• In the Logical Interfaces box, select All Interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To cancel the configuration, click Cancel.</td>
</tr>
<tr>
<td>> (bold right angle bracket)</td>
<td>Separates levels in a hierarchy of menu selections.</td>
<td>In the configuration editor hierarchy, select Protocols>Ospf.</td>
</tr>
</tbody>
</table>

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation. You can use either of the following methods:

- **Online feedback system**—Click TechLibrary Feedback, on the lower right of any page on the Juniper Networks TechLibrary site, and do one of the following:

 - Click the thumbs-up icon if the information on the page was helpful to you.
 - Click the thumbs-down icon if the information on the page was not helpful to you or if you have suggestions for improvement, and use the pop-up form to provide feedback.

- **E-mail**—Send your comments to techpubs-comments@juniper.net. Include the document or topic name, URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC). If you are a customer with an active Juniper Care or Partner Support Services support contract, or are
covered under warranty, and need post-sales technical support, you can access our tools and resources online or open a case with JTAC.

- Product warranties—For product warranty information, visit https://www.juniper.net/support/warranty/.
- JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called the Customer Support Center (CSC) that provides you with the following features:

- Find CSC offerings: https://www.juniper.net/customers/support/
- Search for known bugs: https://prsearch.juniper.net/
- Find product documentation: https://www.juniper.net/documentation/
- Find solutions and answer questions using our Knowledge Base: https://kb.juniper.net/
- Download the latest versions of software and review release notes: https://www.juniper.net/customers/csc/software/
- Search technical bulletins for relevant hardware and software notifications: https://kb.juniper.net/InfoCenter/
- Join and participate in the Juniper Networks Community Forum: https://www.juniper.net/company/communities/
- Create a service request online: https://myjuniper.juniper.net

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool: https://entitlementsearch.juniper.net/entitlementsearch/

Creating a Service Request with JTAC

You can create a service request with JTAC on the Web or by telephone.

- Visit https://myjuniper.juniper.net.
- Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see https://support.juniper.net/support/requesting-support/.
Overview

Introduction to Interfaces | 31
Physical Interface Properties | 42
Logical Interface Properties | 51
Understanding IPv4 and IPv6 Protocol Family | 53
Configuring VLAN Tagging | 63
Junos OS supports different types of interfaces on which the devices function. The following topics provide information of types of interfaces used on security devices, the naming conventions and how to monitor the interfaces.

Understanding Interfaces

Interfaces act as a doorway through which traffic enters and exits a device. Juniper Networks devices support a variety of interface types:

- **Network interfaces**—Networking interfaces primarily provide traffic connectivity.
- **Services interfaces**—Services interfaces manipulate traffic before it is delivered to its destination.
- **Special interfaces**—Special interfaces include management interfaces, the loopback interface, and the discard interface.

Each type of interface uses a particular medium to transmit data. The physical wires and Data Link Layer protocols used by a medium determine how traffic is sent. To configure and monitor interfaces, you need to understand their media characteristics, as well as physical and logical properties such as IP addressing, link-layer protocols, and link encapsulation.

NOTE: Most interfaces are configurable, but some internally generated interfaces are not configurable.
Network Interfaces

All Juniper Networks devices use network interfaces to make physical connections to other devices. A connection takes place along media-specific physical wires through an I/O card (IOC) in the SRX Series Services Gateway. Networking interfaces primarily provide traffic connectivity.

You must configure each network interface before it can operate on the device. Configuring an interface can define both the physical properties of the link and the logical properties of a logical interface on the link.

Table 3 on page 32 describes network interfaces that are available on SRX Series devices.

Table 3: Network Interfaces

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>Aggregated Ethernet interface. See “Understanding Aggregated Ethernet Interfaces” on page 296.</td>
</tr>
<tr>
<td>at</td>
<td>ATM-over-ADSL or ATM-over-SHDSL WAN interface.</td>
</tr>
<tr>
<td>cl</td>
<td>Physical interface for the 3G wireless modem or LTE Mini-PIM. See “Understanding the 3G Wireless Modem Physical Interface” on page 621 and “LTE Mini-PIM Overview” on page 573. Starting with Junos OS Release 15.1X49-D100, SRX320, SRX340, SRX345, and SRX550HM devices support the LTE interface. The dialer interface is used for initiating wireless WAN connections over LTE networks.</td>
</tr>
<tr>
<td>dl</td>
<td>Dialer interface for initiating USB modem or wireless WAN connections. See “USB Modem Interface Overview” on page 636 and “LTE Mini-PIM Overview” on page 573.</td>
</tr>
<tr>
<td>e1</td>
<td>E1 (also called DS1) WAN interface. See “Understanding T1 and E1 Interfaces” on page 73.</td>
</tr>
<tr>
<td>e3</td>
<td>E3 (also called DS3) WAN interface. See “Understanding T3 and E3 Interfaces” on page 82.</td>
</tr>
<tr>
<td>fe</td>
<td>Fast Ethernet interface. See “Understanding Ethernet Interfaces” on page 277.</td>
</tr>
<tr>
<td>ge</td>
<td>Gigabit Ethernet interface. See “Understanding Ethernet Interfaces” on page 277.</td>
</tr>
<tr>
<td>pt</td>
<td>VDSL2 interface. See “Example: Configuring VDSL2 Interfaces (Detail)” on page 196.</td>
</tr>
<tr>
<td>reth</td>
<td>For chassis cluster configurations only, redundant Ethernet interface. See “Understanding Ethernet Interfaces” on page 277.</td>
</tr>
</tbody>
</table>
Table 3: Network Interfaces (continued)

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>T1 (also called DS1) WAN interface. See "Understanding T1 and E1 Interfaces" on page 73.</td>
</tr>
<tr>
<td>t3</td>
<td>T3 (also called DS3) WAN interface. See "Understanding T3 and E3 Interfaces" on page 82.</td>
</tr>
<tr>
<td>wx</td>
<td>WXC Integrated Services Module (ISM 200) interface for WAN acceleration. See the WXC Integrated Services Module Installation and Configuration.</td>
</tr>
<tr>
<td>xe</td>
<td>10-Gigabit Ethernet interface. See "Understanding the 2-Port 10-Gigabit Ethernet XPIM" on page 336.</td>
</tr>
</tbody>
</table>

NOTE: The affected interfaces are these: ATM-over-ADSL or ATM-over-SHDSL (at) interface, dialer interface (dl), E1 (also called DS1) WAN interface, E3 (also called DS3) WAN interface, VDSL2 interface (pt), serial interface (se), T1 (also called DS1) WAN interface, T3 (also called DS3) WAN interface. However, starting from Junos OS Release 15.1X49-D40 and onwards, SRX300, SRX320, SRX340, SRX345, and SRX550HM devices support VDSL2 (pt), serial (se), T1 (t1), and E1 (e1) interfaces.

Services Interfaces

Services interfaces provide specific capabilities for manipulating traffic before it is delivered to its destination. On Juniper Networks M Series and T Series routing platforms, individual services such as IP-over-IP encapsulation, link services such as multilink protocols, adaptive services such as stateful firewall filters and NAT, and sampling and logging capabilities are implemented by services Physical Interface Cards (PICs). On SRX Series devices, services processing is handled by the Services Processing Card (SPC).

Although the same Junos OS image supports the services features across all routing platforms, on SRX Series devices, services interfaces are not associated with a physical interface. To configure services on these devices, you configure one or more internal interfaces by specifying slot 0, interface carrier 0, and port 0—for example, gr-0/0/0 for GRE.

Table 4 on page 34 describes services interfaces that you can configure on SRX Series Services Gateways.
<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gr-0/0/0</td>
<td>Configurable generic routing encapsulation (GRE) interface. GRE allows the encapsulation of one routing protocol inside another routing protocol. Packets are routed to this internal interface, where they are first encapsulated with a GRE packet and then sent. You can create multiple instances of this interface for forwarding encapsulated data to multiple destination addresses by using the default interface as the parent and creating extensions, for example, gr-0/0/0.1, gr-0/0/0.2, and so on. The GRE interface is an internal interface only and is not associated with a physical interface. It is used only for processing GRE traffic. See the Junos OS Services Interfaces Library for Routing Devices for information about tunnel services.</td>
</tr>
<tr>
<td>ip-0/0/0</td>
<td>Configurable IP-over-IP encapsulation (IP-IP tunnel) interface. IP tunneling allows the encapsulation of one IP packet inside another IP packet. With IP routing, you can route IP packets directly to a particular address or route the IP packets to an internal interface where they are encapsulated inside an IP-IP tunnel and forwarded to the encapsulating packet’s destination address. You can create multiple instances of this interface for forwarding IP-IP tunnel data to multiple destination addresses by using the default interface as the parent and creating extensions, for example, ip-0/0/0.1, ip-0/0/0.2, and so on. The IP-IP interface is an internal interface only and is not associated with a physical interface. It is used only for processing IP-IP tunnel traffic. See the Junos OS Services Interfaces Library for Routing Devices for information about tunnel services.</td>
</tr>
<tr>
<td>lsq-0/0/0</td>
<td>Configurable link services queuing interface. Link services include the multilink services MLPPP, MLFR, and Compressed Real-Time Transport Protocol (CRTP). Packets are routed to this internal interface for link bundling or compression. The link services interface is an internal interface only and is not associated with a physical interface. You must configure the interface for it to perform multilink services. NOTE: The ls-0/0/0 interface has been deprecated. All multiclass multilink features supported by ls-0/0/0 are now supported by lsq-0/0/0.</td>
</tr>
<tr>
<td>lt-0/0/0</td>
<td>Configurable logical tunnel interface that interconnects logical systems on SRX Series devices. See the Logical Systems and Tenant Systems User Guide for Security Devices.</td>
</tr>
</tbody>
</table>
Table 4: Configurable Services Interfaces (continued)

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp0</td>
<td>Configurable PPPoE encapsulation interface. PPP packets being routed in an Ethernet network use PPPoE encapsulation. Packets are routed to this internal interface for PPPoE encapsulation. The PPPoE encapsulation interface is an internal interface only and is not associated with a physical interface. You must configure the interface for it to forward PPPoE traffic. See “Understanding Point-to-Point Protocol over Ethernet” on page 462.</td>
</tr>
<tr>
<td>ppd0</td>
<td>Protocol Independent Multicast (PIM) de-encapsulation interface. In PIM sparse mode, the first-hop routing platform encapsulates packets destined for the rendezvous point device. The packets are encapsulated with a unicast header and are forwarded through a unicast tunnel to the rendezvous point. The rendezvous point then de-encapsulates the packets and transmits them through its multicast tree. Within a device, packets are routed to this internal interface for de-encapsulation. The PIM de-encapsulation interface is an internal interface only and is not associated with a physical interface. You must configure PIM with the [edit protocol pim] hierarchy to perform PIM de-encapsulation. Use the <code>show pim interfaces</code> command to check the status of ppd0 interface.</td>
</tr>
<tr>
<td>ppe0</td>
<td>Protocol Independent Multicast (PIM) encapsulation interface. In PIM sparse mode, the first-hop routing platform encapsulates packets destined for the rendezvous point device. The packets are encapsulated with a unicast header and are forwarded through a unicast tunnel to the rendezvous point. The rendezvous point then de-encapsulates the packets and transmits them through its multicast tree. Within a device, packets are routed to this internal interface for encapsulation. The PIM encapsulation interface is an internal interface only and is not associated with a physical interface. You must configure PIM with the [edit protocol pim] hierarchy to perform PIM encapsulation.</td>
</tr>
<tr>
<td>st0</td>
<td>Secure tunnel interface used for IPSec VPNs. See the IPsec VPN User Guide for Security Devices.</td>
</tr>
<tr>
<td>umd0</td>
<td>Configurable USB modem physical interface. This interface is detected when a USB modem is connected to the USB port on the device. See “USB Modem Configuration Overview” on page 639.</td>
</tr>
</tbody>
</table>

Table 5 on page 36 describes non-configurable services interfaces for SRX Series Services Gateways.
Table 5: Non-Configurable Services Interfaces

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gre</td>
<td>Internally generated Generic Routing Encapsulation (GRE) interface created by Junos OS to handle GRE traffic. It is not a configurable interface.</td>
</tr>
<tr>
<td>pip</td>
<td>Internally generated IP-over-IP interface created by Junos OS to handle IP tunnel traffic. It is not a configurable interface.</td>
</tr>
<tr>
<td>lsi</td>
<td>Internally generated link services interface created by Junos OS to handle multilink services like MLPPP, MLFR, and CRTP. It is not a configurable interface.</td>
</tr>
<tr>
<td>pc-pim/0/0</td>
<td>Internally configured interface used by the system as a control path between the WXC Integrated Services Module and the Routing Engine. It is not a configurable interface. See the WX and WXC Series.</td>
</tr>
<tr>
<td>pimd</td>
<td>Internally generated Protocol Independent Multicast (PIM) de-encapsulation interface created by Junos OS to handle PIM de-encapsulation. It is not a configurable interface.</td>
</tr>
<tr>
<td>pime</td>
<td>Internally generated Protocol Independent Multicast (PIM) encapsulation interface created by Junos OS to handle PIM encapsulation. It is not a configurable interface.</td>
</tr>
<tr>
<td>tap</td>
<td>Internally generated interface created by Junos OS to monitor and record traffic during passive monitoring. Packets discarded by the Packet Forwarding Engine are placed on this interface. It is not a configurable interface.</td>
</tr>
</tbody>
</table>

Special Interfaces

Special interfaces include management interfaces, which are primarily intended for accessing the device remotely, the loopback interface, which has several uses depending on the particular Junos OS feature being configured, and the discard interface.

Table 6 on page 36 describes special interfaces for SRX Series Services Gateways.

Table 6: Special Interfaces

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fxp0, fxp1</td>
<td>On SRX Series devices, the fxp0 management interface is a dedicated port located on the Routing Engine.</td>
</tr>
</tbody>
</table>
Table 6: Special Interfaces (continued)

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Loopback address. The loopback address has several uses, depending on the particular Junos feature being configured.</td>
</tr>
<tr>
<td>dsc</td>
<td>Discard interface.</td>
</tr>
</tbody>
</table>

Interface Naming Conventions

Each device interface has a unique name that follows a naming convention. If you are familiar with Juniper Networks M Series and T Series routing platforms, be aware that device interface names are similar to but not identical to the interface names on those routing platforms.

The unique name of each network interface identifies its type and location and indicates whether it is a physical interface or an optional logical unit created on a physical interface.

- The name of each network interface has the following format to identify the physical device that corresponds to a single physical network connector:

 `type-slot/pim-or-ioc/port`

- Network interfaces that are fractionalized into time slots include a channel number in the name, preceded by a colon (:):

 `type-slot/pim-or-ioc/port:channel`

- Each logical interface has an additional logical unit identifier, preceded by a period (.):

 `type-slot/pim-or-ioc/port:<channel>.unit`

The parts of an interface name are summarized in Table 7 on page 37.

Table 7: Network Interface Names

<table>
<thead>
<tr>
<th>Name Part</th>
<th>Meaning</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>Type of network medium that can connect to this interface.</td>
<td>ae, at, ei, e3, fe, fxp0, fxp1, ge, lo0, lsq, lt, ppo, pt, sto, t1, t3, xe, and so on.</td>
</tr>
<tr>
<td>Name Part</td>
<td>Meaning</td>
<td>Possible Values</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| **slot** | Number of the chassis slot in which a PIM or IOC is installed. | SRX5600 and SRX5800 devices: The slot number begins at 0 and increases as follows from left to right, bottom to top:
 - SRX5600 device—Slots 0 to 5
 - SRX5800 device—Slots 0 to 5, 7 to 11
SRX3400 and SRX3600 devices: The Switch Fabric Board (SFB) is always 0. Slot numbers increase as follows from top to bottom, left to right:
 - SRX3400 device—Slots 0 to 4
 - SRX3600 device—Slots 0 to 6
 - SRX4600 device—Slots 0 to 6 |
| **pim-or-ioc** | Number of the PIM or IOC on which the physical interface is located. | SRX5600 and SRX5800 devices: For 40-port Gigabit Ethernet IOCs or 4-port 10-Gigabit Ethernet IOCs, this number can be 0, 1, 2, or 3.
SRX3400, SRX3600, and SRX 4600 devices: This number is always 0. Only one IOC can be installed in a slot. |
| **port** | Number of the port on a PIM or IOC on which the physical interface is located. | On SRX5600 and SRX5800 devices:
 - For 40-port Gigabit Ethernet IOCs, this number begins at 0 and increases from left to right to a maximum of 9.
 - For 4-port 10-Gigabit Ethernet IOCs, this number is always 0.
On SRX3400, SRX3600, and SRX 4600 devices:
 - For the SFB built-in copper Gigabit Ethernet ports, this number begins at 0 and increases from top to bottom, left to right, to a maximum of 7. For the SFB built-in fiber Gigabit Ethernet ports, this number begins at 8 and increases from left to right to a maximum of 11.
 - For 16-port Gigabit Ethernet IOCs, this number begins at 0 to a maximum of 15.
 - For 2-port 10-Gigabit Ethernet IOCs, this number is 0 or 1.
Port numbers appear on the PIM or IOC faceplate. |
| **channel** | Number of the channel (time slot) on a fractional or channelized T1 or E1 interface. | On an E1 interface, a value from 1 through 31. The 1 time slot is reserved.
 - On a T1 interface, a value from 1 through 24. |
Table 7: Network Interface Names (continued)

<table>
<thead>
<tr>
<th>Name Part</th>
<th>Meaning</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>unit</td>
<td>Number of the logical interface created on a physical interface.</td>
<td>A value from 0 through 16384. If no logical interface number is specified, unit 0 is the default, but must be explicitly configured. In addition to user-configured interfaces, there are some logical interfaces that are created dynamically. Hence, for Junos OS, the maximum limit for configuring logical interfaces is 2,62,143 (user configured and dynamically created). Based on performance, for each platform, the maximum number of logical interfaces supported can vary.</td>
</tr>
</tbody>
</table>

NOTE: Platform support depends on the Junos OS release in your installation.

Understanding the Data Link Layer

The Data Link Layer is Layer 2 in the Open Systems Interconnection (OSI) model. The Data Link Layer is responsible for transmitting data across a physical network link. Each physical medium has link-layer specifications for network and link-layer protocol characteristics such as physical addressing, network topology, error notification, frame sequencing, and flow control.
Physical Addressing

Physical addressing is different from network addressing. Network addresses differentiate between nodes or devices in a network, allowing traffic to be routed or switched through the network. In contrast, physical addressing identifies devices at the link-layer level, differentiating between individual devices on the same physical medium. The primary form of physical addressing is the media access control (MAC) address.

Network Topology

Network topology specifications identify how devices are linked in a network. Some media allow devices to be connected by a bus topology, while others require a ring topology. The bus topology is used by Ethernet technologies, which are supported on Juniper Networks devices.

Error Notification

The Data Link Layer provides error notifications that alert higher layer protocols that an error has occurred on the physical link. Examples of link-level errors include the loss of a signal, the loss of a clocking signal across serial connections, or the loss of the remote endpoint on a T1 or T3 link.

Frame Sequencing

The frame sequencing capabilities of the Data Link Layer allow frames that are transmitted out of sequence to be reordered on the receiving end of a transmission. The integrity of the packet can then be verified by means of the bits in the Layer 2 header, which is transmitted along with the data payload.

Flow Control

Flow control within the Data Link Layer allows receiving devices on a link to detect congestion and notify their upstream and downstream neighbors. The neighbor devices relay the congestion information to their higher layer protocols so that the flow of traffic can be altered or rerouted.

Data Link Sublayers

The Data Link Layer is divided into two sublayers: logical link control (LLC) and media access control (MAC). The LLC sublayer manages communications between devices over a single link of a network. This sublayer supports fields in link-layer frames that enable multiple higher layer protocols to share a single physical link.

The MAC sublayer governs protocol access to the physical network medium. Through the MAC addresses that are typically assigned to all ports on a device, multiple devices on the same physical link can uniquely identify one another at the Data Link Layer. MAC addresses are used in addition to the network addresses that are typically configured manually on ports within a network.
MAC Addressing

A MAC address is the serial number permanently stored in a device adapter to uniquely identify the device. MAC addresses operate at the Data Link Layer, while IP addresses operate at the Network Layer. The IP address of a device can change as the device is moved around a network to different IP subnets, but the MAC address remains the same, because it is physically tied to the device.

Within an IP network, devices match each MAC address to its corresponding configured IP address by means of the Address Resolution Protocol (ARP). ARP maintains a table with a mapping for each MAC address in the network.

Most Layer 2 networks use one of three primary numbering spaces—MAC-48, EUI-48 (extended unique identifier), and EUI-64—which are all globally unique. MAC-48 and EUI-48 spaces each use 48-bit addresses, and EUI-64 spaces use a 64-bit addresses, but all three use the same numbering format. MAC-48 addresses identify network hardware, and EUI-48 addresses identify other devices and software.

The Ethernet and ATM technologies supported on devices use the MAC-48 address space. IPv6 uses the EUI-64 address space.

MAC-48 addresses are the most commonly used MAC addresses in most networks. These addresses are 12-digit hexadecimal numbers (48 bits in length) that typically appear in one of the following formats:

- **MM:MM:MM:SS:SS:SS**
- **MM-MM-MM-SS-SS-SS**

The first three octets (**MM:MM:MM** or **MM-MM-MM**) are the ID number of the hardware manufacturer. Manufacturer ID numbers are assigned by the Institute of Electrical and Electronics Engineers (IEEE). The last three octets (**SS:SS:SS** or **SS-SS-SS**) make up the serial number for the device, which is assigned by the manufacturer. For example, an Ethernet interface card might have a MAC address of **00:05:85:c1:a6:a0**.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D100</td>
<td>Starting with Junos OS Release 15.1X49-D100, SRX320, SRX340, SRX345, and SRX550HM devices support the LTE interface. The dialer interface is used for initiating wireless WAN connections over LTE networks.</td>
</tr>
</tbody>
</table>
Physical Interface Properties

The physical interfaces on security devices affect the transmission of either link-layer signals or the data across the links. The topics below describes the physical properties that include clocking properties, transmission properties, such as the maximum transmission unit (MTU), and encapsulation methods, such as point-to-point and Frame Relay encapsulation. SRX series devices also support jumbo frames.

Understanding Interface Physical Properties

The physical properties of a network interface are the characteristics associated with the physical link that affect the transmission of either link-layer signals or the data across the links. Physical properties include clocking properties, transmission properties, such as the maximum transmission unit (MTU), and encapsulation methods, such as point-to-point and Frame Relay encapsulation.

The default property values for an interface are usually sufficient to successfully enable a bidirectional link. However, if you configure a set of physical properties on an interface, those same properties must be set on all adjacent interfaces to which a direct connection is made.

Table 8 on page 42 summarizes some key physical properties of device interfaces.

Table 8: Interface Physical Properties

<table>
<thead>
<tr>
<th>Physical Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bert-error-rate</td>
<td>Bit error rate (BER). The error rate specifies the number of bit errors in a particular bit error rate test (BERT) period required to generate a BERT error condition. See "Understanding Bit Error Rate Testing" on page 44.</td>
</tr>
<tr>
<td>Physical Property</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>bert-period</td>
<td>Bit error rate test (BERT) time period over which bit errors are sampled. See "Understanding Bit Error Rate Testing" on page 44.</td>
</tr>
<tr>
<td>clocking</td>
<td>Clock source for the link. Clocking can be provided by the local system (internal) or a remote endpoint on the link (external). By default, all interfaces use the internal clocking mode. If an interface is configured to accept an external clock source, one adjacent interface must be configured to act as a clock source. Under this configuration, the interface operates in a loop timing mode, in which the clocking signal is unique for that individual network segment or loop. See "Understanding Interface Clocking" on page 45.</td>
</tr>
<tr>
<td>description</td>
<td>A user-defined text description of the interface, often used to describe the interface's purpose.</td>
</tr>
<tr>
<td>disable</td>
<td>Administratively disables the interface.</td>
</tr>
<tr>
<td>encapsulation</td>
<td>Type of encapsulation on the interface. Common encapsulation types include PPP, Frame Relay, Cisco HDLC, and PPP over Ethernet (PPPoE). See “Understanding Physical Encapsulation on an Interface” on page 431.</td>
</tr>
<tr>
<td>fcs</td>
<td>Frame check sequence (FCS). FCS is an error-detection scheme that appends parity bits to a digital signal and uses decoding algorithms that detect errors in the received digital signal.</td>
</tr>
</tbody>
</table>
Table 8: Interface Physical Properties (continued)

<table>
<thead>
<tr>
<th>Physical Property</th>
<th>Description</th>
</tr>
</thead>
</table>
| **mtu** | Maximum transmission unit (MTU) size. MTU is the largest size packet or frame, specified in bytes or octets, that can be sent in a packet-based or frame-based network. The TCP uses MTU to determine the maximum size of each packet in any transmission. You can adjust the MTU values at the physical interfaces by using the following command:

 set interface interface-name mtu mtu-value

 Sometimes there is a need to reduce the MTU values on interfaces to match the host tap interface MTU otherwise packets are dropped. You can adjust the MTU values by setting the **mtu** option of the **set interfaces [fxp0 | em0 | fab0 | fab1]** command to a value between 256 and 9192.

 Example:

 user@host# set interfaces em0 mtu 1400

 The supported range for configuring an MTU packet size is 256 through 9192 bytes. However, all interfaces do not support 9192 bytes. For more information on the supported interfaces, see “MTU Default and Maximum Values” on page 47. |
no-keepalives	Disabling of keepalive messages across a physical link. A keepalive message is sent between network devices to indicate that they are still active. Keepalives help determine whether the interface is operating correctly. Except for ATM-over-ADSL interfaces, all interfaces use keepalives by default.
pap	Password Authentication Protocol (PAP). Specifying **pap** enables PAP authentication on the interface. See “Understanding CHAP Authentication on a PPPoE Interface” on page 480.
payload-scrambler	Scrambling of traffic transmitted out the interface. Payload scrambling randomizes the data payload of transmitted packets. Scrambling eliminates nonvariable bit patterns (strings of all 1s or all 0s) that generate link-layer errors across some physical links.

Understanding Bit Error Rate Testing

In telecommunication transmission, the bit error rate (BER) is the percentage of bits that have errors compared to the total number of bits received in a transmission, usually expressed as 10 to a negative power. For example, a transmission with a BER of 10^{-6} received 1 errored bit in 1,000,000 bits transmitted. The BER indicates how often a packet or other data unit must be retransmitted because of an error. If the BER is too high, a slower data rate might improve the overall transmission time for a given amount of data if it reduces the BER and thereby lowers the number of resent packets.
A bit error rate test (BERT) is a procedure or device that measures the BER for a given transmission. You can configure a device to act as a BERT device by configuring the interface with a bit error rate and a testing period. When the interface receives a BERT request from a BER tester, it generates a response in a well-known BERT pattern. The initiating device checks the BERT-patterned response to determine the number of bit errors.

Understanding Interface Clocking

Clocking determines how individual routing nodes or entire networks sample transmitted data. As streams of information are received by a device in a network, a clock source specifies when to sample the data. In asynchronous networks, the clock source is derived locally, and synchronous networks use a central, external clock source. Interface clocking indicates whether the device uses asynchronous or synchronous clocking.

NOTE: Because truly synchronous networks are difficult to design and maintain, most synchronous networks are really plesiochronous networks. In a plesiochronous network, different timing regions are controlled by local clocks that are synchronized (with very narrow constraints). Such networks approach synchronicity and are generally known as synchronous networks.

Most networks are designed to operate as asynchronous networks. Each device generates its own clock signal, or devices use clocks from more than one clock source. The clocks within the network are not synchronized to a single clock source. By default, devices generate their own clock signals to send and receive traffic.

The system clock allows the device to sample (or detect) and transmit data being received and transmitted through its interfaces. Clocking enables the device to detect and transmit the 0s and 1s that make up digital traffic through the interface. Failure to detect the bits within a data flow results in dropped traffic.

Short-term fluctuations in the clock signal are known as clock jitter. Long-term variations in the signal are known as clock wander.
Asynchronous clocking can either derive the clock signal from the data stream or transmit the clocking signal explicitly.

This topic contains the following sections:

Data Stream Clocking

Common in T1 links, data stream clocking occurs when separate clock signals are not transmitted within the network. Instead, devices must extract the clock signal from the data stream. As bits are transmitted across the network, each bit has a time slot of 648 nanoseconds. Within a time slot, pulses are transmitted with alternating voltage peaks and drops. The receiving device uses the period of alternating voltages to determine the clock rate for the data stream.

Explicit Clocking Signal Transmission

Clock signals that are shared by hosts across a data link must be transmitted by one or both endpoints on the link. In a serial connection, for example, one host operates as a clock master and the other operates as a clock slave. The clock master internally generates a clock signal that is transmitted across the data link. The clock slave receives the clock signal and uses its period to determine when to sample data and how to transmit data across the link.

This type of clock signal controls only the connection on which it is active and is not visible to the rest of the network. An explicit clock signal does not control how other devices or even other interfaces on the same device sample or transmit data.

Understanding Frame Check Sequences

All packets or frames within a network can be damaged by crosstalk or interference in the network’s physical wires. The frame check sequence (FCS) is an extra field in each transmitted frame that can be analyzed to determine if errors have occurred. The FCS uses cyclic redundancy checks (CRCs), checksums, and two-dimensional parity bits to detect errors in the transmitted frames.

This topic contains the following sections:
Cyclic Redundancy Checks and Checksums

On a link that uses CRCs for frame checking, the data source uses a predefined polynomial algorithm to calculate a CRC number from the data it is transmitting. The result is included in the FCS field of the frame and transmitted with the data. On the receiving end, the destination host performs the same calculation on the data it receives.

If the result of the second calculation matches the contents of the FCS field, the packet was sent and received without bit errors. If the values do not match, an FCS error is generated, the frame is discarded and the originating host is notified of the error.

Checksums function similarly to CRCs, but use a different algorithm.

Two-Dimensional Parity

On a link that uses two-dimensional parity bits for frame checking, the sending and receiving hosts examine each frame in the total packet transmission and create a parity byte that is evaluated to detect transmission errors.

For example, a host can create the parity byte for the following frame sequence by summing up each column (each bit position in the frame) and keeping only the least-significant bit:

Frame 1	0 1 0 1 0 0 1
Frame 2	1 1 0 1 0 0 1
Frame 3	1 0 1 1 1 1 0
Frame 4	0 0 0 1 1 1 0
Frame 5	0 1 1 0 1 0 0
Frame 6	1 0 1 1 1 1 1
Parity Byte	1 1 1 1 0 1 1

If the sum of the bit values in a bit position is even, the parity bit for the position is 0. If the sum is odd, the parity bit is 1. This method is called even parity. Matching parity bytes on the originating and receiving hosts indicate that the packet was received without error.

MTU Default and Maximum Values

The MTU values are by default without any MTU configurations. If the MTU value is set, then the formula \(\text{IFF MTU (IP MTU)} = \text{IFD MTU (Media MTU)} - \text{L2 Overhead} \) is applicable. See Table 9 on page 48 for default MTU values.
NOTE: For ATM MLPPP irrespective of UIFD MTU, the IP MTU is always 1500 because the IP MTU calculation is based on the LSQ interface. Even if you configure the LSQ family MTU, the IP MTU value cannot exceed 1504.

Table 9 on page 48 lists MTU values for the SRX Series Services Gateways Physical Interface Modules (PIMs).

Table 9: MTU Values for the SRX Series Services Gateways PIMs

<table>
<thead>
<tr>
<th>PIM</th>
<th>Default Media MTU (Bytes)</th>
<th>Maximum MTU (Bytes)</th>
<th>Default IP MTU (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Port Gigabit Ethernet Small Form-Factor Pluggable (SFP) Mini-PIM</td>
<td>1514</td>
<td>9010</td>
<td>1500</td>
</tr>
<tr>
<td>1-Port Small Form-Factor Pluggable (SFP) Mini-PIM</td>
<td>1514</td>
<td>1518</td>
<td>1500</td>
</tr>
<tr>
<td>DOCSIS Mini-PIM</td>
<td>1504</td>
<td>1504</td>
<td>1500</td>
</tr>
<tr>
<td>Serial Mini-PIM</td>
<td>1504</td>
<td>2000</td>
<td>1500</td>
</tr>
<tr>
<td>T1/E1 Mini-PIM</td>
<td>1504</td>
<td>2000</td>
<td>1500</td>
</tr>
<tr>
<td>Dual CT1/E1 GPIM</td>
<td>1504</td>
<td>9000</td>
<td>1500</td>
</tr>
<tr>
<td>Quad CT1/E1 GPIM</td>
<td>1504</td>
<td>9000</td>
<td>1500</td>
</tr>
<tr>
<td>2-Port 10- Gigabit Ethernet XPIM</td>
<td>1514</td>
<td>9192</td>
<td>1500</td>
</tr>
<tr>
<td>16-Port Gigabit Ethernet XPIM</td>
<td>1514</td>
<td>9192</td>
<td>1500</td>
</tr>
<tr>
<td>24-Port Gigabit Ethernet XPIM</td>
<td>1514</td>
<td>9192</td>
<td>1500</td>
</tr>
<tr>
<td>ADSL2+ Mini-PIM (Encapsulation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atm-snap</td>
<td>1512</td>
<td>1512</td>
<td>1504</td>
</tr>
</tbody>
</table>
Table 9: MTU Values for the SRX Series Services Gateways PIMs (*continued*)

<table>
<thead>
<tr>
<th>PIM</th>
<th>Default Media MTU (Bytes)</th>
<th>Maximum MTU (Bytes)</th>
<th>Default IP MTU (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>atm-vcmux</td>
<td>1512</td>
<td>1512</td>
<td>1512</td>
</tr>
<tr>
<td>atm-nlpid</td>
<td>1512</td>
<td>1512</td>
<td>1508</td>
</tr>
<tr>
<td>atm-cisco-nlpid</td>
<td>1512</td>
<td>1512</td>
<td>1510</td>
</tr>
<tr>
<td>ether-over-atm-llc</td>
<td>1512</td>
<td>1512</td>
<td>1488</td>
</tr>
<tr>
<td>atm-ppp-llc</td>
<td>1512</td>
<td>1512</td>
<td>1506</td>
</tr>
<tr>
<td>atm-ppp-vcmux</td>
<td>1512</td>
<td>1512</td>
<td>1510</td>
</tr>
<tr>
<td>atm-mlppp-llc</td>
<td>1512</td>
<td>1512</td>
<td>1500</td>
</tr>
<tr>
<td>ppp-over-ether-over-atm-llc</td>
<td>1512</td>
<td>1512</td>
<td>1480</td>
</tr>
<tr>
<td>VDSL- Mini-PIM AT mode (Encapsulation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atm-snap</td>
<td>1514</td>
<td>1514</td>
<td>1506</td>
</tr>
<tr>
<td>atm-vcmux</td>
<td>1514</td>
<td>1514</td>
<td>1514</td>
</tr>
<tr>
<td>atm-nlpid</td>
<td>1514</td>
<td>1514</td>
<td>1510</td>
</tr>
<tr>
<td>atm-cisco-nlpid</td>
<td>1514</td>
<td>1514</td>
<td>1512</td>
</tr>
<tr>
<td>ether-over-atm-llc</td>
<td>1514</td>
<td>1524</td>
<td>1490</td>
</tr>
<tr>
<td>atm-ppp-llc</td>
<td>1514</td>
<td>1514</td>
<td>1508</td>
</tr>
<tr>
<td>atm-ppp-vcmux</td>
<td>1514</td>
<td>1514</td>
<td>1512</td>
</tr>
<tr>
<td>atm-mlppp-llc</td>
<td>1514</td>
<td>1514</td>
<td>1500</td>
</tr>
<tr>
<td>ppp-over-ether-over-atm-llc</td>
<td>1514</td>
<td>1514</td>
<td>1482</td>
</tr>
<tr>
<td>VDSL- Mini-PIM PT mode</td>
<td>1514</td>
<td>1514</td>
<td>1500</td>
</tr>
</tbody>
</table>
Table 9: MTU Values for the SRX Series Services Gateways PIMs (continued)

<table>
<thead>
<tr>
<th>PIM</th>
<th>Default Media MTU (Bytes)</th>
<th>Maximum MTU (Bytes)</th>
<th>Default IP MTU (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.SHDSL Mini-PIM AT mode (Encapsulation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atm-snap</td>
<td>4482</td>
<td>4482</td>
<td>4470</td>
</tr>
<tr>
<td>atm-vcmux</td>
<td>4482</td>
<td>4482</td>
<td>4470</td>
</tr>
<tr>
<td>atm-nlpid</td>
<td>4482</td>
<td>4482</td>
<td>4470</td>
</tr>
<tr>
<td>atm-cisco-nlpid</td>
<td>4482</td>
<td>4482</td>
<td>4470</td>
</tr>
<tr>
<td>ether-over-atm-llc</td>
<td>4482</td>
<td>4482</td>
<td>1500</td>
</tr>
<tr>
<td>atm-ppp-llc</td>
<td>4482</td>
<td>4482</td>
<td>4476</td>
</tr>
<tr>
<td>atm-ppp-vcmux</td>
<td>4482</td>
<td>4482</td>
<td>4480</td>
</tr>
<tr>
<td>atm-mlppp-llc</td>
<td>4482</td>
<td>4482</td>
<td>1500</td>
</tr>
<tr>
<td>ppp-over-ether-over-atm-llc</td>
<td>4482</td>
<td>4482</td>
<td>1492</td>
</tr>
<tr>
<td>G.SHDSL Mini-PIM PT mode</td>
<td>1514</td>
<td>1514</td>
<td>1500</td>
</tr>
</tbody>
</table>

Understanding Jumbo Frames Support for Ethernet Interfaces

SRX Series devices support jumbo frames up to 9192 bytes.

Jumbo frames are Ethernet frames with more than 1500 bytes of payload (maximum transmission unit [MTU]). Jumbo frames can carry up to 9000 bytes of payload.

You configure jumbo frames at the physical interface by using the following command:

```
set interface interface-name mtu mtu-value
```

Example:
The supported range for configuring an MTU packet size is 256 through 9192 bytes. However, all interfaces do not support 9192 bytes. For more information on the supported interfaces, see “MTU Default and Maximum Values” on page 47.

Logical Interface Properties

The logical interfaces can be configured on the security devices and the description is displayed in the output of the show commands. The logical properties of the security devices include protocol families, IP address or addresses associated with the interface, Virtual LAN (VLAN) tagging, and any firewall filters or routing policies.

Understanding Interface Logical Properties

The logical properties of an interface are the characteristics that do not apply to the physical interface or the wires connected to it. Logical properties include:

- Protocol families running on the interface (including any protocol-specific MTUs)
- IP address or addresses associated with the interface. A logical interface can be configured with an IPv6 address, IPv4 address, or both. The IP specification requires a unique address on every interface of each system attached to an IP network, so that traffic can be correctly routed. Individual hosts such as home computers must have a single IP address assigned. Devices must have a unique IP address for every interface.
- Virtual LAN (VLAN) tagging
- Any firewall filters or routing policies that are operating on the interface
Understanding Protocol Families

IN THIS SECTION

- Common Protocol Suites | 52
- Other Protocol Suites | 53

A protocol family is a group of logical properties within an interface configuration. Protocol families include all the protocols that make up a protocol suite. To use a protocol within a particular suite, you must configure the entire protocol family as a logical property for an interface. The protocol families include common and not-so-common protocol suites.

This topic contains the following sections:

Common Protocol Suites

Junos OS protocol families include the following common protocol suites:

- Inet—Supports IP protocol traffic, including OSPF, BGP, and Internet Control Message Protocol (ICMP).
- Inet6—Supports IPv6 protocol traffic, including RIP for IPv6 (RIPng), IS-IS, and BGP.
- ISO—Supports IS-IS traffic.
- MPLS—Supports MPLS.

NOTE: Junos OS security features are flow-based—meaning the device sets up a flow to examine the traffic. Flow-based processing is not supported for ISO or MPLS protocol families.
Other Protocol Suites

In addition to the common protocol suites, Junos protocol families sometimes use the following protocol suites:

- **ccc**—Circuit cross-connect (CCC).
- **mlfr-uni-nni**—Multilink Frame Relay (MLFR) FRF.16 user-to-network network-to-network (UNI NNI).
- **mlfr-end-to-end**—Multilink Frame Relay end-to-end.
- **mlppp**—Multilink Point-to-Point Protocol.
- **tcc**—Translational cross-connect (TCC).
- **tnp**—Trivial Network Protocol. This Juniper Networks proprietary protocol provides communication between the Routing Engine and the device’s packet forwarding components. Junos OS automatically configures this protocol family on the device’s internal interfaces only.

Understanding IPv4 and IPv6 Protocol Family

IPv4 addresses are 32-bit numbers that are typically displayed in dotted decimal notation and contains two primary parts: the network prefix and the host number. The topics below describes the IPv4 Classful Addressing, IPv4 Dotted Decimal Notation, IPv4 Subnetting, IPv4 Variable-Length Subnet Masks, understanding IP Version 6, IPv6 address types and use of them in Junos OS RX Series Services Gateway, and configuration of inet6 IPv6 Protocol Family.
Understanding IPv4 Addressing

IPv4 addresses are 32-bit numbers that are typically displayed in dotted decimal notation. A 32-bit address contains two primary parts: the network prefix and the host number.

All hosts within a single network share the same network address. Each host also has an address that uniquely identifies it. Depending on the scope of the network and the type of device, the address is either globally or locally unique. Devices that are visible to users outside the network (webservers, for example) must have a globally unique IP address. Devices that are visible only within the network must have locally unique IP addresses.

IP addresses are assigned by a central numbering authority called the Internet Assigned Numbers Authority (IANA). IANA ensures that addresses are globally unique where needed and has a large address space reserved for use by devices not visible outside their own networks.

This topic contains the following sections:

IPv4 Classful Addressing

To provide flexibility in the number of addresses distributed to networks of different sizes, 4-octet (32-bit) IP addresses were originally divided into three different categories or classes: class A, class B, and class C. Each address class specifies a different number of bits for its network prefix and host number:

- Class A addresses use only the first byte (octet) to specify the network prefix, leaving 3 bytes to define individual host numbers.
- Class B addresses use the first 2 bytes to specify the network prefix, leaving 2 bytes to define host addresses.
- Class C addresses use the first 3 bytes to specify the network prefix, leaving only the last byte to identify hosts.
In binary format, with an x representing each bit in the host number, the three address classes can be represented as follows:

<table>
<thead>
<tr>
<th>Class</th>
<th>Host Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>00000000 xxxxxxxx xxxxxxxx xxxxxxxx</td>
<td>(Class A)</td>
</tr>
<tr>
<td>B</td>
<td>00000000 00000000 xxxxxxxx xxxxxxxx</td>
<td>(Class B)</td>
</tr>
<tr>
<td>C</td>
<td>00000000 00000000 00000000 xxxxxxxx</td>
<td>(Class C)</td>
</tr>
</tbody>
</table>

Because each bit (x) in a host number can have a 0 or 1 value, each represents a power of 2. For example, if only 3 bits are available for specifying the host number, only the following host numbers are possible:

<table>
<thead>
<tr>
<th>Host Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>111 110 101</td>
<td></td>
</tr>
<tr>
<td>100 011 010</td>
<td></td>
</tr>
<tr>
<td>001 001</td>
<td></td>
</tr>
</tbody>
</table>

In each IP address class, the number of host-number bits raised to the power of 2 indicates how many host numbers can be created for a particular network prefix. Class A addresses have 2^{24} (or 16,777,216) possible host numbers, class B addresses have 2^{16} (or 65,536) host numbers, and class C addresses have 2^8 (or 256) possible host numbers.

IPv4 Dotted Decimal Notation

The 32-bit IPv4 addresses are most often expressed in dotted decimal notation, in which each octet (or byte) is treated as a separate number. Within an octet, the rightmost bit represents 2^0 (or 1), increasing to the left until the first bit in the octet is 2^7 (or 128). Following are IP addresses in binary format and their dotted decimal equivalents:

<table>
<thead>
<tr>
<th>Binary Format</th>
<th>Dotted Decimal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11010000 01100010 11000000 10101010</td>
<td>208.98.192.170</td>
<td></td>
</tr>
<tr>
<td>01111011 00001111 11110000 01010101</td>
<td>118.15.240.85</td>
<td></td>
</tr>
<tr>
<td>00111011 11001100 00111100 00111011</td>
<td>51.204.60.59</td>
<td></td>
</tr>
</tbody>
</table>

IPv4 Subnetting

Because of the physical and architectural limitations on the size of networks, you often must break large networks into smaller subnetworks. Within a network, each wire or ring requires its own network number and identifying subnet address.

Figure 1 on page 56 shows two subnets in a network.
Figure 1: Subnets in a Network

Figure 1 on page 56 shows three devices connected to one subnet and three more devices connected to a second subnet. Collectively, the six devices and two subnets make up the larger network. In this example, the network is assigned the network prefix 192.14.0.0, a class C address. Each device has an IP address that falls within this network prefix.

In addition to sharing a network prefix (the first two octets), the devices on each subnet share a third octet. The third octet identifies the subnet. All devices on a subnet must have the same subnet address. In this case, the alpha subnet has the IP address 192.14.126.0 and the beta subnet has the IP address 192.14.17.0.

The subnet address 192.14.17.0 can be represented as follows in binary notation:

```
11000000 . 00001110 . 00010001 . xxxxxxxx
```

Because the first 24 bits in the 32-bit address identify the subnet, the last 8 bits are not significant. To indicate the subnet, the address is written as 192.14.17.0/24 (or just 192.14.17/24). The /24 is the subnet mask (sometimes shown as 255.255.255.0).

IPv4 Variable-Length Subnet Masks

Traditionally, subnets were divided by address class. Subnets had either 8, 16, or 24 significant bits, corresponding to 2^{24}, 2^{16}, or 2^8 possible hosts. As a result, an entire /16 subnet had to be allocated for a network that required only 400 addresses, wasting 65,136 ($2^{16} - 400 = 65,136$) addresses.

To help allocate address spaces more efficiently, variable-length subnet masks (VLSMs) were introduced. Using VLSM, network architects can allocate more precisely the number of addresses required for a particular subnet.
For example, suppose a network with the prefix 192.14.17/24 is divided into two smaller subnets, one consisting of 18 devices and the other of 46 devices.

To accommodate 18 devices, the first subnet must have 2^5 (32) host numbers. Having 5 bits assigned to the host number leaves 27 bits of the 32-bit address for the subnet. The IP address of the first subnet is therefore 192.14.17.128/27, or the following in binary notation:

```
11000000 . 00001110 . 00010001 . 100xxxxx
```

The subnet mask includes 27 significant digits.

To create the second subnet of 46 devices, the network must accommodate 2^6 (64) host numbers. The IP address of the second subnet is 192.14.17.64/26, or

```
11000000 . 00001110 . 00010001 . 01xxxxxx
```

By assigning address bits within the larger /24 subnet mask, you create two smaller subnets that use the allocated address space more efficiently.

Understanding IPv6 Address Space, Addressing, Address Format, and Address Types

Understanding IP Version 6 (IPv6)

The ongoing expansive growth of the Internet and the need to provide IP addresses to accommodate it—to support increasing numbers of new users, computer networks, Internet-enabled devices, and new and improved applications for collaboration and communication—is escalating the emergent use of a new IP protocol. IPv6, with its robust architecture, was designed to satisfy these current and anticipated near future requirements.

IP version 4 (IPv4) is widely used throughout the world today for the Internet, intranets, and private networks. IPv6 builds upon the functionality and structure of IPv4 in the following ways:

- Provides a simplified and enhanced packet header to allow for more efficient routing.
- Improves support for mobile phones and other mobile computing devices.
- Enforces increased, mandatory data security through IPsec (which was originally designed for it).
- Provides more extensive quality-of-service (QoS) support.
IPv6 addresses consist of 128 bits, instead of 32 bits, and include a scope field that identifies the type of application suitable for the address. IPv6 does not support broadcast addresses, but instead uses multicast addresses for broadcast. In addition, IPv6 defines a new type of address called anycast.

Understanding IPv6 Address Types and How Junos OS for SRX Series Services Gateway Uses Them

IP version 6 (IPv6) includes the following types of addresses:

- **Unicast**

 A unicast address specifies an identifier for a single interface to which packets are delivered. Under IPv6, the vast majority of Internet traffic is foreseen to be unicast, and it is for this reason that the largest assigned block of the IPv6 address space is dedicated to unicast addressing. Unicast addresses include all addresses other than loopback, multicast, link-local-unicast, and unspecified.

 For SRX Series devices, the flow module supports the following kinds of IPv6 unicast packets:

 - Pass-through unicast traffic, including traffic from and to virtual routers. The device transmits pass-through traffic according to its routing table.

 - Host-inbound traffic from and to devices directly connected to SRX Series interfaces. For example, host-inbound traffic includes logging, routing protocol, and management types of traffic. The flow module sends these unicast packets to the Routing Engine and receives them from it. Traffic is processed by the Routing Engine instead of by the flow module, based on routing protocols defined for the Routing Engine.

 The flow module supports all routing and management protocols that run on the Routing Engine. Some examples are OSPFv3, RIPng, TELNET, and SSH.

- **Multicast**

 A multicast address specifies an identifier for a set of interfaces that typically belong to different nodes. It is identified by a value of 0xFF. IPv6 multicast addresses are distinguished from unicast addresses by the value of the high-order octet of the addresses.

 The devices support only host-inbound and host-outbound multicast traffic. Host inbound traffic includes logging, routing protocols, management traffic, and so on.

- **Anycast**

 An anycast address specifies an identifier for a set of interfaces that typically belong to different nodes. A packet with an anycast address is delivered to the nearest node, according to routing protocol rules.

 There is no difference between anycast addresses and unicast addresses except for the subnet-router address. For an anycast subnet-router address, the low order bits, typically 64 or more, are zero. Anycast addresses are taken from the unicast address space.
The flow module treats anycast packets in the same way as it handles unicast packets. If an anycast packet is intended for the device, it is treated as host-inbound traffic, and it delivers it to the protocol stack which continues processing it.

IPv6 Address Scope

Unicast and multicast IPv6 addresses support address scoping, which identifies the application suitable for the address.

Unicast addresses support global address scope and two types of local address scope:

- **Link-local unicast addresses**—Used only on a single network link. The first 10 bits of the prefix identify the address as a link-local address. Link-local addresses cannot be used outside the link.
- **Site-local unicast addresses**—Used only within a site or intranet. A site consists of multiple network links. Site-local addresses identify nodes inside the intranet and cannot be used outside the site.

Multicast addresses support 16 different types of address scope, including node, link, site, organization, and global scope. A 4-bit field in the prefix identifies the address scope.

IPv6 Address Structure

Unicast addresses identify a single interface. Each unicast address consists of \(n \) bits for the prefix, and \(128 - n \) bits for the interface ID.

Multicast addresses identify a set of interfaces. Each multicast address consists of the first 8 bits of all 1s, a 4-bit flags field, a 4-bit scope field, and a 112-bit group ID:

```
11111111 | flags | scope | group ID
```

The first octet of 1s identifies the address as a multicast address. The flags field identifies whether the multicast address is a well-known address or a transient multicast address. The scope field identifies the scope of the multicast address. The 112-bit group ID identifies the multicast group.

Similar to multicast addresses, anycast addresses identify a set of interfaces. However, packets are sent to only one of the interfaces, not to all interfaces. Anycast addresses are allocated from the normal unicast address space and cannot be distinguished from a unicast address in format. Therefore, each member of an anycast group must be configured to recognize certain addresses as anycast addresses.

Understanding IPv6 Address Space, Addressing, and Address Types

Addressing is the area where most of the differences between IP version 4 (IPv4) and IPv6 exist, but the changes are largely about the ways in which addresses are implemented and used. IPv6 has a vastly larger
address space than the impending exhausted IPv4 address space. IPv6 increases the size of the IP address from the 32 bits that compose an IPv4 address to 128 bits. Each extra bit given to an address doubles the size of the address space.

IPv4 has been extended using techniques such as Network Address Translation (NAT), which allows for ranges of private addresses to be represented by a single public address, and temporary address assignment. Although useful, these techniques fall short of the requirements of novel applications and environments such as emerging wireless technologies, always-on environments, and Internet-based consumer appliances.

In addition to the increased address space, IPv6 addresses differ from IPv4 addresses in the following ways:

- Includes a scope field that identifies the type of application that the address pertains to
- Does not support broadcast addresses, but instead uses multicast addresses to broadcast a packet
- Defines a new type of address, called anycast

Understanding IPv6 Address Format

All IPv6 addresses are 128 bits long, written as 8 sections of 16 bits each. They are expressed in hexadecimal representation, so the sections range from 0 to FFFF. Sections are delimited by colons, and leading zeroes in each section may be omitted. If two or more consecutive sections have all zeroes, they can be collapsed to a double colon.

IPv6 addresses consist of 8 groups of 16-bit hexadecimal values separated by colons (:). IPv6 addresses have the following format:

```
```

Each `aaaa` is a 16-bit hexadecimal value, and each `a` is a 4-bit hexadecimal value. Following is a sample IPv6 address:

```
3FFE:0000:0000:0001:0200:F8FF:FE75:50DF
```

You can omit the leading zeros of each 16-bit group, as follows:

```
3FFE:0:0:1:200:F8FF:FE75:50DF
```
You can compress 16-bit groups of zeros to double colons (::) as shown in the following example, but only once per address:

```
3FFE::1:200:F8FF:FE75:50DF
```

An IPv6 address prefix is a combination of an IPv6 prefix (address) and a prefix length. The prefix takes the form `ipv6-prefix/prefix-length` and represents a block of address space (or a network). The `ipv6-prefix` variable follows general IPv6 addressing rules. The `/prefix-length` variable is a decimal value that indicates the number of contiguous, higher-order bits of the address that make up the network portion of the address. For example, `10FA:6604:8136:6502::/64` is a possible IPv6 prefix.

For more information on the text representation of IPv6 addresses and address prefixes, see RFC 4291, *IP Version 6 Addressing Architecture*.

Limitations

SRX300, SRX320, SRX340, SRX345, and SRX550HM devices have the following limitations:

- Changes in source AS and destination AS are not immediately reflected in exported flows.
- IPv6 traffic transiting over IPv4 based IP over IP tunnel (for example, IPv6-over-I Pv4 using ip-x/x/x interface) is not supported.

SEE ALSO

- *About the IPv6 Basic Packet Header*
- *Understanding IPv6 Packet Header Extensions*

Configuring the inet6 IPv6 Protocol Family

In configuration commands, the protocol family for IPv6 is named `inet6`. In the configuration hierarchy, instances of `inet6` are parallel to instances of `inet`, the protocol family for IPv4. In general, you configure `inet6` settings and specify IPv6 addresses in parallel to `inet` settings and IPv4 addresses.

NOTE: On SRX Series devices, on configuring identical IPs on a single interface, you will not see a warning message; instead, you will see a syslog message.
The following example shows the CLI commands you use to configure an IPv6 address for an interface:

[edit]
user@host# show interfaces

ge-0/0/0 {
 unit 0 {
 family inet {
 address 10.100.37.178/24;
 }
 }
}

[edit]
user@host# set interfaces ge-0/0/0 unit 0 family inet6 address 8d8d:8d01::1/64

[edit]
user@host# show interfaces

ge-0/0/0 {
 unit 0 {
 family inet {
 address 10.100.37.178/24;
 }
 family inet6 {
 address 8d8d:8d01::1/64;
 }
 }
}
Virtual LANs (VLANs) allow network architects to segment LANs into different broadcast domains based on logical groupings. The topic below describes the configuration of these tagged VLANs, VLAN IDs, and supported Ethernet interface types on SRX series devices.

Understanding Virtual LANs

A LAN is a single broadcast domain. When traffic is broadcast, all hosts within the LAN receive the broadcast traffic. A LAN is determined by the physical connectivity of devices within the domain.

Within a traditional LAN, hosts are connected by a hub or repeater that propagates any incoming traffic throughout the network. Each host and its connecting hubs or repeaters make up a LAN segment. LAN segments are connected through switches and bridges to form the broadcast domain of the LAN. Figure 2 on page 64 shows a typical LAN topology.
Virtual LANs (VLANs) allow network architects to segment LANs into different broadcast domains based on logical groupings. Because the groupings are logical, the broadcast domains are not determined by the physical connectivity of the devices in the network. Hosts can be grouped according to a logical function, to limit the traffic broadcast within the VLAN to only the devices for which the traffic is intended.

Suppose a corporate network has three major organizations: engineering, sales, and support. Using VLAN tagging, hosts within each organization can be tagged with a different VLAN identifier. Traffic sent to the broadcast domain is then checked against the VLAN identifier and broadcast to only the devices in the appropriate VLAN. Figure 3 on page 64 shows a typical VLAN topology.
VLAN IDs and Ethernet Interface Types Supported on the SRX Series Devices

Table 10 on page 65 lists VLAN ID range by interface type supported on SRX Series devices:

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>Interface Type VLAN ID Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Port 10-Gigabit Ethernet</td>
<td>1 through 4094</td>
</tr>
<tr>
<td>10-Gigabit Ethernet</td>
<td>1 through 4094</td>
</tr>
<tr>
<td>16-Port Gigabit Ethernet</td>
<td>1 through 4094</td>
</tr>
<tr>
<td>24-Port Gigabit Ethernet</td>
<td>1 through 4094</td>
</tr>
<tr>
<td>Aggregated Ethernet for Fast Ethernet</td>
<td>1 through 1023</td>
</tr>
<tr>
<td>Aggregate Ethernet for Gigabit Ethernet</td>
<td>1 through 4094</td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>1 through 4094</td>
</tr>
<tr>
<td>Management and internal Ethernet interfaces</td>
<td>1 through 1023</td>
</tr>
</tbody>
</table>

NOTE: On SRX210, SRX220, SRX240, SRX320, and SRX340 devices, on 1-GE SFP Mini-PIM, the VLAN ID 4093 falls under the reserved VLAN address range. (Platform support depends on the Junos OS release in your installation.) Because of this, you will not be able to configure VLAN ID from this range.
Configuring VLAN Tagging

You can configure SRX300, SRX320, SRX340, SRX345, and SRX550HM devices to receive and forward single-tag frames, dual-tag frames, or a mixture of single-tag and dual-tag frames.

See Table 11 on page 66 for flexible VLANs.

Table 11: Flexible VLANs

<table>
<thead>
<tr>
<th>Number of Tags</th>
<th>VLAN ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Untagged)</td>
<td>Native</td>
</tr>
<tr>
<td>1 (Tagged)</td>
<td>Single</td>
</tr>
<tr>
<td>2 (Dual tagged)</td>
<td>Dual</td>
</tr>
</tbody>
</table>

This topic includes the following sections:

Configuring Single-Tag Framing

To configure a device to receive and forward single-tag frames with 802.1Q VLAN tags, include the vlan-tagging statement at the [edit interfaces interface-name] hierarchy level:

```
[edit interfaces interface-name]
vlan-tagging;
```

NOTE: SRX5400, SRX5600, and SRX5800 only support single-tag framing.
Configuring Dual Tagging

To configure the device to receive and forward dual-tag frames with 802.1Q VLAN tags, include the `flexible-vlan-tagging` statement at the `[edit interfaces interface-name]` hierarchy level:

```
[edit interfaces interface-name]
flexible-vlan-tagging;
```

Configuring Mixed Tagging

Mixed tagging is supported on ethernet interfaces of SRX300, SRX320, SRX340, SRX345, and SRX550HM devices. Mixed tagging lets you configure two logical interfaces on the same Ethernet port, one with single-tag framing and one with dual-tag framing.

To configure mixed tagging, include the `flexible-vlan-tagging` statement at the `[edit interfaces ge-fpc/pic/port]` hierarchy level. You must also include the `vlan-tags` statement with `inner` and `outer` options or the `vlan-id` statement at the `[edit interfaces ge-fpc/pic/port unit logical-unit-number]` hierarchy level:

```
[edit interfaces ge-fpc/pic/port]
flexible-vlan-tagging;
unit logical-unit-number [  
  vlan-id number;  
  family family [  
    address address;  
  ]  
]  
unit logical-unit-number [  
  vlan-tags inner tpid.vlan-id outer tpid.vlan-id;  
  family family [  
    address address;  
  ]  
]  
```
NOTE: When you configure the physical interface MTU for mixed tagging, you must increase the MTU to 4 bytes more than the MTU value you would configure for a standard VLAN-tagged interface.

For example, if the MTU value is configured to be 1018 on a VLAN-tagged interface, then the MTU value on a flexible VLAN tagged interface must be 1022—4 bytes more. The additional 4 bytes accommodates the future addition of a stacked VLAN tag configuration on the same physical interface.

The following example configures mixed tagging. Dual-tag and single-tag logical interfaces are under the same physical interface:

```conf
[edit interfaces ge-0/2/0]
flexible-vlan-tagging;
unit 0 {
  vlan-id 232;
  family inet {
    address 10.66.1.2/30;
  }
}
unit 1 {
  vlan-tags outer 0x8100.222 inner 0x8100.221;
  family inet {
    address 10.66.1.2/30;
  }
}
```

Configuring Mixed Tagging Support for Untagged Packets

You can configure mixed tagging support for untagged packets on a port. Untagged packets are accepted on the same mixed VLAN-tagged port. To accept untagged packets, include the `native-vlan-id` statement and the `flexible-vlan-tagging` statement at the `[edit interfaces interface-name]` hierarchy level:

```conf
[edit interfaces ge-fpc/pic/port]
flexible-vlan-tagging;
native-vlan-id number;
```
NOTE: The **flexible-vlan-tagging** is supported only with either no encapsulation or VPLS VLAN encapsulation.

The logical interface on which untagged packets are to be received must be configured with the same native VLAN ID as that configured on the physical interface. To configure the logical interface, include the `vlan-id` statement (matching the `native-vlan-id` statement on the physical interface) at the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level.

The following example configures untagged packets to be mapped to logical unit number 0:

```
[edit interfaces ge-0/2/0]
flexible-vlan-tagging;
native-vlan-id 232;
unit 0 {
    vlan-id 232;
    family inet {
        address 10.66.1.2/30;
    }
}
unit 1 {
    vlan-tags outer 0x8100.222 inner 0x8100.221;
    family inet {
        address 10.66.1.2/30;
    }
}
```
Configuring DS1, DS3, and 1-Port Clear Channel DS3/E3 GPIM Interfaces

Configuring DS1 Interfaces | 73
Configuring DS3 Interfaces | 81
Configuring 1-Port Clear Channel DS3/E3 GPIM | 92
Configuring DS1 Interfaces

IN THIS SECTION

- Understanding T1 and E1 Interfaces | 73
- Example: Configuring a T1 Interface | 77
- Example: Deleting a T1 Interface | 80

T1 and E1 refer to the data transmission formats that carry DS1 signals across interfaces. The below topic discuss the functionality of T1 and E1, configuration details and also deleting the T1 interface.

Understanding T1 and E1 Interfaces

IN THIS SECTION

- T1 Overview | 74
- E1 Overview | 74
- T1 and E1 Signals | 74
- Encoding | 75
- T1 and E1 Framing | 76
- T1 and E1 Loopback Signals | 76

T1 and E1 are equivalent digital data transmission formats that carry DS1 signals. T1 and E1 lines can be interconnected for international use.

This topic contains the following sections:
T1 Overview

T1 is a digital data transmission medium capable of handling 24 simultaneous connections running at a combined 1.544 Mbps. T1 combines these 24 separate connections, called channels or time slots, onto a single link. T1 is also called DS1.

The T1 data stream is broken into frames. Each frame consists of a single framing bit and 24 8-bit channels, totaling 192 bits per T1 frame. Frames are transmitted 8,000 times per second, at a data transmission rate of 1.544 Mbps (8,000 x 193 = 1.544 Mbps).

As each frame is received and processed, the data in each 8-bit channel is maintained with the channel data from previous frames, enabling T1 traffic to be separated into 24 separate flows across a single medium. For example, in the following set of 4-channel frames (without a framing bit), the data in channel 1 consists of the first octet of each frame, the data in channel 2 consists of the second octet of each frame, and so on:

```
Chan. 1    Chan. 2    Chan. 3    Chan. 4
Frame 1    [10001100] [00110001] [11111000] [10101010]
Frame 2    [11100101] [01110110] [10001000] [11001010]
Frame 3    [00010100] [00101111] [11000001] [00000001]
```

E1 Overview

E1 is the European format for DS1 digital transmission. E1 links are similar to T1 links except that they carry signals at 2.048 Mbps. Each signal has 32 channels, and each channel transmits at 64 Kbps. E1 links have higher bandwidth than T1 links because it does not reserve one bit for overhead. Whereas, T1 links use 1 bit in each channel for overhead.

T1 and E1 Signals

T1 and E1 interfaces consist of two pairs of wires—a transmit data pair and a receive data pair. Clock signals, which determine when the transmitted data is sampled, are embedded in the T1 and E1 transmissions.

Typical digital signals operate by sending either zeros (0s) or ones (1s), which are usually represented by the absence or presence of a voltage on the line. The receiving device need only detect the presence of the voltage on the line at the particular sampling edge to determine whether the signal is 0 or 1. T1 and E1, however, use bipolar electrical pulses. Signals are represented by no voltage (0), positive voltage (1), or negative voltage (1). The bipolar signal allows T1 and E1 receivers to detect error conditions in the line, depending on the type of encoding that is being used.
Encoding

The following are common T1 and E1 encoding techniques:

- Alternate mark inversion (AMI)—T1 and E1
- Bipolar with 8-zero substitution (B8ZS)—T1 only
- High-density bipolar 3 code (HDB3)—E1 only

AMI Encoding

AMI encoding forces the 1s signals on a T1 or E1 line to alternate between positive and negative voltages for each successive 1 transmission, as in this sample data transmission:

```
1 1 0 1 0 1 0 1
+ - 0 + 0 - 0 +
```

When AMI encoding is used, a data transmission with a long sequence of 0s has no voltage transitions on the line. In other words, voice transmission does not use AMI encoding because it never encounters the "long string of zeroes" problem. In this situation, devices have difficulty maintaining clock synchronization, because they rely on the voltage fluctuations to constantly synchronize with the transmitting clock. To counter this effect, the number of consecutive 0s in a data stream is restricted to 15. This restriction is called the 1s density requirement, because it requires a certain number of 1s for every 15 0s that are transmitted.

On an AMI-encoded line, two consecutive pulses of the same polarity—either positive or negative—are called a bipolar violation (BPV), which is generally flagged as an error.

B8ZS and HDB3 Encoding

Neither B8ZS nor HDB3 encoding restricts the number of 0s that can be transmitted on a line. Instead, these encoding methods detect sequences of 0s and substitute bit patterns for the sequences to provide the signal oscillations required to maintain timing on the link.

The B8ZS encoding method for T1 lines detects sequences of eight consecutive 0 transmissions and substitutes a pattern of two consecutive BPVs (11110000). Because the receiving end uses the same encoding, it detects the BPVs as 0s substitutions, and no BPV error is flagged. A single BPV, which does not match the 11110000 substitution bit sequence is likely to generate an error, depending on the configuration of the device.

B8ZS uses bipolar violations to synchronize devices, a solution that does not require the use of extra bits, which means a T1 circuit using B8ZS can use the full 64 Kbps for each channel for data.

The HDB3 encoding method for E1 lines detects sequences of four consecutive 0 transmissions and substitutes a single BPV (1100). Similar to B8ZS encoding, the receiving device detects the 0s substitutions and does not generate a BPV error.
T1 and E1 Framing

T1 interfaces use extended superframe (ESF). E1 interfaces use G.704 framing or G.704 with no CRC4 framing, or can be in unframed mode.

ESF Framing for T1

ESF extends the D4 superframe from 12 frames to 24 frames. By expanding the size of the superframe, ESF increases the number of bits in the superframe framing pattern from 12 to 24. The extra bits are used for frame synchronization, error detection, and maintenance communications through the facilities data link (FDL).

The ESF pattern for synchronization bits is 001011. Only the framing bits from frames 4, 8, 12, 16, 20, and 24 in the superframe sequence are used to create the synchronization pattern.

The framing bits from frames 2, 6, 10, 14, 18, and 22 are used to pass a CRC code for each superframe block. The CRC code verifies the integrity of the received superframe and detects bit errors with a CRC6 algorithm.

The framing bits for frames 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, and 23 are used for the data link channel. These 12 bits enable the operators at the network control center to query the remote equipment for information about the performance of the link.

T1 and E1 Loopback Signals

The control signal on a T1 or E1 link is the loopback signal. Using the loopback signal, the operators at the network control center can force the device at the remote end of a link to retransmit its received signals back onto the transmit path. The transmitting device can then verify that the received signals match the transmitted signals, to perform end-to-end checking on the link.

Two loopback signals are used to perform the end-to-end testing:

- The loop-up command signal sets the link into loopback mode, with the following command pattern:

 ...10001000010000100...

- The loop-down signal returns the link to its normal mode, with the following command pattern:

 ...100100100100100100...

While the link is in loopback mode, the operator can insert test equipment onto the line to test its operation.
Example: Configuring a T1 Interface

This example shows how to complete the initial configuration on a T1 interface.

Requirements

Before you begin, install a PIM, connect the interface cables to the ports, and power on the device. See the Getting Started Guide for your device.

Overview

This example describes the initial configuration that you must complete on each network interface. In this example, you configure the t1-1/0/0 interface as follows:

- You create the basic configuration for the new interface by setting the encapsulation type to ppp. You can enter additional values for physical interface properties as needed.
- You set the logical interface to 0. Note that the logical unit number can range from 0 through 16,384. You can enter additional values for properties you need to configure on the logical interface, such as logical encapsulation or protocol family.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces t1-1/0/0 encapsulation ppp unit 0
```

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure a T1 interface:

1. Create the interface.

```
[edit]
user@host# edit interfaces t1-1/0/0
```

2. Create the basic configuration for the new interface.

```
[edit interfaces t1-1/0/0]
user@host# set encapsulation ppp
```

3. Add logical interfaces.

```
[edit interfaces t1-1/0/0]
user@host# set unit 0
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show interfaces` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```
[edit]
...
  t1-1/0/0 {
    encapsulation ppp;
    unit 0;
  }
```

If you are done configuring the device, enter `commit` from configuration mode.
Verification

Confirm that the configuration is working properly.

Verifying the Link State of All Interfaces

Purpose
By using the ping tool on each peer address in the network, verify that all interfaces on the device are operational.

Action
For each interface on the device:

1. In the J-Web interface, select **Troubleshoot>Ping Host**.
2. In the Remote Host box, type the address of the interface for which you want to verify the link state.
3. Click **Start**. The output appears on a separate page.

```
PING 10.10.10.10 : 56 data bytes
64 bytes from 10.10.10.10: icmp_seq=0 ttl=255 time=0.382 ms
64 bytes from 10.10.10.10: icmp_seq=1 ttl=255 time=0.266 ms
```

If the interface is operational, it generates an ICMP response. If this response is received, the round-trip time, in milliseconds, is listed in the time field.

Verifying Interface Properties

Purpose
Verify that the interface properties are correct.

Action
From the operational mode, enter the **show interfaces detail** command.
The output shows a summary of interface information. Verify the following information:

- The physical interface is Enabled. If the interface is shown as Disabled, do one of the following:
 - In the CLI configuration editor, delete the disable statement at the [edit interfaces t1-1/0/0] level of the configuration hierarchy.
 - In the J-Web configuration editor, clear the Disable check box on the Interfaces> t1-1/0/0 page.
- The physical link is Up. A link state of Down indicates a problem with the interface module, interface port, or physical connection (link-layer errors).
- The Last Flapped time is an expected value. It indicates the last time the physical interface became unavailable and then available again. Unexpected flapping indicates likely link-layer errors.
- The traffic statistics reflect expected input and output rates. Verify that the number of input and output bytes and packets matches expected throughput for the physical interface. To clear the statistics and see only new changes, use the clear interfaces statistics t1-1/0/0 command.

Example: Deleting a T1 Interface

This example shows how to delete a T1 interface.

Requirements

No special configuration beyond device initialization is required before configuring an interface.

Overview

In this example, you delete the t1-1/0/0 interface.
NOTE: Performing this action removes the interface from the software configuration and disables it. Network interfaces remain physically present, and their identifiers continue to appear on the J-Web pages.

Configuration

Step-by-Step Procedure

To delete a T1 interface:

1. Specify the interface you want to delete.

 [edit interfaces]
 user@host# delete t1-1/0/0

2. If you are done configuring the device, commit the configuration.

 [edit interfaces]
 user@host# commit

Verification

To verify the configuration is working properly, enter the `show interfaces` command.

Configuring DS3 Interfaces
DS3 interfaces, also referred to as T3, is an high-speed data transmission medium formed by multiplexing DS1 and DS2 signals. The below topic discuss the functionality of T3 interfaces, configuration details and also deleting the T3 interface.

Understanding T3 and E3 Interfaces

T3 is a high-speed data-transmission medium formed by multiplexing 28 DS1 signals into seven separate DS2 signals, and combining the DS2 signals into a single DS3 signal. T3 links operate at 43.736 Mbps. T3 is also called DS3.

E3 is the equivalent European transmission format. E3 links are similar to T3 (DS3) links, but carry signals at 34.368 Mbps. Each signal has 16 E1 channels, and each channel transmits at 2.048 Mbps. E3 links use all 8 bits of a channel, whereas T3 links use 1 bit in each channel for overhead.

Multiplexing DS1 Signals

Four DS1 signals combine to form a single DS2 signal. The four DS1 signals form a single DS2 M-frame, which includes subframes M1 through M4. Each subframe has six 49-bit blocks, for a total of 294 bits per subframe. The first bit in each block is a DS2 overhead (OH) bit. The remaining 48 bits are DS1 information bits.

Figure 4 on page 83 shows the DS2 M-frame format.
The four DS2 subframes are not four DS1 channels. Instead, the DS1 data bits within the subframes are formed by data interleaved from the DS1 channels. The 0 values designate time slots devoted to DS1 inputs as part of the bit-by-bit interleaving process. After every 48 DS1 information bits (12 bits from each signal), a DS2 OH bit is inserted to indicate the start of a subframe.

DS2 Bit Stuffing

Because the four DS1 signals are asynchronous signals, they might operate at different line rates. To synchronize the asynchronous streams, the multiplexers on the line use bit stuffing.

A DS2 connection requires a nominal transmit rate of 6.304 Mbps. However, because multiplexers increase the overall output rate to the intermediate rate of 6.312 Mbps, the output rate is higher than individual input rates on DS1 signals. The extra bandwidth is used to stuff the incoming DS1 signals with extra bits until the output rate of each signal equals the increased intermediate rate. These stuffed bits are inserted at fixed locations in the DS2 M-frame. When DS2 frames are received and the signal is demultiplexed, the stuffing bits are identified and removed.

DS3 Framing

A set of four DS1 signals is multiplexed into seven DS2 signals, which are multiplexed into a single DS3 signal. The multiplexing occurs just as with DS1-to-DS2 multiplexing. The resulting DS3 signal uses either the standard M13 asynchronous framing format or the C-bit parity framing format. Although the two framing formats differ in their use of control and message bits, the basic frame structures are identical. The DS3 frame structures are shown in Figure 5 on page 84 and Figure 6 on page 85.

M13 Asynchronous Framing

A DS3 M-frame includes seven subframes, formed by DS2 data bits interleaved from the seven multiplexed DS2 signals. Each subframe has eight 85-bit blocks—a DS3 OH bit plus 84 data bits. The meaning of an
OH bit depends on the block it precedes. Standard DS3 M13 asynchronous framing format is shown in Figure 5 on page 84.

Figure 5: DS3 M13 Frame Format

A DS3 M13 M-frame contains the following types of OH bits:

- Framing bits (F-bits)—Make up a frame alignment signal that synchronizes DS3 subframes. Each DS3 frame contains 28 F-bits (4 bits per subframe). F-bits are located at the beginning of blocks 2, 4, 6, and 8 of each subframe. When combined, the frame alignment pattern for each subframe is 1001. The pattern can be examined to detect bit errors in the transmission.

- Multiframing bits (M-bits)—Make up a multiframe alignment signal that synchronizes the M-frames in a DS3 signal. Each DS3 frame contains 3 M-bits, which are located at the beginning of subframes 5, 6, and 7. When combined, the multiframe alignment pattern for each M-frame is 010.

- Bit stuffing control bits (C-bits)—Serve as bit stuffing indicators for each DS2 input. For example, C_{11}, C_{12}, and C_{13} are indicators for DS2 input 1. Their values indicate whether DS3 bit stuffing has occurred at the multiplexer. If the three C-bits in a subframe are all 0s, no stuffing was performed for the DS2 input. If the three C-bits are all 1s, stuffing was performed.
• Message bits (X-bits)—Used by DS3 transmitters to embed asynchronous in-service messages in the data transmission. Each DS3 frame contains 2 X-bits, which are located at the beginning of subframes 1 and 2. Within an DS3 M-frame, both X-bits must be identical.

• Parity bits (P-bits)—Compute parity over all but 1 bit of the M-frame. (The first X-bit is not included.) Each DS3 frame contains 2 P-bits, which are located at the beginning of subframes 3 and 4. Both P-bits must be identical.

If the previous DS3 frame contained an odd number of 1s, both P-bits are set to 1. If the previous DS3 contained an even number of 1s, both P-bits are set to 0. If, on the receiving side, the number of 1s for a given frame does not match the P-bits in the following frame, it indicates one or more bit errors in the transmission.

C-Bit Parity Framing

In M13 framing, every C-bit in a DS3 frame is used for bit stuffing. However, because multiplexers first use bit stuffing when multiplexing DS1 signals into DS2 signals, the incoming DS2 signals are already synchronized. Therefore, the bit stuffing that occurs when DS2 signals are multiplexed is redundant.

C-bit parity framing format redefines the function of C-bits and X-bits, using them to monitor end-to-end path performance and provide in-band data links. The C-bit parity framing structure is shown in Figure 6 on page 85.

Figure 6: DS3 C-Bit Parity Framing

In C-bit parity framing, the X-bits transmit error conditions from the far end of the link to the near end. If no error conditions exist, both X-bits are set to 1. If an out-of-frame (OOF) or alarm indication signal (AIS)
error is detected, both X-bits are set to 0 in the upstream direction for 1 second to notify the other end of the link about the condition.

The C-bits that control bit stuffing in M13 frames are typically used in the following ways by C-bit parity framing:

- Application identification channel (AIC)—The first C-bit in the first subframe identifies the type of DS3 framing used. A value of 1 indicates that C-bit parity framing is in use.
- N—a reserved network application bit.
- Far-end alarm and control (FEAC) channel—The third C-bit in the first subframe is used for the FEAC channel. In normal transmissions, the FEAC C-bit transmits all 1s. When an alarm condition is present, the FEAC C-bit transmits a code word in the format \(0xxxxxx1111111 \), in which \(x \) can be either 1 or 0. Bits are transmitted from right to left.

Table 12 on page 86 lists some C-bit code words and the alarm or status condition indicated.

Table 12: FEAC C-Bit Condition Indicators

<table>
<thead>
<tr>
<th>Alarm or Status Condition</th>
<th>C-Bit Code Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS3 equipment failure requires immediate attention.</td>
<td>00110010 11111111</td>
</tr>
<tr>
<td>DS3 equipment failure occurred—such as suspended, not activated, or unavailable service—that is non-service-affecting.</td>
<td>00011110 11111111</td>
</tr>
<tr>
<td>DS3 loss of signal.</td>
<td>00011100 11111111</td>
</tr>
<tr>
<td>DS3 out of frame.</td>
<td>00000000 11111111</td>
</tr>
<tr>
<td>DS3 alarm indication signal (AIS) received.</td>
<td>00101100 11111111</td>
</tr>
<tr>
<td>DS3 idle received.</td>
<td>00110100 11111111</td>
</tr>
<tr>
<td>Common equipment failure occurred that is non-service-affecting.</td>
<td>00011101 11111111</td>
</tr>
<tr>
<td>Multiple DS1 loss of signal.</td>
<td>00101010 11111111</td>
</tr>
<tr>
<td>DS1 equipment failure occurred that requires immediate attention.</td>
<td>00001010 11111111</td>
</tr>
<tr>
<td>DS1 equipment failure occurred that is non-service-affecting.</td>
<td>00000110 11111111</td>
</tr>
<tr>
<td>Single DS1 loss of signal.</td>
<td>00111100 11111111</td>
</tr>
</tbody>
</table>

- Data links—The 12 C-bits in subframes 2, 5, 6, and 7 are data link (DL) bits for applications and terminal-to-terminal path maintenance.
- DS3 parity—The 3 C-bits in the third subframe are DS3 parity C-bits (also called CP-bits). When a DS3 frame is transmitted, the sending device sets the CP-bits to the same value as the P-bits. When the receiving device processes the frame, it calculates the parity of the M-frame and compares this value to the parity in the CP-bits of the following M-frame. If no bit errors have occurred, the two values are typically the same.

- Far-end block errors (FEBEs)—The 3 C-bits in the fourth subframe make up the far-end block error (FEBE) bits. If a framing or parity error is detected in an incoming M-frame (via the CP-bits), the receiving device generates a C-bit parity error and sends an error notification to the transmitting (far-end) device. If an error is generated, the FEBE bits are set to 000. If no error occurred, the bits are set to 111.

Example: Configuring a T3 Interface

This example shows how to complete the initial configuration on a T3 interface.

Requirements

Before you begin, install a PIM, connect the interface cables to the ports, and power on the device. See the *Getting Started Guide* for your device.

Overview

This example describes the initial configuration that you must complete on each network interface. In this example, you configure the t3-1/0/0 interface as follows:

- You create the basic configuration for the new interface by setting the encapsulation type to ppp. You can enter additional values for physical interface properties as needed.

- You set the logical interface to 0. Note that the logical unit number can range from 0 to 16,384. You can enter additional values for properties you need to configure on the logical interface, such as logical encapsulation or protocol family.
Configuration

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces t3-1/0/0 encapsulation ppp unit 0
```

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure a T3 interface:
1. Create the interface.

```
[edit]
user@host# edit interfaces t3-1/0/0
```

2. Create the basic configuration for the new interface.

```
[edit interfaces t3-1/0/0]
user@host# set encapsulation ppp
```

3. Add logical interfaces.

```
[edit interfaces t3-1/0/0]
user@host# set unit 0
```

Results
From configuration mode, confirm your configuration by entering the `show interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show interfaces` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).
If you are done configuring the device, enter **commit** from configuration mode.

Verification

IN THIS SECTION

- Verifying the Link State of All Interfaces | 89
- Verifying Interface Properties | 90

Confirm that the configuration is working properly.

Verifying the Link State of All Interfaces

Purpose

By using the ping tool on each peer address in the network, verify that all interfaces on the device are operational.

Action

For each interface on the device:

1. In the J-Web interface, select **Troubleshoot>Ping Host**.

2. In the Remote Host box, type the address of the interface for which you want to verify the link state.

3. Click **Start**. The output appears on a separate page.

```
PING 10.10.10.10 : 56 data bytes
64 bytes from 10.10.10.10: icmp_seq=0 ttl=255 time=0.382 ms
64 bytes from 10.10.10.10: icmp_seq=1 ttl=255 time=0.266 ms
```

If the interface is operational, it generates an ICMP response. If this response is received, the round-trip time in milliseconds is listed in the time field.
Verifying Interface Properties

Purpose
Verify that the interface properties are correct.

Action
From the operational mode, enter the `show interfaces detail` command.

The output shows a summary of interface information. Verify the following information:

- The physical interface is Enabled. If the interface is shown as Disabled, do one of the following:
 - In the CLI configuration editor, delete the `disable` statement at the [edit interfaces t3-1/0/0] level of the configuration hierarchy.
 - In the J-Web configuration editor, clear the `Disable` check box on the Interfaces> t3-1/0/0 page.
- The physical link is Up. A link state of Down indicates a problem with the interface module, interface port, or physical connection (link-layer errors).
- The Last Flapped time is an expected value. It indicates the last time the physical interface became unavailable and then available again. Unexpected flapping indicates likely link-layer errors.
- The traffic statistics reflect expected input and output rates. Verify that the number of input and output bytes and packets matches expected throughput for the physical interface. To clear the statistics and see only new changes, use the `clear interfaces statistics t3-1/0/0` command.

Example: Deleting a T3 Interface

This example shows how to delete a T3 interface.
Requirements

No special configuration beyond device initialization is required before configuring an interface.

Overview

In this example, you delete the t3-1/0/0 interface.

NOTE: Performing this action removes the interface from the software configuration and disables it. Network interfaces remain physically present, and their identifiers continue to appear on the J-Web pages.

Configuration

Step-by-Step Procedure
To delete a T3 interface:

1. Specify the interface you want to delete.

 [edit interfaces]
 user@host# delete t3-1/0/0

2. If you are done configuring the device, commit the configuration.

 [edit interfaces]
 user@host# commit

Verification

To verify the configuration is working properly, enter the show interfaces command.
Configuring 1-Port Clear Channel DS3/E3 GPIM

The 1-Port Clear Channel DS3/E3 GPIM is a channel interface that can support full-duplex DS3 (T3) or E3 line rates. The below topics shows the overview of the interface, examples on how to configure the 1-Port Clear Channel DS3/E3 GPIM for DS3 port mode, E3 port mode and M23 mapping mode respectively.

Understanding the 1-Port Clear Channel DS3/E3 GPIM

The 1-Port Clear Channel DS3/E3 Gigabit-Backplane Physical Interface Module (GPIM) for the device functions as a clear channel interface that can support full-duplex DS3 (T3) or E3 line rates of 44.796 or 34.368 Mbps, respectively. The DS3/E3 interface is a popular high-bandwidth WAN interface for large enterprise branch locations that enables high-quality voice, video, and data applications with reduced latency. The GPIM device does not support channelization, but it supports a subrate DS3/E3 configuration.

This topic includes the following sections:
Supported Features

The clear channel implementation provides such features as subrate and scrambling options used by major DSU vendors. The following key features are available depending on the interface and mode selections:

- Framed and unframed DS3 (default) and E3 port modes
- Support for frame relay, point-to-point, and HDLC serial encapsulation protocols
- Support for popular vendor algorithms for subrate and payload scrambling
- Support for generation and detection of loopback control codes (line-loopback activate and deactivate) and FEAC codes
- External and internal clocking support
- Support for DS3 and E3 network alarms
- Support for chassis clusters
- Support for anti-counterfeit check
- Loopback (local, remote, and payload) and BERT/PRBS/QRSS diagnostics support
- MTU size of 4474 bytes (default) and 9192 bytes (maximum)

Interface Naming

The following format represents the 1-Port Clear Channel DS3/E3 GPIM interface names:

```
type-fpc/pic/port
```

where:

- **type**—Media type (T3 or E3)
- **fpc**—Number of the Flexible PIC Concentrator (FPC) card on which the physical interface is located
- **pic**—Number of the PIC on which the physical interface is located
- **port**—Specific port on the PIC

Examples: t3-1/0/0 and e3-2/0/0

Physical Interface Settings

The 1-Port Clear Channel DS3/E3 GPIM supports IP configurations. Using the CLI, you can configure the 1-Port Clear Channel DS3/E3 GPIM to operate in either DS3 or E3 mode. By default, at installation the physical interface, t3-x/y/z, is enabled on the GPIM port operating in DS3 mode with T3 framing.
You can reset the mode of the physical interface to E3 using the `edit chassis` command:

```
[edit]
user@host# set chassis fpc 1 pic 0 port 0 framing e3
```

Logical Interface Settings

The logical interface for the device is determined by setting the `t3-options` or `e3-options` of the `edit interfaces` command.

You can specify the MTU size for the GPIM interface. Junos OS supports an MTU value of 4474 bytes for the default value or up to 9192 bytes for maximum jumbo GPIM implementations.

Table 13 on page 94 identifies network interface specifications for DS3 or E3 modes.

Table 13: 1-Port Clear Channel DS3/E3 GPIM Interface Options

<table>
<thead>
<tr>
<th>Description</th>
<th>DS3 Mode</th>
<th>E3 Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Interface Specifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line encoding</td>
<td>B3ZS</td>
<td>HDB3</td>
</tr>
<tr>
<td>Framing</td>
<td>● C-bit parity (default)</td>
<td>G.751 (default)</td>
</tr>
<tr>
<td></td>
<td>● M23</td>
<td></td>
</tr>
<tr>
<td>Subrate and scrambling</td>
<td>Vendor algorithms supported:</td>
<td>Vendor algorithms supported:</td>
</tr>
<tr>
<td></td>
<td>● Adtran</td>
<td>● Digital Link</td>
</tr>
<tr>
<td></td>
<td>● Digital Link</td>
<td>● Kentrox</td>
</tr>
<tr>
<td></td>
<td>● Kentrox</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Larscom</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Verilink</td>
<td></td>
</tr>
<tr>
<td>Network alarms</td>
<td>Supported in accordance with the ANSI specification:</td>
<td>Supported in accordance with the ITU-T specification:</td>
</tr>
<tr>
<td></td>
<td>● Loss of signal (LOS)</td>
<td>● Loss of signal (LOS)</td>
</tr>
<tr>
<td></td>
<td>● Out of frame (OOF)</td>
<td>● Out of frame (OOF)</td>
</tr>
<tr>
<td></td>
<td>● Loss of frame (LOF)</td>
<td>● Alarm identification signal (AIS)</td>
</tr>
<tr>
<td></td>
<td>● Alarm identification Signal (AIS)</td>
<td>● Remote defect identification (RDI)</td>
</tr>
<tr>
<td></td>
<td>● Remote defect identification (RDI)</td>
<td>● Phase- locked loop (PLL)</td>
</tr>
</tbody>
</table>
Table 13: 1-Port Clear Channel DS3/E3 GPIM Interface Options (continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>DS3 Mode</th>
<th>E3 Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error counters</td>
<td>Incremented during a periodic 1-second polling routine:</td>
<td>Incremented during a periodic 1-second polling routine:</td>
</tr>
<tr>
<td></td>
<td>• Line code violations (LCV)</td>
<td>• Frame alignment error (FAE)</td>
</tr>
<tr>
<td></td>
<td>• P-bit code violations (PCV)</td>
<td>• Bipolar coding violations (BCV)</td>
</tr>
<tr>
<td></td>
<td>• C-bit code violations (CCV)</td>
<td>• Excessive zeros (EXZ)</td>
</tr>
<tr>
<td></td>
<td>• Line errored seconds (LES)</td>
<td>• Line code violations (LCV)</td>
</tr>
<tr>
<td></td>
<td>• P-bit errored seconds (PES)</td>
<td>• Line errored seconds (LES)</td>
</tr>
<tr>
<td></td>
<td>• C-bit errored seconds (CES)</td>
<td>• Severely errored framing seconds (SEFS)</td>
</tr>
<tr>
<td></td>
<td>• Severely errored framing seconds (SEFS)</td>
<td>• Unavailable seconds (UAS)</td>
</tr>
<tr>
<td></td>
<td>• P-bit severely errored seconds (PSES)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• C-bit severely errored seconds (CSES)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Unavailable seconds (UAS)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HDLC Features</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MTU</td>
<td>Default (4474 bytes) or maximum jumbo (up to 9192 bytes)</td>
<td>Default (4474 bytes) or maximum jumbo (up to 9192 bytes)</td>
</tr>
<tr>
<td>Shared flag</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Idle flag/fill (0x7e or all ones)</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Counters</td>
<td>Runts, giants</td>
<td>Runts, giants</td>
</tr>
</tbody>
</table>

SEE ALSO

| Interface Naming Conventions | 37 |
Example: Configuring the 1-Port Clear-Channel DS3/E3 GPIM for DS3 Port Mode

IN THIS SECTION
- Requirements | 96
- Overview | 96
- Configuration | 96

This example configures the GPIM in the DS3 (T3) operation mode.

Requirements

Before you begin:

- Install the device as specified in the *SRX Series Services Physical Interface Modules Hardware Guide*.

Overview

This example configures the basic T3 interface and modifies the framing to C-bit parity mode.

Configuration

Step-by-Step Procedure

To configure the GPIM:

1. Verify the installation, location, and status of the GPIM. In this example, the GPIM is installed in slot 8/PIC 0 and is currently online.

```
user@host> show chassis fpc pic-status
```

```
Slot 0 Online FPC
    PIC 0 Online 4x GE Base PIC
Slot 2 Offline FPC
Slot 5 Offline FPC
Slot 6 Online FPC
```
2. Set the IP address for the logical interface.

```
[edit]
user@host# set interfaces t3-8/0/0 unit 0 family inet address interface 192.107.1.230/24
```

3. Set the MTU value to 9018.

```
[edit]
user@host# set interfaces t3-8/0/0 unit 0 family inet mtu 9018
```

4. Set the framing mode.

```
[edit]
user@host# set interfaces t3-8/0/0 t3-options cbit-parity
```

5. Enable the unframed DS3 mode.

```
[edit]
user@host# set interfaces t3-8/0/0 t3-options unframed
```

6. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

7. To verify the configuration for your device, enter the following operational command:

```
user@host> show interfaces t3-8/0/0 extensive
```
Example: Configuring the 1-Port Clear Channel DS3/E3 GPIM for E3 Port Mode

IN THIS SECTION

- Requirements | 98
- Overview | 98
- Configuration | 98

This example modifies the default configuration for an E3 environment.

Requirements

Before you begin:

- Install the device as specified in the SRX Series Services Physical Interface Modules Hardware Guide.

Overview

This example configures the basic E3 interface.

Configuration

Step-by-Step Procedure

To configure the GPIM in E3 framing:

1. Verify the installation, location, and status of the GPIM. In this example, the GPIM is installed in slot 8/PIC 0 and is currently online.

   ```
   user@host> show chassis fpc pic-status
   Slot 0 Online FPC
   PIC 0 Online 4x GE Base PIC
   Slot 2 Offline FPC
   Slot 5 Offline FPC
   Slot 6 Online FPC
   ```
2. Change to E3 port mode.

```bash
[edit]
user@host# set chassis fpc 8 pic 0 port 0 framing e3
```

3. Reset the MTU value to 3474.

```bash
[edit]
user@host# set interfaces e3-8/0/0 unit 0 family inet mtu 3474
```

4. Enable the unframed mode.

```bash
[edit]
user@host# set interfaces e3-8/0/0 e3-options unframed
```

5. If you are done configuring the device, commit the configuration.

```bash
[edit]
user@host# commit
```

6. To verify the configuration for your device, enter the following operational command:

```bash
user@host> show interfaces e3-8/0/0 extensive
```
The following example configures the GPIM in DS3 with M23 mapping mode. Note that M23 mapping does not provide C-bit parity.

Requirements

Before you begin:

- Install the device as specified in the SRX Series Services Physical Interface Modules Hardware Guide.

Overview

This example configures the basic T3 interface and modifies the framing to M23 mode without C-bit parity.

Configuration

Step-by-Step Procedure

To configure the GPIM:

1. Verify the installation, location, and status of the GPIM. In this example, the GPIM is installed in slot 8/PIC 0 and is currently online.

```bash
user@host> show chassis fpc pic-status
```

```
Slot 0 Online FPC
   PIC 0 Online 4x GE Base PIC
Slot 2 Offline FPC
Slot 5 Offline FPC
```
2. Set the IP address for the logical interface.

```
[edit]
user@host# set interfaces t3-8/0/0 unit 0 family inet address interface 192.107.1.230/24
```

3. Set the MTU value to 9018.

```
[edit]
user@host# set interfaces t3-8/0/0 unit 0 family inet mtu 9018
```

4. Set the framing mode.

```
[edit]
user@host# set interfaces t3-8/0/0 t3-options m23
```

5. Disable C-bit parity for M23 mode.

```
[edit]
user@host# set interfaces t3-8/0/0 t3-options no-cbit-parity
```

6. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

7. To verify the configuration for your device, enter the following operational command:

```
user@host> show interfaces t3-8/0/0 extensive
```
Configuring ADSL and SHDSL Interfaces

Configuring ADSL Interfaces | 105
Configuring G.SHDSL Interfaces | 148
Configuring VDSL2 Interfaces | 180
Asymmetric digital subscriber line (ADSL) technology helps in transporting high-bandwidth data using the twisted-pair telephone lines. The topics below discuss the ADSL interfaces, configuration details of ADSL and SHDSL interfaces, and configuration of different clients on ADSL interfaces.

ADSL Interface Overview

Selected Juniper Networks security devices support DSL features including ATM-over-ADSL and ATM-over-SHDSL interfaces.

NOTE: Payload loopback functionality is not supported on ATM-over-SHDSL interfaces.

Asymmetric digital subscriber line (ADSL) technology is part of the xDSL family of modem technologies that use existing twisted-pair telephone lines to transport high-bandwidth data. ADSL lines connect service provider networks and customer sites over the "last mile" of the network—the loop between the service provider and the customer site.

ADSL transmission is asymmetric because the downstream bandwidth is typically greater than the upstream bandwidth. The typical bandwidths of ADSL, ADSL2, and ADSL2+ circuits are defined in Table 14 on page 106.
Table 14: Standard Bandwidths of DSL Operating Modes

<table>
<thead>
<tr>
<th>Operating Modes</th>
<th>Upstream</th>
<th>Downstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADSL</td>
<td>800 Kbps—1Mbps</td>
<td>8 Mbps</td>
</tr>
<tr>
<td>ADSL2</td>
<td>1—1.5 Mbps</td>
<td>12—14 Mbps</td>
</tr>
<tr>
<td>ADSL2+</td>
<td>1—1.5 Mbps</td>
<td>24—25 Mbps</td>
</tr>
<tr>
<td>ADSL2+ Annex M</td>
<td>2.5—3 Mbps</td>
<td>25 Mbps</td>
</tr>
</tbody>
</table>

ADSL, ADSL2, and ADSL2+ support the following standards:

- For Annex A:
 - ITU G.992.1 (ADSL)

- For Annex A only:
 - ANSI T1.413 Issue II
 - ITU G.992.3 (ADSL2)
 - ITU G.992.5 (ADSL2+)

- For Annex M:
 - ITU G.992.3 (ADSL2)
 - ITU G.992.5 (ADSL2+)

- For Annex B:
 - ITU G.992.1 (ADSL)
 - ITU G.992.3 (ADSL2)
 - ITU G.992.5 (ADSL2+)

- For Annex B only
 - ETSI TS 101 388 V1.3

The ADSL Mini-PIM facilitates a maximum of 10 virtual circuits on supported security devices.

Supported security devices with Mini-PIMs can use PPP over Ethernet over ATM (PPPoEoA) and PPP over ATM (PPPoA) to connect through ADSL lines only.
ADSL Systems

ADSL links run across twisted-pair telephone wires. When ADSL modems are connected to each end of a telephone wire, a dual-purpose ADSL circuit can be created. Once established, the circuit can transmit lower-frequency voice traffic and higher-frequency data traffic.

To accommodate both types of traffic, ADSL modems are connected to plain old telephone service (POTS) splitters that filter out the lower-bandwidth voice traffic and the higher-bandwidth data traffic. The voice traffic can be directed as normal telephone voice traffic. The data traffic is directed to the ADSL modem, which is typically connected to the data network.

ADSL2 and ADSL2+

The ADSL2 and ADSL2+ standards were adopted by the ITU in July 2002. ADSL2 improves the data rate and reach performance, diagnostics, standby mode, and interoperability of ADSL modems.

ADSL2+ doubles the possible downstream data bandwidth, enabling rates of 20 Mbps on telephone lines shorter than 5000 feet (1.5 km).

ADSL2 uses seamless rate adaptation (SRA) to change the data rate of a connection during operation with no interruptions or bit errors. The ADSL2 transceiver detects changes in channel conditions—for example, the failure of another transceiver in a multicharrier link—and sends a message to the transmitter to initiate a data rate change. The message includes data transmission parameters such as the number of bits modulated and the power on each channel. When the transmitter receives the information, it transitions to the new transmission rate.

ATM CoS Support

Certain class-of-service (CoS) components for Asynchronous Transmission Mode (ATM) are provided to control data transfer, especially for time-sensitive voice packets. The ADSL Mini-PIM on the SRX210 device provides extended ATM CoS functionality to provide cells across the network. You can define bandwidth utilization, which consists of either a constant rate or a peak cell rate, with sustained cell rate and burst tolerance. By default, unspecified bit rate (UBR) is used because the bandwidth utilization is unlimited.

The following ATM traffic shaping features are supported:

<table>
<thead>
<tr>
<th>Constant bit rate (CBR)</th>
<th>CBR is the service category for traffic with rigorous timing requirements like voice and certain types of video. CBR traffic needs a constant cell transmission rate throughout the duration of the connection.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable bit rate non-real-time (VBR-NRT)</td>
<td>VBR-NRT is intended for sources such as data transfer, which do not have strict time or delay requirements. VBR-NRT is suitable for packet data transfers.</td>
</tr>
</tbody>
</table>
The ability of a network to guarantee class of service depends on the way in which the source generates cells and also on the availability of network resources. The connection contract between the user and the network thus contains information about the way in which traffic is generated by the source.

A set of traffic descriptors is specified for this purpose. The network provides the class of service for the cells that do not violate these specifications. The following are the traffic descriptors specified for an ATM network:

- **Peak cell rate (PCR)**—Top rate at which traffic can burst.
- **Sustained cell rate (SCR)**—Normal traffic rate averaged over time.
- **Maximum burst size (MBS)**—The maximum burst size that can be sent at the peak rate.
- **Cell delay variation tolerance (CDVT)**—Allows the user to delay the traffic for a particular time duration in microseconds to follow a rhythmic pattern.

For traffic that does not require the ability to periodically burst to a higher rate, you can specify a CBR. You can configure VBR-NRT for ATM interfaces, which supports VBR data traffic with average and peak traffic parameters. VBR-NRT is scheduled with a lower priority and with a larger sustained cell rate (SCR) limit, allowing it to recover bandwidth if it falls behind.

On SRX300, SRX320, SRX340, SRX345, and SRX550HM devices, the ATM interface takes more than 5 minutes to come up when CPE is configured in ANSI-DMT mode and CO is configured in automode. This occurs only with ALU 7300 DSLAM, due to limitation in current firmware version running on the ADSL Mini-PIM.

ADSL and SHDSL Interfaces Configuration Overview

An SRX Series device with an ADSL interface supports LFI through an MLPPP.

NOTE: Currently, Junos OS supports bundling of only one xDSL link under bundle interface.

To support MLPPP encapsulation and the family mlp on the ADSL interface on an SRX Series device, you enable an existing Junos OS CLI.

To establish an ADSL link between network devices, you must use some intermediate connections. First, use an RJ-11 cable to connect the CPE (for example, an SRX Series device) to a DSLAM patch panel to
form an ADSL link. Then use OC3 or DS3 to connect the DSLAM to M Series or E Series devices to form an ATM backbone.

You can configure the following properties for the ADSL and SHDSL interfaces:

- Physical properties
- Logical properties

You can configure the following physical properties for the interface:

- ATM virtual path identifier (VPI) options for the interface—for example, at-2/0/0:
 - ATM VPI—A number from 0 through 255—for example, 25.
 - Operation, Maintenance, and Administration (OAM) F5 loopback cell thresholds (“liveness”) on ATM virtual circuits. The range is from 1 through 255, and the default is 5 cells.
 - Down count—Number of consecutive OAM loopback cells an ATM virtual circuit must lose to be identified as unavailable—for example, 200.
 - Up count—Number of consecutive OAM loopback cells an ATM virtual interface must receive to be identified as operational—for example, 200.
 - OAM period—Interval, in seconds, at which OAM cells are transmitted on ATM virtual circuits—for example, 100. The range is from 1 through 900 seconds.
 - Configure CBR for the interface—for example, at-1/0/0.
 - CBR—Range from 33,000 through 1,199,920
 - CDVT—Range from 1 through 9,999
 - Configure VBR for the interface—for example, at-1/0/0.
 - MBS—Range from 33,000 through 1,199,920
 - CDVT—Range from 1 through 9,999
 - PCR—Range from 33,000 through 1,199,920
 - SCR—Range from 33,000 through 1,199,920

- Type of DSL operating mode for the ATM-over-ADSL and ATM-over-SHDSL interfaces—for example, auto:

Annex A (used in North American network implementations) and Annex B (used in European network implementations) support the following operating modes:

- auto—Configures the ADSL interface to autonegotiate settings with the DSLAM located at the central office. For Annex A, the ADSL interface trains in either ANSI T1.413 Issue II mode or ITU G.992.1 mode. For Annex B, the ADSL interface trains in ITU G.992.1 mode. For the SHDSL interface, the line rate is available only in two-wire mode and is the default value.
• **itu-dmt**—Configures the ADSL interface to train in ITU G.992.1 mode.

• **192 Kbps or higher**—Speed of transmission of data on the SHDSL connection. For the SHDSL interface, in the four-wire mode, the default line rate is 4,608 Kbps.

Annex A supports the following operating modes:

• **adsl2plus**—Configures the ADSL interface to train in ITU G.992.5 mode. You can configure this mode only when it is supported on the DSLAM.

• **itu-dmt-bis**—Configures the ADSL interface to train in ITU G.992.3 mode. You can configure this mode only when it is supported on the DSLAM.

• **ansd-dmt**—Configures the ADSL interface to train in the ANSI T1.413 Issue II mode.

Annex B supports the following operating modes:

• **etsi**—Configures the ADSL line to train in the ETSI TS 101 388 V1.3.1 mode.

• **itu-annexb-ur2**—Configures the ADSL line to train in the G.992.1 Deutsche Telekom UR-2 mode.

• **itu-annexb-non-ur2**—Configures the ADSL line to train in the G.992.1 Non-UR-2 mode.

• Loopback option for testing the SHDSL connection integrity—for example, local loopback.

The following values are available:

• **local**—Used for testing the SHDSL equipment with local network devices.

• **payload**—Used to command the remote configuration to send back the received payload.

• **remote**—Used to test SHDSL with a remote network configuration.

• Signal-to-noise ratio (SNR) margin—for example, 5 dB for either or both of the following thresholds:

 • **current**—Line trains at higher than current noise margin plus SNR threshold. The range is from 0 to 10 dB. The default value is 0.

 • **snext**—Line trains at higher than self-near-end crosstalk (SNEXT) threshold. The default value is disabled.

Setting the SNR creates a more stable SHDSL connection by making the line train at a SNR margin higher than the threshold. If any external noise below the threshold is applied to the line, the line remains stable. You can also disable the SNR margin thresholds.

• Encapsulation type—for example, ethernet-over-atm:

 • **atm-pvc**—ATM permanent virtual circuits is the default encapsulation for ATM-over-ADSL and ATM-over-SHDSL interfaces.

 For PPP over ATM (PPPoA)-over-ADSL and over-SHDSL interfaces, use this type of encapsulation.

 • **ethernet-over-atm**—Ethernet over ATM encapsulation.
For PPP over Ethernet (PPPoE) over ATM-over-ADSL and ATM-over-SHDSL interfaces that carry IPv4 traffic, use this type of encapsulation.

You can configure the following logical properties for the interface:

- Logical interface. Set a value from 0 through 16,385—for example, 3. Add other values if required by your network.

- Configure encapsulation for the ATM-for-ADSL or ATM-for-SHDSL logical unit—for example, atm-nlpid.

The following encapsulations are supported on the ATM-over-ADSL and ATM-over-SHDSL interfaces that use inet (IP) protocols only:

- **atm-vc-mux**—Use ATM virtual circuit multiplex encapsulation.
- **atm-nlpid**—Use ATM network layer protocol identifier (NLPID) encapsulation.
- **atm-cisco-nlpid**—Use Cisco NLPID encapsulation.
- **ether-over-atm-llc**—For interfaces that carry IPv4 traffic, use Ethernet over LLC encapsulation. You cannot configure multipoint interfaces if you use this type of encapsulation.

The following encapsulations are supported on the ATM-over-ADSL or ATM-over-SHDSL for PPP-over-ATM (PPPoA) interfaces only.

- **atm-ppp-llc**—AAL5 logical link control (LLC) encapsulation.
- **atm-ppp-vc-mux**—Use AAL5 multiplex encapsulation.

Other encapsulation types supported on the ATM-over-ADSL and ATM-over-SHDSL interfaces are:

- **ppp-over-ether-over-atm-llc**—Use PPP over Ethernet over ATM LLC encapsulation. When you use this encapsulation type, you cannot configure the interface address. Instead you configure the interface address on the PPP interface.
- **atm-snap**—Use ATM subnetwork attachment point (SNAP) encapsulation.

- OAM options for the ATM virtual circuits:
 - OAM F5 loopback cell thresholds (“liveness”) on ATM virtual circuits. The range is from 1 through 255, and the default is 5 cells.
 - Down count—Number of consecutive OAM loopback cells an ATM virtual circuit must lose to be identified as unavailable—for example, 200.
 - Up count—Number of consecutive OAM loopback cells an ATM virtual interface must receive to be identified as operational—for example, 200.
 - OAM period—Interval, in seconds, at which OAM cells are transmitted on ATM virtual circuits—for example, 100. The range is from 1 through 900 seconds.
Family protocol type—for example, inet. Commands vary depending on the protocol type.

ATM VCI options for the interface:
- ATM VCI type—vci
- ATM VCI value—A number from 0 through 4,089—for example, 35—with VCIs 0 through 31 reserved.

Example: Configuring the DHCP Client on ADSL Interface

This example shows how to configure DHCP client on ADSL or SHDSL or VDSL2 interface (when VDSL2 interface is configured to operate in ADSL fallback mode).

Requirements

Before you begin:
- Review the overview section on DHCP client. See *Understanding DHCP Client Operation*
- Establish basic connectivity. See the Quick Start for your device.
- Configure network interfaces as necessary. See "Example: Creating an Ethernet Interface" on page 282.

Overview

In this example, you configure the ATM interface as at-1/0/0. You then set the logical interface to unit 0 and specify the family protocol type as inet. Finally, you configure the DHCP client.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces at-1/0/0 encapsulation ethernet-over-atm
set interfaces at-1/0/0 atm-options vpi 2
set interfaces at-1/0/0 dsl-options operating-mode auto
set interfaces at-1/0/0 unit 0
data interfaces at-1/0/0 unit 0 encapsulation ether-over-atm-llc
set interfaces at-1/0/0 unit 0 vci 2.122
set interfaces at-1/0/0 unit 0 family inet
set interfaces at-1/0/0 unit 0 family inet dhcp
```

Step-by-Step Procedure

To configure DHCP client on ADSL interfaces:

1. Set the encapsulation mode.

 `[edit]
 user@host# set interfaces at-1/0/0 encapsulation ethernet-over-atm`

2. Configure the ATM VPI option.

 `[edit]
 user@host# set interfaces at-1/0/0 atm-options vpi 2`

3. Set operating mode.

 `[edit]
 user@host# set interfaces at-1/0/0 dsl-options operating-mode auto`

4. Set the logical interface.

 `[edit]
 user@host# set interfaces at-1/0/0 unit 0`

5. Set the encapsulation mode for logical interface.

 `[edit]`
6. Set the ATM VCI option.

```
[edit]
user@host# set interfaces at-1/0/0 unit 0 vci 2.122
```

7. Specify the family protocol type.

```
[edit]
user@host# set interfaces at-1/0/0 unit 0 family inet
```

8. Configure the DHCP client.

```
[edit]
user@host# set interfaces at-1/0/0 unit 0 family inet dhcp
```

9. Set the DHCP client identifier as a ASCII or hexadecimal value (optional):

 Use hexadecimal if the client identifier is a MAC address—for example, 00:0a:12:00:12:12.

```
[edit]
user@host# set interfaces at-1/0/0 unit 0 family inet dhcp client-identifier 00:0a:12:00:12:12
```

10. Set the DHCP lease time in seconds—for example, 86400 (24 hours). The range is 60 through 2147483647 seconds (optional).

```
[edit]
user@host# set interfaces at-1/0/0 unit 0 family inet dhcp lease-time 86400
```

11. Define the number of attempts allowed to retransmit a DHCP packet (optional)—for example, 6

 The range is 0 through 6. The default is 4 times.

```
[edit]
user@host# set interfaces at-1/0/0 unit 0 family inet dhcp retransmission-attempt 6
```

12. Define the interval, in seconds, allowed between retransmission attempts (optional)—for example, 5.
The range is 4 through 64. The default is 4 seconds.

```
[edit]
user@host# set interfaces at-1/0/0 unit 0 family inet dhcp retransmission-interval 5
```

13. Set the IPv4 address of the preferred DHCP server (optional)—for example, 10.1.1.1.

```
[edit]
user@host# set interfaces at-1/0/0 unit 0 family inet dhcp server-address 10.1.1.1
```

14. Set the vendor class ID for the DHCP client (optional)—for example, ether.

```
[edit]
user@host# set interfaces at-0/0/1 unit 0 family inet dhcp vendor-id ether
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces at-1/0/0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces at-1/0/0
encapsulation ethernet-over-atm;
  atm-options {
    vpi 2;
  }
  dsl-options {
    operating-mode auto;
  }
unit 0 {
  encapsulation ether-over-atm-llc;
  vci 2.122;
  family inet {
    dhcp {
      client-identifier ascii 00:0a:12:00:12:12;
      lease-time 86400;
      retransmission-attempt 6;
      retransmission-interval 5;
      server-address 10.1.1.1;
    }
  }
}
```
If you are done configuring the device, enter **commit** from configuration mode.

Verification

IN THIS SECTION

- Verifying the DHCP Configuration | 116
- Verify Interface Status | 117

Confirm that the configuration is working properly.

Verifying the DHCP Configuration

Purpose

Verify that the DHCP options are configured properly.

Action

Verify the DHCP configuration by using the `run show system services dhcp client` command.

```
user@host# run show system services dhcp client
```

<table>
<thead>
<tr>
<th>Logical Interface name</th>
<th>at-1/0/0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware address</td>
<td>00:1f:12:e4:71:38</td>
</tr>
<tr>
<td>Client status</td>
<td>bound</td>
</tr>
<tr>
<td>Address obtained</td>
<td>10.40.1.2</td>
</tr>
<tr>
<td>Update server</td>
<td>disabled</td>
</tr>
<tr>
<td>Lease obtained at</td>
<td>2011-05-03 04:58:10 PDT</td>
</tr>
<tr>
<td>Lease expires at</td>
<td>2011-05-04 04:58:10 PDT</td>
</tr>
</tbody>
</table>

DHCP options:

- **Name: server-identifier, Value: 10.40.1.1**
- **Code: 1, Type: ip-address, Value: 255.255.255.0**
- **Name: name-server, Value: [192.168.5.68, 192.168.60.131, 172.17.28.100, 172.17.28.101]**
- **Name: domain-name, Value: englab.juniper.net**
Verify Interface Status

Purpose
Verify the interface status and check traffic statistics.

Action
Verify interface status by using the `show interface terse` command and test end-to-end data path connectivity by sending the ping packets to the remote end IP address.

```sh
user@host# run show interfaces at-1/0/0 terse
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>at-1/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at-1/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.40.1.2/24</td>
<td></td>
</tr>
<tr>
<td>at-1/0/0.32767</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```sh
user@host# run ping 10.40.1.1 count 100 rapid
```

PING 10.40.1.1 (10.40.1.1): 56 data bytes
!!

--- 10.40.1.1 ping statistics ---
100 packets transmitted, 100 packets received, 0% packet loss
round-trip min/avg/max/stddev = 20.086/26.404/61.723/6.194 ms

SEE ALSO

- **DHCP Server Configuration Overview**

Example: Configuring the IPv6 Address on an ADSL Interface

IN THIS SECTION

- **Requirements** | 118
- **Overview** | 118
This example shows how to configure the IPv6 address on an ADSL interface.

Requirements

Before you begin, configure network interfaces as necessary. See “Understanding Ethernet Interfaces” on page 277.

Overview

In this example, you specify the following configuration parameters:

- Encapsulation type: Ethernet over ATM on DSL logical interface
- ATM virtual path identifier (VPI): 2
- Encapsulation type: Ethernet over ATM on DSL logical interface
- Encapsulation type for the ATM-for-ADSL logical unit: Ethernet over ATM LLC
- ATM virtual channel (VCI): 2.118
- IPv6 address and prefix: 13:13::1/64

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces at-1/0/0 encapsulation ethernet-over-atm
set interfaces at-1/0/0 atm-options vpi 2
set interfaces at-1/0/0 unit 0 encapsulation ether-over-atm-llc
set interfaces at-1/0/0 unit 0 vci 2.118
set interfaces at-1/0/0 unit 0 family inet6 address 13:13::1/64
```

Step-by-Step Procedure
To configure the IPv6 address on an ADSL interface:

1. Configure the encapsulation type.

   ```
   [edit]
   user@host# set interfaces at-1/0/0 encapsulation ethernet-over-atm
   ```

2. Specify the annex type.

   ```
   [edit]
   user@host# set interfaces at-1/0/0 atm-options vpi 2
   ```

3. Configure the encapsulation for the logical unit.

   ```
   [edit]
   user@host# set interfaces at-1/0/0 unit 0 encapsulation ether-over-atm-llc
   ```

4. Configure the VCI value.

   ```
   [edit]
   user@host# set interfaces at-1/0/0 unit 0 vci 2.118
   ```

5. Configure family protocol type and assign an IPv6 address.

   ```
   [edit]
   user@host# set interfaces at-1/0/0 unit 0 family inet6 address 13:13::1/64
   ```

Results

From configuration mode, confirm your configuration by entering the `show interfaces at-1/0/0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces at-1/0/0
encapsulation ethernet-over-atm;
atm-options {
  vpi 2;
}
unit 0 {
```
If you done configuring the device, enter `commit` from configuration mode.

Verification

Confirm that the configuration is working properly.

Verifying ADSL Interface Properties

Purpose
Verify that the ADSL interface properties are configured properly.

Action
From operational mode, enter the `show ipv6 neighbors` command. The output shows a summary of interface information.

```
user@host> show ipv6 neighbors
```

<table>
<thead>
<tr>
<th>IPv6 Address</th>
<th>Linklayer Address</th>
<th>State</th>
<th>Exp Rtr</th>
<th>Secure</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:1::2</td>
<td>00:00:a0:00:00</td>
<td>reachable</td>
<td>17</td>
<td>yes</td>
<td>reth0.0</td>
</tr>
<tr>
<td>13:13::1</td>
<td>00:19:e2:4b:61:83</td>
<td>stale</td>
<td>1197</td>
<td>yes</td>
<td>at-1/0/0.0</td>
</tr>
<tr>
<td>12:12::2</td>
<td>00:19:e2:4b:61:83</td>
<td>stale</td>
<td>1188</td>
<td>yes</td>
<td>at-3/0/0.0</td>
</tr>
</tbody>
</table>

Meaning
The **IPv6 Address** field displays the configured IPv6 address on the interface.

SEE ALSO

- Configuring the inet6 IPv6 Protocol Family | 61
- `show ipv6 neighbors`
- `clear ipv6 neighbors`
Example: Configuring ATM-over-ADSL Network Interfaces

This example shows how to configure ATM-over-ADSL network interfaces for the devices.

Requirements

Before you begin:

• Configure network interfaces as necessary. See “Understanding Ethernet Interfaces” on page 277.

• Configure PPPoE encapsulation on an Ethernet interface or on an ATM-over-ADSL interface. See “Understanding Point-to-Point Protocol over Ethernet” on page 462.

Overview

This example shows how to use devices with ADSL Annex A or Annex B PIMs to send network traffic through a point-to-point connection to a DSLAM. Within the example, you set the DSL operating mode type to auto so that the ADSL interface will autonegotiate settings with the DSLAM.

The example shows how to create an ATM interface called at-2/0/0. The values for the interface’s physical properties are kept relatively low—the ATM VPI is set to 25; both the OAM down count and up count are set to 200 cells; the OAM period is set to 100 seconds.

The example also shows how to set traffic shaping values on the ATM interface to support CoS. CBR is enabled in order to stabilize the cell transmission rate throughout the duration of the connection. Additionally, the VBR peak is set to 33,000 for data packet transfers.

Within the example, you set the encapsulation mode to ethernet-over-atm to support PPP over Ethernet IPv4 traffic. You also configure a logical interface (unit 3). The logical interface uses ATM NLPID encapsulation. As with the physical interface, the OAM down count and up count are set to 200 cells on the logical interface and the OAM period is set to 100 seconds. The family protocol is set to inet and the VCI is set to 35.
NOTE: On SRX300, SRX320, SRX340, SRX345, and SRX550HM devices, the ATM interface takes more than 5 minutes to come up when CPE is configured in ANSI-DMT mode and CO is configured in automode. This occurs only with ALU 7300 DSLAM, due to limitation in current firmware version running on the ADSL Mini-PIM.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces at-2/0/0 atm-options vpi 25 oam-liveness up-count 200 down-count 200
set interfaces at-2/0/0 atm-options vpi 25 oam-period 100
set interfaces at-1/0/0 unit 0 shaping cbr
set interfaces at-1/0/0 unit 0 shaping vbr peak 33000
set interfaces at-1/0/0 dsl-options operating-mode auto
set interfaces at-1/0/0 encapsulation ethernet-over-atm
set interfaces at-1/0/0 unit 3 encapsulation atm-nlpid oam-liveness up-count 200 down-count 200
set interfaces at-1/0/0 unit 3 oam-period 100
set interfaces at-1/0/0 unit 3 family inet
set interfaces at-1/0/0 unit 3 vci 35
```

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure ATM-over-ADSL network interfaces for the devices:

1. Create an ATM interface.

 [edit]
 user@host# edit interfaces at-2/0/0

2. Configure the physical properties for the ATM interface.

 [edit interfaces at-2/0/0]
 user@host# set atm-options vpi 25
 user@host# set atm-options vpi 25 oam-liveness up-count 200 down-count 200
3. Specify the CBR value and VBR value for the Ethernet interface.

```
[edit]
user@host# edit interfaces at-1/0/0 unit 0
user@host# set shaping cbr
user@host# set shaping vbr peak 33000
```

4. Set the DSL operating mode type.

```
[edit interfaces at-1/0/0.0]
user@host# set dsl-options operating-mode auto
```

5. Configure the encapsulation type.

```
[edit interfaces at-1/0/0]
user@host# set encapsulation ethernet-over-atm
```

6. Configure the encapsulation for the logical unit.

```
[edit interfaces at-1/0/0 unit 3]
user@host# set encapsulation atm-nlpid
```

7. Configure the OAM liveness values for an ATM virtual circuit.

```
[edit interfaces at-1/0/0 unit 3]
user@host# set oam-liveness up-count 200 down-count 200
```

8. Specify the OAM period.

```
[edit interfaces at-1/0/0 unit 3]
user@host# set oam-period 100
```

9. Set the family protocol type.
10. Configure the VCI value.

```
[edit interfaces at-1/0/0 unit 3]
user@host# set family inet
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces at-1/0/0` and `show interfaces at-2/0/0` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces at-1/0/0
encapsulation ethernet-over-atm;
dsl-options {
  operating-mode auto;
}
unit 0 {
  shaping {
    vbr peak 33k;
    burst
  }
}
unit 3 {
  encapsulation atm-nlpid;
  vci 35;
  oam-period 100;
  oam-liveness {
    up-count 200;
    down-count 200;
  }
  family inet;
}
[edit]
user@host show interfaces at-2/0/0
atm-options {
  vpi 25 {
    oam-period 100;
    oam-liveness {
      up-count 200;
    }
  }
```
If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Verifying the ADSL Interface Properties | 125
- Verifying a PPPoA Configuration for an ATM-over-ADSL Interface | 128

Confirm that the configuration is working properly.

Verifying the ADSL Interface Properties

Purpose
Verify that the interface properties are correct.

Action
From operational mode, enter the `show interfaces at-1/0/0 extensive` command.

```
user@host> show interfaces at-1/0/0 extensive
```

```
Physical interface: at-1/0/0, Enabled, Physical link is Up
  Interface index: 141, SNMP ifIndex: 49, Generation: 142
  Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, ADSL mode,
  Speed: ADSL, Loopback: None
  Device flags   : Present Running
  Link flags     : None
  CoS queues     : 8 supported, 8 maximum usable queues
  Hold-times     : Up 0 ms, Down 0 ms
  Current address: 00:05:85:c3:17:f4
  Last flapped   : 2008-06-26 23:11:09 PDT (01:41:30 ago)
  Statistics last cleared: Never
  Traffic statistics:
    Input bytes : 0 0 bps
    Output bytes: 0 0 bps
```
<table>
<thead>
<tr>
<th>Input packets:</th>
<th>0</th>
<th>0 pps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output packets:</td>
<td>0</td>
<td>0 pps</td>
</tr>
</tbody>
</table>

Input errors:
- Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0,
- L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0,
- Resource errors: 0

Output errors:
- Carrier transitions: 3, Errors: 0, Drops: 0, Aged packets: 0, MTU errors: 0,
- Resource errors: 0

ADSL alarms : None
ADSL defects : None

<table>
<thead>
<tr>
<th>ADSL media:</th>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOF</td>
<td>1</td>
<td>1</td>
<td>OK</td>
</tr>
<tr>
<td>LOS</td>
<td>1</td>
<td>1</td>
<td>OK</td>
</tr>
<tr>
<td>LOM</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOP</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOCDI</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOCDNI</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
</tbody>
</table>

ADSL status:
- Modem status : Showtime (Adsl2plus)
- DSL mode : Auto Annex A
- Last fail code: None
- Subfunction : 0x00
- Seconds in showtime : 6093

ADSL Chipset Information:
- Vendor Country : 0xf 0xb5
- Vendor ID : STMI IFTN
- Vendor Specific: 0x0000 0x70de

ADSL Statistics:
- Attenuation (dB) : 0.0 0.0
- Capacity used(%) : 100 92
- Noise margin(dB) : 7.5 9.0
- Output power (dBm) : 10.0 12.5

<table>
<thead>
<tr>
<th>Bit rate (kbps) :</th>
<th>0</th>
<th>24465</th>
<th>0</th>
<th>1016</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

| Received cells : | 0 | 49 |
| Transmitted cells : | 0 | 0 |
ATM status:
 HCS state: Hunt
 LOC : OK

ATM Statistics:
Uncorrectable HCS errors: 0, Correctable HCS errors: 0, Tx cell FIFO overruns: 0, Rx cell FIFO overruns: 0, Rx cell FIFO underruns: 0,
 Input cell count: 49, Output cell count: 0, Output idle cell count: 0, Output VC queue drops: 0, Input no buffers: 0, Input length errors: 0,
 Input timeouts: 0, Input invalid VCs: 0, Input bad CRCs: 0, Input OAM cell no buffers: 0

Packet Forwarding Engine configuration:
 Destination slot: 1
 Direction : Output
 CoS transmit queue Bandwidth Buffer Priority
 Limit % bps % usec
 0 best-effort 95 7600000 95 0 low
 3 network-control 5 400000 5 0 low

But for ADSL MiniPim TI chipset does not send ADSL Chipset Information. Also Adsl minipim does not send any alarms. So we can't show alarm stats for minipim. So following information will not be displayed in Minipim case.

ADSL alarms : None
ADSL defects : None

ADSL media: Seconds Count State
 LOF 1 1 OK
 LOS 1 1 OK
 LOM 0 0 OK
 LOP 0 0 OK
 LOCDI 0 0 OK
 LOCDNI 0 0 OK

ADSL Chipset Information:
 ATU-R ATU-C
 Vendor Country : 0x0f 0xb5
 Vendor ID : STMI IFTN
 Vendor Specific: 0x0000 0x70de
The output shows a summary of interface information. Verify the following information:

- The physical interface is enabled. If the interface is shown as disabled, do either of the following:
 - In the CLI, delete the `disable` statement at the `[edit interfaces interface-name]` level of the configuration hierarchy.
 - In J-Web, clear the Disable check box on the Interfaces page (Interfaces>`interface-name`).
- The physical link is up. A link state of down indicates a problem with the interface module, interface port, or physical connection (link-layer errors).
- The last flapped time is an expected value. It indicates the last time the physical interface became unavailable and then available again. Unexpected flapping indicates likely link-layer errors.
- The traffic statistics reflect expected input and output rates. Verify that the number of inbound and outbound bytes and packets matches expected throughput for the physical interface. To clear the statistics and see only new changes, use the `clear interfaces statistics interface-name` command.
- No ADSL alarms and defects appear that can render the interface unable to pass packets. When a defect persists for a certain amount of time, it is promoted to an alarm. The following are ADSL-specific alarms:
 - **LOCDI**—Loss of cell delineation for interleaved channel.
 - **LOCDNI**—Loss of cell delineation for noninterleaved channel.
 - **LOF**—Loss of frame.
 - **LOM**—Loss of multiframe.
 - **LOP**—Loss of power.
 - **LOS**—Loss of signal.

Examine the operational statistics for an ADSL interface. Statistics in the ATU-R (ADSL transceiver unit–remote) column are for the near end. Statistics in the ATU-C (ADSL transceiver unit–central office) column are for the far end.

- **Attenuation (dB)**—Reduction in signal strength.
- **Capacity used (%)**—Amount of ADSL usage.
- **Noise margin (dB)**—Maximum extraneous signal allowed without causing the output to deviate from an acceptable level.
- **Output power (dBm)**—Amount of power used by the ADSL interface.
- **Bit rate (kbps)**—Data transfer speed on the ADSL interface.

Verifying a PPPoA Configuration for an ATM-over-ADSL Interface

Purpose

Verify that the PPPoA configuration for an ATM-over-ADSL interface is correct.
Action
From operational mode, enter the show interfaces at-1/0/0 and the show access commands.

Example: Configuring MLPPP-over-ADSL Interfaces

This example shows how to configure MLPPP on an ADSL interface.

Requirements
Before you begin, configure network interfaces as necessary. See "Understanding Ethernet Interfaces" on page 277.

Overview
In this example, you set the encapsulation as atm-mlppp-llc for the interface at-5/0/0. You then configure the family MLPPP bundle as lsq-0/0/0.1.

Figure 7 on page 130 shows a typical example of MLPPP-over-ADSL end-to-end connectivity.
Configuration

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure MLPPP on an ADSL interface:

1. Configure an interface.

   ```
   [edit]
   user@host# edit interfaces at-5/0/0 unit 0
   ```

2. Set the MLPPP encapsulation.

   ```
   [edit interfaces at-5/0/0 unit 0]
   user@host# set encapsulation atm-mlppp-llc
   ```

3. Specify the family MLPPP.

   ```
   [edit interfaces at-5/0/0 unit 0]
   user@host# set family mlppp bundle lsq-0/0/0.1
   ```

4. If you are done configuring the device, commit the configuration.

   ```
   [edit]
   ```
Verification

To verify the configuration is working properly, enter the `show interfaces at-5/0/0` command.

Example: Configuring CHAP on DSL Interfaces

This example shows how to configure CHAP on either the ATM-over-ADSL or the ATM-over-SHDSL interface.

Requirements

Before you begin, configure network interfaces as necessary. See "Understanding Ethernet Interfaces" on page 277.

Overview

In this example, you specify the CHAP access profile and create an interface called at-3/0/0. You configure CHAP on either the ATM-over-ADSL or the ATM-over-SHDSL interface and specify a unique profile name called A-ppp-client containing a client list and access parameters. You then specify a unique hostname called A-at-3/0/0.0 to be used in CHAP. Finally, you set the passive option to handle incoming CHAP packets.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set access profile A-ppp-client client client1 chap-secret my-secret
set interfaces at-3/0/0 unit 0 ppp-options chap access-profile A-ppp-client local-name A-at-3/0/0.0 passive
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode*.

To configure CHAP on either the ATM-over-ADSL or the ATM-over-SHDSL interface:

1. Define a CHAP access profile.

   ```
   [edit]
   user@host# set access profile A-ppp-client client client1 chap-secret my-secret
   ```

2. Create an interface.

   ```
   [edit]
   user@host# edit interfaces at-3/0/0 unit 0
   ```

3. Configure CHAP and specify a unique profile name.

   ```
   [edit interfaces at-3/0/0 unit 0]
   user@host# set ppp-options chap access-profile A-ppp-client
   ```

4. Specify a unique hostname.

   ```
   [edit interfaces at-3/0/0 unit 0]
   user@host# set ppp-options chap local-name A-at-3/0/0.0
   ```

5. Set the option to handle incoming CHAP packets only.

   ```
   [edit interfaces at-3/0/0 unit 0]
   user@host# set ppp-options chap passive
   ```

Results
From configuration mode, confirm your configuration by entering the `show access profile A-ppp-client` and `show interfaces at-3/0/0` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show access profile A-ppp-client
client client1 chap-secret "$9$ikPQu1Sre0BcIMW-dk.P5QnApB"; ## SECRET-DATA
[edit]
user@host# show interfaces at-3/0/0
unit 0 {
  ppp-options {
    chap {
      access-profile A-ppp-client;
      local-name A-at-3/0/0.0;
      passive;
    }
  }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Verifying ADSL Interface Properties | 133
- Verifying a PPPoA Configuration for an ATM-over-ADSL Interface | 137
- Verifying an ATM-over-SHDSL Configuration | 137

Confirm that the configuration is working properly.

Verifying ADSL Interface Properties

Purpose

Verify that the ADSL interface properties are enabled.

Action

From operational mode, enter the `show interfaces at-3/0/0 extensive` command.

```
user@host> show interfaces at-3/0/0 extensive
```
Physical interface: at-3/0/0, Enabled, Physical link is Up
Interface index: 141, SNMP ifIndex: 49, Generation: 142
Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, ADSL mode,
Speed: ADSL, Loopback: None
Device flags : Present Running
Link flags : None
CoS queues : 8 supported, 8 maximum usable queues
Hold-times : Up 0 ms, Down 0 ms
Current address: 00:05:85:c3:17:f4
Last flapped : 2008-06-26 23:11:09 PDT (01:41:30 ago)
Statistics last cleared: Never
Traffic statistics:
Input bytes : 0 0 bps
Output bytes : 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps
Input errors:
Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0,
L3 incompletes: 0, L2 channelerrors: 0, L2 mismatch timeouts: 0,
Resource errors: 0
Output errors:
Carrier transitions: 3, Errors: 0, Drops: 0, Aged packets: 0, MTU errors: 0,
Resource errors: 0
ADSL alarms : None
ADSL defects : None
ADSL media: Seconds Count State
LOF 1 1 OK
LOS 1 1 OK
LOM 0 0 OK
LOP 0 0 OK
LOCDI 0 0 OK
LOCDNI 0 0 OK
ADSL status:
Modem status : Showtime (Ads12plus)
DSL mode : Auto Annex A
Last fail code: None
Subfunction : 0x00
Seconds in showtime : 6093
ADSL Chipset Information: ATU-R ATU-C
Vendor Country : 0x0f 0xb5
Vendor ID : STMI IFTN
Vendor Specific: 0x0000 0x70de
ADSL Statistics: ATU-R ATU-C
Attenuation (dB) : 0.0 0.0
Capacity used(%) : 100 92
Noise margin(dB) : 7.5 9.0
Output power (dBm) : 10.0 12.5

<table>
<thead>
<tr>
<th>Interleave</th>
<th>Fast</th>
<th>Interleave</th>
<th>Fast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit rate (kbps) :</td>
<td>0</td>
<td>24465</td>
<td>0</td>
</tr>
<tr>
<td>CRC :</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FEC :</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HEC :</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Received cells : 0 49
Transmitted cells : 0 0

ATM status:
HCS state: Hunt
LOC : OK

ATM Statistics:
Uncorrectable HCS errors: 0, Correctable HCS errors: 0, Tx cell FIFO overruns: 0, Rx cell FIFO overruns: 0, Rx cell FIFO underruns: 0,
Input cell count: 49, Output cell count: 0, Output idle cell count: 0, Output VC queue drops: 0, Input no buffers: 0, Input length errors: 0,
Input timeouts: 0, Input invalid VCs: 0, Input bad CRCs: 0, Input OAM cell no buffers: 0

Packet Forwarding Engine configuration:
Destination slot: 1
Direction : Output
CoS transmit queue Bandwidth Buffer Priority
Limit % bps % usec
0 best-effort 95 7600000 95 0 low
none
3 network-control 5 400000 5 0 low
none

But for ADSL MiniPim TI chipset does not send ADSL Chipset Information. Also Adsl minipim does not send any alarms. So we can't show alarm stats for minipim. So following information will not be displayed in Minipim case.

ADSL alarms : None
The output shows a summary of interface information. Verify the following information:

- The physical interface is Enabled. If the interface is shown as Disabled, do either of the following:
 - In the CLI configuration editor, delete the **disable** statement at the `[edit interfaces interface-name]` level of the configuration hierarchy.
 - In the J-Web configuration editor, clear the **Disable** check box on the Interfaces page ([Interfaces>interface-name]).

- The physical link is up. A link state of Down indicates a problem with the interface module, interface port, or physical connection (link-layer errors).

- The last flapped time is an expected value. It indicates the last time the physical interface became unavailable and then available again. Unexpected flapping indicates likely link-layer errors.

- The traffic statistics reflect expected input and output rates. Verify that the number of inbound and outbound bytes and packets matches expected throughput for the physical interface. To clear the statistics and see only new changes, use the `clear interfaces statistics interface-name` command.

- No ADSL alarms and defects appear that can render the interface unable to pass packets. When a defect persists for a certain amount of time, it is promoted to an alarm. The following are ADSL-specific alarms:
 - **LOCDI**—Loss of cell delineation for interleaved channel
 - **LOCDNI**—Loss of cell delineation for noninterleaved channel
 - **LOF**—Loss of frame
 - **LOM**—Loss of multiframe
 - **LOP**—Loss of power
 - **LOS**—Loss of signal
Examine the operational statistics for an ADSL interface. Statistics in the ATU-R (ADSL transceiver unit–remote) column are for the near end. Statistics in the ATU-C (ADSL transceiver unit–central office) column are for the far end.

- **Attenuation (dB)**—Reduction in signal strength measured in decibels.
- **Capacity used (%)**—Amount of ADSL usage in %.
- **Noise margin (dB)**—Maximum extraneous signal allowed without causing the output to deviate from an acceptable level.
- **Output power (dBm)**—Amount of power used by the ADSL interface.
- **Bit rate (kbps)**—Data transfer speed on the ADSL interface.

Verifying a PPPoA Configuration for an ATM-over-ADSL Interface

Purpose
Verify that the PPPoA configuration for an ATM-over-ADSL interface is correct.

Action
From operational mode, enter the `show interfaces at-3/0/0` and the `show access` commands.

Verifying an ATM-over-SHDSL Configuration

Purpose
Verify that the interface properties are correct.

Action
From operational mode, enter the `show interfaces at-3/0/0 extensive` command.

```
user@host> show interfaces at-3/0/0 extensive

Physical interface: at-3/0/0, Enabled, Physical link is Up
  Interface index: 141, SNMP ifIndex: 23, Generation: 48
  Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, ADSL mode, Speed: ADSL,

  Loopback: None
  Device flags     : Present Running
  Link flags       : None
  CoS queues       : 8 supported
  Hold-times       : Up 0 ms, Down 0 ms
  Current address  : 00:05:85:c7:44:3c
  Last flapped     : 2005-05-16 05:54:41 PDT (00:41:42 ago)
  Statistics last cleared: Never
  Traffic statistics:
  Input bytes      : 4520 0 bps
```
Output bytes : 39250 0 bps
Input packets: 71 0 pps
Output packets: 1309 0 pps
Input errors:
Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0,
L3 incompletes: 0, L2 channel errors: 1, L2 mismatch timeouts: 0, Resource
errors: 0
Output errors:
Carrier transitions: 3, Errors: 0, Drops: 0, Aged packets: 0, MTU errors: 0,
Resource errors: 0
Queue counters: Queued packets Transmitted packets Dropped packets
0 best-effort 4 4 0
1 expedited-fo 0 0 0
2 assured-forw 0 0 0
3 network-cont 2340 2340 0
SHDSL alarms : None
SHDSL defects : None
SHDSL media: Seconds Count State
LOSD 239206 2 OK
LOSW 239208 1 OK
ES 3 1 OK
SES 0 0 OK
UAS 3 1 OK
SHDSL status:
Line termination :STU-R
Annex :Annex B
Line Mode :2-wire
Modem Status :Data
Last fail code :0
Framer mode :ATM
Dying Gasp :Enabled
Chipset version :1
Firmware version :R3.0
SHDSL Statistics:
Loop Attenuation (dB) :0.600
Transmit power (dB) :8.5
Receiver gain (dB) :21.420
SNR sampling (dB) :39.3690
Bit rate (kbps) :2304
Bit error rate :0
CRC errors :0
SEGA errors :1
LOSW errors :0
Received cells :1155429
Transmitted cells :1891375
HEC errors :0
Cell drop :0

The output shows a summary of interface information. Verify the following information:

- The physical interface is enabled. If the interface is shown as disabled, do either of the following:
 - In the CLI configuration editor, delete the **disable** statement at the [edit interfaces interface-name] level of the configuration hierarchy.
 - In the J-Web configuration editor, clear the **Disable** check box on the Interfaces page (Interfaces>interface-name).

- The physical link is up. A link state of down indicates a problem with the interface module, interface port, or physical connection (link-layer errors).

- The last flapped time is an expected value. It indicates the last time the physical interface became unavailable and then available again. Unexpected flapping indicates likely link-layer errors.

- The traffic statistics reflect expected input and output rates. Verify that the number of inbound and outbound bytes and packets matches expected throughput for the physical interface. To clear the statistics and see only new changes, use the **clear interfaces statistics interface-name** command.

- No SHDSL alarms and defects appear that can render the interface unable to pass packets. When a defect persists for a certain amount of time, it is promoted to an alarm.
 - **LOS**—Loss of signal. No signal was detected on the line.
 - **LOSW**—Loss of sync word. A message ID was sent.
 - **Power status**—A power failure has occurred.
 - **LOSD**—Loss of signal was detected at the remote application interface.
 - **ES**—Errored seconds. One or more cyclic redundancy check (CRC) anomalies were detected.
 - **SES**—Severely errored seconds. At least 50 CRC anomalies were detected.
 - **UAS**—Unavailable seconds. An interval has occurred during which one or more LOSW defects were detected.

Examine the SHDSL interface status:

- **Line termination**—SHDSL transceiver unit–remote (STU–R). (Only customer premises equipment is supported.)
- **Annex**—Either Annex A or Annex B. Annex A is supported in North America, and Annex B is supported in Europe.
• **Line mode**—SHDSL mode configured on the G.SHDSL interface pair, either two-wire or four-wire.

• **Modem Status**—Data. Sending or receiving data.

• **Last fail code**—Code for the last interface failure.

• **Framer mode**—Framer mode of the underlying interface: ATM.

• **Dying gasp**—Ability of a device that has lost power to send a message informing the attached DSL access multiplexer (DSLAM) that it is about to go offline.

• **Chipset version**—Version number of the chipset on the interface

• **Firmware version**—Version number of the firmware on the interface.

Examine the operational statistics for a SHDSL interface.

• **Loop attenuation (dB)**—Reduction in signal strength measured in decibels.

• **Transmit power (dB)**—Amount of SHDSL usage in %.

• **Receiver gain (dB)**—Maximum extraneous signal allowed without causing the output to deviate from an acceptable level.

• **SNR sampling (dB)**—Signal-to-noise ratio at a receiver point in decibels.

• **Bit rate (kbps)**—Data transfer speed on the SHDSL interface.

• **CRC errors**—Number of cyclic redundancy check errors.

• **SEGA errors**—Number of segment anomaly errors. A regenerator operating on a segment received corrupted data.

• **LOSW errors**—Number of loss of signal defect errors. Three or more consecutively received frames contained one or more errors in the framing bits.

• **Received cells**—Number of cells received through the interface.

• **Transmitted cells**—Number of cells sent through the interface.

• **HEC errors**—Number of header error checksum errors.

• **Cell drop**—Number of dropped cells on the interface.

Example: Configuring ATM-over-SHDSL Network Interfaces

<table>
<thead>
<tr>
<th>IN THIS SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
</tr>
<tr>
<td>Overview</td>
</tr>
</tbody>
</table>
This example shows how to configure ATM-over-SHDSL network interfaces.

Requirements

Before you begin:

- Configure network interfaces as necessary. See "Understanding Ethernet Interfaces" on page 277.
- Configure PPPoE encapsulation on an Ethernet interface or on an ATM-over-ADSL interface. See "Understanding Point-to-Point Protocol over Ethernet" on page 462.

Overview

In this example, you set the ATM-over-SHDSL mode on the G.SHDSL interface, if required. You create an interface called at-2/0/0 and configure the physical properties for the interface. You configure the encapsulation type and annex type. You specify the SHDSL line rate for the ATM-over-SHDSL interface and the loopback address for testing the SHDSL connection integrity. Then you configure the SNR margin, set the logical interface, and configure the encapsulation for the ATM-over-SHDSL logical unit.

Additionally, you configure the OAM liveness values for an ATM virtual circuit and set the OAM period. Finally, you add the family protocol type inet and configure the VCI value.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set chassis fpc 6 pic 0 shdsl pic-mode 1-port-atm
set interfaces at-2/0/0 atm-options vpi 25 oam-liveness up-count 200 down-count 200
set interfaces at-2/0/0 atm-options vpi 25 oam-period 100
set interfaces at-2/0/0 encapsulation ethernet-over-atm shdsl-options annex annex-a
set interfaces at-2/0/0 encapsulation ethernet-over-atm shdsl-options line-rate auto
set interfaces at-2/0/0 encapsulation ethernet-over-atm shdsl-options loopback local
set interfaces at-2/0/0 encapsulation ethernet-over-atm shdsl-options snr-margin current 5 snext 5
```
set interfaces at-2/0/0 unit 3 encapsulation atm-nlpid
set interfaces at-2/0/0 unit 3 oam-liveness up-count 200 down-count 200
set interfaces at-2/0/0 unit 3 oam-period 100
set interfaces at-2/0/0 unit 3 oam-period 100
set interfaces at-2/0/0 unit 3 vci 35

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure ATM-over-SHDSL network interfaces for the device:

1. Set the ATM-over-SHDSL mode on the G.SHDSL interface.

 [edit]
 user@host# set chassis fpc 6 pic 0 shdsl pic-mode 1-port-atm

2. Create an interface.

 [edit]
 user@host# edit interfaces at-2/0/0

3. Configure the physical properties for the interface.

 [edit interfaces at-2/0/0]
 user@host# set atm-options vpi 25
 user@host# set atm-options vpi 25 oam-liveness up-count 200 down-count 200
 user@host# set atm-options vpi 25 oam-period 100

4. Configure the encapsulation type.

 [edit interfaces at-2/0/0]
 user@host# set encapsulation ethernet-over-atm

5. Set the annex type.

 [edit]
 user@host# edit interfaces at-2/0/0 shdsl-options
 user@host# set annex annex-a
6. Configure the SHDSL line rate.

 [edit interfaces at-2/0/0 shdsl-options]
 user@host# set line-rate auto

7. Configure the loopback option for testing the SHDSL connection integrity.

 [edit interfaces at-2/0/0 shdsl-options]
 user@host# set loopback local

8. Configure the signal-to-noise ration margin.

 [edit interfaces at-2/0/0 shdsl-options]
 user@host# set snr-margin current 5
 user@host# set snr-margin snext 5

9. Configure the logical interface.

 [edit]
 user@host# edit interfaces at-2/0/0 unit 3

10. Configure the encapsulation for the logical unit.

 [edit interfaces at-2/0/0 unit 3]
 user@host# set encapsulation atm-nlpid

11. Configure the OAM liveness values for an ATM virtual circuit

 [edit interfaces at-2/0/0 unit 3]
 user@host# set oam-liveness up-count 200 down-count 200

12. Configure the OAM period.

 [edit interfaces at-2/0/0 unit 3]
 user@host# set oam-period 100

13. Add the Family protocol type.
14. Configure the VCI value.

[edit interfaces at-2/0/0 unit 3]
user@host# set family inet

[edit interfaces at-2/0/0 unit 3]
user@host# set vci 35

Results
From configuration mode, confirm your configuration by entering the `show interfaces at-2/0/0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[edit]
user@host# show interfaces at-2/0/0
encapsulation ethernet-over-atm;
atm-options {
vpi 25 {
 oam-period 100;
oam-liveness {
 up-count 200;
down-count 200;
 }
}
shdsl-options {
 annex annex-a;
 line-rate auto;
 loopback local;
 snr-margin {
 current 5
 snext 5;
 }
}
unit 3 {
 encapsulation atm-nlpid;
vci 35;
oam-period 100;
oam-liveness {
 up-count 200;
down-count 200;
If you are done configuring the device, enter commit from configuration mode.

Verification

Confirm that the configuration is working properly.

Verifying an ATM-over-SHDSL Configuration

Purpose
Verify that the interface properties are correct.

Action
From operational mode, enter the show interfaces at-2/0/0 extensive command.

user@host> show interfaces at-2/0/0 extensive

Physical interface: at-2/0/0, Enabled, Physical link is Up
 Interface index: 141, SNMP ifIndex: 23, Generation: 48
 Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, ADSL mode, Speed: ADSL,

 Loopback: None
 Device flags : Present Running
 Link flags : None
 CoS queues : 8 supported
 Hold-times : Up 0 ms, Down 0 ms
 Current address: 00:05:85:c7:44:3c
 Last flapped : 2005-05-16 05:54:41 PDT (00:41:42 ago)
 Statistics last cleared: Never

 Traffic statistics:
 Input bytes : 4520 0 bps
 Output bytes: 39250 0 bps
 Input packets: 71 0 pps
 Output packets: 1309 0 pps

 Input errors:
 Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0,
 L3 incompletes: 0, L2 channel errors: 1, L2 mismatch timeouts: 0, Resource errors: 0

 Output errors:
 Carrier transitions: 3, Errors: 0, Drops: 0, Aged packets: 0, MTU errors: 0,
 Resource errors: 0
The output shows a summary of interface information. Verify the following information:

- The physical interface is enabled. If the interface is shown as disabled, do either of the following:
 - In the CLI configuration editor, delete the `disable` statement at the `[edit interfaces interface-name]` level of the configuration hierarchy.
• In the J-Web configuration editor, clear the Disable check box on the Interfaces page (Interfaces>interface-name).

• The physical link is up. A link state of down indicates a problem with the interface module, interface port, or physical connection (link-layer errors).

• The last flapped time is an expected value. The last flapped time indicates the last time the physical interface became unavailable and then available again. Unexpected flapping indicates likely link-layer errors.

• The traffic statistics reflect expected input and output rates. Verify that the number of inbound and outbound bytes and packets matches expected throughput for the physical interface. To clear the statistics and see only new changes, use the clear interfaces statistics interface-name command.

• No SHDSL alarms and defects appear that can render the interface unable to pass packets. When a defect persists for a certain amount of time, it is promoted to an alarm.

 • LOS—Loss of signal. No signal was detected on the line.
 • LOSW—Loss of sync word. A message ID was sent.
 • Power status—A power failure has occurred.
 • LOSD—Loss of signal was detected at the remote application interface.
 • ES—Errored seconds. One or more cyclic redundancy check (CRC) anomalies were detected.
 • SES—Severely errored seconds. At least 50 CRC anomalies were detected.
 • UAS—Unavailable seconds. An interval has occurred during which one or more LOSW defects were detected.

Examine the SHDSL interface status:

• Line termination—SHDSL transceiver unit–remote (STU–R). (Only customer premises equipment is supported.)

• Annex—Either Annex A or Annex B. Annex A is supported in North America, and Annex B is supported in Europe.

• Line mode—SHDSL mode configured on the G.SHDSL interface pair, either two-wire or four-wire.

• Modem status—Data. Sending or receiving data.

• Last fail code—Code for the last interface failure.

• Framer mode—ATM Framer mode of the underlying interface.

• Chipset version—Version number of the chipset on the interface

• Firmware version—Version number of the firmware on the interface.
Examine the operational statistics for a SHDSL interface.

- **Loop attenuation (dB)**—Reduction in signal strength measured in decibels.
- **Transmit power (dB)**—Amount of SHDSL usage in %.
- **Receiver gain (dB)**—Maximum extraneous signal allowed without causing the output to deviate from an acceptable level.
- **SNR sampling (dB)**—Signal-to-noise ratio at a receiver point in decibels.
- **Bit rate (kbps)**—Data transfer speed on the SHDSL interface.
- **CRC errors**—Number of cyclic redundancy check errors.
- **SEGA errors**—Number of segment anomaly errors. A regenerator operating on a segment received corrupted data.
- **LOSW errors**—Number of loss of signal defect errors. Three or more consecutively received frames contained one or more errors in the framing bits.
- **Received cells**—Number of cells received through the interface.
- **Transmitted cells**—Number of cells sent through the interface.
- **HEC errors**—Number of header error checksum errors.
- **Cell drop**—Number of dropped cells on the interface.

RELATED DOCUMENTATION

- Understanding Point-to-Point Protocol over Ethernet | 462

Configuring G.SHDSL Interfaces

IN THIS SECTION

- SHDSL Interface Overview | 149
- G.SHDSL Mini-PIM Overview | 149
- G.SHDSL Mini-PIM Configuration Overview | 152
- Example: Configuring the G.SHDSL Interface on SRX Series Devices | 153
- Example: Configuring the G.SHDSL Interface in EFM Mode | 167
The Symmetric high-speed DSL (SHDSL) interfaces support an SHDSL multirate technology which helps for data transfer between a single CPE subscriber and a central office (CO). The topics below describe the SHDSL interfaces, G.SHDSL mini-pim and its configuration, and examples of configuration of these interfaces on SRX series devices.

SHDSL Interface Overview

Symmetric high-speed DSL (SHDSL) interfaces on some SRX Series devices support an SHDSL multirate technology for data transfer between a single customer premises equipment (CPE) subscriber and a central office (CO). ITU-T G.991.2 is the official standard for describing SHDSL, also known as G.SHDSL.

Unlike ADSL, which delivers more bandwidth downstream than available upstream, SHDSL is symmetrical and delivers a bandwidth of up to 2.3 Mbps in both directions. Because business applications require high-speed digital transportation methods, SHDSL is becoming very popular and gaining wide acceptance in the industry. Additionally, SHDSL is compatible with ADSL and therefore causes very little, if any, interference between cables.

SHDSL is deployed on a network in much the same manner as ADSL.

SHDSL interfaces support Packet Transfer Mode (PTM). In PTM, packets (IP, PPP, Ethernet, MPLS, and so on) are transported over DSL links as an alternative to using Asynchronous Transfer Mode (ATM). PTM is based on the Ethernet in the First Mile (EFM) IEEE 802.3ah standard.

NOTE: Starting in Junos OS Release 15.1X49-D10 SHDSL interfaces are no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

G.SHDSL Mini-PIM Overview

Starting in Junos OS Release 15.1X49-D10 SHDSL interfaces are no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

The G.SHDSL Mini-Physical Interface Module (Mini-PIM) provides the physical connection to DSL network media types.

The G.SHDSL Mini-PIM provides the following Asynchronous Transfer Mode (ATM) key features:

- 2-wire (4-port 2-wire) mode, 4-wire (2-port 4-wire) mode, and 8-wire (1-port 8-wire) mode support
- Virtual circuits (VC) per Mini-PIM (10 maximum including OAM VC)
• ATM-over-G.SHDSL framing
• ATM OAM support
• Maximum MTU size of 9180 bytes
• Noise margin support
• Point-to-Point Protocol over ATM and PPPoE over ATM encapsulation support
• Local loopback mode support
• Dying gasp support

The G.SHDSL Mini-PIM provides extended ATM CoS functionality to cells across the network. You can define bandwidth utilization, which consists of either a constant rate or a peak cell rate, with sustained cell rate and burst tolerance. By default, unspecified bit rate (UBR) is used because the bandwidth utilization is unlimited.

The following ATM traffic shaping features are supported:

• **Constant bit rate (CBR)**—CBR is the service category for traffic with rigorous timing requirements like voice and certain types of video. CBR traffic needs a constant cell transmission rate throughout the duration of the connection.

• **Variable bit rate, non-real-time (VBR-NRT)**—VBR-NRT is intended for sources such as data transfer, which do not have strict time or delay requirements. VBR-NRT is suitable for packet data transfers.

• **Variable bit rate, real-time (VBR-RT)**—VBR-RT is intended for sources such as data transfer, which takes place in real time. VBR-RT requires access to time slots at a rate that can vary significantly from time to time.

Table 15 on page 150 displays the traffic descriptors specified for an ATM network.

Table 15: Traffic Descriptors

<table>
<thead>
<tr>
<th>Traffic Descriptors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak cell rate (PCR)</td>
<td>Maximum rate at which traffic can burst.</td>
</tr>
<tr>
<td>Sustained cell rate (SCR)</td>
<td>Normal traffic rate averaged over time.</td>
</tr>
<tr>
<td>Maximum burst size (MBS)</td>
<td>Maximum burst size that can be sent at the peak rate.</td>
</tr>
</tbody>
</table>

The G.SHDSL Mini-PIM provides the following Packet Transfer Mode (PTM) Ethernet in the First Mile (EFM) key features:

• EFM PIC mode support
• Maximum MTU size of 1514 bytes
• PPPoE encapsulation support
• Local loopback mode support
• Chassis cluster mode support
• Dying gasp support
• IPv6 support
• VLAN over EFM support

The following four annexes are supported on the G.SHDSL Mini-PIM in both ATM and PTM EFM modes:

• Annex A
• Annex B
• Annex F
• Annex G

Operating Modes and Line Rates of the G.SHDSL Mini-PIM

The G.SHDSL Mini-PIM supports 2-wire (4-port 2-wire) mode, 4-wire (2-port 4-wire) mode, 8-wire (1-port 8-wire) mode, and EFM mode. The default operating mode is 2x 4-wire for this G.SHDSL Mini-PIM. G.SHDSL is supported on all SRX210, SRX220, SRX240, and SRX550 devices using the symmetrical WAN speeds shown in Table 16 on page 151.

Table 16: Symmetrical WAN Speeds

<table>
<thead>
<tr>
<th>Modes</th>
<th>Symmetrical WAN Speed Using Annex A and B</th>
<th>Symmetrical WAN Speed Using Annex F and G</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-wire</td>
<td>2.3 Mbps</td>
<td>From 768 Kbps to 5.696 Mbps</td>
</tr>
<tr>
<td>4-wire</td>
<td>4.6 Mbps</td>
<td>From 1.536 Mbps to 11.392 Mbps</td>
</tr>
<tr>
<td>8-wire</td>
<td>9.2 Mbps</td>
<td>From 3.072 Mbps to 22.784 Mbps</td>
</tr>
<tr>
<td>EFM mode</td>
<td>2.3 Mbps</td>
<td>From 768 Kbps to 5.696 Mbps</td>
</tr>
</tbody>
</table>

NOTE: A maximum of 16 Mbps is supported on SRX210, SRX220, SRX240, and SRX550 devices.
G.SHDSL Mini-PIM Configuration Overview

NOTE: Starting in Junos OS Release 15.1X49-D10 SHDSL interfaces are no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

Specify the wire mode on the G.SHDSL interface using one of the following options:

- **1-port-atm**—Configures an 8-wire (1-port, 8-wire) wire mode.
- **2-port-atm**—Configures a 4-wire (2-port, 4-wire) wire mode.
- **4-port-atm**—Configures a 2-wire (4-port, 2-wire) wire mode.
- **efm**—Configures an efm (1-port, 2-wire) wire mode.

NOTE: The default wire mode is 4-wire (2-port, 4-wire).

Specify the annex type using one of the following options:

- Annex A
- Annex B
- Annex F
- Annex G

NOTE: The default annex type is auto.

Specify the SHDSL line rate (speed of transmission of data on the SHDSL connection) using one of the following values:

- **auto**—Automatically selects a line rate.
- **value**—Selects a value between 192 kbps and 22,784 kbps.

NOTE: The default line rate is auto.

Specify the encapsulation type using one of the following values:
NOTE: The pt interface does not require encapsulation types.

The at interface encapsulation types are as follows:

- **atm-pvc**—ATM permanent virtual circuits is the default encapsulation for ATM-over-SHDSL interfaces. For PPP over ATM (PPPoA) over SHDSL interfaces, use this type of encapsulation. Use this type of encapsulation if you are using ATM DSLAM.

- **ethernet-over-atm**—Ethernet over ATM encapsulation. For PPP over Ethernet (PPPoE) over ATM-over-SHDSL interfaces that carry IPv4 traffic, use this type of encapsulation. Use this type of encapsulation if you are using IP DSLAM.

Configure the encapsulation type using one of the following values:

- **atm-cisco-nlpid**—Cisco NLPID encapsulation.
- **atm-mlppp-llc**—ATM MLPPP over AAL5/LLC encapsulation.
- **atm-nlpid**—ATM Network Layer protocol identifier (NLPID) encapsulation.
- **atm-ppp-llc**—AAL5 logical link control (LLC) encapsulation.
- **atm-ppp-vc-mux**—AAL5 multiplex encapsulation.
- **atm-vc-mux**—ATM virtual circuit multiplex encapsulation.
- **atm-snap**—ATM subnetwork attachment point (SNAP) encapsulation.
- **ether-over-atm-llc**—For interfaces that carry IPv4 traffic, use Ethernet over LLC encapsulation. You cannot configure multipoint interfaces if you use this type of encapsulation.
- **ppp-over-ether-over-atm-llc**—PPP over Ethernet over ATM LLC encapsulation. When you use this encapsulation type, you cannot configure the interface address. Instead you configure the interface address on the PPP interface.

Example: Configuring the G.SHDSL Interface on SRX Series Devices

IN THIS SECTION

- Requirements | 154
- Overview | 154
- Configuration | 156
- Verification | 167
This example shows how to configure the G.SHDSL interface on SRX Series devices.

NOTE: Starting in Junos OS Release 15.1X49-D10 SHDSL interfaces are no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

Requirements

Before you begin:

- Configure the network interfaces as necessary. See "Understanding Ethernet Interfaces" on page 277.
- Install the G.SHDSL Mini-PIM in the first slot of the SRX210 chassis.
- Connect the SRX210 device to a DSLAM (IP DSLAM and ATM DSLAM).

NOTE: This example uses an SRX210 Services Gateway. The information is also applicable to the SRX220 and SRX240 devices.

Overview

Figure 8 on page 154 shows the topology for the G.SHDSL Mini-PIM operating in 2X4-wire mode.

Figure 8: G.SHDSL Mini-PIM Operating in 2X4-Wire Mode

Figure 9 on page 155 shows the topology for the G.SHDSL Mini-PIM operating in 4X2-wire mode.
Figure 9: G.SHDSL Mini-PIM Operating in 4X2-Wire Mode

Figure 10 on page 155 shows the topology for the G.SHDSL Mini-PIM operating in 1X8-wire mode.

Figure 10: G.SHDSL Mini-PIM Operating in 1X8-Wire Mode

Determine the operating wire mode (2-wire, 4-wire, or 8-wire) and corresponding CLI code listed in Table 17 on page 155.

Table 17: Operating Wire Modes

<table>
<thead>
<tr>
<th>Wire Mode Configuration</th>
<th>CLI Code</th>
</tr>
</thead>
</table>
| 2x4-wire Configuration | `set chassis fpc 1 pic 0 shdsl pic-mode 2-port-atm`
 | NOTE: The 2x4-wire configuration is the default configuration and behavior. |
| 4x2-wire Configuration | `set chassis fpc 1 pic 0 shdsl pic-mode 4-port-atm` |
| 1x8-wire Configuration | `set chassis fpc 1 pic 0 shdsl pic-mode 1-port-atm` |
NOTE: When the wire mode is set to 8-wire, one physical interface (IFD) is created. Similarly for 4-wire mode and 2-wire mode, two IFDs and four IFDs are created, respectively.

In this example, you first configure a basic G.SHDSL interface. You set the operation wire mode to 2-port-atm, the line rate to 4096, and the annex type to annex-a.

You then configure the G.SHDSL interface when the device is connected to an IP DSLAM. You set the type of encapsulation to ethernet-over-atm and the ATM VPI option to 0. Then you set the type of encapsulation on the G.SHDSL logical interface as ether-over-atm-llc and configure the ATM VCI option to 0.60. Also, you set the interface address for the logical interface to 1.1.1.1/24.

Then you configure the G.SHDSL interface when the device is connected to an ATM DSLAM. You set the type of encapsulation to atm-pvc and the ATM VPI to 0. Then you set the type of encapsulation on the G.SHDSL logical interface to atm-snap and the ATM VCI to 0.65. Also, you set the interface address for the logical interface to 2.1.1.1/24.

Next you configure PPPoE over ATM for the G.SHDSL Interface. You then set the ATM VPI to 0 and set the type of encapsulation to ppp-over-ether-over-atm-llc. You specify a PPPoE interface with the PAP access profile, local-name, and local-password. Then you configure the passive option to handle incoming PAP packets and set the logical interface as the underlying interface for the PPPoE session to at-1/0/0.0. Also, you set the number of seconds to 120 to wait before reconnecting after a PPPoE session is terminated. (The range is 1 through 4,294,967,295 seconds.) You then specify the logical interface as the client for the PPPoE interface and obtain an IP address by negotiation with the remote end.

Finally, you configure PPPoA over ATM for the G.SHDSL Interface. You set the type of encapsulation to atm-pvc and the ATM VPI to 0. You then set the type of encapsulation for PPP over ATM adaptation layer 5 (AAL5) logical link control (LLC) on the logical interface and set the ATM VCI to 122. You configure the PPPoA interface with the CHAP access profile as juniper and set the local-name for the CHAP interface to srx-210. Finally, you obtain an IP address by negotiation with the remote end.

Configuration

IN THIS SECTION

- Configuring a Basic G.SHDSL Interface | 157
- Configuring a G.SHDSL Interface When Connected to an IP DSLAM | 158
- Configuring a G.SHDSL Interface When Connected to an ATM DSLAM | 160
- Configuring PPPoE over ATM for the G.SHDSL Interface | 161
- Configuring PPPoA over ATM for the G.SHDSL Interface | 165
Configuring a Basic G.SHDSL Interface

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set chassis fpc 1 pic 0 shdsl pic-mode 2-port-atm
set interfaces at-1/0/0 shdsl-options line-rate 4096 annex annex-a
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To quickly configure a basic G.SHDSL interface:

1. Select the operating wire mode.

 [edit]
 user@host# set chassis fpc 1 pic 0 shdsl pic-mode 2-port-atm

2. Create an interface and set options.

 [edit]
 user@host# edit interfaces at-1/0/0 shdsl-options

3. Configure the line rates.

 [edit interfaces at-1/0/0 shdsl-options]
 user@host# set line-rate 4096

4. Set the annex type.

 [edit interfaces at-1/0/0 shdsl-options]
 user@host# set annex annex-a

Results

From configuration mode, confirm your configuration by entering the show interfaces at-1/0/0 and show chassis fpc 1 commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
[edit]
user@host# show interfaces at-1/0/0
shdsl-options {
 annex annex-a;
 line-rate 4096;
}
[edit]
user@host# show chassis fpc 1
pic 0 {
 shdsl {
 pic-mode 2-port-atm;
 }
}

If you are done configuring the device, enter `commit` from configuration mode.

Configuring a G.SHDSL Interface When Connected to an IP DSLAM

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
set interfaces at-1/0/0 encapsulation ethernet-over-atm
set interfaces at-1/0/0 atm-options vpi 0
set interfaces at-1/0/0 unit 0 encapsulation ether-over-atm-llc vci 0.60
set interfaces at-1/0/0 unit 0 family inet address 1.1.1.1/24
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode*.

To configure the G.SHDSL interface on an SRX210 device when the device is connected to an IP DSLAM:

1. Create an interface.

 [edit]
 user@host# edit interfaces at-1/0/0

2. Specify the type of encapsulation.

 [edit interfaces at-1/0/0]
 user@host# set encapsulation ethernet-over-atm
3. Configure the ATM VPI option.

[edit interfaces at-1/0/0]
user@host# set atm-options vpi 0

4. Specify the type of encapsulation for logical interface.

[edit interfaces at-1/0/0]
user@host# edit unit 0
user@host# set encapsulation ether-over-atm-llc

5. Configure the ATM VCI options for the logical interface.

[edit interfaces at-1/0/0 unit 0]
user@host# set vci 0.60

6. Configure the interface address.

[edit interfaces at-1/0/0 unit 0]
user@host# set family inet address 1.1.1.1/24

Results
From configuration mode, confirm your configuration by entering the show interfaces at-1/0/0 command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[edit]
user@host# show interfaces at-1/0/0
encapsulation ethernet-over-atm;
 atm-options {
 vpi 0;
 }
 unit 0 {
 encapsulation ether-over-atm-llc;
 vci 0.60;
 family inet {
 address 1.1.1.1/24;
 }
 }

If you are done configuring the device, enter `commit` from configuration mode.

Configuring a G.SHDSL Interface When Connected to an ATM DSLAM

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```
set interfaces at-1/0/0 encapsulation atm-pvc atm-options vpi 0
set interfaces at-1/0/0 unit 0 encapsulation atm-snap vci 0.65
set interfaces at-1/0/0 unit 0 family inet address 2.1.1.1/24
```

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode*.

To configure the G.SHDSL interface on an SRX210 device when the device is connected to an ATM DSLAM:

1. Create an interface.

```
[edit]
user@host# edit interfaces at-1/0/0
```

2. Specify the type of encapsulation.

```
[edit interfaces at-1/0/0]
user@host# set encapsulation atm-pvc
```

3. Configure the ATM VPI option.

```
[edit interfaces at-1/0/0]
user@host# set atm-options vpi 0
```

4. Specify the type of encapsulation for the logical interface.

```
[edit interfaces at-1/0/0]
user@host# edit unit 0
user@host# set encapsulation atm-snap
```
5. Configure the ATM VCI option.

[edit interfaces at-1/0/0 unit 0]
user@host# set vci 0.65

6. Configure the interface address.

[edit interfaces at-1/0/0 unit 0]
user@host# set family inet address 2.1.1.1/24

Results
From configuration mode, confirm your configuration by entering the show interfaces at-1/0/0 command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[edit]
user@host# show interfaces at-1/0/0
encapsulation atm-pvc;
atm-options {
 vpi 0;
}
unit 0 {
 encapsulation atm-snap;
 vci 0.65;
 family inet {
 address 2.1.1.1/24
 }
}

If you are done configuring the device, enter commit from configuration mode.

Configuring PPPoE over ATM for the G.SHDSL Interface

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

set interfaces at-1/0/0 encapsulation ethernet-over-atm atm-options vpi 0
set interfaces at-1/0/0 unit 0 encapsulation ppp-over-ether-over-atom-llc vci 0.35
set interfaces pp0 unit 0 ppp-options pap access-profile pap_prof local-name srx-210
set interfaces pp0 unit 0 ppp-options pap local-password "$9$0tLw1SeN-woJDSr-wY2GU69Cp1RSre"
set interfaces pp0 unit 0 ppp-options pap passive
set interfaces pp0 unit 0 pppoe-options underlying-interface at-1/0/0.0
set interfaces pp0 unit 0 pppoe-options auto-reconnect 120 client
set interfaces pp0 unit 0 family inet negotiate-address

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure PPPoE over ATM on the G.SHDSL interface:

1. Create an interface.

 [edit]
 user@host# edit interfaces at-1/0/0

2. Specify the type of encapsulation.

 [edit interfaces at-1/0/0]
 user@host# set encapsulation ethernet-over-atm

3. Configure the ATM VPI option.

 [edit interfaces at-1/0/0]
 user@host# set atm-options vpi 0

4. Specify the type of encapsulation on the logical interface.

 [edit interfaces at-1/0/0]
 user@host# edit unit 0
 user@host# set encapsulation ppp-over-ether-over-atm-llc

5. Configure the ATM VCI option.

 [edit interfaces at-1/0/0 unit 0]
 user@host# set vci 0.35

6. Configure a PPPoE interface with the PAP access profile.
7. Configure a local-name for the PAP interface.

```
[edit interfaces pp0 unit 0 ppp-options pap]
user@host# set local-name srx-210
```

8. Configure a local-password for the PAP interface.

```
[edit interfaces pp0 unit 0 ppp-options pap]
user@host# set local-password "$9$0tLw1SeN-woJDSr-wY2GU69Cp1RSre"
```

9. Set the passive option to handle incoming PAP packets.

```
[edit interfaces pp0 unit 0 ppp-options pap]
user@host# set passive
```

10. Specify the logical interface as the underlying interface for the PPPoE session.

```
[edit]
user@host# edit interfaces pp0 unit 0 pppoe-options
user@host# set underlying-interface at-1/0/0.0
```

11. Specify the number of seconds.

```
[edit interfaces pp0 unit 0 pppoe-options]
user@host# set auto-reconnect 120
```

12. Set the logical interface as the client for the PPPoE interface.

```
[edit interfaces pp0 unit 0 pppoe-options]
user@host# set client
```

13. Obtain an IP address by negotiation with the remote end.
Results
From configuration mode, confirm your configuration by entering the `show interfaces at-1/0/0` and `show interfaces pp0` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

If you are done configuring the device, enter `commit` from configuration mode.
Configuring PPPoA over ATM for the G.SHDSL Interface

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces at-1/0/0 encapsulation atm-pvc atm-options vpi 0
set interfaces at-1/0/0 unit 0 encapsulation atm-ppp-llc vci 1.122
set interfaces at-1/0/0 unit 0 ppp-options chap access-profile juniper local-name srx-210
set interfaces at-1/0/0 unit 0 family inet negotiate-address
```

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure PPPoA over ATM on the G.SHDSL interface:

1. Create an interface.

   ```
   [edit]
   user@host# edit interfaces at-1/0/0
   ```

2. Specify the type of encapsulation.

   ```
   [edit interfaces at-1/0/0]
   user@host# set encapsulation atm-pvc
   ```

3. Configure the ATM VPI option.

   ```
   [edit interfaces at-1/0/0]
   user@host# set atm-options vpi 0
   ```

4. Specify the type of encapsulation on the G.SHDSL logical interface.

   ```
   [edit]
   user@host# edit interfaces at-1/0/0 unit 0
   user@host# set encapsulation atm-ppp-llc
   ```

5. Configure the ATM VCI option.
6. Configure a PPPoA interface with the CHAP access profile.

```
[edit]
user@host# edit interfaces at-1/0/0 unit 0 ppp-options chap
user@host# set access-profile juniper
```

7. Configure a local name for the CHAP interface.

```
[edit interfaces at-1/0/0 unit 0 ppp-options chap]
user@host# set local-name srx-210
```

8. Obtain an IP address by negotiation with the remote end.

```
[edit]
user@host# edit interfaces at-1/0/0 unit 0
user@host# set family inet negotiate-address
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces at-1/0/0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces at-1/0/0
encapsulation atm-pvc;
  atm-options {
    vpi 0;
  }
unit 0 {
  encapsulation atm-ppp-llc;
    vci 1.122;
  ppp-options {
    chap {
      access-profile juniper;
      local-name srx-210;
    }
  }
```
If you are done configuring the device, enter `commit` from configuration mode.

Verification

Confirm that the configuration is working properly.

Verifying G.SHDSL Interface Properties

Purpose

Verify that the G.SHDSL interface properties are configured properly.

Action

From operational mode, enter the `show interfaces at-1/0/0 extensive` command.

Example: Configuring the G.SHDSL Interface in EFM Mode

This example shows how to configure the G.SHDSL interface in Ethernet in the First Mile (EFM) mode on an SRX210 device, but it applies to the SRX220, SRX240, and SRX550 devices as well.

NOTE: Starting in Junos OS Release 15.1X49-D10 SHDSL interfaces are no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.
Requirements

This example uses the following hardware and software components:

- An SRX210 device
- Junos OS Release 12.1X44-D10 or later

Before you begin:

- Configure the network interfaces as necessary. See "Understanding Ethernet Interfaces" on page 277.
- Install the G.SHDSL Mini-PIM in the first slot of the SRX210 chassis.
- Connect the SRX210 device to an EFM supported IP DSLAM.

Overview and Topology

In this example, you first configure a basic G.SHDSL interface by setting the operation wire mode to efm, the line rate to auto, and the annex type to annex-auto.

You then configure the G.SHDSL interface when the device is connected to an EFM IP DSLAM. You set the logical interface to 10.10.10.1/24.

Next you configure PPPoE for the G.SHDSL Interface. Configure the encapsulation as ppp-over-ether under unit 0 of pt-1/0/0 interface. You specify a PPPoE interface with the PAP access profile, local name, and local password. Then you configure the passive option to handle incoming PAP packets and set the logical interface as the underlying interface for the PPPoE session to pt-1/0/0.0. Also, you set the number of seconds to 120 to wait before reconnecting after a PPPoE session is terminated. (The range is 1 through 4,294,967,295 seconds.) Finally, you specify the logical interface as the client for the PPPoE interface and obtain an IP address by negotiation with the remote end.

Figure 11 on page 169 shows the topology for the G.SHDSL Mini-PIM operating in EFM mode.
Table 18 on page 169 lists the operating wire mode for EFM and its corresponding CLI code.

Table 18: Operating Wire Mode for EFM

<table>
<thead>
<tr>
<th>Wire Mode Configuration</th>
<th>CLI Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFM Configuration</td>
<td>set chassis fpc 1 pic 0 shdsl pic-mode efm</td>
</tr>
</tbody>
</table>

NOTE: When PIC mode is set to EFM, an interface called pt-1/0/0 is created.

Configuration

IN THIS SECTION

- Configuring a Basic G.SHDSL Interface in EFM PIC Mode | 169
- Configuring PPPoE and VLAN for the G.SHDSL EFM Interface | 171

Configuring a Basic G.SHDSL Interface in EFM PIC Mode

 CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure a basic G.SHDSL interface:

1. Specify the PIC mode.

```
[edit]
user@host# set chassis fpc 1 pic 0 shdsl pic-mode efm
```

NOTE: When configuring the G.SHDSL interface in chassis cluster mode, include the node ID. For example, to configure the G.SHDSL interface (operating in EFM PIC mode) in chassis cluster mode for fpc slot 1 on node 0, use the following command:

```
set chassis node 0 fpc 1 pic 0 shdsl pic-mode efm
```

2. Configure the IP address.

```
[edit]
user@host# set interfaces pt-1/0/0 unit 0 family inet address 10.10.10.1/24
```

NOTE: By default, annex mode and line rate are set to auto. If you have to configure annex mode (annex-g) and line rate (5696 Kbps), follow Steps 3, 4, and 5.

3. Configure SHDSL options.

```
[edit]
user@host# set interfaces pt-1/0/0 shdsl-options
```

4. Specify the annex type.
5. Configure the line rate.

[edit interfaces pt-1/0/0 shdsl-options]
user@host# set line-rate 5696

Results
From configuration mode, confirm your configuration by entering the `show interfaces pt-1/0/0` and `show chassis fpc 1` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

If you are done configuring the device, enter `commit` from configuration mode.

Configuring PPPoE and VLAN for the G.SHDSL EFM Interface

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.
NOTE: In this configuration, we use PAP as the authentication mechanism. If Broadband Remote Access Server (BRAS) uses CHAP, PAP configuration should be replaced with CHAP.

set interfaces pt-1/0/0 unit 0 encapsulation ppp-over-ether
set interfaces pp0 unit 0 ppp-options pap access-profile pap_prof local-name srx-210
set interfaces pp0 unit 0 ppp-options pap local-password "$9$0tLw1SeN-woJD$Sr-wY2GU69Cp1RSre$
set interfaces pp0 unit 0 ppp-options pap passive
set interfaces pp0 unit 0 pppoe-options underlying-interface pt-1/0/0.0
set interfaces pp0 unit 0 pppoe-options auto-reconnect 120 client
set interfaces pp0 unit 0 family inet negotiate-address

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure PPPoE for the G.SHDSL EFM Interface:

1. Create an interface.

 [edit]
 user@host# set interfaces pt-1/0/0

2. Specify the type of encapsulation.

 [edit interfaces pt-1/0/0]
 user@host# set unit 0
 user@host# set encapsulation ppp-over-ether

3. Configure a PPPoE interface with the PAP access profile.

 [edit]
 user@host# set interfaces pp0 unit 0 ppp-options pap
 user@host# set access-profile pap_prof

4. Configure a local name for the PAP interface.

 [edit interfaces pp0 unit 0 ppp-options pap]
 user@host# set local-name srx-210
5. Configure a local password for the PAP interface.

[edit interfaces pp0 unit 0 ppp-options pap]
user@host# set local-password "$9$0tLw1SeN-woJDSr-wY2GU69Cp1RSre"

6. Set the passive option to handle incoming PAP packets.

[edit interfaces pp0 unit 0 ppp-options pap]
user@host# set passive

7. Specify the logical interface as the underlying interface for the PPPoE session.

[edit]
user@host# set interfaces pp0 unit 0 pppoe-options
user@host# set underlying-interface pt-1/0/0.0

8. Specify the number of seconds.

[edit interfaces pp0 unit 0 pppoe-options]
user@host# set auto-reconnect 120

9. Set the logical interface as the client for the PPPoE interface.

[edit interfaces pp0 unit 0 pppoe-options]
user@host# set client

10. Obtain an IP address by negotiation with the remote end.

[edit interfaces]
user@host# set pp0 unit 0 family inet negotiate-address

11. Configure VLAN on EFM.

[edit interfaces]
user@host# set pt-1/0/0 vlan-tagging

12. Specify the VLAN ID.
Results
From configuration mode, confirm your configuration by entering the `show interfaces pt-1/0/0` and `show interfaces pp0` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying G.SHDSL Interface Properties

Purpose
Verify that the G.SHDSL interface properties are configured properly.

Action

From operational mode, enter the `show interfaces pt-1/0/0 extensive` command.

```
user@host> show interfaces pt-1/0/0 extensive
```

EFM mode for interface pt-1/0/0:

<table>
<thead>
<tr>
<th>Physical interface: pt-1/0/0, Enabled, Physical link is Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface index: 158, SNMP ifIndex: 575, Generation: 277</td>
</tr>
<tr>
<td>Link-level type: Ethernet, MTU: 1514, Speed: SHDSL(8-Wire)</td>
</tr>
<tr>
<td>Device flags : Present Running</td>
</tr>
<tr>
<td>Link flags : None</td>
</tr>
<tr>
<td>CoS queues : 8 supported, 8 maximum usable queues</td>
</tr>
<tr>
<td>Hold-times : Up 0 ms, Down 0 ms</td>
</tr>
<tr>
<td>Current address: 78:fe:3d:60:2f:99</td>
</tr>
<tr>
<td>Last flapped : 2012-10-11 00:03:13 PDT (00:28:57 ago)</td>
</tr>
<tr>
<td>Statistics last cleared: 2012-10-11 00:32:05 PDT (00:00:05 ago)</td>
</tr>
</tbody>
</table>

Traffic statistics:

<table>
<thead>
<tr>
<th></th>
<th>Input bytes</th>
<th>Output bytes</th>
<th>Input packets</th>
<th>Output packets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Input errors:

Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0, L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0, Resource errors: 0

Output errors:

Carrier transitions: 0, Errors: 0, Drops: 0, Aged packets: 0, MTU errors: 0, Resource errors: 0

EFM Group Statistics:

Type : EFM bond
Active Pairs : 4
Bit rate (in Kbps) : 22784

Line Pair 0 : Up

Active alarms : None
Active defects : None

<table>
<thead>
<tr>
<th>SHDSL media:</th>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SES</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UAS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHDSL status:

Line termination : STU-R
Annex : Annex G
Line mode : 2-wire
Modem status : Data
Bit rate (kbps) : 5696
Last fail mode : No failure (0x00)
Framer mode : EFM
PAF Status : Active
Dying gasp : Enabled
Framer sync status : In sync

SHDSL statistics:
 Loop attenuation (dB) : 0.0
 Transmit power (dBm) : 14.0
 SNR sampling (dB) : 14.0000
 CRC errors : 2
 SEGA errors : 0
 LOSW errors : 0

Line Pair 1 : Up
Active alarms : None
Active defects : None

SHDSL media: Seconds Count State
 ES 0
 SES 0
 UAS 0

SHDSL status:
 Line termination : STU-R
 Annex : Annex G
 Line mode : 2-wire
 Modem status : Data
 Bit rate (kbps) : 5696
 Last fail mode : No failure (0x00)
 Framer mode : EFM
 PAF Status : Active
 Dying gasp : Enabled
 Framer sync status : In sync

SHDSL statistics:
 Loop attenuation (dB) : 0.0
 Transmit power (dBm) : 14.0
 SNR sampling (dB) : 19.0000
 CRC errors : 0
 SEGA errors : 0
 LOSW errors : 0

Line Pair 2 : Up
Active alarms : None
Active defects : None

SHDSL media: Seconds Count State
SHDSL status:
Line termination : STU-R
Annex : Annex G
Line mode : 2-wire
Modem status : Data
Bit rate (kbps) : 5696
Last fail mode : No failure (0x00)
Framer mode : EFM
PAF Status : Active
Dying gasp : Enabled
Framer sync status : In sync

SHDSL statistics:
Loop attenuation (dB) : 0.0
Transmit power (dBm) : 14.0
SNR sampling (dB) : 14.0000
CRC errors : 0
SEGA errors : 0
LOSW errors : 0

Line Pair 3 : Up
Active alarms : None
Active defects : None

SHDSL media:
<table>
<thead>
<tr>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SES</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>UAS</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

SHDSL status:
Line termination : STU-R
Annex : Annex G
Line mode : 2-wire
Modem status : Data
Bit rate (kbps) : 5696
Last fail mode : No failure (0x00)
Framer mode : EFM
PAF Status : Active
Dying gasp : Enabled
Framer sync status : In sync

SHDSL statistics:
Loop attenuation (dB) : 1.0
Transmit power (dBm) : 14.0
SNR sampling (dB) : 18.0000
CRC errors : 0
Meaning
The output shows a summary of interface information. Verify the following information:

- The physical interface is enabled. If the interface is shown as disabled, do either of the following:
 - In the CLI configuration editor, delete the disable statement at the [edit interfaces interface-name] level of the configuration hierarchy.
 - In the J-Web configuration editor, clear the Disable check box on the Interfaces page (Interfaces>interface-name).

- The physical link is up. A link state of down indicates a problem with the interface module, interface port, or physical connection (link-layer errors).

- The last flapped time is an expected value. The last flapped time indicates the last time the physical interface became unavailable and then available again. Unexpected flapping indicates likely link-layer errors.

- The traffic statistics reflect expected input and output rates. Verify that the number of inbound and outbound bytes and packets matches expected throughput for the physical interface. To clear the statistics and see only new changes, use the clear interfaces statistics interface-name command.

- The following information is displayed for each line pair:
 - No SHDSL alarms and defects appear that can render the interface unable to pass packets. When a defect persists for a certain amount of time, it is promoted to an alarm.
 - LOSW—Loss of sync word. A message ID was sent.
 - LOSD—Loss of signal was detected at the remote application interface.
 - ES—Errored seconds. One or more cyclic redundancy check (CRC) anomalies were detected.
- **SES**—Severely errored seconds. At least 50 CRC anomalies were detected.
- **UAS**—Unavailable seconds. An interval has occurred during which one or more LOSW defects were detected.

Examine the SHDSL interface status:

- **Line termination**—SHDSL transceiver unit–remote (STU–R). (Only customer premises equipment is supported.)
- **Annex**—Either Annex A or Annex B. Annex A is supported in North America, and Annex B is supported in Europe.
- **Line mode**—SHDSL mode configured on the G.SHDSL interface pair, and it should be two-wire.
- **Modem status**—Data. Sending or receiving data.
- **Bit rate (kbps)**—Data transfer speed on the SHDSL interface.
- **Last fail code**—Code for the last interface failure.
- **Framer mode**—ATM framer mode of the underlying interface.
- **PAF Status**—Either Active/Inactive depending upon whether link added to EFM group or not.

Examine the operational statistics for a SHDSL interface.

- **Loop attenuation (dB)**—Reduction in signal strength.
- **Transmit power (dB)**—Amount of SHDSL.
- **SNR sampling (dB)**—Signal-to-noise ratio at a receiver point.
- **CRC errors**—Number of cyclic redundancy check errors.
- **SEGA errors**—Number of segment anomaly errors. A regenerator operating on a segment received corrupted data.
- **LOSW errors**—Number of loss of signal defect errors. Three or more consecutively received frames contained one or more errors in the framing bits.
Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D10</td>
<td>Starting in Junos OS Release 15.1X49-D10 SHDSL interfaces are no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.</td>
</tr>
<tr>
<td>15.1X49-D10</td>
<td>Starting in Junos OS Release 15.1X49-D10 SHDSL interfaces are no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.</td>
</tr>
<tr>
<td>15.1X49-D10</td>
<td>Starting in Junos OS Release 15.1X49-D10 SHDSL interfaces are no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.</td>
</tr>
<tr>
<td>15.1X49-D10</td>
<td>Starting in Junos OS Release 15.1X49-D10 SHDSL interfaces are no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.</td>
</tr>
</tbody>
</table>

Configuring VDSL2 Interfaces

IN THIS SECTION

- VDSL2 Interface Technology Overview | 181
- VDSL2 Network Deployment Topology | 182
- VDSL2 Interface Support on SRX Series Devices | 183
- Understanding IPv6 Support VDSL2 Interfaces | 187
- Example: Configuring VDSL2 Interfaces (Basic) | 188
- Example: Configuring VDSL2 Interfaces (Detail) | 196
- Example: Configuring VDSL2 Interfaces in ADSL Mode (Basic) | 230
- Example: Configuring VDSL2 Interfaces in ADSL Mode (Detail) | 237
- Upgrading the VDSL PIC Firmware | 272

Very-high-bit-rate digital subscriber line (VDSL) provides faster data transmission over a single flat untwisted or twisted pair of copper wires. The below set of topics discuss the overview of VDSL2, its network
deployment topology, the interface support on SRX series devices and examples of configuring VDSL2 interfaces and on different modes for SRX series devices.

VDSL2 Interface Technology Overview

Very-high-bit-rate digital subscriber line (VDSL) technology is part of the xDSL family of modem technologies that provide faster data transmission over a single flat untwisted or twisted pair of copper wires. The VDSL lines connect service provider networks and customer sites to provide high bandwidth applications (triple-play services) such as high-speed Internet access, telephone services like VoIP, high-definition TV (HDTV), and interactive gaming services over a single connection.

VDSL2 is an enhancement to G.993.1 (VDSL) and permits the transmission of asymmetric (half-duplex) and symmetric (full-duplex) aggregate data rates up to 100 Mbps on short copper loops using a bandwidth up to 30 MHz. The VDSL2 technology is based on the ITU-T G.993.2 (VDSL2) standard, which is the International Telecommunication Union standard describing a data transmission method for VDSL2 transceivers.

The VDSL2 uses discrete multitone (DMT) modulation. DMT is a method of separating a digital subscriber line signal so that the usable frequency range is separated into 256 frequency bands (or channels) of 4.3125 KHz each. The DMT uses the Fast Fourier Transform (FFT) algorithm for demodulation or modulation for increased speed.

VDSL2 interface supports Packet Transfer Mode (PTM). The PTM mode transports packets (IP, PPP, Ethernet, MPLS, and so on) over DSL links as an alternative to using Asynchronous Transfer Mode (ATM). PTM is based on the Ethernet in the First Mile (EFM) IEEE802.3ah standard.

VDSL2 provides backward compatibility with ADSL, ADSL2, and ADSL2+ because this technology is based on both the VDSL1-DMT and ADSL2/ADSL2+ recommendations.

VDSL2 Vectoring Overview

Starting in Junos OS Release 15.1X49-D50, VDSL2 vectoring is supported. Vectoring is a transmission method that employs the coordination of line signals that reduce crosstalk levels and improve performance. It is based on the concept of noise cancellation, like noise-cancelling headphones. The ITU-T G.993.5 standard, “Self-FEXT Cancellation (Vectoring) for Use with VDSL2 Transceivers,” also known as G.vector, describes vectoring for VDSL2.

The scope of Recommendation ITU-T G.993.5 is specifically limited to the self-FEXT (far-end crosstalk) cancellation in the downstream and upstream directions. The FEXT generated by a group of near-end transceivers and interfering with the far-end transceivers of that same group is canceled. This cancellation takes place between VDSL2 transceivers, not necessarily of the same profile.
VDSL2 Network Deployment Topology

In standard telephone cables of copper wires, voice signals use only a fraction of the available bandwidth. Like any other DSL technology, the VDSL2 technology utilizes the remaining capacity to carry the data and multimedia on the wire without interrupting the line's ability to carry voice signals.

This example depicts the typical VDSL2 network topology deployed using SRX Series Services Gateways.

A VDSL2 link between network devices is set up as follows:

1. Connect an end-user device such as a LAN, hub, or PC through an Ethernet interface to the customer premises equipment (CPE) (for example, an SRX Series device).

2. Connect the CPE to a DSLAM.

3. The VDSL2 interface uses either Gigabit Ethernet or fiber as second mile to connect to the Broadband Remote Access Server (B-RAS) as shown in Figure 12 on page 183.

4. The ADSL interface uses either Gigabit Ethernet (in case of IP DSLAM) as the “second mile” to connect to the B-RAS or OC3/DS3 ATM as the second mile to connect the B-RAS as shown in Figure 13 on page 183.

 NOTE: The VDSL2 technology is backward compatible with ADSL. VDSL2 provides an ADSL interface in an ATM DSLAM topology and provides a VDSL2 interface in an IP or VDSL DSLAM topology.

The DSLAM accepts connections from many customers and aggregates them to a single, high-capacity connection to the Internet.

Figure 12 on page 183 shows a typical VDSL2 network topology.
Figure 12: Typical VDSL2 End-to-End Connectivity and Topology Diagram

Figure 13 on page 183 shows a backward-compatible ADSL topology using ATM DSLAM.

Figure 13: Backward-Compatible ADSL Topology (ATM DSLAM)

VDSL2 Interface Support on SRX Series Devices

The VDSL2 interface is supported on the SRX Series devices listed in Table 19 on page 184. (Platform support depends on the Junos OS release in your installation.)
Table 19: VDSL2 Annex A and Annex B Features

<table>
<thead>
<tr>
<th>Features</th>
<th>POTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devices</td>
<td>Integrated VDSL Module (SRX110-POTS)</td>
</tr>
<tr>
<td></td>
<td>VDSL Mini-PIM (SRX210, SRX220, SRX240, SRX320, SRX340)</td>
</tr>
<tr>
<td>Supported Bandplans</td>
<td>997/998</td>
</tr>
<tr>
<td>Supported standards</td>
<td>ITU-T G.993.2 and ITU-T G.993.5 (VDSL2)</td>
</tr>
<tr>
<td>Used in</td>
<td>North American network implementations and European network implementations</td>
</tr>
<tr>
<td>ADSL backward compatibility</td>
<td>ADSL G992.5-A (ADSL Annex A)</td>
</tr>
</tbody>
</table>

* ADSL Annex B support is not available on VDSL2 Mini-PIMs.

VDSL2 Interface Compatibility with ADSL Interfaces

VDSL2 interfaces on SRX Series devices are backward compatible with most ADSL interface standards. The VDSL2 interface uses Ethernet in the First Mile (EFM) mode or Packet Transfer Mode (PTM) and uses the named interface pt-1/0/0. In ADSL fallback mode, VDSL2 operates on the ATM encapsulation interface in the first mile and uses the named interface at-1/0/0.

NOTE:

- The VDSL2 interface has backward compatibility with ADSL/ADSL2/ADSL2+. The VDSL2 interface is represented by the `pt` interface when configured to function as VDSL2, and the ADSL interface is represented by the `at` interface when configured to function as ADSL.
- On VDSL2 interfaces, by default the `pt-1/0/0` interface is created when there is no configuration already created for either the `pt-1/0/0` or the `at-1/0/0` interface.

NOTE: It requires around 60 seconds to switch from VDSL2 to ADSL or from ADSL to VDSL2 operating modes.

Table 20 on page 185 lists VDSL2 operating modes and their backward compatibility with ADSL interface standards.
<table>
<thead>
<tr>
<th>ADSL Annex Type</th>
<th>Operating Modes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADSL Annex A operating in POTS mode (ADSL modes for Annex A only)</td>
<td>auto</td>
<td>Configures the ADSL interface to autonegotiate settings with the DSLAM located at the central office. For Annex A, the ADSL interface uses either ANSI T1.413 Issue II mode or ITU G.992.1 mode.</td>
</tr>
<tr>
<td></td>
<td>ansi-dmt</td>
<td>Configures the ADSL interface to use ANSI T1.413 Issue II mode.</td>
</tr>
<tr>
<td></td>
<td>itu-dmt</td>
<td>Configures the ADSL interface to use ITU G.992.1 mode.</td>
</tr>
<tr>
<td></td>
<td>itu-dmt-bis</td>
<td>Configures the ADSL interface to use ITU G.992.3 mode. You can configure this mode only when it is supported on the DSLAM.</td>
</tr>
<tr>
<td></td>
<td>adsl2plus</td>
<td>Configures the ADSL interface to use ITU G.992.5 mode. You can configure this mode only when it is supported on the DSLAM.</td>
</tr>
<tr>
<td>ADSL Annex B operating in ISDN mode (ADSL modes for Annex B only)</td>
<td>auto</td>
<td>Configures the ADSL interface to autonegotiate settings with the DSLAM located at the central office. For Annex B, the ADSL interface trains in ITU G.992.1 mode.</td>
</tr>
<tr>
<td></td>
<td>itu-dmt</td>
<td>Configures the ADSL interface to use ITU G.992.1 mode.</td>
</tr>
<tr>
<td></td>
<td>itu-dmt-bis</td>
<td>Configures the ADSL interface to use ITU G.992.3 mode. You can configure this mode only when it is supported on the DSLAM.</td>
</tr>
<tr>
<td></td>
<td>adsl2plus</td>
<td>Configures the ADSL interface to use ITU G.992.5 mode. You can configure this mode only when it is supported on the DSLAM.</td>
</tr>
<tr>
<td></td>
<td>itu-annexb-ur2</td>
<td>Configures the ADSL line to use G.992.1 Deutsche Telekom UR-2 mode.</td>
</tr>
</tbody>
</table>
NOTE: On SRX210, SRX220, and SRX240 devices, every time the VDSL2 Mini-PIM is restarted in the ADSL mode, the first packet passing through the Mini-PIM is dropped.

VDSL2 Interfaces Supported Profiles

A profile is a table that contains a list of preconfigured VDSL2 settings. Table 21 on page 186 lists the different profiles supported on the VDSL2 interfaces and their properties.

Table 21: Supported Profiles on the VDSL2 Interfaces

<table>
<thead>
<tr>
<th>Profiles</th>
<th>Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8a</td>
<td>50</td>
</tr>
<tr>
<td>8b</td>
<td>50</td>
</tr>
<tr>
<td>8c</td>
<td>50</td>
</tr>
<tr>
<td>8d</td>
<td>50</td>
</tr>
<tr>
<td>12a</td>
<td>68</td>
</tr>
<tr>
<td>12b</td>
<td>68</td>
</tr>
<tr>
<td>17a</td>
<td>100</td>
</tr>
<tr>
<td>Auto</td>
<td>Negotiated (based on operating mode)</td>
</tr>
</tbody>
</table>

VDSL2 Interfaces Supported Features

The following features are supported on the VDSL2 interfaces:

- ADSL/ADSL2/ADSL2+ backward compatibility with Annex A, Annex M support
- PTM or EFM (802.3ah) support
- Operation, Administration, and Maintenance (OAM) support for ADSL/ADSL2/ADSL2+ mode
- ATM quality of service (QoS) (supported only when the VDSL2 Mini-PIM is operating in ADSL2 mode)
- Multilink Point-to-Point Protocol (MLPPP) (supported only when the VDSL2 Mini-PIM is operating in ADSL2 mode)
- MTU size of 1514 bytes (maximum) in VDSL2 mode and 1496 bytes in ADSL mode.
• Support for maximum of 10 permanent virtual connections (PVCs) (only in ADSL/ADSL2/ADSL2+ mode)
• Dying gasp support (ADSL and VDSL2 mode)

NOTE: On SRX210 or SRX320 devices with VDSL2, ATM CoS VBR-related functionality cannot be tested.

Understanding IPv6 Support VDSL2 Interfaces

SRX300, SRX320, SRX340, SRX345, and SRX550HM devices support IPv6 on the following DSL encapsulations:

• ATM physical interface encapsulations
 • atm-pvc
 • ethernet-over-atm

• ATM logical interface encapsulations
 • atm-snap
 • atm-ppp-vc-mux
 • atm-nlpid
 • atm-cisco-nlpid
 • atm-ppp-llc
 • ether-over-atm-llc

NOTE: The encapsulation types atm-vc-mux and ppp-over-ether-over-atm-llc do not include IPv6 support.

To configure IPv6 addresses on DSL interfaces in ATM or PTM mode, include the family protocol type as inet6 at the [edit interfaces] hierarchy level.
Example: Configuring VDSL2 Interfaces (Basic)

This example shows how to configure the VDSL2 interfaces for SRX110, SRX210, SRX220, SRX240, SRX320, and SRX340 devices. (Platform support depends on the Junos OS release in your installation.)

Requirements

Before you begin:

- Establish basic connectivity. See the Quick Start Guide for your device for factory default settings.
- Configure network interfaces as necessary. See “Example: Creating an Ethernet Interface” on page 282.

Overview

In this example, you create a VDSL2 interface called pt-1/0/0 and set the VDSL2 profile to auto.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces pt-1/0/0 vdsl-options vdsl-profile auto
set interfaces pt-1/0/0 vlan-tagging
set interfaces pt-1/0/0 unit 0 vlan-id 100
```

Step-by-Step Procedure
To configure the VDSL2 interfaces for the SRX110, SRX210, SRX240, SRX320, and SRX340 devices and enable VLAN tagging:

1. Create an interface.

```
[edit]
user@host# edit interfaces pt-1/0/0
```

2. Set the type of VDSL2 profile.

```
[edit interfaces pt-1/0/0]
user@host# set vdsl-options vdsl-profile auto
```

3. Specify the logical unit to connect to this physical VDSL2 interface.

```
[edit interfaces pt-1/0/0]
user@host# set unit 0
```

4. Specify the family protocol type.

```
[edit interfaces pt-1/0/0]
user@host# set unit 0 family inet address 100.100.100.1/24
```

5. To enable VLAN tagging on the pt interface.

```
[edit interfaces pt-1/0/0]
user@host# set interface pt-1/0/0 vlan-tagging
```

6. Specify the value of the VLAN ID to be configured.

```
[edit interfaces pt-1/0/0]
user@host# set interface pt-1/0/0 unit 0 vlan-id 100
```

NOTE: This feature is supported only on the pt interface, and the range of VLANs that can be configured is 0 to 4093.

Results
From configuration mode, confirm your configuration by entering the `show interfaces pt-1/0/0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces pt-1/0/0
vdsl-options {
    vdsl-profile auto;
}
unit 0 {
    Family inet {
        address 100.100.100.1/24;
    }
}
```

NOTE: When VLAN tagging is configured, the intended output is:

```
[edit]
user@host# show interfaces pt-1/0/0
    vlan-tagging;
    vdsl-options {
        vdsl-profile auto;
    }
    unit 0 {
        vlan-id 100;
        Family inet {
            address 100.100.100.1/24;
        }
    }
```

If you are done configuring the device, enter `commit` from configuration mode.

Verifying the Configuration

IN THIS SECTION

- Displaying the Configuration for VDSL2 Interface (When Connected to the DSLAM Operating in Annex A Mode) | 191
- Displaying the Configuration for VDSL2 Interface (When Connected to the DSLAM Operating in Annex B Mode) | 194
Confirm that the configuration is working properly.

Displaying the Configuration for VDSL2 Interface (When Connected to the DSLAM Operating in Annex A Mode)

Purpose
Verify the command output.

Action
From operational mode, enter the `show interfaces pt-1/0/0` command.

```
Physical interface: pt-1/0/0, Enabled, Physical link is Up
  Interface index: 146, SNMP ifIndex: 524, Generation: 149
  Type: PTM, Link-level type: Ethernet, MTU: 1496, VDSL mode, Speed: 45440kbps
  Speed: VDSL2
  Device flags : Present Running
  Link flags : None
  CoS queues : 8 supported, 8 maximum usable queues
  Hold-times : Up 0 ms, Down 0 ms
  Current address: 00:b1:7e:85:84:ff
  Statistics last cleared: 2009-10-19 00:29:37 PDT (00:00:02 ago)
  Traffic statistics:
    Input bytes : 22438962 97070256 bps
    Output bytes : 10866024 43334088 bps
    Input packets: 15141 8187 pps
    Output packets: 7332 3655 pps
  Input errors:
    Errors: 0, Drops: 0, Policed discards: 0, L3 incompletes: 0,
    L2 channel errors: 0, L2 mismatch timeouts: 0, Resource errors: 0
  Output errors:
    Carrier transitions: 0, Errors: 0, Drops: 0, Aged packets: 0, MTU errors: 0,
    Resource errors: 0
  Egress queues: 8 supported, 4 in use
  Queue counters: Queued packets Transmitted packets Dropped packets
    0 best-effort 6759 6760 0
    1 expedited-fo 0 0 0
    2 assured-forw 0 0 0
    3 network-cont 0 0 0
  VDSL alarms : None
  VDSL defects : None
  VDSL media: Seconds Count State
    LOF 0 0 OK
    LOS 0 0 OK
    LOM 0 0 OK
    LOP 0 0 OK
```
LOCDI 0 0 OK
LOCDNI 0 0 OK

VDSL status:

- **Modem status**: Showtime (Profile-17a)
- **VDSL profile**: Profile-17a Annex A
- Last fail code: None
- Subfunction: 0x00
- **Seconds in showtime**: 45171

VDSL Chipset Information: VTU-R VTU-C
- Vendor Country: 0xb5 0xb5
- Vendor ID: BDCM BDCM
- Vendor Specific: 0x9385 0x9385

VDSL Statistics: VTU-R VTU-C
- Attenuation (dB): 0.0 0.0
- Capacity used (%): 0 0
- Noise margin (dB): 20.0 20.0
- Output power (dBm): 6.0 12.0

<table>
<thead>
<tr>
<th>Bit rate (kbps)</th>
<th>Interleave</th>
<th>Fast</th>
<th>Interleave</th>
<th>Fast</th>
</tr>
</thead>
<tbody>
<tr>
<td>100004</td>
<td>0</td>
<td>45440</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CRC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Packet Forwarding Engine configuration:
- Destination slot: 0 (0x00)

CoS information:
- Direction: Output
- CoS transmit queue: Bandwidth Buffer Priority

<table>
<thead>
<tr>
<th>Limit</th>
<th>%</th>
<th>bps</th>
<th>%</th>
<th>usec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>95</td>
<td>43168000</td>
<td>95</td>
<td>0</td>
</tr>
<tr>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 network-control</td>
<td>5</td>
<td>2272000</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Logical interface pt-1/0/0.0 (Index 71) (SNMP ifIndex 525) (Generation 136)
- Flags: SNMP-Traps Encapsulation: ENET2

Traffic statistics:
- Input bytes: 23789064
- Output bytes: 10866024
- Input packets: 16052
- Output packets: 7332

Local statistics:
- Input bytes: 0
- Output bytes: 0
- Input packets: 0
Output packets: 0

Transit statistics:
 Input bytes : 23789064 97070256 bps
 Output bytes : 10866024 43334088 bps
 Input packets: 16052 8187 pps
 Output packets: 7332 3655 pps

Security: Zone: Null

Flow Statistics:

Flow Input statistics:
 Self packets : 0
 ICMP packets : 0
 VPN packets : 0
 Multicast packets : 0
 Bytes permitted by policy : 0
 Connections established : 0

Flow Output statistics:
 Multicast packets : 0
 Bytes permitted by policy : 0

Flow error statistics (Packets dropped due to):
 Address spoofing: 0
 Authentication failed: 0
 Incoming NAT errors: 0
 Invalid zone received packet: 0
 Multiple user authentications: 0
 Multiple incoming NAT: 0
 No parent for a gate: 0
 No one interested in self packets: 0
 No minor session: 0
 No more sessions: 0
 No NAT gate: 0
 No route present: 0
 No SA for incoming SPI: 0
 No tunnel found: 0
 No session for a gate: 0
 No zone or NULL zone binding 0
 Policy denied: 0
 Security association not active: 0
 TCP sequence number out of window: 0
 Syn-attack protection: 0
 User authentication errors: 0

Protocol inet, MTU: 1482, Generation: 169, Route table: 0
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
The output shows a summary of VDSL2 interface. Verify the following information:

- Status of interface pt-1/0/0 is displayed as Physical link is Up.
- Modem status is displayed as Showtime (Profile-17a).
- Time in seconds during which the interface stayed up is displayed as Seconds in showtime.
- Annex A indicates VDSL profile of the DSLAM connected at other end.

Displaying the Configuration for VDSL2 Interface (When Connected to the DSLAM Operating in Annex B Mode)

Purpose
Verify the command output.

Action
From operational mode, enter the `show interfaces pt-1/0/0` command.

```
Physical interface: pt-1/0/0, Enabled, Physical link is Up
  Interface index: 148, SNMP ifIndex: 536, Generation: 238
  Type: PTM, Link-level type: Ethernet, MTU: 1514, VDSL mode, Speed: 45439kbps
  Speed: VDSL2
  Device flags   : Present Running
  Link flags     : None
  CoS queues     : 8 supported, 8 maximum usable queues
  Hold-times     : Up 0 ms, Down 0 ms
  Current address: 00:1f:12:e4:df:20
  Last flapped   : 2011-05-13 07:34:33 PDT (00:46:33 ago)
  Statistics last cleared: Never
  Traffic statistics:
    Input  bytes   : 0                    0 bps
    Output bytes  : 0                    0 bps
    Input  packets: 0                    0 pps
    Output packets: 0                    0 pps
  Input errors:
    Errors: 0, Drops: 0, Policed discards: 0, L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0, Resource errors: 0
  Output errors:
    Carrier transitions: 3, Errors: 0, Drops: 0, Aged packets: 0, MTU errors: 0, Resource errors: 0
  VDSL alarms : None
```
VDSL defects
None

VDSL media

<table>
<thead>
<tr>
<th></th>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOF</td>
<td>177</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOS</td>
<td>177</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOM</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOP</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOCDI</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOCDNI</td>
<td>177</td>
<td>0</td>
<td>OK</td>
</tr>
</tbody>
</table>

VDSL status:
- **Modem status**: Showtime (Profile-17a)
- **VDSL profile**: Auto Annex B
- Last fail code: None
- **Subfunction**: 0x00

Seconds in showtime: 2794

VDSL Chipset Information:

<table>
<thead>
<tr>
<th>VTU-R</th>
<th>VTU-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor Country</td>
<td>0xb5</td>
</tr>
<tr>
<td>Vendor ID</td>
<td>BDCM</td>
</tr>
<tr>
<td>Vendor Specific:</td>
<td>0x9385</td>
</tr>
</tbody>
</table>

VDSL Statistics:

<table>
<thead>
<tr>
<th>VTU-R</th>
<th>VTU-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuation (dB)</td>
<td>0.0</td>
</tr>
<tr>
<td>Capacity used (%)</td>
<td>0.0</td>
</tr>
<tr>
<td>Noise margin (dB)</td>
<td>18.5</td>
</tr>
<tr>
<td>Output power (dBm)</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Packet Forwarding Engine configuration:

- Destination slot: 0 (0x00)

CoS information:

Direction: Output

<table>
<thead>
<tr>
<th>CoS transmit queue</th>
<th>Bandwidth</th>
<th>Buffer Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit</td>
<td>%</td>
<td>bps</td>
</tr>
<tr>
<td>0 best-effort</td>
<td>95</td>
<td>43167050</td>
</tr>
</tbody>
</table>

none

3 network-control | 5 | 2271950 | 5 | 0 | low |

The output shows a summary of the VDSL2 interface. Verify the following information:
• Status of interface pt-1/0/0 is displayed as Physical link is Up.
• Modem status is displayed as Showtime (Profile-17a).
• Time in seconds during which the interface stayed up is displayed as Seconds in showtime.
• Annex B indicates the VDSL profile of the DSLAM connected at other end.

Example: Configuring VDSL2 Interfaces (Detail)

IN THIS SECTION

- Requirements | 196
- Overview | 197
- Configuration | 197
- Verification | 213

This example shows how to configure VDSL2 interfaces on SRX Series Services Gateways.

This example uses VDSL2 Mini-PIM installed on SRX210 and SRX320 devices. The information is also applicable to SRX110 (integrated VDSL2), SRX220, SRX240, and SRX320 devices (with VDSL2 Mini-PIMs). (Platform support depends on the Junos OS release in your installation.)

Requirements

Before you begin:

• Install Junos OS Release 10.1 or later on the SRX Series devices.
• Establish basic connectivity and set up and perform initial configuration. See the Quick Start Guide for your device for factory default settings.
• Install the VDSL2 Mini-PIM on the SRX210 or SRX320 device chassis.
• Connect the SRX210 or SRX320 device to a DSLAM.
• On VDSL2 Mini-PIMs, by default the pt-1/0/0 interface is created when there is no configuration already created for either the pt-1/0/0 or the at-1/0/0 interface. You can switch to ADSL mode by just configuring at-1/0/0. If the configurations are already created for pt-1/0/0 or at-1/0/0, then you need to deactivate pt-1/0/0 before you create at-1/0/0 or deactivate at-1/0/0 to create pt-1/0/0.
• Make sure that you have deleted the previous configurations on pt-1/0/0 and pp0.
Overview

This example uses SRX210 or SRX320 devices. The information is also applicable to SRX240 and SRX340 devices.

Figure 14 on page 197 shows typical SRX Series devices with VDSL2 Mini-PIM network connections.

Figure 14: SRX Series Device with VDSL2 Mini-PIMs in an End-to-End Deployment Scenario

In this example, you begin a new configuration on a VDSL2 Mini-PIM. You first deactivate previous interfaces and delete any old configuration from the device. Then you set the interfaces with the VDSL profile and the Layer 3 configuration for the end-to-end data path.

You then configure the PPPoE on the pt-1/0/0 interface with a static IP address or CHAP authentication. You configure PPPoE on the pt-1/0/0 interface with unnumbered IP address (PAP authentication or CHAP authentication).

Finally, you configure PPPoE on the pt-1/0/0 interface with negotiated IP address (PAP authentication or CHAP authentication).

Configuration

IN THIS SECTION
- Beginning a New Configuration on a VDSL2 Mini-PIM | 198
- Configuring the VDSL2 Mini-PIM for End-to-End Data Path | 199
- Configuring PPPoE on the pt-1/0/0 Interface with a Static IP Address | 200
- Configuring PPPoE on the pt-1/0/0 Interface with a Static IP Address (CHAP Authentication) | 203
Beginning a New Configuration on a VDSL2 Mini-PIM

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[edit]
deactivate interface pt-1/0/0
deactivate interface at-1/0/0
delete interface pt-1/0/0
delete interface pp0
```

Step-by-Step Procedure
To begin a new configuration on a VDSL2 Mini-PIM:

1. Deactivate any previous interfaces.

```
[edit]
user@host# deactivate interface pt-1/0/0
user@host# deactivate interface at-1/0/0
```

2. Delete any old configurations.

```
[edit]
user@host# delete interface pt-1/0/0
user@host# delete interface pp0
```

3. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```
Results
From configuration mode, confirm your configuration by entering the `show chassis fpc` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```plaintext
user@host# run show chassis fpc
Temp CPU Utilization (%) Memory Utilization (%)
Slot State (C) Total Interrupt DRAM (MB) Heap Buffer
0 Online ------------------------ CPU less FPC ------------------------
1 Online ------------------------ CPU less FPC ------------------------
```

If you are done configuring the device, enter `commit` from configuration mode.

Configuring the VDSL2 Mini-PIM for End-to-End Data Path

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```plaintext
set interfaces pt-1/0/0 vdsl-options vdsl-profile 17a
set interfaces pt-1/0/0 unit 0 family inet address 11.11.11.1/24
```

Step-by-Step Procedure
To configure the VDSL2 Mini-PIM for end-to-end data path:

1. Configure the interfaces with the VDSL profile and the Layer 3 configuration for end-to-end data path.

   ```plaintext
   [edit]
   user@host# set interfaces pt-1/0/0 vdsl-options vdsl-profile 17a
   user@host# set interfaces pt-1/0/0 unit 0 family inet address 11.11.11.1/24
   ```

2. If you are done configuring the device, commit the configuration.

   ```plaintext
   [edit]
   user@host# commit
   ```
From configuration mode, confirm your configuration by entering the `show interfaces pt-1/0/0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```plaintext
[edit]
 user@host# show interfaces pt-1/0/0
 vdsl-options {
  vdsl-profile 17a;
 } 
 unit 0 {
  family inet {
    address 11.11.11.1/24;
  }
 }
```

If you are done configuring the device, enter `commit` from configuration mode.

Configuring PPPoE on the pt-1/0/0 Interface with a Static IP Address

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```plaintext
user@host# set interfaces pt-1/0/0 vdsl-options vdsl-profile 17a
user@host# set interfaces pt-1/0/0 unit 0 encapsulation ppp-over-ether
user@host# set interfaces pp0 unit 0 ppp-options pap access-profile pap_prof local-name locky local-password india passive
user@host# set interfaces pp0 unit 0 pppoe-options underlying-interface pt-1/0/0.0 auto-reconnect 120 client
user@host# set interfaces pp0 unit 0 family inet address 10.1.1.6/24
user@host# set access profile pap_prof authentication-order password client cuttack pap-password india
```
NOTE: To configure VLAN tagging while configuring PPPoE on the pt-1/0/0 interface with:
- Static IP address
- Static IP address (CHAP authentication)
- Unnumbered IP address (PAP Authentication)
- Unnumbered IP address (CHAP Authentication)
- Negotiated IP address (PAP Authentication)
- Negotiated IP address (CHAP Authentication)

the following commands must be included at [edit] hierarchy level:

```
set interfaces pt-1/0/0 vlan-tagging
set interfaces pt-1/0/0 unit 0 vlan-id 100
```

Step-by-Step Procedure

To configure the PPPoE on the pt-1/0/0 interface with a static IP address:

1. Configure the VDSL options and encapsulation for the interface.

```
[edit]
user@host# set interfaces pt-1/0/0 vdsl-options vdsl-profile 17a
user@host# set interfaces pt-1/0/0 unit 0 encapsulation ppp-over-ether
```

2. Configure the PPP options for the interface.

```
[edit]
user@host# set interfaces pp0 unit 0 ppp-options pap access-profile pap_prof
user@host# set interfaces pp0 unit 0 ppp-options pap local-name locky
user@host# set interfaces pp0 unit 0 ppp-options pap local-password india
user@host# set interfaces pp0 unit 0 ppp-options pap passive
```

3. Configure the PPPoE options for the interface.

```
[edit]
user@host# set interfaces pp0 unit 0 pppoe-options underlying-interface pt-1/0/0.0
user@host# set interfaces pp0 unit 0 pppoe-options auto-reconnect 120
user@host# set interfaces pp0 unit 0 pppoe-options client
```
4. Configure the IP address for the interface.

```
[edit]
user@host# set interfaces pp0 unit 0 family inet address 10.1.1.6/24
```

5. Configure the access profile for the interface.

```
[edit]
user@host# set access profile pap_prof authentication-order password
user@host# set access profile pap_prof client cuttack pap-password india
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces pp0`, `show interfaces pt-1/0/0` and `show access profile pap_prof` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces pp0
unit 0 {
  ppp-options {
    pap {
      access-profile pap_prof;
      local-name locky;
      local-password "$ABC123";## SECRET-DATA
      passive;
    }
  }
  pppoe-options {
    underlying-interface pt-1/0/0.0;
    auto-reconnect 120;
    client;
  }
  family inet {
    address 10.1.1.6/24;
  }
}

[edit]
user@host# show interfaces pt-1/0/0
vds-options {
  vds-profile 17a;
}
unit 0 {
```
encapsulation ppp-over-ether;
}
[edit]
 user@host# show access profile pap_prof
 authentication-order password;
 client cuttack pap-password "$ABC123"; ## SECRET-DATA

If you are done configuring the device, enter commit from configuration mode.

Configuring PPPoE on the pt-1/0/0 Interface with a Static IP Address (CHAP Authentication)

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
user@host# set interfaces pt-1/0/0 vdsl-options vdsl-profile 17a
user@host# set interfaces pt-1/0/0 unit 0 encapsulation ppp-over-ether
user@host# set interfaces pp0 unit 0 ppp-options chap default-chap-secret india local-name locky passive
user@host# set interfaces pp0 unit 0 pppoe-options underlying-interface pt-1/0/0.0 auto-reconnect 120 client
user@host# set interfaces pp0 unit 0 family inet address 10.1.1.6/24
```

Step-by-Step Procedure
To configure the PPPoE on the pt-1/0/0 interface with a static IP address (CHAP authentication):

1. Configure the VDSL options and encapsulation for the interface.

```
[edit]
   user@host# set interfaces pt-1/0/0 vdsl-options vdsl-profile 17a
   user@host# set interfaces pt-1/0/0 unit 0 encapsulation ppp-over-ether
```

2. Configure the PPP options for the interface.

```
[edit]
   user@host# set interfaces pp0 unit 0 ppp-options chap default-chap-secret india
   user@host# set interfaces pp0 unit 0 ppp-options chap local-name locky
   user@host# set interfaces pp0 unit 0 ppp-options chap passive
```

3. Configure the PPPoE options for the interface.

```
[edit]
```
4. Configure the IP address for the interface.

 [edit]
 user@host# set interfaces pp0 unit 0 family inet address 10.1.1.6/24

Results
From configuration mode, confirm your configuration by entering the `show interfaces pt-1/0/0` and `show interfaces pp0` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
If you are done configuring the device, enter **commit** from configuration mode.

Configuring PPPoE on the pt-x/x/x Interface with Unnumbered IP (PAP Authentication)

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter **commit** from configuration mode.

```plaintext
user@host# set interfaces pt-1/0/0 vdsl-options vdsl-profile 17a
user@host# set interfaces pt-1/0/0 unit 0 encapsulation ppp-over-ether
user@host# set interfaces lo0 unit 0 family inet address 10.1.1.24/32
user@host# set interfaces pp0 unit 0 ppp-options pap access-profile pap_prof local-name locky local-password india passive
user@host# set interfaces pp0 unit 0 pppoe-options underlying-interface pt-1/0/0.0 auto-reconnect 120 client
user@host# set interfaces pp0 unit 0 family inet unnumbered-address lo0.0 destination 10.1.1.1
user@host# set access profile pap_prof authentication-order password client cuttack pap-password india
```

Step-by-Step Procedure
To configure PPPoE on the pt-1/0/0 interface with unnumbered IP (PAP authentication):

1. Configure the VDSL options and encapsulation for the interface.

   ```plaintext
   [edit]
   user@host# set interfaces pt-1/0/0 vdsl-options vdsl-profile 17a
   user@host# set interfaces pt-1/0/0 unit 0 encapsulation ppp-over-ether
   ```

2. Configure the IP address for the interface.

   ```plaintext
   [edit]
   user@host# set interfaces lo0 unit 0 family inet address 10.1.1.24/32
   ```

3. Configure the PPP options for the interface.

   ```plaintext
   [edit]
   user@host# set interfaces pp0 unit 0 ppp-options pap access-profile pap_prof
   user@host# set interfaces pp0 unit 0 ppp-options pap local-name locky
   user@host# set interfaces pp0 unit 0 ppp-options pap local-password india
   ```

4. Configure the PPPoE options for the interface.
5. Configure the unnumbered address and destination for the interface.

```
[edit]
user@host# set interfaces pp0 unit 0 family inet unnumbered-address lo0.0
user@host# set interfaces pp0 unit 0 family inet unnumbered-address destination 10.1.1.1
```

6. Configure the access profile for the interface.

```
[edit]
user@host# set access profile pap_prof authentication-order password
user@host# set access profile pap_prof client cuttack pap-password india
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces lo0`, `show interfaces pt-1/0/0`, and `show interfaces pp0` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces lo0
unit 0 {
    family inet {
        address 10.1.1.24/32;
    }
}

[edit]
user@host# show interfaces pt-1/0/0
vdsl-options {
    vdsl-profile 17a;
}
unit 0 {
    encapsulation ppp-over-ether;
}

[edit]
user@host# show interfaces pp0
unit 0 {
```
ppp-options {
 pap {
 access-profile pap_prof;
 local-name locky;
 local-password "$ABC123"; ## SECRET-DATA
 passive;
 }
}
pppoe-options {
 underlying-interface pt-1/0/0.0;
 auto-reconnect 120;
 client;
}
 family inet {
 unnumbered-address lo0.0 destination 10.1.1.1;
 }
}

If you are done configuring the device, enter commit from configuration mode.

Configuring PPPoE on the pt-1/0/0 Interface with Unnumbered IP (CHAP Authentication)

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```text
user@host# set interfaces pt-1/0/0 vdsl-options vdsl-profile 17a
user@host# set interfaces pt-1/0/0 unit 0 encapsulation ppp-over-ether
user@host# set interfaces lo0 unit 0 family inet address 10.1.1.24/32
user@host# set interfaces pp0 unit 0 ppp-options chap default-chap-secret india local-name locky passive
user@host# set interfaces pp0 unit 0 pppoe-options underlying-interface pt-1/0/0.0 auto-reconnect 120 client
user@host# set interfaces pp0 unit 0 family inet unnumbered-address lo0.0 destination 10.1.1.1
```

Step-by-Step Procedure

To configure PPPoE on the pt-1/0/0 interface with unnumbered IP (CHAP authentication):

1. Configure the VDSL options and encapsulation for the interface.

   ```text
   [edit]
   user@host# set interfaces pt-1/0/0 vdsl-options vdsl-profile 17a
   user@host# set interfaces pt-1/0/0 unit 0 encapsulation ppp-over-ether
   ```
2. Configure the IP address for the interface.

[edit]
user@host# set interfaces lo0 unit 0 family inet address 10.1.1.24/32

3. Configure the PPP options for the interface.

[edit]
user@host# set interfaces pp0 unit 0 ppp-options chap default-chap-secret india
user@host# set interfaces pp0 unit 0 ppp-options chap local-name locky
user@host# set interfaces pp0 unit 0 ppp-options chap passive

4. Configure the PPPoE options for the interface.

[edit]
user@host# set interfaces pp0 unit 0 pppoe-options underlying-interface pt-1/0/0.0
user@host# set interfaces pp0 unit 0 pppoe-options auto-reconnect 120
user@host# set interfaces pp0 unit 0 pppoe-options client

5. Configure the unnumbered address and destination for the interface.

[edit]
user@host# set interfaces pp0 unit 0 family inet unnumbered-address lo0.0
user@host# set interfaces pp0 unit 0 family inet unnumbered-address destination 10.1.1.1

Results
From configuration mode, confirm your configuration by entering the `show interfaces pp0`, `show interfaces pt-1/0/0`, and `show interfaces lo0` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[edit]
user@host# show interfaces pp0
unit 0 {
ppp-options {
chap {
default-chap-secret "$ABC123"; ## SECRET-DATA
local-name locky;
passive;
}
}
}
If you are done configuring the device, enter commit from configuration mode.

Configuring PPPoE on the pt-1/0/0 Interface with Negotiated IP (PAP Authentication)

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
user@host# set interfaces pt-1/0/0 vdsl-options vdsl-profile 17a
user@host# set interfaces pt-1/0/0 unit 0 encapsulation ppp-over-ether
user@host# set interfaces pp0 unit 0 ppp-options pap access-profile my_prf local-name purple local-password <password> passive
user@host# set interfaces pp0 unit 0 pppoe-options underlying-interface pt-1/0/0.0 auto-reconnect 120 client
user@host# set interfaces pp0 unit 0 family inet negotiate-address
user@host# set access profile my_prf authentication-order password
user@host# set access profile my_prf
```

Step-by-Step Procedure
To configure PPPoE on the pt-1/0/0 interface with negotiated IP (PAP authentication):

1. Configure the VDSL options and encapsulation for the interface.

   ```
   [edit]
   user@host# set interfaces pt-1/0/0 vdsl-options vdsl-profile 17a
   user@host# set interfaces pt-1/0/0 unit 0 encapsulation ppp-over-ether
   ```

2. Configure the PPP options for the interface.

   ```
   [edit]
   user@host# set interfaces pp0 unit 0 ppp-options pap access-profile my_prf
   user@host# set interfaces pp0 unit 0 ppp-options pap local-name purple
   user@host# set interfaces pp0 unit 0 ppp-options pap local-password <password>
   user@host# set interfaces pp0 unit 0 ppp-options pap passive
   ```

3. Configure the PPPoE options for the interface.

   ```
   [edit]
   user@host# set interfaces pp0 unit 0 pppoe-options underlying-interface pt-1/0/0.0
   user@host# set interfaces pp0 unit 0 pppoe-options auto-reconnect 120
   user@host# set interfaces pp0 unit 0 pppoe-options client
   ```

4. Configure the negotiated IP address for the interface.

   ```
   [edit]
   user@host# set interfaces pp0 unit 0 family inet negotiate-address
   ```

5. Configure the access profile for the interface.

   ```
   [edit]
   user@host# set access profile my_prf authentication-order password
   user@host# set access profile my_prf
   ```

Results

From configuration mode, confirm your configuration by entering the `show interfaces pt-1/0/0`, `show interfaces pp0`, and `show access profile my_prf` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
[edit]
 user@host# show interfaces pt-1/0/0
vdsl-options {
 vdsl-profile 17a;
}
unit 0 {
 encapsulation ppp-over-ether;
}
[edit]
 user@host# show interfaces pp0
unit 0 {
 ppp-options {
 pap {
 access-profile my_prf;
 local-name purple:
 local-password "$ABC123"; ##SECRET-DATA
 passive;
 }
 pppoe-options {
 underlying-interface pt-1/0/0.0;
 auto-reconnect 120;
 client;
 }
 family inet {
 negotiate-address;
 }
 }
 }
[edit]
 user@host# show access profile my_prf
authentication-order password;

If you are done configuring the device, enter commit from configuration mode.

Configuring PPPoE on the pt-1/0/0 Interface with Negotiated IP (CHAP Authentication)

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

user@host# set interfaces pt-1/0/0 vdsl-options vdsl-profile 17a
user@host# set interfaces pt-1/0/0 unit 0 encapsulation ppp-over-ether
Step-by-Step Procedure
To configure PPPoE on the pt-1/0/0 interface with negotiated IP (CHAP authentication):

1. Configure the VDSL options and encapsulation for the interface.

 [edit]
 user@host# set interfaces pt-1/0/0 vdsl-options vdsl-profile 17a
 user@host# set interfaces pt-1/0/0 unit 0 encapsulation ppp-over-ether

2. Configure the PPP options for the interface.

 [edit]
 user@host# set interfaces ppp0 unit 0 ppp-options chap default-chap-secret <password>
 user@host# set interfaces ppp0 unit 0 ppp-options chap local-name purple
 user@host# set interfaces ppp0 unit 0 ppp-options chap passive

3. Configure the PPPoE options for the interface.

 [edit]
 user@host# set interfaces ppp0 unit 0 pppoe-options underlying-interface pt-1/0/0.0
 user@host# set interfaces ppp0 unit 0 pppoe-options auto-reconnect 120
 user@host# set interfaces ppp0 unit 0 pppoe-options client

4. Configure the negotiated IP address for the interface.

 [edit]
 user@host# set interfaces ppp0 unit 0 family inet negotiate-address

Results
From configuration mode, confirm your configuration by entering the show interfaces ppp0 and show interfaces pt-1/0/0 commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Verifying the Configuration | 214
- Verifying the VDSL2 Mini-PIM for End-to-End Data Path | 217
- Verifying PPPoE on the pt-1/0/0 Interface with a Static IP Address | 221
- Verifying PPPoE on the pt-1/0/0 Interface with a Static IP Address (CHAP Authentication) | 222
- Verifying PPPoE on the pt-1/0/0 Interface with Unnumbered IP (PAP Authentication) | 224
- Verifying PPPoE on the pt-1/0/0 Interface with Unnumbered IP (CHAP Authentication) | 225
- Verifying PPPoE on the pt-1/0/0 Interface with Negotiated IP (PAP Authentication) | 227
- Verifying PPPoE on the pt-1/0/0 Interface with Negotiated IP (CHAP Authentication) | 228
Confirm that the configuration is working properly.

Verifying the Configuration

Purpose
Verify the FPC status and the command output.

Action
1. Verify the FPC status by entering the `show chassis fpc` command. The output should display FPC status as online.

   ```
   user@host# run show chassis fpc
   Temp CPU Utilization (%) Memory Utilization (%)
   Slot State (C) Total Interrupt DRAM (MB) Heap Buffer
   0 Online --------------------- CPU less FPC ---------------------
   1 Online --------------------- CPU less FPC ---------------------
   ```

 NOTE: The VDSL2 Mini-PIM is installed in the first slot of the SRX320 device chassis; therefore, the FPC used here is fpc 1. For SRX340 devices, the FPC used will be fpc 1, fpc 2, fpc 3, or fpc 4.

2. Enter `run show interface pt-1/0/0` and verify the following information in the command output:
 - Status of interface pt-1/0/0 is displayed as physical link is up.
 - Modem status is displayed as Showtime (Profile-17a).
 - Time in seconds during which the interface stayed up is displayed as Seconds in Showtime.
 - VDSL profile of DSLAM is displayed as Auto Annex A.

   ```
   Physical interface: pt-1/0/0, Enabled, Physical link is Up
   Interface index: 146, SNMP ifIndex: 524, Generation: 149
   Type: PTM, Link-level type: Ethernet, MTU: 1496, VDSL mode, Speed: 45440kbps
   Speed: VDSL2
   Device flags : Present Running
   Link flags : None
   CoS queues : 8 supported, 8 maximum usable queues
   Hold-times : Up 0 ms, Down 0 ms
   ```
Current address: 00:b1:7e:85:84:ff
Statistics last cleared: 2009-10-19 00:29:37 PDT (00:00:02 ago)
Traffic statistics:
Input bytes: 22438962 97070256 bps
Output bytes: 10866024 43334088 bps
Input packets: 15141 8187 pps
Output packets: 7332 3655 pps
Input errors:
 Errors: 0, Drops: 0, Policed discards: 0, L3 incompletes: 0,
 L2 channel errors: 0, L2 mismatch timeouts: 0, Resource errors: 0
Output errors:
 Carrier transitions: 0, Errors: 0, Drops: 0, Aged packets: 0, MTU errors: 0,
 Resource errors: 0
Egress queues: 8 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
 0 best-effort 6759 6760 0
 1 expedited-fo 0 0 0
 2 assured-forw 0 0 0
 3 network-cont 0 0 0
VDSL alarms: None
VDSL defects: None
VDSL media: Seconds Count State
 LOF 0 0 OK
 LOS 0 0 OK
 LOM 0 0 OK
 LOP 0 0 OK
 LOCDI 0 0 OK
 LOCDNI 0 0 OK
VDSL status:
 Modem status: Showtime (Profile-17a)
 VDSL profile: Profile-17a Annex A
 Last fail code: None
 Subfunction: 0x00
 Seconds in showtime: 45171
VDSL Chipset Information: VTU-R VTU-C
 Vendor Country: 0xb5 0xb5
 Vendor ID: BDCM BDCM
 Vendor Specific: 0x9385 0x9385
VDSL Statistics: VTU-R VTU-C
 Attenuation (dB): 0.0 0.0
 Capacity used (%): 0 0
 Noise margin (dB): 20.0 20.0
Output power (dBm) : 6.0 12.0

Interleave Fast Interleave Fast

Bit rate (kbps) : 100004 0 45440 0
CRC : 0 0 0 0
FEC : 0 0 0 0
HEC : 0 0 0 0

Packet Forwarding Engine configuration:
 Destination slot: 0 (0x00)

CoS information:
 Direction : Output

CoS transmit queue Bandwidth Buffer Priority
Limit % bps % usec
0 best-effort 95 43168000 95 0 low

3 network-control 5 2272000 5 0 low

Logical interface pt-1/0/0.0 (Index 71) (SNMP ifIndex 525) (Generation 136)
 Flags: SNMP-Traps Encapsulation: ENET2

Traffic statistics:
 Input bytes : 23789064
 Output bytes : 10866024
 Input packets: 16052
 Output packets: 7332

Local statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Transit statistics:
 Input bytes : 23789064 97070256 bps
 Output bytes : 10866024 43334088 bps
 Input packets: 16052 8187 pps
 Output packets: 7332 3655 pps

Security: Zone: Null

Flow Statistics:
Flow Input statistics:
 Self packets : 0
 ICMP packets : 0
 VPN packets : 0
 Multicast packets : 0
 Bytes permitted by policy : 0
 Connections established : 0

Flow Output statistics:
Verifying the VDSL2 Mini-PIM for End-to-End Data Path

Purpose
Verify the interface status and check traffic statistics.

Action
1. Verify interface status by using the show interface terse command and test end-to-end data path connectivity by sending the ping packets to the remote end IP address.

```
user@host# run show interfaces pt-1/0/0 terse
Interface          Admin Link Proto    Local     Remote
pt-1/0/0           up     up
```

```
Multicast packets : 0
Bytes permitted by policy : 0
Flow error statistics (Packets dropped due to):
  Address spoofing: 0
  Authentication failed: 0
  Incoming NAT errors: 0
  Invalid zone received packet: 0
  Multiple user authentications: 0
  Multiple incoming NAT: 0
  No parent for a gate: 0
  No one interested in self packets: 0
  No minor session: 0
  No more sessions: 0
  No NAT gate: 0
  No route present: 0
  No SA for incoming SPI: 0
  No tunnel found: 0
  No session for a gate: 0
  No zone or NULL zone binding 0
  Policy denied: 0
  Security association not active: 0
  TCP sequence number out of window: 0
  Syn-attack protection: 0
  User authentication errors: 0

Protocol inet, MTU: 1482, Generation: 169, Route table: 0
  Flags: None
  Addresses, Flags: Is-Preferred Is-Primary

Destination: 10.10.10/24, Local: 10.10.10.1, Broadcast: 10.10.10.255,
Generation: 158
```
2. Verify the VDSL2 interface configuration and check the traffic statistics.

```
user@host# run show interfaces pt-1/0/0 extensive
Physical interface: pt-1/0/0, Enabled, Physical link is Up
  Interface index: 146, SNMP ifIndex: 524, Generation: 197
  Type: PTM, Link-level type: Ethernet, MTU: 1496, VDSL mode, Speed: 45440kbps
  Speed: VDSL2
  Device flags   : Present Running
  Link flags     : None
  CoS queues     : 8 supported, 8 maximum usable queues
  Hold-times     : Up 0 ms, Down 0 ms
  Current address: 00:b1:7e:85:84:ff
  Last flapped   : 2009-10-28 00:36:29 PDT (00:12:03 ago)
  Statistics last cleared: 2009-10-28 00:47:56 PDT (00:00:36 ago)
Traffic statistics:
  Input  bytes  :                84000                    0 bps
  Output bytes  :               138000                    0 bps
  Input  packets:                 1000                    0 pps
  Output packets:                 1000                    0 pps
  Input errors:
    Errors: 0, Drops: 0, Policed discards: 0, L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0, Resource errors: 0
  Output errors:
    Carrier transitions: 0, Errors: 0, Drops: 0, Aged packets: 0, MTU errors: 0, Resource errors: 0
  Egress queues: 8 supported, 4 in use
  Queue counters:  Queued packets  Transmitted packets  Dropped packets
    0 best-effort                 1000                 1000

```

3 network-cont 0 0

VDSL alarms : None
VDSL defects : None

VDSL media:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOF</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOS</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOM</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOP</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOCDI</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOCDNI</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
</tbody>
</table>

VDSL status:
Modem status : Showtime (Profile-17a)
VDSL profile : Profile-17a Annex A
Last fail code: None
Subfunction : 0x00
Seconds in showtime : 723

VDSL Chipset Information:

- VTU-R
 - Vendor Country : 0xb5
 - Vendor ID : BDCM
 - Vendor Specific : 0x9385

- VTU-C
 - Vendor Country : 0xb5
 - Vendor ID : BDCM
 - Vendor Specific : 0x9385

VDSL Statistics:

- VTU-R
 - Attenuation (dB) : 0.0
 - Capacity used (%) : 0
 - Noise margin (dB) : 16.0
 - Output power (dBm) : 5.0

- VTU-C
 - Attenuation (dB) : 0.0
 - Capacity used (%) : 0
 - Noise margin (dB) : 20.0
 - Output power (dBm) : 13.0

Interleave Fast Interleave Fast

Bit rate (kbps)	100004	0	45440	0
CRC	0	0	0	0
FEC	0	0	0	0
HEC	0	0	0	0

Packet Forwarding Engine configuration:
Destination slot: 0 (0x00)

CoS information:

- Direction : Output
- CoS transmit queue

<table>
<thead>
<tr>
<th>Limit</th>
<th>%</th>
<th>bps</th>
<th>%</th>
<th>usec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>95</td>
<td>43168000</td>
<td>95</td>
<td>0</td>
</tr>
<tr>
<td>3 network-control</td>
<td>5</td>
<td>22720000</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>none</td>
<td></td>
<td>in use</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Logical interface pt-1/0/0.0 (Index 72) (SNMP ifIndex 521) (Generation 158)

Flags: SNMP-Traps Encapsulation: ENET2

Traffic statistics:
Input bytes : 84000
Output bytes : 98000
Input packets: 1000
Output packets: 1000

Local statistics:
Input bytes : 84000
Output bytes : 98000
Input packets: 1000
Output packets: 1000

Transit statistics:
Input bytes : 0 0 bps
Output bytes : 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps

Security: Zone: Null

Flow Statistics:
Flow Input statistics:
Self packets : 0
ICMP packets : 0
VPN packets : 0
Multicast packets : 0
Bytes permitted by policy : 0
Connections established : 0

Flow Output statistics:
Multicast packets : 0
Bytes permitted by policy : 0

Flow error statistics (Packets dropped due to):
Address spoofing: 0
Authentication failed: 0
Incoming NAT errors: 0
Invalid zone received packet: 0
Multiple user authentications: 0
Multiple incoming NAT: 0
No parent for a gate: 0
No one interested in self packets: 0
No minor session: 0
No more sessions: 0
No NAT gate: 0
No route present: 0
No SA for incoming SPI: 0
Verifying PPPoE on the pt-1/0/0 Interface with a Static IP Address

Purpose
Verify the interface output and the end-to-end data path.

Action
1. Verify the interface output.

user@host# run show interfaces pp0
Physical interface: pp0, Enabled, Physical link is Up
 Interface index: 128, SNMP ifIndex: 510
 Type: PPPoE, Link-level type: PPPoE, MTU: 1532
 Device flags : Present Running
 Interface flags: Point-To-Point SNMP-Traps
 Link type : Full-Duplex
 Link flags : None
 Input packets : 0
 Output packets: 0

Logical interface pp0.0 (Index 71) (SNMP ifIndex 522)
 Flags: Hardware-Down Point-To-Point SNMP-Traps 0x0 Encapsulation: PPPoE
 PPPoE:
 State: SessionDown, Session ID: None,
 Configured AC name: None, Service name: None,
 Auto-reconnect timeout: 120 seconds, Idle timeout: Never,
 Underlying interface: pt-1/0/0.0 (Index 69)
 Input packets : 57
 Output packets: 56
 Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
Keepalive: Input: 22 (00:00:40 ago), Output: 25 (00:00:04 ago)
LCP state: Down
CHAP state: Closed
PAP state: Closed
Security: Zone: Null
Protocol inet, MTU: 1492
Flags: Protocol-Down
Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
 Destination: 10.1.1/24, Local: 10.1.1.6

2. Verify the end-to-end data path on the interface.

```
user@host# run show interfaces pt-1/0/0 terse
Interface          Admin Link Proto    Local                 Remote
pt-1/0/0            up    up
pt-1/0/0.0          up    up

[edit]
user@host# run show interfaces pp0 terse
Interface          Admin Link Proto    Local                 Remote
pp0                up    up
pp0.0              up    up   inet     10.1.1.6/24

[edit]
user@host# run ping 10.1.1.1 count 100 rapid
PING 10.1.1.1 (10.1.1.1): 56 data bytes
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- 10.1.1.1 ping statistics --
100 packets transmitted, 100 packets received, 0% packet loss
round-trip min/avg/max/stddev = 14.669/15.649/21.655/1.740 ms
```

Verifying PPPoE on the pt-1/0/0 Interface with a Static IP Address (CHAP Authentication)

Purpose
Verify the interface status and check the end-to-end data path connectivity.

Action
1. Verify the interface status.
2. Verify the interface and check the end-to-end data path connectivity.

user@host# run show interfaces pt-1/0/0 terse
<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>pt-1/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pt-1/0/0.0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[edit]
user@host# run show interfaces pp0 terse
Verifying PPPoE on the pt-1/0/0 Interface with Unnumbered IP (PAP Authentication)

Purpose
Verify the interface status and the end-to-end data path testing.

Action
1. Verify the interface status.

```
user@host# run show interfaces pp0
Physical interface: pp0, Enabled, Physical link is Up
   Interface index: 128, SNMP ifIndex: 510
   Type: PPPoE, Link-level type: PPPoE, MTU: 1532
   Device flags : Present Running
   Interface flags: Point-To-Point SNMP-Traps
   Link type : Full-Duplex
   Link flags : None
      Input packets : 0
      Output packets: 0

Logical interface pp0.0 (Index 72) (SNMP ifIndex 522)
   Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: PPPoE
   PPPoE:
      State: SessionUp, Session ID: 33,
      Session AC name: cuttack, Remote MAC address: 00:03:6c:8c:8c:55,
      Configured AC name: None, Service name: None,
      Auto-reconnect timeout: 120 seconds, Idle timeout: Never,
      Underlying interface: pt-1/0/0.0 (Index 69)
      Input packets : 22
      Output packets: 20
   Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
```
Keepalive: Input: 1 (00:00:08 ago), Output: 0 (never)
LCP state: Opened
CHAP state: Closed
PAP state: Success
Security: Zone: Null
Protocol inet, MTU: 1492
Flags: None
Addresses, Flags: Is-Preferred Is-Primary
Destination: 10.1.1.1, Local: 10.1.1.24

2. Verify the end-to-end data path testing.

```
user@host# run show interfaces pt-1/0/0 terse
Interface         Admin Link Proto Local         Remote
pt-1/0/0          up    up
pt-1/0/0.0        up    up

[edit]
user@host# run show interfaces pp0 terse
Interface         Admin Link Proto Local         Remote
pp0               up    up
pp0.0             up    up   inet     10.1.1.24           --> 10.1.1.1

[edit]
user@host# run ping 10.1.1.1 count 100 rapid
PING 10.1.1.1 (10.1.1.1): 56 data bytes
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
--- 10.1.1.1 ping statistics ---
100 packets transmitted, 100 packets received, 0% packet loss
round-trip min/avg/max/stddev = 14.584/15.503/21.204/1.528 ms
```

Verifying PPPoE on the pt-1/0/0 Interface with Unnumbered IP (CHAP Authentication)

Purpose
Verify the interface status and end-to-end data path testing on the PPPoE interface.

Action
1. Verify the interface status.
user@host# run show interfaces pp0
Physical interface: pp0, Enabled, Physical link is Up
 Interface index: 128, SNMP ifIndex: 510
 Type: PPPoE, Link-level type: PPPoE, MTU: 1532
 Device flags : Present Running
 Interface flags: Point-To-Point SNMP-Traps
 Link type : Full-Duplex
 Link flags : None
 Input packets : 0
 Output packets: 0

Logical interface pp0.0 (Index 70) (SNMP ifIndex 522)
 Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: PPPoE
 PPPoE:
 State: SessionUp, Session ID: 35,
 Session AC name: cuttack, Remote MAC address: 00:03:6c:c8:8c:55,
 Configured AC name: None, Service name: None,
 Auto-reconnect timeout: 120 seconds, Idle timeout: Never,
 Underlying interface: pt-1/0/0.0 (Index 69)
 Input packets : 25
 Output packets: 22
 Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
 Keepalive: Input: 2 (00:00:10 ago), Output: 2 (00:00:02 ago)
 LCP state: Opened
 CHAP state: Success
 PAP state: Closed
 Security: Zone: Null
 Protocol inet, MTU: 1492
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.1.1.1, Local: 10.1.1.24

2. Verify the end-to-end data path testing on the PPPoE interface.

user@host# run show interfaces pt-1/0/0 terse
Interface Admin Link Proto Local Remote
pt-1/0/0 up up
pt-1/0/0.0 up up

[edit]
user@host# run show interfaces pp0 terse
Verifying PPPoE on the pt-1/0/0 Interface with Negotiated IP (PAP Authentication)

Purpose
Verify the PPPoE interface status and the end-to-end data path connectivity.

Action
1. Verify the PPPoE interface status.

```bash
user@host# run show interfaces pp0
Physical interface: pp0, Enabled, Physical link is Up
   Interface index: 128, SNMP ifIndex: 510
   Type: PPPoE, Link-level type: PPPoE, MTU: 1532
   Device flags   : Present Running
   Interface flags: Point-To-Point SNMP-Traps
   Link type      : Full-Duplex
   Link flags     : None
      Input packets : 0
      Output packets: 0

Logical interface pp0.0 (Index 72) (SNMP ifIndex 522)
   Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: PPPoE
   PPPoE:
      State: SessionUp, Session ID: 4,
      Session AC name: belur, Remote MAC address: 00:90:1a:43:18:d1,
      Configured AC name: None, Service name: None,
      Auto-reconnect timeout: 120 seconds, Idle timeout: Never,
      Underlying interface: pt-1/0/0.0 (Index 69)
      Input packets : 18
      Output packets: 18
   Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
   Keepalive: Input: 0 (never), Output: 11 (00:00:01 ago)
```
LCP state: Opened
CHAP state: Closed
PAP state: Success
Security: Zone: Null
Protocol inet, MTU: 1474
Flags: Negotiate-Address
Addresses, Flags: Kernel Is-Preferred Is-Primary

2. Verify the end-to-end data path connectivity.

```
user@host# run show interfaces pt-1/0/0 terse
Interface               Admin Link Proto    Local                 Remote
pt-1/0/0                up    up
pt-1/0/0.0              up    up

[edit]
user@host# run show interfaces pp0 terse
Interface               Admin Link Proto    Local                 Remote
pp0                     up    up
pp0.0                   up    up   inet     12.12.12.11         --> 12.12.12.1

[edit]
user@host# run ping 12.12.12.1 count 100 rapid
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
--- 12.12.12.1 ping statistics ---
100 packets transmitted, 100 packets received, 0% packet loss
round-trip min/avg/max/stddev = 16.223/17.692/24.359/2.292 ms
```

Verifying PPPoE on the pt-1/0/0 Interface with Negotiated IP (CHAP Authentication)

Purpose
Verify the interface status and the end-to-end data path connectivity.

Action
1. Verifying the interface status.

```
user@host# run show interfaces pp0
Physical interface: pp0, Enabled, Physical link is Up
```
Interface index: 128, SNMP ifIndex: 510
Type: PPPoE, Link-level type: PPPoE, MTU: 1532
Device flags : Present Running
Interface flags: Point-To-Point SNMP-Traps
Link type : Full-Duplex
Link flags : None
 Input packets : 0
 Output packets: 0

Logical interface pp0.0 (Index 70) (SNMP ifIndex 522)
 Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: PPPoE
 PPPoE:
 State: SessionUp, Session ID: 8,
 Session AC name: belur, Remote MAC address: 00:90:1a:43:18:d1,
 Configured AC name: None, Service name: None,
 Auto-reconnect timeout: 120 seconds, Idle timeout: Never,
 Underlying interface: pt-1/0/0.0 (Index 69)
 Input packets : 12
 Output packets: 11
 Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
 Keepalive: Input: 0 (never), Output: 4 (00:00:03 ago)
 LCP state: Opened
 CHAP state: Success
 PAP state: Closed
 Security: Zone: Null
 Protocol inet, MTU: 1474
 Flags: Negotiate-Address
 Addresses, Flags: Kernel Is-Preferred Is-Primary

2. Verify the end-to-end data path connectivity.

user@host# run show interfaces pt-1/0/0 terse
Interface Admin Link Proto Local Remote
pt-1/0/0 up up
pt-1/0/0.0 up up

[edit]
user@host# run show interfaces pp0 terse
Interface Admin Link Proto Local Remote
pp0 up up

Example: Configuring VDSL2 Interfaces in ADSL Mode (Basic)

IN THIS SECTION
- Requirements | 230
- Overview | 231
- Configuration | 231
- Verifying the Configuration | 232

This example shows how to configure the integrated VDSL2 interfaces for SRX320 (Annex B) in ADSL backward compatible mode.

Requirements

Before you begin:

- Set up and perform initial configuration on the SRX Series devices.
- Connect the SRX320 device to a DSLAM
- Establish basic connectivity. See the Quick Start Guide for your device for factory default settings.
- On VDSL2 interfaces, by default the pt-1/0/0 interface is created when there is no configuration already created for either the pt-1/0/0 or the at-1/0/0 interface. You can switch to ADSL mode by just configuring at-1/0/0. If the configurations are already created for pt-1/0/0 or at-1/0/0, then you need to deactivate pt-1/0/0 before you create at-1/0/0 or deactivate at-1/0/0 to create pt-1/0/0.
- Make sure that you have deleted the previous configurations on pt-1/0/0 and pp0.
Overview

In this example, you create a VDSL2 interface called pt-1/0/0, specify the type of encapsulation, and set the VDSL2 profile to auto.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```plaintext
set interfaces fe-0/0/3 unit 0 family inet address 10.10.10.1/24
set interfaces at-1/0/0 atm-options vpi 0
set interfaces at-1/0/0 dsl-options operating-mode auto
set interfaces at-1/0/0 unit 0 vci 0.33
```

Step-by-Step Procedure

To configure the VDSL2 interfaces for the SRX320 in ADSL backward compatible mode:

1. Set operating mode.

   ```plaintext
   [edit]
   user@host# user@host# set interfaces at-1/0/0 dsl-options operating-mode auto
   ```

2. Configure the ATM VPI option

   ```plaintext
   [edit]
   user@host# set interfaces at-1/0/0 atm-options vpi 0
   ```

3. Set the ATM VCI option.

   ```plaintext
   [edit]
   user@host# set interfaces at-1/0/0 unit 0 vci 0.33
   ```

4. Configure the IP address for the interface.

   ```plaintext
   [edit]
   user@host# set interfaces fe-0/0/3 unit 0 family inet address 10.10.10.1/24
   ```
Results
From configuration mode, confirm your configuration by entering the `show interfaces at-1/0/0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

If you are done configuring the device, enter `commit` from configuration mode.

Verifying the Configuration

Confirm that the configuration is working properly.

Verifying the Configuration

Purpose
Verify the command output.

Action
From operational mode, enter the `show interfaces at-1/0/0 extensive` command.

Physical interface: at-1/0/0, Enabled, Physical link is Up
- Interface index: 148, SNMP ifIndex: 513, Generation: 175
- Link-level type: ATM-PVC, MTU: 1496, Clocking: Internal, ADSL mode,
- Speed: ADSL2+
- Speed: 1573kbps, Loopback: None
- Device flags : Present Running
- Link flags : None
- CoS queues : 8 supported, 8 maximum usable queues
- Hold-times : Up 0 ms, Down 0 ms
- Current address: 00:1f:12:e4:df:20
- Last flapped : 2011-05-25 05:58:32 PDT (00:02:54 ago)
- Statistics last cleared: Never
- Traffic statistics:
 - Input bytes : 0 0 bps
 - Output bytes : 0 0 bps
 - Input packets: 0 0 pps
 - Output packets: 0 0 pps
- Input errors:
 - Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0,
 - L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0,
 - Resource errors: 0
- Output errors:
 - Carrier transitions: 1, Errors: 0, Drops: 0, Aged packets: 0, MTU errors: 0,
 - Resource errors: 0
- Egress queues: 8 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
0 best-effort 0 0 0
1 expedited-fo 0 0 0
2 assured-forw 0 0 0
3 network-cont 0 0 0

Queue number: Mapped forwarding classes
0 best-effort
1 expedited-forwarding
2 assured-forwarding
3 network-control

ADSL alarms: None
ADSL defects: None

ADSL media:

<table>
<thead>
<tr>
<th></th>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOF</td>
<td>55</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOS</td>
<td>55</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOM</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOP</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOCDI</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOCDNI</td>
<td>55</td>
<td>0</td>
<td>OK</td>
</tr>
</tbody>
</table>

ADSL status:
Modem status: Showtime (Adsl2plus)
DSL mode: Auto Annex B Last fail code: None
Subfunction: 0x00

Seconds in showtime: 173

ADSL Chipset Information:

Vendor Country: 0xb5 0xb5
Vendor ID: BDCM BDCM
Vendor Specific: 0x9385 0x9395

ADSL Statistics:
Attenuation (dB): 1.5 0.0
Capacity used (%): 0 0
Noise margin (dB): 8.5 9.0
Output power (dBm): 6.5 9.0

<table>
<thead>
<tr>
<th></th>
<th>Fast Interleave</th>
<th>Fast Interleave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit rate (kbps):</td>
<td>24681 0</td>
<td>1573 0</td>
</tr>
<tr>
<td>CRC</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>FEC</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>HEC</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Received cells:</td>
<td>278817900 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Transmitted cells:</td>
<td>0 0</td>
<td>0 0</td>
</tr>
</tbody>
</table>

ATM status:
HCS state: Hunt
LOC: OK
ATM Statistics:
Uncorrectable HCS errors: 0, Correctable HCS errors: 0,
Tx cell FIFO overruns: 0, Rx cell FIFO overruns: 0,
Rx cell FIFO underruns: 0, Input cell count: 0, Output cell count: 0,
Output idle cell count: 0, Output VC queue drops: 0, Input no buffers: 0,
Input length errors: 0, Input timeouts: 0, Input invalid VCs: 0,
Input bad CRCs: 0, Input OAM cell no buffers: 0
Packet Forwarding Engine configuration:
Destination slot: 1
CoS information:
Direction: Output
CoS transmit queue | Bandwidth | Buffer Priority
Limit | % | bps | % | usec | Priority
0 best-effort | 95 | 1494350 | 95 | 0 | low
none
3 network-control | 5 | 78650 | 5 | 0 | low
none

Logical interface at-1/0/0.0 (Index 73) (SNMP ifIndex 533) (Generation 157)
Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: ATM-SNAP
Traffic statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0
Local statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0
Transit statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0
Security: Zone: HOST
Allowed host-inbound traffic: any-service bfd bgp dvmrp igmp ldp msdp nhrp ospf pgm pim rip router-discovery rsvp sap vrrp
Flow Statistics:
Flow Input statistics:
Self packets : 0
ICMP packets : 0
VPN packets : 0
Multicast packets : 0
Bytes permitted by policy : 0
Connections established : 0

Flow Output statistics:
Multicast packets : 0
Bytes permitted by policy : 0

Flow error statistics (Packets dropped due to):
Address spoofing: 0
Authentication failed: 0
Incoming NAT errors: 0
Invalid zone received packet: 0
Multiple user authentications: 0
Multiple incoming NAT: 0
No parent for a gate: 0
No one interested in self packets: 0
No minor session: 0
No more sessions: 0
No NAT gate: 0
No route present: 0
No SA for incoming SPI: 0
No tunnel found: 0
No session for a gate: 0
No zone or NULL zone binding: 0
Policy denied: 0
Security association not active: 0
TCP sequence number out of window: 0
Syn-attack protection: 0
User authentication errors: 0

VCI 0.33
Flags: Active
Total down time: 0 sec, Last down: Never

ATM per-VC transmit statistics:
Tail queue packet drops: 0

Traffic statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0

Logical interface at-1/0/0.32767 (Index 74) (SNMP ifIndex 534)
(Generation 158)
Flags: Point-To-Multipoint No-Multicast SNMP-Traps 0x0
Encapsulation: ATM-VCMUX
Traffic statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0
Local statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Security: Zone: HOST
Allowed host-inbound traffic : any-service bfd bgp dvmrp igmp ldp msdp nhrp ospf pgm pim rip router-discovery rsvp sap vrrp
Flow Statistics :
Flow Input statistics :
 Self packets : 0
 ICMP packets : 0
 VPN packets : 0
 Multicast packets : 0
 Bytes permitted by policy : 0
 Connections established : 0
Flow Output statistics:
 Multicast packets : 0
 Bytes permitted by policy : 0
Flow error statistics (Packets dropped due to):
 Address spoofing: 0
 Authentication failed: 0
 Incoming NAT errors: 0
 Invalid zone received packet: 0
 Multiple user authentications: 0
 Multiple incoming NAT: 0
 No parent for a gate: 0
 No one interested in self packets: 0
 No minor session: 0
 No more sessions: 0
 No NAT gate: 0
 No route present: 0
 No SA for incoming SPI: 0
 No tunnel found: 0
 No session for a gate: 0
 No zone or NULL zone binding: 0
 Policy denied: 0
 Security association not active: 0
 TCP sequence number out of window: 0
 Syn-attack protection: 0
The output shows a summary of VDSL2 interface. Verify the following information:

- Status of interface at-1/0/0 is displayed as **Physical link is Up**.
- Modem status is displayed as **Showtime (Adsl2plus)**.
- Time in seconds during which the interface stayed up is displayed as **Seconds** in showtime.
- ADSL profile of the DSLAM is displayed as **Annex B**.

Example: Configuring VDSL2 Interfaces in ADSL Mode (Detail)

This example shows how to configure ADSL Interfaces for SRX Series devices.

This example uses VDSL2 Mini-PIM installed on SRX320 devices. The information is also applicable to SRX340 devices (with VDSL2 Mini-PIMs).
Requirements

Before you begin:

- Install Junos OS Release 10.1 or later for the SRX Series devices.
- Set up and perform initial configuration on the SRX Series device. See Quick Start Guide of your device for factory default settings.
- Install the VDSL2 Mini-PIM on the SRX320 device chassis.
- Ensure that the SRX320 device is connected to a DSLAM that supports VDSL2-to-ADSL fallback.

Overview

In this example, you configure the ADSL interface for end-to-end data path. Then you configure PPPoA on the at-1/0/0 interface with a negotiated IP address and either PAP authentication or CHAP authentication. You also configure a static IP address and an unnumbered IP address (and either PAP authentication or CHAP authentication) for PPPoA on the at-1/0/0 interface.

Finally, you configure PPPoE on the at-1/0/0 interface with a negotiated IP address and either PAP authentication or CHAP authentication.

Configuration

IN THIS SECTION

- Configuring the ADSL Interface for End-to-End Data Path | 238
- Configuring PPPoA on the at-1/0/0 Interface with Negotiated IP and PAP Authentication | 240
- Configuring PPPoA on the at-1/0/0 Interface with Negotiated IP and CHAP Authentication | 242
- Configuring PPPoA on the at-1/0/0 Interface with Static IP and PAP Authentication | 243
- Configuring PPPoA on the at-1/0/0 Interface with Static IP and CHAP Authentication | 245
- Configuring PPPoA on the at-1/0/0 Interface with Unnumbered IP and PAP Authentication | 247
- Configuring PPPoA on the at-1/0/0 Interface with Unnumbered IP and CHAP Authentication | 249
- Configuring PPPoE over ATM on the at-1/0/0 Interface with Negotiated IP and PAP Authentication | 251
- Configuring PPPoE over ATM on the at-1/0/0 Interface with Negotiated IP and CHAP Authentication | 253

Configuring the ADSL Interface for End-to-End Data Path

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces at-1/0/0 encapsulation atm-pvc atm-options vpi 2
set interfaces at-1/0/0 dsl-options operating-mode itu-dmt
set interfaces at-1/0/0 unit 0 encapsulation atm-snap vci 2.119 family inet address 10.10.10.1/24
```

Step-by-Step Procedure

To configure the ADSL interface for end-to-end data path:

1. Delete any previous configurations.

```
[edit]
user@host# delete interfaces at-1/0/0
```

2. Specify the basic configuration for the ADSL interface.

```
[edit]
user@host# set interfaces at-1/0/0 encapsulation atm-pvc
user@host# set interfaces at-1/0/0 atm-options vpi 2
user@host# set interfaces at-1/0/0 dsl-options operating-mode itu-dmt
user@host# set interfaces at-1/0/0 unit 0 encapsulation atm-snap
user@host# set interfaces at-1/0/0 unit 0 vci 2.119
user@host# set interfaces at-1/0/0 unit 0 family inet address 10.10.10.1/24
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces at-1/0/0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces at-1/0/0
encapsulation atm-pvc;
atm-options {
vpi 2;
}
dsl-options {
  operating-mode itu-dmt;
}
encapsulation atm-snap;
```
If you are done configuring the device, enter `commit` from configuration mode.

Configuring PPPoA on the at-1/0/0 Interface with Negotiated IP and PAP Authentication

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```plaintext
set interfaces at-1/0/0 encapsulation atm-pvc atm-options vpi 2
set interfaces at-1/0/0 dsl-options operating-mode auto
set interfaces at-1/0/0 unit 0 encapsulation atm-ppp-llc vci 2.119
set interfaces at-1/0/0 unit 0 ppp-options pap access-profile jnpr local-name locky local-password india
set interfaces at-1/0/0 unit 0 family inet negotiate-address
set access profile jnpr client sringeri pap-password india
```

Step-by-Step Procedure

To configure PPPoA on the at-1/0/0 interface with negotiated IP and PAP authentication:

1. Configure encapsulation and ATM options.

   ```plaintext
   [edit]
   user@host# set interfaces at-1/0/0 encapsulation atm-pvc
   user@host# set interfaces at-1/0/0 atm-options vpi 2
   user@host# set interfaces at-1/0/0 dsl-options operating-mode auto
   user@host# set interfaces at-1/0/0 unit 0 encapsulation atm-ppp-llc
   user@host# set interfaces at-1/0/0 unit 0 vci 2.119
   ```

2. Specify PPP options.

   ```plaintext
   [edit]
   user@host# set interfaces at-1/0/0 unit 0 ppp-options pap access-profile jnpr
   user@host# set interfaces at-1/0/0 unit 0 ppp-options pap local-name locky
   user@host# set interfaces at-1/0/0 unit 0 ppp-options pap local-password india
   ```

3. Configure the negotiated IP address.
4. Configure the access profile.

```
[edit]
user@host# set access profile jnpr client sringeri pap-password india
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces at-1/0/0` and `show access profile jnpr` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces at-1/0/0
encapsulation atm-pvc;
atm-options {
    vpi 2;
}
dsl-options {
    operating-mode auto;
}
unit 0 {
    encapsulation atm-ppp-llc;
vci 2.119;
    ppp-options {
        pap {
            access-profile jnpr;
            local-name locky;
            local-password "$9$tm/auBEx7V2gJevWx"; ## SECRET-DATA
        }
    }
    family inet {
        negotiate-address;
    }
}
[edit]
user@host# show access profile jnpr
client sringeri pap-password "$9$F0YP9peK8N-wRhSe"; ## SECRET-DATA
```

If you are done configuring the device, enter `commit` from configuration mode.
Configuring PPPoA on the at-1/0/0 Interface with Negotiated IP and CHAP Authentication

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces at-1/0/0 encapsulation atm-pvc atm-options vpi 2
set interfaces at-1/0/0 unit 0 encapsulation atm-ppp-llc vci 2.119
set interfaces at-1/0/0 unit 0 ppp-options chap access-profile jnpr local-name locky
set interfaces at-1/0/0 unit 0 family inet negotiate-address
set access profile jnpr client sringeri chap-secret india
```

Step-by-Step Procedure

To configure PPPoA on the at-1/0/0 interface with negotiated IP and CHAP Authentication:

1. Configure encapsulation and ATM options.

   ```
   [edit]
   user@host# set interfaces at-1/0/0 encapsulation atm-pvc
   user@host# set interfaces at-1/0/0 atm-options vpi 2
   user@host# set interfaces at-1/0/0 unit 0 encapsulation atm-ppp-llc
   user@host# set interfaces at-1/0/0 unit 0 vci 2.119
   ```

2. Specify PPP options.

   ```
   [edit]
   user@host# set interfaces at-1/0/0 unit 0 ppp-options chap access-profile jnpr
   user@host# set interfaces at-1/0/0 unit 0 ppp-options chap local-name locky
   ```

3. Configure the negotiated IP address.

   ```
   [edit]
   user@host# set interfaces at-1/0/0 unit 0 family inet negotiate-address
   ```

4. Configure the access profile.

   ```
   [edit]
   user@host# set access profile jnpr client sringeri chap-secret india
   ```
Results
From configuration mode, confirm your configuration by entering the `show interfaces at-1/0/0` and `show access profile jnpr` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```plaintext
[edit]
user@host# show interfaces at-1/0/0
encapsulation atm-pvc;
  atm-options {
    vpi 2;
  }
  unit 0 {
    encapsulation atm-ppp-llc;
    vci 2.119;
    ppp-options {
      chap {
        access-profile jnpr;
        local-name locky;
      }
    }
    family inet {
      negotiate-address;
    }
  }
[edit]
user@host# show access profile jnpr
client sringeri chap-secret "$9$qm5FIRSKvLAp0!"; # SECRET-DATA
```

If you are done configuring the device, enter `commit` from configuration mode.

Configuring PPPoA on the at-1/0/0 Interface with Static IP and PAP Authentication

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```plaintext
set interfaces at-1/0/0 encapsulation atm-pvc atm-options vpi 2
set interfaces at-1/0/0 unit 0 encapsulation atm-ppp-llc vci 2.119
set interfaces at-1/0/0 unit 0 ppp-options pap access-profile jnpr local-name locky local-password india
set interfaces at-1/0/0 unit 0 family inet address 100.100.100.1/24
set access profile jnpr client sringeri pap-password india
```

Step-by-Step Procedure
To configure PPPoA on the at-1/0/0 interface with static IP and PAP authentication:

1. Configure encapsulation and ATM options.

```
[edit]
user@host# set interfaces at-1/0/0 encapsulation atm-pvc
user@host# set interfaces at-1/0/0 atm-options vpi 2
user@host# set interfaces at-1/0/0 unit 0 encapsulation atm-ppp-llc
user@host# set interfaces at-1/0/0 unit 0 vci 2.119
```

2. Specify PPP options.

```
[edit]
user@host# set interfaces at-1/0/0 unit 0 ppp-options pap access-profile jnpr
user@host# set interfaces at-1/0/0 unit 0 ppp-options pap local-name locky
user@host# set interfaces at-1/0/0 unit 0 ppp-options pap local-password india
```

3. Configure the negotiated IP address.

```
[edit]
user@host# set interfaces at-1/0/0 unit 0 family inet address 100.100.100.1/24
```

4. Configure the access profile.

```
[edit]
user@host# set access profile jnpr client sringeri pap-password india
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces at-1/0/0` and `show access profile jnpr` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
vci 2.119;
ppp-options {
pap {
 access-profile jnpr;
 local-name locky;
 local-password "9GoDHmtpBhclFt/"; ##SECRET-DATA
}
}
family inet {
 address 100.100.100.1/24;
}
}
[edit]
user@host# show access profile jnpr
client sringeri pap-password "9p87c01h7Nbg4ZKM87"; ##SECRET-DATA

If you are done configuring the device, enter commit from configuration mode.

Configuring PPPoA on the at-1/0/0 Interface with Static IP and CHAP Authentication

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```plaintext
set interfaces at-1/0/0 encapsulation atm-pvc atm-options vpi 2
set interfaces at-1/0/0 unit 0 encapsulation atm-ppp-llc vci 2.119
set interfaces at-1/0/0 unit 0 ppp-options chap access-profile jnpr local-name locky
set interfaces at-1/0/0 unit 0 family inet address 100.100.100.1/24
set access profile jnpr client sringeri chap-secret india
```

Step-by-Step Procedure

To configure PPPoA on the at-1/0/0 interface with static IP and CHAP authentication:

1. Configure encapsulation and ATM options.

   ```plaintext
   [edit]
   user@host# set interfaces at-1/0/0 encapsulation atm-pvc
   user@host# set interfaces at-1/0/0 atm-options vpi 2
   user@host# set interfaces at-1/0/0 unit 0 encapsulation atm-ppp-llc
   user@host# set interfaces at-1/0/0 unit 0 vci 2.119
   ```

2. Specify PPP options.
3. Configure the negotiated IP address.

```plaintext
[edit]
user@host# set interfaces at-1/0/0 unit 0 family inet address 100.100.100.1/24
```

4. Configure the access profile.

```plaintext
[edit]
user@host# set access profile jnpr client sringeri chap-secret india
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces at-1/0/0` and `show access profile jnpr` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```plaintext
[edit]
user@host# show interfaces at-1/0/0
encapsulation atm-pvc;
    atm-options {
        vpi 2;
    }
unit 0 {
    encapsulation atm-ppp-llc;
    vci 2.119;
    ppp-options {
        chap {
            access-profile jnpr;
            local-name locky;
        }
    }
}
family inet {
    address 100.100.100.1/24;
}
}
[edit]
user@host# show access profile jnpr
```
If you are done configuring the device, enter **commit** from configuration mode.

Configuring PPPoA on the at-1/0/0 Interface with Unnumbered IP and PAP Authentication

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter **commit** from configuration mode.

```plaintext
set interfaces at-1/0/0 encapsulation atm-pvcatm-options vpi 2
set interfaces at-1/0/0 dsl-options operating-mode auto
set interfaces at-1/0/0 unit 0 encapsulation atm-ppp-llcvci 2.119
set interfaces at-1/0/0 unit 0 ppp-options pap access-profile jnpr local-name locky local-password india
set interfaces at-1/0/0 unit 0 family inet unnumbered-address lo0.0 destination 100.100.100.6
set interfaces lo0 unit 0 family inet address 100.100.100.20/32
set access profile jnpr client sringeri pap-password india
```

Step-by-Step Procedure

To configure PPPoA on the at-1/0/0 interface with unnumbered IP and PAP authentication:

1. Configure encapsulation and ATM options.

   ```plaintext
   [edit]
   user@host# set interfaces at-1/0/0 encapsulation atm-pvcatm-options vpi 2
   user@host# set interfaces at-1/0/0 atm-options operating-mode auto
   user@host# set interfaces at-1/0/0 unit 0 encapsulation atm-ppp-llcvci 2.119
   user@host# set interfaces at-1/0/0 unit 0 ppp-options pap access-profile jnpr local-name locky local-password india
   user@host# set interfaces at-1/0/0 unit 0 family inet unnumbered-address lo0.0 destination 100.100.100.6
   user@host# set interfaces lo0 unit 0 family inet address 100.100.100.20/32
   user@host# set access profile jnpr client sringeri pap-password india
   ```

2. Specify PPP options.

   ```plaintext
   [edit]
   user@host# set interfaces at-1/0/0 unit 0 ppp-options pap access-profile jnpr
   user@host# set interfaces at-1/0/0 unit 0 ppp-options pap local-name locky
   user@host# set interfaces at-1/0/0 unit 0 ppp-options pap local-password india
   ```

3. Configure the IP address, unnumbered IP address, and destination IP address.

   ```plaintext
   [edit]
   ```
user@host# set interfaces at-1/0/0 unit 0 family inet unnumbered-address lo0.0
user@host# set interfaces at-1/0/0 unit 0 family inet unnumbered-address destination 100.100.100.6
user@host# set interfaces lo0 unit 0 family inet address 100.100.100.20/32

4. Configure the access profile.

[edit]
user@host# set access profile jnpr client sringeri pap-password india

Results
From configuration mode, confirm your configuration by entering the `show interfaces at-1/0/0`, `show interfaces lo0`, and `show access profile jnpr` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[edit]
user@host# show interfaces at-1/0/0
encapsulation atm-pvc;
 atm-options {
 vpi 2;
 }
 dsl-options {
 operating-mode auto;
 }
unit 0 {
 encapsulation atm-ppp-llc;
 vci 2.119;
 ppp-options {
 pap {
 access-profile jnpr;
 local-name locky;
 local-password "9LA7x-wHkPzF/aZUH"; ## SECRET-DATA
 }
 }
 family inet {
 unnumbered-address lo0.0 destination 100.100.100.6;
 }
}
[edit]
user@host# show interfaces lo0
unit 0 {
 family inet {
 address 100.100.100.20/32;
 }
If you are done configuring the device, enter commit from configuration mode.

Configuring PPPoA on the at-1/0/0 Interface with Unnumbered IP and CHAP Authentication

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```plaintext
set interfaces at-1/0/0 encapsulation atm-pvc atm-options vpi 2
set interfaces at-1/0/0 unit 0 encapsulation atm-ppp-llc vci 2.119
set interfaces at-1/0/0 unit 0 ppp-options chap access-profile jnpr local-name locky
set interfaces at-1/0/0 unit 0 family inet unnumbered-address lo0.0 destination 100.100.100.6
set interfaces lo0 unit 0 family inet address 100.100.100.10/32
set access profile jnpr client sringeri chap-secret india
```

Step-by-Step Procedure

To configure PPPoA on the at-1/0/0 interface with unnumbered IP and CHAP authentication:

1. Configure encapsulation and ATM-options.

   ```plaintext
   [edit]
   user@host# set interfaces at-1/0/0 encapsulation atm-pvc
   user@host# set interfaces at-1/0/0 atm-options vpi 2
   user@host# set interfaces at-1/0/0 atm-options vpi 2
   user@host# set interfaces at-1/0/0 unit 0 encapsulation atm-ppp-llc
   user@host# set interfaces at-1/0/0 unit 0 vci 2.119
   ```

2. Specify the PPP-options.

   ```plaintext
   [edit]
   user@host# set interfaces at-1/0/0 unit 0 ppp-options chap access-profile jnpr
   user@host# set interfaces at-1/0/0 unit 0 ppp-options chap local-name locky
   ```

3. Configure the IP address, unnumbered IP address, and destination IP address.
4. Configure the access profile.

```
[edit]
user@host# set access profile jnpr client sringeri chap-secret india
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces at-1/0/0`, `show interfaces lo0`, and `show access profile jnpr` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces at-1/0/0
show interfaces at-1/0/0
    atm-options { 
        vpi 2;
    }
    unit 0 { 
        encapsulation atm-ppp-llc;
        vci 2.119;
        ppp-options { 
            chap [ 
                access-profile jnpr;
                local-name locky;
            ] 
        }
    }
    family inet { 
        unnumbered-address lo0.0 destination 100.100.100.6;
    }
}
[edit]
user@host# show interfaces lo0
unit 0 { 
    family inet { 
        address 100.100.100.10/32;
    }
}
[edit]
```
If you are done configuring the device, enter **commit** from configuration mode.

Configuring PPPoE over ATM on the at-1/0/0 Interface with Negotiated IP and PAP Authentication

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter **commit** from configuration mode.

```plaintext
set interfaces at-1/0/0 encapsulation ethernet-over-atm atm-options vpi 2
set interfaces at-1/0/0 atm-options unit 0 vci 2.119 encapsulation ppp-over-ether-over-atm-llc
set interfaces pp0 unit 0 ppp-options pap access-profile my_prf local-name purple local-password <password>
  passive
set interfaces pp0 unit 0 pppoe-options underlying-interface at-1/0/0.0 auto-reconnect 120 client
set interfaces pp0 unit 0 family inet negotiate-address
set access profile my_prf authentication-order password
set access profile my_prf
```

Step-by-Step Procedure

To configure PPPoE over ATM on the at-1/0/0 interface with negotiated IP and PAP authentication:

1. Configure encapsulation and ATM options.

   ```plaintext
   [edit]
   user@host# set interfaces at-1/0/0 encapsulation ethernet-over-atm
   user@host# set interfaces at-1/0/0 atm-options vpi 2
   user@host# set interfaces at-1/0/0 unit 0 vci 2.119
   user@host# set interfaces at-1/0/0 unit 0 encapsulation ppp-over-ether-over-atm-llc
   ```

2. Specify PPP options.

   ```plaintext
   [edit]
   user@host# set interfaces pp0 unit 0 ppp-options pap access-profile my_prf
   user@host# set interfaces pp0 unit 0 ppp-options pap local-name purple
   user@host# set interfaces pp0 unit 0 ppp-options pap local-password <password>
   user@host# set interfaces pp0 unit 0 ppp-options pap passive
   ```

3. Specify PPPoE options.
4. Configure the negotiated IP address.

[edit]
user@host# set interfaces pp0 unit 0 family inet negotiate-address

5. Configure the access profile.

[edit]
user@host# set access profile my_prf authentication-order password
user@host# set access profile my_prf

Results

From configuration mode, confirm your configuration by entering the set access profile my_prf, show access profile my_prf, and show interfaces pp0 commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[edit]
user@host# show interfaces at-1/0/0
encapsulation ethernet-over-atm;
 atm-options {
 vpi 2;
 }
unit 0 {
 encapsulation ppp-over-ether-over-atm-llc;
 vci 2.119;
 }
[edit]
user@host# show access profile my_prf
authentication-order password;
[edit]
user@host# show interfaces pp0
unit 0 {
 ppp-options {
 pap {
 access-profile my_prf;
local-name purple;
local-password "9YkgoZTQn9CuZU69A0hcdb$YoGikP": ##SECRET-DATA
passive;
}
}
pppoe-options {
 underlying-interface at-1/0/0.0;
 auto-reconnect 120;
 client;
}
family inet {
 negotiate-address;
}
}

If you are done configuring the device, enter commit from configuration mode.

Configuring PPPoE over ATM on the at-1/0/0 Interface with Negotiated IP and CHAP Authentication

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```bash
set interfaces at-1/0/0 encapsulation ethernet-over-atm atm-options vpi 2
set interfaces at-1/0/0 unit 0 vci 2.119 encapsulation ppp-over-ether-over-atm-llc
set interfaces pp0 unit 0 ppp-options chap default-chap-secret <password> local-name purple passive
set interfaces pp0 unit 0 pppoe-options underlying-interface at-1/0/0.0 auto-reconnect 120 client
set interfaces pp0 unit 0 family inet negotiate-address
```

Step-by-Step Procedure

To configure PPPoE over ATM on the at-1/0/0 interface with negotiated IP and CHAP authentication:

1. Configure encapsulation and ATM options.

   ```bash
   [edit]
   user@host# set interfaces at-1/0/0 encapsulation ethernet-over-atm
   user@host# set interfaces at-1/0/0 atm-options vpi 2
   user@host# set interfaces at-1/0/0 unit 0 vci 2.119
   user@host# set interfaces at-1/0/0 unit 0 encapsulation ppp-over-ether-over-atm-llc
   ```

2. Specify PPP options.
3. Specify PPPoE options.

[edit]
user@host# set interfaces pp0 unit 0 pppoe-options underlying-interface at-1/0/0 0
user@host# set interfaces pp0 unit 0 pppoe-options auto-reconnect 120
user@host# set interfaces pp0 unit 0 pppoe-options client

4. Configure the negotiated IP address.

[edit]
user@host# set interfaces pp0 unit 0 family inet negotiate-address

Results
From configuration mode, confirm your configuration by entering the `show interfaces at-1/0/0` and `show interfaces pp0` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[edit]
user@host# show interfaces at-1/0/0
encapsulation ethernet-over-atm;
 atm-options {
 vpi 2;
 }
 unit 0 {
 encapsulation ppp-over-ether-over-atm-llc;
 vci 2.119;
 }
[edit]
user@host# show interfaces pp0
unit 0 {
 ppp-options {
 chap {
 default-chap-secret "9QQCIFn9cSeMWx9AKM87sYmTQnCuOR$#"; ## SECRET-D ATA
 local-name purple;
 passive;
 }
If you are done configuring the device, enter **commit** from configuration mode.

Verification

IN THIS SECTION

- Verifying the ADSL Interface for End-to-End Data Path | 255
- Verifying PPPoA on the at-1/0/0 Interface with Negotiated IP and PAP Authentication | 257
- Verifying PPPoA on the at-1/0/0 Interface with Negotiated IP and CHAP Authentication | 259
- Verifying PPPoA on the at-1/0/0 Interface with Static IP and PAP Authentication | 261
- Verifying PPPoA on the at-1/0/0 Interface with Static IP and CHAP Authentication | 263
- Verifying PPPoA on the at-1/0/0 Interface with Unnumbered IP and PAP Authentication | 265
- Verifying PPPoA on the at-1/0/0 Interface with Unnumbered IP and CHAP Authentication | 267
- Verifying PPPoE over ATM on the at-1/0/0 Interface with Negotiated IP and PAP Authentication | 269
- Verifying PPPoE over ATM on the at-1/0/0 Interface with Negotiated IP and CHAP Authentication | 270

Confirm that the configuration is working properly.

Verifying the ADSL Interface for End-to-End Data Path

Purpose
Verify the interface status and traffic statistics.

Action
From operational mode, enter the **show interface at-1/0/0 terse** and **show interfaces at-1/0/0** commands.

```
user@host> show interfaces at-1/0/0 terse
```
<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>at-1/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at-1/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.10.10.1/24</td>
</tr>
<tr>
<td>at-1/0/0.32767</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[edit]
user@host# run ping 10.10.10.2 count 1000 rapid
PING 10.10.10.2 (10.10.10.2): 56 data bytes

!!
--- 10.10.10.2 ping statistics ---
1000 packets transmitted, 1000 packets received, 0% packet loss
round-trip min/avg/max/stddev = 7.141/9.356/58.347/3.940 ms

[edit]
user@host#

user@host> show interfaces at-1/0/0

Physical interface: at-1/0/0, Enabled, Physical link is Up
 Interface index: 146, SNMP ifIndex: 504
 Link-level type: ATM-PVC, MTU: 1496, Clocking: Internal, ADSL mode,
 Speed: ADSL
 Speed: 832kbps, Loopback: None
 Device flags : Present Running
 Link flags : None
 CoS queues : 8 supported, 8 maximum usable queues
 Current address: 00:b1:7e:85:84:ff
 Last flapped : 2009-10-28 02:14:45 PDT (00:09:54 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)
 ADSL alarms : None
 ADSL defects : None
 ADSL status:
 Modem status : Showtime (Itu-dmt)
 DSL mode : Itu-dmt Annex A
 Last fail code: None
 Subfunction : 0x00
 Seconds in showtime : 596

Logical interface at-1/0/0.0 (Index 69) (SNMP ifIndex 523)
 Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: ATM-SNAP
 Input packets : 1000
Verifying PPPoA on the at-1/0/0 Interface with Negotiated IP and PAP Authentication

Purpose
Verify the interface status and end-to-end data path connectivity.

Action
From operational mode, enter the `show interfaces at-1/0/0` and `show interfaces at-1/0/0 terse` commands.

```
user@host> show interfaces at-1/0/0
```

Physical interface: at-1/0/0, Enabled, Physical link is Up
Interface index: 146, SNMP ifIndex: 504
Link-level type: ATM-PVC, MTU: 1496, Clocking: Internal, ADSL mode, Speed: ADSL

Speed: 832kbps, Loopback: None
Device flags : Present Running
Link flags : None
CoS queues : 8 supported, 8 maximum usable queues
Current address: 00:b1:7e:85:84:ff
Last flapped: 2009-10-28 02:39:14 PDT (00:09:29 ago)
Input rate: 0 bps (0 pps)
Output rate: 80 bps (0 pps)
ADSL alarms: None
ADSL defects: None
ADSL status:
 Modem status: Showtime (Itu-dmt)
 DSL mode: Auto Annex A
 Last fail code: None
 Subfunction: 0x00
 Seconds in showtime: 571

Logical interface at-1/0/0.0 (Index 69) (SNMP ifIndex 523)
 Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: ATM-PPP-LLC
 Input packets: 2
 Output packets: 2
 Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
 Keepalive: Input: 8 (00:00:01 ago), Output: 9 (00:00:03 ago)
 LCP state: Opened
 CHAP state: Closed
 PAP state: Success
 Security: Zone: Null
 Protocol inet, MTU: 1486
 Flags: Negotiate-Address
 Addresses, Flags: Kernel Is-Preferred Is-Primary
 Destination: 100.100.100.6, Local: 100.100.100.1
 VCI 2.119
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Input packets: 2
 Output packets: 2

Logical interface at-1/0/0.32767 (Index 70) (SNMP ifIndex 525)
 Flags: Point-To-Multipoint No-Multicast SNMP-Traps 0x0 Encapsulation: ATM-VCMUX
 Input packets: 0
 Output packets: 0
 Security: Zone: Null
 VCI 2.4
 Flags: Active
 Total down time: 0 sec, Last down: Never
user@host> `show interfaces at-1/0/0 terse`

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>at-1/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at-1/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>100.100.100.1</td>
<td>--> 100.100.100.6</td>
</tr>
<tr>
<td>at-1/0/0.32767</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[edit]
user@host# run ping 100.100.100.6 count 100 rapid
PING 100.100.100.6 (100.100.100.6): 56 data bytes

!!
--- 100.100.100.6 ping statistics ---
100 packets transmitted, 100 packets received, 0% packet loss
round-trip min/avg/max/stddev = 7.056/8.501/14.194/1.787 ms

Verifying PPPoA on the at-1/0/0 Interface with Negotiated IP and CHAP Authentication

Purpose
Verify the interface output and end-to-end data path connectivity.

Action
From operational mode, enter the `show interfaces at-1/0/0` and `show interfaces at-1/0/0 terse` commands.

user@host> `show interfaces at-1/0/0`

Physical interface: at-1/0/0, Enabled, Physical link is Up
Interface index: 146, SNMP ifIndex: 504
Link-level type: ATM-PVC, MTU: 1496, Clocking: Internal, ADSL mode, Speed: ADSL

Speed: 832kbps, Loopback: None
Device flags : Present Running
Link flags : None
CoS queues : 8 supported, 8 maximum usable queues
Current address: 00:b1:7e:85:84:ff
Last flapped : 2009-10-28 02:39:14 PDT (00:01:37 ago)
Input rate : 0 bps (0 pps)
Output rate : 80 bps (0 pps)
ADSL alarms : None
ADSL defects : None
ADSL status:
 Modem status : Showtime (Itu-dmt)
 DSL mode : Auto Annex A
 Last fail code: None
 Subfunction : 0x00
 Seconds in showtime : 97

Logical interface at-1/0/0.0 (Index 71) (SNMP ifIndex 523)
 Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: ATM-PPP-LLC
 Input packets : 26
 Output packets: 29
 Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
 Keepalive: Input: 10 (00:00:02 ago), Output: 8 (00:00:06 ago)
 LCP state: Opened
 CHAP state: Success
 PAP state: Closed
 Security: Zone: Null
 Protocol inet, MTU: 1486
 Flags: Negotiate-Address
 Addresses, Flags: Kernel Is-Preferred Is-Primary
 Destination: 100.100.100.6, Local: 100.100.100.1
 VCI 2.119
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Input packets : 26
 Output packets: 29

Logical interface at-1/0/0.32767 (Index 70) (SNMP ifIndex 525)
 Flags: Point-To-Multipoint No-Multicast SNMP-Traps 0x0 Encapsulation: ATM-VCMUX

 Input packets : 0
 Output packets: 0
 Security: Zone: Null
 VCI 2.4
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Input packets : 0
 Output packets: 0

user@host> show interfaces at-1/0/0 terse
Verifying PPPoA on the at-1/0/0 Interface with Static IP and PAP Authentication

Purpose
Verify the interface status and end-to-end data path testing.

Action
From operational mode, enter the `show interfaces at-1/0/0` and `show interfaces at-1/0/0 terse` commands.

```
user@host> show interfaces at-1/0/0

Physical interface: at-1/0/0, Enabled, Physical link is Up
    Interface index: 146, SNMP ifIndex: 504
    Link-level type: ATM-PVC, MTU: 1496, Clocking: Internal, ADSL mode, Speed: ADSL
    Speed: 832kbps, Loopback: None
    Device flags : Present Running
    Link flags : None
    CoS queues : 8 supported, 8 maximum usable queues
    Current address: 00:b1:7e:85:84:ff
    Last flapped : 2009-10-28 22:18:50 PDT (00:10:26 ago)
    Input rate : 0 bps (0 pps)
    Output rate : 80 bps (0 pps)
    ADSL alarms : None
    ADSL defects : None
    ADSL status:
        Modem status : Showtime (Itu-dmt)
        DSL mode : Auto Annex A
        Last fail code: None
        Subfunction : 0x00
```
Seconds in showtime : 624

Logical interface at-1/0/0.0 (Index 73) (SNMP ifIndex 523)
 Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: ATM-PPP-LLC
 Input packets : 28
 Output packets: 29
 Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
 Keepalive: Input: 2 (00:00:01 ago), Output: 1 (00:00:09 ago)
 LCP state: Opened
 CHAP state: Closed
 PAP state: Success
 Security: Zone: HOST
 Allowed host-inbound traffic : any-service bfd bgp dvmrp igmp ldp msdp nhrp ospf pgm pim rip router-discovery rsvp sap vrrp
 Protocol inet, MTU: 1486
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 100.100.100/24, Local: 100.100.100.10, Broadcast: 100.100.100.255
 VCI 2.119
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Input packets : 28
 Output packets: 29

Logical interface at-1/0/0.32767 (Index 72) (SNMP ifIndex 525)
 Flags: Point-To-Multipoint No-Multicast SNMP-Traps 0x0 Encapsulation: ATM-VCMUX

 Input packets : 0
 Output packets: 0
 Security: Zone: HOST
 Allowed host-inbound traffic : any-service bfd bgp dvmrp igmp ldp msdp nhrp ospf pgm pim rip router-discovery rsvp sap vrrp
 Protocol inet, MTU: 1486
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 100.100.100/24, Local: 100.100.100.10, Broadcast: 100.100.100.255
 VCI 2.4
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Input packets : 0
 Output packets: 0

user@host> show interfaces at-1/0/0 terse
Verifying PPPoA on the at-1/0/0 Interface with Static IP and CHAP Authentication

Purpose
Verify the interface status and end-to-end data path testing.

Action
From operational mode, enter the show interfaces at-1/0/0 and show interfaces at-1/0/0 terse commands.

user@host> show interfaces at-1/0/0

Physical interface: at-1/0/0, Enabled, Physical link is Up
 Interface index: 146, SNMP ifIndex: 504
 Link-level type: ATM-PVC, MTU: 1496, Clocking: Internal, ADSL mode, Speed: ADSL

 Speed: 832kbps, Loopback: None
 Device flags : Present Running
 Link flags : None
 CoS queues : 8 supported, 8 maximum usable queues
 Current address: 00:b1:7e:85:84:ff
 Last flapped : 2009-10-28 22:18:50 PDT (00:05:17 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)
 ADSL alarms : None
 ADSL defects : None
 ADSL status:
 Modem status : Showtime (Itu-dmt)
 DSL mode : Auto Annex A
 Last fail code: None
 Subfunction : 0x00
Seconds in showtime : 316

Logical interface at-1/0/0.0 (Index 71) (SNMP ifIndex 523)
Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: ATM-PPP-LLC
Input packets : 46
Output packets: 88
Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
Keepalive: Input: 18 (00:00:04 ago), Output: 17 (00:00:08 ago)
LCP state: Opened
CHAP state: Success
PAP state: Closed
Security: Zone: HOST
Allowed host-inbound traffic : any-service bfd bgp dvmrp igmp ldp msdp nhrp ospf pgm pim rip router-discovery rsvp sap vrrp
Protocol inet, MTU: 1486
Flags: None
Addresses, Flags: Is-Preferred Is-Primary
Destination: 100.100.100/24, Local: 100.100.100.1, Broadcast: 100.100.100.255
VCI 2.119
Flags: Active
Total down time: 0 sec, Last down: Never
Input packets : 46
Output packets: 88

Logical interface at-1/0/0.32767 (Index 72) (SNMP ifIndex 525)
Flags: Point-To-Multipoint No-Multicast SNMP-Traps 0x0 Encapsulation: ATM-VCMUX

Input packets : 0
Output packets: 0
Security: Zone: HOST
Allowed host-inbound traffic : any-service bfd bgp dvmrp igmp ldp msdp nhrp ospf pgm pim rip router-discovery rsvp sap vrrp
VCI 2.4
Flags: Active
Total down time: 0 sec, Last down: Never
Input packets : 0
Output packets: 0

user@host> show interfaces at-1/0/0 terse
Verifying PPPoA on the at-1/0/0 Interface with Unnumbered IP and PAP Authentication

Purpose

Verify the interface status and end-to-end data path testing.

Action

From operational mode, enter the `show interfaces at-1/0/0` and `show interfaces at-1/0/0 terse` commands.

```
user@host> show interfaces at-1/0/0
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>at-1/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at-1/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>100.100.100.1/24</td>
<td></td>
</tr>
<tr>
<td>at-1/0/0.32767</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[edit]

```
user@host# run ping 100.100.100.6 count 100 rapid
PING 100.100.100.6 (100.100.100.6): 56 data bytes

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
--- 100.100.100.6 ping statistics ---
100 packets transmitted, 100 packets received, 0% packet loss
round-trip min/avg/max/stddev = 7.787/9.301/15.081/2.023 ms
```
Subfunction : 0x00
Seconds in showtime : 1158

Logical interface at-1/0/0.0 (Index 73) (SNMP ifIndex 523)
 Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: ATM-PPP-LLC
 Input packets : 441
 Output packets: 342
 Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
 Keepalive: Input: 53 (00:00:06 ago), Output: 55 (00:00:05 ago)
 LCP state: Opened
 CHAP state: Closed
 PAP state: Success
 Security: Zone: HOST
 Allowed host-inbound traffic : any-service bfd bgp dvmrp igmp ldp msdp nhrp ospf pgm pim rip router-discovery rsvp sap vrrp
 Protocol inet, MTU: 1486
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 100.100.100/24, Local: 100.100.100.20, Broadcast: 100.100.100.255
 VCI 2.119
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Input packets : 441
 Output packets: 342

Logical interface at-1/0/0.32767 (Index 72) (SNMP ifIndex 525)
 Flags: Point-To-Multipoint No-Multicast SNMP-Traps 0x0 Encapsulation: ATM-VCMUX
 Input packets : 0
 Output packets: 0
 Security: Zone: HOST
 Allowed host-inbound traffic : any-service bfd bgp dvmrp igmp ldp msdp nhrp ospf pgm pim rip router-discovery rsvp sap vrrp
 VCI 2.4
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Input packets : 0
 Output packets: 0

user@host> show interfaces at-1/0/0 terse
Verifying PPPoA on the at-1/0/0 Interface with Unnumbered IP and CHAP Authentication

Purpose

Verify the interface status and end-to-end data path connectivity.

Action

From operational mode, enter the `show interfaces at-1/0/0` and `show interfaces at-1/0/0 terse` commands.

```plaintext
user@host> show interfaces at-1/0/0

Physical interface: at-1/0/0, Enabled, Physical link is Up
  Interface index: 146, SNMP ifIndex: 504
  Link-level type: ATM-PVC, MTU: 1496, Clocking: Internal, ADSL mode, Speed: ADSL
  Speed: 832kbps, Loopback: None
  Device flags : Present Running
  Link flags   : None
  CoS queues   : 8 supported, 8 maximum usable queues
  Current address: 00:b1:7e:85:84:ff
  Last flapped : 2009-10-28 22:18:50 PDT (00:37:35 ago)
  Input rate   : 0 bps (0 pps)
  Output rate  : 0 bps (0 pps)
  ADSL alarms  : None
  ADSL defects : None
  ADSL status:
    Modem status : Showtime (Itu-dmt)
    DSL mode     : Auto Annex A
```
Last fail code: None
Subfunction : 0x00
Seconds in showtime : 2253

Logical interface at-1/0/0.0 (Index 71) (SNMP ifIndex 523)
 Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: ATM-PPP-LLC
 Input packets : 36
 Output packets: 35
Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
 Keepalive: Input: 12 (00:00:07 ago), Output: 13 (00:00:05 ago)
LCP state: Opened
NCP state: inet: Opened, inet6: Not-configured, iso: Not-configured, mpls:
 Not-configured
 CHAP state: Success
 PAP state: Closed
 Security: Zone: HOST
 Allowed host-inbound traffic : any-service bfd bgp dvmrp igmp ldp msdp nhrp
 ospf pgm pim rip router-discovery rsvp sap vrrp
 Protocol inet, MTU: 1486
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 100.100.100.6, Local: 100.100.100.10
VCI 2.119
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Input packets : 36
 Output packets: 35

Logical interface at-1/0/0.32767 (Index 72) (SNMP ifIndex 525)
 Flags: Point-To-Multipoint No-Multicast SNMP-Traps 0x0 Encapsulation: ATM-VCMUX
 Input packets : 0
 Output packets: 0
 Security: Zone: HOST
 Allowed host-inbound traffic : any-service bfd bgp dvmrp igmp ldp msdp nhrp
 ospf pgm pim rip router-discovery rsvp sap vrrp
 VCI 2.4
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Input packets : 0
 Output packets: 0

user@host> show interfaces at-1/0/0 terse
Verifying PPPoE over ATM on the at-1/0/0 Interface with Negotiated IP and PAP Authentication

Purpose
Verify the interface status and end-to-end data path connectivity

Action
From operational mode, enter the `show interfaces pp0` and `show interfaces at-1/0/0 terse` commands.

```
user@host> show interfaces pp0

Physical interface: pp0, Enabled, Physical link is Up
  Interface index: 128, SNMP ifIndex: 510
  Type: PPPoE, Link-level type: PPPoE, MTU: 1532
  Device flags : Present Running
  Interface flags: Point-To-Point SNMP-Traps
  Link type : Full-Duplex
  Link flags : None
    Input packets : 0
    Output packets: 0

Logical interface pp0.0 (Index 72) (SNMP ifIndex 526)
  Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: PPPoE
  PPPoE:
    State: SessionUp, Session ID: 63,
    Session AC name: belur, Remote MAC address: 00:90:1a:41:03:c5,
    Configured AC name: None, Service name: None,
    Auto-reconnect timeout: 120 seconds, Idle timeout: Never,
    Underlying interface: at-1/0/0.0 (Index 71)
    Input packets : 464
```
Verifying PPPoE over ATM on the at-1/0/0 Interface with Negotiated IP and CHAP Authentication

Purpose
Verify the interface status and end-to-end data path connectivity

Action
From operational mode, enter the show interfaces pp0 and show interfaces at-1/0/0 terse commands.

user@host> show interfaces pp0

Physical interface: pp0, Enabled, Physical link is Up
 Interface index: 128, SNMP ifIndex: 510
 Type: PPPoE, Link-level type: PPPoE, MTU: 1532
 Device flags : Present Running
 Interface flags: Point-To-Point SNMP-Traps
 Link type : Full-Duplex
 Link flags : None
 Input packets : 0
 Output packets: 0

Logical interface pp0.0 (Index 70) (SNMP ifIndex 526)
 Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: PPPoE
 PPPoE:
 State: SessionUp, Session ID: 64,
 Session AC name: belur, Remote MAC address: 00:90:1a:41:03:c5,
 Configured AC name: None, Service name: None,
 Auto-reconnect timeout: 120 seconds, Idle timeout: Never,
 Underlying interface: at-1/0/0.0 (Index 71)
 Input packets : 14
 Output packets: 13
 Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
 Keepalive: Input: 0 (never), Output: 7 (00:00:08 ago)
 LCP state: Opened
 CHAP state: Success
 PAP state: Closed
 Security: Zone: Null
 Protocol inet, MTU: 1456
 Flags: Negotiate-Address
 Addresses, Flags: Kernel Is-Preferred Is-Primary

user@host> show interfaces at-1/0/0 terse

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Link Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>at-1/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>at-1/0/0.0</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at-1/0/0.32767</td>
<td>up</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Upgrading the VDSL PIC Firmware

Starting in Junos OS Release 15.51x49-D50, you can upgrade the VDSL PIC firmware on SRX320, SRX340, and SRX345 devices. This topic shows how to perform the upgrade.

Before you begin:

Check the current firmware version of the VDSL PIC.

user@host> show system firmware

<table>
<thead>
<tr>
<th>Part Type</th>
<th>Tag</th>
<th>Current</th>
<th>Available</th>
<th>Status</th>
<th>version</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPC 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC 0 VDSLBCM</td>
<td>10</td>
<td>2.10.0</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routing Engine 0 RE BIOS</td>
<td>0</td>
<td>2.0</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routing Engine 0 RE BIOS Backup</td>
<td>1</td>
<td>2.0</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routing Engine 0 RE FPGA</td>
<td>14</td>
<td>1.0.0</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This section describes the step-by-step procedure to upgrade VDSL PIC firmware.

1. Mount or copy the firmware package to the SRX Series device.

 If the file has been obtained from JTAC, use FTP or SCP to load the firmware file on the device. Save the file in the `/var/tmp` directory.

2. Upgrade the firmware on the SRX Series device.

 To install the firmware package on the device and make it available for upgrading, use the following command:

   ```
   user@host> request system software add no-copy no-validate jfirmware-srxsme-11.4R2.7-signed.tgz
   ```

3. To check if the firmware package is available on the SRX Series device, use the following command:

   ```
   user@host> show version
   Hostname: user
   Model: srx210h
   JUNOS Software Release [12.1I20120123_0941]
   JUNOS Firmware Software Suite [11.4R2.7]
   ```

4. To verify the VDSL PIM slot, use the following command:

   ```
   user@host> show chassis hardware
   ```

5. To initiate a firmware upgrade, use the following command:

   ```
   user@host> request system firmware upgrade pic fpc-slot <no.> pic-slot 0 tag 10
   ```

6. To check the status of the upgraded firmware, use the following command:

   ```
   user@host> show system firmware
   Part Type Tag Current Available Status version
   FPC 1
   PIC 0 VDSLBCM 10 2.10.0 2.11.0
   Routing Engine 0 RE BIOS 0 2.0 OK
   Routing Engine 0 RE BIOS Backup 1 2.0 OK
   Routing Engine 0 RE FPGA 14 203.0.113.45.0.0 OK
   ```

7. To enable the upgraded firmware, restart the FPC slot in which the VDSL PIM is installed.

   ```
   user@host> restart fpc <no.>
   ```
FPC 1 restarted

8. To verify the firmware upgrade is complete, use the following command:

```
user@host> show system firmware
```

<table>
<thead>
<tr>
<th>Part Type</th>
<th>Tag</th>
<th>Current</th>
<th>Available</th>
<th>Status</th>
<th>version</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPC 1</td>
<td>PIC 0 VDSLBCM</td>
<td>10</td>
<td>2.11.0</td>
<td>2.11.0</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td>Routing Engine 0 RE BIOS</td>
<td>0</td>
<td>2.0</td>
<td>2.0</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td>Routing Engine 0 RE BIOS Backup</td>
<td>1</td>
<td>2.0</td>
<td>2.0</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td>Routing Engine 0 RE FPGA</td>
<td>14</td>
<td>203.0.113.45.0.0</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D50</td>
<td>Starting in Junos OS Release 15.1X49-D50, VDSL2 vectoring is supported.</td>
</tr>
<tr>
<td>15.1X49-D50</td>
<td>Starting in Junos OS Release 15.51x49-D50, you can upgrade the VDSL PIC firmware on SRX320, SRX340, and SRX345 devices.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Understanding Interface Logical Properties | 51
Configuring Ethernet Interfaces

Configuring Ethernet Interfaces | 277
Configuring Aggregated Ethernet Interfaces | 295
Configuring Link Aggregation Control Protocol | 309
Configuring Gigabit Ethernet Physical Interface Modules | 325
Rate-Selectability on SRX4600 Devices | 366
Configuring Ethernet OAM Link Fault Management | 377
Configuring Ethernet OAM Connectivity Fault Management | 390
Configuring Power over Ethernet | 413
Configuring Ethernet Interfaces

IN THIS SECTION

- Understanding Ethernet Interfaces | 277
- Example: Creating an Ethernet Interface | 282
- Understanding Static ARP Entries on Ethernet Interfaces | 283
- Example: Configuring Static ARP Entries on Ethernet Interfaces | 283
- Understanding Promiscuous Mode on Ethernet Interface | 287
- Example: Configuring Promiscuous Mode on the SRX5K-MPC | 288
- Example: Deleting an Ethernet Interface | 294

Ethernet is a layer 2 technology, operating in a shared bus topology, that uses best-effort delivery to broadcast traffic. The topic below discuss the overview of Ethernet interfaces on security devices, static ARP entries, creating and deleting the Ethernet interface, and enabling and disabling the promiscuous mode on these interfaces.

Understanding Ethernet Interfaces

IN THIS SECTION

- Ethernet Access Control and Transmission | 278
- Collisions and Detection | 278
- Collision Domains and LAN Segments | 279
- Broadcast Domains | 280
- Ethernet Frames | 280

Ethernet is a Layer 2 technology that operates in a shared bus topology. Ethernet supports broadcast transmission, uses best-effort delivery, and has distributed access control. Ethernet is a point-to-multipoint technology.
In a shared bus topology, all devices connect to a single, shared physical link through which all data transmissions are sent. All traffic is broadcast so that all devices within the topology receive every transmission. The devices within a single Ethernet topology make up a broadcast domain.

Ethernet uses best-effort delivery to broadcast traffic. The physical hardware provides no information to the sender about whether the traffic was received. If the receiving host is offline, traffic to the host is lost. Although the Ethernet data link protocol does not inform the sender about lost packets, higher layer protocols such as TCP/IP might provide this type of notification.

This topic contains the following sections:

Ethernet Access Control and Transmission

Ethernet's access control is distributed because Ethernet has no central mechanism that grants access to the physical medium within the network. Instead, Ethernet uses carrier-sense multiple access with collision detection (CSMA/CD). Because multiple devices on an Ethernet network can access the physical medium, or wire, simultaneously, each device must determine whether the physical medium is in use. Each host listens on the wire to determine if a message is being transmitted. If it detects no transmission, the host begins transmitting its own data.

The length of each transmission is determined by fixed Ethernet packet sizes. By fixing the length of each transmission and enforcing a minimum idle time between transmissions, Ethernet ensures that no pair of communicating devices on the network can monopolize the wire and block others from sending and receiving traffic.

Collisions and Detection

When a device on an Ethernet network begins transmitting data, the data takes a finite amount of time to reach all hosts on the network. Because of this delay, or latency, in transmitting traffic, a device might detect an idle state on the wire just as another device initially begins its transmission. As a result, two devices might send traffic across a single wire at the same time. When the two electrical signals collide, they become scrambled so that both transmissions are effectively lost.

Collision Detection

To handle collisions, Ethernet devices monitor the link while they are transmitting data. The monitoring process is known as collision detection. If a device detects a foreign signal while it is transmitting, it terminates the transmission and attempts to transmit again only after detecting an idle state on the wire. Collisions continue to occur if two colliding devices both wait the same amount of time before retransmitting.

To avoid this condition, Ethernet devices use a binary exponential backoff algorithm.

Backoff Algorithm

With the binary exponential backoff algorithm, each device that sends a colliding transmission randomly selects a value within a range. The value represents the number of transmission times that the device must wait before retransmitting its data. If another collision occurs, the range of values is doubled and
retransmission takes place again. Each time a collision occurs, the range of values doubles, to reduce the likelihood that two hosts on the same network can select the same retransmission time. Table 22 on page 279 shows collision rounds up to round 10.

Table 22: Collision Backoff Algorithm Rounds

<table>
<thead>
<tr>
<th>Round</th>
<th>Size of Set</th>
<th>Elements in the Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>{0,1}</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>{0,1,2,3}</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>{0,1,2,3,...,7}</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>{0,1,2,3,4,...,15}</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>{0,1,2,3,4,5,...,31}</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>{0,1,2,3,4,5,6,...,63}</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>{0,1,2,3,4,5,6,7,...,127}</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>{0,1,2,3,4,5,6,7,8,...,255}</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>{0,1,2,3,4,5,6,7,8,9,...,511}</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>{0,1,2,3,4,5,6,7,8,9,10,...,1023}</td>
</tr>
</tbody>
</table>

Collision Domains and LAN Segments

Collisions are confined to a physical wire over which data is broadcast. Because the physical wires are subject to signal collisions, individual LAN segments are known as **collision domains**. Although the physical limitations on the length of an Ethernet cable restrict the length of a LAN segment, multiple collision domains can be interconnected by repeaters, bridges, and switches.

Repeaters

Repeaters are electronic devices that act on analog signals. Repeaters relay all electronic signals from one wire to another. A single repeater can double the distance between two devices on an Ethernet network. However, the Ethernet specification restricts the number of repeaters between any two devices on an Ethernet network to two, because collision detection with latencies increases in complexity as the wire length and number of repeaters increase.
Bridges and Switches

Bridges and switches combine LAN segments into a single Ethernet network by using multiple ports to connect the physical wires in each segment. Although bridges and switches are fundamentally the same, bridges generally provide more management and more interface ports. As Ethernet packets flow through a bridge, the bridge tracks the source MAC address of the packets and stores the addresses and their associated input ports in an interface table. As it receives subsequent packets, the bridge examines its interface table and takes one of the following actions:

- If the destination address does not match an address in the interface table, the bridge transmits the packet to all hosts on the network using the Ethernet broadcast address.

- If the destination address maps to the port through which the packet was received, the bridge or switch discards the packet. Because the other devices on the LAN segment also received the packet, the bridge does not need to retransmit it.

- If the destination address maps to a port other than the one through which the packet was received, the bridge transmits the packet through the appropriate port to the corresponding LAN segment.

Broadcast Domains

The combination of all the LAN segments within an Ethernet network is called a broadcast domain. In the absence of any signaling devices such as a repeater, bridge, or switch, the broadcast domain is simply the physical wire that makes up the connections in the network. If a bridge or switch is used, the broadcast domain consists of the entire LAN.

NOTE: On SRX300, SRX320, SRX340, SRX345, and SRX550HM devices, the subnet directed broadcast feature is not supported.

Ethernet Frames

Data is transmitted through an Ethernet network in frames. The frames are of variable length, ranging from 64 octets to 1518 octets, including the header, payload, and cyclic redundancy check (CRC) value. Figure 15 on page 281 shows the Ethernet frame format.
Ethernet frames have the following fields:

- The preamble (PRE) field is 7 octets of alternating 0s and 1s. The predictable format in the preamble allows receiving interfaces to synchronize themselves to the data being sent. The preamble is followed by a 1-octet start-of-frame delimiter (SFD).

- The destination address (DA) and source address (SA) fields contain the 6-octet (48-bit) MAC addresses for the destination and source ports on the network. These Layer 2 addresses uniquely identify the devices on the LAN.

- The Length/Type field is a 2-octet field that either indicates the length of the frame’s data field or identifies the protocol stack associated with the frame. Here are some common frame types:
 - AppleTalk — 0x809B
 - AppleTalk ARP — 0x80F3
 - DECnet — 0x6003
 - IP — 0x0800
 - IPX — 0x8137
 - Loopback — 0x9000
 - XNS — 0x0600

- The Data field contains the packet payload.

- The frame check sequence (FCS) is a 4-octet field that contains the calculated CRC value. This value is calculated by the originating host and appended to the frame. When it receives the frames, the receiving host calculates the CRC and checks it against this appended value to verify the integrity of the received frame.

NOTE: On SRX650 devices, MAC pause frame and FCS error frame counters are not supported for the interfaces ge-0/0/0 through ge-0/0/3. (Platform support depends on the Junos OS Release in your installation.)
Example: Creating an Ethernet Interface

This example shows how to create an Ethernet interface.

Requirements

No special configuration beyond device initialization is required before configuring an interface.

Overview

In this example, you create the ge-1/0/0 Ethernet interface and set the logical interface to 0. The logical unit number can range from 0 to 16,384. You can also add values for properties that you need to configure on the logical interface, such as logical encapsulation or protocol family.

Configuration

Step-by-Step Procedure

To configure an Ethernet interface:

1. Create the Ethernet interface and set the logical interface.

 [edit]
 user@host# edit interfaces ge-1/0/0 unit 0

2. If you are done configuring the device, commit the configuration.

 [edit]
 user@host# commit

Verification

Purpose
Verify if the configuration is working properly after creating the interface.

Action

From operational mode, enter the `show interfaces` command.

Understanding Static ARP Entries on Ethernet Interfaces

By default, the device responds to an Address Resolution Protocol (ARP) request only if the destination address of the ARP request is on the local network of the incoming interface. For Fast Ethernet or Gigabit Ethernet interfaces, you can configure static ARP entries that associate the IP addresses of nodes on the same Ethernet subnet with their media access control (MAC) addresses. These static ARP entries enable the device to respond to ARP requests even if the destination address of the ARP request is not local to the incoming Ethernet interface.

Example: Configuring Static ARP Entries on Ethernet Interfaces

IN THIS SECTION

- **Requirements** | 283
- **Overview** | 283
- **Configuration** | 284
- **Verification** | 285

Requirements

No special configuration beyond device initialization is required before creating an interface.

Overview

In this example, you configure a static ARP entry on the logical unit 0 of the ge-0/0/3 Gigabit Ethernet interface. The entry consists of the interface’s IP address (10.1.1.1/24) and the corresponding MAC address of a node on the same Ethernet subnet (00:ff:85:7f:78:03). The example also configures the device to reply to ARP requests from the node using the `publish` option.
Configuration

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces ge-0/0/3 unit 0 family inet address 10.1.1.1/24 arp 10.1.1.3 mac 00:ff:85:7f:78:03
set interfaces ge-0/0/3 unit 0 family inet address 10.1.1.1/24 arp 10.1.1.3 publish
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure a static ARP entry on an Ethernet interface:

1. Create the Gigabit Ethernet interface.

   ```
   [edit]
   user@host# edit interfaces ge-0/0/3
   ```

2. Configure a static ARP entry.

   ```
   [edit interfaces ge-0/0/3]
   user@host# edit unit 0 family inet address 10.1.1.1/24
   ```

3. Set the IP address of the subnet node and the corresponding MAC address.

   ```
   [edit interfaces ge-0/0/3 unit 0 family inet address 10.1.1.1/24]
   user@host# set arp 10.1.1.3 mac 00:ff:85:7f:78:03 publish
   ```

Results

From configuration mode, confirm your configuration by entering the show interfaces ge-0/0/3 command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces ge-0/0/3
unit 0 {
```
family inet {
 address 10.1.1.1/24 {
 arp 10.1.1.3 mac 00:ff:85:7f:78:03 publish;
 }
}

If you are done configuring the device, enter **commit** from configuration mode.

Verification

IN THIS SECTION

- Verifying Static ARP Configurations | 285
- Verifying the Link State of All Interfaces | 285
- Verifying Interface Properties | 286

Confirm that the configuration is working properly.

Verifying Static ARP Configurations

Purpose

Verify the IP address and MAC (hardware) address of the node.

Action

From operational mode, enter the `show interfaces ge-0/0/3` command.

Verifying the Link State of All Interfaces

Purpose

Verify that all interfaces on the device are operational using the ping tool on each peer address in the network.

Action

For each interface on the device:

1. In the J-Web interface, select **Troubleshoot>Ping Host**.

2. In the Remote Host box, type the address of the interface for which you want to verify the link state.
3. Click **Start**. The output appears on a separate page.

PING 10.1.1.3 : 56 data bytes
64 bytes from 10.1.1.3: icmp_seq=0 ttl=255 time=0.382 ms
64 bytes from 10.1.1.3: icmp_seq=1 ttl=255 time=0.266 ms

If the interface is operational, it generates an ICMP response. If this response is received, the round-trip time in milliseconds is listed in the time field.

Verifying Interface Properties

Purpose
Verify that the interface properties are correct.

Action
From operational mode, enter the `show interfaces detail` command.

```
user@host> show interfaces detail
```

Physical interface: ge-0/0/3, Enabled, Physical link is Up
 Interface index: 134, SNMP ifIndex: 27, Generation: 17
 Link-level type: Ethernet, MTU: 1514, Speed: 100mbps, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Enabled
 Device flags : Present Running
 Interface flags: SNMP-Traps 16384
 Link flags : None
 CoS queues : 4 supported
 Hold-times : Up 0 ms, Down 0 ms
 Current address: 00:90:69:87:44:9d, Hardware address: 00:90:69:87:44:9d
 Last flapped : 2004-08-25 15:42:30 PDT (4w5d 22:49 ago)
 Statistics last cleared: Never
 Traffic statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
 Queue counters:
 Queued packets Transmitted packets Dropped packets
 0 best-effort 0 0 0
 1 expedited-fo 0 0 0
 2 assured-forw 0 0 0
 3 network-cont 0 0 0
 Active alarms : None
The output shows a summary of interface information. Verify the following information:

- The physical interface is Enabled. If the interface is shown as Disabled, do one of the following:
 - In the CLI configuration editor, delete the `disable` statement at the `[edit interfaces ge-0/0/3]` level of the configuration hierarchy.
 - In the J-Web configuration editor, clear the `Disable` check box on the Interfaces> `ge-0/0/3` page.
- The physical link is Up. A link state of Down indicates a problem with the interface module, interface port, or physical connection (link-layer errors).
- The Last Flapped time is an expected value. The Last Flapped time indicates the last time the physical interface became unavailable and then available again. Unexpected flapping indicates likely link-layer errors.
- The traffic statistics reflect expected input and output rates. Verify that the number of inbound and outbound bytes and packets matches expected throughput for the physical interface. To clear the statistics and see only new changes, use the `clear interfaces statistics ge-0/0/3` command.

Understanding Promiscuous Mode on Ethernet Interface

When promiscuous mode is enabled on a Layer 3 Ethernet interface, all packets received on the interface are sent to the central point or Services Processing Unit (SPU) regardless of the destination MAC address of the packet. You can also enable promiscuous mode on chassis cluster redundant Ethernet interfaces and aggregated Ethernet interfaces. If you enable promiscuous mode on a redundant Ethernet interface, promiscuous mode is then enabled on any child physical interfaces. If you enable promiscuous mode on an aggregated Ethernet interface, promiscuous mode is then enabled on all member interfaces.

Understanding Promiscuous Mode on the SRX5K-MPC

The promiscuous mode function is supported on 1-Gigabit, 10-Gigabit, 40-Gigabit, and 100-Gigabit Ethernet interfaces on the I/O cards (IOCs) and the SRX5000 line Module Port Concentrator (SRX5K-MPC).

When promiscuous mode is enabled on a Layer 3 Ethernet interface, all packets received on the interface are sent to the central point or to the Services Processing Unit (SPU) regardless of the destination MAC address of the packet.
By default, an interface enables MAC filtering. You can configure promiscuous mode on the interface to disable MAC filtering. When you delete the promiscuous mode configuration, the interface will perform MAC filtering again.

You can change the MAC address of an interface even when the interface is operating in promiscuous mode. When the interface is operating in normal mode again, the MAC filtering function on the IOC uses the new MAC address to filter the packets.

You can also enable promiscuous mode on chassis cluster redundant Ethernet interfaces and aggregated Ethernet interfaces. If you enable promiscuous mode on a redundant Ethernet interface, promiscuous mode is then enabled on any child physical interfaces. If you enable promiscuous mode on an aggregated Ethernet interface, promiscuous mode is then enabled on all member interfaces.

Example: Configuring Promiscuous Mode on the SRX5K-MPC

This example shows how to configure promiscuous mode on an SRX5K-MPC interface in an SRX5600 to disable MAC address filtering.

Requirements

This example uses the following hardware and software components:

- An SRX5600 with an SRX5K-MPC that includes a 100-Gigabit Ethernet CFP transceiver
- Junos OS Release 12.1X47-D10 or later

No special configuration beyond device initialization is required before configuring this feature.
Overview

By default, the interfaces on an SRX5K-MPC have MAC address filtering enabled. In this example, you configure promiscuous mode on an interface to disable MAC address filtering. Then you delete promiscuous mode to reenable MAC address filtering on the interface.

Configuration

Configuring Promiscuous Mode on an Interface

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```command
set interfaces et-4/0/0 unit 0 family inet address 10.1.1.1/24
set interfaces et-4/0/0 promiscuous-mode
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see the Junos OS CLI User Guide.

To configure promiscuous mode:

1. Configure the ingress interface.

   ```command
   [edit interfaces]
   user@host# set et-4/0/0 unit 0 family inet address 10.1.1.1/24
   ```

2. Enable promiscuous mode on the interface.

   ```command
   [edit interfaces]
   user@host# set et-4/0/0 promiscuous-mode
   ```

Results

From configuration mode, confirm your configuration by entering the show command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```command
[edit]
user@host# show interfaces
et-4/0/0 {
```
promiscuous-mode;
unit 0 {
 family inet {
 address 10.1.1.1/24;
 }
}

If you are done configuring the device, enter commit from configuration mode.

Disabling Promiscuous Mode on an Interface

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
user@host# delete interfaces et-4/0/0 promiscuous-mode
```

Step-by-Step Procedure
To disable promiscuous mode:

1. Disable promiscuous mode on the interface.

```
[edit]
user@host# delete interfaces et-4/0/0 promiscuous-mode
```

Verification

IN THIS SECTION

- Verifying That Promiscuous Mode Is Enabled on the SRX5K-MPC | 291
- Verifying the Status of Promiscuous Mode | 292
- Verifying That Promiscuous Mode Is Disabled | 293

Confirm that the configuration is working properly.
Verifying That Promiscuous Mode Is Enabled on the SRX5K-MPC

Purpose
Verify that promiscuous mode is enabled on the interface.

Action
From operational mode, enter the **show interfaces** command.

```bash
user@host> show interfaces
```

<table>
<thead>
<tr>
<th>Physical interface: et-4/0/0, Enabled, Physical link is Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface index: 137, SNMP ifIndex: 511</td>
</tr>
<tr>
<td>Link-level type: Ethernet, MTU: 1518, Speed: 100Gbps, Loopback: Disabled, Source filtering: Disabled, Flow control: Enabled</td>
</tr>
<tr>
<td>Device flags : Present Running</td>
</tr>
<tr>
<td>Interface flags: Promiscuous SNMP-Traps Internal: 0x4000</td>
</tr>
<tr>
<td>CoS queues : 8 supported, 8 maximum usable queues</td>
</tr>
<tr>
<td>Current address: 2c:21:72:3a:05:28, Hardware address: 2c:21:72:3a:05:28</td>
</tr>
<tr>
<td>Last flapped : 2014-01-17 14:44:53 PST (5d 06:30 ago)</td>
</tr>
<tr>
<td>Input rate : 0 bps (0 pps)</td>
</tr>
<tr>
<td>Output rate : 0 bps (0 pps)</td>
</tr>
<tr>
<td>Active alarms : None</td>
</tr>
<tr>
<td>Active defects : None</td>
</tr>
<tr>
<td>PCS statistics</td>
</tr>
<tr>
<td>Bit errors : 0</td>
</tr>
<tr>
<td>Errored blocks : 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logical interface et-4/0/0.0 (Index 71) (SNMP ifIndex 513)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags: SNMP-Traps 0x4000 VLAN-Tag [0x8100.1351] Encapsulation: ENET2</td>
</tr>
<tr>
<td>Input packets : 0</td>
</tr>
<tr>
<td>Output packets: 0</td>
</tr>
<tr>
<td>Security: Zone: HOST</td>
</tr>
<tr>
<td>Allowed host-inbound traffic : any-service bfd bgp dvrmp igmp ldp madp nhrp ospf pgm pim rip router-discovery rsvp sap vrrp</td>
</tr>
<tr>
<td>Protocol inet, MTU: 1500</td>
</tr>
<tr>
<td>Flags: Sendbcast-pkt-to-re</td>
</tr>
<tr>
<td>Addresses, Flags: Is-Preferred Is-Primary</td>
</tr>
<tr>
<td>Destination: 122.122.122/24, Local: 122.122.122.1,</td>
</tr>
<tr>
<td>Broadcast: 122.122.122.255</td>
</tr>
<tr>
<td>Protocol multiservice, MTU: Unlimited</td>
</tr>
<tr>
<td>Flags: Is-Primary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logical interface et-4/0/0.32767 (Index 72) (SNMP ifIndex 517)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags: SNMP-Traps 0x4004000 VLAN-Tag [0x0000.0] Encapsulation: ENET2</td>
</tr>
</tbody>
</table>
Input packets : 0
Output packets: 0
Security: Zone: HOST
Allowed host-inbound traffic : any-service bfd bgp dvmrp igmp ldp mdsp nhrp
ospf pgm pim rip router-discovery rsvp sap vrrp
Protocol multiservice, MTU: Unlimited
Flags: None

Meaning
The Interface flags: Promiscuous field shows that promiscuous mode is enabled on the interface.

Verifying the Status of Promiscuous Mode

Purpose
Verify that promiscuous mode works on the et-4/0/0 interface.

Action
Send traffic into the et-4/0/0 interface with a MAC address that is different from the interface MAC address and turn on promiscuous mode.

From operational mode, enter the monitor interface traffic command.

user@host> monitor interface traffic

<table>
<thead>
<tr>
<th>Interface</th>
<th>Link</th>
<th>Input packets</th>
<th>(pps)</th>
<th>Output packets</th>
<th>(pps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gr-0/0/0</td>
<td>Up</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>ip-0/0/0</td>
<td>Up</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>lt-0/0/0</td>
<td>Up</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/0</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/1</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/2</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/3</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/4</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/5</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/6</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/7</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/8</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/9</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>et-4/0/0</td>
<td>Up</td>
<td>4403996</td>
<td>(100002)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>et-4/2/0</td>
<td>Up</td>
<td>3</td>
<td>(0)</td>
<td>4403924</td>
<td>(99997)</td>
</tr>
<tr>
<td>avs0</td>
<td>Up</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>avs1</td>
<td>Up</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
</tbody>
</table>
Meaning
The input packets and pps fields show that traffic is passing through the et-4/0/0 interface as expected after promiscuous mode is enabled.

Verifying That Promiscuous Mode Is Disabled

Purpose
Verify that disabled promiscuous mode works on the et-4/0/0 interface.

Action
Send traffic into the et-4/0/0 interface with a MAC address that is different from the interface MAC address and turn off promiscuous mode.

From operational mode, enter the monitor interface traffic command.

```
user@host> monitor interface traffic
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Link</th>
<th>Input packets</th>
<th>(pps)</th>
<th>Output packets</th>
<th>(pps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gr-0/0/0</td>
<td>Up</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>ip-0/0/0</td>
<td>Up</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>lt-0/0/0</td>
<td>Up</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/0</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/1</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/2</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/3</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/4</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/5</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/6</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/7</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/8</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>xe-1/2/9</td>
<td>Down</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>et-4/0/0</td>
<td>Up</td>
<td>11505495</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>et-4/0/0</td>
<td>Up</td>
<td>11505425</td>
<td>(0)</td>
<td>11505425</td>
<td>(0)</td>
</tr>
<tr>
<td>avs0</td>
<td>Up</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>avs1</td>
<td>Up</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>dsc</td>
<td>Up</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>em0</td>
<td>Up</td>
<td>37964</td>
<td></td>
<td>31739</td>
<td></td>
</tr>
</tbody>
</table>
Meaning

The **pps** field shows that the traffic is not passing through the **et-4/0/0** interface after promiscuous mode is disabled.

Example: Deleting an Ethernet Interface

This example shows how to delete an Ethernet interface.

Requirements

No special configuration beyond device initialization is required before configuring an interface.

Overview

In this example, you delete the **ge-1/0/0** interface.

NOTE: Performing this action removes the interface from the software configuration and disables it. Network interfaces remain physically present, and their identifiers continue to appear on J-Web pages.

Configuration

Step-by-Step Procedure

To delete an Ethernet interface:

1. Specify the interface you want to delete.

 `[edit]`
2. If you are done configuring the device, commit the configuration.

```mermaid
[edit]
user@host# commit
```

Verification

Purpose
Verify if the configuration is working properly after deleting the interface.

Action
From operational mode, enter the `show interfaces` command.

RELATED DOCUMENTATION

- Understanding Interfaces | 31

Configuring Aggregated Ethernet Interfaces

IN THIS SECTION

- Understanding Aggregated Ethernet Interfaces | 296
- Configuring Aggregated Ethernet Interfaces | 298
- Understanding Physical Interfaces for Aggregated Ethernet Interfaces | 299
- Example: Associating Physical Interfaces with Aggregated Ethernet Interfaces | 299
- Understanding Aggregated Ethernet Interface Link Speed | 301
- Example: Configuring Aggregated Ethernet Link Speed | 301
- Understanding Minimum Links for Aggregated Ethernet Interfaces | 302
- Example: Configuring Aggregated Ethernet Minimum Links | 303
- Deleting Aggregated Ethernet Interface | 304
- Example: Deleting Aggregated Ethernet Interfaces | 304
- Example: Deleting Aggregated Ethernet Interface Contents | 305
The below topics discuss the overview Aggregated Ethernet (AE) interfaces on security devices, configuration details of AE interfaces, physical interfaces, AE interface link speed, VLAN tagging for aggregated Ethernet interfaces, and deleting an Aggregated Ethernet interface on security devices.

Understanding Aggregated Ethernet Interfaces

Link aggregation of Ethernet interfaces is defined in the IEEE 802.3ad standard. Junos OS implementation of 802.3ad balances traffic across the member links within an aggregated Ethernet bundle based on Layer 3 information carried in the packet, Layer 4 information carried in the packet, or both, or based on session ID data. (The session ID data has higher precedence than the Layer 3 or 4 information.) This implementation uses the same load-balancing algorithm used for per-packet load balancing.

Aggregated Ethernet interfaces can be Layer 3 interfaces (VLAN-tagged or untagged) and Layer 2 interfaces.

NOTE: This topic is specific to the SRX3000 and SRX5000 line devices. For information about link aggregation for other SRX Series devices, see the Ethernet Switching User Guide.

This topic contains the following sections:

LAGs

You can combine multiple physical Ethernet ports to form a logical point-to-point link, known as a link aggregation group (LAG) or bundle, such that a media access control (MAC) client can treat the LAG as if
it were a single link. Support for LAGs based on IEEE 802.3ad makes it possible to aggregate physical interface links on your device. LAGs provide increased interface bandwidth and link availability by linking physical ports and load-balancing traffic crossing the combined interface. For the LAG to operate correctly, it is necessary to coordinate the two end systems connected by the LAG, either manually or automatically.

Internally, a LAG is a virtual interface presented on SRX3000 and SRX5000 line devices or on any system (consisting of devices such as routers and switches) supporting 802.3ad link aggregation. Externally, a LAG corresponds to a bundle of physical Ethernet links connected between an SRX3000 or SRX5000 line device and another system capable of link aggregation. This bundle of physical links is a virtual link.

Follow these guidelines for aggregated Ethernet support for the SRX3000 and SRX5000 lines:

- The devices support a maximum of 16 physical interfaces per single aggregated Ethernet bundle.
- Aggregated Ethernet interfaces can use interfaces from the same or different Flexible PIC Concentrators (FPCs) and PICs.
- On the aggregated bundle, capabilities such as MAC accounting, VLAN rewrites, and VLAN queuing are available.

LACP

Junos OS supports the Link Aggregation Control Protocol (LACP), which is a subcomponent of IEEE 802.3ad. LACP provides additional functionality for LAGs.

Starting with Junos OS Release 15.1X49-D40, LACP is supported on Layer 2 transparent mode in addition to existing support on Layer 3 mode. For information about link aggregation for other SRX Series devices, see the Ethernet Switching User Guide.

LACP provides a standardized means for exchanging information between partner (remote or far-end of the link) systems on a link. This exchange allows their link aggregation control instances to reach agreement on the identity of the LAG to which the link belongs, and then to move the link to that LAG. This exchange also enables the transmission and reception processes for the link to function in an orderly manner.

For example, when LACP is not enabled, a local LAG might attempt to transmit packets to a remote individual interface, which causes the communication to fail. (An individual interface is a nonaggregatable interface.) When LACP is enabled, a local LAG cannot transmit packets unless a LAG with LACP is also configured on the remote end of the link.

You configure an aggregated Ethernet virtual link by specifying the link number as a physical device. Then you associate a set of ports that have the same speed and are in full-duplex mode. The physical ports can be 100-megabit Ethernet, 1-Gigabit Ethernet, and 10-Gigabit Ethernet.

When configuring LACP, follow these guidelines:

- LACP does not support automatic configuration on SRX3000 and SRX5000 line devices, but partner systems are allowed to perform automatic configuration. When an SRX3000 or SRX5000 line device is
connected to a fully 802.3ad-compliant partner system, static configuration of LAGs is initiated on the SRX3000 and SRX5000 line device side, and static configuration is not needed on the partner side.

- When an SRX3000 or SRX5000 line device is connected to a Juniper Networks MX Series router, static configuration of LAGs is needed at both the actor (local or near-end of the link) and partner systems.

- Although the LACP functions on the SRX3000 and SRX5000 line devices are similar to the LACP features on Juniper Networks MX Series routers, the following LACP features on MX Series routers are not supported on SRX3000 and SRX5000 line devices: link protection, system priority, and port priority for aggregated Ethernet interfaces. Instead, SRX3000 and SRX5000 line devices provide active/standby support with redundant Ethernet interface LAGs in chassis cluster deployments.

LACP is supported in standalone deployments, where aggregated Ethernet interfaces are supported, and in chassis cluster deployments, where aggregated Ethernet interfaces and redundant Ethernet interfaces are supported simultaneously.

Configuring Aggregated Ethernet Interfaces

NOTE: This topic is specific to the SRX3000 and SRX5000 line devices.

To configure an aggregated Ethernet interface:

1. Set the number of aggregated Ethernet interfaces on the device. See *Example: Configuring the Number of Aggregated Ethernet Interfaces on a Device*.

2. Associate a physical interface with the aggregated Ethernet interface. See "*Example: Associating Physical Interfaces with Aggregated Ethernet Interfaces"* on page 299.

3. (Optional) Set the required link speed for all the interfaces included in the bundle. See “*Example: Configuring Aggregated Ethernet Link Speed”* on page 301.

4. (Optional) Configure the minimum number of links that must be up for the bundle as a whole to be labeled as up. See "*Example: Configuring Aggregated Ethernet Minimum Links"* on page 303.

5. (Optional) Enable or disable VLAN tagging. See "*Understanding VLAN Tagging for Aggregated Ethernet Interfaces"* on page 307.

6. (Optional) Enable promiscuous mode. See "*Understanding Promiscuous Mode for Aggregated Ethernet Interfaces"* on page 307.
Understanding Physical Interfaces for Aggregated Ethernet Interfaces

You associate a physical interface with an aggregated Ethernet interface. Doing so associates the physical child links with the logical aggregated parent interface to form a link aggregation group (LAG). You must also specify the constituent physical links by including the `802.3ad` configuration statement.

A physical interface can be added to any aggregated Ethernet interface as long as all member links have the same link speed and the maximum number of member links does not exceed 16. The aggregated Ethernet interface instance number `aex` can be from 0 through 127, for a total of 128 aggregated interfaces.

NOTE:
- If you specify (on purpose or accidentally) that a link already associated with an aggregated Ethernet interface be associated with another aggregated Ethernet interface, the link is removed from the previous interface (there is no need for you to explicitly delete it) and it is added to the other one.
- On SRX300, SRX320, SRX340, SRX345, and SRX550M devices, when you create an aggregated interface with two or more ports and if a link in the bundle goes down, the traffic forwarded through the same link will be rerouted two seconds later. This causes an outage for the traffic being sent to the link until reroute is complete.

Example: Associating Physical Interfaces with Aggregated Ethernet Interfaces
This example shows how to associate physical interfaces with aggregated Ethernet interfaces.

Requirements

Before you begin, set the number of aggregated Ethernet interfaces on the device. See *Example: Configuring the Number of Aggregated Ethernet Interfaces on a Device.*

Overview

In this example, you associate the physical child link of the ge-1/0/0 and ge-2/0/0 physical interfaces with the logical aggregate parent, ae0, thereby creating a LAG. Similarly, you create a LAG that associate the ge-3/0/0, ge-3/0/1, and ge-4/0/1 physical interfaces with the ae1 aggregated Ethernet interface.

Configuration

Step-by-Step Procedure

To associate physical interfaces with aggregated Ethernet interfaces:

1. Create the first LAG.

   ```
   [edit]
   user@host# set interfaces ge-1/0/0 gigether-options 802.3ad ae0
   user@host# set interfaces ge-2/0/0 gigether-options 802.3ad ae0
   ```

2. Create the second LAG.

   ```
   [edit]
   user@host# set interfaces ge-3/0/0 gigether-options 802.3ad ae1
   user@host# set interfaces ge-3/0/1 gigether-options 802.3ad ae1
   user@host# sset interfaces ge-4/0/0 gigether-options 802.3ad ae1
   ```

3. If you are done configuring the device, commit the configuration.

   ```
   [edit]
   user@host# commit
   ```

Verification

To verify the configuration is working properly, enter the `show interfaces` command.
Understanding Aggregated Ethernet Interface Link Speed

On aggregated Ethernet interfaces, you can set the required link speed for all interfaces included in the bundle. All interfaces that make up a bundle must be the same speed. If you include in the aggregated Ethernet interface an individual link that has a speed different from the speed you specify in the `link-speed` parameter, an error message will be logged.

The speed value is specified in bits per second either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).

Aggregated Ethernet interfaces on SRX3000 and SRX5000 line devices can have one of the following speed values:

- 100m—Links are 100 Mbps.
- 10g—Links are 10 Gbps.
- 1g—Links are 1 Gbps.

Example: Configuring Aggregated Ethernet Link Speed

This example shows how to configure the aggregated Ethernet link speed.

Requirements

Before you begin:

- Add the aggregated Ethernet interfaces using the device count. See Example: Configuring the Number of Aggregated Ethernet Interfaces on a Device.
- Associate physical interfaces with the aggregated Ethernet Interfaces. See "Example: Associating Physical Interfaces with Aggregated Ethernet Interfaces" on page 299.
Overview

In this example, you set the required link speed for all interfaces included in the bundle to 10 Gbps. All interfaces that make up a bundle must be the same speed.

Configuration

Step-by-Step Procedure

To configure the aggregated Ethernet link speed:

1. Set the link speed.

   ```
   [edit]
   user@host# set interfaces ae0 aggregated-ether-options link-speed 10g
   ```

2. If you are done configuring the device, commit the configuration.

   ```
   [edit]
   user@host# commit
   ```

Verification

To verify the configuration is working properly, enter the `show interfaces` command.

Understanding Minimum Links for Aggregated Ethernet Interfaces

On aggregated Ethernet interfaces, you can configure the minimum number of links that must be up for the bundle as a whole to be labeled as up. By default, only one link must be up for the bundle to be labeled as up.

On SRX1000, SRX3000, and SRX5000 line devices, the valid range for the minimum links number is 1 through 16. When the maximum value (16) is specified, all configured links of a bundle must be up for the bundle to be labeled as up.

If the number of links configured in an aggregated Ethernet interface is less than the `minimum-links` value configured in the `minimum-links` statement, the configuration commit fails and an error message is displayed.
This example shows how to configure the minimum number of links on an aggregated Ethernet interface that must be up for the bundle as a whole to be labeled as up.

Requirements

Before you begin:

- Add the aggregated Ethernet interfaces using the device count. See Example: Configuring the Number of Aggregated Ethernet Interfaces on a Device.
- Associate physical interfaces with the aggregated Ethernet Interfaces. See "Example: Associating Physical Interfaces with Aggregated Ethernet Interfaces" on page 299.
- Configure the aggregated Ethernet link speed. See "Example: Configuring Aggregated Ethernet Link Speed" on page 301.

Overview

In this example, you specify that on interface ae0 at least eight links must be up for the bundle as a whole to be labeled as up.

Configuration

Step-by-Step Procedure

To configure the minimum number of links on an aggregated Ethernet interface:

1. Set the minimum number of links.

```
[edit]
user@host# set interfaces ae0 aggregated-ether-options minimum-links 8
```
2. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

Verification

To verify the configuration is working properly, enter the `show interfaces` command.

Deleting Aggregated Ethernet Interface

You can delete an aggregated Ethernet interface from the interface configuration. Junos OS removes the configuration statements related to `aeX` and sets this interface to the down state. The deleted aggregated Ethernet interface still exists, but it becomes an empty interface.

Example: Deleting Aggregated Ethernet Interfaces

This example shows how to delete aggregated Ethernet interfaces using the device count.

Requirements

Before you begin, set the number of aggregated Ethernet interfaces on the device. See Example: Configuring the Number of Aggregated Ethernet Interfaces on a Device.
Overview

This example shows how to clean up unused aggregated Ethernet interfaces. In this example, you reduce the number of interfaces from 10 to 6, thereby removing the last 4 interfaces from the interface object list.

Configuration

Step-by-Step Procedure

To delete an interface:

1. Set the number of aggregated Ethernet interfaces.

```
[edit]
user@host# delete chassis aggregated-devices ethernet device-count 6
```

2. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

Verification

To verify the configuration is working properly, enter the `show chassis aggregated-devices` command.

Example: Deleting Aggregated Ethernet Interface Contents

This example shows how to delete the contents of an aggregated Ethernet interface.
Requirements

Before you begin:

- Set the number of aggregated Ethernet interfaces on the device. See *Example: Configuring the Number of Aggregated Ethernet Interfaces on a Device*.

- Associate a physical interface with the aggregated Ethernet interface. See "Example: Associating Physical Interfaces with Aggregated Ethernet Interfaces" on page 299.

- Set the required link speed for all the interfaces included in the bundle. See "Example: Configuring Aggregated Ethernet Link Speed" on page 301.

- Configure the minimum number of links that must be up for the bundle as a whole to be labeled as up. See "Example: Configuring Aggregated Ethernet Minimum Links" on page 303.

Overview

In this example, you delete the contents of the ae4 aggregated Ethernet interface, which sets it to the down state.

Configuration

Step-by-Step Procedure

To delete the contents of an aggregated Ethernet interface:

1. Delete the interface.

   ```
   [edit]
   user@host# delete interfaces ae4
   ```

2. If you are done configuring the device, commit the configuration.

   ```
   [edit]
   user@host# commit
   ```

Verification

To verify the configuration is working properly, enter the `show interfaces` command.
Understanding VLAN Tagging for Aggregated Ethernet Interfaces

Aggregated Ethernet interfaces can be either VLAN-tagged or untagged, with LACP enabled or disabled. Aggregated Ethernet interfaces on the SRX3000 and SRX5000 lines support the configuration of native-vlan-id, which consists of the following configuration statements:

- inner-tag-protocol-id
- inner-vlan-id
- pop-pop
- pop-swap
- push-push
- swap-push
- swap-swap

Understanding Promiscuous Mode for Aggregated Ethernet Interfaces

You can enable promiscuous mode on aggregated Ethernet interfaces. When promiscuous mode is enabled on a Layer 3 Ethernet interface, all packets received on the interface are sent to the central point or Services Processing Unit (SPU) regardless of the destination MAC address of the packet. If you enable promiscuous mode on an aggregated Ethernet interface, promiscuous mode is then enabled on all member interfaces.

Verifying Aggregated Ethernet Interfaces

IN THIS SECTION

- Verifying Aggregated Ethernet Interfaces (terse) | 307
- Verifying Aggregated Ethernet Interfaces (extensive) | 308

Verifying Aggregated Ethernet Interfaces (terse)

Purpose
Display status information in terse (concise) format for aggregated Ethernet interfaces.
Action

From operational mode, enter the `show interfaces ae0 terse` command.

```
user@host> show interfaces ae0 terse
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Status</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-2/0/0.0</td>
<td>up</td>
<td>up</td>
<td>aenet --> ae0.0</td>
</tr>
<tr>
<td>ge-2/0/0.32767</td>
<td>up</td>
<td>up</td>
<td>aenet --> ae0.32767</td>
</tr>
<tr>
<td>ge-2/0/1.0</td>
<td>up</td>
<td>up</td>
<td>aenet --> ae0.0</td>
</tr>
<tr>
<td>ge-2/0/1.32767</td>
<td>up</td>
<td>up</td>
<td>aenet --> ae0.32767</td>
</tr>
<tr>
<td>ae0</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>ae0.0</td>
<td>up</td>
<td>up</td>
<td>bridge</td>
</tr>
<tr>
<td>ae0.32767</td>
<td>up</td>
<td>up</td>
<td>multiservice</td>
</tr>
</tbody>
</table>

The output shows the bundle relationship for the aggregated Ethernet interface and the overall status of the interface, including the following information:

- The link aggregation control PDUs run on the .0 child logical interfaces for the untagged aggregated Ethernet interface.
- The link aggregation control PDUs run on the .32767 child logical interfaces for the VLAN-tagged aggregated Ethernet interface.
- The .32767 logical interface is created for the parent link and all child links.

Verifying Aggregated Ethernet Interfaces (extensive)

Purpose

Display status information and statistics in extensive (detailed) format for aggregated Ethernet interfaces.

Action

From operational mode, enter the `show interfaces ae0 extensive` command.

```
user@host> show interfaces ae0 extensive
```

```
Physical interface: ae0, Enabled, Physical link is Up
...
Logical interface ae0.0 (Index 67) (SNMP ifIndex 628) (Generation 134)
...
LACP info: Role System System Port Port Port
          priority identifier priority number key
ge-5/0/0.0  Actor 127 00:1f:12:8c:af:c0 127 832 1
```
The output shows detailed aggregated Ethernet interface information. This portion of the output shows LACP information and LACP statistics for each logical aggregated Ethernet interface.

See Also

- Configuring Aggregated Ethernet Interfaces | 298

Configuring Link Aggregation Control Protocol

In This Section

- Understanding LACP on Standalone Devices | 310
- Example: Configuring Link Aggregation Control Protocol | 311
- Verifying LACP on Standalone Devices | 315
Link Aggregation Control Protocol (LACP) provides a standard means for information exchange between the systems on a link. The below topics discuss the overview of LACP on standalone devices, examples of configuring LACP, LAG and LACP support line devices.

Understanding LACP on Standalone Devices

Link Aggregation Control Protocol (LACP) provides a standardized means for exchanging information between partner systems on a link. Within LACP, the local end of a child link is known as the actor and the remote end of the link is known as the partner.

LACP is enabled on an aggregated Ethernet interface by setting the mode to either passive or active. However, to initiate the transmission of link aggregation control protocol data units (PDUs) and response link aggregation control PDUs, you must enable LACP at both the local and remote ends of the links, and one end must be active:

- **Active mode**—If either the actor or partner is active, they exchange link aggregation control PDUs. The actor sends link aggregation control PDUs to its protocol partner that convey what the actor knows about its own state and that of the partner's state.

- **Passive mode**—If the actor and partner are both in passive mode, they do not exchange link aggregation control PDUs. As a result, the aggregated Ethernet links do not come up. In passive transmission mode, links send out link aggregation control PDUs only when they receive them from the remote end of the same link.

By default, the actor and partner transmit link aggregation control PDUs every second. You can configure different periodic rates on active and passive interfaces. When you configure the active and passive interfaces at different rates, the transmitter honors the receiver's rate.

You configure the interval at which the interfaces on the remote side of the link transmit link aggregation control PDUs by configuring the `periodic` statement on the interfaces on the local side. It is the configuration on the local side that specifies the behavior of the remote side. That is, the remote side transmits link aggregation control PDUs at the specified interval. The interval can be **fast** (every second) or **slow** (every 30 seconds).
NOTE: Starting with Junos OS Release 15.1X49-D40, LACP is supported in Layer 2 transparent mode in addition to existing support in Layer 3 mode.

Example: Configuring Link Aggregation Control Protocol

This example shows how to configure LACP.

Requirements

This example uses an SRX Series device.

Before you begin:

- Determine which interfaces to use and verify that they are in switch mode. See Understanding VLANs.

Overview

In this example, for aggregated Ethernet interfaces, you configure the Link Aggregation Control Protocol (LACP). LACP is one method of bundling several physical interfaces to form one logical interface.

Configuration

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.
set interfaces ge-0/0/6 ether-options 802.3ad ae0
set interfaces ge-0/0/7 ether-options 802.3ad ae0
set interfaces ae0 vlan-tagging
set interfaces ae0 aggregated-ether-options lacp active periodic fast
set interfaces ae0 unit 0 family ethernet-switching interface-mode trunk
set vlan vlan1000 vlan-id 1000
set interfaces ae0 unit 0 family ethernet-switching vlan members vlan1000

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure LACP:

1. Configure the interfaces for ae0.

 [edit]
 user@host# set interfaces ge-0/0/6 ether-options 802.3ad ae0
 user@host# set interfaces ge-0/0/7 ether-options 802.3ad ae0

2. Configure ae0 interface for vlan tagging.

 [edit]
 user@host# set interfaces ae0 vlan-tagging

3. Configure LACP for ae0 and configure periodic transmission of LACP packets.

 [edit]
 user@host# set interfaces ae0 aggregated-ether-options lacp active periodic fast

4. Configure ae0 as a trunk port.

 [edit]
 user@host# set interfaces ae0 unit 0 family ethernet-switching interface-mode trunk

5. Configure the VLAN.

 [edit]
 user@host# set vlan vlan1000 vlan-id 1000
6. Add the ae0 interface to the VLAN.

```
[edit ]
user@host# set interfaces ae0 unit 0 family ethernet-switching vlan members vlan1000
```

7. If you are done configuring the device, commit the configuration.

```
[edit ]
user@host# commit
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces
ge-0/0/6 {
  ether-options {
    802.3ad ae0;
  }
}
ge-0/0/7 {
  ether-options {
    802.3ad ae0;
  }
}
}

ae0 {
  vlan-tagging;
  aggregated-ether-options {
    lACP {
      active;
      periodic fast;
    }
  }
}
unit 0 {
  family ethernet-switching {
    interface-mode trunk;
    vlan {
      members vlan1000;
    }
  }
}```
Verification

Verifying LACP Statistics

Purpose
Display LACP statistics for aggregated Ethernet interfaces.

Action
From operational mode, enter the `show lACP statistics interfaces ae0` command.

```
user@host> show lACP statistics interfaces ae0
```

<table>
<thead>
<tr>
<th>Aggregated interface: ae0</th>
<th>LACP Statistics:</th>
<th>LACP Rx</th>
<th>LACP Tx</th>
<th>Unknown Rx</th>
<th>Illegal Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/6</td>
<td>1352</td>
<td>2035</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ge-0/0/7</td>
<td>1352</td>
<td>2056</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Meaning
The output shows LACP statistics for each physical interface associated with the aggregated Ethernet interface, such as the following:

- The LACP received counter that increments for each normal hello packet received
- The number of LACP transmit packet errors logged
- The number of unrecognized packet errors logged
- The number of invalid packets received

Use the following command to clear the statistics and see only new changes:

```
user@host# clear lACP statistics interfaces ae0
```

Verifying LACP Aggregated Ethernet Interfaces

Purpose
Display LACP status information for aggregated Ethernet interfaces.

Action
From operational mode, enter the show lACP interfaces ae0 command.

```
user@host> show lACP interfaces ae0
```

### Aggregated interface: ae0

<table>
<thead>
<tr>
<th>LACP state:</th>
<th>Role</th>
<th>Exp</th>
<th>Def</th>
<th>Dist</th>
<th>Col</th>
<th>Syn</th>
<th>Aggr</th>
<th>Timeout</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/6</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-0/0/6</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Passive</td>
</tr>
<tr>
<td>ge-0/0/7</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-0/0/7</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Passive</td>
</tr>
</tbody>
</table>

**LACP protocol:**

<table>
<thead>
<tr>
<th></th>
<th>Receive State</th>
<th>Transmit State</th>
<th>Mux State</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/6</td>
<td>Current</td>
<td>Fast periodic</td>
<td>Collecting</td>
</tr>
<tr>
<td>ge-0/0/7</td>
<td>Current</td>
<td>Fast periodic</td>
<td>Collecting</td>
</tr>
</tbody>
</table>

### Meaning

The output shows aggregated Ethernet interface information, including the following information:

- **The LACP state**—Indicates whether the link in the bundle is an actor (local or near-end of the link) or a partner (remote or far-end of the link).
- **The LACP mode**—Indicates whether both ends of the aggregated Ethernet interface are enabled (active or passive)—at least one end of the bundle must be active.
- **The periodic link aggregation control PDU transmit rate.**
- **The LACP protocol state**—Indicates the link is up if it is collecting and distributing packets.

### SEE ALSO

- *Understanding Link Aggregation Control Protocol*
- *Ethernet Ports Switching Overview for Security Devices*

### Verifying LACP on Standalone Devices

**IN THIS SECTION**

- Verifying LACP Statistics | 316
- Verifying LACP Aggregated Ethernet Interfaces | 316
Verifying LACP Statistics

Purpose
Display LACP statistics for aggregated Ethernet interfaces.

Action
From operational mode, enter the `show lacp statistics interfaces ae0` command.

```
user@host> show lacp statistics interfaces ae0
```

```
Aggregated interface: ae0
 LACP Statistics: LACP Rx LACP Tx Unknown Rx Illegal Rx
 ge-2/0/0 1352 2035 0 0
 ge-2/0/1 1352 2056 0 0
 ge-2/2/0 1352 2045 0 0
 ge-2/2/1 1352 2043 0 0
```

The output shows LACP statistics for each physical interface associated with the aggregated Ethernet interface, such as the following:

- The LACP received counter that increments for each normal hello
- The number of LACP transmit packet errors logged
- The number of unrecognized packet errors logged
- The number of invalid packets received

Use the following command to clear the statistics and see only new changes:

```
user@host# clear lacp statistics interfaces ae0
```

Verifying LACP Aggregated Ethernet Interfaces

Purpose
Display LACP status information for aggregated Ethernet interfaces.

Action
From operational mode, enter the `show lacp interfaces ae0` command.

```
user@host> show lacp interfaces ae0
```

```
Aggregated interface: ae0
 LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
 ge-2/0/0 316
```

316
The output shows aggregated Ethernet interface information, including the following information:

- The LACP state—Indicates whether the link in the bundle is an actor (local or near-end of the link) or a partner (remote or far-end of the link).

- The LACP mode—Indicates whether both ends of the aggregated Ethernet interface are enabled (active or passive)—at least one end of the bundle must be active.

- The periodic link aggregation control PDU transmit rate.

- The LACP protocol state—Indicates the link is up if it is collecting and distributing packets.

SEE ALSO

Verifying LACP on Redundant Ethernet Interfaces
LAG and LACP Support Line Devices with I/O Cards (IOCs)

NOTE: The following notes apply to 'LAG and LACP Support on SRX5000 Line Devices' as outlined in this document.

• Cross-IOC LAG interfaces do not support Layer 2 transparent mode.
• Mixed interface speeds are supported on the same aggregated bundle.
• A redundant Ethernet interface or aggregated Ethernet interface must contain child interfaces from the same IOC type. For example, if one child link is from 10-Gigabit Ethernet on IOC2, the second child link should also be from IOC2. Similarly, both child interfaces can be from IOC3. Configuring child interfaces by mixing links from both IOC2 and IOC3 is not supported.

LAG and LACP Support on the SRX5000 Module Port Concentrator

The SRX5000 Module Port Concentrator (SRX5K-MPC) on SRX5400, SRX5600, and SRX5800 devices supports link aggregation groups (LAGs) and Link Aggregation Control Protocol (LACP).

Support for LAGs based on IEEE 802.3ad makes it possible to aggregate physical interface links on your device. LAGs provide increased interface bandwidth and link availability by linking physical ports and load-balancing traffic crossing the combined interface.

LACP provides a standardized means for exchanging information between partner (remote or far-end of the link) systems on a link. This exchange allows their link aggregation control instances to reach agreement on the identity of the LAG to which the link belongs, and then to move the link to that LAG. This exchange also enables the transmission and reception processes for the link to function in an orderly manner.

The following LAG and LACP features are supported on the SRX5K-MPC:

• Bandwidth aggregation—Increases bandwidth, provides graceful degradation as failure occurs, and increases availability.
• Link redundancy and load balancing (within chassis cluster)—Provides network redundancy by load-balancing traffic across all available links. If one of the links should fail, the system automatically load-balances traffic across all remaining links.
• Dynamic link management—Enables automatic addition and deletion of individual links to the aggregate bundle without user intervention.
LACP supports the following features:

- LACP bundles several physical interfaces to form one logical interface by exchanging LACP packets between the local interface and the remote interface. LACP monitors the link for changes in interface state by exchanging a periodic LACP heartbeat between two sides. Any changes in interface state are reflected in the LACP packet.

- Normally after an LACP is configured and committed, two sides start to exchange interface and port information. Once they identify each other and match the LACP state machine criteria, the LACP is declared as up. You can deactivate or delete the LACP configuration.

- By default, the LACP packets are exchanged in every second. You can configure the LACP interval as fast (every second) or slow (every 30 seconds) to ensure the health of the interfaces.

- LACP supports distributed and centralized modes. Chassis cluster setup is recommended to operate with LACP distributed mode, which handles chassis cluster failover better. The centralized mode might experience traffic loss during failover.

SRX5K-MPCs on SRX5000 line devices provide active and standby support with redundant Ethernet interface LAGs in chassis cluster deployments.

LAG and LACP Support on the SRX5000 Line IOCs in Express Path Mode

Starting in Junos OS Release 15.1X49-D40, the IOC2 and IOC3 cards on SRX5400, SRX5600, and SRX5800 devices support link aggregation groups (LAGs) and Link Aggregation Control Protocol (LACP) in Express Path mode.

You can use the links in a LAG as ingress or egress interfaces in Express Path mode. The LAG links can include links from cards such as IOC2 or IOC3. For a LAG link to qualify for Express Path, all its member links should be connected to Express Path-enabled network processors. If Express Path is disabled on any of the member links in a LAG, a regular session (non-Express Path session) is created.

SEE ALSO

- Configuring Aggregated Ethernet Interfaces | 298
- Configuring Link Aggregation Control Protocol
- Example: Configuring LACP on Chassis Clusters
Example: Configuring LAG Interface on an Line Device with IOC2 or IOC3

Starting in Junos OS Release 15.15X49-D40, IEEE 802.3ad link aggregation enables you to group Ethernet interfaces to form a single, aggregated Ethernet interface. This single, aggregated Ethernet interface is also known as a LAG or bundle. The LACP provides additional functionality for LAGs.

This example shows how to configure LAG on an SRX Series device using the links from either IOC2 or IOC3 in Express Path mode.

Requirements

This example uses the following software and hardware components:

- Junos OS Release 15.1X49-D40 or later for SRX Series devices.
- SRX5800 with IOC2 or IOC3 with Express Path enabled on IOC2 and IOC3. For details, see Express Path.

Overview

In this example, you create a logical aggregated Ethernet interface and define the parameters associated with the logical aggregated Ethernet interface, such as a logical unit, interface properties, and LACP. Next, define the member links to be contained within the aggregated Ethernet interface—for example, four 10-Gigabit Ethernet interfaces. Finally, configure an LACP for link detection.

The following member links are used in this example:

- xe-0/0/8
- xe-0/0/9
- xe-1/0/8
- xe-1/0/9
- xe-3/1/4
• xe-3/1/5
• xe-5/1/4
• xe-5/1/5

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, delete, and then copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set chassis aggregated-devices ethernet device-count 5
set interfaces xe-0/0/8 gigether-options 802.3ad ae1
set interfaces xe-0/0/9 gigether-options 802.3ad ae0
set interfaces xe-1/0/8 gigether-options 802.3ad ae1
set interfaces xe-1/0/9 gigether-options 802.3ad ae0
set interfaces xe-3/1/4 gigether-options 802.3ad ae1
set interfaces xe-3/1/5 gigether-options 802.3ad ae0
set interfaces xe-5/1/4 gigether-options 802.3ad ae1
set interfaces xe-5/1/5 gigether-options 802.3ad ae0
set interfaces ae0 unit 0 family inet address 17.0.0.1/24
set interfaces ae1 unit 0 family inet address 16.0.0.1/24
set interfaces ae0 aggregated-ether-options lacp active
set interfaces ae1 aggregated-ether-options lacp active
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see the Junos OS CLI User Guide.

To configure LAG Interfaces:

1. Specify the number of aggregated Ethernet interfaces to be created.

   ```
 [edit chassis]
 user@host# set aggregated-devices ethernet device-count 5
   ```

2. Specify the members to be included within the aggregated Ethernet bundle.

   ```
 [edit interfaces]
 user@host# set xe-0/0/8 gigether-options 802.3ad ae1
   ```
3. Assign an IP address to ae0 and ae1.

```bash
[edit interfaces]
user@host# set ae0 unit 0 family inet address 17.0.0.1/24
user@host# set ae1 unit 0 family inet address 16.0.0.1/24
```

4. Set the LACP on reth0.

```bash
[edit interfaces]
user@host# set ae0 aggregated-ether-options lacp active
user@host# set ae1 aggregated-ether-options lacp active
```

**Results**

From configuration mode, confirm your configuration by entering the `show interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```bash
[edit]
user@host# show interfaces
xe-0/0/8 {
 gigether-options {
 802.3ae1;
 }
}
xe-0/0/9 {
 gigether-options {
 802.3ae0;
 }
}
xe-1/0/8 {
 gigether-options {
 802.3ae1;
 }
}
```

xe-1/0/9 {
    gigether-options {
        802.3ad ae0;
    }
}

xe-3/1/4 {
    gigether-options {
        802.3ad ae1;
    }
}

xe-3/1/5 {
    gigether-options {
        802.3ad ae0;
    }
}

ae0 {
    aggregated-ether-options {
        lacp {
            active;
        }
    }
    unit 0 {
        family inet {
            address 17.0.0.1/24;
        }
    }
}

ae1 {
    aggregated-ether-options {
        lacp {
            active;
        }
    }
    unit 0 {
        family inet {
            address 16.0.0.1/24;
        }
    }
}

[edit]
user@host# show chassis
aggregated-devices {
  ethernet {
    device-count 5;
  }
}

If you are done configuring the device, enter commit from configuration mode.

Verification

Verifying LACP on Redundant Ethernet Interfaces

Purpose
Display LACP status information for redundant Ethernet interfaces.

Action
From operational mode, enter the show lacp interfaces command to check that LACP has been enabled as active on one end.

user@host> show lacp interfaces

Aggregated interface: ae0

<table>
<thead>
<tr>
<th>LACP state:</th>
<th>Role</th>
<th>Exp</th>
<th>Def</th>
<th>Dist</th>
<th>Col</th>
<th>Syn</th>
<th>Aggr</th>
<th>Timeout</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>xe-0/0/9</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>xe-1/0/9</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>xe-3/1/5</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>xe-5/1/5</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
</tbody>
</table>

LACP protocol: Receiving State Transmit State Mux State

xe-0/0/9	Current	Fast periodic Collecting distributing
xe-1/0/9	Current	Fast periodic Collecting distributing
xe-3/1/5	Current	Fast periodic Collecting distributing
xe-5/1/5	Current	Fast periodic Collecting distributing

Aggregated interface: ae1

<table>
<thead>
<tr>
<th>LACP state:</th>
<th>Role</th>
<th>Exp</th>
<th>Def</th>
<th>Dist</th>
<th>Col</th>
<th>Syn</th>
<th>Aggr</th>
<th>Timeout</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>xe-0/0/8</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>xe-1/0/8</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>xe-3/1/4</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
</tbody>
</table>

LACP protocol: Receiving State Transmit State Mux State

xe-0/0/8	Current	Fast periodic Collecting distributing
xe-1/0/8	Current	Fast periodic Collecting distributing
xe-3/1/4	Current	Fast periodic Collecting distributing
The output indicates that LACP has been set up correctly and is active at one end.

**Configuring Gigabit Ethernet Physical Interface Modules**

Small form-factor pluggables (SFPs) are hot-pluggable modular interface transceivers for Gigabit and Fast Ethernet connections. The 1-Port Gigabit Ethernet SFP Mini-PIM interfaces a single Gigabit Ethernet device or a network. The below topics discuss the overview and configuration of 1-Port Gigabit Ethernet SFP Mini-PIM interface, overview and configuration of 2-Port 10-GE XPIM and overview and configuration of 8-Port GE SFP XPIMs.
Understanding the 1-Port Gigabit Ethernet SFP Mini-PIM

Small form-factor pluggables (SFPs) are hot-pluggable modular interface transceivers for Gigabit and Fast Ethernet connections. Gigabit Ethernet SFP Mini-PIMs can be used in copper and optical environments to provide maximum flexibility when upgrading from an existing infrastructure to Metro Ethernet.

The 1-Port Gigabit Ethernet SFP Mini-PIM interfaces a single Gigabit Ethernet device or a network. It supports a variety of transceivers with data speeds of 10-Mbps/100-Mbps/1-Gbps with extended LAN or WAN connectivity.

Transceivers are hot-swappable.

This topic includes the following sections:

Supported Features

The following features are supported on the 1-Port Gigabit Ethernet SFP Mini-PIM:

- 10-Mbps/100-Mbps/1-Gbps link speed
- Half-duplex/full-duplex support
- Autonegotiation
- Encapsulations
- Maximum transmission unit (MTU) size of 1514 bytes (default) and 9010 bytes (jumbo frames)
- Loopback
- Transceivers are hot-swappable

Interface Names and Settings

The following format is used to represent the 1-Port Gigabit Ethernet SFP Mini-PIM interface names:
**type-fpc/pic/port**

Where:

- **type**—Media type (ge)
- **fpc**—Number of the Flexible PIC Concentrator (FPC) card on which the physical interface is located
- **pic**—Number of the PIC on which the physical interface is located (0)
- **port**—Specific port on a PIC (0)

Examples: **ge-1/0/0** and **ge-2/0/0**

By default, the interfaces on the ports on the uplink module installed on the device are enabled. You can also specify the MTU size for the Gigabit Ethernet interface. Junos OS supports values from 256 through 9010. The default MTU size for Gigabit Ethernet interfaces is 1514.

**Available Link Speeds and Modes**

The 1-Port Gigabit Ethernet SFP Mini-PIM supports the following link speeds:

- **10m**—Sets the link speed to 10 Mbps.
- **100m**—Sets the link speed to 100 Mbps.
- **1g**—Sets the link speed to 1 Gbps.

The 1-Port Gigabit Ethernet SFP Mini-PIM supports the following link modes:

- **Full-duplex**—Allows bidirectional communication at a given point in time.
- **Half-duplex**—Allows single directional communication at a given point in time.

**Link Settings**

The 1-Port Gigabit Ethernet SFP Mini-PIM includes the following link settings:

- **auto-negotiation**—Enables autonegotiation of link mode and speed.

**NOTE:** By default, autonegotiation is enabled. To disable autonegotiation, use `set gigether-options no-autonegotiation`

We recommend enabling autonegotiation.

- **loopback**—Enables loopback.
• **no-auto-negotiation**—Disables autonegotiation of link mode and speed.
• **no-loopback**—Disables loopback.

By default a link speed of 1 Gbps in full-duplex mode is supported.

---

**NOTE:** On SRX340 High Memory devices, traffic might stop between the SRX340 device and the Cisco switch due to link mode mismatch. We recommend setting the same value to the autonegotiation parameters on both ends.

**NOTE:** On SRX300 devices, the link goes down when you upgrade FPGA on 1-Port Gigabit Ethernet SFP mini-PIM. As a workaround, run the `restart fpc` command and restart the FPC.

---

### Example: Configuring the 1-Port Gigabit Ethernet SFP Mini-PIM Interface

**IN THIS SECTION**

- Requirements | 328
- Overview | 329
- Configuration | 329
- Verification | 332

This example shows how to perform basic configuration for the 1-Port Gigabit Ethernet SFP Mini-PIM.

#### Requirements

Before you begin:

- Establish basic connectivity. See the *Getting Started Guide* for your device.
- Configure network interfaces as necessary. See "Example: Creating an Ethernet Interface" on page 282.
Overview

In this example, you configure the ge-2/0/0 interface, set the operating speed to 100 Mbps, and define a logical interface that you can connect to the 1-Port Gigabit Ethernet SFP Mini-PIM. You also set the MTU value to 9010 and set the link option to no-loopback.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces ge-2/0/0 link-mode full-duplex speed 100m
set interface ge-2/0/0 gigether-options no-loopback
```

Configuring Physical Properties

GUI Step-by-Step Procedure
To quickly configure the physical properties of a 1-Port Gigabit Ethernet SFP Mini-PIM using J-Web, use the following steps:

1. Select Configure > Interfaces.

2. Under Interface, select ge-2/0/0 and then click Edit. A pop-up window appears.

3. In the Description box, type the description for the SFP Mini-PIM.

4. In the MTU box, type 9010.

5. From the Speed list, select 100Mbps.

6. From the Link-mode list, select Full-duplex.

7. Select the Enable Auto-negotiation checkbox.

8. Select the Enable Per Unit Scheduler checkbox.

9. Click OK
Disabling the Interface

GUI Step-by-Step Procedure
To disable the 1-Port Gigabit Ethernet SFP Mini-PIM using J-Web, use the following steps:

1. Select Configure > Interfaces.

2. Under Interface, select ge-2/0/0 and then click Disable.

Configuring Logical Properties

GUI Step-by-Step Procedure
To quickly configure the logical properties of a 1-Port Gigabit Ethernet SFP Mini-PIM using J-Web, use the following steps:

1. Select Configure > Interfaces.

2. Under Interface, select ge-2/0/0.0, and then click Add Logical Interface. A pop-up window appears.

3. In the Unit box, type 0.

4. In the Description box, type a description for the SFP Mini-PIM.

5. From the Zone list, select untrust.

6. To edit the family protocol type to the Mini-PIM interfaces, select the IPv4 tab, and then select Enable address configuration.

7. Click Add, and then type IPv4 address.

8. Click OK.

Editing Logical Properties

Step-by-Step Procedure
To quickly configure the physical properties of a 1-Port Gigabit Ethernet SFP Mini-PIM using J-Web:

1. Under Interface, select the logical interface added to the 1-Port Gigabit Ethernet SFP Mini-PIM and then click Edit. A pop-up window appears.

2. Under Interface, select ge-2/0/0.0, and then click Edit Logical Interface. A pop-up window appears.

3. From the Zone list, select trust.
4. To enable DHCP client on the interface, select the IPv4 tab and then select **Enable DHCP**.

5. Click **OK**.

**NOTE:** You cannot add or edit Description and Unit for a logical interface.

---

**Deleting the Logical Interface**

**GUI Step-by-Step Procedure**

To delete the logical interface of 1-Port Gigabit Ethernet SFP Mini-PIM using J-Web,

1. Select **Configure > Interfaces**.

2. Under Interface, select **ge-2/0/0.0**, and then click **Delete**.

**Configuring a 1-Port Gigabit Ethernet SFP Mini-PIM**

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see **Using the CLI Editor in Configuration Mode** in the CLI User Guide.

To configure a 1-Port Gigabit Ethernet SFP Mini-PIM:

1. Configure the interface.

   ```
 [edit]
 user@host# edit interfaces ge-2/0/0
   ```

2. Set the operating link-mode full-duplex speed of 100 Mbps for the SFP Mini-PIM.

   ```
 [edit interfaces ge-2/0/0]
 user@host# set link-mode full-duplex speed 100m
   ```

3. Assign the MTU value.

   ```
 [edit interfaces ge-2/0/0]
 user@host# set mtu 9010
   ```

4. Add the logical interface.
5. Set the link options.

```
[edit interfaces ge-2/0/0]
user@host# set unit 0 family inet address 14.1.1.1/24
```

**Results**

From configuration mode, confirm your configuration by entering the `show interfaces ge-2/0/0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces ge-2/0/0
mtu 9010;
speed 100m;
gigether-options {
 no-loopback;
}
unit 0 {
 family inet {
 14.1.1.1/24
 }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

**Verification**

**IN THIS SECTION**

- Verifying That the Correct Hardware Is Installed | 333
- Verifying the FPC Status | 334
- Verifying the Interface Settings | 334

Confirm that the configuration is working properly.
**Verifying That the Correct Hardware Is Installed**

**Purpose**
Verify that the 1-Port Gigabit Ethernet SFP Mini-PIM is installed on the device.

**Action**
From operational mode, enter the `show chassis hardware` command.

```
user@host> show chassis hardware detail
Hardware inventory:
Item Version Part number Serial number Description
Chassis AG0309AA0004 SRX240b
Routing Engine REV 16 750-021792 VL3180 RE-SRX240B
da0 999 MB ST72682 Nand Flash
usb0 (addr 1) DWC OTG root hub 0 vendor 0x0000 uhub0
usb0 (addr 2) product 0x005a 90 vendor 0x0409 uhub1
usb0 (addr 3) ST72682 High Speed Mode 64218 STMicroelectronics umass0
FPC 0 FPC
PIC 0 16x GE Base PIC
FPC 1 750-023367 112009000278 FPC
PIC 0 1x T1E1 mPIM
FPC 2 REV 00 750-03273 AABC5081 FPC
PIC 0 1x GE High-Perf SFP mPIM
 Xcvr 0 REV 02 740-011612 9101465 SFP-T
FPC 4 750-029145 122009000061 FPC
PIC 0 1x GE SFP mPIM
 Xcvr 0 REV 01 740-011782 PBLOC3T SFP-SX
Power Supply 0
```

Verify that the output contains the following values:

- **FPC 2, PIC 0** — 1x GE High-Perf SFP mPIM
- **FPC 4, PIC 0** — 1x GE SFP mPIM

**NOTE:** In the example shown above, the output for 1-Port SFP Mini-Physical Interface Module is displayed as 1X GE SFP mPIM and the output for 1-Port Gigabit Ethernet SFP Mini-Physical Interface Module is displayed as 1X GE High-Perf SFP mPIM.
NOTE: The 1-Port GE SFP Mini-PIM is installed in the second slot of the device chassis; therefore the output displayed is 1x GE High-Perf SFP mPIM and the Flexible PIC Concentrator (FPC) used here is fpc 2.

The 1-Port SFP Mini-PIM is installed in the fourth slot of the device chassis; therefore the output displayed is 1x GE SFP mPIM and Flexible PIC Concentrator (FPC) used here is fpc 4.

Verifying the FPC Status

Purpose
Verify the FPC status.

Action
From operational mode, enter the `show chassis fpc` command.

```
show@host> show chassis fpc
Temp CPU Utilization (%) Memory Utilization (%)
Slot State (C) Total Interrupt DRAM (MB) Heap Buffer
0 Online -------------------- CPU less FPC --------------------
1 Online -------------------- CPU less FPC --------------------
2 Online -------------------- CPU less FPC --------------------
3 Empty
4 Online -------------------- CPU less FPC --------------------
```

The output should show the FPC status as online.

The 1-Port SFP Mini-PIM is installed in the fourth slot of the device chassis; the output shows the FPC status for slot 4 as online.

The 1-Port Gigabit Ethernet SFP Mini-PIM is installed in the second slot of the device chassis; the output shows the FPC status for slot 2 as online.

Verifying the Interface Settings

Purpose
Verify that the interface is configured as expected.

Action
From operational mode, enter the `show interface ge-2/0/0` command.

```plaintext
user@host# run show interfaces ge-2/0/0
Physical interface: ge-2/0/0, Enabled, Physical link is Up
 Interface index: 156, SNMP ifIndex: 552
 Link-level type: Ethernet, MTU: 9010, Link-mode: Full-duplex, Speed: 100mbps,
 BPDU Error: None, MAC-REWRITE Error: None,
 Loopback: Disabled, Source filtering: Disabled, Flow control: Enabled,
 Auto-negotiation: Enabled, Remote fault: Online
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x0
 Link flags : None
 CoS queues : 8 supported, 8 maximum usable queues
 Current address: 00:22:83:99:ac:f2, Hardware address: 00:22:83:99:ac:f2
 Last flapped : 2010-08-17 12:20:33 UTC (00:00:20 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)
 Active alarms : None
 Active defects : None

Logical interface ge-2/0/0.0 (Index 88) (SNMP ifIndex 557)
 Flags: SNMP-Traps Encapsulation: ENET2
 Input packets : 108
 Output packets: 1
 Security: Zone: Null
 Protocol inet, MTU: 8996
 Flags: Sendbcast-pkt-to-re
 Addresses, Flags: Is-Preferred Is-Primary
```

Verify the following information in the command output:

- Physical interface—ge-2/0/0, Enabled, Physical link is Up
- MTU—9010; Link-mode—Full-duplex
- Speed—100 Mbps
- Loopback—Disabled
Understanding the 2-Port 10-Gigabit Ethernet XPIM

The 10-Gigabit Ethernet (also known as 10GBASE-T or IEEE 802.3an) is a telecommunication technology that offers data speeds up to 10 billion bits per second over unshielded or shielded twisted pair cables.

The 2-Port 10-Gigabit Ethernet Physical Interface Module (XPIM) is a 2 x 10BASE-T / SFP+ XPIM line card. (SFP+ is a fiber optic transceiver module designed for 10-Gigabit Ethernet and 8.5 Gbps-fiber channel systems.) The 2-Port 10-Gigabit Ethernet XPIM provides a front-end interface connection that includes the following ports:

- 2 X copper ports. The copper ports support 10BASE-T running with CAT6A or CAT7 Ethernet cable for up to 100 meters.
- 2 X fiber (SFP+) ports. The fiber ports support SFP+ multiple 10G modules.

The 2-Port 10-Gigabit Ethernet XPIM provides interconnects for LANs, WANs, and metropolitan area networks (MANs). The XPIM provides multiple service levels (1-Gigabit Ethernet to 10-Gigabit Ethernet in increments) and a single connection option for a wide range of customer needs and applications.

NOTE: By default, the 2-Port 10-Gigabit Ethernet XPIM ports comes up in fiber mode, while autonegotiation is not supported.

This topic includes the following sections:
Supported Features

The following features are supported on the 2-Port 10-Gigabit Ethernet XPIM:

- Multiple SFP+ 10G modules and the following SFP modules:
  - SFPP-10GE-SR
  - SFPP-10GE-LR
  - SFPP-10GE-ER
  - SFPP-10GE-LRM
- Copper TWIN-AX 1M and Copper TWIN-AX 3M
- Online Insertion and Removal (OIR) functionality
- Link speeds of up to 10-Gbps
- Full-duplex and half-duplex modes
- Flow control
- Autonegotiation and autosensing
- Quality of service (QoS)

Interface Names and Settings

The following format is used to represent the 2-Port 10-Gigabit Ethernet XPIM interface names:

\[
\text{type-fpc/pic/port}
\]

Where:

- type — Media type (xe)
- fpc — Number of the Flexible PIC Concentrator (FPC) card on which the physical interface is located
- pic — Number of the PIC on which the physical interface is located (0)
- port — Specific port on a PIC (0 or 1)

By default, the interfaces (for example, xe-6/0/0 or xe-2/0/0) on the ports on the uplink module installed on the device are enabled. You can also specify the maximum transmission unit (MTU) size for the Gigabit Ethernet interface. Junos OS supports values from 256 through 9192. The default MTU for Gigabit Ethernet interfaces is 1514.
Copper and Fiber Operating Modes

On the 2-Port 10-Gigabit Ethernet XPIM, one copper port and one fiber port is grouped together as port 0, and another copper port and fiber port are grouped as port 1. Only two ports can be active at the same time (one port from port 0 and another port from port 1).

The 2-Port 10-Gigabit Ethernet XPIM can be configured to operate in two copper mode, two fiber mode, or mixed mode (one copper and one fiber). In mixed mode, the two ports should be from different port groups (one port from port 1 and the other from port 2).

Link Speeds

The 2-Port 10-Gigabit Ethernet XPIM ports support the following link speeds for copper and fiber:

- **Copper**—10/100/1000 Mbps or 10Gbps (full duplex). Half-duplex is only for 10/100 Mbps.
- **Fiber**—1000 Mbps or 10 Gbps (full duplex). Half-duplex mode is not supported.

To set the link speeds, use the following options:

- **10m**—Sets the link speed to 10 Mbps.
- **10g**—Sets the link speed to 10 Gbps.
- **100m**—Sets the link speed to 100 Mbps.
- **1g**—Sets the link speed to 1 Gbps.

Link Settings

The 2-Port 10-Gigabit Ethernet XPIM includes the following link settings:

- **802.3ad**—Specifies an aggregated Ethernet bundle.
- **auto-negotiation**—Enables autonegotiation of flow control, link mode, and speed.
- **loopback**—Enables loopback.
- **no-auto-negotiation**—Disables autonegotiation of flow control, link mode, and speed.
- **no-loopback**—Disables loopback.

By default, flow control is enabled on all ports, a link speed of 10 Gbps in full duplex is supported, autonegotiation is disabled on the fiber ports, and autonegotiation is enabled on copper ports.

NOTE: Autonegotiation is not supported when the 2-Port 10-Gigabit Ethernet XPIM is operating in fiber mode at a link speed of 10 Gbps.
This example shows how to perform basic configuration for the 1-Port Gigabit Ethernet SFP Mini-PIM.

Requirements

Before you begin:

- Establish basic connectivity. See the Getting Started Guide for your device.
- Configure network interfaces as necessary. See "Example: Creating an Ethernet Interface" on page 282.

Overview

In this example, you configure the xe-6/0/0 interface, set the operating mode to copper mode, set the operating speed to 10 Gbps, and define a logical interface that you can connect to the 2-Port 10-Gigabit Ethernet XPIM. Additionally, you set the MTU value to 1514, set the link option to no loopback, and enable the interface.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces xe-6/0/0 media-type copper speed 10g unit 0 family inet mtu 1514
set interface xe-6/0/0 gigether-options no-loopback
```

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To configure a 2-Port 10-Gigabit Ethernet XPIM:

1. Configure the interface.

```
[edit]
user@host# edit interfaces xe-6/0/0
```

2. Configure the operating mode.

```
[edit interfaces xe-6/0/0]
user@host# set media-type copper
```

3. Set the operating speed for the XPIM.

```
[edit interfaces xe-6/0/0]
user@host# set speed 10g
```

4. Add the logical interface.

```
[edit interfaces xe-6/0/0]
user@host# set unit 0 family inet
```

5. Assign the physical interface MTU value.

```
[edit interfaces xe-6/0/0]
user@host# set interface xe-6/0/0 mtu 1514
```

6. Assign the logical interface MTU value.

```
[edit interfaces xe-6/0/0]
user@host# set unit 0 family inet mtu 1500
```

7. Set the link options.

```
[edit interfaces xe-6/0/0]
user@host# set gigether-options no-loopback
```
8. Disable the interface.

```
[edit interfaces xe-6/0/0]
user@host# set disable
```

9. Enable the interface.

```
[edit interfaces xe-6/0/0]
user@host# delete disable
```

**Results**

From configuration mode, confirm your configuration by entering the `show interfaces xe-6/0/0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces xe-6/0/0
 speed 10g;
 media-type copper;
 gigether-options { }
 unit 0 { }
 family inet { mtu 1514; }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

**Verification**
Confirm that the configuration is working properly.

**Verifying That the Correct Hardware Is Installed**

**Purpose**
Verify that the 2-Port 10-Gigabit Ethernet XPIM is installed on the device.

**Action**
From operational mode, enter the `show chassis hardware` command.

```
Hardware inventory:
Item Version Part number Serial number Description
Chassis AJ0309AC0047 SRX650
Midplane REV 04 710-023875 TV3993
System IO REV 04 710-023209 TV4035 SRXSME System IO
Routing Engine REV 01 710-023224 DT5109 RE-SRXSME-SRE6
FPC 0 FPC
PIC 0 4x GE Base PIC
FPC 2 FPC
PIC 0 2x 10G gPIM
FPC 6 FPC
PIC 0 2x 10G gPIM
Power Supply 0 REV 01 740-024283 TA00049WSSSS PS 645W AC
```

Verify that the output contains the following values:

- **FPC 2, PIC 0**—2x 10G gPIM
- **FPC 6, PIC 0**—2x 10G gPIM

**Verifying the FPC Status**

**Purpose**
Verify the FPC status.

**Action**
From operational mode, enter the `show chassis fpc` command.

```
Temp CPU Utilization (%) Memory Utilization (%)
Slot State (C) Total Interrupt DRAM (MB) Heap Buffer
0 Online -------------------- CPU less FPC --------------------
1 Empty
2 Online -------------------- CPU less FPC --------------------
3 Empty
```
The output should display FPC status as online.

**Verifying the Interface Settings**

**Purpose**
Verify that the interface is configured as expected.

**Action**
From operational mode, enter the `show interface xe-6/0/0` command.
Verify the following information in the command output:

- Physical interface—xe-6/0/0, Enabled, Physical link is Up
- MTU—1514
- Link mode—Full duplex
- Speed—10 Gbps
- Loopback—Disabled
- Flow control—Enabled

**Understanding the 8-Port Gigabit Ethernet SFP XPIM**

A Gigabit Ethernet Physical Interface Module (XPIM) is a network interface card (NIC) that installs in the front slots of the SRX550 Services Gateway to provide physical connections to a LAN or a WAN.

**NOTE:** Starting in Junos OS Release 15.1X49-D10, the 8-Port Gigabit Ethernet SFP XPIM is not supported on legacy SRX Series systems. In Junos OS Release 15.1X49-D30, support for the 8-Port Gigabit Ethernet SFP XPIM is restored for SRX550 Service Gateway systems.

Small form-factor pluggables (SFPs) are hot-pluggable modular interface transceivers for gigabit and Fast Ethernet connections. The 8-port SFP Gigabit Ethernet interface enables customers to connect to Ethernet WAN services as well as to local servers at gigabit speed.

**Supported Features**

The following features are supported on the 8-Port Gigabit Ethernet SFP XPIM:

- Operates on both a slot with a maximum bandwidth of 8 gigabits and a slot with a maximum bandwidth of 1 gigabit
- Operates in tri-rate (10/100/1000 Mbps) mode with copper SFPs
- Routing and switched mode operation
- Layer 2 protocols
• Link Aggregation Control Protocol (LACP)
• Link Layer Discovery Protocol (LLDP)
• GARP VLAN Registration Protocol (GVRP)
• Internet Group Management Protocol (IGMP) snooping (v1 and v2)
• Spanning Tree Protocol (STP), Real-Time Streaming Protocol (RTSP), and Multiple Spanning Tree Protocol (MSTP)
• 802.1x

• Encapsulation (supported at the Physical Layer)
  • ethernet-bridge
  • ethernet-ccc
  • ethernet-tcc
  • ethernet-vpls
  • extended-vlan-ccc
  • extended-vlan-tcc
  • flexible-ethernet-services
  • vlan-ccc

• Q in Q VLAN tagging

• Integrated routing and bridging (IRB)

• Jumbo frames (9192 byte size)

• Chassis cluster switching

• Chassis cluster fabric link using GE ports

**NOTE:**

The following Layer 2 switching features are not supported when the 8-Port Gigabit Ethernet SFP XPIM is plugged in slots with speeds of less than 1 gigabit:

• Q in Q VLAN tagging
• Link aggregation using ports across multiple XPIMs

**Interface Names and Settings**

The following format is used to represent the 8-Port SFP XPIM:
type-fpc/pic/port

Where:

- **type**—Media type (ge)
- **fpc**—Number of the Flexible PIC Concentrator (FPC) card where the physical interface resides
- **pic**—Number of the PIC where the physical interface resides (0)
- **port**—Specific port on a PIC (0)

Examples: **ge-1/0/0** and **ge-2/0/0**

By default, the interfaces on the ports on the uplink module installed on the device are enabled. You can also specify the maximum transmission unit (MTU) size for the XPIM. Junos OS supports values from 256 through 9192. The default MTU size for the 8-Port Gigabit Ethernet SFP XPIM is 1514.

---

### Example: Configuring 8-Port Gigabit Ethernet SFP XPIMs

**IN THIS SECTION**

- Requirements | 347
- Overview and Topology | 347
- Configuration | 348
- Verification | 354

This example shows how to perform a basic back-to-back device configuration with 8-port Gigabit Ethernet small form-factor pluggable (SFP) XPIMs. It describes a common scenario in which SFP XPIMs are deployed.

**NOTE:** Starting in Junos OS Release 15.1X49-D10, the 8-Port Gigabit Ethernet SFP XPIM is not supported on legacy SRX Series systems. In Junos OS Release 15.1X49-D30, support for the 8-Port Gigabit Ethernet SFP XPIM is restored for SRX550 Service Gateway systems.
**Requirements**

This example uses the following hardware and software components:

- Junos OS Release 12.1X44-D10 or later for SRX Series Services Gateways.
- Two SRX650 devices connected back-to-back.
- Two 8-port Gigabit Ethernet SFP XPIMs.
- Eight pairs of SFP transceivers as mentioned in 8-Port Gigabit Ethernet SFP XPIM Supported Modules and eight cables to connect them.

Before you begin:

- Establish basic connectivity. See the Getting Started Guide for your device.
- Configure network interfaces as necessary. See “Example: Creating an Ethernet Interface” on page 282.

**Overview and Topology**

In this example, you configure two SRX650 devices. On each device you configure eight interfaces (ge-6/0/0 through ge-6/0/7), set the maximum transmission unit (MTU) value to 9192, and define a logical interface that you can connect to the 8-port SFP XPIM.

Figure 16 on page 348 shows the topology used in this example.
Figure 16: Basic Back-to-Back Device Configuration

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device 1

```plaintext
set interfaces ge-6/0/0 mtu 9192
set interfaces ge-6/0/0 unit 0 family inet address 10.1.1.1/24
set interfaces ge-6/0/1 mtu 9192
set interfaces ge-6/0/1 unit 0 family inet address 11.1.1.1/24
set interfaces ge-6/0/2 mtu 9192
set interfaces ge-6/0/2 unit 0 family inet address 12.1.1.1/24
set interfaces ge-6/0/3 mtu 9192
```
Device 2

```
set interfaces ge-6/0/0 mtu 9192
set interfaces ge-6/0/0 unit 0 family inet address 10.1.1.2/24
set interfaces ge-6/0/1 mtu 9192
set interfaces ge-6/0/1 unit 0 family inet address 11.1.1.2/24
set interfaces ge-6/0/2 mtu 9192
set interfaces ge-6/0/2 unit 0 family inet address 12.1.1.2/24
set interfaces ge-6/0/3 mtu 9192
set interfaces ge-6/0/3 unit 0 family inet address 13.1.1.2/24
set interfaces ge-6/0/4 mtu 9192
set interfaces ge-6/0/4 unit 0 family inet address 14.1.1.2/24
set interfaces ge-6/0/5 mtu 9192
set interfaces ge-6/0/5 unit 0 family inet address 15.1.1.2/24
set interfaces ge-6/0/6 mtu 9192
set interfaces ge-6/0/6 unit 0 family inet address 16.1.1.2/24
set interfaces ge-6/0/7 mtu 9192
set interfaces ge-6/0/7 unit 0 family inet address 17.1.1.2/24
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure the interfaces on Device 1:

1. Configure the interface.

   ```
 [edit]
 user@host# set interfaces ge-6/0/0
   ```
2. Assign the maximum transmission unit value for the interface.

```
[edit interfaces ge-6/0/0]
user@host# set mtu 9192
```

3. Add the logical interface.

```
[edit interfaces ge-6/0/0]
user@host# set unit 0 family inet address 10.1.1.2/24
```

**NOTE:** Repeat these steps for the remaining seven ports on Device 1.

---

**Step-by-Step Procedure**

To configure the interfaces on Device 2:

1. Configure the interface.

```
[edit]
user@host# edit interfaces ge-6/0/0
```

2. Assign the maximum transmission unit value for the interface.

```
[edit interfaces ge-6/0/0]
user@host# set mtu 9192
```

3. Add the logical interface.

```
[edit interfaces ge-6/0/0]
user@host# set unit 0 family inet address 10.1.1.2/24
```

**NOTE:** Repeat these steps for the remaining seven ports on Device 2.

---

**Results**
From configuration mode, confirm your configuration by entering the `show interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

**Device 1**

```plaintext
[edit]
user@host# show interfaces
ge-6/0/0 {
 mtu 9192;
 unit 0 {
 family inet {
 address 10.1.1.1/24;
 }
 }
}
ge-6/0/1 {
 mtu 9192;
 unit 0 {
 family inet {
 address 11.1.1.1/24;
 }
 }
}
ge-6/0/2 {
 mtu 9192;
 unit 0 {
 family inet {
 address 12.1.1.1/24;
 }
 }
}
ge-6/0/3 {
 mtu 9192;
 unit 0 {
 family inet {
 address 13.1.1.1/24;
 }
 }
}
ge-6/0/4 {
 mtu 9192;
 unit 0 {
```
Device 2

[edit]
user@host# show interfaces
ge-6/0/0 {
  mtu 9192;
  unit 0 {
    family inet {
      address 10.1.1.2/24;
    }
  }
}
ge-6/0/1 {
    mtu 9192;
    unit 0 {
        family inet {
            address 11.1.1.2/24;
        }
    }
}
ge-6/0/2 {
    mtu 9192;
    unit 0 {
        family inet {
            address 12.1.1.2/24;
        }
    }
}
ge-6/0/3 {
    mtu 9192;
    unit 0 {
        family inet {
            address 13.1.1.2/24;
        }
    }
}
ge-6/0/4 {
    mtu 9192;
    unit 0 {
        family inet {
            address 14.1.1.2/24;
        }
    }
}
ge-6/0/5 {
    mtu 9192;
    unit 0 {
        family inet {
            address 15.1.1.2/24;
        }
    }
}
If you are done configuring the device, enter `commit` from configuration mode.

**Verification**

**IN THIS SECTION**

- Verifying the Hardware was Properly Installed | 354
- Verifying the FPC Status | 356
- Verifying Interface Link Status on Device 1 | 356
- Verifying the Interface Settings on Device 1 | 357
- Verifying Interface Link Status on Device 2 | 361
- Verifying the Interface Settings on Device 2 | 362

Confirm that the configuration is working properly.

*Verifying the Hardware was Properly Installed*

**Purpose**

Verify that the 8-Port Gigabit Ethernet SFP XPIM is installed on the device.

**Action**
From operational mode, enter the `show chassis hardware` command.

```
user@host> show chassis hardware detail
Hardware inventory:
<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td>AJ3009AA0001</td>
<td>SRX650</td>
<td></td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 08</td>
<td>710-023875</td>
<td>AAAK0059</td>
<td></td>
</tr>
<tr>
<td>System IO</td>
<td>REV 08</td>
<td>710-023209</td>
<td>AAAJ9290</td>
<td>SRXSME System IO</td>
</tr>
<tr>
<td>Routing Engine</td>
<td>REV 13</td>
<td>750-023223</td>
<td>AAAJ1987</td>
<td>RE-SRXSME-SRE6</td>
</tr>
<tr>
<td>ad0</td>
<td></td>
<td></td>
<td></td>
<td>2009A 0000194075 Compact Flash</td>
</tr>
<tr>
<td>usb0 (addr 1)</td>
<td></td>
<td></td>
<td></td>
<td>vendor 0x0000 uhub0</td>
</tr>
<tr>
<td>usb0 (addr 2)</td>
<td></td>
<td></td>
<td></td>
<td>vendor 0x0409 uhub1</td>
</tr>
<tr>
<td>FPC 0</td>
<td></td>
<td></td>
<td></td>
<td>FPC</td>
</tr>
<tr>
<td>FPC 1</td>
<td>REV 03</td>
<td>750-038290</td>
<td>AADL2016</td>
<td>FPC</td>
</tr>
<tr>
<td>FPC 5</td>
<td></td>
<td></td>
<td></td>
<td>FPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td></td>
<td></td>
<td>4x GE Base PIC</td>
</tr>
<tr>
<td>FPC 6</td>
<td>REV 03</td>
<td>750-037551</td>
<td>AAEC8065</td>
<td>FPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td></td>
<td></td>
<td>8x GE SFP gPIM</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 01</td>
<td>740-013111</td>
<td>8043353</td>
<td>SFP-T</td>
</tr>
<tr>
<td>Xcvr 1</td>
<td></td>
<td>NON-JNPR</td>
<td>PC602QW</td>
<td>SFP-SX</td>
</tr>
<tr>
<td>Xcvr 2</td>
<td></td>
<td>NON-JNPR</td>
<td>BDS3I</td>
<td>SFP-1000BASE-BX10-D</td>
</tr>
<tr>
<td>Xcvr 3</td>
<td>REV 01</td>
<td>740-011612</td>
<td>9XT702501080</td>
<td>SFP-LH</td>
</tr>
<tr>
<td>Xcvr 4</td>
<td>REV 01</td>
<td>740-011612</td>
<td>9XT702501079</td>
<td>SFP-LH</td>
</tr>
<tr>
<td>Xcvr 5</td>
<td></td>
<td>NON-JNPR</td>
<td>PCH2GTJ</td>
<td>SFP-SX</td>
</tr>
<tr>
<td>Xcvr 6</td>
<td></td>
<td>NON-JNPR</td>
<td>PC604DL</td>
<td>SFP-SX</td>
</tr>
<tr>
<td>Xcvr 7</td>
<td>REV 01</td>
<td>740-011620</td>
<td>5349504</td>
<td>SFP-FX</td>
</tr>
<tr>
<td>FPC 8</td>
<td>REV 00</td>
<td>750-038290</td>
<td></td>
<td>FPC</td>
</tr>
<tr>
<td>Power Supply 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Meaning**

The output displays the hardware details of the device and a list of all interfaces configured.

Verify that the output contains the following values:

- **FPC 5, PIC 0** — 8x SFP gPIM
- **FPC 6, PIC 0** — 8x SFP gPIM

**NOTE:** In the example, the output for 8-Port SFP Gigabit Ethernet XPIM is displayed as 8x GE SFP gPIM.
**Verifying the FPC Status**

**Purpose**
Verify that the status of the Flexible PIC Concentrator is online.

**Action**
From operational mode, enter the `show chassis fpc pic-status` command.

```
user@host> show chassis fpc pic-status
Slot 0 Online FPC
 PIC 0 Online 4x GE Base PIC
Slot 1 Present FPC
Slot 5 Online FPC
 PIC 0 Online 8x GE SFP gPIM
Slot 6 Online FPC
 PIC 0 Online 8x GE SFP gPIM
Slot 8 Present FPC
```

**Meaning**
The output shows the FPC status for slot 5 and slot 6 as online. The 8-Port Gigabit Ethernet SFP XPIM is installed in slot 5 and slot 6 of the device.

**Verifying Interface Link Status on Device 1**

**Purpose**
Verify that the interface link status is up.

**Action**
From operational mode, enter the `show interface terse ge-6/0/*` command.

```
user@host> show interface terse ge-6/0/*
```

**Output for Device 1**

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-6/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.1.1.1/24</td>
<td></td>
</tr>
<tr>
<td>ge-6/0/1</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/1.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>11.1.1.1/24</td>
<td></td>
</tr>
<tr>
<td>ge-6/0/2</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/2.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>12.1.1.1/24</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>Status</td>
<td>Description</td>
<td>IP Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/3</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/3.0</td>
<td>up</td>
<td></td>
<td>13.1.1.1/24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/4</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/4.0</td>
<td>up</td>
<td></td>
<td>14.1.1.1/24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/5</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/5.0</td>
<td>up</td>
<td></td>
<td>15.1.1.1/24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/6</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/6.0</td>
<td>up</td>
<td></td>
<td>16.1.1.1/24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/7</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/7.0</td>
<td>up</td>
<td></td>
<td>17.1.1.1/24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Meaning**

The output displays a list of all interfaces configured.

If the link displays **up** for all interfaces, the configuration is working properly. This verifies that the XPIM is up and end-to-end ping is working.

**Verifying the Interface Settings on Device 1**

**Purpose**

Verify that the interfaces are configured as expected.

**Action**

From operational mode, enter the `show interface ge-6/0/0 extensive | no-more` command.

```
user@host> show interface ge-6/0/0 extensive | no-more
```

**Output for Device 1**

```
Physical interface: ge-6/0/0, Enabled, Physical link is Up
 Interface index: 152, SNMP ifIndex: 544, Generation: 155
 Link-level type: Ethernet, MTU: 9192, Link-mode: Full-duplex, Speed: 1000mbps,
 BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
 Remote fault: Online
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x0
 Link flags : None
 CoS queues : 8 supported, 8 maximum usable queues
 Hold-times : Up 0 ms, Down 0 ms
 Current address: 00:26:88:04:0a:a8, Hardware address: 00:26:88:04:0a:a8
 Last flapped : 2012-07-05 21:58:46 PDT (00:13:29 ago)
```
Statistics last cleared: Never

Traffic statistics:

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th></th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes</td>
<td>228</td>
<td>0 bps</td>
<td>540</td>
</tr>
<tr>
<td>packets</td>
<td>3</td>
<td>0 pps</td>
<td>6</td>
</tr>
</tbody>
</table>

Input errors:
- Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0,
- L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0,
- FIFO errors: 0, Resource errors: 0

Output errors:
- Carrier transitions: 1, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0,
- FIFO errors: 0, HS link CRC errors: 0, MTU errors: 0, Resource errors: 0

Egress queues: 8 supported, 4 in use

<table>
<thead>
<tr>
<th>Queue number</th>
<th>Queued packets</th>
<th>Transmitted packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Queue number: Mapped forwarding classes
- 0: best-effort
- 1: expedited-forwarding
- 2: assured-forwarding
- 3: network-control

Active alarms: None

Active defects: None

MAC statistics:

<table>
<thead>
<tr>
<th></th>
<th>Receive</th>
<th>Transmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total octets</td>
<td>268</td>
<td>268</td>
</tr>
<tr>
<td>Total packets</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Unicast packets</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Broadcast packets</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Multicast packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CRC/Align errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FIFO errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC control frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC pause frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oversized frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jabber frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fragment frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VLAN tagged frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Code violations</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Filter statistics:

<table>
<thead>
<tr>
<th></th>
<th>Input packet count</th>
<th>Input packet rejects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Input DA rejects: 0
Input SA rejects: 0
Output packet count: 0
Output packet pad count: 0
Output packet error count: 0
CAM destination filters: 2, CAM source filters: 0

Autonegotiation information:
Negotiation status: Complete
Link partner:
  Link mode: Full-duplex, Flow control: None, Remote fault: OK,
  Link partner Speed: 1000 Mbps
Local resolution:
  Flow control: None, Remote fault: Link OK
Packet Forwarding Engine configuration:
  Destination slot: 6
CoS information:
  Direction: Output
  CoS transmit queue  Bandwidth  Buffer Priority
  Limit              %      bps      %      usec
  0 best-effort      95      950000000  95     0      low
  none
  3 network-control  5       50000000   5     0      low
  none

Interface transmit statistics: Disabled

Logical interface ge-6/0/0.0 (Index 81) (SNMP ifIndex 509) (Generation 146)
Flags: SNMP-Traps 0x0 Encapsulation: ENET2
Traffic statistics:
  Input bytes: 0
  Output bytes: 42
  Input packets: 0
  Output packets: 1
Local statistics:
  Input bytes: 0
  Output bytes: 42
  Input packets: 0
  Output packets: 1
Transit statistics:
  Input bytes: 0 0 bps
  Output bytes: 0 0 bps
  Input packets: 0 0 pps
  Output packets: 0 0 pps
Security: Zone: HOST
Allowed host-inbound traffic: any-service bfd bgp dvmrp igmp ldp msdp nhrp ospf ospf3 pgm pim rip ripng router-discovery rsvp sap vrrp

Flow Statistics:
Flow Input statistics:
  Self packets: 0
  ICMP packets: 0
  VPN packets: 0
  Multicast packets: 0
  Bytes permitted by policy: 0
  Connections established: 0
Flow Output statistics:
  Multicast packets: 0
  Bytes permitted by policy: 0
Flow error statistics (Packets dropped due to):
  Address spoofing: 0
  Authentication failed: 0
  Incoming NAT errors: 0
  Invalid zone received packet: 0
  Multiple user authentications: 0
  Multiple incoming NAT: 0
  No parent for a gate: 0
  No one interested in self packets: 0
  No minor session: 0
  No more sessions: 0
  No NAT gate: 0
  No route present: 0
  No SA for incoming SPI: 0
  No tunnel found: 0
  No session for a gate: 0
  No zone or NULL zone binding: 0
  Policy denied: 0
  Security association not active: 0
  TCP sequence number out of window: 0
  Syn-attack protection: 0
  User authentication errors: 0
Protocol inet, MTU: 9178, Generation: 162, Route table: 0
Flags: Sendbcast-pkt-to-re
Addresses, Flags: Is-Preferred Is-Primary
  Destination: 10.1.1/24, Local: 10.1.1.1, Broadcast: 10.1.1.255,
  Generation: 176

**Meaning**

The output displays a list of all interface verification parameters.
Verify the following information in the command output:

- Physical Interface—ge-6/0/0, enabled, physical link is **Up**
- MTU—9192
- Speed—1000 Mbps

If the verification parameters are as expected, the configuration is working properly.

**Verifying Interface Link Status on Device 2**

**Purpose**
Verify that the interface link status is up.

**Action**
From operational mode, enter the `show interface terse ge-6/0/*` command.

```
user@host> show interface terse ge-6/0/*
```

**Output for Device 2**

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-6/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.1.1.2/24</td>
<td></td>
</tr>
<tr>
<td>ge-6/0/1</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/1.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>11.1.1.2/24</td>
<td></td>
</tr>
<tr>
<td>ge-6/0/2</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/2.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>12.1.1.2/24</td>
<td></td>
</tr>
<tr>
<td>ge-6/0/3</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/3.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>13.1.1.2/24</td>
<td></td>
</tr>
<tr>
<td>ge-6/0/4</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/4.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>14.1.1.2/24</td>
<td></td>
</tr>
<tr>
<td>ge-6/0/5</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/5.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>15.1.1.2/24</td>
<td></td>
</tr>
<tr>
<td>ge-6/0/6</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/6.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>16.1.1.2/24</td>
<td></td>
</tr>
<tr>
<td>ge-6/0/7</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-6/0/7.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>17.1.1.2/24</td>
<td></td>
</tr>
</tbody>
</table>

**Meaning**
The output displays a list of all interfaces configured.

If the link displays **up** for all interfaces, the configuration is working properly. This verifies that the XPIM is up and end-to-end ping is working.
**Verifying the Interface Settings on Device 2**

**Purpose**
Verify that the interfaces are configured as expected.

**Action**
From operational mode, enter the `show interface ge-6/0/0 extensive | no-more` command.

```plaintext
user@host>show interface ge-6/0/0 extensive | no-more
```

**Output for Device 2**

<table>
<thead>
<tr>
<th>Physical interface: ge-6/0/0, Enabled, Physical link is Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface index: 144, SNMP ifIndex: 520, Generation: 147</td>
</tr>
<tr>
<td>Link-level type: Ethernet, MTU: 9192, Link-mode: Full-duplex, Speed: 1000mbps,</td>
</tr>
<tr>
<td>BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled,</td>
</tr>
<tr>
<td>Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,</td>
</tr>
<tr>
<td>Remote fault: Online</td>
</tr>
<tr>
<td>Device flags : Present Running</td>
</tr>
<tr>
<td>Interface flags: SNMP-Traps Internal: 0x0</td>
</tr>
<tr>
<td>Link flags : None</td>
</tr>
<tr>
<td>CoS queues : 8 supported, 8 maximum usable queues</td>
</tr>
<tr>
<td>Hold-times : Up 0 ms, Down 0 ms</td>
</tr>
<tr>
<td>Current address: 00:24:dc:17:2f:a8, Hardware address: 00:24:dc:17:2f:a8</td>
</tr>
<tr>
<td>Last flapped : 2012-07-05 21:59:42 PDT (00:15:32 ago)</td>
</tr>
<tr>
<td>Statistics last cleared: Never</td>
</tr>
</tbody>
</table>

**Traffic statistics:**

<table>
<thead>
<tr>
<th>Input bytes :</th>
<th>228</th>
<th>0 bps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output bytes :</td>
<td>294</td>
<td>0 bps</td>
</tr>
<tr>
<td>Input packets:</td>
<td>3</td>
<td>0 pps</td>
</tr>
<tr>
<td>Output packets:</td>
<td>5</td>
<td>0 pps</td>
</tr>
</tbody>
</table>

**Input errors:**
- Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0, L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0, FIFO errors: 0, Resource errors: 0

**Output errors:**
- Carrier transitions: 13, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0, FIFO errors: 0, HS link CRC errors: 0, MTU errors: 0, Resource errors: 0

**Egress queues: 8 supported, 4 in use**

<table>
<thead>
<tr>
<th>Queue counters:</th>
<th>Queued packets</th>
<th>Transmitted packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1 expedited-fo</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
2 assured-forwarding 0 0 0
3 network-control 0 0 0

Queue number: Mapped forwarding classes
0  best-effort
1  expedited-forwarding
2  assured-forwarding
3  network-control

Active alarms: None
Active defects: None

MAC statistics:
<table>
<thead>
<tr>
<th></th>
<th>Receive</th>
<th>Transmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total octets</td>
<td>268</td>
<td>268</td>
</tr>
<tr>
<td>Total packets</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Unicast packets</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Broadcast packets</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Multicast packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CRC/Align errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FIFO errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC control frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC pause frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oversized frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jabber frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fragment frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VLAN tagged frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Code violations</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Filter statistics:
<table>
<thead>
<tr>
<th></th>
<th>Receive</th>
<th>Transmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input packet count</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Input packet rejects</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Input DA rejects</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Input SA rejects</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Output packet count</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Output packet pad count</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Output packet error count</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

CAM destination filters: 2, CAM source filters: 0

Autonegotiation information:
Negotiation status: Complete
Link partner:
  Link mode: Full-duplex, Flow control: None, Remote fault: OK,
  Link partner Speed: 1000 Mbps
Local resolution:
  Flow control: None, Remote fault: Link OK

Packet Forwarding Engine configuration:
  Destination slot: 6

CoS information:
  Direction: Output
<table>
<thead>
<tr>
<th>CoS transmit queue</th>
<th>Bandwidth</th>
<th>Buffer Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit</td>
<td>%</td>
<td>bps</td>
</tr>
<tr>
<td>0 best-effort</td>
<td>95</td>
<td>950000000</td>
</tr>
<tr>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 network-control</td>
<td>5</td>
<td>50000000</td>
</tr>
<tr>
<td>none</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interface transmit statistics: Disabled

Logical interface ge-6/0/0.0 (Index 73) (SNMP ifIndex 509) (Generation 146)
Flags: SNMP-Traps 0x0 Encapsulation: ENET2
Traffic statistics:
- Input bytes: 0
- Output bytes: 42
- Input packets: 0
- Output packets: 1
Local statistics:
- Input bytes: 0
- Output bytes: 42
- Input packets: 0
- Output packets: 1
Transit statistics:
- Input bytes: 0
- Output bytes: 0
- Input packets: 0
- Output packets: 0
Security: Zone: HOST
Allowed host-inbound traffic: any-service bfd bgp dvmrp igmp ldp msdp nhrp ospf ospf3 pgm pim rip ripng router-discovery rsvp sap vrrp
Flow Statistics:
Flow Input statistics:
- Self packets: 0
- ICMP packets: 0
- VPN packets: 0
- Multicast packets: 0
- Bytes permitted by policy: 0
- Connections established: 0
Flow Output statistics:
- Multicast packets: 0
- Bytes permitted by policy: 0
Flow error statistics (Packets dropped due to):
- Address spoofing: 0
- Authentication failed: 0
- Incoming NAT errors: 0
Meaning

The output displays a list of all interface verification parameters.

Verify the following information in the command output:

- Physical Interface—ge-6/0/0, enabled, physical link is Up
- MTU—9192
- Speed—1000 Mbps

If the verification parameters are as expected, the configuration is working properly.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D10</td>
<td>Starting in Junos OS Release 15.1X49-D10, the 8-Port Gigabit Ethernet SFP XPIM is not supported on legacy SRX Series systems.</td>
</tr>
<tr>
<td>15.1X49-D10</td>
<td>Starting in Junos OS Release 15.1X49-D10, the 8-Port Gigabit Ethernet SFP XPIM is not supported on legacy SRX Series systems.</td>
</tr>
</tbody>
</table>
Rate-Selectability on SRX4600 Devices

If a port can be configured to support both single and multiple speeds, the port is known as a rate-selectable port. The topics below discuss the rate selectability of SRX4600 and the supported active physical rate selectable ports to prevent oversubscription.

SRX4600 Gateway Rate-Selectability Overview

The maximum amount of data that can be transmitted through a port at any given second either by a network device or by a component of the network device (such as a line card) is known as the port speed. Port speed is measured in kilobits per second (Kbps), gigabits per second (Gbps), and terabytes per second (Tbps). If a port can be configured to support both single and multiple speeds, the port is known as a rate-selectable port. Because the port is part of a network device (router or switch) or a network component (such as MPC, MIC) the component is known as a rate-selectable component. Rate selectability enables you to configure different port speeds at the port level or at the PIC level.

The SRX4600 has four rate-selectable ports (referred to as PIC 0 ports of FPC 1) that can be configured as 100-Gigabit Ethernet ports or 40-Gigabit Ethernet ports, or each port can be configured as four 10-Gigabit Ethernet ports (by using a breakout cable). The SRX4600 also has eight 10-Gigabit Ethernet ports (referred to as PIC 1 ports of FPC 1). The four rate-selectable ports supports QSFP28/QSFP+ transceivers, whereas the eight 10-Gigabit Ethernet ports supports SFP+ transceivers. Knowing the exact details of the port speeds for the PICs helps you to choose the speeds to configure on the ports or on the PICs. You can view the port speeds of the PIC by executing `show chassis pic` command. For more information, see SRX4600 Services Gateway Overview and “Supported Active Physical Rate-Selectable Ports to Prevent Oversubscription on SRX4600 Gateway” on page 373.
NOTE: By default, the two PICs of FPC 1, PIC 0 operate at 40-Gbps speed and PIC 1 operate at 10-Gbps speed.

The SRX4600 supports two types of rate selectability configuration options:

- PIC Level Configuration: To configure all ports to operate at the same speed, you configure rate selectability at the PIC level.

- Port Level Configuration: To configure different port speeds for each port, you configure rate selectability at the port level, in which case only the ports that are configured are enabled.

To configure all ports to operate at the same speed, configure rate selectability at the PIC level, in which case you cannot configure the speed of individual ports. To configure rate selectability at the PIC level, use the `pic-mode` statement and specify the port speed. To configure different port speeds for each port, configure rate selectability at the port level, in which case only the ports that are configured are enabled. To configure rate selectability at the port level, use the `speed` statement to specify the speed of individual ports.

The examples below show the sample CLI command output of the port speed capability of the 4-port PIC 0 with QSFP+ transceivers and the 8-port PIC 1 with SFP+ transceivers on the SRX4600.

```
user@router> show chassis pic fpc-slot 1 pic-slot 0
...
Port Speed Information:
 Port Capable Port Speeds
 0 4x10GE, 40GE, 100GE
 1 4x10GE, 40GE, 100GE
 2 4x10GE, 40GE, 100GE
 3 4x10GE, 40GE, 100GE
...
user@router> show chassis pic fpc-slot 1 pic-slot 1
...
Port Speed Information:
 Port Capable Port Speeds
 0 10GE
 1 10GE
 2 10GE
 3 10GE
 4 10GE
 5 10GE
 6 10GE
```
Table 23 on page 368 summarizes the rate selectability of the SRX4600 Services Gateway.

<table>
<thead>
<tr>
<th>PIC</th>
<th>Port Number</th>
<th>Port Speed Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC 0 (FPC 1)</td>
<td>0–3</td>
<td>100-Gigabit Ethernet, 40-Gigabit Ethernet, 4x10-Gigabit Ethernet</td>
</tr>
<tr>
<td>NOTE:</td>
<td></td>
<td>• Default port speed is 40 Gigabit Ethernet.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• You can configure one or all four 10-Gigabit Ethernet or 100-Gigabit Ethernet ports operating at 10-Gigabit Ethernet mode to operate in 1-Gigabit Ethernet mode.</td>
</tr>
<tr>
<td>PIC 1 (FPC 1)</td>
<td>0–7</td>
<td>10 Gigabit Ethernet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You can configure one or all 10-Gigabit Ethernet ports operating at 10-Gigabit Ethernet mode to operate in 1-Gigabit Ethernet mode.</td>
</tr>
</tbody>
</table>

The SRX4600 Services Gateway supports three different PIC types—8-port 10-Gigabit Ethernet PIC, 4-port 40-Gigabit or 100-Gigabit Ethernet PIC, and 4-port 10-Gigabit Ethernet PIC (in a chassis cluster). Starting in Junos OS Release 18.1R1, SRX4600 supports 1-Gbps port speed on the default 10-Gbps ports on its 8-port PICs and on two dedicated chassis cluster control ports on the 4-port chassis cluster PICs. Out of the four ports on the 10-Gigabit Ethernet PIC in a chassis cluster, two ports are fabric ports and the other two ports are chassis cluster control ports. The two fabric ports do not support 1-Gbps speed. Only the two control ports of the chassis cluster support a port speed of 1 Gbps.

1-Gbps speed is only supported in non-autonegotiation mode.

To configure 1-Gbps port speed:

- On the 8-port 10-Gigabit Ethernet PIC, use the `set interfaces intf-name gigether-options speed 1g` command and commit the configuration. Refer `speed (Gigabit Ethernet interface)` for more details.
On chassis cluster control interfaces (on a 4-port 10-Gigabit Ethernet PIC), use the `set chassis cluster control-port speed 1g` command. Refer `speed (Chassis Cluster)` for more details.

You must reboot the device for the changed configuration to take effect.

**NOTE:**
- The interface name prefix must be `xe`.
- Only the eight ports on PIC 1 of FPC 1 support 1-Gigabit Ethernet mode. The ports on PIC 0 of FPC 1 only support 100-Gigabit Ethernet, 40-Gigabit Ethernet, 4x10-Gigabit Ethernet mode and not 1-Gigabit Ethernet mode.
- The rate selectability at PIC level and port level does not support 1-Gbps speed. But you can configure the port configured at 10-Gbps speed to operate at 1-Gbps speed at Gigabit Ethernet interface level using `speed (Gigabit Ethernet interface)` and `speed (Chassis Cluster)` configuration statements respectively.
- The 1-Gbps operation mode is only supported in non-autonegotiation mode. If autonegotiation mode is enabled by default at the remote end, then you must disable it.
- Copper SFP is not supported on SRX4600 devices.

To view the speed configured for the interface, execute the `show interfaces extensive` command. The **Speed Configuration** output parameter in the command output indicates the current operation speed of the interface. If the interface is configured with 1-Gbps speed, then **Speed Configuration** displays **1G**; if the interface is configured with 10-Gbps speed, **Speed Configuration** displays **AUTO**.

For example:

```
user@router > show interfaces xe-1/1/0 extensive
Physical interface: xe-1/1/0, Enabled, Physical link is Down
 Interface index: 151, SNMP ifIndex: 613, Generation: 154
 Link-level type: Ethernet, MTU: 1514, MRU: 1522, LAN-PHY mode, Speed: 10Gbps,
 BPDU Error: None, Loop Detect PDU Error: None, MAC-REWRITE Error: None,
 Loopback: None, Source filtering: Disabled, Flow control: Enabled,
 Speed Configuration: 1G
...
```

In this example, the **Speed Configuration** output parameter displays **1G**, which means the operation speed of xe-1/1/0 interface is 1-Gbps speed.

**User-Configurable Rate Selectability of SRX4600 Services Gateway**

You can also configure rate selectability on SRX4600 gateways.
NOTE: Only the interface that is already operating at 10-Gigabit Ethernet mode can be configured to operate at 1-Gigabit Ethernet mode.

Table 24 on page 370 summarizes the user-configurable rate selectability of SRX4600 gateways.

### Table 24: Rate Selectability of SRX4600 Gateways

<table>
<thead>
<tr>
<th>Port Speed Configuration on PIC 0 (Gbps)</th>
<th>Port Speed Configuration on PIC 1 (Gbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Configure the number of active ports to 0</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Configure the number of active ports to 0</td>
</tr>
</tbody>
</table>

NOTE: The SRX4600 does not support heterogeneous mode. That is, in PIC mode if 40-Gbps or 100-Gbps speed is configured on PIC 0, then the number-of-ports on PIC 1 must be configured to 0 only.

### Maximum number of 10/40/100GE ports Configurable at PIC and Port Mode

Following table summarizes the maximum number of 10/40/100 Gigabit Ethernet ports per PIC configurable at PIC and port levels:

### Table 25: Maximum number of 10/40/100 Gigabit Ethernet ports Configurable at PIC and Port Level

<table>
<thead>
<tr>
<th>Maximum Ports</th>
<th>Maximum Ports configurable at PIC Mode (on both PIC0 and PIC1)</th>
<th>Maximum Ports Configurable at Port Mode (on both PIC0 and PIC1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Gigabit Ethernet Ports</td>
<td>24 Which means 16 ports from PIC 0 and 8 Ports from PIC 1.</td>
<td>20 Which means 12 ports from PIC 0 and eight ports from PIC 1.</td>
</tr>
</tbody>
</table>
### Table 25: Maximum number of 10/40/100 Gigabit Ethernet ports Configurable at PIC and Port Level (continued)

<table>
<thead>
<tr>
<th>Maximum Ports</th>
<th>Maximum Ports configurable at PIC Mode (on both PIC0 and PIC1)</th>
<th>Maximum Ports Configurable at Port Mode (on both PIC0 and PIC1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 Gigabit Ethernet Ports</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Only four ports from PIC 0 as PIC 1 supports only 10 Gbps Speed.</td>
<td></td>
</tr>
<tr>
<td>100 Gigabit Ethernet Ports</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Only four ports from PIC 0 as PIC 1 supports only 10 Gbps speed.</td>
<td></td>
</tr>
</tbody>
</table>

**Port Configuration - PIC Level**

On PIC 0, if each of the four ports is configured to operate at 100-Gbps speed, then you must configure all the 8 ports at PIC 1 to 0 (using *number-of-ports* statement). On PIC 0, if ports 0, 1, and 2 are set to 100-Gbps, and port 3 is set to 10-Gbps or 40-Gbps, then you should configure all the 8 ports at PIC 1 to 0 (using *number-of-ports* statement), and so on.

*NOTE:* Only the Interface that is already operating at 10GE mode can be configured to operate at 1GE mode.

### Configuring 40-Gigabit Ethernet ports to 4X10-Gigabit Ethernet using Breakout Cables

On SRX4600 Services Gateway, Slot 1 PIC 0 comes up with the default setting of 4X40-Gigabit Ethernet ports. Starting in Junos OS Release 18.1R1, you can configure the 40 Gigabit Ethernet port to 4X10-Gigabit Ethernet mode by plugging in QSFP-4X10-Gigabit Ethernet optics connecting with 4x10-Gigabit Ethernet breakout cables. You use QSFP+ transceivers to connect the 40-Gbps (default speed) port to the breakout cable, which connects to four SFP+ transceivers at the other end thus converting that port into four 10-Gbps interfaces.
In 4X10-Gigabit Ethernet mode, the interface naming convention for 10-Gigabit Ethernet interface is as follows:

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>Interface Convention (MPC Slot: x, PIC Slot: y, Port: z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x10-Gigabit Ethernet</td>
<td>xe-x/y/z:0</td>
</tr>
<tr>
<td></td>
<td>xe-x/y/z:1</td>
</tr>
<tr>
<td></td>
<td>xe-x/y/z:2</td>
</tr>
<tr>
<td></td>
<td>xe-x/y/z:3</td>
</tr>
</tbody>
</table>

For example, when 40-Gigabit Ethernet port et-1/0/0 is converted to 4x10-Gigabit Ethernet ports, the naming convention of 10-Gigabit Ethernet port is:

| xe-1/0/0:0:0               |
| xe-1/0/0:1                |
| xe-1/0/0:2                |
| xe-1/0/0:3                |
NOTE:

- The 40-Gigabit Ethernet ports that are converted to four 10-Gigabit Ethernet ports cannot be configured to 1-Gbps speed.
- The SRX4600 Gateway supports 40-Gigabit Ethernet breakouts only in PIC mode.
  
  For example:

  In PIC mode, to configure all 40-Gigabit Ethernet ports of PIC 0, execute the following configuration statement:

  ```
 set chassis fpc 1 pic 0 pic-mode 10G
  ```

  In PIC mode, to set only the first two 40-Gigabit Ethernet ports, execute the following configuration statement:

  ```
 set chassis fpc 1 pic 0 pic-mode 10G number-of-ports 2
  ```

  This configuration sets only the first two ports of 40-Gigabit Ethernet port and leaves the last two ports disabled, that means the last two ports cannot be used as 40-Gigabit Ethernet ports after this configuration.

  After you commit the configuration, for the new configuration to take effect, you must reboot the device or chassis cluster.

SEE ALSO

- `speed`
- `show chassis pic`
- `number-of-ports`
- `pic-mode`

Supported Active Physical Rate-Selectable Ports to Prevent Oversubscription on SRX4600 Gateway

The maximum capacity of an SRX4600 gateway is 400 Gbps, which cannot be oversubscribed. In SRX4600, the network ports are available in two groups (referred to as PICs), with restrictions around the number and type of ports that can be configured without oversubscription.

Starting in Junos OS Release 17.4R1, SRX4600 gateways support rate selectability to prevent oversubscription of the Packet Forwarding Engine bandwidth. The SRX4600 Packet Forwarding Engine
has four 100-Gigabit Ethernet QSFP28 ports (referred to as PIC 0 ports) and eight 10-Gigabit Ethernet ports (referred to as PIC 1 ports). Each of the PIC 0 ports can be used as either a 100-Gigabit Ethernet QSFP28 port or a 40-Gigabit Ethernet QSFP port, or they can be configured as four 10-Gigabit Ethernet ports (using a breakout cable).

If you configure rate selectability at the PIC level, all the ports supporting that port speed are enabled by default. This can lead to oversubscription in certain cases. To prevent the oversubscription, you can configure the number of active ports that operate at the configured speed by using the `number-of-ports number-of-active-physical-ports` configuration statement. Additionally, interfaces are created only for the active ports. For more information on supported port modes, see SRX4600 Gateway Rate-Selectability Overview.

### NOTE:
- You cannot configure the number of active ports when you configure rate selectability at the port level.

### Invalid Port Configuration

You must try to avoid configuring ports that can lead to oversubscription.

Following is an example of an invalid configuration:

```
4x100GE + 8x10GE
```

If you try to commit an invalid configuration, the configuration gets committed, but the port is not activated. This is because Junos OS allows you to configure a port before a line card is inserted. You will get an error message in the output of the `show chassis alarms` command and also in the log messages.

### Configuring Active Ports on SRX4600 Gateway with Rate Selectability

Table 26 on page 375 summarizes the active ports with `number-of-ports` configured but without any rate selectability configuration for an SRX4600 gateway. Because there is no rate selectability configured, the default speed is used in these cases.
Table 26: Active Physical Ports on the SRX4600 Gateway for Configuring Rate Selectability at PIC level

<table>
<thead>
<tr>
<th>PIC</th>
<th>Number of Ports (number_of_ports Statement)</th>
<th>Active Ports</th>
<th>PIC Level 10-Gigabit Ethernet Profile</th>
<th>PIC Level 40-Gigabit Ethernet Profile</th>
<th>PIC Level 100-Gigabit Ethernet Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC 0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0, 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0, 1, 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0, 1, 2, 3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PIC 1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0, 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0, 1, 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0, 1, 2, 3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0, 1, 2, 3, 4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0, 1, 2, 3, 4, 5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0, 1, 2, 3, 4, 5, 6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0, 1, 2, 3, 4, 5, 6, 7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 27 on page 376 summarizes the active ports without number_of_ports configured but with rate selectability at PIC-level configuration for an SRX4600 gateway.
Table 27: Without number-of-ports But with Rate Selectability at PIC Level for SRX4600 Gateway

<table>
<thead>
<tr>
<th>PIC</th>
<th>Active Ports</th>
<th>PIC-Level 10-Gigabit Ethernet</th>
<th>PIC-Level 40-Gigabit Ethernet</th>
<th>PIC-Level 100-Gigabit Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC 0</td>
<td>0-3</td>
<td>0-3</td>
<td>0-3</td>
<td></td>
</tr>
<tr>
<td>PIC 1</td>
<td>0-7</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Table 28 on page 376 summarizes the active ports with number-of-ports configured and rate selectability at PIC-level configuration for an SRX4600 gateway.

Table 28: With number-of-ports Rate Selectability at PIC level for SRX4600 Gateway

<table>
<thead>
<tr>
<th>PIC</th>
<th>Number of Ports (number-of-ports Statement)</th>
<th>Active Ports</th>
<th>PIC-Level 10-Gigabit Ethernet</th>
<th>PIC-Level 40-Gigabit Ethernet</th>
<th>PIC-Level 100-Gigabit Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC 0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0, 1</td>
<td>0, 1</td>
<td>0, 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0, 1, 2</td>
<td>0, 1, 2</td>
<td>0, 1, 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0, 1, 2, 3</td>
<td>0, 1, 2, 3</td>
<td>0, 1, 2, 3</td>
<td></td>
</tr>
</tbody>
</table>
### Table 28: With number-of-ports Rate Selectability at PIC level for SRX4600 Gateway (continued)

<table>
<thead>
<tr>
<th>PIC</th>
<th>Number of Ports (Statement)</th>
<th>Active Ports</th>
<th>PIC-Level 10-Gigabit Ethernet</th>
<th>PIC-Level 40-Gigabit Ethernet</th>
<th>PIC-Level 100-Gigabit Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC 1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0, 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0, 1, 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0, 1, 2, 3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0, 1, 2, 3, 4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0, 1, 2, 3, 4, 5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0, 1, 2, 3, 4, 5, 6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0, 1, 2, 3, 4, 5, 6, 7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

## Configuring Ethernet OAM Link Fault Management

### IN THIS SECTION
- Understanding Ethernet OAM Link Fault Management for SRX Series Services Gateways | 378
- Example: Configuring Ethernet OAM Link Fault Management on a Security Device | 380
- Example: Configuring Remote Loopback Mode on VDSL Interfaces on a Security Device | 385

The Ethernet interfaces on SRX Series devices support the IEEE 802.3ah standard for Operation, Administration, and Maintenance (OAM). The standard defines OAM link fault management (LFM). The below topics discuss the overview of Ethernet OAM LFM for SRX series devices, and examples of configuring OAM.
Understanding Ethernet OAM Link Fault Management for SRX Series Services Gateways

Starting in Junos OS Release 15.1X49-D70, Ethernet OAM link fault management for SRX Series services gateways is supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 devices.

The Ethernet interfaces on SRX Series devices support the IEEE 802.3ah standard for Operation, Administration, and Maintenance (OAM). The standard defines OAM link fault management (LFM). You can configure IEEE 802.3ah OAM LFM on point-to-point Ethernet links that are connected either directly or through Ethernet repeaters. The IEEE 802.3ah standard meets the requirement for OAM capabilities as Ethernet moves from being solely an enterprise technology to a WAN and access technology, and the standard remains backward-compatible with existing Ethernet technology.

The following OAM LFM features are supported:

- **Discovery and link monitoring**—The discovery process is triggered automatically when OAM is enabled on the interface. The discovery process permits Ethernet interfaces to discover and monitor the peer on the link if it also supports the IEEE 802.3ah standard. In active mode, the interface discovers and monitors the peer on the link if the peer also supports IEEE 802.3ah OAM functionality. In passive mode, the peer initiates the discovery process. After the discovery process has been initiated, both sides participate in discovery. The device performs link monitoring by sending periodic OAM protocol data units (PDUs) to advertise OAM mode, configuration, and capabilities.

  You can specify the number of OAM PDUs that an interface can miss before the link between peers is considered down.

- **Remote fault detection**—Remote fault detection uses flags and events. Flags convey Link Fault (a loss of signal), Dying Gasp (an unrecoverable condition such as a power failure), and Critical Event (an unspecified vendor-specific critical event). You can specify the periodic OAM PDU sending interval for fault detection. SRX Series devices use the Event Notification OAM PDU to notify the remote OAM device when a problem is detected. You can specify the action to be taken by the system when the configured link-fault event occurs.

- **Remote loopback**—Remote loopback mode ensures link quality between the device and a remote peer during installation or troubleshooting. In this mode, when the interface receives a frame that is not an OAM PDU or a pause frame, it sends it back on the same interface on which it was received. The link appears to be in the active state. You can use the returned loopback acknowledgement to test delay, jitter, and throughput.

  Junos OS can place a remote data terminal equipment (DTE) into loopback mode (if remote loopback mode is supported by the remote DTE). When you place a remote DTE into loopback mode, the interface receives the remote loopback request and puts the interface into remote loopback mode. When the interface is in remote loopback mode, all frames except OAM PDUs are looped back without any changes made to the frames. OAM PDUs continue to be sent and processed.

*Table 29 on page 379* lists the interfaces modes supported.
<table>
<thead>
<tr>
<th>Interfaces</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical interface (fe/ge)</td>
<td>Family</td>
</tr>
<tr>
<td>- ccc</td>
<td></td>
</tr>
<tr>
<td>- ethernet-switching</td>
<td></td>
</tr>
<tr>
<td>- inet6</td>
<td></td>
</tr>
<tr>
<td>- inet</td>
<td></td>
</tr>
<tr>
<td>- iso</td>
<td></td>
</tr>
<tr>
<td>- mpls</td>
<td></td>
</tr>
<tr>
<td>- tcc</td>
<td></td>
</tr>
<tr>
<td>IFD encapsulations</td>
<td></td>
</tr>
<tr>
<td>- ethernet-ccc</td>
<td></td>
</tr>
<tr>
<td>- extended-vlan-ccc (IFD vlan-tagging mode)</td>
<td></td>
</tr>
<tr>
<td>- ethernet-tcc</td>
<td></td>
</tr>
<tr>
<td>- extended-vlan-tcc</td>
<td></td>
</tr>
<tr>
<td>Aggregated Ethernet interface (Static or LACP lag)</td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td></td>
</tr>
<tr>
<td>- ethernet-switching</td>
<td></td>
</tr>
<tr>
<td>- inet</td>
<td></td>
</tr>
<tr>
<td>- mpls</td>
<td></td>
</tr>
<tr>
<td>- iso</td>
<td></td>
</tr>
<tr>
<td>- inet6</td>
<td></td>
</tr>
<tr>
<td>IFD encapsulations</td>
<td></td>
</tr>
<tr>
<td>- ethernet-ccc</td>
<td></td>
</tr>
<tr>
<td>- extended-vlan-ccc (IFD vlan-tagging mode)</td>
<td></td>
</tr>
<tr>
<td>- vlan-ccc</td>
<td></td>
</tr>
</tbody>
</table>
Example: Configuring Ethernet OAM Link Fault Management on a Security Device

Starting in Junos OS Release 15.1X49-D70, configuring Ethernet OAM link fault management is supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 devices.

The Ethernet interfaces on the SRX Series devices support the IEEE 802.3ah standard for Operation, Administration, and Maintenance (OAM). The standard defines OAM link fault management (LFM). You can configure IEEE 802.3ah OAM LFM on point-to-point Ethernet links that are connected either directly or through Ethernet repeaters.

This example describes how to enable and configure OAM LFM on a Gigabit Ethernet or Fast Ethernet interface:

Requirements

This example uses the following hardware and software components:

- Junos OS Release 12.1 R2 or later for SRX Series Services Gateways
- Any two models of SRX Series devices connected directly

Before you begin:

- Establish basic connectivity. See the Getting Started Guide for your device.
- Configure network interfaces as necessary. See "Example: Creating an Ethernet Interface" on page 282.
- Ensure that you configure the interfaces as per the interface modules listed in "Understanding Ethernet OAM Link Fault Management for SRX Series Services Gateways" on page 378.
Overview

The Ethernet interfaces on the SRX Series devices support the IEEE 802.3ah standard for Operation, Administration, and Maintenance (OAM). The standard defines OAM link fault management (LFM). You can configure IEEE 802.3ah OAM LFM on point-to-point Ethernet links that are connected either directly or through Ethernet repeaters.

This example uses two SRX Series devices connected directly. Before you begin configuring Ethernet OAM LFM on these two devices, connect the two devices directly through supported interfaces. See "Understanding Ethernet OAM Link Fault Management for SRX Series Services Gateways" on page 378.

Figure 17 on page 381 shows the topology used in this example.

Figure 17: Ethernet LFM with SRX Series Devices

![Figure 17: Ethernet LFM with SRX Series Devices](image)

NOTE: For more information about configuring Ethernet OAM Link Fault Management, see Junos® OS Ethernet Interfaces.

Configuration

To configure Ethernet OAM LFM, perform these tasks:

**Configuring Ethernet OAM Link Fault Management on Device 1**

**CLI Quick Configuration**
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set protocols oam ethernet link-fault-management interface ge-0/0/0
set protocols oam ethernet link-fault-management interface ge-0/0/0 pdu-interval 800
set protocols oam ethernet link-fault-management interface ge-0/0/0 link-discovery active
```

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the Junos OS CLI User Guide.

To configure Ethernet OAM LFM on device 1:

1. Enable IEEE 802.3ah OAM support.

   ```
 [edit]
 user@device1# set interface ge-0/0/0
   ```

2. Set the periodic OAM PDU-sending interval (in milliseconds) for fault detection.

   ```
 [edit]
 user@device1# set interface pdu-interval 800
   ```

3. Specify that the interface initiates the discovery process.

   ```
 [edit]
 user@device1# set interface ge-0/0/0 link-discovery active
   ```

**Results**

From configuration mode, confirm your configuration by entering the `show protocols` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@device1# show protocols
protocols {
 oam {
 ethernet {
 link-fault-management {
```
interface ge-0/0/0 {
  pdu-interval 800;
  link-discovery active;
}
}
}
}
}

Configuring Ethernet OAM Link Fault Management on Device 2

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set protocols oam ethernet link-fault-management interface ge-0/0/1
set protocols oam ethernet link-fault-management interface ge-0/0/1 pdu-interval 800
set protocols oam ethernet link-fault-management interface ge-0/0/1 negotiation-options allow-remote-loopback
```

Step-by-Step Procedure
To configure Ethernet OAM LFM on device 2:

1. Enable OAM on the peer interface.

```
[edit protocols oam ethernet link-fault-management]
user@device2# set interface ge-0/0/1
```

2. Set the periodic OAM PDU-sending interval (in milliseconds) for fault detection.

```
[edit protocols oam ethernet link-fault-management]
user@device2# set interface ge-0/0/1 pdu-interval 800
```

3. Enable remote loopback support for the local interface.

```
[edit protocols oam ethernet link-fault-management]
user@device2# set interface ge-0/0/1 negotiation-options allow-remote-loopback
```

Results
From configuration mode, confirm your configuration by entering the `show protocols` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```plaintext
[edit]
user@device2# show protocols
protocols {
 oam {
 ethernet {
 link-fault-management {
 interface ge-0/0/1 {
 negotiation-options {
 allow-remote-loopback;
 }
 }
 }
 }
 }
}
```

### Verification

**Verify the OAM LFM Configuration**

**Purpose**
Verify that OAM LFM is configured properly.

**Action**
From operational mode, enter the `show oam ethernet link-fault-management` command.

```
user@device1> show oam ethernet link-fault-management
```

Interface: ge-0/0/0.0
Status: Running, Discovery state: Send Any
Peer address: 2001:bd8:00:31
Flags:Remote-Stable Remote-State-Valid Local-Stable 0x50
Remote entity information:
Remote MUX action: forwarding, Remote parser action: forwarding
Discovery mode: active, Unidirectional mode: unsupported
Remote loopback mode: supported, Link events: supported
Variable requests: unsupported
Meaning
The output displays the MAC address and the discovery state is **Send Any** if OAM LFM has been configured properly.

---

Example: Configuring Remote Loopback Mode on VDSL Interfaces on a Security Device

Starting in Junos OS Release 15.1X49-D110, configuring remote loopback mode in Ethernet OAM link fault management (LFM) on a VDSL interface is supported on SRX320, SRX340, SRX345, and SRX550M devices.

This example describes the following configuration scenarios:

Starting in Junos OS Release 12.3X48-D65, configuring remote loopback mode in Ethernet OAM link fault management (LFM) on a VDSL interface is supported on SRX210, SRX220, SRX240, and SRX550 devices.

This example describes the following configuration scenarios:

- **Scenario 1**: Configuring remote loopback mode on a VDSL interface.
- **Scenario 2**: Configuring remote loopback mode on a VDSL interface acting as a PPPOE’s underlying interface.

**Requirements**

This example uses the following hardware and software components:

- Junos OS Release 15.1X49-D110 or later for SRX Series Services Gateways
Before you begin:

- Establish basic connectivity. See the Getting Started Guide for your device.
- Configure network interfaces as necessary. See “Example: Configuring VDSL2 Interfaces (Basic)” on page 188.
- Ensure that you configure the interfaces as per the interface modules listed in "Understanding Ethernet OAM Link Fault Management for SRX Series Services Gateways" on page 378
- Ensure that you configure PPPOE as per the instructions listed in "Example: Configuring PPPoE Interfaces" on page 466

Overview

This example uses an SRX Series device connected to a DSLAM. Before you begin configuring Ethernet OAM LFM on these two devices, connect the two devices directly through supported interfaces. See "Understanding Ethernet OAM Link Fault Management for SRX Series Services Gateways" on page 378.

Figure 18 on page 386 shows the topology used in this example.

Figure 18: Ethernet LFM with SRX Series Devices

NOTE: For more information about configuring Ethernet OAM Link Fault Management, see Junos® OS Ethernet Interfaces.

Configuration for Scenario 1

IN THIS SECTION

- Configuring Remote Loopback Mode on a VDSL interface of an SRX Series Device
To configure remote loopback mode on a VDSL interface, perform these tasks:

**Configuring Remote Loopback Mode on a VDSL interface of an SRX Series Device**

**CLI Quick Configuration**
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```plaintext
set protocols oam ethernet link-fault-management interface pt-1/0/0
set protocols oam ethernet link-fault-management interface pt-1/0/0 negotiation-options allow-remote-loopback
```

**Step-by-Step Procedure**
To configure remote loopback mode on a VDSL interface of an SRX Series device:

1. Enable OAM on a VDSL interface.

   ```plaintext
 [edit protocols oam ethernet link-fault-management]
 user@device2# set interface pt-1/0/0
   ```

2. Enable remote loopback support for the interface.

   ```plaintext
 [edit protocols oam ethernet link-fault-management]
 user@device2# set interface pt-1/0/0 negotiation-options allow-remote-loopback
   ```

**Results**
From configuration mode, confirm your configuration by entering the `show protocols` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```plaintext
[edit]
user@device2# show protocols
protocols {
 oam {
 ethernet {
 link-fault-management {
 interface pt-1/0/0 {
 negotiation-options {
 allow-remote-loopback;
 }
 }
 }
 }
 }
}
```
Configuration for Scenario 2

IN THIS SECTION

- Configuring Remote Loopback Mode on a PPPOE’s underlying interface | 388

To configure remote loopback mode on a PPPOE’s underlying interface, perform these tasks:

**Configuring Remote Loopback Mode on a PPPOE’s underlying interface**

**CLI Quick Configuration**

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```plaintext
set interfaces pp0 unit 0 pppoe-options underlying-interface pt-1/0/0
set protocols oam ethernet link-fault-management interface pt-1/0/0 link-discovery active
set protocols oam ethernet link-fault-management interface pt-1/0/0 negotiation-options allow-remote-loopback
```

**Step-by-Step Procedure**

To configure remote loopback mode on a PPPOE’s underlying interface:

1. Create the PPPoE interface pp0 and specify the logical PT interface pt-1/0/0 as the underlying interface.

   ```plaintext
 [edit protocols oam ethernet link-fault-management]
 user@device2# set interfaces pp0 unit 0 pppoe-options underlying-interface pt-1/0/0
   ```

2. Specify that the interface initiates the discovery process.

   ```plaintext
 user@device2# set protocols oam ethernet link-fault-management interface pt-1/0/0 link-discovery active
   ```

3. Enable remote loopback mode.
Results
From configuration mode, confirm your configuration by entering the `show protocols` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@device2# show protocols
protocols {
 oam {
 ethernet {
 link-fault-management {
 interface pt-1/0/0 {
 link-discovery active;
 negotiation-options {
 allow-remote-loopback;
 }
 }
 }
 }
 }
}
```

Verification

**Verify the OAM LFM Configuration**

**Purpose**
Verify that OAM LFM is configured properly.

**Action**
From operational mode, enter the `show oam ethernet link-fault-management` command.

```
user@device1> show oam ethernet link-fault-management
```

```
Interface: pt-1/0/0.0
Status: Running, Discovery state: Send Any
Transmit interval: 300ms, PDU threshold: 3 frames, Hold time: 900ms
```
Peer address: 2001:db8:e5:b9:c8:ed
Flags: Remote-Stable Remote-State-Valid Local-Stable 0x50
Loopback tracking: Disabled, Loop status: Unknown
Remote entity information:
Remote MUX action: forwarding, Remote parser action: forwarding
Discovery mode: active, Unidirectional mode: unsupported
Remote loopback mode: unsupported, Link events: supported
Variable requests: unsupported

Meaning
The output displays the MAC address and the discovery state is **Send Any** if OAM LFM has been configured properly.

Configuring Ethernet OAM Connectivity Fault Management

**IN THIS SECTION**
- Understanding Ethernet OAM Connectivity Fault Management | 391
- Configuring the Continuity Check Protocol on a Security Device | 393
- Configuring the Link Trace Protocol on a Security Device | 395
- Creating a Maintenance Domain on a Security Device | 395
- Configuring a Maintenance Domain MIP Half Function on a Security Device | 397
- Creating a Maintenance Association on a Security Device | 397
- Configuring a Maintenance Association End Point on a Security Device | 398
- Example: Configuring Ethernet OAM Connectivity Fault Management on a Security Device | 400

Ethernet interfaces on SRX Series devices support the IEEE 802.1ag standard for Operation, Administration, and Management (OAM). The 802.1ag is an IEEE standard for connectivity fault management (CFM). The below topics discuss the overview of CFM, configuration of continuity check protocol, link trace protocol, creating a maintenance domain, and configuration of Ethernet OAM CFM on a security device.
Understanding Ethernet OAM Connectivity Fault Management

Ethernet interfaces on SRX Series devices support the IEEE 802.1ag standard for Operation, Administration, and Management (OAM). The 802.1ag is an IEEE standard for connectivity fault management (CFM). The IEEE 802.1ag provides a specification for Ethernet CFM. The Ethernet network can consist of one or more service instances. A service instance could be a VLAN or a concatenation of VLANs. The goal of CFM is to provide a mechanism to monitor, locate, and isolate faulty links.

NOTE: Support for the IEEE 802.1ag standard for OAM on SRX Series devices depends on the Junos OS release running on the device.

Starting in Junos OS Release 15.1X49-D80, Ethernet OAM CFM is supported on SRX1500 devices.

Starting in Junos OS Release 15.1X49-D75, Ethernet OAM CFM is supported on SRX300, SRX320, SRX340, SRX345, and SRX550M devices.

Ethernet OAM CFM is not supported from Junos OS Release 15.1X49-D40 to Junos OS Release 15.1X49-D70.

CFM support includes the following features:

- Fault monitoring using the Continuity Check Protocol. This is a neighbor discovery and health check protocol that discovers and maintains adjacencies at the VLAN or link level.
- Path discovery and fault verification using the Link Trace protocol. This feature is not supported in Junos OS Release 12.3X48-D65.
- Fault isolation using the Loopback protocol.

The Loopback protocol is used to check access to maintenance association end points (MEPs) under the same maintenance association (MA). The Loopback messages are triggered by an administrator using the `ping ethernet` command.

NOTE: Virtual private LAN service (VPLS) is not supported on SRX100, SRX110, SRX210, SRX220, SRX240, SRX300, SRX320, SRX340, SRX345, SRX550M, SRX1400, and SRX1500 devices.

CFM partitions the service network into various administrative domains. For example, operators, providers, and customers might be part of different administrative domains. Each administrative domain is mapped into one maintenance domain providing enough information to perform its own management, thus avoiding security breaches and making end-to-end monitoring possible.

In a CFM maintenance domain, each service instance is called a maintenance association. A maintenance association can be thought of as a full mesh of maintenance association end points (MEPs) having similar
characteristics. MEPs are active CFM entities generating and responding to CFM protocol messages. There is also a maintenance association intermediate point (MIP), which is a CFM entity similar to the MEP, but more passive (MIPs only respond to CFM messages).

Each maintenance domain is associated with a maintenance domain level from 0 through 7. Level allocation is based on the network hierarchy, where outer domains are assigned a higher level than the inner domains. You configure customer end points to have the highest maintenance domain level. The maintenance domain level is a mandatory parameter that indicates the nesting relationships between various maintenance domains. The level is embedded in each CFM frame. CFM messages within a given level are processed by MEPs at that same level.

To enable CFM on an Ethernet interface, you must configure maintenance domains, maintenance associations, and MEPs.

The limitations for CFM are as follows:

- You cannot configure MEP and MIP on the same VLAN.
- CFM and link fault management (LFM) can be configured on the same interface.
- You cannot configure CFM with Generic VLAN Registration Protocol (GVRP).
- CFM is not supported on VoIP VLAN ports.
- On SRX240, and SRX550M devices, the default Loopback message (LBM) packet size is 113 bytes.

**Benefits of Ethernet CFM**

Ethernet CFM provides the following benefits:

- End-to-end service-level OAM technology
- Reduced operating expense for service provider Ethernet networks
- Competitive advantage for service providers

**CFM over VDSL and PPPoE interfaces for SRX210, SRX220, SRX240, SRX320, SRX340, SRX345, SRX550, and SRX550M Devices**

Starting in Junos OS Release 12.3X48-D65, on SRX210, SRX220, SRX240, and SRX550 devices, Operation, Administration, and Maintenance (OAM) connectivity fault management (CFM) is supported on very-high-bit-rate digital subscriber line (VDSL) and Point-to-Point Protocol over Ethernet (PPPoE) interfaces in addition to Ethernet interfaces.

CFM over VDSL should be configured on the pt interface. To support CFM over PPPoE, you need to configure maintenance domain and maintenance association end point (MEP). The CFM over VDSL interface supports down direction MEP, continuity check, and loopback protocols.
The following are the limitations when configuring Ethernet CFM over VDSL or Layer 3 interface:

- CFM action profiles are not supported on the Point-to-Point Protocol over Ethernet (PPPoE) logical interface on SRX210, SRX220, SRX240, SRX550, and SRX650 devices.
- Synthetic loss measurement on demand is supported only on SRX320, SRX340, SRX345, and SRX550M devices. Proactive synthetic loss measurement is not supported.
- When CFM over PPPoE is implemented, CFM must be applied on the PPPoE logical interface and not on the underlying interface.
- CFM over VDSL can be implemented as a MEP but not as a MIP.
- CFM higher-level pass-through over a VDSL or Gigabit Ethernet interface in Layer 3 interface mode is not supported.
- For a VLAN-tagged VDSL interface, CFM must always be applied on the respective logical interface and not over the physical interface.
- When CFM is enabled on VDSL, CFM packets are dropped randomly, causing CFM sessions to flap based on the timer when transit traffic exceeds the line rate. Flapping occurs because the VDSL Mini-Physical Interface Module (Mini-PIM) cannot differentiate and prioritize CFM packets.

### Configuring the Continuity Check Protocol on a Security Device

The Continuity Check Protocol is used for fault detection by a maintenance association end point (MEP) within a maintenance association. The MEP periodically sends continuity check multicast messages. The receiving MEPs use the continuity check messages (CCMs) to build a MEP database of all MEPs in the maintenance association.

Starting in Junos OS Release 12.3X48-D65, on SRX210, SRX220, SRX240, and SRX550 devices, the continuity check protocol for Ethernet Operation, Administration, and Management (OAM) connectivity fault management is supported over VDSL and PPPoE interfaces in addition to Ethernet interfaces.

Starting in Junos OS Release 15.1X49-D80, the continuity check protocol for Ethernet OAM CFM is supported on SRX1500 devices.

Starting in Junos OS Release 15.1X49-D75, the continuity check protocol for Ethernet OAM CFM is supported on SRX300, SRX320, SRX340, SRX345, and SRX550M devices.

The continuity check protocol for Ethernet OAM CFM is not supported from Junos OS Release 15.1X49-D40 to Junos OS Release 15.1X49-D70.

To configure the Continuity Check Protocol:

1. Enable the Continuity Check Protocol.
2. Specify the continuity check hold interval. The hold interval is the number of minutes to wait before flushing the MEP database if no updates occur. The default value is 10 minutes (not supported in Junos OS Release 12.3X48-D60).

```bash
[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name
 maintenance-association ma-name]
user@host# set hold-interval number
```

3. Specify the CCM interval. The interval is the time between the transmission of CCMs. You can specify 10 minutes (10m), 1 minute (1m), 10 seconds (10s), 1 second (1s), or 100 milliseconds (100ms).

```bash
[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name
 maintenance-association ma-name continuity-check]
user@host# set interval number
```

4. Specify the number of CCMs (that is, protocol data units) that can be lost before the MEP is marked as down. The default number of protocol data units (PDUs) is 3.

```bash
[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name
 maintenance-association ma-name continuity-check]
user@host# set loss-threshold number
```

**NOTE:** If the CCM interval is 100 milliseconds, only four MEPs are supported on a device.
Configuring the Link Trace Protocol on a Security Device

Starting in Junos OS Release 15.1X49-D80, configuring the Link Trace protocol for Ethernet OAM connectivity fault management is supported on SRX1500 devices. Starting in Junos OS Release 15.1X49-D75, configuring the Link Trace protocol for Ethernet OAM connectivity fault management is supported on SRX300, SRX320, SRX340, SRX345, and SRX550M devices. Configuring the Link Trace protocol for Ethernet OAM connectivity fault management is not supported from Junos OS Release 15.1X49-D40 to Junos OS Release 15.1X49-D70.

The Link Trace protocol is used for path discovery between a pair of maintenance points. Link Trace Messages (LTMs) are triggered by an administrator using the `traceroute ethernet` command to verify the path between a pair of MEPs under the same maintenance association. LTMs can also be used to verify the path between a MEP and a MIP under the same maintenance domain.

To configure the Link Trace protocol:

1. Configure the Link Trace path age timer. If no response to a Link Trace request is received, the request and response entries are deleted after the age timer expires.

   ```
 [edit protocols oam ethernet connectivity-fault-management]
 user@host# set linktrace age time
   ```

2. Configure the number of Link Trace Reply (LTR) entries to be stored per Link Trace request.

   ```
 [edit protocols oam ethernet connectivity-fault-management]
 user@host# set linktrace path-database-size path-database-size
   ```

Creating a Maintenance Domain on a Security Device

A maintenance domain consists of network entities such as operators, providers, and customers. A maintenance domain is a management space for managing and administering a network. A domain is owned and operated by a single entity and defined by the set of ports internal to it and at its boundary. Each maintenance domain is associated with a maintenance domain level from 0 through 7. Level allocation is based on the network hierarchy, where outer domains are assigned a higher level than the inner domains. You configure customer endpoints to have the highest maintenance domain level. The maintenance domain level is a mandatory parameter that indicates the nesting relationships between various maintenance domains.
To enable connectivity fault management (CFM) on an Ethernet interface, maintenance domains, maintenance associations, and maintenance association end points (MEPs) must be created and configured.

Starting in Junos OS Release 12.3X48-D65, on SRX210, SRX220, SRX240, and SRX550 devices, creating a maintenance domain for Ethernet OAM CFM is supported over VDSL and PPPoE interfaces in addition to Ethernet interfaces.

Starting in Junos OS Release 15.1X49-D80, creating a maintenance domain for Ethernet OAM CFM is supported on SRX1500 devices.

Starting in Junos OS Release 15.1X49-D75, creating a maintenance domain for Ethernet OAM CFM is supported on SRX300, SRX320, SRX340, SRX345, and SRX550M devices.

Creating a maintenance domain for Ethernet OAM CFM is not supported from Junos OS Release 15.1X49-D40 to Junos OS Release 15.1X49-D70.

To create a maintenance domain:

1. Specify a name for the maintenance domain.

   ```bash
 [edit protocols oam ethernet connectivity-fault-management]
 user@host# set maintenance-domain domain-name
   ```

2. Specify a format for the maintenance domain name. If you do not specify a format, no name is configured.
   - A plain ASCII character string
   - A Domain Name System (DNS) format
   - A media access control (MAC) address plus a two-octet identifier in the range 0 through 65,535
   - None

   ```bash
 [edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name]
 user@host# set name-format format
   ```

   For example, to specify the name format as a MAC address plus a two-octet identifier:
   ```bash
 [edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name]
 user@host# set name-format mac+2oct
   ```

3. Configure the maintenance domain level, which is used to indicate the nesting relationship between this domain and other domains. Use a value from 0 through 7.

   ```bash
 [edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name]
 user@host# set level level-number
   ```
Configuring a Maintenance Domain MIP Half Function on a Security Device

Starting in Junos OS Release 15.1X49-D80, configuring a maintenance domain MIP half function for Ethernet OAM connectivity fault management is supported on SRX1500 devices.

Starting in Junos OS Release 15.1X49-D75, configuring a maintenance domain MIP half function for Ethernet OAM connectivity fault management is supported on SRX300, SRX320, SRX340, SRX345, and SRX550M devices.

Configuring a maintenance domain MIP half function for Ethernet OAM connectivity fault management is not supported from Junos OS Release 15.1X49-D40 to Junos OS Release 15.1X49-D70.

MIP half function (MHF) divides the maintenance association intermediate point (MIP) functionality into two unidirectional segments, improves visibility with minimal configuration, and improves network coverage by increasing the number of points that can be monitored. MHF extends monitoring capability by responding to loopback and Link Trace messages to help isolate faults. Whenever a MIP is configured, the MIP half function value for all maintenance domains and maintenance associations must be the same.

To configure the MIP half function:

```
[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name]
user@host# set mip-half-function default
```

**NOTE:**
- If SRX340, or SRX345 devices are configured as MIPs, ensure that a static MAC is configured in the Ethernet switching table with the next-hop interface to the MEP MAC.
- You cannot configure MIP in a nondefault domain.
- In Q-in-Q mode, double tag packets are not retained by MIP.
- A maximum of 116 MIPs can be configured on a device.

Creating a Maintenance Association on a Security Device

In a connectivity fault management (CFM) maintenance domain, each service instance is called a maintenance association. A maintenance association can be thought of as a full mesh of maintenance association end points (MEPs) having similar characteristics.
Starting in Junos OS Release 12.3X48-D65, on SRX210, SRX220, SRX240, and SRX550 devices, creating a maintenance association for Ethernet OAM connectivity fault management is supported over VDSL and PPPoE interfaces in addition to Ethernet interfaces.

Starting in Junos OS Release 15.1X49-D80, creating a maintenance association for Ethernet OAM CFM is supported on SRX1500 devices.

Starting in Junos OS Release 15.1X49-D75, creating a maintenance association for Ethernet OAM CFM is supported on SRX300, SRX320, SRX340, SRX345, and SRX550M devices.

Creating a maintenance association for Ethernet OAM CFM is not supported from Junos OS Release 15.1X49-D40 to Junos OS Release 15.1X49-D70.

To create a maintenance association:

```
[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name]
user@host# set maintenance-association ma-name
```

NOTE: On SRX210, SRX220, SRX240, SRX300, SRX320, SRX340, SRX345, SRX550, SRX550M, and SRX650 devices, a maximum of seven maintenance associations are supported.

Configuring a Maintenance Association End Point on a Security Device

Starting in Junos OS Release 12.3X48-D65, on SRX210, SRX220, SRX240, and SRX550 devices, configuring a maintenance association end point for Ethernet OAM CFM is supported over VDSL and PPPoE interfaces in addition to Ethernet interfaces.

Starting in Junos OS Release 15.1X49-D80, configuring a maintenance association end point for Ethernet OAM CFM is supported on SRX1500 devices.

Starting in Junos OS Release 15.1X49-D75, configuring a maintenance association end point for Ethernet OAM CFM is supported on SRX300, SRX320, SRX340, SRX345, and SRX550M devices.

Configuring a maintenance association end point for Ethernet OAM CFM is not supported from Junos OS Release 15.1X49-D40 to Junos OS Release 15.1X49-D70.

To configure a MEP:

1. Specify an ID for the MEP. The value can be from 1 through 8191.
2. Enable MEP automatic discovery if you want to have the MEP accept continuity check messages (CCMs) from all remote MEPS of the same maintenance association.

```
[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name
 maintenance-association ma-name]
user@host# set mep mep-id
```

3. Specify that CFM CCM packets be transmitted only in one direction for the MEP. That is, set the direction as down so that CCMs are transmitted only out of (not into) the interface configured on this MEP.

```
[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name
 maintenance-association ma-name mep mep-id]
user@host# set direction down
```

4. Specify the logical interface to which the MEP is attached. It can be either an access interface or a trunk interface. If you specify a trunk interface, the VLAN associated with that interface must have a VLAN ID.

```
[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name
 maintenance-association ma-name mep mep-id]
user@host# set interface interface-name
```

5. Configure a remote MEP from which CCMs are expected. If automatic discovery is not enabled, the remote MEP must be configured under the mep statement; otherwise, the CCMs from the remote MEP will be treated as errors.

```
[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name
 maintenance-association ma-name mep mep-id]
user@host# set remote-mep mep-id
```

NOTE: You cannot configure MEPS at different levels for the same VLANs.
Example: Configuring Ethernet OAM Connectivity Fault Management on a Security Device

IN THIS SECTION

- Requirements | 400
- Overview | 400
- Configuring Ethernet OAM Connectivity Fault Management | 401
- Verification | 408

Starting in Junos OS Release 15.1X49-D80, Ethernet OAM connectivity fault management is supported on SRX1500 devices.

Starting in Junos OS Release 15.1X49-D75, Ethernet OAM connectivity fault management is supported on SRX300, SRX320, SRX340, SRX345, and SRX550M devices.

Ethernet OAM connectivity fault management is not supported from Junos OS Release 15.1X49-D40 to Junos OS Release 15.1X49-D70.

Connectivity Fault Management (CFM) provides a mechanism to monitor, locate, and isolate faulty links.

This example describes how to enable and configure an end-to-end OAM CFM session on an Ethernet interface.

**Requirements**

This example uses the following hardware and software components:

- Three SRX Series devices connected by a point-to-point Ethernet link.
- Junos OS Release 12.1X44-D10 or later for SRX Series devices.

**Overview**

Ethernet interfaces on SRX Series devices support the IEEE 802.1ag standard for Operation, Administration, and Management (OAM). The IEEE 802.1ag specification provides a specification for Ethernet connectivity fault management (CFM). CFM can be used to detect faults in the network path between the customer premises devices. It also helps in detecting the device or node in the provider network, where the failure occurred.
This example describes how to configure an end to end CFM session. In this example, three devices are connected by a point-to-point Ethernet link. The link between these devices is monitored using CFM. To check connectivity or fault through the provider network, maintenance intermediate point (MIP) is configured.

**Topology**

Figure 19 on page 401 shows three SRX Series devices connected by a point-to-point Ethernet link.

Figure 19: Ethernet CFM with SRX Series Devices

**Legend**

MA - Maintenance Association  
MD - Maintenance Domain  
MEP - Maintenance Association End Point  
MIP - Maintenance Association Intermediate Point

**Configuring Ethernet OAM Connectivity Fault Management**

**IN THIS SECTION**

- Configuring Ethernet OAM Connectivity Fault Management on Device 1 | 402
- Configuring Ethernet OAM CFM with MIP Half Function on Device 2 | 404
- Configuring Ethernet OAM Connectivity Fault Management on Device 3 | 406
Configuring Ethernet OAM Connectivity Fault Management on Device 1

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```plaintext
set interfaces ge-0/0/4 unit 0 family ethernet-switching interface-mode trunk
set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members v100
set vlans v100 vlan-id 100
set protocols oam ethernet connectivity-fault-management maintenance-domain Customer-md level 5
set protocols oam ethernet connectivity-fault-management maintenance-domain Customer-md maintenance-association Customer-ma mep 100 interface ge-0/0/4.0
set protocols oam ethernet connectivity-fault-management maintenance-domain Customer-md maintenance-association Customer-ma mep 100 interface vlan 100
set protocols oam ethernet connectivity-fault-management maintenance-domain Customer-md maintenance-association Customer-ma auto-discovery
set protocols oam ethernet connectivity-fault-management maintenance-domain Customer-md maintenance-association Customer-ma continuity-check interval 10s
set protocols oam ethernet connectivity-fault-management maintenance-domain Customer-md maintenance-association Customer-ma continuity-check hold-interval 20
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To enable and configure OAM CFM on device 1:

1. Define a VLAN and enable the interface for family Ethernet switching with interface mode trunk or access.

   ```plaintext
 [edit]
 user@host# set interfaces ge-0/0/4 unit 0 family ethernet-switching interface-mode trunk
 user@host# set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members v100
 user@host# set vlans v100 vlan-id 100
 ``

2. Specify the maintenance domain name and the maintenance domain level.

   ```plaintext
   [edit protocols oam ethernet connectivity-fault-management ]
   user@host# set maintenance-domain Customer-md level 5
   ``

3. Create a maintenance association and configure MEP.
4. Enable MEP automatic discovery.

[edit protocols oam ethernet connectivity-fault-management maintenance-domain Customer-md]
user@host# set maintenance-association Customer-ma mep 100 interface ge-0/0/4.0
user@host# set maintenance-association Customer-ma mep 100 interface vlan 100

5. Enable the Continuity Check Protocol and specify the continuity check interval and hold interval.

[edit protocols oam ethernet connectivity-fault-management maintenance-domain Customer-md]
user@host# set mep 100 auto-discovery
user@host# set continuity-check interval 10s
user@host# set continuity-check hold-interval 20

Results
From configuration mode, confirm your configuration by entering the `show protocols` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show protocols` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```
[edit]
user@host# show protocols

oam {
 ethernet {
 connectivity-fault-management {
 maintenance-domain Customer-md {
 level 5;
 maintenance-association Customer-ma {
 continuity-check {
 interval 10s;
 hold-interval 20;
 }
 mep 100 {
 interface ge-0/0/4.0 vlan 100;
 }
 }
 }
 }
 }
}
```
If you are done configuring the device, enter `commit` from configuration mode.

**Configuring Ethernet OAM CFM with MIP Half Function on Device 2**

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```
set interfaces ge-0/0/1 unit 0 family ethernet-switching interface-mode trunk
set interfaces ge-0/0/1 unit 0 family ethernet-switching vlan members v100
set interfaces ge-0/0/4 unit 0 family ethernet-switching interface-mode trunk
set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members v100
set vlans v100 vlan-id 100
set protocols oam ethernet connectivity-fault-management maintenance-domain default-5 v100
set protocols oam ethernet connectivity-fault-management maintenance-domain default-5 mip-half-function default
```

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the CLI User Guide.

To configure MIP half function:

1. Define a VLAN and enable the interface for family Ethernet switching with interface mode trunk or access.

   ```
 [edit]
 user@host# set interfaces ge-0/0/1 unit 0 family ethernet-switching interface-mode trunk
 user@host# set interfaces ge-0/0/1 unit 0 family ethernet-switching vlan members v100
 user@host# set interfaces ge-0/0/4 unit 0 family ethernet-switching interface-mode trunk
 user@host# set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members v100
 user@host# set vlans v100 vlan-id 100
   ```

2. Create a maintenance domain and configure VLAN.
3. Create a MIP half function.

```
[edit protocols oam ethernet connectivity-fault-management]
user@host# set maintenance-domain default-5 v100
```

```
[edit protocols oam ethernet connectivity-fault-management]
user@host# set maintenance-domain default-5 mip-half-function default
```

**NOTE:** If you want to configure traceoptions, run the following commands:

```
set protocols oam ethernet connectivity-fault-management traceoptions file CFM_trace
set protocols oam ethernet connectivity-fault-management traceoptions flag all
```

**Results**

From configuration mode, confirm your configuration by entering the `show protocols` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```
[edit]
user@host# show protocols
 oam {
 ethernet {
 connectivity-fault-management {
 traceoptions {
 file CFM_trace;
 flag all;
 }
 maintenance-domain default-5 {
 v100;
 mip-half-function default;
 }
 }
 }
 }
```

If you are done configuring the device, enter `commit` from configuration mode.
Configuring Ethernet OAM Connectivity Fault Management on Device 3

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```plaintext
set interfaces ge-0/0/1 unit 0 family ethernet-switching interface-mode trunk
set interfaces ge-0/0/1 unit 0 family ethernet-switching vlan members v100
set vlans v100 vlan-id 100
set protocols oam ethernet connectivity-fault-management maintenance-domain Customer-md level 5
set protocols oam ethernet connectivity-fault-management maintenance-domain Customer-md maintenance-association Customer-ma mep 101 interface ge-0/0/1.0
set protocols oam ethernet connectivity-fault-management maintenance-domain Customer-md maintenance-association Customer-ma mep 101 interface vlan 100
set protocols oam ethernet connectivity-fault-management maintenance-domain Customer-md maintenance-association Customer-ma auto-discovery
set protocols oam ethernet connectivity-fault-management maintenance-domain Customer-md maintenance-association Customer-ma continuity-check hold-interval 20
set protocols oam ethernet connectivity-fault-management maintenance-domain Customer-md maintenance-association Customer-ma continuity-check interval 10s
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To enable and configure OAM CFM on Device 3:

1. Define a VLAN and enable the interface for family Ethernet switching with interface mode trunk or access.

   ```plaintext
 [edit]
 user@host# set interfaces ge-0/0/1 unit 0 family ethernet-switching interface-mode trunk
 user@host# set interfaces ge-0/0/1 unit 0 family ethernet-switching vlan members v100
 user@host# set vlans v100 vlan-id 100
   ```

2. Specify the maintenance domain name and the maintenance domain level.

   ```plaintext
 [edit protocols oam ethernet connectivity-fault-management]
 user@host# set maintenance-domain Customer-md level 5
   ```

3. Create a maintenance association and configure MEP.
4. Enable MEP automatic discovery.

```
[edit protocols oam ethernet connectivity-fault-management maintenance-domain Customer-md]
user@host# set maintenance-association Customer-ma mep 101 interface ge-0/0/1.0
user@host# set maintenance-association Customer-ma mep 101 interface vlan 100
```

5. Enable the Continuity Check Protocol and specify the continuity check interval and hold interval.

```
[edit protocols oam ethernet connectivity-fault-management maintenance-domain Customer-md]
maintenance-association Customer-ma
user@host# set continuity-check interval 10s
user@host# set continuity-check hold-interval 20
```

**Results**

From configuration mode, confirm your configuration by entering the `show protocols` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).
If you are done configuring the device, enter commit from configuration mode.

**Verification**

**IN THIS SECTION**

- Verifying the OAM CFM Configuration on Device 1 | 408
- Verifying the OAM CFM Configuration with MIP Half Function on Device 2 | 410
- Verifying the OAM CFM Configuration on Device 3 | 410
- Verifying the Path Using the Link Trace Protocol | 412
- Verifying MEP Continuity Using Ping | 412

Confirm that the configuration is working properly.

**Verifying the OAM CFM Configuration on Device 1**

**Purpose**
Verify that OAM CFM has been configured properly.

**Action**
From operational mode, enter the following commands:

- `show oam ethernet connectivity-fault-management adjacencies` to display connectivity-fault-management adjacencies.
- `show oam ethernet connectivity-fault-management interfaces` to display the Ethernet OAM information for the specified interface.

These commands produce the following sample output:

```
user@host# show oam ethernet connectivity-fault-management adjacencies

Mep-id | Interface | State | Timer to Expire
-------|------------------|-------|-----------------|
101 | ge-0/0/4.0 | ok | 29
```
user@host# show oam ethernet connectivity-fault-management interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>Link</th>
<th>Status</th>
<th>Level</th>
<th>MEP Identifier</th>
<th>Neighbours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/4.0</td>
<td>Up</td>
<td>Active</td>
<td>5</td>
<td>100</td>
<td>1</td>
</tr>
</tbody>
</table>

user@host# show oam ethernet connectivity-fault-management interfaces detail

Interface name: ge-0/0/4.0, vlan 100, Interface status: Active, Link status: Up
Maintenance domain name: Customer-md, Format: string, Level: 5
Maintenance association name: Customer-ma, Format: string
Continuity-check status: enabled, Interval: 10s
MEP identifier: 100, Direction: down, MAC address: 2c:6b:f5:62:29:84
MEP status: running
Defects:
- Remote MEP not receiving CCM : no
- Erroneous CCM received : no
- Cross-connect CCM received : no
- RDI sent by some MEP : no
Statistics:
- CCMs sent : 7
- CCMs received out of sequence : 0
- LBMs sent : 0
- Valid in-order LBRs received : 0
- Valid out-of-order LBRs received : 0
- LBRs received with corrupted data : 0
- LBRs sent : 0
- LTM sent : 0
- LTM received : 0
- LTR sent : 0
- LTR received : 0
- Sequence number of next LTM request : 0
- 1DMs sent : 0
- Valid 1DMs received : 0
- Invalid 1DMs received : 0
- DMMs sent : 0
- DMR sent : 0
- Valid DMRs received : 0
- Invalid DMRs received : 0
Remote MEP count: 1
<table>
<thead>
<tr>
<th>Identifier</th>
<th>MAC address</th>
<th>State</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>80:71:1f:ad:53:81</td>
<td>ok</td>
<td>ge-0/0/4.0</td>
</tr>
</tbody>
</table>
Meaning
• If the `show oam ethernet connectivity-fault-management interfaces detail` command output displays continuity-check status as **enabled** and displays details of the remote MEP, it means that connectivity fault management (CFM) was configured properly.

• If the `show oam ethernet connectivity-fault-management adjacencies` command output displays the state as **ok**, it indicates that the Continuity Check Protocol is up.

**Verifying the OAM CFM Configuration with MIP Half Function on Device 2**

**Purpose**
Verify that OAM CFM has been configured properly.

**Action**
From operational mode, run the `show oam ethernet connectivity-fault-management mip` command.

```bash
user@host# show oam ethernet connectivity-fault-management mip vlan 100
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/1.0</td>
<td>5</td>
</tr>
<tr>
<td>ge-0/0/4.0</td>
<td>5</td>
</tr>
</tbody>
</table>

**Meaning**
The `show oam ethernet connectivity-fault-management mip` command output displays the MIP information.

**Verifying the OAM CFM Configuration on Device 3**

**Purpose**
Verify that OAM CFM has been configured properly.

**Action**
From operational mode, enter the following commands:

• `show oam ethernet connectivity-fault-management adjacencies` to display connectivity-fault-management adjacencies.

• `show oam ethernet connectivity-fault-management interfaces` to display the Ethernet OAM information for the specified interface.

```bash
user@host# show oam ethernet connectivity-fault-management adjacencies
```
User@host#  show oam ethernet connectivity-fault-management interfaces detail

Interface name: ge-0/0/1.0, vlan 100, Interface status: Active, Link status: Up  
  Maintenance domain name: Customer-md, Format: string, Level: 5  
  Maintenance association name: Customer-ma, Format: string  
  Continuity-check status: enabled, Interval: 10s  
  MEP status: running  
  Defects:  
    Remote MEP not receiving CCM             : no  
    Erroneous CCM received                   : no  
    Cross-connect CCM received              : no  
    RDI sent by some MEP                    : no  
  Statistics:  
    CCMs sent                               : 77  
    CCMs received out of sequence            : 0  
    LBMs sent                                : 0  
    Valid in-order LBRs received             : 0  
    Valid out-of-order LBRs received          : 0  
    LBRs received with corrupted data        : 0  
    LBRs sent                                : 0  
    LTM sent                                 : 0  
    LTM received                             : 0  
    LTRs sent                                : 0  
    LTRs received                            : 0  
    Sequence number of next LTM request      : 0  
    1DMs sent                                : 0  
    Valid 1DMs received                      : 0  
    Invalid 1DMs received                    : 0  
    DMMs sent                                : 0  
    DMRs sent                                : 0  
    Valid DMRs received                      : 0  
    Invalid DMRs received                    : 0  
  Remote MEP count: 1  
  Identifier  MAC address      State  Interface  
  100      2c:6b:f5:62:29:84  ok  ge-0/0/1.0

Meaning
• If the `show oam ethernet connectivity-fault-management interfaces detail` command output displays continuity-check status as **enabled** and displays details of the remote MEP, it means that connectivity fault management (CFM) was configured properly.

• If the `show oam ethernet connectivity-fault-management adjacencies` command output displays the state as **ok**, it indicates that the Continuity Check Protocol is up.

### Verifying the Path Using the Link Trace Protocol

**Purpose**

Verify the path between maintenance endpoints.

**Action**

From operational mode, enter the `traceroute ethernet` command.

```bash
user@host# traceroute ethernet maintenance-domain Customer-md maintenance-association Customer-ma mep 101
```

Linktrace to 80:71:1f:ad:53:81, Interface : ge-0/0/4.0  
Maintenance Domain: Customer-md, Level: 5  
Maintenance Association: Customer-ma, Local Mep: 100  
Transaction Identifier: 3

<table>
<thead>
<tr>
<th>Hop</th>
<th>TTL</th>
<th>Source MAC address</th>
<th>Next-hop MAC address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>63</td>
<td>80:71:1f:ad:50:01</td>
<td>80:71:1f:ad:50:01</td>
</tr>
<tr>
<td>2</td>
<td>62</td>
<td>80:71:1f:ad:53:81</td>
<td>00:00:00:00:00:00:00</td>
</tr>
</tbody>
</table>

### Verifying MEP Continuity Using Ping

**Purpose**

Verify access to MEPs under the same maintenance association.

**Action**

From operational mode, enter the `ping ethernet` command.

```bash
user@host# ping ethernet maintenance-domain Customer-md maintenance-association Customer-ma mep 101
```

PING to 80:71:1f:ad:53:81, Interface ge-0/0/4.0  
60 bytes from 80:71:1f:ad:53:81: lbm_seq=0  
60 bytes from 80:71:1f:ad:53:81: lbm_seq=1  
60 bytes from 80:71:1f:ad:53:81: lbm_seq=2  
60 bytes from 80:71:1f:ad:53:81: lbm_seq=3
--- ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss

Configuring Power over Ethernet

IN THIS SECTION
- Understanding Power over Ethernet | 413
- Example: Configuring PoE on an Individual Interface | 419
- Example: Configuring PoE on All Interfaces | 423
- Example: Disabling a PoE Interface | 426

Power over Ethernet (PoE) is the implementation of the IEEE 802.3 AF and IEEE 802.3 AT standards that allow both data and electrical power to pass over a copper Ethernet LAN cable. The topics below discuss the overview and configuration details of PoE, and disabling a PoE interface on security devices.

Understanding Power over Ethernet

IN THIS SECTION
- SRX Series Services Gateway PoE Specifications | 414
- PoE Classes and Power Ratings | 417
- PoE Options | 418

Power over Ethernet (PoE) is the implementation of the IEEE 802.3 AF and IEEE 802.3 AT standards that allow both data and electrical power to pass over a copper Ethernet LAN cable.

The SRX Series devices support PoE on Ethernet ports. PoE ports transfer electrical power and data to remote devices over standard twisted-pair cable in an Ethernet network. PoE ports allow you to plug in
devices that require both network connectivity and electrical power, such as VoIP and IP phones and wireless LAN access points.

You can configure the SRX Series device to act as power sourcing equipment (PSE), supplying power to powered devices that are connected on designated ports.

This topic contains the following sections:

**SRX Series Services Gateway PoE Specifications**

Table 30 on page 414 lists the PoE specifications for the SRX210, SRX220, SRX240, SRX320, SRX650, and SRX550 M devices. (Platform support depends on the Junos OS release in your installation.)

Table 30: PoE Specifications for the SRX210, SRX220, SRX240, SRX320, and SRX650 Devices

<table>
<thead>
<tr>
<th>Specifications</th>
<th>For SRX210 Device</th>
<th>For SRX220 Device</th>
<th>For SRX240 Device</th>
<th>For SRX320 PoE Device</th>
<th>For SRX550 M device</th>
<th>For SRX650 Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported standards</td>
<td>• IEEE 802.3 AF</td>
</tr>
<tr>
<td></td>
<td>• Legacy (pre-standards)</td>
<td>• IEEE 802.3 AT (PoE+)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Legacy (pre-standards)</td>
</tr>
</tbody>
</table>
Table 30: PoE Specifications for the SRX210, SRX220, SRX240, SRX320, and SRX650 Devices (continued)

<table>
<thead>
<tr>
<th>Specifications</th>
<th>For SRX210 Device</th>
<th>For SRX220 Device</th>
<th>For SRX240 Device</th>
<th>For SRX320 PoE Device</th>
<th>For SRX 550 M device</th>
<th>For SRX650 Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported ports</td>
<td>Supported on two Gigabit Ethernet ports and two Fast Ethernet ports (ge-0/0/0, ge-0/0/1, fe-0/0/2, and fe-0/0/3).</td>
<td>Supported on all 8 Gigabit Ethernet ports (ge-0/0/0 to ge-0/0/7).</td>
<td>Supported on all 16 Gigabit Ethernet ports (ge-0/0/0 to ge-0/0/15).</td>
<td>Supported on all 6 Copper (RJ45) Gigabit Ethernet ports (ge-0/0/0 to ge-0/0/5).</td>
<td>Supported on 16GE-POE xPIM card</td>
<td>Supported on the following ports:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Slot 2 or 6 on 16 Gigabit Ethernet ports</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- ge-2/0/0 to ge-2/0/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- ge-6/0/0 to ge-6/0/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Slot 2 or 6 on 24 Gigabit Ethernet ports</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- ge-2/0/0 to ge-2/0/23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- ge-6/0/0 to ge-6/0/23</td>
</tr>
</tbody>
</table>
Table 30: PoE Specifications for the SRX210, SRX220, SRX240, SRX320, and SRX650 Devices (continued)

<table>
<thead>
<tr>
<th>Specification</th>
<th>For SRX210 Device</th>
<th>For SRX220 Device</th>
<th>For SRX240 Device</th>
<th>For SRX320 PoE Device</th>
<th>For SRX 550 M device</th>
<th>For SRX650 Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PoE power sourcing capacity</td>
<td>50 W</td>
<td>120 W</td>
<td>150 W</td>
<td>180 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default per port power limit</td>
<td>15.4 W</td>
<td>15.4 W</td>
<td>15.4 W</td>
<td>30 W</td>
<td>15.4 W</td>
<td>15.4 W</td>
</tr>
<tr>
<td>Maximum per port power limit</td>
<td>30 W</td>
<td>30 W</td>
<td>30 W</td>
<td>30 W</td>
<td>30 W</td>
<td>30 W</td>
</tr>
</tbody>
</table>

The 645 watts AC and 645 watts DC power supplies support the following capacities:

- 250 watts on a single power supply, or with redundancy using the power supply option.
- 500 watts with the power supply option operating as nonredundant.

The 645 watts AC and 645 watts DC power supplies support the following capacities:

- 250 watts on a single power supply, or with redundancy using the power supply option.
- 500 watts with the power supply option operating as nonredundant.
Table 30: PoE Specifications for the SRX210, SRX220, SRX240, SRX320, and SRX650 Devices (continued)

<table>
<thead>
<tr>
<th>Specifications</th>
<th>For SRX210 Device</th>
<th>For SRX220 Device</th>
<th>For SRX240 Device</th>
<th>For SRX320 PoE Device</th>
<th>For SRX 550 M device</th>
<th>For SRX650 Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power management modes</td>
<td>• Static: Power allocated for each interface can be configured.</td>
<td>• Static: Power allocated for each interface can be configured.</td>
<td>• Static: Power allocated for each interface can be configured.</td>
<td>• Static: Power allocated for each interface can be configured.</td>
<td>• Static: Power allocated for each interface can be configured.</td>
<td>• Static: Power allocated for each interface can be configured.</td>
</tr>
<tr>
<td></td>
<td>• Class: Power allocated for interfaces is based on the class of powered device connected.</td>
<td>• Class: Power allocated for interfaces is based on the class of powered device connected.</td>
<td>• Class: Power allocated for interfaces is based on the class of powered device connected.</td>
<td>• Class: Power allocated for interfaces is based on the class of powered device connected.</td>
<td>• Class: Power allocated for interfaces is based on the class of powered device connected.</td>
<td>• Class: Power allocated for interfaces is based on the class of powered device connected.</td>
</tr>
</tbody>
</table>

PoE Classes and Power Ratings

A powered device is classified based on the maximum power that it draws across all input voltages and operational modes. When class-based power management mode is configured on the SRX Series devices, power is allocated taking into account the maximum power ratings defined for the different classes of devices.

Table 31 on page 417 lists the classes and their power ratings as specified by the IEEE standards.

Table 31: SRX Series Devices PoE Specifications

<table>
<thead>
<tr>
<th>Class</th>
<th>Usage</th>
<th>Minimum Power Levels Output from PoE Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Default</td>
<td>15.4 W</td>
</tr>
<tr>
<td>1</td>
<td>Optional</td>
<td>4.0 W</td>
</tr>
<tr>
<td>2</td>
<td>Optional</td>
<td>7.0 W</td>
</tr>
</tbody>
</table>
### PoE Options

When configuring PoE, you must enable the PoE interface in order for the port to provide power to a connected, powered device. In addition, you can configure the following PoE features:

- **Port priority**—Sets port priority. When it is not possible to maintain power to all connected ports, lower priority ports are powered off before higher priority ports. When a new device is connected on a higher-priority port, a lower priority port will be powered off automatically if available power is insufficient to power on the higher priority port. (For the ports with the same priority configuration, ports on the left are given higher priority than the ports on the right.)

- **Maximum available wattage**—Sets the maximum amount of power that can be supplied to the port. The default wattage per port is 15.4 watts.

- **PoE power consumption logging**—Allows logging of per-port PoE power consumption. The telemetries section must be explicitly specified to enable logging. If left unspecified, telemetries is disabled by default. The default telemetry duration is 1 hour. The default telemetry interval is 5 minutes.

- **PoE power management mode**—Has two modes:
  - **Class**—When a powered device is connected to a PoE port, the power allocated to it is equal to the maximum power for the class as defined by the IEEE standards.
  - **Static**—When a powered device is connected to a PoE port, the power allocated to it is equal to the maximum power configured for the port.

- **Reserve power**—Reserves the specified amount of power for the gateway in case of a spike in PoE consumption. The default is 0.

### Table 31: SRX Series Devices PoE Specifications (continued)

<table>
<thead>
<tr>
<th>Class</th>
<th>Usage</th>
<th>Minimum Power Levels Output from PoE Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Optional</td>
<td>15.4 W</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
<td>Class 4 power devices are eligible to receive power up to 30 W according to IEEE standards.</td>
</tr>
</tbody>
</table>

**SEE ALSO**

- **Understanding Ethernet Interfaces** | 277
- **Example: Configuring PoE on All Interfaces** | 423
Example: Configuring PoE on an Individual Interface

This example shows how to configure PoE on an individual interface.

Requirements

Before you begin:

- Configure Ethernet interfaces. See “Example: Creating an Ethernet Interface” on page 282.
- Configure PoE on all interfaces. See “Example: Configuring PoE on All Interfaces” on page 423.

Overview

This example shows how to configure PoE on the ge-0/0/0 interface. In this example, you set the power port priority to high and the maximum power available to a port to 15.4 watts. Then you enable the PoE power consumption logging with the default telemetries settings, and you set the PoE management mode to static. Finally, you set the reserved power to 15 watts in case of a spike in PoE consumption.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.
Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see the Junos OS CLI User Guide.

To configure PoE:

1. Enable PoE.
   ```
 [edit]
 user@host# edit poe interface ge-0/0/0
   ```

2. Set the power port priority.
   ```
 [edit poe interface ge-0/0/0]
 user@host# set priority high
   ```

3. Set the maximum PoE wattage available for a port.
   ```
 [edit poe interface ge-0/0/0]
 user@host# set maximum power 15.4
   ```

4. Enable logging of PoE power consumption.
   ```
 [edit poe interface ge-0/0/0]
 user@host# set telemetries
   ```

5. Set the PoE management mode.
   ```
 [edit]
 user@host# set poe management static
   ```

6. Reserve power wattage in case of a spike in PoE consumption.
   ```
 [edit]
 user@host# set poe guard-band 15
   ```
Results
From configuration mode, confirm your configuration by entering the `show poe interface ge-0/0/0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
 user@host# show poe interface ge-0/0/0
 priority high;
 maximum-power 15.4;
 telemetries;
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION
- Verifying the Status of PoE Interfaces | 421
- Verifying the Telemetry Data (History) for the Specified Interface | 422
- Verifying PoE Global Parameters | 423

Confirm that the configuration is working properly.

**Verifying the Status of PoE Interfaces**

**Purpose**
Verify that the PoE interfaces on the device are enabled and set to the desired priority settings. (The device used in this example is the SRX240 or SRX340 Services Gateway, depending on the Junos OS release in the installation.)

**Action**
From operational mode, enter the `show poe interface ge-0/0/1` command.

```
user@host> show poe interface ge-0/0/1

PoE interface status:
PoE interface : ge-0/0/1
Administrative status : Enabled
Operational status : Powered-up
```
Power limit on the interface : 15.4 W
Priority : High
Power consumed : 6.6 W
Class of power device : 0

The `show poe interface ge-0/0/1` command lists PoE interfaces configured on the SRX340 device, with their status, priority, power consumption, and class.

**Verifying the Telemetry Data (History) for the Specified Interface**

**Purpose**
Verify the PoE interface's power consumption over a specified period.

**Action**
From operational mode, enter the `show poe telemetry interface` command.

For all records:

```bash
user@host> show poe telemetry interface ge-0/0/1 all
```

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Timestamp</th>
<th>Power</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fri Jan 04 11:41:15 2009</td>
<td>5.1 W</td>
<td>47.3 V</td>
</tr>
<tr>
<td>2</td>
<td>Fri Jan 04 11:40:15 2009</td>
<td>5.1 W</td>
<td>47.3 V</td>
</tr>
<tr>
<td>3</td>
<td>Fri Jan 04 11:39:15 2009</td>
<td>5.1 W</td>
<td>47.3 V</td>
</tr>
<tr>
<td>4</td>
<td>Fri Jan 04 11:38:15 2009</td>
<td>0.0 W</td>
<td>0.0 V</td>
</tr>
<tr>
<td>5</td>
<td>Fri Jan 04 11:37:15 2009</td>
<td>0.0 W</td>
<td>0.0 V</td>
</tr>
<tr>
<td>6</td>
<td>Fri Jan 04 11:36:15 2009</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
<tr>
<td>7</td>
<td>Fri Jan 04 11:35:15 2009</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
</tbody>
</table>

For a specific number of records:

```bash
user@host> show poe telemetry interface ge-0/0/1 5
```

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Timestamp</th>
<th>Power</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fri Jan 04 11:31:15 2009</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
<tr>
<td>2</td>
<td>Fri Jan 04 11:30:15 2009</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
<tr>
<td>3</td>
<td>Fri Jan 04 11:29:15 2009</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
<tr>
<td>4</td>
<td>Fri Jan 04 11:28:15 2009</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
<tr>
<td>5</td>
<td>Fri Jan 04 11:27:15 2009</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
</tbody>
</table>

The telemetry status displays the power consumption history for the specified interface, provided telemetry has been configured for that interface.
**Verifying PoE Global Parameters**

**Purpose**
Verify global parameters such as guard band, power limit, and power consumption.

**Action**
From operational mode, enter the **show poe controller** command.

```
user@host> show poe controller
```

<table>
<thead>
<tr>
<th>Controller index</th>
<th>Maximum power</th>
<th>Power consumption</th>
<th>Guard band</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>150.0 W</td>
<td>0.0 W</td>
<td>0 W</td>
<td>Static</td>
</tr>
</tbody>
</table>

The **show poe controller** command lists the global parameters configured on the SRX Series device such as controller index, maximum power, power consumption, guard band, and management mode along with their status.

**Example: Configuring PoE on All Interfaces**

This example shows how to configure PoE on all interfaces.

**Requirements**
Before you begin, configure Ethernet interfaces. See "Example: Creating an Ethernet Interface" on page 282.
Overview

This example shows how to configure PoE on all interfaces on a device. In this example, you set the power port priority to low and the maximum power available to a port to 15.4 watts. Then you enable the PoE power consumption logging with the default telemetries settings, and you set the PoE management mode to static. Finally, you set the reserved power consumption to 15 watts in case of a spike in PoE consumption.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set poe interface all priority low maximum-power 15.4 telemetries
set poemanagement static guard-band 15
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see the Junos OS CLI User Guide.

To configure PoE on all interfaces:

1. Enable PoE.

   [edit]
   user@host# edit poe interface all

2. Set the power port priority.

   [edit poe interface all]
   user@host# set priority low

3. Set the maximum PoE wattage available for a port.

   [edit poe interface all]
   user@host# set maximum-power 15.4

4. Enable logging of PoE power consumption.
5. Set the PoE management mode.

   [edit]
   user@host# set poe management static

6. Reserve power wattage in case of a spike in PoE consumption.

   [edit]
   user@host# set poe guard-band 15

Results
From configuration mode, confirm your configuration by entering the `show poe interface all` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

   [edit]
   user@host# show poe interface all
   priority low;
   maximum-power 15.4;
   telemetries;

If you are done configuring the device, enter `commit` from configuration mode.

Verification

Confirm that the configuration is working properly.

Verifying the Status of PoE Interfaces

Purpose
Verify that the PoE interfaces on the device are enabled and set to the desired priority settings. (The device used here is the SRX340 Services Gateway.)

Action
From operational mode, enter the `show poe interface all` command.
user@host> show poe interface all

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin status</th>
<th>Oper status</th>
<th>Max power</th>
<th>Priority</th>
<th>Power consumption</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/0</td>
<td>Enabled</td>
<td>Searching</td>
<td>15.4W</td>
<td>Low</td>
<td>0.0W</td>
<td>0</td>
</tr>
<tr>
<td>ge-0/0/1</td>
<td>Enabled</td>
<td>Powered-up</td>
<td>15.4W</td>
<td>High</td>
<td>6.6W</td>
<td>0</td>
</tr>
<tr>
<td>ge-0/0/2</td>
<td>Disabled</td>
<td>Disabled</td>
<td>15.4W</td>
<td>Low</td>
<td>0.0W</td>
<td>0</td>
</tr>
<tr>
<td>ge-0/0/3</td>
<td>Disabled</td>
<td>Disabled</td>
<td>15.4W</td>
<td>Low</td>
<td>0.0W</td>
<td>0</td>
</tr>
</tbody>
</table>

The `show poe interface all` command lists PoE interfaces configured on the SRX320 PoE device, including information on status, priority, power consumption, and class. This output shows that the device has four PoE interfaces of which two are enabled with default values. One port has a device connected that is drawing power within expected limits.

SEE ALSO

- Understanding Power over Ethernet | 413
- Example: Configuring PoE on an Individual Interface | 419
- Example: Disabling a PoE Interface | 426

**Example: Disabling a PoE Interface**

This example shows how to disable PoE on all interfaces or on a specific interface.

**Requirements**

Before you begin:
• Configure PoE on all interfaces. See "Example: Configuring PoE on All Interfaces" on page 423.
• Configure PoE on an individual interface. See “Example: Configuring PoE on an Individual Interface” on page 419.

Overview

In this example, you disable PoE on all interfaces and on a specific interface, which in this case is ge-0/0/0.

Configuration

Step-by-Step Procedure
To disable PoE on interfaces:

1. Disable PoE on all interfaces.

```
[edit]
user@host# set poe interface all disable
```

2. Disable PoE on a specific interface.

```
[edit]
user@host# set poe interface ge-0/0/0 disable
```

3. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

Verification

To verify the configuration is working properly, enter the `show poe interface` command.
Configuring Interface Encapsulation

Interface Encapsulation Overview  |  431
Configuring GRE Keepalive Time  |  438
Configuring Point-to-Point Protocol over Ethernet  |  461
Interface Encapsulation Overview

The below topics discuss the overview of physical encapsulation, frame relay encapsulation, point-to-point protocol and high-level data link control.

Understanding Physical Encapsulation on an Interface

Encapsulation is the process by which a lower level protocol accepts a message from a higher level protocol and places it in the data portion of the lower level frame. As a result, datagrams transmitted through a physical network have a sequence of headers: the first header for the physical network (or Data Link Layer) protocol, the second header for the Network Layer protocol (IP, for example), the third header for the Transport Layer protocol, and so on.

The following encapsulation protocols are supported on physical interfaces:

- Frame Relay Encapsulation. See "Understanding Frame Relay Encapsulation on an Interface" on page 432.
- Point-to-Point Protocol. See "Understanding Point-to-Point Protocol" on page 434.
- Point-to-Point Protocol over Ethernet. See "Understanding Point-to-Point Protocol over Ethernet" on page 462.
- High-Level Data Link Control. See "Understanding High-Level Data Link Control" on page 437.

SEE ALSO

- Understanding Interfaces | 31
The Frame Relay packet-switching protocol operates at the Physical Layer and Data Link Layer in a network to optimize packet transmissions by creating virtual circuits between hosts. Figure 20 on page 432 shows a typical Frame Relay network.

Figure 20: Frame Relay Network

Figure 20 on page 432 shows multiple paths from Host A to Host B. In a typical routed network, traffic is sent from device to device with each device making routing decisions based on its own routing table. In a packet-switched network, the paths are predefined. Devices switch a packet through the network according to predetermined next-hops established when the virtual circuit is set up.

This topic contains the following sections:
Virtual Circuits

A virtual circuit is a bidirectional path between two hosts in a network. Frame Relay virtual circuits are logical connections between two hosts that are established either by a call setup mechanism or by an explicit configuration.

A virtual circuit created through a call setup mechanism is known as a switched virtual circuit (SVC). A virtual circuit created through an explicit configuration is called a permanent virtual circuit (PVC).

Switched and Permanent Virtual Circuits

Before data can be transmitted across an SVC, a signaling protocol like ISDN must set up a call by the exchange of setup messages across the network. When a connection is established, data is transmitted across the SVC. After data transmission, the circuit is torn down and the connection is lost. For additional traffic to pass between the same two hosts, a subsequent SVC must be established, maintained, and terminated.

Because PVCs are explicitly configured, they do not require the setup and teardown of SVCs. Data can be switched across the PVC whenever a host is ready to transmit. SVCs are useful in networks where data transmission is sporadic and a permanent circuit is not needed.

Data-Link Connection Identifiers

An established virtual circuit is identified by a data-link connection identifier (DLCI). The DLCI is a value from 16 through 1022. (Values 1 through 15 are reserved.) The DLCI uniquely identifies a virtual circuit locally so that devices can switch packets to the appropriate next-hop address in the circuit. Multiple paths that pass through the same transit devices have different DLCIs and associated next-hop addresses.

Congestion Control and Discard Eligibility

Frame Relay uses the following types of congestion notification to control traffic within a Frame Relay network. Both are controlled by a single bit in the Frame Relay header.

- Forward explicit congestion notification (FECN)
- Backward explicit congestion notification (BECN)

Traffic congestion is typically defined in the buffer queues on a device. When the queues reach a predefined level of saturation, traffic is determined to be congested. When traffic congestion occurs in a virtual circuit, the device experiencing congestion sets the congestion bits in the Frame Relay header to 1. As a result, transmitted traffic has the FECN bit set to 1, and return traffic on the same virtual circuit has the BECN bit set to 1.
When the FECN and BECN bits are set to 1, they provide a congestion notification to the source and destination devices. The devices can respond in either of two ways: to control traffic on the circuit by sending it through other routes, or to reduce the load on the circuit by discarding packets.

If devices discard packets as a means of congestion (flow) control, Frame Relay uses the discard eligibility (DE) bit to give preference to some packets in discard decisions. A DE value of 1 indicates that the frame is of lower importance than other frames and more likely to be dropped during congestion. Critical data (such as signaling protocol messages) without the DE bit set is less likely to be dropped.

Understanding Point-to-Point Protocol

The Point-to-Point Protocol (PPP) is an encapsulation protocol for transporting IP traffic across point-to-point links. PPP is made up of three primary components:

- **Link Control Protocol (LCP)—Establishes working connections between two points.**
- **Authentication protocol—Enables secure connections between two points.**
- **Network control protocol (NCP)—Initializes the PPP protocol stack to handle multiple Network Layer protocols, such as IPv4, IPv6, and Connectionless Network Protocol (CLNP).**

This topic contains the following sections:

**Link Control Protocol**

LCP is responsible for establishing, maintaining, and tearing down a connection between two endpoints. LCP also tests the link and determines whether it is active. LCP establishes a point-to-point connection as follows:
1. LCP must first detect a clocking signal on each endpoint. However, because the clocking signal can be generated by a network clock and shared with devices on the network, the presence of a clocking signal is only a preliminary indication that the link might be functioning.

2. When a clocking signal is detected, a PPP host begins transmitting PPP Configure-Request packets.

3. If the remote endpoint on the point-to-point link receives the Configure-Request packet, it transmits a Configure-Acknowledgement packet to the source of the request.

4. After receiving the acknowledgement, the initiating endpoint identifies the link as established. At the same time, the remote endpoint sends its own request packets and processes the acknowledgement packets. In a functioning network, both endpoints treat the connection as established.

During connection establishment, LCP also negotiates connection parameters such as FCS and HDLC framing. By default, PPP uses a 16-bit FCS, but you can configure PPP to use either a 32-bit FCS or a 0-bit FCS (no FCS). Alternatively, you can enable HDLC encapsulation across the PPP connection.

After a connection is established, PPP hosts generate Echo-Request and Echo-Response packets to maintain a PPP link.

**PPP Authentication**

PPP's authentication layer uses a protocol to help ensure that the endpoint of a PPP link is a valid device. Authentication protocols include the Password Authentication Protocol (PAP), the Extensible Authentication Protocol (EAP), and the Challenge Handshake Authentication Protocol (CHAP). CHAP is the most commonly used.

**NOTE:** Support for user id and the password to comply with full ASCII character set is supported through RFC 2486.

The user can enable or disable the RFC 2486 support under the PPP options. The RFC 2486 is disabled by default, and enable the support globally use the command `set access ppp-options compliance rfc 2486`.

CHAP ensures secure connections across PPP links. After a PPP link is established by LCP, the PPP hosts at either end of the link initiate a three-way CHAP handshake. Two separate CHAP handshakes are required before both sides identify the PPP link as established.

CHAP configuration requires each endpoint on a PPP link to use a shared secret (password) to authenticate challenges. The shared secret is never transmitted over the wire. Instead, the hosts on the PPP connection exchange information that enables both to determine that they share the same secret. Challenges consist of a hash function calculated from the secret, a numeric identifier, and a randomly chosen challenge value.
that changes with each challenge. If the response value matches the challenge value, authentication is successful. Because the secret is never transmitted and is required to calculate the challenge response, CHAP is considered very secure.

PAP authentication protocol uses a simple two-way handshake to establish identity. PAP is used after the link establishment phase (LCP up), during the authentication phase. Junos OS can support PAP in one direction (egress or ingress), and CHAP in the other.

**Network Control Protocols**

After authentication is completed, the PPP connection is fully established. At this point, any higher level protocols (for example, IP protocols) can initialize and perform their own negotiations and authentication.

PPP NCps include support for the following protocols. IPCP and IPv6CP are the most widely used on SRX Series devices.

- IPCP—IP Control Protocol
- IPv6CP—IPv6 Control Protocol
- OSINLCP—OSI Network Layer Control Protocol (includes IS-IS, ES-IS, CLNP, and IDRP)

**Magic Numbers**

Hosts running PPP can create “magic” numbers for diagnosing the health of a connection. A PPP host generates a random 32-bit number and sends it to the remote endpoint during LCP negotiation and echo exchanges.

In a typical network, each host’s magic number is different. A magic number mismatch in an LCP message informs a host that the connection is not in loopback mode and traffic is being exchanged bidirectionally. If the magic number in the LCP message is the same as the configured magic number, the host determines that the connection is in loopback mode, with traffic looped back to the transmitting host.

Looping traffic back to the originating host is a valuable way to diagnose network health between the host and the loopback location. To enable loopback testing, telecommunications equipment typically supports channel service unit/data service unit (CSU/DSU) devices.

**CSU/DSU Devices**

A channel service unit (CSU) connects a terminal to a digital line. A data service unit (DSU) performs protective and diagnostic functions for a telecommunications line. Typically, the two devices are packaged as a single unit. A CSU/DSU device is required for both ends of a T1 or T3 connection, and the units at both ends must be set to the same communications standard.

A CSU/DSU device enables frames sent along a link to be looped back to the originating host. Receipt of the transmitted frames indicates that the link is functioning correctly up to the point of loopback. By
configuring CSU/DSU devices to loop back at different points in a connection, network operators can diagnose and troubleshoot individual segments in a circuit.

### Understanding High-Level Data Link Control

**IN THIS SECTION**
- HDLC Stations | 437
- HDLC Operational Modes | 437

High-Level Data Link Control (HDLC) is a bit-oriented, switched and nonswitched link-layer protocol. HDLC is widely used because it supports half-duplex and full-duplex connections, point-to-point and point-to-multipoint networks, and switched and nonswitched channels.

This topic contains the following sections:

#### HDLC Stations

Nodes within a network running HDLC are called stations. HDLC supports three types of stations for data link control:

- **Primary stations**—Responsible for controlling the secondary and combined other stations on the link. Depending on the HDLC mode, the primary station is responsible for issuing acknowledgement packets to allow data transmission from secondary stations.

- **Secondary stations**—Controlled by the primary station. Under normal circumstances, secondary stations cannot control data transmission across the link with the primary station, are active only when requested by the primary station, and can respond to the primary station only (not to other secondary stations). All secondary station frames are response frames.

- **Combined stations**—A combination of primary and secondary stations. On an HDLC link, all combined stations can send and receive commands and responses without any permission from any other stations on the link and cannot be controlled by any other station.

#### HDLC Operational Modes

HDLC runs in three separate modes:
• Normal Response Mode (NRM)—The primary station on the HDLC link initiates all information transfers with secondary stations. A secondary station on the link can transmit a response of one or more information frames only when it receives explicit permission from the primary station. When the last frame is transmitted, the secondary station must wait for explicit permission before it can transmit more frames.

NRM is used most widely for point-to-multipoint links, in which a single primary station controls many secondary stations.

• Asynchronous Response Mode (ARM)—The secondary station can transmit either data or control traffic at any time, without explicit permission from the primary station. The primary station is responsible for error recovery and link setup, but the secondary station can transmit information at any time.

ARM is used most commonly with point-to-point links, because it reduces the overhead on the link by eliminating the need for control packets.

• Asynchronous Balance Mode (ABM)—All stations are combined stations. Because no other station can control a combined station, all stations can transmit information without explicit permission from any other station. ABM is not a widely used HDLC mode.

Configuring GRE Keepalive Time

Generic routing encapsulation (GRE) tunnel interfaces do not have a built-in mechanism for detecting when a tunnel is down. Keepalive messages help the GRE tunnel interfaces to detect when a tunnel is down. The topics below discuss the working and configuration of GRE keepalive time.
Understanding GRE Keepalive Time

Generic routing encapsulation (GRE) tunnel interfaces do not have a built-in mechanism for detecting when a tunnel is down. You can enable keepalive messages to serve as the detection mechanism.

Keepalive times are only configurable for the ATM-over-ADSL interface, which is no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM starting in Junos OS Release 15.1X49-D10. Keepalive times are enabled by default for other interfaces.

Keepalives can be configured on the physical or on the logical interface. If configured on the physical interface, keepalives are sent on all logical interfaces that are part of the physical interface. If configured on a individual logical interface, keepalives are only sent to that logical interface. In addition to configuring a keepalive, you must configure the hold time.

You can configure the keepalives on a generic routing encapsulation (GRE) tunnel interface by including both the `keepalive-time` statement and the `hold-time` statement at the `[edit protocols oam gre-tunnel interface interface-name]` hierarchy level.

**NOTE:** For proper operation of keepalives on a GRE interface, you must also include the `family inet` statement at the `[edit interfaces interface-name unit unit]` hierarchy level. If you do not include this statement, the interface is marked as down.

SEE ALSO

- `keepalive-time`
- `hold-time`

Configuring GRE Keepalive Time

**IN THIS SECTION**

- Configuring Keepalive Time and Hold time for a GRE Tunnel Interface | 440
- Display GRE Keepalive Time Configuration | 441
- Display Keepalive Time Information on a GRE Tunnel Interface | 441
Keepalive times are only configurable for the ATM-over-ADSL interface, which is no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM starting in Junos OS Release 15.1X49-D10.

Configuring Keepalive Time and Hold time for a GRE Tunnel Interface

You can configure the keepalives on a generic routing encapsulation (GRE) tunnel interface by including both the `keepalive-time` statement and the `hold-time` statement at the `[edit protocols oam gre-tunnel interface interface-name]` hierarchy level.

**NOTE:** For proper operation of keepalives on a GRE interface, you must also include the `family inet` statement at the `[edit interfaces interface-name unit unit]` hierarchy level. If you do not include this statement, the interface is marked as down.

To configure a GRE tunnel interface:

1. Configure the GRE tunnel interface at `[edit interfaces interface-name unit unit-number]` hierarchy level, where the interface name is gr-x/y/z, and the family is set as `inet`.

   ```
 user@host# set interfaces interface-name unit unit-number family family-name
   ```

2. Configure the rest of the GRE tunnel interface options based on requirement.

To configure keepalive time for a GRE tunnel interface:

1. Configure the Operation, Administration, and Maintenance (OAM) protocol at the `[edit protocols]` hierarchy level for the GRE tunnel interface.

   ```
 [edit]
 user@host# edit protocols oam
   ```

2. Configure the GRE tunnel interface option for OAM protocol.

   ```
 [edit protocols oam]
 user@host# edit gre-tunnel interface interface-name
   ```

3. Configure the keepalive time from 1 through 50 seconds for the GRE tunnel interface.

   ```
 [edit protocols oam gre-tunnel interface interface-name]
 user@host# set keepalive-time seconds
   ```
4. Configure the hold time from 5 through 250 seconds. Note that the hold time must be at least twice the keepalive time.

```
[edit protocols oam gre-tunnel interface interface-name]
user@host# set hold-time seconds
```

Display GRE Keepalive Time Configuration

**Purpose**
Display the configured keepalive time value as 10 and hold time value as 30 on a GRE tunnel interface (for example, gr-1/1/10.1):

**Action**
To display the configured values on the GRE tunnel interface, run the `show oam gre-tunnel` command at the `[edit protocols]` hierarchy level:

```
[edit protocols]
user@host# show oam gre-tunnel
 interface gr-1/1/10.1 {
 keepalive-time 10;
 hold-time 30;
 }
```

Display Keepalive Time Information on a GRE Tunnel Interface

**Purpose**
Display the current status information of a GRE tunnel interface when keepalive time and hold time parameters are configured on it and when the hold time expires.

**Action**
To verify the current status information on a GRE tunnel interface (for example, gr-3/3/0.3), run the `show interfaces gr-3/3/0.3 terse` and `show interfaces gr-3/3/0.3 extensive` operational commands.

```
user@host> show interfaces gr-3/3/0.3 terse
```

<table>
<thead>
<tr>
<th>Local</th>
<th>Remote</th>
<th>Interface</th>
<th>Admin Link Proto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show interfaces gr-3/3/0.3 extensive

user@host> show interfaces gr-3/3/0.3 extensive

Logical interface gr-3/3/0.3 (Index 73) (SNMP ifIndex 594) (Generation 900)

Flags: Point-To-Point SNMP-Traps 0x4000

Gre keepalives configured: On, Gre
keepalives adjacency state: down

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Traffic statistics:

  Input bytes : 15629992

  Output bytes : 15912273

  Input packets: 243813

  Output packets: 179476

Local statistics:

  Input bytes : 15322586

  Output bytes : 15621359

  Input packets: 238890

  Output packets: 174767

Transit statistics:

  Input bytes : 307406  0 bps
Output bytes :          290914          0 bps

Input  packets:          4923          0 pps

Output packets:          4709          0 pps

Protocol inet, MTU: 1476, Generation: 1564, Route table: 0

Flags: Sendbcast-pkt-to-re

Addresses, Flags: Dest-route-down Is-Preferred Is-Primary

Destination: 200.1.3/24, Local: 200.1.3.1, Broadcast: 200.1.3.255, Generation: 1366

Protocol mpls, MTU: 1464, Maximum labels: 3, Generation: 1565, Route table: 0

**NOTE:**

When the hold time expires:

- The GRE tunnel will stay up even though the interface cannot send or receive traffic.
- The Link status will be **Up** and the Gre keepalives adjacency state will be **Down**.

**Meaning**

The current status information of a GRE tunnel interface with keepalive time and hold time parameters is displayed as expected when the hold time expires.
Example: GRE Configuration

Generic routing encapsulation (GRE) is an IP encapsulation protocol that is used to transport packets over a network. Information is sent from one network to the other through a GRE tunnel. GRE encapsulates a payload as a GRE packet. This GRE packet is encapsulated in an outer protocol (delivery protocol). GRE tunnel endpoints forward payloads into GRE tunnels for routing packets to the destination. After reaching the end point, GRE encapsulation is removed and the payload is transmitted to its final destination. The primary use of GRE is to carry non-IP packets through an IP network; however, GRE is also used to carry IP packets through an IP cloud.

Requirements

- Configure a GRE (gr-) interface. The gr- interface contains a local address and destination address. It comes up as soon as it is configured. You can even configure an IP address on the gr- interface.
- Configure a route to reach the destination subnet (end-to-end connectivity). You can configure either a static route through the gr- interface or use an interior gateway protocol (IGP) such as OSPF.

Overview

GRE tunnels are designed to be completely stateless, which means that each tunnel endpoint does not keep any information about the state or availability of the remote tunnel endpoint. Normally, a GRE tunnel interface comes up as soon as it is configured, and it stays up as long as there is a valid tunnel source address or interface that is up.
Configuration

By default, the local subnet interface is ge-0/0/0 with IPv4 address as 10.10.11.1/24. The destination subnet is 10.10.10.0/24 with the tunnel endpoint IPv4 interface as 10.10.10.1/24.

Figure 21 on page 445 shows the default configuration between the tunnel interfaces on SRX series devices.

Figure 21: GRE Configuration

Configuring a Route to Reach the Destination Subset

Step-by-Step Procedure

You can either configure a static route through the gr- interface or by using IGP.

1. Configure the local subnet interface ge-0/0/0 interface.

   ```
 [edit interfaces]
 user@host# set interfaces ge-0/0/0 unit 0 family inet address 10.10.11.1/24
   ```

2. Configure the interface ge-0/0/1.

   ```
 [edit interfaces]
 user@host# set interfaces ge-0/0/1 unit 0 family inet address 1.1.1.1/24
   ```

3. Configure the gr- tunnel endpoints and specify the source address, destination address, and family as inet for the tunnel endpoints.

   ```
 [edit interfaces]
 user@host# set interfaces gr-0/0/0 unit 0 tunnel source 1.1.1.1 destination 2.2.2.1
 user@host# set interfaces gr-0/0/0 unit 0 family inet address 192.168.1.1/24
   ```

4. The configured interfaces are bound to a security zone at the [edit security] hierarchy level. Use the `show zones` command to view the zones. Configure the zones as follows:
5. View the configured interfaces at the [edit interfaces] hierarchy level using the `show` command.

```
[edit interfaces]
user@host# set routing options static route 10.10.10.0/24 next hop gr-0/0/0.0
```

6. In case you do not want to define a static route, OSPF can be configured between gr-0/0/0 interfaces on both the sides and internal subnet as passive neighbor, to receive all the internal routes. Configure OSPF at the [edit protocols] hierarchy level and view it using the `show` command.

```
[edit protocols]
user@host# set protocols ospf area 0.0.0.0 interface gr-0/0/0.0
```

Results
In configuration mode, confirm your configuration on the devices by entering the `show` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

GRE configuration using the static route:

```
[edit interfaces]
root@SRX-1# show
ge-0/0/0 {
 unit 0 {
 family inet {
 address 10.10.11.1/24;
 }
 }
}

gr-0/0/0 {
```
unit 0 {
    tunnel {
        source 1.1.1.1;
        destination 2.2.2.1;
    }
    family inet {
        address 192.168.1.1/24;
    }
}

ge-0/0/1 {
    unit 0 {
        family inet {
            address 1.1.1.1/24;
        }
    }
}

[edit security]
root@SRX-1# show zones {
    security-zone trust {
        host-inbound-traffic {
            system-services {
                all;
            }
            protocols {
                all;
            }
        }
        interfaces {
            gr-0/0/0.0;
        }
    }
}

root@SRX-1# show routing-options static {
    route 10.10.10.0/24 next-hop gr-0/0/0.0;
}

GRE configuration using OSPF configured between interfaces gr-0/0/0 on both sides and internal subnet as passive neighbor:
To verify that the configuration of GRE on the SRX Series device is successful, perform the following tasks:

**Verification of the GRE Interfaces**

**Purpose**
Verify that the GRE interfaces are up.

**Action**
Run the `show interfaces` command at the `[edit interfaces]` hierarchy level:

```
show interfaces gr-0/0/0 terse
```

```
[edit interfaces]
Interface Admin Link Proto Local Remote
gr-0/0/0 up up
gr-0/0/0.0 up up inet 192.168.1.1/24
```
**Verification of the Route**

**Purpose**
Verify that the route for the destination network is reachable through the GRE tunnel interface.

**Action**

Run the `show route forwarding-table matching 10.10.10.0/24` command at the `[edit interfaces]` hierarchy level:

```
[edit interfaces]
user@router# run show route forwarding-table matching 10.10.10.0/24
Routing table: default.inet
Internet:
....
Destination Type RtRef Next hop Type Index NhRef Netif
10.10.10.0/24 user 0 ucst 595 2 gr-0/0/0.0
```

**Verification of Traffic Through GRE Tunnel**

**Purpose**
Send the traffic to the destination subnet and verify when the GRE interface is up.

**Action**

Run the `show interfaces gr-0/0/0 extensive` operational command. Also verify that the packets are leaving through the gr-interface.

```
user@host> show interfaces gr-0/0/0 extensive

Physical interface: gr-0/0/0, Enabled, Physical link is Up
Interface index: 134, SNMP ifIndex: 40, Generation: 17
Type: GRE, Link-level type: GRE, MTU: Unlimited, Speed: 800mbps
Hold-times : Up 0 ms, Down 0 ms
Device flags : Present Running
Interface flags: Point-To-Point SNMP-Traps
Statistics last cleared: 2005-08-05 21:39:41 UTC (00:00:47 ago)
Traffic statistics:
Input bytes : 8400 0 bps
Output bytes : 8400 0 bps
Input packets: 100 0 pps
Output packets: 100 0 pps
```
Logical interface gr-0/0/0.0 (Index 72) (SNMP ifIndex 28) (Generation 17)
Flags: Point-To-Point SNMP-Traps 16384
IP-Header 10.1.1.2:10.1.1.1:47:df:64:0000000000000000
Encapsulation: GRE-NUL
Traffic statistics:
Input bytes: 8400
Output bytes: 8400
Input packets: 100
Output packets: 100
Local statistics:
Input bytes: 0
Output bytes: 0
Input packets: 0
Output packets: 0
Transit statistics:
Input bytes: 8400 0 bps
Output bytes: 8400 0 bps
Input packets: 100 0 pps
Output packets: 100 0 pps
Protocol inet, MTU: 1476, Generation: 25, Route table: 0
Flags: None
Addresses, Flags: Is-Primary
Destination: Unspecified, Local: 10.1.1.1, Broadcast: Unspecified,
Generation: 30

SEE ALSO

Generic Routing Encapsulation (GRE)
Understanding Generic Routing Encapsulation
Verifying That Generic Routing Encapsulation Tunneling Is Working Correctly

Example: Configuring GRE over IPsec Tunnels

Overview

GRE tunnels offer minimal security, whereas an IPsec tunnel offers enhanced security in terms of confidentiality, data authentication, and integrity assurance. Also, IPsec cannot directly support multicast packets. However, if an encapsulated GRE tunnel is used first, an IPsec tunnel can then be used to provide security to the multicast packet. In a GRE over IPsec tunnel, all of the routing traffic (IP and non-IP) can
be routed through. When the original packet (IP/non-IP) is GRE encapsulated, it has an IP header as defined by the GRE tunnel, normally the tunnel interface IP addresses. The IPsec protocol can understand the IP packet; so it encapsulates the GRE packet to make it GRE over IPsec.

The basic steps involved in configuring GRE over IPsec are as follows:

- Configure the route-based IPsec tunnel.
- Configure the GRE tunnel.
- Configure a static route with the destination as the remote subnet through the gr- interface.
- Configure the static route for the GRE endpoint with the st0 interface as next hop.

**Configuration**

**IN THIS SECTION**

- Configuring a GRE interface over an IPsec tunnel | 451
- Results | 452

In this example, the default configuration has the local subnet interface as ge-0/0/0 with the IPv4 address as 10.10.11.1/24. The destination subnet is 10.10.10.0/24. The gr-0/0/0 interface tunnel endpoints are loopback addresses on both the sides, with the local loopback IPv4 address as 172.20.1.1 and the remote loopback IPv4 address as 172.20.1.2. The gr-0/0/0, st0 and lo0 interfaces are bound to a security zone and policies are created accordingly. Refer to Example: GRE Configuration for more information.

**Configuring a GRE interface over an IPsec tunnel**

**Step-by-Step Procedure**

1. Configure the GRE at the [set interfaces interface-name unit unit-number] hierarchy level, where the interface name is ge-0/0/0, and the family is set as inet.

   ```
 [edit interfaces]
 user@host# set interfaces ge-0/0/0 unit 0 family inet address 10.10.11.1/24
   ```

2. Configure the gr- tunnel endpoints and specify the source address, destination address, and family as inet for the tunnel endpoints.

   ```
 [edit interfaces]
 user@host# set interfaces gr-0/0/0 unit 0 tunnel source 172.20.1.1 destination 172.20.1.2
   ```
3. Similarly configure the lo0 and st0 interface with the family set as inet.

   [edit interfaces]
   user@host# set interfaces lo0 unit 0 family inet address 172.20.1.1/32

   [edit interfaces]
   user@host# set interfaces st0 unit 0 family inet

4. Configure the GRE interfaces with security zones. Use the `show zones` command to view the zones, where the configured tunnel interfaces, lo0 and st0 are displayed.

   [edit security zones security-zones trust]
   user@host# set host-inbound-traffic system-services all
   user@host# set host-inbound-traffic protocols all
   user@host# set interfaces gr-0/0/0.0
   user@host# set zones zone names protocols all
   user@host# set interfaces lo0.0
   user@host# set interfaces st0.0

   [edit security zones security-zones untrust]
   user@host# set host-inbound-traffic system-services all
   user@host# set host-inbound-traffic protocols all
   user@host# set interfaces gr-0/0/0.0.1
   user@host# set interfaces lo0.0
   user@host# set interfaces st0.0

**Results**

In configuration mode, confirm your interface configuration by entering the `show` command. The configured interfaces are bound to a security zone at the [edit security] hierarchy level. Use the `show zones` command to view the zones, where the configured interfaces (gr-, st0.0, and lo0) are displayed. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

Parameters for configuring the GRE interfaces:

```plaintext
user@host> show interfaces
```
Parameters for configuring the GRE interfaces with security zones:
[edit security]
root@Juniper# show
zones {
    security-zone trust {
        host-inbound-traffic {
            system-services {
                all;
            }
            protocols {
                all;
            }
        }
        interfaces {
            gr-0/0/0.0;
            lo0.0;
            st0.0;
        }
    }
}

Verification

Verification of the IPsec Tunnel

Purpose
Verify that the IPsec tunnel is up.

Action
Run the commands show security ike security-associations and show security ipsec security-associations commands.

SEE ALSO

| Generic Routing Encapsulation (GRE) |
| Understanding Generic Routing Encapsulation |
| Verifying That Generic Routing Encapsulation Tunneling Is Working Correctly |
Example: Configuring a GRE Tunnel When the Tunnel Destination Is in a Routing Instance

Overview

You can configure a GRE tunnel when the tunnel destination is in a default routing instance or non-default routing instance. Configuration of a GRE tunnel requires defining the tunnel source and the tunnel destination addresses. If the tunnel destination is in a routing instance, and there is more than one routing instance present, you need to specify the correct routing instance and also the routing table to be used to reach the configured tunnel destination address.

NOTE: The tunnel destination address is by default considered to be reachable using the default routing table "inet.0".

Configuration

In this example, you can configure a GRE tunnel between the gr- interfaces on SRX Series devices with two instances. The instances are when the tunnel destination is in a default routing instance and when the tunnel destination is in a non-default routing instance.

Configuring a GRE Tunnel When the Tunnel Destination Is in a Default Routing Instance

This example uses the default routing instance to reach the tunnel destination. Because of this, the routing table inet.0 is used by default.

Step-by-Step Procedure

1. Specify the source and destination address of the tunnel.

[edit interfaces]
user@host# set interfaces gr-0/0/0 unit 0 tunnel source 172.16.0.1 destination 10.10.1.2
2. Configure the ge- interface and lo0 interface with the family set as inet.

3. Configure the GRE tunnel interface for routing options as mentioned in the “GRE Configuration” on page 445 topic.

**Configuring a GRE Tunnel When the Tunnel Destination Is in a Non-default Routing Instance**

For a non-default routing instance, ensure that you have already configured the gr-0/0/0 interface.

**Step-by-Step Procedure**

1. Configure the GRE tunnel with the gr-0/00 interface and family set as inet.

2. Specify the source and destination address of the tunnel.

3. Configure the ge- interface and lo0 interface with the family set as inet.

4. Configure the routing instances used for the tunnel interface.
5. Configure the routing-instance for GRE tunnel interfaces.

[edit interfaces]
user@host# set interfaces gr-0/0/0 unit 0 tunnel routing-instance destination test

6. Add the static route for tunnel destination.

[edit interfaces]
user@host# set routing-options static route 10.10.1.2/32 next-table test.inet.0

NOTE: When the SRX Series device is in packet mode, you do not need to configure a static route to make the tunnel destination reachable from inet.0. However, you still need to specify the correct routing instance under the gr-0/0/0 interface.

Results

In configuration mode, confirm your configuration on the devices by entering the show command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

When the tunnel destination is in a default routing instance:

```plaintext
interfaces {
 gr-0/0/0 {
 unit 0 {
 tunnel {
 source 172.16.0.1;
 destination 10.10.1.2;
 }
 family inet {
 address 192.168.100.1/30;
 }
 }
 }
 ge-0/0/0 {
 unit 0 {
 family inet {
 address 172.30.73.56/24;
 }
 }
 }
}
```
When the tunnel destination is in a non-default routing instance:

```plaintext
interfaces {
 gr-0/0/0 {
 unit 0 {
 tunnel {
 source 172.16.0.1;
 destination 10.10.1.2;
 routing-instance {
 destination test; # Routing-instance to reach tunnel destination
 }
 }
 }
 }
}
family inet {
 address 192.168.100.1/30;
}
```
ge-0/0/0 {
    unit 0 {
        family inet {
            address 172.30.73.56/24;
        }
    }
}

lo0 {
    unit 0 {
        family inet {
            address 172.16.0.1/32;
        }
    }
    ...
}

routing-options {
    static {
        route 10.10.1.2/32 next-table test.inet.0;  # Tunnel
destination is reachable via test.inet.0
        ...
    }
}

routing-instances {
    test {
        instance-type virtual-router;
        interface ge-0/0/0;
        routing-options {
            static {
                route 10.10.1.2/32 next-hop 172.30.73.57;  # Tunnel
destination is reachable from non-default routing-instance
                ...
            }
        }
    }
}
Verification

Verification of Static Route Use

Purpose
Verify that the static route is used.

Action
Run the `show route forwarding table` command.

```
user@host> show route forwarding-table table test

Routing table: test.inet
Enabled protocols: Bridging,
Destination Type RtRef Next hop Type Index NhRef Netif
default perm 0 rjct 597 1
0.0.0.0/32 perm 0 dscd 590 1
10.10.1.2/32 user 1 172.30.73.57 hold 598 4 ge-0/0/0.0
172.16.0.1.10.1.2.47/72
 dest 0 locl 617 1
172.30.73.0/24 intf 0 172.30.73.0 rslv 588 1 ge-0/0/0.0
172.30.73.0/32 dest 0 172.30.73.57 locl 587 2
172.30.73.56/32 dest 0 172.30.73.56 locl 587 2
172.30.73.57/32 dest 0 172.30.73.57 hold 598 4 ge-0/0/0.0
172.30.73.255/32 dest 0 172.30.73.255 bcst 585 1 ge-0/0/0.0
224.0.0.0/4 perm 0 mdsc 596 1
224.0.0.1/32 perm 0 224.0.0.1 mcst 600 1
255.255.255.255/32 perm 0 bcst 601 1
```

Verification of Static Route Used in Default Instance

Purpose
Verify that the static route is used for the default instance.

Action
Run the `show route forwarding table` command.

```
user@host> show route forwarding-table matching 10.10.1.2
```
Routing table: default.inet
Internet:
Enabled protocols: Bridging,

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.1.2/32</td>
<td>user</td>
<td>0</td>
<td></td>
<td>rtbl</td>
<td>604</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

SEE ALSO

Generic Routing Encapsulation (GRE)
Understanding Generic Routing Encapsulation
Verifying That Generic Routing Encapsulation Tunneling Is Working Correctly

RELATED DOCUMENTATION

Generic Routing Encapsulation (GRE)

Configuring Point-to-Point Protocol over Ethernet

IN THIS SECTION

- Understanding Point-to-Point Protocol over Ethernet | 462
- Understanding PPPoE Interfaces | 466
- Example: Configuring PPPoE Interfaces | 466
- Understanding PPPoE Ethernet Interfaces | 475
- Example: Configuring PPPoE Encapsulation on an Ethernet Interface | 475
- Understanding PPPoE ATM-over-ADSL and ATM-over-SHDSL Interfaces | 476
- Example: Configuring PPPoE Encapsulation on an ATM-over-ADSL Interface | 477
- Understanding CHAP Authentication on a PPPoE Interface | 480
- Example: Configuring CHAP Authentication on a PPPoE Interface | 480
- Verifying Credit-Flow Control | 483
- Verifying PPPoE Interfaces | 484
- Verifying R2CP Interfaces | 484
Point-to-Point Protocol over Ethernet (PPPoE) combines PPP, with the Ethernet link-layer protocol that allows users to connect to a network of hosts over a bridge or access concentrator. The below topics discuss the overview of PPPoE interfaces, PPPoE Ethernet interfaces, PPPoE ATM-over-ADSL, and ATM-over-SHDSL Interfaces, CHAP authentication on PPPoE, displaying statistics, setting tracing options for PPPoE and verification of these interfaces on security devices.

### Understanding Point-to-Point Protocol over Ethernet

**IN THIS SECTION**
- PPPoE Discovery Stage | 463
- PPPoE Session Stage | 464

Point-to-Point Protocol over Ethernet (PPPoE) combines PPP, which typically runs over broadband connections, with the Ethernet link-layer protocol that allows users to connect to a network of hosts over a bridge or access concentrator. PPPoE enables service providers to maintain access control through PPP connections and also manage multiple hosts at a remote site.

PPPoE connects multiple hosts on an Ethernet LAN to a remote site through a single customer premises equipment (CPE) device—a Juniper Networks device. Hosts share a common digital subscriber line (DSL), a cable modem, or a wireless connection to the Internet.

To use PPPoE, you must initiate a PPPoE session, encapsulate Point-to-Point Protocol (PPP) packets over Ethernet, and configure the device as a PPPoE client. To provide a PPPoE connection, each PPP session must learn the Ethernet address of the remote peer and establish a unique session identifier during the PPPoE discovery and session stages.
NOTE: Juniper Networks devices with asymmetric digital subscriber line (ADSL) or symmetric high-speed DSL (SHDSL) interfaces can use PPPoE over Asynchronous Transfer Mode (ATM) to connect through DSL lines only, not for direct ATM connections.

PPPoE has two stages, the discovery stage and the PPPoE session stage. In the discovery stage, the client discovers the access concentrator by identifying the Ethernet media access control (MAC) address of the access concentrator and establishing a PPPoE session ID. In the session stage, the client and the access concentrator build a point-to-point connection over Ethernet, based on the information collected in the discovery stage.

This topic contains the following sections:

**PPPoE Discovery Stage**

To initiate a PPPoE session, a host must first identify the Ethernet MAC address of the remote peer and establish a unique PPPoE session ID for the session. Learning the remote Ethernet MAC address is called PPPoE discovery.

During the PPPoE discovery process, the host does not discover a remote endpoint on the Ethernet network. Instead, the host discovers the access concentrator through which all PPPoE sessions are established. Discovery is a client/server relationship, with the host (a device running Junos OS) acting as the client and the access concentrator acting as the server. Because the network might have more than one access concentrator, the discovery stage allows the client to communicate with all of them and select one.

NOTE: A device cannot receive PPPoE packets from two different access concentrators on the same physical interface.

The PPPoE discovery stage consists of the following steps:

1. **PPPoE Active Discovery Initiation (PADI)**—The client initiates a session by broadcasting a PADI packet to the LAN to request a service.

2. **PPPoE Active Discovery Offer (PADO)**—Any access concentrator that can provide the service requested by the client in the PADI packet replies with a PADO packet that contains its own name, the unicast address of the client, and the service requested. An access concentrator can also use the PADO packet to offer other services to the client.
3. PPPoE Active Discovery Request (PADR)—From the PADOs it receives, the client selects one access concentrator based on its name or the services offered and sends it a PADR packet to indicate the service or services needed.

4. PPPoE Active Discovery Session Confirmation (PADS)—When the selected access concentrator receives the PADR packet, it accepts or rejects the PPPoE session:
   - To accept the session, the access concentrator sends the client a PADS packet with a unique session ID for a PPPoE session and a service name that identifies the service under which it accepts the session.
   - To reject the session, the access concentrator sends the client a PADS packet with a service name error and resets the session ID to zero.

**PPPoE Session Stage**

The PPPoE session stage starts after the PPPoE discovery stage is over. The access concentrator can start the PPPoE session after it sends a PADS packet to the client, or the client can start the PPPoE session after it receives a PADS packet from the access concentrator. A device supports multiple PPPoE sessions on each interface, but no more than 256 PPPoE sessions per device.

Each PPPoE session is uniquely identified by the Ethernet address of the peer and the session ID. After the PPPoE session is established, data is sent as in any other PPP encapsulation. The PPPoE information is encapsulated within an Ethernet frame and is sent to a unicast address. Magic numbers, echo requests, and all other PPP traffic behave exactly as in normal PPP sessions. In this stage, both the client and the server must allocate resources for the PPPoE logical interface.

After a session is established, the client or the access concentrator can send a PPPoE Active Discovery Termination (PADT) packet anytime to terminate the session. The PADT packet contains the destination address of the peer and the session ID of the session to be terminated. After this packet is sent, the session is closed to PPPoE traffic.

**NOTE:** If PPPoE session is already up and the userrestarts the PPPoE daemon, a new PPPoE daemon with a new PID starts while the existing session is not terminated.

If PPPoE session is already down and user restarts the PPPoE daemon, the PPPoE discovery establishes a new session.

The PPPoE session is not terminated for the following configuration changes:

- Changing idle time out value
- Changing auto rec timer value
- Deleting idle time out
• Deleting auto rec timer
• Add new auto rec time
• Add new idle time out
• Change negotiate address to static address
• Change static ip address to a new static ip address
• Changing default chap secret

The PPPoE session is terminated for the following configuration changes:

• Add ac name
• Delete chap ppp options
• Add new chap ppp options
• Configure uifd mac

NOTE: When the MTU for an underlying physical interface is changed, it brings down the PPPoE session. The PPPoE MTU can be greater than 1492 if the Ethernet or WAN connection supports RFC 4638 (Mini Jumbo Frames).

SEE ALSO

Understanding Physical Encapsulation on an Interface | 431
Understanding PPPoE Interfaces | 466
Understanding PPPoE Ethernet Interfaces | 475
Understanding PPPoE ATM-over-ADSL and ATM-over-SHDSL Interfaces | 476
Understanding CHAP Authentication on a PPPoE Interface | 480
Understanding the PPPoE-Based Radio-to-Router Protocol
Understanding PPPoE Interfaces

The device's Point-to-Point Protocol over Ethernet (PPPoE) interface to the access concentrator can be a Fast Ethernet interface, a Gigabit Ethernet interface, a redundant Ethernet interface, an ATM-over-ADSL interface, or an ATM-over-SHDSL interface. The PPPoE configuration is the same for all interfaces. The only difference is the encapsulation for the underlying interface to the access concentrator:

- If the interface is Ethernet, use a PPPoE encapsulation.
- If the interface is ATM-over-ADSL or ATM-over-SHDSL, use a PPPoE over ATM encapsulation.

To configure a PPPoE interface, you create an interface with a logical interface unit 0, then specify a logical Ethernet or ATM interface as the underlying interface for the PPPoE session. You then specify other PPPoE options, including the access concentrator and PPPoE session parameters.

NOTE: PPPoE over redundant Ethernet (reth) interface is supported on SRX100, SRX210, SRX220, SRX240, SRX300, SRX320, SRX340 and SRX650 devices. (Platform support depends on the Junos OS release in your installation.) This feature allows an existing PPPoE session to continue without starting a new PPP0E session in the event of a failover.

Example: Configuring PPPoE Interfaces

This example shows how to configure a PPPoE interface.

Requirements

Before you begin, configure an Ethernet interface. See “Example: Creating an Ethernet Interface” on page 282.
Overview

In this example, you create the PPPoE interface pp0.0 and specify the logical Ethernet interface ge-0/0/1.0 as the underlying interface. You also set the access concentrator, set the PPPoE session parameters, and set the MTU of the IPv4 family to 1492.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```plaintext
set interfaces pp0 unit 0 pppoe-options underlying-interface ge-0/0/1.0 access-concentrator ispl.com
auto-reconnect 100 idle-timeout 100 client service-name video@ispl.com
set interfaces pp0 unit 0 family inet mtu 1492 negotiate-address
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure a PPPoE interface:

1. Create a PPPoE interface.

   ```plaintext
 [edit]
 user@host# edit interfaces pp0 unit 0
   ```

2. Configure PPPoE options.

   ```plaintext
 [edit interfaces pp0 unit 0]
 user@host# set pppoe-options underlying-interface ge-0/0/1.0 access-concentrator ispl.com auto-reconnect 100 idle-timeout 100 client service-name video@ispl.com
   ```

3. Configure the MTU.

   ```plaintext
 [edit interfaces pp0 unit 0]
 user@host# set family inet mtu 1492
   ```
NOTE: If you want to configure mtu to a value above 1492 octets, then use ppp-max-payload option. Refer pppoe-options for more details.

4. Configure the PPPoE interface address.

```
[edit interfaces pp0 unit 0]
user@host# set family inet negotiate-address
```

Results
From configuration mode, confirm your configuration by entering the show interfaces pp0 command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces pp0
unit 0 {
 pppoe-options {
 underlying-interface ge-0/0/1.0;
 idle-timeout 100;
 access-concentrator ispl.com;
 service-name "vide0@ispl.com";
 auto-reconnect 100;
 client;
 }
 family inet {
 mtu 1492;
 negotiate-address;
 }
}
```

If you are done configuring the device, enter commit from configuration mode.

Verification

**IN THIS SECTION**

- Verifying PPPoE Interfaces | 469
- Verifying PPPoE Sessions | 470
Confirm that the configuration is working properly.

**Verifying PPPoE Interfaces**

**Purpose**
Verify that the PPPoE device interfaces are configured properly.

**Action**
From operational mode, enter the `show interfaces pp0` command.

```bash
user@host> show interfaces pp0
```

<table>
<thead>
<tr>
<th>Physical interface: pp0, Enabled, Physical link is Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface index: 67, SNMP ifIndex: 317</td>
</tr>
<tr>
<td>Type: PPPoE, Link-level type: PPPoE, MTU: 9192</td>
</tr>
<tr>
<td>Device flags: Present Running</td>
</tr>
<tr>
<td>Interface flags: Point-To-Point SNMP-Traps</td>
</tr>
<tr>
<td>Link type: Full-Duplex</td>
</tr>
<tr>
<td>Link flags: None</td>
</tr>
<tr>
<td>Last flapped: Never</td>
</tr>
<tr>
<td>Input rate: 0 bps (0 pps)</td>
</tr>
<tr>
<td>Output rate: 0 bps (0 pps)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logical interface pp0.0 (Index 1) (SNMP ifIndex 330)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags: Point-To-Point SNMP-Traps 16384 Encapsulation: PPPoE</td>
</tr>
<tr>
<td>PPPoE:</td>
</tr>
<tr>
<td>State: SessionUp, Session ID: 3304,</td>
</tr>
<tr>
<td>Session AC name: isp1.com, AC MAC address: 00:90:1a:40:f6:4c,</td>
</tr>
<tr>
<td>Service name: <a href="mailto:video@isp1.com">video@isp1.com</a>, Configured AC name: isp1.com,</td>
</tr>
<tr>
<td>Auto-reconnect timeout: 60 seconds</td>
</tr>
<tr>
<td>Underlying interface: ge-5/0/0.0 (Index 71)</td>
</tr>
<tr>
<td>Input packets: 23</td>
</tr>
<tr>
<td>Output packets: 22</td>
</tr>
<tr>
<td>Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3</td>
</tr>
<tr>
<td>Keepalive: Input: 16 (00:00:26 ago), Output: 0 (never)</td>
</tr>
<tr>
<td>LCP state: Opened</td>
</tr>
</tbody>
</table>
The output shows information about the physical and the logical interfaces. Verify the following information:

- The physical interface is enabled and the link is up.
- The PPPoE session is running on the correct logical interface.
- For state, the state is active (up).
- For underlying interface, the physical interface on which the PPPoE session is running is correct:
  - For an Ethernet connection, the underlying interface is Fast Ethernet or Gigabit Ethernet—for example, ge-5/0/0.0.
  - For an ATM-over-ADSL or ATM-over-SHDSL connection, the underlying interface is ATM—for example, at-2/0/0.0.

Verifying PPPoE Sessions

Purpose
Verify that a PPPoE session is running properly on the logical interface.

Action
From operational mode, enter the `show pppoe interfaces` command.

```
user@host> show pppoe interfaces
```

- `pp0.0 Index 67`
  - State: Session up, Session ID: 31,
  - Service name: video@isp1.com, Configured AC name: isp1.com,
  - Session AC name: belur, AC MAC address: 00:90:1a:40:f6:4e,
  - Auto-reconnect timeout: 1 seconds,
  - Underlying interface: ge-0/0/1.0 Index 69

The output shows information about the PPPoE sessions. Verify the following information:

- The PPPoE session is running on the correct logical interface.
- For state, the session is active (up).
- For underlying interface, the physical interface on which the PPPoE session is running is correct:
For an Ethernet connection, the underlying interface is Fast Ethernet or Gigabit Ethernet—for example, ge-0/0/1.0.

For an ATM-over-ADSL or ATM-over-SHDSL connection, the underlying interface is ATM—for example, at-2/0/0.0.

**NOTE:** To clear a PPoE session on the pp0.0 interface, use the `clear pppoe sessions pp0.0` command. To clear all sessions on the interface, use the `clear pppoe sessions` command.

### Verifying the PPoE Version

**Purpose**
Verify the version information of the PPoE protocol configured on the device interfaces.

**Action**
From operational mode, enter the `show pppoe version` command.

```
user@host> show pppoe version
```

<table>
<thead>
<tr>
<th>Point-to-Point Protocol Over Ethernet, version 1. rfc2516</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPoE protocol = Enabled</td>
</tr>
<tr>
<td>Maximum Sessions = 256</td>
</tr>
<tr>
<td>PADI resend timeout = 2 seconds</td>
</tr>
<tr>
<td>PADR resend timeout = 16 seconds</td>
</tr>
<tr>
<td>Max resend timeout = 64 seconds</td>
</tr>
<tr>
<td>Max Configured AC timeout = 4 seconds</td>
</tr>
</tbody>
</table>

The output shows PPoE protocol information. Verify the following information:

- The correct version of the PPoE protocol is configured on the interface.
- For PPoE protocol, the PPoE protocol is enabled.

### Verifying PPoE Statistics

**Purpose**
Verify the statistics information about PPoE interfaces.

**Action**
From operational mode, enter the `show pppoe statistics` command.

```
user@host> show pppoe statistics
```
The output shows information about active sessions on PPPoE interfaces. Verify the following information:

- Total number of active PPPoE sessions running on the interface
- For packet type, the number of packets of each type sent and received during the PPPoE session

**Disabling the End-of-List Tag**

During the PPPoE discovery stage, any access concentrator that can provide the service requested by the client in the PADI packet replies with a PADO packet that contains its own name, the unicast address of the client, and the service requested. An access concentrator can also use the PADO packet to offer other services to the client. When a client receives a PADO packet, and if it encounters the **End-of-List** tag in the PADO packet, tags after the **End-of-List** tag are ignored and the complete information is not processed correctly. As a result, the PPPoE connection is not established correctly.

Starting in Junos OS Release 12.3X48-D10 you can avoid some PPPoE connection errors by configuring the **ignore-eol-tag** option to disable the **End-of-List** tag in the PADO packet.

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode*.

To disable the **End-of-List** tag:

1. Create a PPPoE interface.
2. Configure PPPoE options.

```
[edit]
user@host# set interfaces pp0 unit 0

[edit interfaces pp0 unit 0]
user@host# set pppoe-options ignore-eol-tag
```

**Results**

From configuration mode, confirm your configuration by entering the `show interfaces pp0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces pp0
unit 0 {
 pppoe-options {
 ignore-eol-tag;
 }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

**Verifying That the End-of-List Tag Is Disabled**

**Purpose**

Verify the status of the End-of-List tag in the PPPoE configuration.

**Action**

From operational mode, enter the `show interfaces pp0.0` command.

```
user@host> show pppoe interfaces pp0.0
```

Logical interface pp0.0 (Index 78) (SNMP ifIndex 541)
Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: PPPoE
PPPoE:
  State: SessionUp, Session ID: 3,
  Session AC name: cell, Remote MAC address: 00:26:88:f7:77:83,
  Configured AC name: None, Service name: None,
  Auto-reconnect timeout: Never, Idle timeout: Never,
user@host> show pppoe interfaces pp0.0 extensive

pp0.0 Index 74
State: Session up, Session ID: 1,
Service name: None,
Session AC name: cell, Configured AC name: None,
Remote MAC address: 00:26:88:f7:77:83,
Session uptime: 00:02:03 ago,
Auto-reconnect timeout: 10 seconds, Idle timeout: Never,

Underlying interface: ge-0/0/3.0 Index 73
Ignore End-of-List tag: Enable

PacketType     Sent  Received
PADI           23     0
PADO           0      5
PADR           11     0
PADS           0      2
PADT           2      0
Service name error        0      0
AC system error           0      0
Generic error             0      0
Malformed packets         0      0
Unknown packets           0      0

Timeout
PADI           3
PADO           0
PADR           3

Receive Error Counters
PADI           0
PADO           0
PADR           0
PADS           0

The output shows information about active sessions on PPPoE interfaces. Verify that the **Ignore End-of-List tag: Enable** option is set.
Understanding PPPoE Ethernet Interfaces

During a Point-to-Point Protocol over Ethernet (PPPoE) session, the device encapsulates each PPP frame in an Ethernet frame and transports the frames over an Ethernet loop. Figure 22 on page 475 shows a typical PPPoE session between a device and an access concentrator on the Ethernet loop.

Figure 22: PPPoE Session on the Ethernet Loop

To configure PPPoE on an Ethernet interface, you configure encapsulation on the logical interface.

Example: Configuring PPPoE Encapsulation on an Ethernet Interface

This example shows how to configure PPPoE encapsulation on an Ethernet interface.

Requirements

Before you begin:
• Configure an Ethernet interface. See "Example: Creating an Ethernet Interface" on page 282.
• Configure a PPPoE encapsulation interface. See "Example: Configuring PPPoE Interfaces" on page 466.

Overview

In this example, you configure PPPoE encapsulation on the ge-0/0/1 interface.

Configuration

Step-by-Step Procedure

To configure PPPoE encapsulation:

1. Enable PPPoE encapsulation on the interface.

```
[edit]
user@host# set interfaces ge-0/0/1 unit 0 encapsulation ppp-over-ether
```

2. Commit the configuration if you are done configuring the device.

```
[edit]
user@host# commit
```

Verification

To verify the configuration is working properly, enter the `show interfaces ge-0/0/1` command.

Understanding PPPoE ATM-over-ADSL and ATM-over-SHDSL Interfaces

When an ATM network is configured with a point-to-point connection, Point-to-Point Protocol over Ethernet (PPPoE) can use ATM Adaptation Layer 5 (AAL5) for framing PPPoE-encapsulated packets. The AAL5 protocol provides a virtual connection between the client and the server within the same network. The device encapsulates each PPPoE frame in an ATM frame and transports each frame over an asymmetric digital subscriber line (ADSL) or symmetric high-speed DSL (SHDSL) loop and a digital subscriber line access multiplexer (DSLAM). For example, Figure 23 on page 477 shows a typical PPPoE over ATM session between a device and an access concentrator on an ADSL loop.
For PPPoE on an ATM-over-ADSL or ATM-over-SHDSL interface, you must configure encapsulation on both the physical and logical interfaces. To configure encapsulation on an ATM-over-ADSL or ATM-over-SHDSL physical interface, use Ethernet over ATM encapsulation. To configure encapsulation on an ATM-over-ADSL or ATM-over-SHDSL logical interface, use PPPoE over AAL5 logical link control (LLC) encapsulation. LLC encapsulation allows a single ATM virtual connection to transport multiple protocols.

### Example: Configuring PPPoE Encapsulation on an ATM-over-ADSL Interface

This example shows how to configure a physical interface for Ethernet over ATM encapsulation and how to create a logical interface for PPPoE over LLC encapsulation.

**Requirements**

Before you begin:

- Configure network interfaces. See "Example: Creating an Ethernet Interface" on page 282.
- Configure PPPoE interfaces. See "Example: Configuring PPPoE Interfaces" on page 466.
- Configure PPPoE encapsulation on an Ethernet interface. See "Example: Configuring PPPoE Encapsulation on an Ethernet Interface" on page 475.
Overview

In this example, you configure the physical interface at-2/0/0 for Ethernet over ATM encapsulation. As part of the configuration, you set the virtual path identifier (VPI) on an ATM-over-ADSL physical interface to 0, you set the ADSL operating mode to auto, and you set the encapsulation type to ATM-over-ADSL. Then you create a logical interface for PPPoE over LLC encapsulation.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces at-2/0/0 atm-options vpi 0
set interfaces at-2/0/0 dsl-options operating-mode auto
set interfaces at-2/0/0 encapsulation ethernet-over-atm
set interfaces at-2/0/0 unit 0 encapsulation ppp-over-ether-over-atm-llc vci 0.120
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure PPPoE encapsulation on an ATM-over-ADSL interface:

1. Configure the physical interface.

   ```
 [edit]
 user@host# edit interfaces at-2/0/0
   ```

2. Set the VPI on the interface.

   ```
 [edit interfaces at-2/0/0]
 user@host# set atm-options vpi 0
   ```

3. Configure the ADSL operating mode.

   ```
 [edit interfaces at-2/0/0]
 user@host# set dsl-options operating-mode auto
   ```

4. Configure PPPoE encapsulation.
5. Create a logical interface and configure LLC encapsulation.

Results
From configuration mode, confirm your configuration by entering the `show interfaces at-2/0/0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

Verification

Confirm that the configuration is working properly.
Verifying a PPPoE Configuration for an ATM-over-ADSL or ATM-over-SHDSL Interface

Purpose
Verify the PPPoE configuration for an ATM-over-ADSL or ATM-over-SHDSL interface.

Action
From operational mode, enter the `show interfaces` command.

Understanding CHAP Authentication on a PPPoE Interface

For interfaces with Point-to-Point Protocol over Ethernet (PPPoE) encapsulation, you can configure interfaces to support the PPP Challenge Handshake Authentication Protocol (CHAP). When you enable CHAP on an interface, the interface can authenticate its peer and be authenticated by its peer.

If you set the `passive` option to handle incoming CHAP packets only, the interface does not challenge its peer. However, if the interface is challenged, it responds to the challenge. If you do not set the `passive` option, the interface always challenges its peer.

You can configure Remote Authentication Dial-In User Service (RADIUS) authentication of PPP sessions using CHAP. CHAP enables you to send RADIUS messages through a routing instance to customer RADIUS servers in a private network.

Example: Configuring CHAP Authentication on a PPPoE Interface

This example shows how to configure CHAP authentication on a PPPoE interface.

Requirements
Before you begin:
• Configure an Ethernet interface. See "Example: Creating an Ethernet Interface" on page 282.

• Configure a PPPoE interface. See "Example: Configuring PPPoE Interfaces" on page 466.

• Configure PPPoE encapsulation on an ATM-over-ADSL interface. See "Example: Configuring PPPoE Encapsulation on an ATM-over-ADSL Interface" on page 477.

Overview

In this example, you configure a CHAP access profile, and then apply it to the PPPoE interface pp0. You also configure the hostname to be used in CHAP challenge and response packets, and set the passive option for handling incoming CHAP packets.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set access profile A-ppp-client client client1 chap-secret my-secret
set interfaces pp0 unit 0 ppp-options chap access-profile A-ppp-client local-name A-ge-0/0/1.0 passive
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure CHAP on a PPPoE interface:

1. Configure a CHAP access profile.

   

   ```
 [edit]
 user@host# set access profile A-ppp-client client client1 chap-secret my-secret
   ```

2. Enable CHAP options on the interface.

   ```
 [edit]
 user@host# edit interfaces pp0 unit 0 ppp-options chap
   ```

3. Configure the CHAP access profile on the interface.
4. Configure a hostname for the CHAP challenge and response packets.

```plaintext
[edit interfaces pp0 unit 0 ppp-options chap]
user@host# set access-profile A-ppp-client
```

5. Set the passive option to handle incoming CHAP packets only.

```plaintext
[edit interfaces pp0 unit 0 ppp-options chap]
user@host# set passive
```

Results
From configuration mode, confirm your configuration by entering the `show interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```plaintext
[edit]
user@host# show interfaces
pp0 {
 unit 0 {
 ppp-options {
 chap {
 access-profile A-ppp-client;
 local-name A-ge-0/0/1.0;
 passive;
 }
 }
 }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

Confirm that the configuration is working properly.

Verifying CHAP Authentication

Purpose
Verify that CHAP is enabled on the interface.

**Action**
From operational mode, enter the `show interfaces` command.

---

### Verifying Credit-Flow Control

**Purpose**
Display PPPoE credit-flow control information about credits on each side of the PPPoE session when credit processing is enabled on the interface.

**Action**

```plaintext
user@host> show pppoe interface detail
```

```plaintext
pp0.51 Index 73
 State: Session up, Session ID: 3,
 Service name: None,
 Configured AC name: None, Session AC name: None,
 Remote MAC address: 00:22:83:84:2e:81,
 Session uptime: 00:05:48 ago,
 Auto-reconnect timeout: Never, Idle timeout: Never,
 Underlying interface: ge-0/0/4.1 Index 72
 PADG Credits: Local: 12345, Remote: 6789, Scale factor: 128 bytes
 PADQ Current bandwidth: 750 Kbps, Maximum 1000 Kbps
 Quality: 85, Resources 65, Latency 100 msec.
 Dynamic bandwidth: 3 Kbps

pp0.1000 Index 71
 State: Down, Session ID: 1,
 Service name: None,
 Configured AC name: None, Session AC name: None,
 Remote MAC address: 00:00:00:00:00:00,
 Auto-reconnect timeout: Never, Idle timeout: Never,
 Underlying interface: ge-0/0/1.0 Index 70
 PADG Credits: enabled
 Dynamic bandwidth: enabled
```
Verifying PPPoE Interfaces

Purpose
Display PPPoE interfaces information.

Action

• To display PPPoE interface information:

```
user@host> show pppoe interfaces pp0.51 detail
```

```
pp0.51 Index 75
 State: Session up, Session ID: 1,
 Service name: None,
 Configured AC name: None, Session AC name: None,
 Remote MAC address: 00:11:22:33:44:55,
 Session uptime: 00:04:18 ago,
 Auto-reconnect timeout: Never, Idle timeout: Never,
 Underlying interface: ge-0/0/1.0 Index 70
 PADQ Current bandwidth: 750 Kbps, Maximum 1000 Kbps
 Quality: 85, Resources 65, Latency 100 msec.
 Dynamic bandwidth: 3 Kbps
```

• To display PPPoE terse interface information:

```
user@host> show pppoe interfaces terse pp0.51
```

```
Interface Admin Link Proto Local Remote
 pp0.51 up up inet 5.1.1.1 --> 5.1.1.2
 inet6 fe80::21f:12ff:fed2:2918/64
 feee::5:1:1:1/126
```

Verifying R2CP Interfaces

Purpose
Display R2CP interfaces information.

Action

• To display R2CP interface information:
root@host> show r2cp interfaces

Interface: ge-0/0/3.51
Nodes: 0

• To display R2CP information:

root@host> show r2cp radio extensive

<table>
<thead>
<tr>
<th>Node Packet Type</th>
<th>Sent</th>
<th>Received</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIM</td>
<td>-</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ROM</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heartbeats</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Node Term</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Node Term Ack</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Heartbeat Timeouts</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node Term Timeouts</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session Packet Type</th>
<th>Sent</th>
<th>Received</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Init</td>
<td>-</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Init ACK</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Update</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Terminate</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Terminate ACK</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Terminate Timeouts</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• To display R2CP session information:

root@host> show r2cp sessions extensive

Session: 1
Destination MAC address 01:02:03:04:05:06
Status: Established VLANs 201
Virtual channel: 2
Session Update: last received: 3.268 seconds
   Current bandwidth: 22000 Kbps, Maximum 22000 Kbps
   Quality: 100, Resources 100, Latency 100 msec.
   Effective bandwidth: 952 Kbps, last change: 51.484 seconds
   Updates below threshold: 1

<table>
<thead>
<tr>
<th>Session Packet Type</th>
<th>Sent</th>
<th>Received</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Init</td>
<td>-</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Init ACK</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Update</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Terminate</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Terminate ACK</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Terminate Timeouts: 0

Displaying Statistics for PPoE

Purpose
Display PPoE statistics.

Action

user@host> show interfaces pp0.51 statistics

Logical interface pp0.51 (Index 75) (SNMP ifIndex 137)
   Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: PPoE
PPPoE:
   State: SessionUp, Session ID: 1,
   Session AC name: None, Remote MAC address: 00:22:83:84:2f:03,
   Underlying interface: ge-0/0/4.1 (Index 74)
Input packets : 20865
Output packets: 284636
Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
Keepalive: Input: 0 (never), Output: 943 (00:00:06 ago)
LCP state: Opened
CHAP state: Closed
Setting Tracing Options for PPPoE

To trace the operations of the router's PPPoE process, include the traceoptions statement at the [edit protocols pppoe] hierarchy level:

```
[edit protocols pppoe]
traceoptions {
 file filename <files number> <match regular-expression> <size size> <world-readable | no-world-readable>;
 flag flag;
 level severity-level;
 no-remote-trace;
}
```

To specify more than one tracing operation, include multiple flag statements.

You can specify the following flags in the traceoptions statement:

- **all**—All areas of code
- **config**—Configuration code
- **events**—Event code
- **gres**—Gres code
- **init**—Initialization code
- **interface-db**—Interface database code
- **memory**—Memory management code
- **protocol**—PPPoE protocol processing code
- **rtsock**—Routing socket code
- **session-db**—Session management code
- **signal**—Signal handling code
- **state**—State handling code
- **timer**—Timer code
- **ui**—User interface code
CHAPTER 6

Configuring Link Services Interfaces

Configuring Link Services Interfaces | 491
Configuring Link Fragmentation and Interleaving | 522
Configuring Class-of-Service on Link Services Interfaces | 525
Achieving Greater Bandwidth, Load Balancing, and Redundancy with Multilink Bundles | 538
Configuring Multilink Frame Relay | 543
Configuring Compressed Real-Time Transport Protocol | 553
Configuring Link Services Interfaces

Juniper Networks devices support link services on the lsq-0/0/0 link services queuing interface which includes multilink services like MLPP, MLFR and CRTP. The topics below discuss the overview of link services, configuration details and verification of the link services on SRX series devices.

Link Services Interfaces Overview

Link services include the multilink services Multilink Point-to-Point Protocol (MLPPP), Multilink Frame Relay (MLFR), and Compressed Real-Time Transport Protocol (CRTP). Juniper Networks devices support link services on the lsq-0/0/0 link services queuing interface.
You configure the link services queuing interface (lsq-0/0/0) on a Juniper Networks device to support multilink services and CRTP.

The link services queuing interface on SRX Series devices consists of services provided by the following interfaces on the Juniper Networks M Series and T Series routing platforms: multilink services interface (ml-fpc/pic/port), link services interface (ls-fpc/pic/port), and link services intelligent queuing interface (lsq-fpc/pic/port). Although the multilink services, link services, and link services intelligent queuing (IQ) interfaces on M Series and T Series routing platforms are installed on Physical Interface Cards (PICs), the link services queuing interface on SRX Series devices is an internal interface only and is not associated with a physical medium or Physical Interface Module (PIM).

NOTE: (ls-fpc/pic/port) is not supported on SRX Series devices.

This section contains the following topics.

**Services Available on a Link Services Interface**

The link services interface is a logical interface available by default. Table 32 on page 492 summarizes the services available on the interface.

Table 32: Services Available on a Link Services Interface

<table>
<thead>
<tr>
<th>Services</th>
<th>Purpose</th>
<th>More Information</th>
</tr>
</thead>
</table>
| Multilink bundles by means of MLPPP and MLFR encapsulation | Aggregates multiple constituent links into one larger logical bundle to provide additional bandwidth, load balancing, and redundancy.  
NOTE: Dynamic call admission control (DCAC) configurations are not supported on Link Services Interfaces. | • Example: Configuring an MLPPP Bundle on page 539  
• Example: Configuring Multilink Frame Relay FRF.15 on page 544  
• Example: Configuring Multilink Frame Relay FRF.16 on page 548 |
| Link fragmentation and interleaving (LFI)                | Reduces delay and jitter on links by breaking up large data packets and interleaving delay-sensitive voice packets with the resulting smaller packets. | "Understanding Link Fragmentation and Interleaving Configuration" on page 522                       |
Table 32: Services Available on a Link Services Interface (continued)

<table>
<thead>
<tr>
<th>Services</th>
<th>Purpose</th>
<th>More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class-of-service (CoS) classifiers, forwarding classes, schedulers and</td>
<td>Provides a higher priority to delay-sensitive packets—by configuring CoS, such as the following:</td>
<td></td>
</tr>
<tr>
<td>scheduler maps, and shaping rates</td>
<td>• Classifiers—To classify different types of traffic, such as voice, data, and network control packets.</td>
<td>• Example: Configuring Interface Shaping Rates on page 536</td>
</tr>
<tr>
<td></td>
<td>• Forwarding classes—To direct different types of traffic to different output queues.</td>
<td>• Configuring Fragmentation by Forwarding Class on page 496</td>
</tr>
<tr>
<td></td>
<td>• Fragmentation map—To define mapping between forwarding class and multilink class, and forwarding class and fragment threshold. In forwarding class and multilink class mapping, drop timeout can be configured.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Schedulers and scheduler maps—To define properties for the output queues such as delay-buffer, transmission rate, and transmission priority.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Shaping rate—To define certain bandwidth usage by an interface.</td>
<td></td>
</tr>
</tbody>
</table>

Link Services Exceptions

The link and multilink services implementation on SRX Series devices is similar to the implementation on the M Series and T Series routing platforms, with the following exceptions:

- Support for link and multilink services are on the lsq-0/0/0 interface instead of the ml-fpc/pic/port, lsq-fpc/pic/port, and ls-fpc/pic/port interfaces.
- When LFI is enabled, fragmented packets are queued in a round-robin fashion on the constituent links to enable per-packet and per-fragment load balancing. See "Queuing with LFI" on page 495.
- Support for per-unit scheduling is on all types of constituent links (on all types of interfaces).
- Support for Compressed Real-Time Transport Protocol (CRTP) is for both MLPPP and PPP.
Configuring Multiclass MLPPP

For Isq-0/0/0 on Juniper Networks device, with MLPPP encapsulation, you can configure multiclass MLPPP. If you do not configure multiclass MLPPP, fragments from different classes cannot be interleaved. All fragments for a single packet must be sent before the fragments from another packet are sent. Non-fragmented packets can be interleaved between fragments of another packet to reduce latency seen by non-fragmented packets. In effect, latency-sensitive traffic is encapsulated as regular PPP traffic, and bulk traffic is encapsulated as multilink traffic. This model works as long as there is a single class of latency-sensitive traffic, and there is no high-priority traffic that takes precedence over latency-sensitive traffic. This approach to LFI, used on the Link Services PIC, supports only two levels of traffic priority, which is not sufficient to carry the four-to-eight forwarding classes that are supported by M series and T series routing platforms.

Multiclass MLPPP makes it possible to have multiple classes of latency-sensitive traffic that are carried over a single multilink bundle with bulk traffic. In effect, multiclass MLPPP allows different classes of traffic to have different latency guarantees. With multiclass MLPPP, you can map each forwarding class into a separate multilink class, thus preserving priority and latency guarantees.

NOTE: Configuring both LFI and multiclass MLPPP on the same bundle is not necessary, nor is it supported, because multiclass MLPPP represents a superset of functionality. When you configure multiclass MLPPP, LFI is automatically enabled.

The Junos OS PPP implementation does not support the negotiation of address field compression and protocol field compression PPP NCP options, which means that the software always sends a full 4-byte PPP header.

The Junos OS implementation of multiclass MLPPP does not support compression of common header bytes.

Multiclass MLPPP greatly simplifies packet ordering issues that occur when multiple links are used. Without multiclass MLPPP, all voice traffic belonging to a single flow is hashed to a single link to avoid packet ordering issues. With multiclass MLPPP, you can assign voice traffic to a high-priority class, and you can use multiple links.

To configure multiclass MLPPP on a link services IQ interface, you must specify how many multilink classes should be negotiated when a link joins the bundle, and you must specify the mapping of a forwarding class into an multiclass MLPPP class.

To specify how many multilink classes should be negotiated when a link joins the bundle, include the `multilink-max-classes` statement:

```
multilink-max-classes number;
```
You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit logical-routers logical-router-name interfaces interface-name unit logical-unit-number]`

The number of multilink classes can be 1 through 8. The number of multilink classes for each forwarding class must not exceed the number of multilink classes to be negotiated.

To specify the mapping of a forwarding class into a multiclass MLPPP class, include the `multilink-class` statement at the `[edit class-of-service fragmentation-maps forwarding-class class-name]` hierarchy level:

```
edit class-of-service fragmentation-maps forwarding-class class-name multilink-class number
```

The multilink class index number can be 0 through 7. The `multilink-class` statement and the `no-fragmentation` statement are mutually exclusive.

To view the number of multilink classes negotiated, issue the `show interfaces lsq-0/0/0.logical-unit-number detail` command.

**Queuing with LFI**

LFI or non-LFI packets are placed into queues on constituent links based on the queues in which they arrive. No changes in the queue number occur while the fragmented, non-fragmented, or LFI packets are being queued.

For example, assume that Queue Q0 is configured with fragmentation threshold 128, Q1 is configured with no fragmentation, and Q2 is configured with fragmentation threshold 512. Q0 is receiving stream of traffic with packet size 512, Q1 is receiving voice traffic of 64 bytes, and Q2 is receiving stream of traffic with 128-byte packets. Next the stream on Q0 gets fragmented and queued up into Q0 of a constituent link. Also, all packets on Q2 are queued up on Q0 on constituent link. The stream on Q1 is considered to be LFI because no fragmentation is configured. All the packets from Q0 and Q2 are queued up on Q0 of constituent link. All the packets from Q1 are queued up on Q2 of constituent link.

Using `lsq-0/0/0`, CRTP can be applied on LFI and non-LFI packets. There will be no changes in their queue numbers because of CRTP.

**Queuing on Q2s of Constituent Links**

When using class of service on a multilink bundle, all Q2 traffic from the multilink bundle is queued to Q2 of constituent links based on a hash computed from the source address, destination address, and the IP protocol of the packet. If the IP payload is TCP or UDP traffic, the hash also includes the source port and destination port. As a result of this hash algorithm, all traffic belonging to one traffic flow is queued to Q2 of one constituent link. This method of traffic delivery to the constituent link is applied at all times, including when the bundle has not been set up with LFI.
Compressed Real-Time Transport Protocol Overview

Real-Time Transport Protocol (RTP) can help achieve interoperability among different implementations of network audio and video applications. However, in some cases, the header, which includes the IP, UDP, and RTP headers, can be too large (around 40 bytes) on networks using low-speed lines such as dial-up modems. Compressed Real-Time Transport Protocol (CRTP) can be configured to reduce network overhead on low-speed links. CRTP replaces the IP, UDP, and RTP headers with a 2-byte context ID (CID), reducing the header overhead considerably.

Figure 24 on page 496 shows how CRTP compresses the RTP header in a voice packet by reducing a 40-byte header to a 2-byte header.

Figure 24: CRTP

You can configure CRTP with MLPPP or PPP logical interface encapsulation on link services interfaces. See "Example: Configuring an MLPPP Bundle" on page 539.

Real-time and non-real-time data frames are carried together on lower-speed links without causing excessive delays to the real-time traffic. See "Understanding Link Fragmentation and Interleaving Configuration" on page 522.

Configuring Fragmentation by Forwarding Class

For lsq-0/0/0, you can specify fragmentation properties for specific forwarding classes. Traffic on each forwarding class can be either multilink encapsulated (fragmented and sequenced) or non-encapsulated (hashed with no fragmentation). By default, traffic in all forwarding classes is multilink encapsulated.

When you do not configure fragmentation properties for the queues on MLPPP interfaces, the fragmentation threshold you set at the [edit interfaces interface-name unit logical-unit-number fragment-threshold] hierarchy level is the fragmentation threshold for all forwarding classes within the MLPPP interface. For MLFR FRF.16 interfaces, the fragmentation threshold you set at the [edit interfaces interface-name mlfr-uni-nni-bundle-options fragment-threshold] hierarchy level is the fragmentation threshold for all forwarding classes within the MLFR FRF.16 interface.

If you do not set a maximum fragment size anywhere in the configuration, packets are still fragmented if they exceed the smallest maximum transmission unit (MTU) or maximum received reconstructed unit (MRRU) of all the links in the bundle. A non-encapsulated flow uses only one link. If the flow exceeds a
single link, then the forwarding class must be multilink encapsulated, unless the packet size exceeds the MTU/MRRU.

Even if you do not set a maximum fragment size anywhere in the configuration, you can configure the MRRU by including the mrru statement at the [edit interfaces lsq-0/0/0 unit logical-unit-number] or [edit interfaces interface-name mfr-uni-nni-bundle-options] hierarchy level. The MRRU is similar to the MTU, but is specific to link services interfaces. By default the MRRU size is 1504 bytes, and you can configure it to be from 1500 through 4500 bytes.

To configure fragmentation properties on a queue, include the fragmentation-maps statement at the [edit class-of-service] hierarchy level:

```
[edit class-of-service]

fragmentation-maps {
 map-name {
 forwarding-class class-name {
 fragment-threshold bytes;
 multilink-class number;
 no-fragmentation;
 }
 }
}
```

To set a per-forwarding class fragmentation threshold, include the fragment-threshold statement in the fragmentation map. This statement sets the maximum size of each multilink fragment.

To set traffic on a queue to be non-encapsulated rather than multilink encapsulated, include the no-fragmentation statement in the fragmentation map. This statement specifies that an extra fragmentation header is not prepended to the packets received on this queue and that static link load balancing is used to ensure in-order packet delivery.

For a given forwarding class, you can include either the fragment-threshold or no-fragmentation statement; they are mutually exclusive.

You use the multilink-class statement to map a forwarding class into a multiclass MLPPP. For a given forwarding class, you can include either the multilink-class or no-fragmentation statement; they are mutually exclusive.

To associate a fragmentation map with a multilink PPP interface or MLFR FRF.16 DLCI, include the fragmentation-map statement at the [edit class-of-service interfaces interface-name unit logical-unit-number] hierarchy level:

```
[edit class-of-service interfaces]
```
Configuring Link-Layer Overhead

Link-layer overhead can cause packet drops on constituent links because of bit stuffing on serial links. Bit stuffing is used to prevent data from being interpreted as control information.

By default, 4 percent of the total bundle bandwidth is set aside for link-layer overhead. In most network environments, the average link-layer overhead is 1.6 percent. Therefore, we recommend 4 percent as a safeguard.

For **lsq-0/0/0** on Juniper Networks device, you can configure the percentage of bundle bandwidth to be set aside for link-layer overhead. To do this, include the link-layer-overhead statement:

```
link-layer-overhead percent;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name mlfr-uni-uni-bundle-options]`
- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit logical-routers logical-router-name interfaces interface-name unit logical-unit-number]`

You can configure the value to be from 0 percent through 50 percent.

Link Services Configuration Overview

Before you begin:

- Install device hardware.
- Establish basic connectivity. See the Getting Started Guide for your device.
Have a basic understanding of physical and logical interfaces and Juniper Networks interface conventions. See "Understanding Interfaces" on page 31.

Plan how you are going to use the link services interface on your network. See "Link Services Interfaces Overview" on page 491.

To configure link services on an interface, perform the following tasks:

1. Configure link fragmentation and interleaving (LFI). See "Example: Configuring Link Fragmentation and Interleaving" on page 523.

2. Configure classifiers and forwarding classes. See "Example: Defining Classifiers and Forwarding Classes" on page 526.

3. Configure scheduler maps. See "Understanding How to Define and Apply Scheduler Maps" on page 530.


5. Configure an MLPPP bundle. See "Example: Configuring an MLPPP Bundle" on page 539.

6. To configure MLFR, see "Example: Configuring Multilink Frame Relay FRF.15" on page 544 or "Example: Configuring Multilink Frame Relay FRF.16" on page 548.

7. To configure CRTP, see "Example: Configuring the Compressed Real-Time Transport Protocol" on page 554.

---

### Verifying the Link Services Interface

#### IN THIS SECTION

- Verifying Link Services Interface Statistics | 500
- Verifying Link Services CoS Configuration | 502
Confirm that the configuration is working properly.

**Verifying Link Services Interface Statistics**

**Purpose**
Verify the link services interface statistics.

**Action**
The sample output provided in this section is based on the configurations provided in "Example: Configuring an MLPPP Bundle" on page 539. To verify that the constituent links are added to the bundle correctly and the packets are fragmented and transmitted correctly, take the following actions:

1. On device R0 and device R1, the two devices used in this example, configure MLPPP and LFI as described in "Example: Configuring an MLPPP Bundle" on page 539.

2. From the CLI, enter the **ping** command to verify that a connection is established between R0 and R1.

3. Transmit 10 data packets, 200 bytes each, from R0 to R1.

4. On R0, from the CLI, enter the **show interfaces interface-name statistics** command.

```
user@R0> show interfaces lsq-0/0/0 statistics detail

Physical interface: lsq-0/0/0, Enabled, Physical link is Up
Interface index: 134, SNMP ifIndex: 29, Generation: 135
Link-level type: LinkService, MTU: 1504
Device flags : Present Running
Interface flags: Point-To-Point SNMP-Traps
Last flapped : 2006-06-23 11:36:23 PDT (03:38:43 ago)
Statistics last cleared: 2006-06-23 15:13:12 PDT (00:01:54 ago)
Traffic statistics:
 Input bytes : 0 0 bps
 Output bytes: 1820 0 bps
 Input packets: 0 0 pps
 Output packets: 10 0 pps
...
Egress queues: 8 supported, 8 in use
Queue counters: Queued packets Transmitted packets Dropped packets
 0 DATA 10 10 0
 1 expedited-fo 0 0 0
 2 VOICE 0 0 0
 3 NC 0 0 0
```
Logical interface lsq-0/0/0.0 (Index 67) (SNMP ifIndex 41) (Generation 133)
Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: Multilink-PPP
Bandwidth: 16mbps
Bundle options:
  ...
  Drop timer period 0
  Sequence number format long (24 bits)
  Fragmentation threshold 128
  Links needed to sustain bundle 1
  Interleave fragments Enabled
Bundle errors:
  Packet drops 0 (0 bytes)
  Fragment drops 0 (0 bytes)
  ...
Statistics Frames fps Bytes bps
Bundle:
  Fragments:
    Input : 0 0 0 0
    Output: 20 0 1920 0
  Packets:
    Input : 0 0 0 0
    Output: 10 0 1820 0
Link:
  se-1/0/0.0
    Input : 0 0 0 0
    Output: 10 0 1320 0
  se-1/0/1.0
    Input : 0 0 0 0
    Output: 10 0 600 0
  ...
Destination: 10.0.0.9/24, Local: 10.0.0.10, Broadcast: Unspecified, Generation:144

This output shows a summary of interface information. Verify the following information:

- **Physical interface**—The physical interface is Enabled. If the interface is shown as Disabled, do either of the following:
  - In the CLI configuration editor, delete the disable statement at the [edit interfaces interface-name] level of the configuration hierarchy.
• In the J-Web configuration editor, clear the Disable check box on the Interfaces>interface-name page.

• **Physical link**—The physical link is Up. A link state of Down indicates a problem with the interface module, interface port, or physical connection (link-layer errors).

• **Last flapped**—The Last Flapped time is an expected value. The Last Flapped time indicates the last time the physical interface became unavailable and then available again. Unexpected flapping indicates likely link-layer errors.

• **Traffic statistics**—Number and rate of bytes and packets received and transmitted on the interface. Verify that the number of inbound and outbound bytes and packets match the expected throughput for the physical interface. To clear the statistics and see only new changes, use the clear interfaces statistics interface-name command.

• **Queue counters**—Name and number of queues are as configured. This sample output shows that 10 data packets were transmitted and no packets were dropped.

• **Logical interface**—Name of the multilink bundle you configured—lsq-0/0/0.0.

• **Bundle options**—Fragmentation threshold is correctly configured, and fragment interleaving is enabled.

• **Bundle errors**—Any packets and fragments dropped by the bundle.

• **Statistics**—The fragments and packets are received and transmitted correctly by the device. All references to traffic direction (input or output) are defined with respect to the device. Input fragments received by the device are assembled into input packets. Output packets are segmented into output fragments for transmission out of the device.

  In this example, 10 data packets of 200 bytes were transmitted. Because the fragmentation threshold is set to 128 bytes, all data packets were fragmented into two fragments. The sample output shows that 10 packets and 20 fragments were transmitted correctly.

• **Link**—The constituent links are added to this bundle and are receiving and transmitting fragments and packets correctly. The combined number of fragments transmitted on the constituent links must be equal to the number of fragments transmitted from the bundle. This sample output shows that the bundle transmitted 20 fragments and the two constituent links se-1/0/0.0 and se-1/0/1.0.0 correctly transmitted 10+10=20 fragments.

• **Destination** and **Local**—IP address of the remote side of the multilink bundle and the local side of the multilink bundle. This sample output shows that the destination address is the address on R1 and the local address is the address on R0.

### Verifying Link Services CoS Configuration

**Purpose**
Verify CoS configurations on the link services interface.

**Action**
From the CLI, enter the following commands:
• show class-of-service interface \textit{interface-name}

• show class-of-service classifier name \textit{classifier-name}

• show class-of-service scheduler-map \textit{scheduler-map-name}

The sample output provided in this section is based on the configurations provided in “Example: Configuring an MLPPP Bundle” on page 539.

\texttt{user@R0> show class-of-service interface lsq-0/0/0}

Physical interface: lsq-0/0/0, Index: 136
Queues supported: 8, Queues in use: 4
Scheduler map: [default], Index: 2
Input scheduler map: [default], Index: 3
Chassis scheduler map: [default-chassis], Index: 4
Logical interface: lsq-0/0/0.0, Index: 69

<table>
<thead>
<tr>
<th>Object</th>
<th>Name</th>
<th>Type</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduler-map</td>
<td>s_map</td>
<td>Output</td>
<td>16206</td>
</tr>
<tr>
<td>Classifier</td>
<td>ipprec-compatibility</td>
<td>ip</td>
<td>12</td>
</tr>
</tbody>
</table>

\texttt{user@R0> show class-of-service interface ge-0/0/1}

Physical interface: ge-0/0/1, Index: 140
Queues supported: 8, Queues in use: 4
Scheduler map: [default], Index: 2
Input scheduler map: [default], Index: 3

Logical interface: ge-0/0/1.0, Index: 68

<table>
<thead>
<tr>
<th>Object</th>
<th>Name</th>
<th>Type</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classifier</td>
<td>classify_input</td>
<td>ip</td>
<td>4330</td>
</tr>
</tbody>
</table>

\texttt{user@R0> show class-of-service classifier name classify_input}

Classifier: classify_input, Code point type: inet-precedence, Index: 4330

<table>
<thead>
<tr>
<th>Code point</th>
<th>Forwarding class</th>
<th>Loss priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>DATA</td>
<td>low</td>
</tr>
<tr>
<td>010</td>
<td>VOICE</td>
<td>low</td>
</tr>
</tbody>
</table>

\texttt{user@R0> show class-of-service scheduler-map s_map}
These output examples show a summary of configured CoS components. Verify the following information:
• **Logical Interface**—Name of the multilink bundle and the CoS components applied to the bundle. The sample output shows that the multilink bundle is `lsq-0/0/0.0`, and the CoS scheduler-map `s_map` is applied to it.

• **Classifier**—Code points, forwarding classes, and loss priorities assigned to the classifier. The sample output shows that a default classifier, `ipprec-compatibility`, was applied to the `lsq-0/0/0` interface and the classifier `classify_input` was applied to the `ge-0/0/1` interface.

• **Scheduler**—Transmit rate, buffer size, priority, and loss priority assigned to each scheduler. The sample output displays the data, voice, and network control schedulers with all the configured values.

### Understanding the Internal Interface LSQ-0/0/0 Configuration

The link services interface is an internal interface only. It is not associated with a physical medium or PIM. Within an SRX Series device, packets are routed to this interface for link bundling or compression.

It may be required that you upgrade your configuration to use the internal interface `lsq-0/0/0` as the link services queuing interface instead of `ls-0/0/0`, which has been deprecated. You can also roll back your modified configuration to use `ls-0/0/0`.

### Example: Upgrading from ls-0/0/0 to lsq-0/0/0 for Multilink Services

This example shows how to upgrade from `ls-0/0/0` to `lsq-0/0/0` (or to reverse the change) for multilink services.

**Requirements**

This procedure is only necessary if you are still using `ls-0/0/0` instead of `lsq-0/0/0` or if you need to revert to the old interface.
Overview

In this example, you rename the link services internal interface from ls-0/0/0 to lsq-0/0/0 or vice versa. You rename all occurrences of ls-0/0/0 in the configuration to lsq-0/0/0 and configure the fragmentation map by adding no fragmentation. You specify no fragmentation after the name of queue 2, if queue 2 is configured, or after assured forwarding. You then attach the fragmentation map configured in the preceding step to lsq-0/0/0 and specify the unit number as 6 of the multilink bundle for which interleave fragments is configured.

Then you roll back the configuration from lsq-0/0/0 to ls-0/0/0. You rename all occurrences in the configuration from lsq-0/0/0 to ls-0/0/0. You delete the fragmentation map if it is configured under the [class-of-service] hierarchy and delete the fragmentation map if it is assigned to lsq-0/0/0. You can delete multilink-max-classes if it is configured for lsq-0/0/0 under the [interfaces] hierarchy. You then delete link-layer-overhead if it is configured for lsq-0/0/0 under the [interfaces] hierarchy.

If no fragmentation is configured on any forwarding class and the fragmentation map is assigned to lsq-0/0/0, then you configure interleave fragments for the ls-0/0/0 interface. Finally, you configure the classifier for LFI packets to refer to queue 2. (The ls-0/0/0 interface treats queue 2 as the LFI queue.)

Configuration

CLI Quick Configuration

To quickly upgrade from ls-0/0/0 to lsq-0/0/0 (or reverse the change), copy the following commands and paste them into the CLI:

For interfaces ls-0/0/0 to lsq-0/0/0
[edit]
rename interfaces ls-0/0/0 to lsq-0/0/0
set class-of-service fragmentation-maps map6 forwarding-class assured-forwarding no-fragmentation
set class-of-service interfaces lsq-0/0/0 unit 6 fragmentation-map map6

For interfaces lsq-0/0/0 to ls-0/0/0
[edit]
rename interfaces lsq-0/0/0 to ls-0/0/0
delete class-of-service fragmentation-maps map6
delete class-of-service interfaces lsq-0/0/0 unit 6 fragmentation-map map6
delete interfaces lsq-0/0/0 unit 6 link-layer-overhead
delete interfaces lsq-0/0/0:0 mlfr-uni-nni-bundle-options link-layer-overhead
set interfaces ls-0/0/0 unit 6 interleave-fragments

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode*.

To upgrade from ls-0/0/0 to lsq-0/0/0 or to reverse that change:

1. Rename all the occurrences of Is-0/0/0 in the configuration.
   
   ```
 [edit]
 user@host# rename interfaces ls-0/0/0 to lsq-0/0/0
   ```

2. Configure the fragmentation map.
   
   ```
 [edit class-of-service fragmentation-maps]
 user@host# set map6 forwarding-class assured-forwarding no-fragmentation
   ```

3. Specify the unit number of the multilink bundle.
   
   ```
 [edit class-of-service]
 user@host# set interfaces lsq-0/0/0 unit 6 fragmentation-map map6
   ```

4. Roll back the configuration for all occurrences in the configuration.
   
   ```
 [edit]
 user@host# rename interfaces lsq-0/0/0 to ls-0/0/0
   ```

5. Delete fragmentation map under class of service.
   
   ```
 [edit]
 user@host# delete class-of-service fragmentation-maps map6
   ```

6. Delete fragmentation map if it is assigned to the lsq-0/0/0 interface.
   
   ```
 [edit class-of-service interfaces]
 user@host# delete lsq-0/0/0 unit 6 fragmentation-map map6
   ```

7. Delete multilink max classes if it is configured for lsq-0/0/0.
NOTE: Multilink-max-classes is not supported and is most likely not configured.

8. Delete link-layer-overhead if it is configured for lsq-0/0/0.

   [edit interfaces]
   user@host# delete lsq-0/0/0 unit 6 link-layer-overhead

9. Delete link-layer-overhead if it is configured for lsq-0/0/0:0.

   [edit interfaces]
   user@host# delete lsq-0/0/0:0 mlfr-uni-nni-bundle-options link-layer-overhead

10. Configure interleave fragments for the ls-0/0/0 interface.

    [edit interfaces]
    user@host# set ls-0/0/0 unit 6 interleave-fragments

**Results**

From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

   [edit]
   user@host# show class-of-service
   interfaces {
     lsq-0/0/0 {
       unit 6 {
         fragmentation-map map6;
       }
     }
   }
   fragmentation-maps {
     map6 {
       forwarding-class {
         assured-forwarding {
           no-fragmentation;
         }
       }
     }
   }
If you are done configuring the device, enter `commit` from configuration mode.

**Verification**

Confirm that the configuration is working properly.

*Verifying Link Services Internal Interface Is-0/0/0 to Isq-0/0/0*

**Purpose**

Verify the link services internal interface Is-0/0/0 changed to Isq-0/0/0.

**Action**

From operational mode, enter the `show class-of-service` command.

---

**Troubleshooting the Link Services Interface**

**IN THIS SECTION**

- Determine Which CoS Components Are Applied to the Constituent Links | 509
- Determine What Causes Jitter and Latency on the Multilink Bundle | 512
- Determine If LFI and Load Balancing Are Working Correctly | 513
- Determine Why Packets Are Dropped on a PVC Between a Juniper Networks Device and a Third-Party Device | 521

To solve configuration problems on a link services interface:

**Determine Which CoS Components Are Applied to the Constituent Links**

**Problem**

**Description:** You are configuring a multilink bundle, but you also have traffic without MLPPP encapsulation passing through constituent links of the multilink bundle. Do you apply all CoS components to the constituent links, or is applying them to the multilink bundle enough?

**Solution**
You can apply a scheduler map to the multilink bundle and its constituent links. Although you can apply several CoS components with the scheduler map, configure only the ones that are required. We recommend that you keep the configuration on the constituent links simple to avoid unnecessary delay in transmission.

Table 33 on page 510 shows the CoS components to be applied on a multilink bundle and its constituent links.

Table 33: CoS Components Applied on Multilink Bundles and Constituent Links

<table>
<thead>
<tr>
<th>Cos Component</th>
<th>Multilink Bundle</th>
<th>Constituent Links</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classifier</td>
<td>Yes</td>
<td>No</td>
<td>CoS classification takes place on the incoming side of the interface, not on the transmitting side, so no classifiers are needed on constituent links.</td>
</tr>
<tr>
<td>Forwarding class</td>
<td>Yes</td>
<td>No</td>
<td>Forwarding class is associated with a queue, and the queue is applied to the interface by a scheduler map. The queue assignment is predetermined on the constituent links. All packets from Q2 of the multilink bundle are assigned to Q2 of the constituent link, and packets from all the other queues are queued to Q0 of the constituent link.</td>
</tr>
</tbody>
</table>
Table 33: CoS Components Applied on Multilink Bundles and Constituent Links (continued)

<table>
<thead>
<tr>
<th>Cos Component</th>
<th>Multilink Bundle</th>
<th>Constituent Links</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduler map</td>
<td>Yes</td>
<td>Yes</td>
<td>Apply scheduler maps on the multilink bundle and the constituent link as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Transmit rate—Make sure that the relative order of the transmit rate configured on Q0 and Q2 is the same on the constituent links as on the multilink bundle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Scheduler priority—Make sure that the relative order of the scheduler priority configured on Q0 and Q2 is the same on the constituent links as on the multilink bundle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Buffer size—Because all non-LFI packets from the multilink bundle transit on Q0 of the constituent links, make sure that the buffer size on Q0 of the constituent links is large enough.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• RED drop profile—Configure a RED drop profile on the multilink bundle only. Configuring the RED drop profile on the constituent links applies a back pressure mechanism that changes the buffer size and introduces variation. Because this behavior might cause fragment drops on the constituent links, make sure to leave the RED drop profile at the default settings on the constituent links.</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
<td>Because per-unit scheduling is applied only at the end point, apply this shaping rate to the constituent links only. Any configuration applied earlier is overwritten by the constituent link configuration.</td>
</tr>
<tr>
<td>Shaping rate for a per-unit scheduler or an interface-level scheduler</td>
<td>Yes</td>
<td>No</td>
<td>The interface-level shaping applied on the constituent links overrides any shaping on the queue. Thus apply transmit-rate exact shaping on the multilink bundle only.</td>
</tr>
<tr>
<td>Transmit-rate exact or queue-level shaping</td>
<td>Yes</td>
<td>No</td>
<td>Rewrite bits are copied from the packet into the fragments automatically during fragmentation. Thus what you configure on the multilink bundle is carried on the fragments to the constituent links.</td>
</tr>
<tr>
<td>Rewrite rules</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
Table 33: CoS Components Applied on Multilink Bundles and Constituent Links (continued)

<table>
<thead>
<tr>
<th>Cos Component</th>
<th>Multilink Bundle</th>
<th>Constituent Links</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual channel group</td>
<td>Yes</td>
<td>No</td>
<td>Virtual channel groups are identified through firewall filter rules that are applied on packets only before the multilink bundle. Thus you do not need to apply the virtual channel group configuration to the constituent links.</td>
</tr>
</tbody>
</table>

SEE ALSO

See the Junos OS Class of Service Configuration Guide for Security Devices

Determine What Causes Jitter and Latency on the Multilink Bundle

Problem
Description: To test jitter and latency, you send three streams of IP packets. All packets have the same IP precedence settings. After configuring LFI and CRTP, the latency increased even over a noncongested link. How can you reduce jitter and latency?

Solution
To reduce jitter and latency, do the following:

1. Make sure that you have configured a shaping rate on each constituent link.

2. Make sure that you have not configured a shaping rate on the link services interface.

3. Make sure that the configured shaping rate value is equal to the physical interface bandwidth.

4. If shaping rates are configured correctly, and jitter still persists, contact the Juniper Networks Technical Assistance Center (JTAC).

SEE ALSO

RPM Overview
Determine If LFI and Load Balancing Are Working Correctly

Problem

**Description:** In this case, you have a single network that supports multiple services. The network transmits data and delay-sensitive voice traffic. After configuring MLPPP and LFI, make sure that voice packets are transmitted across the network with very little delay and jitter. How can you find out if voice packets are being treated as LFI packets and load balancing is performed correctly?

Solution

When LFI is enabled, data (non-LFI) packets are encapsulated with an MLPPP header and fragmented to packets of a specified size. The delay-sensitive, voice (LFI) packets are PPP-encapsulated and interleaved between data packet fragments. Queuing and load balancing are performed differently for LFI and non-LFI packets.

To verify that LFI is performed correctly, determine that packets are fragmented and encapsulated as configured. After you know whether a packet is treated as an LFI packet or a non-LFI packet, you can confirm whether the load balancing is performed correctly.

**Solution Scenario**—Suppose two Juniper Networks devices, R0 and R1, are connected by a multilink bundle `lsq-0/0/0.0` that aggregates two serial links, `se-1/0/0` and `se-1/0/1`. On R0 and R1, MLPPP and LFI are enabled on the link services interface and the fragmentation threshold is set to 128 bytes.

In this example, we used a packet generator to generate voice and data streams. You can use the packet capture feature to capture and analyze the packets on the incoming interface.

The following two data streams were sent on the multilink bundle:

- 100 data packets of 200 bytes (larger than the fragmentation threshold)
- 500 data packets of 60 bytes (smaller than the fragmentation threshold)

The following two voice streams were sent on the multilink bundle:

- 100 voice packets of 200 bytes from source port 100
- 300 voice packets of 200 bytes from source port 200
To confirm that LFI and load balancing are performed correctly:

NOTE: Only the significant portions of command output are displayed and described in this example.
1. Verify packet fragmentation. From operational mode, enter the `show interfaces lsq-0/0/0` command to check that large packets are fragmented correctly.

```
user@R0#> show interfaces lsq-0/0/0

Physical interface: lsq-0/0/0, Enabled, Physical link is Up
 Interface index: 136, SNMP ifIndex: 29
 Link-level type: LinkService, MTU: 1504
 Device flags : Present Running
 Interface flags: Point-To-Point SNMP-Traps
 Last flapped : 2006-08-01 10:45:13 PDT (2w0d 06:06 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)

Logical interface lsq-0/0/0.0 (Index 69) (SNMP ifIndex 42)
 Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: Multilink-PPP
 Bandwidth: 16mbps
 Statistics Frames fps Bytes bps
 Bundle:
 Fragments:
 Input : 0 0 0 0
 Output: 1100 0 118800 0
 Packets:
 Input : 0 0 0 0
 Output: 1000 0 112000 0
...
Protocol inet, MTU: 1500
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 9.9.9/24, Local: 9.9.9.10
```

**Meaning**—The output shows a summary of packets transiting the device on the multilink bundle. Verify the following information on the multilink bundle:

- The total number of transiting packets = 1000
- The total number of transiting fragments = 1100
- The number of data packets that were fragmented = 100

The total number of packets sent (600 + 400) on the multilink bundle match the number of transiting packets (1000), indicating that no packets were dropped.

The number of transiting fragments exceeds the number of transiting packets by 100, indicating that 100 large data packets were correctly fragmented.

**Corrective Action**—If the packets are not fragmented correctly, check your fragmentation threshold configuration. Packets smaller than the specified fragmentation threshold are not fragmented.
2. Verify packet encapsulation. To find out whether a packet is treated as an LFI or non-LFI packet, determine its encapsulation type. LFI packets are PPP encapsulated, and non-LFI packets are encapsulated with both PPP and MLPPP. PPP and MLPPP encapsulations have different overheads resulting in different-sized packets. You can compare packet sizes to determine the encapsulation type.

A small unfragmented data packet contains a PPP header and a single MLPPP header. In a large fragmented data packet, the first fragment contains a PPP header and an MLPPP header, but the consecutive fragments contain only an MLPPP header.

PPP and MLPPP encapsulations add the following number of bytes to a packet:

- PPP encapsulation adds 7 bytes:
  4 bytes of header+2 bytes of frame check sequence (FCS)+1 byte that is idle or contains a flag

- MLPPP encapsulation adds between 6 and 8 bytes:
  4 bytes of PPP header+2 to 4 bytes of multilink header

Figure 25 on page 516 shows the overhead added to PPP and MLPPP headers.

![Figure 25: PPP and MLPPP Headers](image)

For CRTP packets, the encapsulation overhead and packet size are even smaller than for an LFI packet. For more information, see Example: Configuring the Compressed Real-Time Transport Protocol.

Table 34 on page 516 shows the encapsulation overhead for a data packet and a voice packet of 70 bytes each. After encapsulation, the size of the data packet is larger than the size of the voice packet.

Table 34: PPP and MLPPP Encapsulation Overhead

<table>
<thead>
<tr>
<th>Packet Type</th>
<th>Encapsulation</th>
<th>Initial Packet Size</th>
<th>Encapsulation Overhead</th>
<th>Packet Size after Encapsulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice packet (LFI)</td>
<td>PPP</td>
<td>70 bytes</td>
<td>$4 + 2 + 1 = 7$ bytes</td>
<td>77 bytes</td>
</tr>
</tbody>
</table>
Table 34: PPP and MLPPP Encapsulation Overhead (continued)

<table>
<thead>
<tr>
<th>Packet Type</th>
<th>Encapsulation</th>
<th>Initial Packet Size</th>
<th>Encapsulation Overhead</th>
<th>Packet Size after Encapsulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data fragment (non-LFI) with short sequence</td>
<td>MLPPP</td>
<td>70 bytes</td>
<td>4 + 2 + 1 + 4 + 2 = 13 bytes</td>
<td>83 bytes</td>
</tr>
<tr>
<td>Data fragment (non-LFI) with long sequence</td>
<td>MLPPP</td>
<td>70 bytes</td>
<td>4 + 2 + 1 + 4 + 4 = 15 bytes</td>
<td>85 bytes</td>
</tr>
</tbody>
</table>

From operational mode, enter the `show interfaces queue` command to display the size of transmitted packet on each queue. Divide the number of bytes transmitted by the number of packets to obtain the size of the packets and determine the encapsulation type.

3. Verify load balancing. From operational mode, enter the `show interfaces queue` command on the multilink bundle and its constituent links to confirm whether load balancing is performed accordingly on the packets.

```
user@R0> show interfaces queue lsq-0/0/0

Physical interface: lsq-0/0/0, Enabled, Physical link is Up
 Interface index: 136, SNMP ifIndex: 29
 Forwarding classes: 8 supported, 8 in use
 Egress queues: 8 supported, 8 in use
 Queue: 0, Forwarding classes: DATA
 Queued:
 Packets : 600 0 pps
 Bytes : 44800 0 bps
 Transmitted:
 Packets : 600 0 pps
 Bytes : 44800 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 ...
 Queue: 1, Forwarding classes: expedited-forwarding
 Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 ...
 Queue: 2, Forwarding classes: VOICE
 Queued:
 Packets : 400 0 pps
```
Bytes : 61344 0 bps
Transmitted:
  Packets : 400 0 pps
  Bytes : 61344 0 bps
...
Queue: 3, Forwarding classes: NC
  Queued:
    Packets : 0 0 pps
    Bytes : 0 0 bps
...

user@R0> show interfaces queue se-1/0/0

Physical interface: se-1/0/0, Enabled, Physical link is Up
  Interface index: 141, SNMP ifIndex: 35
  Forwarding classes: 8 supported, 8 in use
  Egress queues: 8 supported, 8 in use
Queue: 0, Forwarding classes: DATA
  Queued:
    Packets : 350 0 pps
    Bytes : 24350 0 bps
  Transmitted:
    Packets : 350 0 pps
    Bytes : 24350 0 bps
...
Queue: 1, Forwarding classes: expedited-forwarding
  Queued:
    Packets : 0 0 pps
    Bytes : 0 0 bps
...
Queue: 2, Forwarding classes: VOICE
  Queued:
    Packets : 100 0 pps
    Bytes : 15272 0 bps
  Transmitted:
    Packets : 100 0 pps
    Bytes : 15272 0 bps
...
Queue: 3, Forwarding classes: NC
  Queued:
    Packets : 19 0 pps
    Bytes : 247 0 bps
  Transmitted:
    Packets : 19 0 pps
user@R0> show interfaces queue se-1/0/1

Physical interface: se-1/0/1, Enabled, Physical link is Up
   Interface index: 142, SNMP ifIndex: 38
Forwarding classes: 8 supported, 8 in use
Egress queues: 8 supported, 8 in use
Queue: 0, Forwarding classes: DATA
  Queued:
    Packets          :      350      0 pps
    Bytes            :     24350     0 bps
  Transmitted:
    Packets          :      350      0 pps
    Bytes            :     24350     0 bps

Queue: 1, Forwarding classes: expedited-forwarding
  Queued:
    Packets          :       0       0 pps
    Bytes            :       0       0 bps

Queue: 2, Forwarding classes: VOICE
  Queued:
    Packets          :      300      0 pps
    Bytes            :     45672     0 bps
  Transmitted:
    Packets          :      300      0 pps
    Bytes            :     45672     0 bps

Queue: 3, Forwarding classes: NC
  Queued:
    Packets          :      18       0 pps
    Bytes            :      234       0 bps
  Transmitted:
    Packets          :      18       0 pps
    Bytes            :      234       0 bps

Meaning—The output from these commands shows the packets transmitted and queued on each queue of the link services interface and its constituent links. Table 35 on page 520 shows a summary of these values. (Because the number of transmitted packets equaled the number of queued packets on all the links, this table shows only the queued packets.)
On the multilink bundle, verify the following:

- The number of packets queued matches the number transmitted. If the numbers match, no packets were dropped. If more packets were queued than were transmitted, packets were dropped because the buffer was too small. The buffer size on the constituent links controls congestion at the output stage. To correct this problem, increase the buffer size on the constituent links.

- The number of packets transiting Q0 (600) matches the number of large and small data packets received (100+500) on the multilink bundle. If the numbers match, all data packets correctly transited Q0.

- The number of packets transiting Q2 on the multilink bundle (400) matches the number of voice packets received on the multilink bundle. If the numbers match, all voice LFI packets correctly transited Q2.

On the constituent links, verify the following:

- The total number of packets transiting Q0 (350+350) matches the number of data packets and data fragments (500+200). If the numbers match, all the data packets after fragmentation correctly transited Q0 of the constituent links.

    Packets transited both constituent links, indicating that load balancing was correctly performed on non-LFI packets.
• The total number of packets transiting Q2 (300+100) on constituent links matches the number of voice packets received (400) on the multilink bundle. If the numbers match, all voice LFI packets correctly transited Q2.

  LFI packets from source port 100 transited se-1/0/0, and LFI packets from source port 200 transited se-1/0/1. Thus all LFI (Q2) packets were hashed based on the source port and correctly transited both constituent links.

Corrective Action—If the packets transited only one link, take the following steps to resolve the problem:

  a. Determine whether the physical link is up (operational) or down (unavailable). An unavailable link indicates a problem with the PIM, interface port, or physical connection (link-layer errors). If the link is operational, move to the next step.

  b. Verify that the classifiers are correctly defined for non-LFI packets. Make sure that non-LFI packets are not configured to be queued to Q2. All packets queued to Q2 are treated as LFI packets.

  c. Verify that at least one of the following values is different in the LFI packets: source address, destination address, IP protocol, source port, or destination port. If the same values are configured for all LFI packets, the packets are all hashed to the same flow and transit the same link.

4. Use the results to verify load balancing.

Determine Why Packets Are Dropped on a PVC Between a Juniper Networks Device and a Third-Party Device

Problem

Description: You are configuring a permanent virtual circuit (PVC) between T1, E1, T3, or E3 interfaces on a Juniper Networks device and a third-party device, and packets are being dropped and ping fails.

Solution

If the third-party device does not have the same FRF.12 support as the Juniper Networks device or supports FRF.12 in a different way, the Juniper Networks device interface on the PVC might discard a fragmented packet containing FRF.12 headers and count it as a "Policed Discard."

As a workaround, configure multilink bundles on both peers, and configure fragmentation thresholds on the multilink bundles.
Configuring Link Fragmentation and Interleaving

IN THIS SECTION
- Understanding Link Fragmentation and Interleaving Configuration | 522
- Example: Configuring Link Fragmentation and Interleaving | 523

The factor that determines the order in which output interface transmits traffic from an output queue is the priority scheduling on a multilink bundle. The large packets using this multilink bundle, cause delay for the small and delay-sensitive packets to reach their turn for transmission. This delay renders some slow links like, T1 and E1, useless for delay-sensitive traffic. Link fragmentation and interleaving (LFI) solves this problem. The topics below topics the LFI in detail and its configuration.

Understanding Link Fragmentation and Interleaving Configuration

As it does on any other interface, priority scheduling on a multilink bundle determines the order in which an output interface transmits traffic from an output queue. The queues are serviced in a weighted round-robin fashion. But when a queue containing large packets starts using the multilink bundle, small and delay-sensitive packets must wait their turn for transmission. Because of this delay, some slow links, such as T1 and E1, can become useless for delay-sensitive traffic.

Link fragmentation and interleaving (LFI) solves this problem. It reduces delay and jitter on links by fragmenting large packets and interleaving delay-sensitive packets with the resulting smaller packets for simultaneous transmission across multiple links of a multilink bundle.

Figure 26 on page 523 illustrates how LFI works. In this figure, device R0 and device R1 have LFI enabled. When device R0 receives large and small packets, such as data and voice packets, it divides them into two categories. All voice packets and any other packets configured to be treated as voice packets are categorized as LFI packets and transmitted without fragmentation or an MLPPP header. If CRTP is configured on the bundle, LFI packets are transmitted through CRTP processing. The remaining non-LFI (data) packets can be fragmented or unfragmented based on the configured fragmentation threshold. The packets larger than the fragmentation threshold are fragmented. An MLPPP header (containing a multilink sequence number) is added to all non-LFI packets, fragmented and unfragmented.

The fragmentation is performed according to the fragmentation threshold that you configure. For example, if you configure a fragmentation threshold of 128 bytes, all packets larger than 128 bytes are fragmented. When device R1 receives the packets, it sends the unfragmented voice packets immediately but buffers
the packet fragments until it receives the last fragment for a packet. In this example, when device R1 receives fragment 5, it reassembles the fragments and transmits the whole packet.

The unfragmented data packets are treated as a single fragment. Thus device R1 does not buffer the unfragmented data packets and transmits them as it receives them.

**Figure 26: LFI on a Services Router**

To configure LFI, you define the MLPPP encapsulation type and enable fragmentation and interleaving of packets by specifying the fragmentation threshold and fragmentation maps, with a no-fragmentation knob mapped to the forwarding class of choice.

### Example: Configuring Link Fragmentation and Interleaving

This example shows how to configure LFI.

#### Requirements

Before you begin, you should have two Juniper Networks devices configured with at least two serial interfaces that communicate over serial links. This example shows two devices.
Overview

In this example, you create an interface called lsq-0/0/0. You specify the encapsulation type as multilink-ppp and set the fragmentation threshold value to 128. Set a fragmentation threshold of 128 bytes on the MLPPP bundle so that it applies to all traffic on both constituent links, enabling that any packet larger than 128 bytes transmitted on these links is fragmented. Any nonzero value must be a multiple of 64 bytes. The value can be between 128 and 16320. The default value is 0 bytes.

Configuration

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure LFI:

1. Create an interface.

   ```
 [edit]
 user@host# edit interfaces lsq-0/0/0
   ```

2. Specify the encapsulation type and fragmentation threshold value.

   ```
 [edit interfaces lsq-0/0/0]
 user@host# set unit 0 encapsulation multilink-ppp fragment-threshold 128
   ```

3. If you are done configuring the device, commit the configuration.

   ```
 [edit]
 user@host# commit
   ```

Verification

Verifying Link Fragmentation and Interleaving Configuration

Purpose

Verify the LFI configuration.

Action

From operational mode, enter the `show interfaces lsq-0/0/0` command.
Configuring Class-of-Service on Link Services Interfaces

On a Juniper Networks device, when LFI is enabled, all forwarding traffic assigned to queue 2 or member link is treated as LFI (voice) traffic. The topics below discuss the overview of classifiers and forwarding class, definition and application of schedule maps, and overview and configuration details of interface shaping rates on SRX series devices.

Understanding How to Define Classifiers and Forwarding Classes

By defining classifiers you associate incoming packets with a forwarding class and loss priority. Based on the associated forwarding class, you assign packets to output queues. To configure classifiers, you specify the bit pattern for the different types of traffic. The classifier takes this bit pattern and attempts to match it to the type of packet arriving on the interface. If the information in the packet’s header matches the specified pattern, the packet is sent to the appropriate queue, defined by the forwarding class associated with the classifier.

On a Juniper Networks device, when LFI is enabled, all forwarding traffic assigned to queue 2 or member link is treated as LFI (voice) traffic. You do not need to assign network control traffic to a queue explicitly, because it is assigned to queue 3 by default.
NOTE:
On member links:

- **DATA** is assigned to queue 0.
- **VOICE** is assigned to queue 2.
- **NC** (network control) is assigned to queue 3. By default NC is assigned to queue 3.

---

**Example: Defining Classifiers and Forwarding Classes**

This example shows how to define classifiers for different types of traffic, such as voice, data, and network control packets, and to direct the traffic to different output queues to manage your throughput.

**Requirements**

Before you begin:

- Configure two Juniper Networks devices with at least two serial interfaces that communicate over serial links.

**Overview**

In this example, you configure class of service and set the default IP precedence classifier to classify_input, which is assigned to all incoming traffic. You then set the precedence bit value in the type of service field to 000 for all incoming data traffic and 010 for all incoming voice traffic. You set all outgoing data traffic to queue 0 and all voice traffic to queue 2, and fragmentation-map maps queue 2 to no fragmentation.
**Configuration**

**CLI Quick Configuration**
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the `[edit]` hierarchy level.

```
set class-of-service classifiers inet-precedence classify_input forwarding-class DATA loss-priority low code-points 000
set class-of-service classifiers inet-precedence classify_input forwarding-class VOICE loss-priority low code-points 010
set class-of-service forwarding-classes queue 0 DATA
set class-of-service forwarding-classes queue 2 VOICE
set class-of-service forwarding-classes queue 3 NC
set class-of-service interfaces ge-0/0/1 unit 0 classifiers inet-precedence classify_input
set class-of-service fragmentation-maps FM forwarding-class VOICE no-fragmentation
set class-of-service interfaces lsq-0/0/0 unit 0 fragmentation-map FM
```

**Step-by-Step Procedure**
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the CLI User Guide.

To define classifiers and forwarding classes:

1. **Configure class of service.**
   ```
 [edit]
 user@host# edit class-of-service
   ```

2. **Configure the behavior aggregate classifier for classifying packets.**
   ```
 [edit class-of-service]
 user@host# edit classifiers inet-precedence classify_input
   ```

3. **Assign packets with IP precedence to the data forwarding class and specify a loss priority.**
   ```
 [edit class-of-service classifiers inet-precedence classify_input]
 user@host# set forwarding-class DATA loss-priority low code-points 000
   ```

4. **Assign packets with IP precedence to the voice forwarding class and specify a loss priority.**
5. Specify the forwarding class one-to-one with the output queues.

```
[edit class-of-service]
user@host# edit forwarding-classes
user@host# set queue 0 DATA
user@host# set queue 2 VOICE
user@host# set queue 3 NC
```

6. Create an interface and apply the behavior aggregate classifier.

```
[edit class-of-service]
user@host# edit interfaces ge-0/0/1
user@host# set unit 0 classifiers inet-precedence classify_input
```

7. Configure fragmentation map.

```
[edit]
user@host# edit class-of-service
user@host# set fragmentation-maps FM forwarding-class VOICE no-fragmentation
```

8. Attach fragmentation map to the interface.

```
[edit class-of-service]
user@host# set interfaces lsq-0/0/0 unit 0 fragmentation-map FM
```

**Results**

From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show class-of-service
classifiers {
 inet-precedence classify_input {
 forwarding-class DATA {
```
If you are done configuring the device, enter commit from configuration mode.

Verification
To confirm that the configuration is working properly, perform this task:

**Verifying Classifiers and Forwarding Classes**

**Purpose**
Verify the classifiers and the forwarding classes.

**Action**
From operational mode, enter the `show class-of-service` command.

---

### Understanding How to Define and Apply Scheduler Maps

Juniper Networks devices support per-unit scheduling set class-of-service schedulers `S0 priority low`, which allows you to configure scheduler maps on each MLPPP or MLFR multilink bundle. You can also configure scheduler maps on constituent links, but you must maintain the same relative priority on the constituent links and on the multilink bundle.

If you configure CoS components with LFI on a Juniper Networks device, we recommend that you follow certain recommendations for shaping rate, scheduling priority, and buffer size.

When you configure LFI, we recommend that you configure the shaping rate on each constituent link of the multilink bundle. Shaping rate configuration on the constituent links is required to limit the jitter on the LFI queue. If you anticipate no delay-sensitive or jitter-sensitive traffic on the LFI queue, or if there is no LFI traffic at all, shaping rate configuration is optional.

Table 36 on page 530 shows an example of correct and incorrect relative priorities on a multilink bundle and its constituent link. In this example, you have assigned a high priority to LFI packets and a low priority to data packets on the multilink bundle. To maintain the relative priority on the constituent links, you can assign a high priority to the LFI packets and a medium-high priority to the data packets, but you cannot assign a medium-high priority to LFI packets and a high priority to data packets.

**Table 36: Relative Priorities on Multilink Bundles and Constituent Links**

<table>
<thead>
<tr>
<th>Multilink Bundle</th>
<th>Correct Constituent Link Priorities</th>
<th>Incorrect Constituent Link Priorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFI packets—High priority</td>
<td>LFI packets—High priority</td>
<td>LFI packet—Medium-high priority</td>
</tr>
<tr>
<td>Data packets—Low priority</td>
<td>Data packets—Medium-high priority</td>
<td>Data packets—High priority</td>
</tr>
</tbody>
</table>

By defining schedulers you configure the properties of output queues that determine the transmission service level for each queue. These properties include the amount of interface bandwidth assigned to the queue, the size of the memory buffer allocated for storing packets, and the priority of the queue. After defining schedulers you associate them with forwarding classes by means of scheduler maps. You then
associate each scheduler map with an interface, thereby configuring the hardware queues and packet schedulers that operate according to this mapping.

NOTE: When data and LFI streams are present, the following scheduler map configuration is recommended for constituent links. This gives less latency for LFI traffic and avoids out-of-order transmission of data traffic.

Configure the following schedulers:

- set class-of-service schedulers S0 buffer-size temporal 20k
- set class-of-service schedulers S0 priority low
- set class-of-service schedulers S2 priority high
- set class-of-service schedulers S3 priority high

Configure the following scheduler map:

- set class-of-service scheduler-maps lsqlink_map forwarding-class best-effort scheduler S0
- set class-of-service scheduler-maps lsqlink_map forwarding-class assured-forwarding scheduler S2
- set class-of-service scheduler-maps lsqlink_map forwarding-class network-control scheduler S3

Attach scheduler map to all member links:

- set class-of-service interfaces t1-2/0/0 unit 0 scheduler-map lsqlink_map

NOTE: Even after this configuration, if out-of-range sequence number drops are observed on the reassembly side, increase the drop-timeout of the bundle to 200 ms.

Example: Configuring Scheduler Maps
This example shows how to configure scheduler maps to determine the transmission service level for each output queue.

Requirements

Before you begin, you should have two Juniper Networks devices configured with at least two serial interfaces that communicate over serial links.

Overview

In this example, you create interfaces called lsq-0/0/0, se-1/0/0, and se-1/0/1. You enable per-unit scheduling to allow the configuration of scheduler maps on the bundle. You configure a scheduler map as s_map on lsq-0/0/0. You then apply the scheduler map to the constituent links, se-1/0/0 and se-1/0/1, of the multilink bundle. You associate the scheduler with each of the forwarding classes, DATA, VOICE and NC. You define the properties of output queues for the DATA scheduler by setting the transmit rate and the buffer size to 49 percent. You specify the properties of output queues for the VOICE scheduler by setting the transmit rate to 50 percent, the buffer size to 5 percent, and the priority to high. Finally, you define the properties of output queues for the NC scheduler by setting the transmit rate and the buffer size to 1 percent and the priority to high.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```plaintext
set interfaces lsq-0/0/0 per-unit-scheduler
set interfaces se-1/0/0 per-unit-scheduler
set interfaces se-1/0/1 per-unit-scheduler
set class-of-service interfaces lsq-0/0/0 unit 0 scheduler-map s_map
set class-of-service interfaces se-1/0/0 unit 0 scheduler-map s_map
set class-of-service interfaces se-1/0/1 unit 0 scheduler-map s_map
set class-of-service scheduler-maps s_map forwarding-class DATA scheduler DATA
set class-of-service scheduler-maps s_map forwarding-class VOICE scheduler VOICE
```
Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure scheduler maps:

1. Create interfaces and enable per-unit scheduling.
   ```
 [edit interfaces]
 user@host# set lsq-0/0/0 per-unit-scheduler
 user@host# set se-1/0/0 per-unit-scheduler
 user@host# set se-1/0/1 per-unit-scheduler
   ```

2. Define a scheduler map and apply it to the constituent links in the multilink bundle.
   ```
 [edit class-of-service interfaces]
 user@host# set lsq-0/0/0 unit 0 scheduler-map s_map
 user@host# set se-1/0/0 unit 0 scheduler-map s_map
 user@host# set se-1/0/1 unit 0 scheduler-map s_map
   ```

3. Associate a scheduler with each forwarding class.
   ```
 [edit class-of-service scheduler-maps]
 user@host# set s_map forwarding-class DATA scheduler DATA
 user@host# set s_map forwarding-class VOICE scheduler VOICE
 user@host# set s_map forwarding-class NC scheduler NC
   ```

4. Define the properties of output queues for the DATA scheduler.
   ```
 [edit class-of-service schedulers]
 user@host# set DATA transmit-rate percent 49
   ```
5. Define the properties of output queues for the VOICE scheduler.

[edit class-of-service schedulers]
user@host# set VOICE transmit-rate percent 50
user@host# set VOICE buffer-size percent 5
user@host# set VOICE priority high

6. Define the properties of output queues for the NC scheduler.

[edit class-of-service schedulers]
user@host# set NC transmit-rate percent 1
user@host# set NC buffer-size percent 1
user@host# set NC priority high

Results
From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[edit]
user@host# show class-of-service
interfaces {
  lsq-0/0/0 {
    unit 0 {
      scheduler-map s_map;
    }
  }
  se-1/0/0 {
    unit 0 {
      scheduler-map s_map;
    }
  }
  se-1/0/1 {
    unit 0 {
      scheduler-map s_map;
    }
  }
}
If you are done configuring the device, enter `commit` from configuration mode.

**Verification**

**IN THIS SECTION**

- **Verifying the Configuration of scheduler maps.** | 535

To confirm that the configuration is working properly, perform this task:

**Verifying the Configuration of scheduler maps.**

**Purpose**
Verify the configuration of scheduler maps.

**Action**
From operational mode, enter the `show class-of-services lsq-0/0/0 scheduler-map s_map`, `show class-of-services se-1/0/0 scheduler-map s_map`, and `show class-of-services se-1/0/1 scheduler-map s_map` commands.

### Understanding Interface Shaping Rates

When you configure LFI, we recommend that you configure the shaping rate on each constituent link of the multilink bundle. Shaping rate configuration on the constituent links is required to limit the jitter on the LFI queue. If you anticipate no delay-sensitive or jitter-sensitive traffic on the LFI queue, or if there is no LFI traffic at all, shaping rate configuration is optional.

The shaping rate specifies the amount of bandwidth to be allocated for the multilink bundle. You must configure the shaping rate to be equal to the combined physical interface bandwidth for the constituent links. The combined bandwidth capacity of the two constituent links is 2 Mbps. Hence, configure a shaping rate of 2 Mbps on each constituent link.

### Example: Configuring Interface Shaping Rates

This example shows how to configure interface shaping rates to control the maximum rate of traffic transmitted on an interface.

#### Requirements

Before you begin:

- Configure two Juniper Networks devices configured with at least two serial interfaces that communicate over serial links. For more information about serial interfaces. See “Serial Interfaces Overview” on page 668.
To apply shaping rates to interfaces, you have to first enable per-unit scheduling. For more information on per-unit scheduling, see “Example: Configuring Scheduler Maps” on page 531.

Overview

In this example, you set the shaping rate to 2000000 for the constituent links of the multilink bundle, se-1/0/0 and se-1/0/1.

Configuration

Step-by-Step Procedure

To configure the interface shaping rates:

1. Configure class of service.

```
[edit]
user@host# edit class-of-service
```

2. Apply the shaping rates to the constituent links of the multilink bundle.

```
[edit class-of-service]
user@host# set interfaces se-1/0/0 unit 0 shaping-rate 2000000
user@host# set interfaces se-1/0/1 unit 0 shaping-rate 2000000
```

Verification

To verify the configuration is working properly, enter the `show class-of-service` command.

RELATED DOCUMENTATION

Junos OS Feature Support Reference for SRX Series and J Series Devices
Achieving Greater Bandwidth, Load Balancing, and Redundancy with Multilink Bundles

The topics below discuss the overview of MLPPP Bundles and Link Fragmentation and Interleaving (LFI) on Serial Links, and configuring an MLPPP bundle on security devices.

Understanding MLPPP Bundles and Link Fragmentation and Interleaving (LFI) on Serial Links

Juniper Networks devices support MLPPP and MLFR multilink encapsulations. MLPPP multilink encapsulation enables you to bundle multiple PPP links into a single multilink bundle and MLFR multilink encapsulation enables you to bundle multiple Frame Relay data-link connection identifiers (DLCIs) into a single multilink bundle. Multilink bundles provide additional bandwidth, load balancing, and redundancy by aggregating low-speed links, such as T1, E1, and serial links.

NOTE: Currently, Junos OS supports bundling of only one xDSL link under bundle interface.

You configure multilink bundles as logical units or channels on the link services interface lsq-0/0/0:

- With MLPPP and MLFR FRF.15, multilink bundles are configured as logical units on lsq-0/0/0—for example, lsq-0/0/0.0 and lsq-0/0/0.1.
- With MLFR FRF.16, multilink bundles are configured as channels on lsq-0/0/0—for example, lsq-0/0/0:0 and lsq-0/0/0:1.

After creating multilink bundles, you add constituent links to the bundle. The constituent links are the low-speed physical links that are to be aggregated. You can create 64 multilink bundles, and on each multilink bundle you can add up to 8 constituent links. The following rules apply when you add constituent links to a multilink bundle:
• On each multilink bundle, add only interfaces of the same type. For example, you can add either T1 or E1, but not both.

• Only interfaces with a PPP encapsulation can be added to an MLPPP bundle, and only interfaces with a Frame Relay encapsulation can be added to an MLFR bundle.

• If an interface is a member of an existing bundle and you add it to a new bundle, the interface is automatically deleted from the existing bundle and added to the new bundle.

Configuring a multilink bundle on the two serial links increases the bandwidth by 70 percent from approximately 1 Mbps to 1.7 Mbps and prepends each packet with a multilink header as specified in the FRF.12 standard. To increase the bandwidth further, you can add up to eight serial links to the bundle. In addition to a higher bandwidth, configuring the multilink bundle provides load balancing and redundancy. If one of the serial links fails, traffic continues to be transmitted on the other links without any interruption. In contrast, independent links require routing policies for load balancing and redundancy. Independent links also require IP addresses for each link as opposed to one IP address for the bundle. In the routing table, the multilink bundle is represented as a single interface.

Example: Configuring an MLPPP Bundle

This example shows how to configure an MLPPP bundle to increase traffic bandwidth.

Requirements

Before you begin, you should have two Juniper Networks devices configured with at least two serial interfaces that communicate over serial links.

Overview

In this example, you create the MLPPP bundle lsq-0/0/0.0 at the logical unit level of the link services interface lsq-0/0/0 on Juniper Networks devices R0 and R1. You then add the two serial interfaces se-1/0/0
and se-1/0/0 and se-1/0/1 as constituent links to the multilink bundle. In Figure 27 on page 540, your company’s branch office is connected to its main branch using devices R0 and R1. You transmit data and voice traffic on two low-speed 1-Mbps serial links. To increase bandwidth, you configure MLPPP and join the two serial links se-1/0/0 and se-1/0/1 into the multilink bundle lsq-0/0/0.0. Then you configure LFI and CoS on R0 and R1 to enable them to transmit voice packets ahead of data packets.

Figure 27: Configuring MLPPP and LFI on Serial Links

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

For device R0
set interfaces lsq-0/0/0 unit 0 family inet address 10.0.0.10/24
set interfaces se-1/0/0 unit 0 family mlppp bundle lsq-0/0/0.0
set interfaces se-1/0/1 unit 0 family mlppp bundle lsq-0/0/0.0
set interfaces se-1/0/0 serial-options clocking-mode dce clock-rate 2.0mhz
set interfaces se-1/0/1 serial-options clocking-mode dce clock-rate 2.0mhz

For device R1
set interfaces lsq-0/0/0 unit 0 family inet address 10.0.0.9/24
set interfaces se-1/0/0 unit 0 family mlppp bundle lsq-0/0/0.0
set interfaces se-1/0/1 unit 0 family mlppp bundle lsq-0/0/0.0

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure MLPPP bundle:
1. Create an interface on both devices.
2. Configure a family inet and define the IP address on device R0.

```
[edit interfaces lsq-0/0/0 unit 0]
user@host# set family inet address 10.0.0.10/24
```

3. Configure a family inet and define the IP address on device R1.

```
[edit interfaces lsq-0/0/0 unit 0]
user@host# set family inet address 10.0.0.9/24
```

4. Specify the names of the constituent links to be added to the multilink bundle on both devices.

```
[edit interfaces]
user@host# edit se-1/0/0 unit 0
user@host# set family mlppp bundle lsq-0/0/0.0
[edit interfaces]
user@host# edit se-1/0/1 unit 0
user@host# set family mlppp bundle lsq-0/0/0.0
```

5. Set the serial options to the same values for both interfaces on R0.

**NOTE:** R0 is set as a DCE device. The serial options are not set for interfaces on R1. You can set the serial options according to your network setup.

```
[edit interfaces]
user@host# set se-1/0/0 serial-options clocking-mode dce clock-rate 2.0mhz
user@host# set se-1/0/1 serial-options clocking-mode dce clock-rate 2.0mhz
```

### Results

From configuration mode, confirm your configuration by entering the `show interfaces lsq-0/0/0`, `show interfaces se-1/0/0`, and `show interfaces se-1/0/1` commands for R0 and R1. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
For device R0
[edit]
user@host# show interfaces lsq-0/0/0
family inet {
  address 10.0.0.10/24;
}
}
[edit]
user@host# show interfaces se-1/0/0
clocking-mode dce;
clock-rate 2.0mhz;
} unit 0 {
  family mlnpp {
    bundle lsq-0/0/0.0;
  }
}
[edit]
user@host# show interfaces se-1/0/1
serial-options {
clocking-mode dce;
clock-rate 2.0mhz;
} unit 0 {
  family mlnpp {
    bundle lsq-0/0/0.0;
  }
}

For device R1
[edit]
user@host# show interfaces lsq-0/0/0
family inet {
  address 10.0.0.9/24;
}
}
[edit]
user@host# show interfaces se-1/0/0
unit 0 {
  family mlnpp {
    bundle lsq-0/0/0.0;
  }
}
[edit]
If you are done configuring the device, enter commit from configuration mode.

**Verification**

Confirm that the configuration is working properly.

**Verifying the MLPPP Bundle**

**Purpose**

Verify that the constituent links are added to the bundle correctly.

**Action**

From operational mode, enter the `show interfaces lsq-0/0/0 statistics` command.

### Configuring Multilink Frame Relay

The topics below discuss the overview and configuration details of Multilink Frame Relay FRF.15 and overview and configuration details of Multilink Frame Relay FRF.16 for security devices.
Understanding Multilink Frame Relay FRF.15

The link services intelligent queuing interface lsq-0/0/0 supports Multilink Frame Relay end-to-end (MLFR FRF.15).

With MLFR FRF.15, multilink bundles are configured as logical units on the link services intelligent queuing interface, such as lsq-0/0/0. MLFR FRF.15 bundles combine multiple permanent virtual circuits (PVCs) into one aggregated virtual circuit (AVC). This process provides fragmentation over multiple PVCs on one end and reassembly of the AVC on the other end. You can configure LFI and CoS with MLFR in the same way that you configure them with MLPPP.

Example: Configuring Multilink Frame Relay FRF.15

This example shows how to configure MLFR FRF.15 for additional bandwidth, load balancing, and redundancy by aggregating low-speed links such as T1, E1, and serial links.

Requirements

Before you begin, you should have two Juniper Networks devices configured with at least two serial interfaces that communicate over serial links.

Overview

In this example, you aggregate two T1 links to create the MLFR FRF.15 bundle on two Juniper Networks devices, R0 and R1, and set the interface to lsq-0/0/0. You configure a logical unit on the lsq-0/0/0 interface and set the family type to inet with address 10.0.0.4/24. Then you configure an IP address for the multilink bundle on the unit level of the interface.

You define the multilink bundle as an MLFR FRF.15 bundle by specifying the MLFR end-to-end encapsulation type. You specify the names of the constituent links to be added to the multilink bundle as t1-2/0/0 and
t1-2/0/1 and set the encapsulation type to frame relay. You then define R0 as a DCE device and R1 as a DTE device. You set the DLCI value to 100 (range is 16 through 1022). Finally, you set the multilink bundle to lsq-0/0/0.0.

**Configuration**

**CLI Quick Configuration**

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

For device R0

```
set interfaces lsq-0/0/0 unit 0 family inet address 10.0.0.4/24
set interfaces lsq-0/0/0 unit 0 encapsulation multilink-frame-relay-end-to-end
set interfaces t1-2/0/0 encapsulation frame-relay
set interfaces t1-2/0/1 encapsulation frame-relay
set interfaces lsq-0/0/0 dce
set interfaces lsq-0/0/0 unit 0 dcli 100 family mfr-end-to-end bundle lsq-0/0/0.0
```

For device R1

```
set interfaces lsq-0/0/0 unit 0 family inet address 10.0.0.5/24
set interfaces lsq-0/0/0 unit 0 encapsulation multilink-frame-relay-end-to-end
set interfaces t1-2/0/0 encapsulation frame-relay
set interfaces t1-2/0/1 encapsulation frame-relay
set interfaces lsq-0/0/0 unit 0 dcli 100 family mfr-end-to-end bundle lsq-0/0/0.0
```

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode*.

To configure the MLFR FRF.15 bundle:

1. Create an interface on both devices.

```
[edit]
user@host# edit interfaces lsq-0/0/0 unit 0
```

2. Set a logical unit on the interface and define the family type for devices R0 and R1.

```
[edit interfaces lsq-0/0/0 unit 0]
user@host# set family inet address 10.0.0.4/24
user@host# set family inet address 10.0.0.5/24
```
3. Define the multilink bundle as an MLFR FRF.15 bundle.

```
[edit interfaces lsq-0/0/0 unit 0]
user@host# set encapsulation multilink-frame-relay-end-to-end
```

4. Specify the names of the constituent links to be added to the multilink bundle.

```
[edit interfaces]
user@host# set t1-2/0/0 encapsulation frame-relay
user@host# set t1-2/0/1 encapsulation frame-relay
```

5. Define device R0 as a DCE device.

```
[edit interfaces]
user@host# edit lsq-0/0/0
user@host# set dce
```

6. Specify the DLCI as well as the multilink bundle to which the interface is to be added.

```
[edit interfaces lsq-0/0/0]
user@host# set unit 0 dlc 100 family mifr-end-to-end bundle lsq-0/0/0.0
```

**Results**

From configuration mode, confirm your configuration by entering the `show interfaces lsq-0/0/0`, `show interfaces t1-2/0/0`, and `show interfaces t1-2/0/1` commands for R0 and R1. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For device R0

```
[edit]
user@host# show interfaces lsq-0/0/0
dce;
unit 0 {
 encapsulation multilink-frame-relay-end-to-end;
 dlc 100;
 family inet {
 address 10.0.0.4/24;
 }
 family mifr-end-to-end {
 bundle lsq-0/0/0.0;
 }
```
For device R1
[edit]
  user@host# show interfaces t1-2/0/0
  encapsulation frame-relay;
  [edit]
  user@host# show interfaces t1-2/0/1
  encapsulation frame-relay;

If you are done configuring the device, enter commit from configuration mode.

Verification

Confirm that the configuration is working properly.

Verifying the MLFR FRF.15 Configuration

Purpose
Verify the MLFR FRF.15 configuration.

Action
From operational mode, enter the show interfaces command.
### Understanding Multilink Frame Relay FRF.16

The link services intelligent queuing interface lsq-0/0/0 supports the Multilink Frame Relay (MLFR) user-to-network interface (UNI) and network-to-network interface (NNI) (MLFR FRF.16).

MLFR FRF.16 configures multilink bundles as channels on the link services intelligent queuing interface, such as lsq-0/0/0:0. A multilink bundle carries Frame Relay permanent virtual circuits (PVCs), identified by their data-link connection identifiers (DLCIs). Each DLCI is configured at the logical unit level of the link services intelligent queuing interface and is also referred as a logical interface. Packet fragmentation and reassembly occur on each virtual circuit. You can configure LFI and CoS with MLFR in the same way that you configure them with MLPPP.

### Example: Configuring Multilink Frame Relay FRF.16

This example shows how to configure MLFR FRF.16 for additional bandwidth, load balancing, and redundancy.

#### Requirements

Before you begin, you should have two Juniper Networks devices configured with at least two serial interfaces that communicate over serial links.

#### Overview

In this example, you aggregate two T1 interfaces to create an MLFR FRF.16 bundle on two Juniper Networks devices, R0 and R1. You configure the chassis interface and specify the number of MLFR FRF.16 bundles to be created on the interface. You then specify the channel to be configured as a multilink bundle and create interface lsq-0/0/0:0:0. You set the multilink bundle as an MLFR FRF.16 bundle by specifying the MLFR UNI NNI encapsulation type.
Then you define R0 as a DCE device and R1 as a DTE device. You configure a logical unit on the multilink bundle lsq-0/0/0:0, and set the family type to inet. You then assign a DLCI of 400 and an IP address of 10.0.0.10/24 to the multilink bundle. You create the T1 interfaces, t1-2/0/0 and t1-2/0/1, that are to be added as constituent links to the multilink bundle and define the Frame Relay encapsulation type. Finally, you set the multilink bundle to lsq-0/0/0:0.

**Configuration**

**CLI Quick Configuration**
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter **commit** from configuration mode.

```
For device R0
set chassis fpc 0 pic 0 mlfr-uni-nni-bundles 1
set interfaces lsq-0/0/0:0 encapsulation multilink-frame-relay-uni-nni
set interfaces lsq-0/0/0:0 dce
set interfaces lsq-0/0/0:0 unit 0 dcli 400 family inet address 10.0.0.10/24
set interfaces t1-2/0/0 encapsulation multilink-frame-relay-uni-nni
set interfaces t1-2/0/1 encapsulation multilink-frame-relay-uni-nni
set interfaces t1-2/0/0 unit 0 family mlfr-uni-nni bundle lsq-0/0/0:0
set interfaces t1-2/0/1 unit 0 family mlfr-uni-nni bundle lsq-0/0/0:0
For device R1
set chassis fpc 0 pic 0 mlfr-uni-nni-bundles 1
set interfaces lsq-0/0/0:0 encapsulation multilink-frame-relay-uni-nni
set interfaces lsq-0/0/0:0 unit 0 dcli 400 family inet address 10.0.0.9/24
set interfaces t1-2/0/0 encapsulation multilink-frame-relay-uni-nni
set interfaces t1-2/0/1 encapsulation multilink-frame-relay-uni-nni
set interfaces t1-2/0/0 unit 0 family mlfr-uni-nni bundle lsq-0/0/0:0
set interfaces t1-2/0/1 unit 0 family mlfr-uni-nni bundle lsq-0/0/0:0
```

**Step-by-Step Procedure**
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode*.

To configure an MLFR FRF.16 bundle:

1. Configure a chassis interface.

```
[edit]
user@host# edit chassis
```

2. Specify the number of MLFR bundles.
3. Create an interface.

```
[edit]
user@host# edit interfaces lsq-0/0/0:0
```

4. Specify the MLFR encapsulation type.

```
[edit interfaces lsq-0/0/0:0]
user@host# set encapsulation multilink-frame-relay-uni-nni
```

5. Set device R0 as a DCE device.

```
[edit interfaces lsq-0/0/0:0]
user@host# set dce
```

6. Specify a logical unit on the multilink bundle and set the family type.

```
[edit interfaces lsq-0/0/0:0]
user@host# set unit 0 dlci 400 family inet address 10.0.0.10/24
```

7. Create the T1 interfaces and set the Frame Relay encapsulation.

```
[edit interfaces]
user@host# set t1-2/0/0 encapsulation multilink-frame-relay-uni-nni
user@host# set t1-2/0/1 encapsulation multilink-frame-relay-uni-nni
```

8. Specify the multilink bundle to which the interface is to be added as a constituent link on device R0.

```
[edit interfaces t1-2/0/0]
user@host# set unit 0 family mlfr-uni-nni bundle lsq-0/0/0:0
```

9. Specify the multilink bundle to which the interface is to be added as a constituent link on device R1.
Results
From configuration mode, confirm your configuration by entering the show commands for devices R0 and R1. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For device R0

```plaintext
[edit chassis]
user@host#show
fpc 0 {
 pic 0 {
 mfr-uni-nni-bundles 1;
 }
}

[edit interfaces lsq-0/0/0:0]
user@host#show
dce;
encapsulation multilink-frame-relay-uni-nni;

[edit interfaces lsq-0/0/0]
user@host#show
unit 0 {
 dlci 400;
 family inet {
 address 10.0.0.10/24;
 }
}

[edit interfaces t1-2/0/0]
user@host#show
encapsulation multilink-frame-relay-uni-nni;
unit 0 {
 family mfr-uni-nni {
 bundle lsq-0/0/0:0;
 }
}
```
For device R1

[edit interfaces t1-2/0/1]
user@host#show
encapsulation multilink-frame-relay-uni-nni;
unit 0 {
    family mlfr-uni-nni {
        bundle lsq-0/0/0:0;
    }
}

[edit chassis]
user@host#show
fpc 0 {
    pic 0 {
        mlfr-uni-nni-bundles 1;
    }
}

[edit interfaces lsq-0/0/0:0]
user@host#show
encapsulation multilink-frame-relay-uni-nni;

[edit interfaces t1-2/0/0]
user@host#show
encapsulation multilink-frame-relay-uni-nni;
unit 0 {
    family mlfr-uni-nni {
        bundle lsq-0/0/0:0;
    }
}

[edit interfaces t1-2/0/1]
user@host#show
encapsulation multilink-frame-relay-uni-nni;
unit 0 {
    family mlfr-uni-nni {
        bundle lsq-0/0/0:0;
    }
}

If you are done configuring the device, enter commit from configuration mode.
Verification

Confirm that the configuration is working properly.

**Verifying the MLFR FRF.16 Configuration**

**Purpose**
Verify the MLFR FRF.16 configuration.

**Action**
From operational mode, enter the `show interfaces` command.

# Configuring Compressed Real-Time Transport Protocol

Compressed Real-Time Transport Protocol (CRTP) is typically used for compressing voice and video packets. The topics below discuss the overview of CRTP and its configuration details.

## Understanding Compressed Real-Time Transport Protocol

Compressed Real-Time Transport Protocol (CRTP) is typically used for compressing voice and video packets. You can configure CRTP with LFI on a link services interface.

CRTP can be configured as a compression device on a T1 or E1 interface with PPP encapsulation, using the link services interface.
NOTE:

- **F-max period**—Maximum number of compressed packets allowed between transmission of full headers. It has a range from 1 to 65,535.
- **Maximum and Minimum**—UDP port values from 1 to 65,536 reserve these ports for RTP compression. CRTP is applied to network traffic on ports within this range. This feature is applicable only to voice services interfaces.

**Example: Configuring the Compressed Real-Time Transport Protocol**

This example shows how to configure CRTP to improve packet transmission, especially for time-sensitive voice packets.

**Requirements**

Before you begin, you should have two Juniper Networks devices configured with at least two serial interfaces that communicate over serial links.

**Overview**

In this example, you create a T1 interface called t1-1/0/0 and set the type of encapsulation to PPP. You set the link services intelligent queuing interface to lsq-0/0/0.0. You then create an interface called lsq-0/0/0 and set the logical unit 0. Finally, you set the F-max period to 2500, the minimum UDP port value to 2000, and the maximum UDP port value to 64009.

**Configuration**

**CLI Quick Configuration**
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces t1-1/0/0 encapsulation ppp
set interfaces t1-1/0/0 unit 0 compression-device lsq-0/0/0.0
set interfaces lsq-0/0/0 unit 0 compression rtp f-max-period 2500 port minimum 2000 maximum 64009
```

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode*.

To configure CRTP on a device:

1. Create the T1 interface.

```
[edit]
user@host# edit interfaces t1-1/0/0
```

2. Set the type of encapsulation.

```
[edit interfaces t1-1/0/0]
user@host# set encapsulation ppp
```

3. Add the link services intelligent queuing interface to the physical interface.

```
[edit interfaces t1-1/0/0]
user@host# edit unit 0
user@host# set compression-device lsq-0/0/0.0
```

4. Create an interface and set the logical unit.

```
[edit interfaces]
user@host# edit lsq-0/0/0 unit 0
```

5. Configure the link services intelligent queuing interface.

```
[edit interfaces lsq-0/0/0 unit 0]
user@host# set compression rtp f-max-period 2500 port minimum 2000 maximum 64009
```
Results
From configuration mode, confirm your configuration by entering the `show interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
 user@host# show interfaces
 lsq-0/0/0 {
 unit 0 {
 compression {
 rtp {
 f-max-period 2500;
 port minimum 2000 maximum 64009;
 }
 }
 }
 }

 t1-1/0/0 {
 encapsulation ppp;
 unit 0 {
 compression-device lsq-0/0/0.0;
 }
 }
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification
Confirm that the configuration is working properly.

*Verifying the CRTP Configuration*

**Purpose**
Verify the CRTP configuration.

**Action**
From operational mode, enter the `show interfaces` command.
CHAPTER 7

Configuring Management, Discard, and Loopback Interfaces

Configuring Management and Discard Interfaces | 559
Configuring Loopback Interfaces | 560
Configuring Management and Discard Interfaces

The topics below discuss the over and configuration details of management and discard interfaces on the security devices.

Configuring Management Interfaces

Management interfaces are the primary interfaces for accessing the device remotely. Typically, a management interface is not connected to the in-band network, but is connected instead to the device's internal network. Through a management interface you can access the device over the network using utilities such as ssh and telnet and configure it from anywhere, regardless of its physical location. SNMP can use the management interface to gather statistics from the device.

Management interfaces vary based on device type:

- The SRX5600 and SRX5800 devices include a 10/100-Mbps Ethernet port on the Routing Engine (RE). This port, which is labeled ETHERNET, is a dedicated out-of-band management interface for the device. Junos OS automatically creates the device’s management interface fxp0. To use fxp0 as a management port, you must configure its logical port fxp0.0 with a valid IP address. While you can use fxp0 to connect to a management network, you cannot place it into the management zone.

  NOTE: On the SRX5600 and SRX5800 devices, you must first connect to the device through the serial console port before assigning a unique IP address to the management interface.

As a security feature, users cannot log in as root through a management interface. To access the device as root, you must use the console port.

In an SRX Series device, the fxp0 management interface is a dedicated port located on the Routing Engine. In an SRX Series chassis cluster configuration, the control link interface must be port 0 on an SPC. For each node in the chassis cluster, you must configure the SPC that is used for the control link interface.
Configuring Discard Interface

The discard (dsc) interface is not a physical interface, but a virtual interface that discards packets. You can configure one discard interface. This interface allows you to identify the ingress (inbound) point of a denial-of-service (DoS) attack. When your network is under attack, the target host IP address is identified, and the local policy forwards attacking packets to the discard interface. Traffic routed out the discard interface is silently discarded.

RELATED DOCUMENTATION

| Understanding Interfaces | 31 |

Configuring Loopback Interfaces

The topics below discuss the overview and configuration details of loopback interfaces on security devices.

Understanding the Loopback Interface

The loopback address (lo0) has several uses, depending on the particular Junos feature being configured. It can perform the following functions:

- Device identification—The loopback interface is used to identify the device. While any interface address can be used to determine if the device is online, the loopback address is the preferred method. Whereas interfaces might be removed or addresses changed based on network topology changes, the loopback address never changes.

  When you ping an individual interface address, the results do not always indicate the health of the device. For example, a subnet mismatch in the configuration of two endpoints on a point-to-point link makes the link appear to be inoperable. Pinging the interface to determine whether the device is online provides
a misleading result. An interface might be unavailable because of a problem unrelated to the device's configuration or operation.

- Routing information—The loopback address is used by protocols such as OSPF to determine protocol-specific properties for the device or network. Further, some commands such as `ping mpls` require a loopback address to function correctly.

- Packet filtering—Stateless firewall filters can be applied to the loopback address to filter packets originating from, or destined for, the Routing Engine.

The Internet Protocol (IP) specifies a loopback network with the (IPv4) address 127.0.0.0/8. Most IP implementations support a loopback interface (lo0) to represent the loopback facility. Any traffic that a computer program sends on the loopback network is addressed to the same computer. The most commonly used IP address on the loopback network is 127.0.0.1 for IPv4 and ::1 for IPv6. The standard domain name for the address is `localhost`.

The device also includes an internal loopback address (lo0.16384). The internal loopback address is a particular instance of the loopback address with the logical unit number 16384. Junos OS creates the loopback interface for the internal routing instance. This interface prevents any filter on lo0.0 from disrupting internal traffic.

SEE ALSO

| Understanding Interfaces | 31 |

## Configuring a Loopback Interface

The loopback interface supports many different network and operational functions and is an always-up interface. This means that the loopback interface ensures that the device is reachable, even if some of the physical interfaces are down or removed, or an IP address has changed. In most cases, you always define a loopback interface.

Junos OS follows the IP convention of identifying the loopback interface as lo0.

Junos OS requires that the loopback interface always be configured with a /32 network mask because the Routing Engine is essentially a host.

If you are using routing instances, you can configure the loopback interface for the default routing instance or for a specific routing instance. The following procedure adds the loopback interface to the default routing instance.
Optionally, instead of configuring the loopback interface at the [edit interfaces] hierarchy level, you can use a configuration group, as shown in this procedure. This is a recommended best practice for configuring the loopback interface. This procedure uses a group called global as an example.

To configure a loopback interface:

1. Using the host IP address, assign it to the loopback interface.

   Each host in your network deployment should have a unique loopback interface address. The address used here is only an example.

   ```
 [edit groups global interfaces lo0 unit 0 family inet]
 user@host# set address 192.0.2.27/32
   ```

2. (Optional) Set the preferred IP address.

   You can configure as many addresses as you need on the lo0 interface, so it is good practice to designate one preferred IP address.

   ```
 [edit groups global interfaces lo0 unit 0 family inet]
 user@host# set address 192.0.2.48/32 preferred
   ```

3. (Optional) Configure additional addresses.

   Only unit 0 is permitted as the master loopback interface. If you want to add more IP addresses to unit 0, you configure them in the normal way under unit 0, without the preferred option.

   ```
 [edit groups global interfaces lo0 unit 0 family inet]
 user@host# set address 198.51.100.48/32
 user@host# set address 192.168.11.27
   ```

   **NOTE:** You do not have to include the /32 as long as the IPv4 address is a valid host address. (This usually means that the last octet cannot be zero.)

4. Configure the localhost address.

   On the lo0.0 interface, it is useful to have the IP address 127.0.0.1 configured, as certain processes such as NTP and MPLS ping use this default host address. The 127.0.0.1/32 address is a Martian IP address (an address invalid for routing), so it is never advertised by the Juniper Networks device.

   ```
 [edit groups global interfaces lo0 unit 0 family inet]
   ```
5. (Optional) Configure an ISO address.

Depending on your network configuration, you might also need an ISO address for the IS-IS routing protocol.

```
[edit groupsglobal interfaces lo0 unit 0 family iso]
user@host# address 49.0026.0000.0000.0110.00
```

6. If you used a configuration group, apply the configuration group, substituting `global` with the appropriate group name.

```
[edit]
user@host# set apply-groups global
```

7. Commit the configuration.

```
user@host# commit
```
Configuring Port Mirroring

Understanding Port Mirroring on SRX Devices | 567
Configuring Port Mirroring on SRX Devices | 567
Understanding Port Mirroring on SRX Devices

Port mirroring copies packets entering or exiting a port and sends the copies to a local interface for monitoring. Port mirroring is used to send traffic to applications that analyze traffic for purposes such as monitoring compliance, enforcing policies, detecting intrusions, monitoring and predicting traffic patterns, correlating events, and so on.

Port mirroring is used to send a copy of all the packets or only the sampled packets seen on a port to a network monitoring connection. You can mirror the packets either on the incoming port (ingress port mirroring) or the outgoing port (egress port mirroring).

NOTE: Port mirroring is supported only on the SRX devices with the following I/O cards:

- SRX1K-SYSIO-GE
- SRX1K-SYSIO-XGE
- SRX3K-SFB-12GE
- SRX3K-2XGE-XFP
- SRX5K-FPC-IOC Flex I/O

On SRX devices, all packets passing through the mirrored port are copied and sent to the specified mirror-to port. These ports must be on the same Broadcom chipset in the I/O cards.

NOTE: On SRX devices, port mirroring works on physical interfaces only.

Configuring Port Mirroring on SRX Devices

To configure port mirroring on an SRX device, you must first configure the forwarding-options and interfaces at the [edit] hierarchy level.

You must configure the forwarding-options statement to define an instance of the mirror-to port for port mirroring and also configure the interface to be mirrored.
NOTE: The mirrored port and the mirror-to port must be under the same Broadcom chipset in a I/O card.

To configure port mirroring:

1. Specify the rate and run-length at the [edit forwarding-options port-mirroring input] hierarchy level:

   ```
 [edit]
 forwarding-options
 port-mirroring {
 input {
 rate number;
 run-length number;
 }
 }
   ```

   **NOTE:**
   - **rate**: Ratio of packets to be sampled (1 out of N) (1 through 65535)
   - **run-length**: Number of samples after initial trigger (0 through 20)

2. To send the copies of the packet to the mirror-to port, include the interface intf-name statement at the [edit forwarding-options port-mirroring family any output] hierarchy level.

   ```
 output {
 interface intf-name;
 }
   ```

**NOTE:** Port mirroring on SRX devices uses family any to transfer the mirror-to port information to the Packet Forwarding Engine (PFE). The mirroring engine copies all the packets from mirrored port to the mirror-to port.
NOTE: You can configure an instance clause to specify multiple mirror-to ports.

To mirror an interface, include the port-mirror-instance statement at the [edit interface mirrored-intf-name] hierarchy level.

The mirrored interface is configured with an instance name, defined in the forwarding-options. The mirrored port and the mirror-to port are linked through that instance.

```c
instance {
 inst-name {
 input {
 rate number;
 run-length number;
 }
 family any {
 output {
 interface intf-name;
 }
 }
 }
}

interfaces
 mirrored-intf-name {
 port-mirror-instance instance-name;
 }
```

NOTE: Port mirroring on SRX devices does not differentiate the traffic direction, but mirrors the ingress and egress samples together.

A sample configuration for port mirroring is shown below:

```c
mirror port ge-1/0/2 to port ge-1/0/9.0
forwarding-options
 port-mirroring {
 input {
 rate 1;
 run-length 10;
 }
 family any {
 output {
```
interface ge-1/0/9.0;
    }
  }
instance {
  inst1 {
    input {
      rate 1;
      run-length 10;
    }
    family any {
      output {
        interface ge-1/0/9.0;
      }
    }
  }
}
interfaces {
  ge-1/0/2 {
    port-mirror-instance inst1;
  }
}
Configuring LTE Interfaces

IN THIS SECTION

- LTE Mini-PIM Overview | 573
- LTE Mini-PIM Configuration Overview | 577
- Configuring the LTE Mini-PIM as the Primary Interface | 577
- Configuring the LTE Mini-PIM as a Backup Interface | 580
- Example: Configuring the LTE Mini-PIM as a Backup Interface | 582
- Configuring the LTE Interface as a Dial-on-Demand Interface | 589

The LTE Mini-Physical Interface Module (Mini-PIM) provides wireless WAN support on the SRX320, SRX340, SRX345, and SRX550M (High Memory) Services Gateways. The topics below discuss the overview and configuration details of LTE interfaces on security devices.

LTE Mini-PIM Overview

IN THIS SECTION

- Supported Features | 574
- Understanding the LTE Physical Interface | 575
- Understanding the LTE Logical Interface | 575

The LTE Mini-Physical Interface Module (Mini-PIM) provides wireless WAN support on the SRX320, SRX340, SRX345, and SRX550M (High Memory) Services Gateways. The LTE Mini-PIM operates on both 3G and 4G networks. Table 37 on page 574 provides a summary of the different models of the Mini-PIM.
Table 37: LTE Mini-PIM Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Mode</th>
<th>Operating Region</th>
<th>Frequency Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX-MP-LTE-AE</td>
<td>• LTE</td>
<td>• North America</td>
<td>For LTE:</td>
</tr>
<tr>
<td></td>
<td>• HSPA+</td>
<td>• European Union</td>
<td>• Bands 1 through 5, 7, 8, 12, 13, 20, 25, 26, 29, 30, and 41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For 3G (HSPA+):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Bands 1 through 5, and 8</td>
</tr>
<tr>
<td>SRX-MP-LTE-AA</td>
<td>• LTE</td>
<td>• Asia</td>
<td>For LTE:</td>
</tr>
<tr>
<td></td>
<td>• HSPA+</td>
<td>• Australia</td>
<td>• Bands 1,3, 5, 7, 8, 18, 19, 21, 28, 38, 39, 40, and 41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For 3G (HSPA+):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Bands 1, 5, 6, 8, 9, and 19</td>
</tr>
</tbody>
</table>

Supported Features

The LTE Mini-PIM supports the following features:

- Automatic switchover between service providers through dual SIMs—The Mini-PIM supports up to two Subscriber Identity Module (SIM) cards. Dual SIM cards allow connectivity to two different ISP networks and provide a failover mechanism when the current active network fails. Each SIM card is associated with a profile, which is used to connect to the network.

- Multiple service provider and access point name (APN) profiles—You can configure up to 16 profiles for each SIM, although only one profile can be active at a time. The LTE Mini-PIM supports two SIM cards and so you can configure a total of 32 profiles.

- LTE carrier aggregation—Carrier aggregation expands the LTE bandwidth by combining secondary bands, which results in increased capacity and network efficiency.

- SIM security functions—The Mini-PIM supports security functions such as SIM lock and unlock, and PIN change.

- Always-on, dial-on-demand, and backup modes—The Mini-PIM can be configured in three modes:
  - Always-on—The Mini-PIM connects to the 3G/4G network after booting. The connection is always maintained, as long as there are no network or connectivity problems.
  - Dial-on-demand—The Mini-PIM initiates a connection when it receives interesting traffic. You define interesting traffic using the dialer filter. To configure dial-on-demand using a dialer filter, you first configure the dialer filter and then apply the filter to the dialer interface.
NOTE: The dial-on-demand mode is supported only if the LTE mini-PIM is configured as a primary interface.

- Backup—The Mini-PIM connects to the 3G/4G network when the primary connection fails.

- Primary and backup interface—You can configure the LTE Mini-PIM either as a primary interface or as a backup interface.

  When configured as the primary interface, the LTE Mini-PIM supports both the Always-on and Dial-on-demand modes.

  When configured as the backup interface, the LTE Mini-PIM connects to the network only when the primary interface fails.

- Over-the-air upgrade for modem firmware—Over-the-air (OTA) firmware upgrade enables automatic and timely upgrade of modem firmware when new firmware versions are available. The OTA upgrade can be enabled or disabled on the LTE Mini-PIM.

NOTE: OTA upgrade is disabled by default.

Understanding the LTE Physical Interface

The physical interface for the 4G LTE Mini-PIM uses the name cl-slot number/0/0, where slot number identifies the slot on the services gateway in which you insert the Mini-PIM. For example, cl-1/0/0. The Mini-PIM can be inserted in any of the Mini-PIM slots on the SRX320, SRX340, SRX345, and SRX550M Services Gateways. You configure the following properties on the physical interface:

- A dialer pool to which the physical interface belongs and the priority of the interface in the pool.
- Profiles for the SIM cards.
- Radio access technology (automatic, 3G, LTE)

Understanding the LTE Logical Interface

The dialer interface, dl0, is a logical interface, which is used to trigger calls. When traffic is sent to the dl0 interface, it enables the physical interface in the dialer pool and places calls through the physical interface. The dialer interface can perform backup and dialer filter functions. You can configure the dialer interface to operate in any one of the following ways:

- Primary interface—The dialer interface connects to the network and is always on. For more information, see “Configuring the LTE Mini-PIM as the Primary Interface” on page 577.
• Backup interface for the primary WAN connection—The dialer interface is activated only when the primary connection fails. For more information, see “Configuring the LTE Mini-PIM as a Backup Interface” on page 580.

• Dial-on-demand—The dialer interface activates the connection to the wireless network only when it receives interesting traffic. For more information, see “Configuring the LTE Interface as a Dial-on-Demand Interface” on page 589.

The following rules apply when you configure dialer interfaces:

• You cannot configure the dialer interface as a constituent link in a multilink bundle.

• You cannot configure any dial-in options for the dialer interface.

You configure the following for a dialer interface:

• A dialer pool to which the physical interface belongs.

• Dial string (destination number to be dialed).

You can also specify optional operating parameters for the dialer interface:

• Activation delay—Number of seconds after the primary interface is down before the backup interface is activated. The default value is 0 seconds, and the maximum value is 60 seconds.

• Deactivation delay—Number of seconds after the primary interface is up before the backup interface is deactivated. The default value is 0 seconds, and the maximum value is 60 seconds.

**Class of Service on the Dialer Interface**

The dialer interface has limited bandwidth, which can lead to traffic congestion. Starting with Junos OS Release 15.1X49-D100, the dialer interface supports the configuration of 4G LTE dialer interface Class of Service (CoS) parameters on SRX320, SRX340, SRX345, and SRX550M devices. The dialer interface supports the following CoS parameters:

• Behavior aggregate and multifield classifiers

• Policers

• Shapers

• Schedulers

• Rewrite rules

**NOTE:** The dialer interface (dl0) supports scheduling only at the physical interface queue level. As this interface does not support shaping at the logical interface level, per-unit scheduling is not supported on the dialer interface.

See *Class of Service User Guide (Security Devices)* for information on configuring these parameters.
LTE Mini-PIM Configuration Overview

The configuration process for the LTE Mini-PIM includes the following tasks:

1. Install your SRX Series device and establish basic connectivity for your device. For more information, see the SRX Series Hardware Guide for your device.
2. Establish an account with a cellular network service provider. Contact your service provider for more information.
3. Gather the following information from the service provider:
   - Username and password
   - Access Point Name (APN)
   - Authentication (Challenge Handshake Authentication Protocol (CHAP) or Password Authentication Protocol (PAP))
4. Install the LTE Mini-PIM.
5. Configure the LTE Mini-PIM. See:
   - Configuring the LTE Mini-PIM as the Primary Interface on page 577
   - Configuring the LTE Mini-PIM as a Backup Interface on page 580
   - Configuring the LTE Interface as a Dial-on-Demand Interface on page 589

Configuring the LTE Mini-PIM as the Primary Interface

Figure 28 on page 578 illustrates a scenario where the LTE Mini-PIM is installed on a SRX320 Services Gateway and functions as the primary interface. This procedure assumes that the LTE Mini-PIM is installed in slot 1 on the SRX320 Services Gateway.

NOTE: The LTE Mini-PIM can be installed in any of the Mini-PIM slots on the SRX320, SRX340, SRX345, and SRX550M Services Gateways.
Before you begin the procedure, ensure that dl0.0 is not configured as a backup. If dl0.0 is configured as a backup option for any interface on the SRX Series device, then this configuration overrides the configuration outlined in this procedure, and the LTE Mini-PIM will function as a backup interface.

Use the `show interfaces | display set | match backup-option | match dl0.0` command to check whether any interface uses dl0.0 as a backup interface. If dl0.0 is configured as a backup interface, then delete the configuration by issuing the following command:

```
delete interfaces interface-name unit 0 backup-options interface dl0.0
```

To configure the LTE Mini-PIM as a primary interface:

1. Configure the dialer interface:

   ```
 user@host# set interfaces dl0 unit 0 family inet negotiate-address
 user@host# set interfaces dl0 unit 0 family inet6 negotiate-address
 user@host# set interfaces dl0 unit 0 dialer-options pool dialer-pool-number
 user@host# set interfaces dl0 unit 0 dialer-options dial-string dial-number
 user@host# set interfaces dl0 unit 0 dialer-options always-on
   ```

2. Configure the dialer pool for the LTE Mini-PIM physical interface:

   ```
 user@host# set interfaces cl-1/0/0 dialer-options pool number
   ```

3. Configure the profile. The Subscriber Identity Module (SIM) uses a profile to establish a connection with the network. You can configure up to 16 profiles for each SIM card. The LTE Mini-PIM supports two SIM cards and so you can configure a total of 32 profiles, although only one profile can be active at a time.

   ```
 user@host# run request modem wireless create-profile profile-id profile-id cl-1/0/0 slot sim-slot-number access-point-name apn-name authentication-method none
   ```
4. Verify that the profile is configured successfully:

   user@host# run show modem wireless profiles cl-1/0/0 slot 1

5. Activate the SIM card:

   user@host# set interfaces cl-1/0/0 act-sim sim-slot-number

6. Select the profile and configure the radio access type for the SIM card:

   user@host# set interfaces cl-1/0/0 cellular-options sim sim-slot-number select-profile profile-id
   user@host# set interfaces cl-1/0/0 cellular-options sim sim-slot-number radio-access automatic

   **NOTE:** If a SIM card is installed in the second slot, then select the profile and configure the radio access type for the secondary SIM card as well.

7. Verify the status of the wireless network and dialer interface:

   user@host# run show modem wireless network
   user@host# run show interfaces dl0.0

   **NOTE:** If the LTE Mini-PIM gets an IP address with a mask of /32 from the service provider, the user has to configure the default gateway information using the `set interfaces cl-interface cellular-options sim sim-slot gateway ip-address/mask` command to make the Mini-PIM accept the assigned IP address.
Configuring the LTE Mini-PIM as a Backup Interface

You can configure the LTE Mini-PIM as a backup interface. If the primary interface fails, the Mini-PIM connects to the network and remains online only until the primary interface becomes functional. The dialer interface is enabled only when the primary interface fails.

Figure 29 on page 580 illustrates a scenario where the LTE Mini-PIM is installed on a SRX320 Services Gateway and functions as a backup interface. The ge-0/0/1 port is connected to the Internet and functions as the primary interface.

NOTE: The LTE Mini-PIM can be installed in any of the Mini-PIM slots on the SRX320, SRX340, SRX345, and SRX550M Services Gateways. In this scenario, the Mini-PIM is installed on slot 1.

To configure the LTE Mini-PIM as a backup interface:

1. Configure the dialer interface:

   ```
 user@host# set interfaces dl0 unit 0 family inet negotiate-address
 user@host# set interfaces dl0 unit 0 family inet6 negotiate-address
 user@host# set interfaces dl0 unit 0 dialer-options pool dialer-pool-number
 user@host# set interfaces dl0 unit 0 dialer-options dial-string dial-number
   ```

2. Configure the dialer pool for the LTE Mini-PIM physical interface:

   ```
 user@host# set interfaces cl-1/0/0 dialer-options pool dialer-pool-number
   ```

3. Configure the profile. The Subscriber Identity Module (SIM) uses a profile to establish a connection with the network. You can configure up to 16 profiles for each SIM card. The LTE Mini-PIM supports
two SIM cards and so you can configure a total of 32 profiles, although only one profile can be active at a time.

```
user@host# run request modem wireless create-profile profile-id profile-id cl-1/0/0 slot sim-slot-number
access-point-name l3vpn.corp authentication-method none
```

NOTE: sim-slot-number is the slot on the Mini-PIM in which the SIM card is inserted.

4. Verify that the profile is configured successfully:

```
user@host# run show modem wireless profiles cl-1/0/0 slot 1
```

5. Activate the SIM card:

```
user@host# set interfaces cl-1/0/0 act-sim sim-slot-number
```

6. Select the profile and configure the radio access type for the SIM card:

```
user@host# set interfaces cl-1/0/0 cellular-options sim sim-slot-number select-profile profile-id

user@host# set interfaces cl-1/0/0 cellular-options sim sim-slot-number radio-access automatic
```

NOTE: If a SIM card is installed in the second slot, then select the profile and configure the radio access type for the secondary SIM card as well.

7. Configure the Ethernet interface as the primary interface, which connects to the wireless network. Configure the dl0 interface as the backup interface.

```
user@host# set interfaces ge-0/0/1 unit 0 family inet address 192.168.2.1/24
user@host# set interfaces ge-0/0/1 unit 0 backup-options interface dl0.0
```

8. Verify the status of the wireless network and dialer interface:

```
user@host# run show modem wireless network
user@host# run show interfaces dl0.0
```
NOTE: The activation-delay and deactivation-delay command-line options can be used to avoid interface flaps by forcing a delay between the time the primary interface changes states, and the time the dialer interface is enabled or disabled. The activation delay controls the time between the primary interface going down and the activation of the dialer interface. Similarly, the deactivation delay controls the time between the recovery of the primary interface and the deactivation of the backup interface.

Example: Configuring the LTE Mini-PIM as a Backup Interface

This example shows how to configure the LTE Mini-PIM as a backup interface. If the primary interface fails, the Mini-PIM connects to the network and remains online only until the primary interface becomes functional. The dialer interface is enabled only when the primary interface fails.

NOTE: The LTE Mini-PIM can be installed in any of the Mini-PIM slots on the SRX320, SRX340, SRX345, and SRX550M Services Gateways. In this scenario, the Mini-PIM is installed on slot 1.
Requirements

This example uses the following hardware and software components:

- Junos OS Release or later for SRX320

Overview

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces dl0 unit 0 family inet negotiate-address
set interfaces dl0 unit 0 family inet6 negotiate-address
set interfaces dl0 unit 0 dialer-options pool dialer-pool-number
set interfaces dl0 unit 0 dialer-options dial-string dial-number
set interfaces cl-1/0/0 dialer-options pool dialer-pool-number
run request modem wireless create-profile profile-id profile-id cl-1/0/0 slot sim-slot-number access-point-name l3vpn.corp authentication-method none
run show modem wireless profiles cl-1/0/0 slot 1
set interfaces cl-1/0/0 act-sim sim-slot-number
set interfaces cl-1/0/0 cellular-options sim sim-slot-number select-profile profile-id profile-id
set interfaces cl-1/0/0 cellular-options sim sim-slot-number radio-access automatic
set interfaces ge-0/0/1 unit 0 family inet address 192.168.2.1/24
set interfaces ge-0/0/1 unit 0 backup-options interface dl0.0
```

Configuring the LTE Mini-PIM as a Backup Interface

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure Mini-PIM as a backup interface:

1. Create the dialer interface:

```
[edit interfaces]
user@host# set interfaces dl0 unit 0 family inet negotiate-address
user@host# set interfaces dl0 unit 0 family inet6 negotiate-address
user@host# set interfaces dl0 unit 0 dialer-options pool dialer-pool-number
```
2. Define the dialer pool for the LTE Mini-PIM physical interface:

```
user@host# set interfaces cl-1/0/0 dialer-options pool dialer-pool-number
```

3. Create and configure the profile. The Subscriber Identity Module (SIM) uses a profile to establish a connection with the network. You can configure up to 16 profiles for each SIM card. The LTE Mini-PIM supports two SIM cards and so you can configure a total of 32 profiles, although only one profile can be active at a time.

```
user@host# run request modem wireless create-profile profile-id profile-id cl-1/0/0 slot sim-slot-number access-point-name l3vpn.corp authentication-method none
```

**NOTE:** `sim-slot-number` is the slot on the Mini-PIM in which the SIM card is inserted.

4. Activate the SIM card:

```
user@host# set interfaces cl-1/0/0 act-sim sim-slot-number
```

5. Select the profile and configure the radio access type for the SIM card:

```
user@host# set interfaces cl-1/0/0 cellular-options sim sim-slot-number select-profile profile-id profile-id
user@host# set interfaces cl-1/0/0 cellular-options sim sim-slot-number radio-access automatic
```

**NOTE:** If a SIM card is installed in the second slot, then select the profile and configure the radio access type for the secondary SIM card as well.

6. Specify Ethernet interface as the primary interface, which connects to the wireless network. Specify the dl0 interface as the backup interface.

```
user@host# set interfaces ge-0/0/1 unit 0 family inet address 192.168.2.1/24
user@host# set interfaces ge-0/0/1 unit 0 backup-options interface dl0.0
```
NOTE: The **activation-delay** and **deactivation-delay** command-line options can be used to avoid interface flaps by forcing a delay between the time the primary interface changes states, and the time the dialer interface is enabled or disabled. The activation delay controls the time between the primary interface going down and the activation of the dialer interface. Similarly, the deactivation delay controls the time between the recovery of the primary interface and the deactivation of the backup interface.

**Results**

From configuration mode, confirm your configuration by entering the `show interfaces dl0.0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```plaintext
user@host>

Logical interface dl0.0 (Index 353) (SNMP ifIndex 559)
 Flags: Up Point-To-Point SNMP-Traps 0x4004000 Encapsulation: ENET2
 Dialer:
 State: Active, Dial pool: pool1
 Primary interface: ge-1/0/1.0 (Index 350)
 Dial strings: 1234
 Subordinate interfaces: cl-1/1/0 (Index 161)
 Activation delay: 0, Deactivation delay: 0
 Initial route check delay: 120
 Redial delay: 120
 Callback wait period: 5
 Load threshold: 0, Load interval: 60
 Input packets : 7
 Output packets: 10
 Protocol inet, MTU: 1490
 Max nh cache: 0, New hold nh limit: 0, Curr nh cnt: 0, Curr new hold cnt: 0,
 NH drop cnt: 0
 Flags: Sendbcast-pkt-to-re, Negotiate-Address
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 100.100.60.208/29, Local: 100.100.60.212, Broadcast: 100.100.60.215

 Protocol inet6, MTU: 1490
 Max nh cache: 75000, New hold nh limit: 75000, Curr nh cnt: 0, Curr new hold cnt: 0,
 NH drop cnt: 0
 Flags: Is-Primary, Negotiate-Address
 Addresses, Flags: Is-Preferred
 Destination: fe80::/64, Local: fe80::5a00:bb0f:fcaa:7d00
```
Verification

Verification of the configured profile

Purpose
Verify that the profile is configured successfully.

Action
From operational mode, run the `show modem wireless profiles cl-1/0/0 slot 1` command.

```
user@host> show modem wireless profiles cl-1/0/0 slot 1

Profile details
 Max profiles: 16
 Default profile Id: 1

Profile 1: ACTIVE
 Valid: TRUE
 Access point name (APN): airtelgprs.com
 Authentication: None
 IP Version: IPV4V6

Profile 2: Inactive
 Valid: TRUE
 Access point name (APN): airtelgprs.com
 Authentication: None
 IP Version: IPV4

Profile 3: Inactive
 Valid: TRUE
 Access point name (APN): airtelgprs.com
 Authentication: None
 IP Version: IPV4

Profile 4: Inactive
 Valid: TRUE
 Access point name (APN): airtelgprs.com
 Authentication: None
 IP Version: IPV4

Profile 5: Inactive
 Valid: TRUE
 Access point name (APN): airtelgprs.com
 Authentication: None
 IP Version: IPV4

Profile 6: Inactive
 Valid: TRUE
```
Access point name (APN): airtelgprs.com
Authentication: None
IP Version: IPV4
Profile 7: Inactive
Valid: TRUE
Access point name (APN): airtelgprs.com
Authentication: None
IP Version: IPV4
Profile 8: Inactive
Valid: TRUE
Access point name (APN): airtelgprs.com
Authentication: None
IP Version: IPV4
Profile 9: Inactive
Valid: TRUE
Access point name (APN): airtelgprs.com
Authentication: None
IP Version: IPV4
Profile 10: Inactive
Valid: TRUE
Access point name (APN): airtelgprs.com
Authentication: None
IP Version: IPV4
Profile 11: Inactive
Valid: TRUE
Access point name (APN): airtelgprs.com
Authentication: None
IP Version: IPV4
Profile 12: Inactive
Valid: TRUE
Access point name (APN): airtelgprs.com
Authentication: None
IP Version: IPV4
Profile 13: Inactive
Valid: TRUE
Access point name (APN): airtelgprs.com
Authentication: None
IP Version: IPV4
Profile 14: Inactive
Valid: TRUE
Access point name (APN): airtelgprs.com
Authentication: None
IP Version: IPV4
Profile 15: Inactive
Verification of status of the dialer interface

Purpose
Verify that the dialer interface is configured successfully.

Action
From operational mode, run the show interfaces dl0.0 command.

```bash
user@host> show interfaces dl0.0
```

```
Logical interface dl0.0 (Index 353) (SNMP ifIndex 559)
Flags: Up Point-To-Point SNMP-Traps 0x4004000 Encapsulation: ENET2
Dialer:
State: Active, Dial pool: pool1
Primary interface: ge-1/0/1.0 (Index 350)
Dial strings: 1234
Subordinate interfaces: cl-1/1/0 (Index 161)
Activation delay: 0, Deactivation delay: 0
Initial route check delay: 120
Redial delay: 120
Callback wait period: 5
Load threshold: 0, Load interval: 60
Input packets: 7
Output packets: 10
Protocol inet, MTU: 1490
Max nh cache: 0, New hold nh limit: 0, Curr nh cnt: 0, Curr new hold cnt: 0, NH drop cnt: 0
Flags: Sendbcast-pkt-to-re, Negotiate-Address
Addresses, Flags: Is-Preferred Is-Primary
Destination: 100.100.60.208/29, Local: 100.100.60.212, Broadcast: 100.100.60.215

Protocol inet6, MTU: 1490
```
Verification of status of the modem network and modem firmware

Purpose
Verify that the wireless network is configured, check the firmware, and check if the sim is active.

Action
From operational mode, enter the `show modem wireless network cl-1/0/0` command to verify the network status and `show modem wireless firmware cl-1/0/0` command to verify the firmware and sim status. Alternatively you can use the `show configuration` command to verify the complete status.

```
user@host> show configuration
```

```
set chassis jnu-management mode porter
set interfaces cl-1/0/0 cellular-options sim 1 radio-access automatic
set interfaces cl-1/0/0 dialer-options pool dialer-pool-number
set interfaces ge-1/0/1 disable
set interfaces ge-1/0/1 unit 0 family inet address 192.168.2.1/24
set interfaces ge-1/0/1 unit 0 backup-options interface dl0.0
set interfaces cl-1/1/0 act-sim 1
set interfaces cl-1/1/0 cellular-options sim 1 select-profile profile-id 1
set interfaces cl-1/1/0 dialer-options pool pool1
set interfaces dl0 unit 0 family inet negotiate-address
set interfaces dl0 unit 0 family inet6 negotiate-address
set interfaces dl0 unit 0 dialer-options pool pool1
set interfaces dl0 unit 0 dialer-options dial-string 1234
```

Configuring the LTE Interface as a Dial-on-Demand Interface

When the LTE interface is configured as a primary interface, it can function either in always-on mode or in dial-on-demand mode. In always-on mode, the interface remains connected to the network whereas in dial-on-demand mode, the connection is established only when needed.
In dial-on-demand mode, the dialer interface is enabled only when network traffic configured as an "interesting traffic" arrives on the network. Interesting traffic triggers or activates the wireless WAN connection. You define an interesting packet by using the dialer filter. To configure dial-on-demand by using a dialer filter, you first configure the dialer filter and then apply the filter to the dialer interface. Once the traffic is sent over the network, an inactivity timer is triggered and the connection is closed after the timer expires.

NOTE: The dial-on-demand mode is supported only if the LTE Mini-PIM is configured as a primary interface.

Figure 30 on page 590 illustrates a scenario where the LTE Mini-PIM is installed on a SRX320 Services Gateway and functions as the primary interface. This procedure assumes that the LTE Mini-PIM is installed in slot 1 on the SRX320 Services Gateway.

NOTE: The LTE Mini-PIM can be installed in any of the Mini-PIM slots on the SRX320, SRX340, SRX345, and SRX550M Services Gateways.

Figure 30: LTE Mini-PIM Used as a Dial-on-Demand Interface
To configure the LTE Mini-PIM as a dial-on-demand interface:

1. Configure the dialer interface:

   user@host# set interfaces dl0 unit 0 family inet negotiate-address
   user@host# set interfaces dl0 unit 0 family inet6 negotiate-address
   user@host# set interfaces dl0 unit 0 family inet filter dialer dialer-filter-name
dialer-filter-name
   user@host# set interfaces dl0 unit 0 dialer-options pool dialer-pool-number
dialer-pool-number
   user@host# set interfaces dl0 unit 0 dialer-options dial-string dial-number

   NOTE: Optionally, you can configure the idle-timeout value, which determines the duration
for which the connection will remain enabled in the absence of interesting traffic.

   user@host# set interfaces dl0 unit 0 dialer-options idle-timeout idle-timeout-value

2. Configure the dialer pool for the LTE Mini-PIM physical interface:

   user@host# set interfaces cl-1/0/0 dialer-options pool number

3. Create the dialer filter rule:

   user@host# set firewall family inet dialer-filter dialer-filter-name term term1 from destination-address
ip-address then note

4. Set the default route:

   set routing-options static route ip-address next-hop dl0.0

5. Configure the profile. The Subscriber Identity Module (SIM) uses a profile to establish a connection
with the network. You can configure up to 16 profiles for each SIM card. The LTE Mini-PIM supports
two SIM cards and so you can configure a total of 32 profiles, although only one profile can be active
at a time.

   user@host# run request modem wireless create-profile profile-id profile-id cl-1/0/0 slot sim-slot-number
access-point-name apn-name authentication-method none

   NOTE: sim-slot-number is the slot on the Mini-PIM in which the SIM card is inserted.

6. Verify that the profile is configured successfully:
user@host# run show modem wireless profiles cl-1/0/0 slot 1

7. Activate the SIM card:

user@host# set interfaces cl-1/0/0 act-sim sim-slot-number

8. Select the profile and configure the radio access type for the SIM card:

user@host# set interfaces cl-1/0/0 cellular-options sim sim-slot-number select-profile profile-id
user@host# set interfaces cl-1/0/0 cellular-options sim sim-slot-number radio-access automatic

NOTE: If a SIM card is installed in the second slot, then select the profile and configure the radio access type for the secondary SIM card as well.

9. Verify the configuration by sending traffic to the destination address. The traffic is routed to the dl0 interface and if it matches the dialer filter rule, then the dl0 is triggered to dial.

10. Verify the status of the wireless network and dialer interface:

user@host# run show modem wireless network
user@host# run show interfaces dl0.0

Wi-Fi Mini Physical Interface Module (MPIM)

The Wi-Fi Mini-Physical Interface Module (Mini-PIM) for SRX Series devices provides an integrated wireless access point (or wireless LAN) solution along with routing, switching, and security in a single device. The topics below describes the overview and configuration of Wi-Fi Mini-PIM on SRX series devices.
Wi-Fi Mini-Physical Interface Module Overview

Wi-Fi Mini-Physical Interface Module (Wi-Fi Mini-PIM) for SRX320, SRX340, SRX345, and SRX550M provides an integrated wireless access point—or wireless LAN—along with routing, switching, and security in a single device. Mini-PIM supports the 802.11ac Wave 2 wireless standards and is backward compatible with 802.11a/b/g/n. The Wi-Fi Mini-PIM can coexist with other Mini-PIMs supported on the SRX Series device. Table 38 on page 593 provides a summary of the features supported on Mini-PIM.

Typical deployments for Wi-Fi Mini-PIM solution include:

- Secure wireless LAN connectivity to endpoint devices of corporate users at remote branch offices. 802.11ac, WPA2, 802.1X, and SSID-to-VLAN mapping features provide secure Wireless LAN connectivity.
- Direct network connectivity to the enterprise Internet of Things (IoT) devices. The security features on the SRX Series devices secure the IoT devices.

See How to Install the Wi-Fi Mini-PIM for SRX Series Services Gateways for more information about how to install the Wi-Fi Mini-PIM.

Features Supported on the Wi-Fi Mini-PIM

Table 38 on page 593 lists the key features supported on the Wi-Fi Mini-PIM.

Table 38: Wi-Fi Mini-PIM Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x2 MU-MIMO</td>
<td>Enables transmission of data to multiple clients simultaneously.</td>
</tr>
<tr>
<td>Dual radios</td>
<td>Both radios of 2.4 GHz and 5 GHz bands are simultaneously supported. The maximum supported speed is up to 1.2 Gbps.</td>
</tr>
</tbody>
</table>
| Virtual access points (VAPs) and VLAN features | • Allows you to segment the WLAN into multiple broadcast domains that are the wireless equivalents of Ethernet VLANs. A single access point is segregated into multiple individual VAPs, simulating multiple access points in a single system.  
  • An access point supports multiple VLANs, which can be distributed across VAPs and radios.  
  • You can configure up to eight VAPs per radio. You can map up to 16 extended service set identifiers (ESSIDs) to individual VLANs.  
  • The VLANs from the Mini-PIM software map to VLANs on Junos OS. |
| Co-existence of interfaces      | The WI-Fi Mini-PIM coexists with 4G LTE, VDSL, T1, and serial interfaces.    |
Table 38: Wi-Fi Mini-PIM Features (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client authentication methods</td>
<td>Client authentication method supported are Wi-Fi Protected Access (WPA) Enterprise (WPA2 standards) and Wi-Fi Protected Access (WPA) Personal (AES-CCMP cipher suits and WPA2 standards).</td>
</tr>
</tbody>
</table>

**Configure Wi-Fi Mini-PIM**

**IN THIS SECTION**

- Configure Network Setting for the Wi-Fi Mini-PIM | 594
- Configure VLANS | 599
- Verification | 605

You can configure the radios and virtual access points on the Wi-Fi Mini-PIM. This topic contains sections that describe the basic Wi-Fi Mini-PIM configuration at the wireless interface level. For more information about how to install a Wi-Fi Mini-PIM see How to Install the Wi-Fi Mini-PIM for SRX Series Services Gateways.

The following sections describe how to configure the Wi-Fi Mini-PIM on your SRX Series device.

**Configure Network Setting for the Wi-Fi Mini-PIM**

[Warning: element unresolved in stylesheets: <title> (in <intro>). This is probably a new element that is not yet supported in the stylesheets.]

Configure wl- interface

The interface name for the Mini-PIM is denoted as `wl-x/0/0`, where `x` is the slot on the SRX Series Services Gateway in which the Mini-PIM is installed. The `wl-` interface is created automatically when you insert the Mini-PIM into the slot on the SRX Series device. To configure the wireless LAN interface:

1. Define an interface for the Wi-Fi Mini-PIM.

   ```
 [edit interfaces]
 user@host# set interface wl-x/0/0 unit unit-number family inet address inet ip-address
   ```
2. Configure the DHCP address pool.

```
[edit]
user@host# set access address assignment pool dhcp pool family inet network inet ip-address
user@host# set access address assignment pool dhcp pool family inet range inet range low ip-address
user@host# set access address assignment pool dhcp pool family inet range inet range high ip-address
user@host# set access address assignment pool dhcp pool family inet dhcp-attributes router ip-address
user@host# set access address-assignment pool dhcp pool family inet dhcp-attributes name-server server name
user@host# set system services dhcp-local-server group group interface wl-x/0/0.unit number
```

3. Configure the wireless interface to be part of a zone, assign required security policies and commit the configuration.

[Warning: element unresolved in stylesheets: <title> (in <intro>). This is probably a new element that is not yet supported in the stylesheets.]

Configure access point

To configure the access point associated with the wireless LAN interface wl-x/0/0:

1. Configure the name of the wireless access point.

```
[edit]
user@host# set wlan access-point access-point-name interface wl-x/0/0
```

2. Set the country code (applicable only for SRX-MP-WLAN-WW models of the Mini-PIM).

```
NOTE: If you do not set the country code for the SRX-MP-WLAN-WW models, the Mini-PIM considers the country code as US. The country code for the SRX-MP-WLAN-US and SRX-MP-WLAN-IL models are set and cannot be changed.
```

```
[edit]
user@host# set wlan access-point name access-point options country country-code
```

3. Set the physical location (location of your hardware device, example: 1st floor).

```
[edit]
```
4. Commit the configuration.

[Warning: element unresolved in stylesheets: <title> (in <intro>). This is probably a new element that is not yet supported in the stylesheets.]

Configure Radios

Every access point has two radios—radio 1 operates at 5-GHz bandwidth and radio 2 operates at 2.4-GHz bandwidth. A VAP is configured based on the radio. You can configure up to eight VAPs per radio and map up to 16 ESSIDs to individual VLANs. Wi-Fi Mini-PIM supports both the radios (2.4 and 5 GHz) to work simultaneously. You can also disable a radio. Table 39 on page 596 lists the modes supported on each radio.

Table 39: Supported Modes on Wi-Fi Mini-PIM Radios

<table>
<thead>
<tr>
<th>Radio</th>
<th>Supported Modes</th>
</tr>
</thead>
</table>
| Radio 1 (5.0 GHz) | • an—802.11a and 802.11n clients operating on 5 GHz frequency can connect to the access point  
|                  | • acn—802.11a, 802.11n and 802.11ac clients operating on 5 GHz frequency can connect to the access point |
| Radio 2 (2.4 GHz) | • gn—802.11g, 802.11b and 802.11n clients operating in 2.4 GHz frequency can connect to the access point. This is the default mode for this radio. |

To configure the radio:

In countries where Dynamic Frequency Selection (DFS) is required, the Wi-Fi card performs appropriate checks for radar. DFS is enabled by default. If you set the channel number to auto, the access point selects the channel from the list of DFS and non-DFS channels. You can disable DFS by using the dfs-off option:

```bash
set wlan access-point ap-name radio 1 radio-options dfs-off
```

**NOTE:** Only the 5 GHz radio (radio 1) supports DFS.

For more information on DFS, see Channels and Frequencies Supported on the Wi-Fi Mini-PIM.

1. Configure the radio mode. Radio 1 supports acn and an modes. Radio 2 supports only gn mode. Note that radio 1 operates at 5-GHz and radio 2 operates at 2.4-GHz.
For radio 1:

```
[edit]
user@host# set wlan access-point name radio 1 radio-options mode [an | acn]
```

For radio 2:

```
[edit]
user@host# set wlan access-point name radio 2 radio-options mode gn
```

2. Configure the channel number. If you select auto, then the Mini-PIM chooses the channel automatically. By default, channel number is set to `auto`.

```
[edit]
user@host# set wlan access-point name radio [1 | 2] radio options channel number number
```

3. Configure the channel bandwidth. The default channel bandwidth is 20 MHz for the 2.4 GHz radio and 40 MHz for the 5 GHz radio. You can only set 80 MHz as the channel bandwidth for 5 GHz radio and not for 2.4GHz

```
[edit]
user@host# set wlan access-point name radio [1 | 2] radio options channel bandwidth [20 | 40 | 80]
```

4. Configure the transmit power. You can configure the transmit power on a per-radio basis.

   **NOTE:** When you configure the transmit power, the Mini-PIM card will fix transmit power to the specified value set, in this case the power by rate functionality does not work. So it is recommended not to set transmit power to a specified value. When you do not configure the transmit power (do not fix the transmit power to a specified value), the power by rate functionality works. If you configure the transmit power percentage to 100, then it chooses the option "auto", the behavior is same as no transmit power configuration is done and power by rate functionality will work.

```
[edit]
user@host# set wlan access-point name radio [1 | 2] radio options transmit-power percent
```

5. Commit the configuration.
Configure Virtual access Points (VAP)

VAPs allow segmentation of the wireless LAN into multiple broadcast domains that are the wireless equivalents of Ethernet VLANs. To configure the virtual access point:

1. Configure the VAP settings.

   ```
 [edit]
 user@host# set wlan access-point name radio [1|2] virtual-access-point id description
   ```

   ```
 [edit]
 user@host# set wlan access-point name radio [1|2] virtual-access-point id ssid ssid
   ```

2. Configure either the WPA Enterprise or the WPA Personal authentication methods for the VAP.

   none—The data transferred between clients and the access point is not encrypted. Clients can associate with the access point without any authentication.

   ```
 [edit]
 user@host# set wlan access-point name radio [1|2] virtual-access-point id security none
   ```

   wpa-enterprise—The device authenticates through an 802.1X-compliant RADIUS server.

   ```
 [edit]
 user@host# set wlan access-point name radio [1|2] virtual-access-point id security wpa-enterprise cipher-suites [ccmp]
   ```

   ```
 [edit]
 user@host# set wlan access-point name radio [1|2] virtual-access-point id security wpa-enterprise radius-port port
   ```

   ```
 [edit]
 user@host# set wlan access-point name radio [1|2] virtual-access-point id security wpa-enterprise radius-key secret-key
   ```

   ```
 [edit]
 user@host# set wlan access-point name radio [1|2] virtual-access-point id security wpa-enterprise wpa-version [v2]
   ```

   wpa-personal—The device uses preshared keys (PSKs) or a passphrase for authentication and encryption.

   ```
 [edit]
 user@host# set wlan access-point name radio [1|2] virtual-access-point id security wpa-personal cipher-suites [ccmp]
   ```
3. Configure and specify the upload and download rate limits on the Wi-Fi Mini-PIM. The range for **upload-limit** and **download-limit** is from 256 Kbps to 1,048,576 Kbps.

4. Specify the number maximum number of clients that can be connected to the VAP.

5. Commit the configuration.

After completing the configuration successfully completed, you can view the parameters by using the **show wlan access-points access-point-name detail** command.

**Configure VLANS**

(Optional) A single access point is segregated into multiple individual virtual access points (VAPs) simulating multiple access points in a single system. The access point supports multiple VLANs. To configure the VLAN ID based on the VAP:

1. Configure the VLAN for the wireless LAN interface (wl- interface). Follow the below steps to configure VLAN ID based on the VAP:

   ```bash
 user@host# set vlans vlan-name vlan-id
 user@host# set vlans vlan-name vlan-id-list vid-list
 user@host# set interfaces wl-x/0/0 unit number family ethernet-switching vlan members vlan name/all
   ```
2. Set trunk mode on the `wl-` interface.

```
[edit]
user@host# set interfaces wl-x/0/0 unit unit number family ethernet-switching interface-mode trunk
user@host# set interfaces wl-x/0/0 unit unit number family ethernet-switching vlan members all
```

3. Set trunk mode for the native VLAN of the `wl-` interface.

```
[set]
user@host# set interfaces wl-x/0/0 native-vlan-id vid unit unit number family ethernet-switching interface-mode trunk
```

4. Configure the access point for the `wl-` interface.

```
[set]
user@host# set wlan access-point access-point name interface wl-x/0/0
```

5. Configure all VAP parameters including the radio mode, channel number, and VAP SSID, VAP VLAN ID on the Wi-Fi Mini-PIM.

```
[set]
user@host# set wlan access-point access-point name radio 1 radio-options mode radio mode
user@host# set wlan access-point access-point name radio 1 radio-options channel number bandwidth
user@host# set wlan access-point access-point name radio 1 virtual-access-point virtual-access-point id ssid
user@host# set wlan access-point access-point name radio 1 virtual-access-point virtual-access-point id vlan vlan-id
```

6. Commit the configuration.
Configure Multiple VLANs and SSIDs

You can configure 8 VAPs on each radio and each VAP is identified by the SSID. Up to 16 SSIDs can be configured on the Wi-Fi Mini-PIM. You can map a VLAN to each SSID or you can assign a single VLAN for multiple SSIDs. The client connects to the VAP using the SSID and is associated to the VLAN that is mapped to the SSID.

You can configure multiple SSIDs to provide varied levels of access to different devices and users. Here is a sample configuration for three different types of users connecting to different VAPs. Each VAP is associated with a different VLAN.

<table>
<thead>
<tr>
<th>Interface</th>
<th>VLAN ID</th>
<th>Address pool</th>
<th>VAP</th>
<th>SSID</th>
<th>Address pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>wl-2/0/0.0</td>
<td>100</td>
<td>junosDHCPPool</td>
<td></td>
<td></td>
<td>192.168.2.0/24</td>
</tr>
<tr>
<td>wl-2/0/0.10</td>
<td>10</td>
<td>junosDHCPPool1</td>
<td>VAP1</td>
<td>VAP-10</td>
<td>192.168.10.0/24</td>
</tr>
<tr>
<td>wl-2/0/0.20</td>
<td>20</td>
<td>junosDHCPPool2</td>
<td>VAP2</td>
<td>VAP-20</td>
<td>192.168.20.0/24</td>
</tr>
<tr>
<td>wl-2/0/0.30</td>
<td>30</td>
<td>junosDHCPPool3</td>
<td>VAP3</td>
<td>VAP-30</td>
<td>192.168.30.0/24</td>
</tr>
</tbody>
</table>

1. Configure the interface to be part of the security zone.

   user@host# set security zones security-zone trust interfaces wl-2/0/0.0

2. Configure a security zone.

   user@host# set security zones security-zone trust host-inbound-traffic system-services dhcp
   user@host# set security zones security-zone trust host-inbound-traffic protocols dhcp

3. Enable the DHCP server on the interface and configure the address pool for the Wi-Fi interface and:

   user@host# set system services dhcp-local-server group jdhcp-group interface wl-2/0/0.0
   user@host# set access address-assignment pool junosDHCPPool family inet network 192.168.2.0/24
   user@host# set access address-assignment pool junosDHCPPool family inet range junosRange low 192.168.2.2
   user@host# set access address-assignment pool junosDHCPPool family inet range junosRange high 192.168.2.254
   user@host# set access address-assignment pool junosDHCPPool family inet dhcp-attributes router 192.168.2.1

4. Configure flexible VLAN tagging on the Wi-Fi interface:

   user@host# set interfaces wl-2/0/0 flexible-vlan-tagging
5. Configure the VLANs

user@host# set interfaces wl-2/0/0 native-vlan-id 100
user@host# set interfaces wl-2/0/0 unit 0 vlan-id 100
user@host# set interfaces wl-2/0/0 unit 0 family inet address 192.168.2.1/24

6. Repeat steps 2 through 6 for the wl-2/0/0.10, wl-2/0/0.20, and wl-2/0/0.30 interfaces.

7. Configure the access point settings:

user@host# set wlan access-point name interface wl-2/0/0
user@host# set wlan access-point name access-point-options country US
user@host# set wlan access-point name location California

8. Configure the radio settings:

For radio 1:

user@host# set wlan access-point name radio 1 radio-options mode acn
user@host# set wlan access-point name radio 1 radio-options channel number auto
user@host# set wlan access-point name radio 1 radio-options channel bandwidth 40

For radio 2:

user@host# set wlan access-point name radio 2 radio-options mode gn
user@host# set wlan access-point name radio 2 radio-options channel number auto
user@host# set wlan access-point name radio 2 radio-options channel bandwidth 40

9. Configure the VAPs.

VAP1:

user@host# set wlan access-point name radio 1 virtual-access-point 1 description VAP1
user@host# set wlan access-point name radio 1 virtual-access-point 1 ssid VAP-10
user@host# set wlan access-point name radio 1 virtual-access-point 1 vlan 10
user@host# set wlan access-point name radio 1 virtual-access-point 1 security wpa-personal cipher-suites ccmp
user@host# set wlan access-point name radio 1 virtual-access-point 1 security wpa-personal key-type ascii
user@host# set wlan access-point name radio 1 virtual-access-point 1 security wpa-personal key ascii-string
user@host# set wlan access-point name radio 1 virtual-access-point 1 security wpa-personal wpa-version v2
user@host# set wlan access-point name radio 1 virtual-access-point 1 upload-limit 1000
user@host# set wlan access-point name radio 1 virtual-access-point 1 download-limit 1000
user@host# set wlan access-point name radio 1 virtual-access-point 1 maximum-stations 70

VAP2:

user@host# set wlan access-point name radio 1 virtual-access-point 2 description VAP2
user@host# set wlan access-point name radio 1 virtual-access-point 2 ssid VAP-20
user@host# set wlan access-point name radio 1 virtual-access-point 2 vlan 20
user@host# set wlan access-point name radio 1 virtual-access-point 2 security wpa-personal cipher-suites ccmp
user@host# set wlan access-point name radio 1 virtual-access-point 2 security wpa-personal key-type ascii
user@host# set wlan access-point name radio 1 virtual-access-point 2 security wpa-personal key ascii-string
user@host# set wlan access-point name radio 1 virtual-access-point 2 security wpa-personal wpa-version v2
user@host# set wlan access-point name radio 1 virtual-access-point 2 upload-limit 1000
user@host# set wlan access-point name radio 1 virtual-access-point 2 download-limit 1000
user@host# set wlan access-point name radio 1 virtual-access-point 2 maximum-stations 80

VAP3:

user@host# set wlan access-point name radio 2 virtual-access-point 3 description VAP3
user@host# set wlan access-point name radio 2 virtual-access-point 3 ssid VAP-30
user@host# set wlan access-point name radio 2 virtual-access-point 3 vlan 30
user@host# set wlan access-point name radio 2 virtual-access-point 3 security wpa-personal cipher-suites ccmp
user@host# set wlan access-point name radio 2 virtual-access-point 3 security wpa-personal key-type ascii
user@host# set wlan access-point name radio 2 virtual-access-point 3 security wpa-personal key ascii-string
user@host# set wlan access-point name radio 2 virtual-access-point 3 security wpa-personal wpa-version v2
user@host# set wlan access-point name radio 2 virtual-access-point 3 upload-limit 1000
user@host# set wlan access-point name radio 2 virtual-access-point 3 download-limit 1000
user@host# set wlan access-point name radio 2 virtual-access-point 3 maximum-stations 70

10. Commit the configuration.

user@host# commit

SEE ALSO

[Warning: element unresolved in stylesheets: <title> (in <intro>). This is probably a new element that is not yet supported in the stylesheets.]

Configure WPA enterprise authentication

(Optional) Wi-Fi protected access (WPA) enterprise is Wi-Fi alliance standard that uses RADIUS server authentication with AES-CCMP cipher suite. With this mode you can use high security encryption along with a centrally managed user authentication. Only the WPA2 standard is supported. To configure the WPA enterprise authentication:

1. Configure the address book and assign a security zone.

   [edit]
   user@host# set security address-book security address-book name address ip-address
   user@host# set security address-book security address-book name attach zone trust
   user@host# set security address-book security address-book name attach zone dot1x

2. Configure security source rule-set from trust zone to the WPA authentication.

   [edit]
   user@host# set security nat source rule-set nat source rule-set name from zone trust
   user@host# set security nat source rule-set nat source rule-set name to zone dot1x

3. Configure the security source to match the source and destination address.

   [edit]
   user@host# set security nat source rule-set nat source rule-set name rule rule name match source-address source address
   user@host# set security nat source rule-set nat source rule-set name rule rule name match destination-address destination address

4. Configure the UDP protocol and security source on the interface.
5. Assign the security policies to the source and destination address.

```plaintext
[edit]
user@host# set security nat source rule-set nat source rule-set name rule rule name match protocol udp
user@host# set security nat source rule-set nat source rule-set name rule rule name then source-nat interface
```

6. Commit the configuration.

After completing the configuration successfully completed, you can view the parameters by using the `show wlan access-points access-point name virtual-access-points` command.

Verification

**Purpose**
Display information about the parameters configured on the Wi-Fi Mini-PIM.

**Action**
- To display the details of all the access points configured on the Mini-PIM:

  ```plaintext
 user@host> show wlan access-points
  ```

  **Active access points information**
  Access-Point Type Interface Radio-mode/Channel
  i03-22-ap Int wi-1/0/0 gn/2, an/157

- To display the status of the specific access point.

  ```plaintext
 user@host> show wlan access-point i03-22-ap detail
  ```
Active access point detail information
Access Point : i03-22-ap
Type : Internal
Location : First Floor, Building 8
Serial Number : 850001809
Firmware Version : 10.1.3.8
Alternate Version : 10.1.3.7
Country : US
Access Interface : wl-1/0/0
Packet Capture : Disabled
Ethernet Port:
MAC Address : 00:14:13:12:10:11
IPv4 Address : 192.168.1.5
Radio1:
Status : On
MAC Address : 00:1F:12:E0:84:20
Mode : IEEE 802.11a/n
Channel : 124 (5620 MHz)
Radio2:
Status : On
MAC Address : 00:1F:12:E0:84:30
Mode : IEEE 802.11g/n
Channel : 3 (2422 MHz)

SEE ALSO
| wlan | 854 |
Configuring Modem Interfaces

Configuring 3G Wireless Modems for WAN Connections | 609
Configuring CDMA EV-DO Modem Cards | 627
Configuring USB Modems for Dial Backup | 635
Configuring DOCSIS Mini-PIM Interfaces | 658
Configuring Serial Interfaces | 667
Configuring 3G Wireless Modems for WAN Connections

IN THIS SECTION

- 3G Wireless Modem Overview | 609
- 3G Wireless Modem Configuration Overview | 610
- Understanding the Dialer Interface | 612
- Example: Configuring the Dialer Interface | 614
- Understanding the 3G Wireless Modem Physical Interface | 621
- Example: Configuring the 3G Wireless Modem Interface | 622
- Understanding the GSM Profile | 623
- Example: Configuring the GSM Profile | 624
- Unlocking the GSM 3G Wireless Modem | 625

The topics below discuss the overview and configuration of 3G Wireless Modem, dialer interface, and 3G Wireless Modem physical interface.

3G Wireless Modem Overview

3G refers to the third generation of mobile phone standards and technology based on the International Telecommunication Union (ITU) International Mobile Telecommunications-2000 (IMT-2000) global standard. 3G networks are wide area cellular telephone networks that have evolved to include high-data rate services of up to 3 Mbps. This increased bandwidth makes 3G networks a viable option as primary or backup wide area network (WAN) links for a branch office.

Juniper Networks security devices support 3G wireless interfaces (USB-based 3G modems). When used in a branch office, these devices can provide dial-out services to PC users and forward IP traffic through a service provider's cellular network.

Figure 31 on page 610 illustrates a basic setup for 3G wireless connectivity for two branch offices. Branch Office A has a T1 leased line as the primary wide area network (WAN) link and a 3G wireless modem connection as the failover link. Branch Office B uses the 3G wireless modem connection as the primary WAN link.
3G Wireless Modem Configuration Overview

Before you begin:

1. Install your SRX Series device and establish basic connectivity for your device. For more information, see the SRX Series Hardware Guide for your device.

2. Obtain a supported 3G wireless modem card for the device.

3. Establish an account with a cellular network service provider. Contact your service provider for more information.

4. With the services gateway powered off, insert the 3G wireless modem card into the ExpressCard slot (SRX320 devices) or 3G USB modems (SRX300 devices). Power on the device. The EXPCARD LED (for
SRX320) and 3G LED (SRX320) on the front panel of the device indicates the status of the 3G wireless modem interface.

**WARNING:** The device must be powered off before you insert the 3G wireless modem card in the ExpressCard slot (SRX320) or integrated 3G USB modem (SRX320). Do not insert or remove the card when the device is powered on.

To configure and activate the 3G wireless modem card:


2. Configure the 3G wireless modem interface. See "Example: Configuring the 3G Wireless Modem Interface" on page 622.

3. Configure security zones and policies, as needed, to allow traffic through the WAN link. See Example: Creating Security Zones.

To use the 3G USB modems on the SRX210 device:

1. Upgrade the BIOS software packaged inside the Junos OS image. For detailed information about BIOS upgrade procedures, see the Software Installation and Upgrade Guide.

   **NOTE:** You need the BIOS version of 2.1 or higher to use the 3G USB modems on the SRX210 device.

2. Configure the WAN port using the CLI command `set chassis routing-engine usb-wwan port 1` to enable the USB port to use the U319 USB modem.

3. Plug the 3G USB modem in to the appropriate USB slot (USB port 1) on the device.

   **NOTE:** You can use the USB modem with a standard USB extension cable of 1.8288 meters (6 ft) or longer.

4. Reboot the device to start using the 3G USB modem.
The dialer interface, dln, is a logical interface for configuring properties for modem connections. You can configure multiple dialer interfaces on an SRX Series device. A dialer interface and a dialer pool (which includes the physical interface) are bound together in a dialer profile.

The dialer interface for 3G wireless modems is no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

This topic contains the following sections:

**Dialer Interface Configuration Rules**

The following rules apply when you configure dialer interfaces for 3G wireless modem connections:

- The dialer interface must be configured to use the default Point-to-Point Protocol (PPP) encapsulation. You cannot configure Cisco High-Level Data Link Control (HDLC) or Multilink PPP (MLPPP) encapsulation on dialer interfaces.
- You cannot configure the dialer interface as a constituent link in a multilink bundle.
- You cannot configure any dial-in options for the dialer interface.

You configure the following for a dialer interface:

- A dialer pool to which the physical interface belongs.
- Source IP address for the dialer interface.
- Dial string (optional) is the destination number to be dialed.
- Authentication, for GSM HSDPA 3G wireless modem cards.
- Watch list, if the dialer interface is a backup WAN link.
With GSM HSDPA 3G wireless modem cards, you might need to configure PAP or CHAP for authentication with the service provider network. The service provider must supply the username and password, which you configure in an access profile. You then specify the access profile in a dialer interface.

Next you set the dialer interface as a backup WAN link to a primary interface. Then you create a dialer watch to enable the device to monitor the route to a head office router and set a dialer pool. Finally, you create a dialer filter firewall rule for traffic from the branch office to the main office router and associate the dialer filter with a dialer interface.

**Dialer Interface Authentication Support for GSM HSDPA 3G Wireless Modems**

For GSM HSDPA 3G wireless modems, you configure a dialer interface to support authentication through Challenge Handshake Authentication Protocol (CHAP) or Password Authentication Protocol (PAP).

CHAP is a server-driven, three-step authentication method that depends on a shared secret password that resides on both the server and the client. When you enable CHAP on a dialer interface, the device can authenticate its peer and be authenticated by its peer.

PAP allows a simple method for a peer to establish its identity using a two-way handshake during initial link establishment. After the link is established, an identification and password pair is repeatedly sent by the peer to the authenticator until authentication is acknowledged or the connection is terminated.

**Dialer Interface Functions**

The dialer interface can perform backup, dialer filter, and dialer watch functions, but these operations are mutually exclusive. You can configure a single dialer interface to operate in only one of the following ways:

- **As a backup interface for a single primary WAN connection.** The dialer interfaces are activated only when the primary interface fails. The 3G wireless modem backup connectivity is supported on all interfaces except lsq-0/0/0.

- **As a dialer filter.** The Dialer filter enables the 3G wireless modem connection to be activated only when specific network traffic is sent on the backup WAN link. You configure a firewall rule with the dialer filter option, and then apply the dialer filter to the dialer interface.

- **As a dialer watch interface.** With dialer watch, the SRX Series device monitors the status of a specified route and if the route disappears, the dialer interface initiates the 3G wireless modem connection as a backup connection. To configure dialer watch, you first add the routes to be monitored to a watch list in a dialer interface; specify a dialer pool for this configuration. Then configure the 3G wireless modem interface to use the dialer pool.

**Dialer Interface Operating Parameters**

You can also specify optional operating parameters for the dialer interface:
• Activation delay—Number of seconds after the primary interface is down before the backup interface is activated. The default value is 0 seconds, and the maximum value is 60 seconds. Use this option only if dialer watch is configured.

• Deactivation delay—Number of seconds after the primary interface is up before the backup interface is deactivated. The default value is 0 seconds, and the maximum value is 60 seconds. Use this option only if dialer watch is configured.

• Idle timeout—Number of seconds the connection remains idle before disconnecting. The default value is 120 seconds, and the range is from 0 to 4,294,967,295 seconds.

• Initial route check—Number of seconds before the primary interface is checked to see if it is up. The default value is 120 seconds, and the range is from 1 to 300 seconds.

Example: Configuring the Dialer Interface

This example shows how to configure the dialer interface for 3G wireless modem connections.

The dialer interface for 3G wireless modems is no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

Requirements

Before you begin, install your SRX Series device and establish basic connectivity for your device. See “3G Wireless Modem Configuration Overview” on page 610.

Overview

In this example, you first configure the dialer interface as dl0, specify the PPP encapsulation dialer pool as 1, specify the dial string as 14691, and negotiate the address option for the interface IP address.
Configuration

IN THIS SECTION

- Configuring a Dialer Interface | 615
- Configuring PAP on the Dialer Interface | 616
- Configuring CHAP on the Dialer Interface | 617
- Configuring the Dialer Interface as a Backup WAN Connection | 618
- Configuring Dialer Watch for the 3G Wireless Modem Interface | 619
- Configuring a Dialer Filter for the 3G Wireless Modem Interface | 620

Configuring a Dialer Interface

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```sh
set interfaces dl0 description 3g-wireless encapsulation ppp unit 0 dialer-options pool 1 dial-string 14691
set interfaces dl0 unit 0 family inet negotiate-address
```

Step-by-Step Procedure

1. Set the interface and specify the PPP encapsulation, dialer pool, and dial string.

   ```sh
 [edit]
 user@host# set interfaces dl0 description 3g-wireless encapsulation ppp unit 0 dialer-options pool 1 dial-string 14691
   ```

2. Set the negotiate address option for the interface IP address.

   ```sh
 [edit]
 user@host# set interfaces dl0 unit 0 family inet negotiate-address
   ```

Results
From configuration mode, confirm your configuration by entering the `show interfaces dl0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```plaintext
[edit]
 user@host# show interfaces dl0
description 3g-wireless;
encapsulation ppp;
 unit 0 {
 family inet {
 negotiate-address;
 }
 dialer-options {
 pool 1;
 dial-string 14691;
 }
 }

If you are done configuring the device, enter `commit` from configuration mode.

Configuring PAP on the Dialer Interface

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```plaintext
set access profile pap-1 client clientX pap-password 7a^6b%5c
set interfaces dl0 unit 0 ppp-options pap access-profile pap-1
```

Step-by-Step Procedure

1. Configure a PAP access profile.

   ```plaintext
   [edit]
   user@host# set access profile pap-1 client clientX pap-password 7a^6b%5c
   ```

2. Associate the PAP access profile with a dialer interface.

   ```plaintext
   [edit]
   user@host# set interfaces dl0 unit 0 ppp-options pap access-profile pap-1
   ```

Results
From configuration mode, confirm your configuration by entering the `show interfaces dl0` and `show access profile pap-1` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces dl0
unit 0 {
    ppp-options {
        pap {
            access-profile pap-1;
        }
    }
}
[edit]
user@host# show access profile pap-1
client clientX pap-password "$9$jnqTz3nCBESu01hSrKvZUDkq$;##SECRET-DATA
```

If you are done configuring the device, enter `commit` from configuration mode.

Configuring CHAP on the Dialer Interface

CLI Quick Configuration

With GSM HSDPA 3G wireless modem cards, you may need to configure CHAP for authentication with the service provider network. The service provider must supply the username and password, which you configure in an access profile. You then specify this access profile in a dialer interface.

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
set access profile chap-1 client clientX chap-secret 7a^6b%5c
set interfaces dl0 unit 0 ppp-options chap access-profile chap-1
```

Step-by-Step Procedure

1. Configure a CHAP access profile.

```
[edit]
user@host# set access profile chap-1 client clientX chap-secret 7a^6b%5c
```

2. Associate the CHAP access profile with a dialer interface.

```
[edit]
```
user@host# set interfaces dl0 unit 0 ppp-options chap access-profile chap-1

Results
From configuration mode, confirm your configuration by entering the `show access profile chap-1` and `show interfaces dl0` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show access profile chap-1
client clientX chap-secret "$9$neYpCO1REyWx-Kv87-VsYQF39Cu"; ##SECRET-DATA
[edit]
user@host# show interfaces dl0
unit 0{
  ppp-options{
    chap{
      access-profile chap-1;
    }
  }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Configuring the Dialer Interface as a Backup WAN Connection

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```
set interfaces ge-0/0/1 unit 0 backup-options interface dl0
```

Step-by-Step Procedure
1. Set interface back up option.

```
[edit]
user@host# set interfaces ge-0/0/1 unit 0 backup-options interface dl0
```

Results
From configuration mode, confirm your configuration by entering the `show interfaces ge-0/0/1` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
If you are done configuring the device, enter commit from configuration mode.

Configuring Dialer Watch for the 3G Wireless Modem Interface

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces dl0 description dialer-watch unit 0 dialer-options watch-list 200.200.201.1/32
set interfaces dl0 description dialer-watch unit 0 dialer-options pool dw-pool
```

Step-by-Step Procedure

1. Create a dialer watch.

   ```
   [edit]
   user@host# set interfaces dl0 description dialer-watch unit 0 dialer-options watch-list 200.200.201.1/32
   ```

2. Set a dialer pool.

   ```
   [edit]
   user@host# set interfaces dl0 description dialer-watch unit 0 dialer-options pool dw-pool
   ```

Results

From configuration mode, confirm your configuration by entering the show interfaces dl0 command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces dl0
description dialer-watch;
unit 0 {
```
dialer-options {
 watch-list {
 200.200.201.1/32;
 }
}

If you are done configuring the device, enter `commit` from configuration mode.

Configuring a Dialer Filter for the 3G Wireless Modem Interface

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```
set firewall family inet dialer-filter traffic-filter term term1 then note
```

Step-by-Step Procedure

1. Associate the dialer filter with a dialer interface.

   ```
   [edit]
   user@host# set firewall family inet dialer-filter traffic-filter term term1 then note
   ```

2. Check your other changes to the configuration before committing.

   ```
   [edit]
   user@host# commit check
   ```

Results

From configuration mode, confirm your configuration by entering the `show firewall` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show firewall
family inet {
  dialer-filter traffic-filter {
    term term-1 {
      then note;
```
If you are done configuring the device, enter **commit** from configuration mode.

Verification

Confirm that the configuration is working properly.

Verifying the Configuration

Purpose
Verify the configuration output.

Action
Verify the configuration output by entering the **show interfaces** command.

Understanding the 3G Wireless Modem Physical Interface

You configure two types of interfaces for 3G wireless modem connectivity—the physical interface and a logical dialer interface.

The physical interface for the 3G wireless modem uses the name **cl-0/0/8**. This interface is automatically created when a 3G wireless modem is installed in the device.

The 3G wireless modem physical interface is no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

You configure the following properties for the physical interface:

- A dialer pool to which the physical interface belongs and the priority of the interface in the pool. A physical interface can belong to more than one dialer pool. The dialer pool priority has a range from **1** to **255**, with **1** designating the lowest-priority interfaces and **255** designating the highest-priority interfaces.

- Modem initialization string (optional). These strings begin with **AT** and execute Hayes modem commands that specify modem operation.

- GSM profile for establishing a data call with a GSM cellular network.

By default, the modem allows access to networks other than the home network.
Example: Configuring the 3G Wireless Modem Interface

This example shows how to configure the 3G wireless modem interface.

The 3G wireless modem physical interface is no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

Requirements
Before you begin, configure a dialer interface. See “Example: Configuring the Dialer Interface” on page 614.

Overview
In this example, you configure the physical interface as cl-0/0/8 for the 3G wireless modem to use dialer pool 1 and set the priority for the dialer pool to 25. You also configure a modem initialization string to autoanswer after two rings.

Configuration
Step-by-Step Procedure
To configure the 3G wireless modem interface:

1. Specify the dialer pool.

 [edit]
 user@host# set interfaces cl-0/0/8 dialer-options pool1 priority 25

2. Specify the modem options.

 [edit]
3. If you are done configuring the device, commit the configuration.

```bash
[edit]
user@host# commit
```

Verification

To verify the configuration is working properly, enter the `show interfaces cl-0/0/8 modem options` command.

Understanding the GSM Profile

To allow data calls to a Global System for Mobile Communications (GSM) network, you must obtain the following information from your service provider:

- Username and password
- Access point name (APN)
- Whether the authentication is Challenge Handshake Authentication Protocol (CHAP) or Password Authentication Protocol (PAP)

You configure this information in a GSM profile associated with the 3G wireless modem physical interface. You can configure up to 16 different GSM profiles, although only one profile can be active at a time.

NOTE: You also need to configure a CHAP or PAP profile with the specified username and password for the dialer interface.

Subscriber information is written to the Subscriber Identity Module (SIM) on the GSM HSDPA 3G wireless modem card. If the SIM is locked, you must unlock it before activation by using the master subsidy lock (MSL) value given by the service provider when you purchase the cellular network service.

Some service providers may preload subscriber profile information on a SIM card. The assigned subscriber information is stored in profile 1, while profile 0 is a default profile created during manufacturing. If this is the case, specify profile 1 for the GSM profile associated with the 3G wireless modem physical interface.
Configuring the information in a GSM profile associated with the 3G wireless modem physical interface is no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

Example: Configuring the GSM Profile

This example shows how to configure the GSM profile for the 3G wireless modem interface with service provider networks such as AT&T and T-Mobile.

NOTE: Configuring the information in a GSM profile associated with the 3G wireless modem physical interface is no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

Requirements

Before you begin:

- Configure a dialer interface. See “Example: Configuring the Dialer Interface” on page 614
- Configure the 3G wireless modem interface. See "Example: Configuring the 3G Wireless Modem Interface" on page 622.

Overview

In this example, you configure the following information provided by a service provider in a GSM profile called juniper99 that is associated with the 3G wireless modem physical interface cl-0/0/8:

- Username—juniper99
- Password—1@#6ahgfh
• Access point name (APN)—apn.service.com
• Authentication method—CHAP

Then you activate the profile by specifying the profile ID as profile-id 1.

Configuration

Step-by-Step Procedure
To configure a GSM profile for the 3G wireless modem interface:

1. Create a GSM profile.

```
[edit]
user@host> request modem wireless gsm create-profile profile-id1 sip-user-id juniper99 sip-password 16ahgfh access-point-name apn.service.com authentication-method chap
```

2. Activate the profile.

```
[edit]
user@host# set interface cl-0/0/8 cellular-options gsm-options select-profile profile-id 1
```

3. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

Verification

To verify the configuration is working properly, enter the `show interfaces cl-0/0/8` command.

Unlocking the GSM 3G Wireless Modem

The subscriber identity module (SIM) in the GSM 3G wireless modem card is a detachable smart card. Swapping out the SIM allows you to change the service provider network, however some service providers lock the SIM to prevent unauthorized access to the service provider’s network. If this is the case, you will need to unlock the SIM by using an personal identification number (PIN), a four-digit number provided by the service provider.
NOTE: Unlocking the SIM in a 3G wireless modem card is not supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

Before you begin, obtain the PIN from the service provider.

Use the CLI operational mode command to unlock the SIM on the GSM 3G wireless modem card.

This example uses the PIN 3210 from the service provider.

To unlock the SIM on the GSM 3G wireless modem card:

```
user@host> request modem wireless gsm sim-unlock cl-0/0/8 pin 3210
```

A SIM is blocked after three consecutive failed unlock attempts; this is a security feature to prevent brute force attempts to unlock the SIM. When the SIM is blocked, you need to unblock the SIM with an eight-digit PIN unlocking key (PUK) obtained from the service provider.

To unlock the SIM automatically on reboot:

```
user@host# set interfaces cl-0/0/8 cellular-options gsm-options sim-unlock-code
```

Enter PIN:

```
user@host#
```

NOTE: On SRX300, SRX320 devices, when you power on or reboot the device, the Subscriber Identity Module (SIM) will be locked. If the SIM Personal Identification Number (PIN) or the unlock code is configured in the `set interfaces cl-0/0/8 cellular-options gsm-options sim-unlock-code` configuration command, then Junos OS attempts to unlock the SIM only once. This is to keep the SIM from being blocked. If the SIM is blocked, you must provide a PIN Unblocking Key (PUK) obtained from the service provider. If the wrong SIM PIN is configured, the SIM will remain locked, and the administrator can unlock it by using the remaining two attempts.

Use the CLI operational mode command to unblock the SIM.

This example uses the PUK 76543210 from the service provider.
To unblock the SIM:

```
user@host> request modem wireless gsm sim-unblock cl-0/0/8 puk 76543210
```

NOTE: If you enter the PUK incorrectly ten times, you will need to return the SIM to the service provider for reactivation.

Configuring CDMA EV-DO Modem Cards

IN THIS SECTION

- Understanding Account Activation for CDMA EV-DO Modem Cards | 627
- Activating the CDMA EV-DO Modem Card Manually | 630
- Activating the CDMA EV-DO Modem Card with IOTA Provisioning | 633
- Activating the CDMA EV-DO Modem Card with OTASP Provisioning | 634

The below topics discuss the account activation for CDMA EV-DO Modem Cards and activation details on security devices.

Understanding Account Activation for CDMA EV-DO Modem Cards

IN THIS SECTION

- Obtaining Electronic Serial Number (ESN) | 628
- Account Activation Modes | 629
Account activation is the process of enabling the CDMA EV-DO wireless modem card to connect to your service provider's cellular network. This is a one-time process where your subscriber information is saved in nonvolatile memory on the card. The procedure you use to perform account activation depends upon the service provider network.

NOTE: Activating an account for a CDMA EV-DO 3G wireless modem card is no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

Before activating an account, you can verify the signal strength on the 3G wireless modem interface by using the `show modem wireless interface cl-0/0/8 rssi` command. The signal strength should be at least -90 dB and preferably better than -80 dB (-125 dB indicates nil signal strength). If the signal strength is below -90 dB, activation may not be possible from that location. For example:

```
user@host> show modem wireless interface cl-0/0/8 rssi
Current Radio Signal Strength (RSSI) = -98 dBm
```

This topic contains the following sections:

Obtaining Electronic Serial Number (ESN)

The service provider requires the electronic serial number (ESN) of the 3G wireless modem card to activate your account and to generate the necessary information you need to activate the card. You can obtain the ESN number of the modem card in the following ways:

- Inspect the modem card itself; the ESN is printed on the card.
- Use the CLI `show modem wireless interface cl-0/0/8 firmware` command, as shown in the following example, and note the value for the Electronic Serial Number (ESN) field:

```
user@host> show modem wireless interface cl-0/0/8 firmware

Modem Firmware Version : p2005600

Modem Firmware built date : 12-09-07

Card type : Aircard 597E - CDMA EV-DO revA

Manufacturer : Sierra Wireless, Inc.
```
Account Activation Modes

For the CDMA EV-DO 3G wireless modem card, account activation can be done through one or more of the following modes:

- Over the air service provisioning (OTASP)—protocol for programming phones over the air using Interim Standard 95 (IS-95) Data Burst Messages.

 To activate the 3G wireless modem card with OTASP, you need to obtain from the service provider the dial number that the modem will use to contact the network. Typically, OTASP dial numbers begin with the feature code *228 to indicate an activation call type to the cellular network’s base transceiver station, followed by additional digits specified by the service provider.

- Internet-based over the air (IOTA) provisioning—method for programming phones for voice and data services

- Manually providing the required information by entering in a CLI operational mode command

Sprint uses manual and IOTA activation, whereas Verizon uses only OTASP.
NOTE: The 3G wireless modem is set into Single-Carrier Radio Transmission Technology (1xRTT) mode automatically when it is activated for Verizon networks.

Activating the CDMA EV-DO Modem Card Manually

Manual activation stores the supplied values into the 3G wireless modem card’s nonvolatile memory. This topic describes the activation of the CDMA EV-DO 3G wireless modem card for use with service provider networks such as Sprint.

NOTE: Activating a CDMA EV-DO 3G wireless modem card manually is no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

Before you begin, the service provider must activate your account before you can activate the CDMA EV-DO 3G wireless modem card.

Using the electronic serial number (ESN) you provided and your account information, the service provider supplies you with the following information for manual activation of the 3G wireless modem card:

- Master subsidy lock (MSL)—activation code
- Mobile directory number (MDN)—10-digit user phone number
- International mobile station identify (IMSI)—Mobile subscriber information
- Simple IP user identification (SIP-ID)—Username
- Simple IP password (SIP-Password)—Password

You also need to obtain the following information from the 3G wireless modem card itself for the activation:

- System identification (SID)—Number between 0 and 32767
- Network identification (NID)—Number between 0 and 65535

Use the CLI `show modem wireless interface cl-0/0/8 network` command to display the SID and NID, as shown in the following example:

```
user@host> show modem wireless interface cl-0/0/8 network
Running Operating mode : 1xEV-DO (Rev A) and 1xRTT
```
Call Setup Mode : Mobile IP only

System Identifier (SID) : 3421

Network Identifier (NID) : 91

Roaming Status (1xRTT) : Home

Idle Digital Mode : HDR

Use the CLI operational mode command to manually activate the 3G wireless modem card.

This example uses the following values for manual activation:

- MSL (from service provider)—43210
- MDN (from service provider)—0123456789
- IMSI (from service provider)—0123456789
- SIP-ID (from service provider)—jnpr
- SIP-Password (from service provider)—jn9rl
- SID (from modem card)—12345
- NID (from modem card)—12345

To activate the CDMA EV-DO 3G wireless modem card manually:

```
user@host> request modem wireless interface cl-0/0/8 activate manual msl 43210 mdn 0123456789
imsi 0123456789 sid 12345 nid 12345 sip-id jnpr sip-password jn9rl
```

Checking status...

Modem current activation status: Not Activated

Starting activation...
Performing account activation step 1/6 : [Unlock] Done

Performing account activation step 2/6 : [Set MDN] Done

Performing account activation step 3/6 : [Set SIP Info] Done

Performing account activation step 4/6 : [Set IMSI] Done

Performing account activation step 5/6 : [Set SID/NID] Done

Performing account activation step 6/6 : [Commit/Lock] Done

Configuration Commit Result: PASS

Resetting the modem ... Done

Account activation in progress. It can take up to 5 minutes

Please check the trace logs for details.

To check the trace log for account activation details:

 user@host> tail-f /var/log/wwand.log

Jun 25 04:42:55: IOTA cl-0/0/8 Event: IOTA Start... Success

Jun 25 04:43:45: IOTA cl-0/0/8 OTA SPL unlock... Success

Jun 25 04:43:56: IOTA cl-0/0/8 Committing OTA Parameters to NVRAM... Success

Jun 25 04:44:02: IOTA cl-0/0/8 Over the air provisioning... Complete
Activating the CDMA EV-DO Modem Card with IOTA Provisioning

Manual activation stores the supplied values in the 3G wireless modem card's nonvolatile memory. If the modem card is reset or you need to update Mobile IP (MIP) parameters, use the CLI operational mode command to activate the modem card with IOTA.

NOTE: Activating a CDMA EV-DO 3G wireless modem card with IOTA provisioning is no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

Before you begin, activate the CDMA EV-DO 3G wireless modem card. See "Understanding Account Activation for CDMA EV-DO Modem Cards" on page 627.

To activate the CDMA EV-DO 3G wireless modem card with IOTA:

```
user@host> request modem wireless interface cl-0/0/8 activate iota
```

Beginning IOTA Activation. It can take up to 5 minutes

Please check the trace logs for details.

To check the trace log for account activation details:

```
user@host> tail -f /var/log/wwand.log
```

Jun 25 04:42:55: IOTA cl-0/0/8 Event: IOTA Start... Success

Jun 25 04:43:45: IOTA cl-0/0/8 OTA SPL unlock... Success

Jun 25 04:43:56: IOTA cl-0/0/8 Committing OTA Parameters to NVRAM... Success

Jun 25 04:44:02: IOTA cl-0/0/8 Over the air provisioning... Complete
Activating the CDMA EV-DO Modem Card with OTASP Provisioning

This topic describes the activation of the CDMA EV-DO 3G wireless modem card for use with service provider networks such as Verizon.

NOTE: Activating a CDMA EV-DO 3G wireless modem card with OTASP provisioning is no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

Before you begin:

- Obtain the dial number that the modem will use to contact the network from the service provider.
- The service provider must activate your account before OTASP provisioning can proceed.

Use the CLI operational mode command to activate the 3G wireless modem card.

In this example, the dial number from the service provider is *22864.

To activate the CDMA EV-DO 3G wireless modem card with OTASP provisioning:

```
user@host> request modem wireless interface cl-0/0/8 activate otasp dial-string *22864
```

OTASP number *22286*, Selecting NAM 0

Beginning OTASP Activation. It can take up to 5 minutes

Please check the trace logs for details.

To check the trace log for account activation details:

```
user@host> tail -f /var/log/wwand.log
```

Jun 25 04:42:55: OTASP cl-0/0/8 OTA SPL unlock... Success
Configuring USB Modems for Dial Backup

The topics below discuss the USB modem interfaces, its configuration details, examples of configuring dialer interface, configuring PAP on dialer interface and CHAP on dialer interface.
USB Modem Interface Overview

Juniper Networks SRX Series devices support the use of USB modems for remote management. You can use Telnet or SSH to connect to the device from a remote location through two modems over a telephone network. The USB modem is connected to the USB port on the device, and a second modem is connected to a remote management device such as a PC or laptop computer.

NOTE: USB modems are no longer supported for dial backup on SRX300, SRX320, SRX340, SRX345, SRX550HM devices.

You can configure your device to fail over to a USB modem connection when the primary Internet connection experiences interruption.

A USB modem connects to a device through modem interfaces that you configure. The device applies its own modem AT commands to initialize the attached modem. Modem setup requires that you connect and configure the USB modem at the device and the modem at the user end of the network.

You use either the J-Web configuration editor or CLI configuration editor to configure the USB modem and its supporting dialer interfaces.

NOTE: Low-latency traffic such as VoIP traffic is not supported over USB modem connections.

NOTE: We recommend using a US Robotics USB 56k V.92 Modem, model number USR Model 5637.

USB Modem Interfaces

You configure two types of interfaces for USB modem connectivity:

- A physical interface which uses the naming convention umd0. The device creates this interface when a USB modem is connected to the USB port.

- A logical interface called the dialer interface. You use the dialer interface, dlIn, to configure dialing properties for USB modem connections. The dialer interface can be configured using Point-to-Point Protocol (PPP) encapsulation. You can also configure the dialer interface to support authentication protocols—PPP Challenge Handshake (CHAP) or Password Authentication Protocol (PAP). You can configure multiple dialer interfaces for different functions on the device. After configuring the dialer interface, you must configure a backup method such as a dialer backup, a dialer filter, or a dialer watch.
The USB modem provides a dial-in remote management interface, and supports dialer interface features by sharing the same dial pool as a dialer interface. The dial pool allows the logical dialer interface and the physical interface to be bound together dynamically on a per-call basis. You can configure the USB modem to operate either as a dial-in console for management or as a dial-in WAN backup interface. Dialer pool priority has a range from 1 to 255, with 1 designating the lowest priority interfaces and 255 designating the highest priority interfaces.

Dialer Interface Rules

The following rules apply when you configure dialer interfaces for USB modem connections:

- The dialer interface must be configured to use PPP encapsulation. You cannot configure Cisco High-Level Data Link Control (HDLC) or Multilink PPP (MLPPP) encapsulation on dialer interfaces.
- The dialer interface cannot be configured as a constituent link in a multilink bundle.
- The dialer interface can perform backup, dialer filter, and dialer watch functions, but these operations are mutually exclusive. You can configure a single dialer interface to operate in only one of the following ways:
 - As a backup interface—for one primary interface
 - As a dialer filter
 - As a dialer watch interface

The backup dialer interfaces are activated only when the primary interface fails. USB modem backup connectivity is supported on all interfaces except Isq-0/0/0.

The dial-on-demand routing backup method allows a USB modem connection to be activated only when network traffic configured as an “interesting packet” arrives on the network. Once the network traffic is sent, an inactivity timer is triggered and the connection is closed. You define an interesting packet using the dialer filter feature of the device. To configure dial-on-demand routing backup using a dialer filter, you first configure the dialer filter and then apply the filter to the dialer interface.

Dialer watch is a backup method that integrates backup dialing with routing capabilities and provides reliable connectivity without relying on a dialer filter to trigger outgoing USB modem connections. With dialer watch, the device monitors the existence of a specified route. If the route disappears, the dialer interface initiates the USB modem connection as a backup connection.

How the Device Initializes USB Modems

When you connect the USB modem to the USB port on the device, the device applies the modem AT commands configured in the init-command-string command to the initialization commands on the modem.

If you do not configure modem AT commands for the init-command-string command, the device applies the following default sequence of initialization commands to the modem: AT S7=45 S0=0 V1 X4 &C1E0
Q0 &Q8 %C0. Table 40 on page 638 describes the commands. For more information about these commands, see the documentation for your modem.

Table 40: Default Modem Initialization Commands

<table>
<thead>
<tr>
<th>Modem Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Attention. Informs the modem that a command follows.</td>
</tr>
<tr>
<td>S7=45</td>
<td>Instructs the modem to wait 45 seconds for a telecommunications service provider (carrier) signal before terminating the call.</td>
</tr>
<tr>
<td>S0=0</td>
<td>Disables the auto answer feature, whereby the modem automatically answers calls.</td>
</tr>
<tr>
<td>V1</td>
<td>Displays result codes as words.</td>
</tr>
<tr>
<td>&C1</td>
<td>Disables reset of the modem when it loses the carrier signal.</td>
</tr>
<tr>
<td>E0</td>
<td>Disables the display on the local terminal of commands issued to the modem from the local terminal.</td>
</tr>
<tr>
<td>Q0</td>
<td>Enables the display of result codes.</td>
</tr>
<tr>
<td>&Q8</td>
<td>Enables Microcom Networking Protocol (MNP) error control mode.</td>
</tr>
<tr>
<td>%C0</td>
<td>Disables data compression.</td>
</tr>
</tbody>
</table>

When the device applies the modem AT commands in the *init-command-string* command or the default sequence of initialization commands to the modem, it compares them to the initialization commands already configured on the modem and makes the following changes:

- If the commands are the same, the device overrides existing modem values that do not match. For example, if the initialization commands on the modem include *S0=0* and the device’s *init-command-string* command includes *S0=2*, the device applies *S0=2*.

- If the initialization commands on the modem do not include a command in the device’s *init-command-string* command, the device adds it. For example, if the *init-command-string* command includes the command *L2*, but the modem commands do not include it, the device adds *L2* to the initialization commands configured on the modem.
NOTE: On SRX210 devices, the USB modem interface can handle bidirectional traffic of up to 19 Kbps. On oversubscription of this amount (that is, bidirectional traffic of 20 Kbps or above), keepalives do not get exchanged, and the interface goes down. (Platform support depends on the Junos OS release in your installation.)

USB Modem Configuration Overview

NOTE: USB modems are no longer supported for dial backup on SRX300, SRX320, SRX340, and SRX345 devices.

Before you begin:

1. Install device hardware. For more information, see the Getting Started Guide for your device.

2. Establish basic connectivity. For more information, see the Getting Started Guide for your device.

3. Order a US Robotics USB 56k V.92 Modem, model number USR Model 5637 (http://www.usr.com/).

4. Order a public switched telephone network (PSTN) line from your telecommunications service provider. Contact your service provider for more information.

5. Connect the USB modem to the device's USB port.

 NOTE: When you connect the USB modem to the USB port on the device, the USB modem is initialized with the modem initialization string configured for the USB modem interface on the device.

 a. Plug the modem into the USB port.

 b. Connect the modem to your telephone network.

Suppose you have a branch office router and a head office router each with a USB modem interface and a dialer interface. This example shows you how to establish a backup connection between the branch office and head office routers. See Table 41 on page 640 for a summarized description of the procedure.
Table 41: Configuring Branch Office and Head Office Routers for USB Modem Backup Connectivity

<table>
<thead>
<tr>
<th>Router Location</th>
<th>Configuration Requirement</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch Office</td>
<td>Configure the logical dialer interface on the branch office router for USB modem dial backup.</td>
<td>To configure the logical dialer interface, see "Example: Configuring a USB Modem Interface" on page 641.</td>
</tr>
<tr>
<td></td>
<td>Configure the dialer interface dl0 on the branch office router using one of the following backup methods:</td>
<td>Configure the dialer interface using one of the following backup methods:</td>
</tr>
<tr>
<td></td>
<td>• Configure the dialer interface dl0 as the backup interface on the branch office router's primary T1 interface t1-1/0/0.</td>
<td>• To configure dl0 as a backup for t1-1/0/0 see "Example: Configuring Dialer Interfaces and Backup Methods for USB Modem Dial Backup" on page 645.</td>
</tr>
<tr>
<td></td>
<td>• Configure a dialer filter on the branch office router's dialer interface.</td>
<td>• To configure a dialer filter on dl0, see "Example: Configuring Dialer Interfaces and Backup Methods for USB Modem Dial Backup" on page 645.</td>
</tr>
<tr>
<td></td>
<td>• Configure a dialer watch on the branch office router's dialer interface.</td>
<td>• To configure a dialer watch on dl0, see "Example: Configuring Dialer Interfaces and Backup Methods for USB Modem Dial Backup" on page 645.</td>
</tr>
<tr>
<td>Head Office</td>
<td>Configure dial-in on the dialer interface dl0 on the head office router.</td>
<td>To configure dial-in on the head office router, see "Example: Configuring a Dialer Interface for USB Modem Dial-In" on page 653.</td>
</tr>
</tbody>
</table>

If the dialer interface is configured to accept only calls from a specific caller ID, the device matches the incoming call's caller ID against the caller IDs configured on its dialer interfaces. If an exact match is not found and the incoming call's caller ID has more digits than the configured caller IDs, the device performs a right-to-left match of the incoming call's caller ID with the configured caller IDs and accepts the incoming call if a match is found. For example, if the incoming call's caller ID is 4085321091 and the caller ID configured on a dialer interface is 5321091, the incoming call is accepted. Each dialer interface accepts calls from only callers whose caller IDs are configured on it.

See Table 42 on page 641 for a list of available incoming map options.
Table 42: Incoming Map Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept-all</td>
<td>Dialer interface accepts all incoming calls.</td>
</tr>
<tr>
<td></td>
<td>You can configure the accept-all option for only one of the dialer interfaces</td>
</tr>
<tr>
<td></td>
<td>associated with a USB modem physical interface. The dialer interface with</td>
</tr>
<tr>
<td></td>
<td>the accept-all option configured is used only if the incoming call’s caller</td>
</tr>
<tr>
<td></td>
<td>ID does not match the caller IDs configured on other dialer interfaces.</td>
</tr>
<tr>
<td>caller</td>
<td>Dialer interface accepts calls from a specific caller ID. You can configure</td>
</tr>
<tr>
<td></td>
<td>a maximum of 15 caller IDs per dialer interface.</td>
</tr>
<tr>
<td></td>
<td>The same caller ID must not be configured on different dialer interfaces.</td>
</tr>
<tr>
<td></td>
<td>However, you can configure caller IDs with more or fewer digits on different</td>
</tr>
<tr>
<td></td>
<td>dialer interfaces. For example, you can configure the caller IDs 14085551515,</td>
</tr>
<tr>
<td></td>
<td>4085551515, and 5551515 on different dialer interfaces.</td>
</tr>
</tbody>
</table>

You configure dialer interfaces to support PAP. PAP allows a simple method for a peer to establish its identity using a two-way handshake during initial link establishment. After the link is established, an ID and password pair are repeatedly sent by the peer to the authenticator until authentication is acknowledged or the connection is terminated.

Example: Configuring a USB Modem Interface

This example shows how to configure a USB modem interface for dial backup.

NOTE: USB modems are no longer supported for dial backup on SRX300, SRX320, SRX340, and SRX345 devices.
Requirements

No special configuration beyond device initialization is required before configuring this feature.

Overview

In this example, you create an interface called as umd0 for USB modem connectivity and set the dialer pool priority to 25. You also configure a modem initialization string to autoanswer after a specified number of rings. The default modem initialization string is `AT S7=45 S0=0 V1 X4 &C1 E0 Q0 &Q8 %C0`. The modem command `S0=0` disables the modem from autoanswering the calls. Finally, you set the modem to act as a dial-in WAN backup interface.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
set interfaces umd0 dialer-options pool usb-modem-dialer-pool priority 25
set modem-options init-command-string "ATSO=2 \n" dialin routable
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure a USB modem interface for dial backup:

1. Create an interface.

```
[edit]
user@host# edit interfaces umd0
```

2. Set the dialer options and priority.

```
[edit interfaces umd0]
user@host# set dialer-options pool usb-modem-dialer-pool priority 25
```

3. Specify the modem options.

```
[edit interfaces umd0]
```
user@host# set modem-options init-command-string "ATS0=2 \n"

4. Set the modem to act as a dial-in WAN backup interface.

[edit interfaces umd0]
user@host# set modem-options dialin routable

Results
From configuration mode, confirm your configuration by entering the `show interface umd0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[edit]
user@host# show interface umd0
modem-options {
 init-command-string "ATS0=2 \n";
 dialin routable;
}
dialer-options {
 pool usb-modem-dialer-pool priority 25;
}

If you are done configuring the device, enter `commit` from configuration mode.

Verification

Confirm that the configuration is working properly.

Verifying the Configuration

Purpose
Verify a USB modem interface for dial backup.

Action
From configuration mode, enter the `show interfaces umd0 extensive` command. The output shows a summary of interface information and displays the modem status.

Physical interface: umd0, Enabled, Physical link is Up
Interface index: 64, SNMP ifIndex: 33, Generation: 1
 Type: Async-Serial, Link-level type: PPP-Subordinate, MTU: 1504,
Clocking: Unspecified, Speed: MODEM
Device flags : Present Running
Interface flags: Point-To-Point SNMP-Traps Internal: 0x4000
Link flags : None
Hold-times : Up 0 ms, Down 0 ms
Last flapped : Never
Statistics last cleared: Never
Traffic statistics:
- Input bytes : 21672
- Output bytes : 22558
- Input packets: 1782
- Output packets: 1832
Input errors:
- Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0, Policed discards: 0,
- Resource errors: 0
Output errors:
- Carrier transitions: 63, Errors: 0, Drops: 0, MTU errors: 0, Resource errors: 0
MODEM status:
- Modem type : LT V.92 1.0 MT5634ZBA-USB-V92 Data/Fax Modem (Dual Config) Version 2.27m
 - Initialization command string : ATS0=2
 - Initialization status : Ok
 - Call status : Connected to 4085551515
 - Call duration : 13429 seconds
 - Call direction : Dialin
 - Baud rate : 33600 bps
 - Most recent error code : NO CARRIER
Logical interface umd0.0 (Index 2) (SNMP ifIndex 34) (Generation 1)
 - Flags: Point-To-Point SNMP-Traps Encapsulation: PPP-Subordinate
Example: Configuring Dialer Interfaces and Backup Methods for USB Modem Dial Backup

This example shows how to configure a dialer interfaces and backup methods for USB modem dial backup.

NOTE: USB modems are no longer supported for dial backup on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

Requirements

Before you begin, configure a USB modem for the device. See “Example: Configuring a USB Modem Interface” on page 641.

Overview

In this example, you configure a logical dialer interface on the branch office router for the USB modem dial backup. You then configure dial backup to allow one or more dialer interfaces to be configured as the backup link for the primary serial interface. To configure dialer watch, you first add a dialer watch interface and then configure the USB modem interface to participate as a dialer watch interface. The USB modem interface must have the same pool identifier to participate in dialer watch. Dialer pool name dw-pool is used when configuring the USB modem interface.
Configuration

IN THIS SECTION

- Configuring a Dialer Interface for USB Modem Dial Backup | 646
- Configuring a Dial Backup for a USB Modem Connection | 648
- Configuring a Dialer Filter for USB Modem Dial Backup | 649
- Configuring a Dialer Watch for USB Modem Dial Backup | 651

Configuring a Dialer Interface for USB Modem Dial Backup

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces dl0 description USB-modem-backup encapsulation ppp
set interfaces dl0 unit 0 dialer-options activation-delay 60 deactivation-delay 30 idle-timeout 30
  initial-route-check 30 pool usb-modem-dialer-pool
set interfaces dl0 unit 0 dialer-options dial-string 5551212
set interfaces dl0 unit 0 family inet address 172.20.10.2 destination 172.20.10.1
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure a logical dialer interface on the branch office router for the USB modem dial backup:

1. Create an interface.

 [edit]
 user@host# edit interfaces dl0

2. Specify a description.

 [edit interfaces dl0]
 user@host# set description USB-modem-backup
3. Configure PPP encapsulation.

```
[edit interfaces dl0]
user@host# set encapsulation ppp
```

NOTE: You cannot configure Cisco High-Level Data Link Control (HDLC) or Multilink PPP (MLPPP) encapsulation on dialer interfaces used in USB modem connections.

4. Create the logical unit.

```
[edit interfaces dl0]
user@host# set unit 0
```

NOTE: You can set the logical unit to 0 only.

5. Configure the dialer options.

```
[edit interfaces dl0]
user@host# edit unit 0 dialer-options
user@host# set activation-delay 60
user@host# set deactivation-delay 30
user@host# set idle-timeout 30 initial-route-check 30 pool usb-modem-dialer-pool
```

6. Configure the telephone number of the remote destination.

```
[edit interfaces dl0 unit 0 dialer-options]
user@host# set dial-string 5551212
```

7. Configure source and destination IP addresses.

```
[edit]
user@host# edit interfaces dl0 unit 0
user@host# set family inet address 172.20.10.2 destination 172.20.10.1
```

Results
From configuration mode, confirm your configuration by entering the `show interfaces dl0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```plaintext
[edit]
user@host# show interfaces dl0
description USB-modem-backup;
encapsulation ppp;
unit 0 {
    family inet {
        address 172.20.10.2/32 {
            destination 172.20.10.1;
        }
    }
    dialer-options {
        pool usb-modem-dialer-pool;
        dial-string 5551212;
        idle-timeout 30;
        activation-delay 60;
        deactivation-delay 30;
        initial-route-check 30;
    }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Configuring a Dial Backup for a USB Modem Connection

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```plaintext
set interfaces t1-1/0/0 unit 0 backup-options interface dl0.0
```

Step-by-Step Procedure

To configure a dial backup for a USB modem connection:

1. Select the physical interface.

```plaintext
[edit]
user@host# edit interfaces t1-1/0/0 unit 0
```
2. Configure the backup dialer interface.

```
[edit]
user@host# set backup-options interface dl0.0
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces t1-1/0/0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces t1-1/0/0
encapsulation ppp;
unit 0 {
    backup-options {
        interface dl0.0;
    }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Configuring a Dialer Filter for USB Modem Dial Backup

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
set firewall family inet dialer-filter interesting-traffic term term1 from source-address 20.20.90.4/32
set firewall family inet dialer-filter interesting-traffic term term1 from destination-address 200.200.201.1/32
set firewall family inet dialer-filter interesting-traffic term term1 then note
set interfaces dl0 unit 0 family inet filter dialer interesting-traffic
```

Step-by-Step Procedure

To configure a dialer filter for USB modem dial backup:

1. Create an interface.

```
[edit]
user@host# edit firewall
```

2. Configure the dialer filter name.
3. Configure the dialer filter rule name and term behavior.

```
[edit]
user@host# edit family inet
user@host# edit dialer-filter interesting-traffic
```

4. Configure the then part of the dialer filter.

```
[edit]
user@host# edit term term1
user@host# set from source-address 20.20.90.4/32
user@host# set from destination-address 200.200.201.1/32
```

5. Select the dialer interface to apply the filter.

```
[edit]
user@host# edit interfaces d10 unit 0
```

6. Apply the dialer filter to the dialer interface.

```
[edit]
user@host# edit family inet filter
user@host# set dialer interesting-traffic
```

Results

From configuration mode, confirm your configuration by entering the `show firewall family inet dialer-filter interesting-traffic` and `show interfaces d10` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show firewall family inet dialer-filter interesting-traffic
term term1 {
from {
  source-address {
    20.20.90.4/32;
  }
```

If you are done configuring the device, enter commit from configuration mode.

Configuring a Dialer Watch for USB Modem Dial Backup

CLI Quick Configuration
To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces dl0 description dialer-watch unit 0 dialer-options watch-list 200.200.201.1/32
set interfaces dl0 unit 0 dialer-options pool dw-pool
set interfaces umd0 dialer-options pool dw-pool
```

Step-by-Step Procedure
To configure a dialer watch for USB modem dial backup:

1. Create an interface.

 [edit]
 user@host# edit interfaces

2. Specify a description.

 [edit]
 user@host# edit dl0
3. Configure the route to the head office router for dialer watch.

```plaintext
[edit]
user@host# edit unit 0 dialer-options
user@host# set watch-list 200.200.201.1/32
```

4. Configure the name of the dialer pool.

```plaintext
[edit]
user@host# set pool dw-pool
```

5. Select the USB modem physical interface.

```plaintext
[edit]
user@host# edit interfaces umd0 dialer-options pool dw-pool
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces dl0` and `show interfaces umd0` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```plaintext
[edit]
user@host# show interfaces dl0
dialer-options {
    pool dw-pool;
}
[edit]
user@host# show interfaces umd0
description dialer-watch;
    unit 0 {
        dialer-options {
            pool dw-pool;
        }
        watch-list {
            200.200.201.1/32;
        }
    }
}
```
If you are done configuring the device, enter `commit` from configuration mode.

Verification

Confirm that the configuration is working properly.

Verifying the Configuration

Purpose
Verify the configuration output.

Action
From operational mode, enter the `show interface terse` command.

Example: Configuring a Dialer Interface for USB Modem Dial-In

This example shows how to configure a dialer interface for USB modem dial-in.

NOTE: USB modems are no longer supported for dial-in to a dialer interface on SRX300, SRX320, SRX340, and SRX345 devices.

Requirements

No special configuration beyond device initialization is required before configuring this feature.
Overview

To enable connections to the USB modem from a remote location, you must configure the dialer interfaces set up for USB modem use to accept incoming calls. You can configure a dialer interface to accept all incoming calls or accept only calls from one or more caller IDs.

If the dialer interface is configured to accept only calls from a specific caller ID, the system matches the incoming call's caller ID against the caller IDs configured on its dialer interfaces. If an exact match is not found and the incoming call's caller ID has more digits than the configured caller IDs, the system performs a right-to-left match of the incoming call's caller ID with the configured caller IDs and accepts the incoming call if a match is found. For example, if the incoming call's caller ID is 4085550115 and the caller ID configured on a dialer interface is 5550115, the incoming call is accepted. Each dialer interface accepts calls from only callers whose caller IDs are configured on it.

You can configure the following incoming map options for the dialer interface:

- **accept-all**—Dialer interface accepts all incoming calls.

 You can configure the accept-all option for only one of the dialer interfaces associated with a USB modem physical interface. The device uses the dialer interface with the accept-all option configured only if the incoming call's caller ID does not match the caller IDs configured on other dialer interfaces.

- **caller**—Dialer interface accepts calls from a specific caller ID— for example, **4085550115**. You can configure a maximum of 15 caller IDs per dialer interface.

 The same caller ID must not be configured on different dialer interfaces. However, you can configure caller IDs with more or fewer digits on different dialer interfaces. For example, you can configure the caller IDs 14085550115, 4085550115, and 5550115 on different dialer interfaces.

In this example, you configure the incoming map option as caller 4085550115 for dialer interface dl0.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces dl0 unit 0 dialer-options incoming-map caller 4085550115
```

Step-by-Step Procedure

To configure a dialer interface for USB modem dial-in:

1. Select a dialer interface.
2. Configure the incoming map options.

```
[edit]
user@host# edit interfaces dl0
```

```
[edit]
user@host# edit unit 0 dialer-options incoming-map caller 4085551515
```

3. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

Verification

To verify the configuration is working properly, enter the `show interface dl0` command.

Example: Configuring PAP on Dialer Interfaces

This example shows how to configure PAP on dialer interfaces.

NOTE: Configuring PAP on dialer interfaces is no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.
Requirements

No special configuration beyond device initialization is required before configuring this feature.

Overview

In this example, you specify a PAP access profile with a client username and a PAP password and select a dialer interface. Finally, you configure PAP on the dialer interface and specify the local name and password.

Configuration

Step-by-Step Procedure

To configure PAP on the dialer interface:

1. Specify a PAP access profile.

 [edit]
 user@host# set access profile pap-access-profile client pap-access-user pap-password my-pap

2. Select a dialer interface.

 [edit]
 user@host# edit interfaces dl0 unit 0

3. Configure PAP on the dialer interface.

 [edit]
 user@host# set ppp-options pap local-name pap-access-user local-password my-pap

4. If you are done configuring the device, commit the configuration.

 [edit]
 user@host# commit

Verification

To verify the configuration is working properly, enter the `show interface dl0` command.
Example: Configuring CHAP on Dialer Interfaces

This example shows how to configure CHAP on dialer interfaces for authentication.

Requirements

No special configuration beyond device initialization is required before configuring this feature.

Overview

In this example, you configure dialer interfaces to support CHAP for authentication. CHAP is a server-driven, three-step authentication method that depends on a shared secret password residing on both the server and the client. You specify a CHAP access profile with a client username and a password. You then specify a dialer interface as dl0. Finally, you enable CHAP on a dialer interface and specify a unique profile name containing a client list and access parameters.

Configuration

Step-by-Step Procedure
To configure CHAP on a dialer interface:

1. Specify a CHAP access profile.

 [edit]
 user@host# set access profile usb-modem-access-profile client usb-modem-user chap-secret my-secret

2. Select a dialer interface.

 [edit]
 user@host# edit interfaces dl0 unit 0
3. Enable CHAP on the dialer interface.

```
[edit]
user@host# set ppp-options chap access-profile usb-modem-access-profile
```

4. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

Verification

To verify the configuration is working properly, enter the `show interface dl0` command.

Configuring DOCSIS Mini-PIM Interfaces

Data over Cable Service Interface Specifications (DOCSIS) define the communications and operation support interface requirements for a data-over-cable system. The topics below discuss the overview of DOCSIS Mini-PIM interface, its configuration details, and software features supported on DOCSIS Mini-PIM interfaces on SRX series devices.

DOCSIS Mini-PIM Interface Overview

Data over Cable Service Interface Specifications (DOCSIS) define the communications and operation support interface requirements for a data-over-cable system. Cable operators use DOCSIS to provide Internet access over their existing cable infrastructure for both residential and business customers. DOCSIS
3.0 is the latest interface standard, allowing channel bonding to deliver speeds higher than 100 Mbps throughput in either direction, far surpassing other WAN technologies such as T1/E1, ADSL2+, ISDN, and DS3.

NOTE: On SRX210 Services Gateway, the DOCSIS Mini-PIM delivers speeds up to a maximum of 100 Mbps throughput in each direction.

NOTE: DOCSIS Mini-PIM interfaces are no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

DOCSIS network architecture includes a cable modem on SRX Series Services Gateways with a DOCSIS Mini-Physical Interface Module (Mini-PIM) located at customer premises and a cable modem termination system (CMTS) located at the head-end or data center locations. Standards-based DOCSIS 3.0 Mini-PIM is interoperable with CMTS equipment. The DOCSIS Mini-PIM provides backward compatibility with CMTS equipment based on the following standards:

- **DOCSIS 2.0**
- **DOCSIS 1.1**
- **DOCSIS 1.0**

The cable modem interface of Mini-PIM is managed and monitored by CMTS through SNMP. This DOCSIS 3.0 Mini-PIM can be deployed in any multiple service operator (MSO) networks. The primary application is for distributed enterprise offices to connect to a CMTS network through the DOCSIS 3.0 (backward compatible to 2.0, 1.1, and 1.0) interface. The DOCSIS Mini-PIM uses PIM infrastructure developed for third-party PIMs.

The Mini-PIM can also be used with encapsulations other than GRE, PPPoE, and IP-in-IP.

NOTE: The following interface trace options are supported:

- **all**—Enable all interface trace flags
- **event**—Trace interface events
- **ipc**—Trace interface IPC messages
- **media**—Trace interface media changes
CMTS manages and monitors the cable modem interface of the Mini-PIM through SNMP. This DOCSIS 3.0 Mini-PIM can be deployed in any multiple MSO network. Figure 32 on page 660 shows a typical use for this Mini-PIM in an MSO network.

Figure 32: Typical DOCSIS End-to-End Connectivity Diagram

Software Features Supported on DOCSIS Mini-PIMs

NOTE: DOCSIS Mini-PIM interfaces are no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

Table 43 on page 661 lists the software features supported on DOCSIS Mini-PIMs.
<table>
<thead>
<tr>
<th>Software Feature</th>
<th>Description</th>
</tr>
</thead>
</table>
| DHCP and DHCPv6 clients | The DHCP and DHCPv6 clients are used to get the IP address from the CMTS using the DHCP protocol. DHCP is supported on IPv4 and IPv6. One of the main components of the configuration file is the static public IP address, which CMTS assigns to the cable modem. The management IP address is configured on the Mini-PIM’s hybrid fiber coaxial (HFC) interface, which performs the following tasks:
 • Allows CMTS to execute remote monitoring and management of the Mini-PIM’s cable interface.
 • Downloads the configuration file from CMTS and uses it for configuring the cable interface. |
| QoS support | The SRX Series device’s Routing Engine is configured through the existing QoS CLI. Because the configuration on the SRX Series device’s Routing Engine and Mini-PIM is done together, the QoS configuration has to be consistent between the Routing Engine and the cable modem interface. The QoS mechanisms on the Routing Engine are decoupled from the QoS mechanisms on the Mini-PIM.

 The configuration file downloaded from CMTS contains parameters for primary and secondary flows. These parameters are programmed in the DOCSIS Mini-PIM. The Mini-PIM sends these parameters to the Routing Engine through the PIM infrastructure. The secondary flows are prioritized over primary flows in the DOCSIS Mini-PIM. |
| SNMP support | CMTS issues the SNMP requests that go to the cable modem. The DOCSIS MIB on the SRX Series device’s Routing Engine displays the Ethernet interface of the cable modem. The following features are supported on the DOCSIS Mini-PIM:
 • NAT support
 • Dying gasp support
 • Back pressure information |
| MAC address | The MAC address of the DOCSIS Mini-PIM is statically set at the factory and cannot be changed. The MAC address is retrieved from the Mini-PIM and assigned to the cable modem interface in Junos OS. |
| Transparent bridging | The DOCSIS Mini-PIM performs transparent bridging by sending the packets received on the Ethernet interface with the SRX Series device to the HFC interface and vice versa, without any modifications to the packet. All the other services such as webserver, DHCP server, and DNS server are disabled on the DOCSIS Mini-PIM during transparent bridging. |
Example: Configuring the DOCSIS Mini-PIM Interfaces

This example shows how to configure DOCSIS Mini-PIM network interfaces for SRX210, SRX220, and SRX240 devices.

NOTE: DOCSIS Mini-PIM interfaces are no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

Requirements

Before you begin:

• Establish basic connectivity. See the Quick Start for your device.
• Configure network interfaces as necessary. See “Example: Creating an Ethernet Interface” on page 282.

Overview

In this example, you configure the DOCSIS Mini-PIM interface as cm-2/0/0. You specify the physical properties by setting the interface trace options and the flag option. You then set the logical interface to unit 0 and specify the family protocol type as inet. Finally, you configure the DHCP client.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.
Step-by-Step Procedure
To configure the DOCSIS Mini-PIM network interfaces:

1. Configure the interface.

```
[edit]
user@host# edit interfaces cm-2/0/0
```

2. Set the interface trace options.

```
[edit]
user@host# set interfaces cm-2/0/0 traceoptions
```

3. Specify the flag option.

```
[edit]
user@host# set interfaces cm-2/0/0 traceoptions flag all
```

4. Set the logical interface.

```
[edit]
user@host# set interfaces cm-2/0/0 unit 0
```

5. Specify the family protocol type.

```
[edit]
user@host# set interfaces cm-2/0/0 unit 0 family inet
```

6. Configure the DHCP client.

```
[edit]
user@host# set interfaces cm-2/0/0 unit 0 family inet dhcp
```

Results
From configuration mode, confirm your configuration by entering the `show interfaces cm-2/0/0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show interfaces cm-2/0/0
traceoptions {
    flag all;
}
unit 0 {
    family inet {
        dhcp;
    }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Verifying the DOCSIS Interface Properties | 664

Confirm that the configuration is working properly.

Verifying the DOCSIS Interface Properties

Purpose
Verify that the DOCSIS interface properties are configured properly.

Action
From operational mode, enter the `show interfaces cm-2/0/0` command.

```
user@host> show interfaces cm-2/0/0 extensive
```

Physical interface: cm-2/0/0, Enabled, Physical link is Up
Interface index: 154, SNMP ifIndex: 522, Generation: 157
Link-level type: Ethernet, MTU: 1518, Speed: 40mbps
Link flags : None
Hold-times : Up 0 ms, Down 0 ms
State : OPERATIONAL, Mode: 2.0, Upstream speed: 5120000 0 0 0
Downstream scanning: CM_MEDIA_STATE_DONE, Ranging: CM_MEDIA_STATE_DONE
Downstream buffers used : 0
Downstream buffers free : 0
Upstream buffers free : 0
Upstream buffers used : 0
Request opportunity burst : 0 MSlots
Physical burst : 0 MSlots
Tuner frequency : 555 0 0 0 MHz
Standard short grant : 0 Slots
Standard long grant : 0 Slots
Baseline privacy state: authorized, Encryption algorithm: ?????, Key length: 0
MAC statistics: Receive Transmit
| Total octets | 1935 | 2036 |
| Total packets | 8 | 8 |
| CRC/Align errors | 0 | 0 |
| Oversized frames | 0 |
CoS queues : 8 supported, 8 maximum usable queues
Current address: 00:24:dc:0d:76:19, Hardware address: 00:24:dc:0d:76:19
Last flapped : 2009-11-10 19:55:40 UTC (00:16:29 ago)
Statistics last cleared: Never
Traffic statistics:
| Input bytes : | 710 | 0 bps |
| Output bytes : | 866 | 0 bps |
| Input packets: | 2 | 0 pps |
| Output packets: | 4 | 0 pps |
Packet Forwarding Engine configuration:
- Destination slot: 1
- Direction: Output
CoS transmit queue Bandwidth Buffer Priority
Limit
| % | bps | % | usec |
| 0 best-effort | 95 | 38000000 | 95 | 0 | low |
none
3 network-control | 5 | 2000000 | 5 | 0 | low |
none
Logical interface cm-2/0/0.0 (Index 69) (SNMP ifIndex 523) (Generation 134)
Flags: Point-To-Point SNMP-Traps Encapsulation: ENET2
Traffic statistics:
<p>| Input bytes : | 710 |
| Output bytes : | 806 |
| Input packets: | 2 |</p>
<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output packets:</td>
<td>4</td>
</tr>
<tr>
<td>Local statistics:</td>
<td></td>
</tr>
<tr>
<td>Input bytes :</td>
<td>710</td>
</tr>
<tr>
<td>Output bytes :</td>
<td>806</td>
</tr>
<tr>
<td>Input packets:</td>
<td>2</td>
</tr>
<tr>
<td>Output packets:</td>
<td>4</td>
</tr>
<tr>
<td>Transit statistics:</td>
<td></td>
</tr>
<tr>
<td>Input bytes :</td>
<td>0</td>
</tr>
<tr>
<td>Output bytes :</td>
<td>0</td>
</tr>
<tr>
<td>Input packets:</td>
<td>0</td>
</tr>
<tr>
<td>Output packets:</td>
<td>0</td>
</tr>
<tr>
<td>Security: Zone: Null</td>
<td></td>
</tr>
<tr>
<td>Flow Statistics:</td>
<td></td>
</tr>
<tr>
<td>Flow Input statistics :</td>
<td></td>
</tr>
<tr>
<td>Self packets :</td>
<td>0</td>
</tr>
<tr>
<td>ICMP packets :</td>
<td>0</td>
</tr>
<tr>
<td>VPN packets :</td>
<td>0</td>
</tr>
<tr>
<td>Multicast packets :</td>
<td>0</td>
</tr>
<tr>
<td>Bytes permitted by policy :</td>
<td>0</td>
</tr>
<tr>
<td>Connections established :</td>
<td>0</td>
</tr>
<tr>
<td>Flow Output statistics:</td>
<td></td>
</tr>
<tr>
<td>Multicast packets :</td>
<td>0</td>
</tr>
<tr>
<td>Bytes permitted by policy :</td>
<td>0</td>
</tr>
<tr>
<td>Flow error statistics (Packets dropped due to):</td>
<td></td>
</tr>
<tr>
<td>Address spoofing:</td>
<td>0</td>
</tr>
<tr>
<td>Authentication failed:</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT errors:</td>
<td>0</td>
</tr>
<tr>
<td>Invalid zone received packet:</td>
<td>0</td>
</tr>
<tr>
<td>Multiple user authentications:</td>
<td>0</td>
</tr>
<tr>
<td>Multiple incoming NAT:</td>
<td>0</td>
</tr>
<tr>
<td>No parent for a gate:</td>
<td>0</td>
</tr>
<tr>
<td>No one interested in self packets:</td>
<td>0</td>
</tr>
<tr>
<td>No minor session:</td>
<td>0</td>
</tr>
<tr>
<td>No more sessions:</td>
<td>0</td>
</tr>
<tr>
<td>No NAT gate:</td>
<td>0</td>
</tr>
<tr>
<td>No route present:</td>
<td>0</td>
</tr>
<tr>
<td>No SA for incoming SPI:</td>
<td>0</td>
</tr>
<tr>
<td>No tunnel found:</td>
<td>0</td>
</tr>
<tr>
<td>No session for a gate:</td>
<td>0</td>
</tr>
<tr>
<td>No zone or NULL zone binding</td>
<td>0</td>
</tr>
<tr>
<td>Policy denied:</td>
<td>0</td>
</tr>
<tr>
<td>Security association not active:</td>
<td>0</td>
</tr>
<tr>
<td>TCP sequence number out of window:</td>
<td>0</td>
</tr>
<tr>
<td>Syn-attack protection:</td>
<td>0</td>
</tr>
</tbody>
</table>
The output shows a summary of DOCSIS interface properties. Verify the following information:

- **The physical interface is Enabled.** If the interface is shown as **Disabled**, do either of the following:
 - In the CLI configuration editor, delete the `disable` statement at the `[edit interfaces interface-name]` level of the configuration hierarchy.
 - In the J-Web configuration editor, clear the **Disable** check box on the `Interfaces>interface-name` page.

- **The physical link is Up.** A link state of **Down** indicates a problem with the interface module, interface port, or physical connection (link-layer errors).

- **The Last Flapped time is an expected value.** The **Last Flapped** time indicates the last time the physical interface became unavailable and then available again. Unexpected flapping indicates likely link-layer errors.

- **The traffic statistics reflect the expected input and output rates.** Verify that the number of inbound and outbound bytes and packets matches the expected throughput for the physical interface. To clear the statistics and see only new changes, use the `clear interfaces statistics interface-name` command.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D10</td>
<td>DOCSIS Mini-PIM interfaces are no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.</td>
</tr>
</tbody>
</table>

Configuring Serial Interfaces

In this section:

- **Serial Interfaces Overview** | 668
- **Example: Configuring a Serial Interface** | 674
Serial links are simple, bidirectional links that require very few control signals. The below topics discuss the overview, configuration and deleting serial interfaces, overview and configuration details of the 8-Port Synchronous Serial GPIM on security devices.

Serial Interfaces Overview

Serial links are simple, bidirectional links that require very few control signals. In a basic serial setup, data communications equipment (DCE) installed in a user's premises is responsible for establishing, maintaining, and terminating a connection. A modem is a typical DCE device.

A serial cable connects the DCE to a telephony network where, ultimately, a link is established with data terminal equipment (DTE). DTE is typically where a serial link terminates.

The distinction between DCE and DTE is important because it affects the cable pinouts on a serial cable. A DCE cable uses a female 9-pin or 25-pin connector, and a DTE cable uses a male 9-pin or 25-pin connector, and.

To form a serial link, the cables are connected to each other. However, if the pins are identical, each side's transmit and receive lines are connected, which makes data transport impossible. To address this problem, each cable is connected to a null modem cable, which crosses the transmit and receive lines in the cable.

This section includes the following topics:
Serial Transmissions

In basic serial communications, nine signals are critical to the transmission. Each signal is associated with a pin in either the 9-pin or 25-pin connector. Table 44 on page 669 lists and defines serial signals and their sources.

Table 44: Serial Transmission Signals

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Definition</th>
<th>Signal Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD</td>
<td>Transmitted data</td>
<td>DTE</td>
</tr>
<tr>
<td>RD</td>
<td>Received data</td>
<td>DCE</td>
</tr>
<tr>
<td>RTS</td>
<td>Request to send</td>
<td>DTE</td>
</tr>
<tr>
<td>CTS</td>
<td>Clear to send</td>
<td>DCE</td>
</tr>
<tr>
<td>DSR</td>
<td>Data set ready</td>
<td>DCE</td>
</tr>
<tr>
<td>Signal Ground</td>
<td>Grounding signal</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>Carrier detect</td>
<td>-</td>
</tr>
<tr>
<td>DTR</td>
<td>Data terminal ready</td>
<td>DTE</td>
</tr>
<tr>
<td>RI</td>
<td>Ring indicator</td>
<td>-</td>
</tr>
</tbody>
</table>

When a serial connection is made, a serial line protocol—such as EIA-530, X.21, RS-422/449, RS-232, or V.35—begins controlling the transmission of signals across the line as follows:

1. The DCE transmits a DSR signal to the DTE, which responds with a DTR signal. After this handshake, the link is established and traffic can pass.

2. When the DTE device is ready to receive data, it sets its RTS signal to a marked state (all 1s) to indicate to the DCE that it can transmit data. (If the DTE is not able to receive data—because of buffer conditions, for example—it sets the RTS signal to all 0s.)

3. When the DCE device is ready to receive data, it sets its CTS signal to a marked state to indicate to the DTE that it can transmit data. (If the DCE is not able to receive data, it sets the CTS signal to all 0s.)

4. When the negotiation to send information has taken place, data is transmitted across the transmitted data (TD) and received data (RD) lines:
 - TD line—Line through which data from a DTE device is transmitted to a DCE device
• **RD line**—Line through which data from a DCE device is transmitted to a DTE device

The name of the wire does not indicate the direction of data flow.

The DTR and DSR signals were originally designed to operate as a handshake mechanism. When a serial port is opened, the DTE device sets its DTR signal to a marked state. Similarly, the DCE sets its DSR signal to a marked state. However, because of the negotiation that takes place with the RTS and CTS signals, the DTR and DSR signals are not commonly used.

The carrier detect and ring indicator signals are used to detect connections with remote modems. These signals are not commonly used.

Signal Polarity

Serial interfaces use a balanced (also called differential) protocol signaling technique. Two serial signals are associated with a circuit: the A signal and the B signal. The A signal is denoted with a plus sign (for example, DTR+), and the B signal is denoted with a minus sign (for example, DTR–). If DTR is low, then DTR+ is negative with respect to DTR–. If DTR is high, then DTR+ is positive with respect to DTR–.

By default, all signal polarities are positive, but sometimes they might be reversed. For example, signals might be miswired as a result of reversed polarities.

Serial Clocking Modes

By default, a serial interface uses loop clocking to determine its timing source. For EIA-530 and V.35 interfaces, you can set each port independently to use one of the following clocking modes. X.21 interfaces can use only loop clocking mode.

• **Loop clocking mode**—Uses the DCE's receive (RX) clock to clock data from the DCE to the DTE.

• **DCE clocking mode**—Uses the transmit (TXC) clock, generated by the DCE specifically to be used by the DTE as the DTE's transmit clock.

• **Internal clocking mode**—Uses an internally generated clock. The speed of this clock is configured locally. Internal clocking mode is also known as line timing.

Both loop clocking mode and DCE clocking mode use external clocks generated by the DCE.

Figure 33 on page 671 shows the clock sources for loop, DCE, and internal clocking modes.
Serial Interface Clocking Modes

When an externally timed clocking mode (DCE or loop) is used, long cables might introduce a phase shift of the DTE-transmitted clock and data. At high speeds, this phase shift might cause errors. Inverting the transmit clock corrects the phase shift, thereby reducing error rates.

DTE Clock Rate Reduction

Although the serial interface is intended for use at the default clock rate of 16.384 MHz, you might need to use a slower rate under any of the following conditions:

- The interconnecting cable is too long for effective operation.
- The interconnecting cable is exposed to an extraneous noise source that might cause an unwanted voltage in excess of +1 volt.

The voltage must be measured differentially between the signal conductor and the point in the circuit from which all voltages are measured ("circuit common") at the load end of the cable, with a 50-ohm resistor substituted for the generator.

- Interference with other signals must be minimized.
- Signals must be inverted.

Serial Line Protocols

IN THIS SECTION
- EIA-530 | 672
- RS-232 | 672
- RS-422/449 | 673
- V.35 | 673
- X.21 | 674
Serial interfaces support the following line protocols:

EIA-530

EIA-530 is an Electronic Industries Association (EIA) standard for the interconnection of DTE and DCE using serial binary data interchange with control information exchanged on separate control circuits. EIA-530 is also known as RS-530.

The EIA-530 line protocol is a specification for a serial interface that uses a DB-25 connector and balanced equivalents of the RS-232 signals—also called V.24. The EIA-530 line protocol is equivalent to the RS-422 and RS-423 interfaces implemented on a 25-pin connector.

The EIA-530 line protocol supports both balanced and unbalanced modes. In unbalanced transmissions, voltages are transmitted over a single wire. Because only a single signal is transmitted, differences in ground potential can cause fluctuations in the measured voltage across the link. For example, if a 3-V signal is sent from one endpoint to another, and the receiving endpoint has a ground potential 1 V higher than the transmitter, the signal on the receiving end is measured as a 2-V signal.

Balanced transmissions use two wires instead of one. Rather than sending a single signal across the wire and having the receiving end measure the voltage, the transmitting device sends two separate signals across two separate wires. The receiving device measures the difference in voltage of the two signals (balanced sampling) and uses that calculation to evaluate the signal. Any differences in ground potential affect both wires equally, and the difference in the signals is still the same.

The EIA-530 interface supports asynchronous and synchronous transmissions at rates ranging from 20 Kbps to 2 Mbps.

RS-232

RS-232 is a Recommended Standard (RS) describing the most widely used type of serial communication. The RS-232 protocol is used for asynchronous data transfer as well as synchronous transfers using HDLC, Frame Relay, and X.25. RS-232 is also known as EIA-232.

The RS-232 line protocol is very popular for low-speed data signals. RS-232 signals are carried as single voltages referred to a common ground signal. The voltage output level of these signals varies between −12 V and +12 V. Within this range, voltages between −3 V and +3 V are considered inoperative and are used to absorb line noise. Control signals are considered operative when the voltage ranges from +3 V to +25 V.

The RS-232 line protocol is an unbalanced protocol, because it uses only one wire and is susceptible to signal degradation. Degradation can be extremely disruptive, particularly when a difference in ground potential exists between the transmitting and receiving ends of a link.

The RS-232 interface is implemented in a 25-pin D-shell connector and supports line rates up to 200 Kbps over lines shorter than 98 feet (30 meters).
RS-232 serial interfaces cannot function error-free with a clock rate greater than 200 KHz.

RS-422/449

RS-422 is a Recommended Standard (RS) describing the electrical characteristics of balanced voltage digital interface circuits that support higher bandwidths than traditional serial protocols like RS-232. RS-422 is also known as EIA-422.

The RS-449 standard (also known as EIA-449) is compatible with RS-422 signal levels. The EIA created RS-449 to detail the DB-37 connector pinout and define a set of modem control signals for regulating flow control and line status.

The RS-422/449 line protocol runs in balanced mode, allowing serial communications to extend over distances of up to 4,000 feet (1.2 km) and at very fast speeds of up to 10 Mbps.

In an RS-422/449-based system, a single master device can communicate with up to 10 slave devices in the system. To accommodate this configuration, RS-422/449 supports the following kinds of transmission:

- **Half-duplex transmission**—In half-duplex transmission mode, transmissions occur in only one direction at a time. Each transmission requires a proper handshake before it is sent. This operation is typical of a balanced system in which two devices are connected by a single connection.

- **Full-duplex transmission**—In full-duplex transmission mode, multiple transmissions can occur simultaneously so that devices can transmit and receive at the same time. This operation is essential when a single master in a point-to-multipoint system must communicate with multiple receivers.

- **Multipoint transmission**—RS-422/449 allows only a single master in a multipoint system. The master can communicate to all points in a multipoint system, and the other points must communicate with each other through the master.

V.35

V.35 is an ITU-T standard describing a synchronous, Physical Layer protocol used for communications between a network access device and a packet network. V.35 is most commonly used in the United States and Europe.

The V.35 line protocol is a mixture of balanced (RS-422) and common ground (RS-232) signal interfaces. The V.35 control signals DTR, DSR, DCD, RTS, and CTS are single-wire common ground signals that are essentially identical to their RS-232 equivalents. Unbalanced signaling for these control signals is sufficient, because the control signals are mostly constant, varying at very low frequency, which makes single-wire transmission suitable. Higher frequency data and clock signals are sent over balanced wires.

V.35 interfaces operate at line rates of 20 Kbps and above.
X.21

X.21 is an ITU-T standard for serial communications over synchronous digital lines. The X.21 protocol is used primarily in Europe and Japan.

The X.21 line protocol is a state-driven protocol that sets up a circuit-switched network using call setup. X.21 interfaces use a 15-pin connector with the following eight signals:

- **Signal ground (G)**—Reference signal used to evaluate the logic states of the other signals. This signal can be connected to the protective earth (ground).
- **DTE common return (Ga)**—Reference ground signal for the DCE interface. This signal is used only in unbalanced mode.
- **Transmit (T)**—Binary signal that carries the data from the DTE to the DCE. This signal can be used for data transfer or in call-control phases such as Call Connect or Call Disconnect.
- **Receive (R)**—Binary signal that carries the data from the DCE to the DTE. This signal can be used for data transfer or in call-control phases such as Call Connect or Call Disconnect.
- **Control (C)**—DTE-controlled signal that controls the transmission on an X.21 link. This signal must be on during data transfer, and can be on or off during call-control phases.
- **Indication (I)**—DCE-controlled signal that controls the transmission on an X.21 link. This signal must be on during data transfer, and can be on or off during call-control phases.
- **Signal Element Timing (S)**—Clocking signal that is generated by the DCE. This signal specifies when sampling on the line must occur.
- **Byte Timing (B)**—Binary signal that is on when data or call-control information is being sampled. When an 8-byte transmission is over, this signal switches to off.

Transmissions across an X.21 link require both the DCE and DTE devices to be in a ready state, indicated by an all 1s transmission on the T and R signals.

Example: Configuring a Serial Interface

IN THIS SECTION

- Requirements | 675
- Overview | 675
- Configuration | 675
- Verification | 676
This example shows how to complete the initial configuration on a serial interface.

Requirements

Before you begin, install a serial PIM in the SRX Series device. See *SRX Series Services Gateways for the Branch Physical Interface Modules Hardware Guide*.

Overview

In this example, you create the interface se-1/0/0. You create the basic configuration for the new interface by setting the encapsulation type to ppp. Then you set the logical interface to 0. The logical unit number can range from 0 through 16,384. You can enter additional values for properties you need to configure on the logical interface, such as logical encapsulation or protocol family. Finally, you set IPv4 address 10.10.10.10/24 on the serial interface.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following command, paste it into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the command into the CLI at the `[edit]` hierarchy level, and then enter commit from configuration mode.

```
set interfaces se-1/0/0 encapsulation ppp unit 0 family inet address 10.10.10.10/24
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode*.

To configure a serial interface:

1. Create the interface.

   ```
   [edit]
   user@host# edit interfaces se-1/0/0
   ```

2. Create the basic configuration for the new interface.

   ```
   [edit interfaces se-1/0/0]
   user@host# set encapsulation ppp
   ```

3. Add logical interfaces.
4. Specify an IPv4 address for the interface.

 [edit interfaces se-1/0/0]
 user@host# edit unit 0

 [edit interfaces se-1/0/0 unit 0]
 user@host# set family inet address 10.10.10.10/24

Results

From configuration mode, confirm your configuration by entering the `show interfaces se-1/0/0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

 [edit]
 user@host# show interfaces se-1/0/0

 encapsulation ppp;
 unit 0 {
 family inet {
 address 10.10.10.10/24;
 }
 }

If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Verifying the Link State of All Interfaces | 676
- Verifying Interface Properties | 677

Confirm that the configuration is working properly.

Verifying the Link State of All Interfaces

Purpose
Use the ping tool on each peer address in the network to verify that all interfaces on the device are operational.

Action

For each interface on the device:

1. In the J-Web interface, select **Troubleshoot>Ping Host**.

2. In the Remote Host box, type the address of the interface for which you want to verify the link state.

3. Click **Start**. The output appears on a separate page.

```
PING 10.10.10.10 : 56 data bytes
64 bytes from 10.10.10.10: icmp_seq=0 ttl=255 time=0.382 ms
64 bytes from 10.10.10.10: icmp_seq=1 ttl=255 time=0.266 ms
```

If the interface is operational, it generates an ICMP response. If this response is received, the round-trip time, in milliseconds, is listed in the time field.

Verifying Interface Properties

Purpose

Verify that the interface properties are correct.

Action

From operational mode, enter the **show interfaces detail** command.

The output shows a summary of interface information. Verify the following information:

- The physical interface is Enabled. If the interface is shown as Disabled, do one of the following:
 - In the CLI configuration editor, delete the **disable** statement at the [edit interfaces se-1/0/0] level of the configuration hierarchy.
 - In the J-Web configuration editor, clear the **Disable** check box on the Interfaces> se-1/0/0 page.

- The physical link is Up. A link state of Down indicates a problem with the interface module, interface port, or physical connection (link-layer errors).

- The Last Flapped time is an expected value. It indicates the last time the physical interface became unavailable and then available again. Unexpected flapping indicates likely link-layer errors.

- The traffic statistics reflect expected input and output rates. Verify that the number of inbound and outbound bytes and packets matches expected throughput for the physical interface. To clear the statistics and see only new changes, use the **clear interfaces statistics se-1/0/0** command.
Example: Deleting a Serial Interface

This example shows how to delete a serial interface.

NOTE: Serial interfaces are no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

Requirements

No special configuration beyond device initialization is required before configuring an interface.

Overview

In this example, you delete the se-1/0/0 interface.

NOTE: Performing this action removes the interface from the software configuration and disables it. Network interfaces remain physically present, and their identifiers continue to appear on J-Web pages.

Configuration

Step-by-Step Procedure

To delete a serial interface:

1. Specify the interface you want to delete.

 [edit]
 user@host# delete se-1/0/0

2. If you are done configuring the device, commit the configuration.

 [edit]
 user@host# commit
Verification

To verify the configuration is working properly, enter the `show interfaces` command.

Understanding the 8-Port Synchronous Serial GPIM

A Gigabit-Backplane Physical Interface Module (GPIM) is a network interface card (NIC) that installs in the front slots of the SRX550 Services Gateway to provide physical connections to a LAN or a WAN.

NOTE: Serial interfaces, including the 8-port synchronous serial GPIM, are no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.

The 8-port synchronous serial GPIM provides the physical connection to serial network media types, receiving incoming packets from the network and transmitting outgoing packets to the network. Besides forwarding packets for processing, the GPIM performs framing and line-speed signaling. This GPIM provides 8 ports that operate in sync mode and supports a line rate of 64 Mbps or 8 Mbps per port.

Supported Features

Table 45 on page 679 lists the features supported on the 8-port synchronous serial GPIM.

Table 45: Supported Features

<table>
<thead>
<tr>
<th>Features</th>
<th>Description</th>
</tr>
</thead>
</table>
| Operation modes (autoselection based on cable, no configuration required)| - DTE (data terminal equipment)
- DCE (data communication equipment) |
<p>| Clocking | - Tx clock modes |
| | - DCE clock (only valid in DTE mode) |
| | - Baud clock (internally generated) |
| | - Loop clock (external) |
| | - Rx clock modes |
| | - Baud clock (internally generated) |
| | - Loop clock (external) |
| Clock rates (baud rates) | 1.2 KHz to 8.0 MHz |
| | NOTE: RS-232 serial interfaces might cause an error with a clock rate greater than 200 KHz. |</p>
<table>
<thead>
<tr>
<th>Features</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTU</td>
<td>9192 bytes, default value is 1504 bytes</td>
</tr>
<tr>
<td>HDLC features</td>
<td>• Idle flag/fill (0x7e or all ones), default idle flag is (0x7e)</td>
</tr>
<tr>
<td></td>
<td>• Counters—giants, runts, FCS error, abort error, align error</td>
</tr>
<tr>
<td>Line encoding</td>
<td>NRZ and NRZI</td>
</tr>
<tr>
<td>Invert data</td>
<td>Enabled</td>
</tr>
<tr>
<td>Line protocol</td>
<td>EIA530/EIA530A, X.21, RS-449, RS-232, V.35</td>
</tr>
<tr>
<td>Data cables</td>
<td>Separate cable for each line protocol (both DTE/DCE mode)</td>
</tr>
<tr>
<td>Error counters (conformance to ANSI specification)</td>
<td>Enabled</td>
</tr>
<tr>
<td>Alarms and defects</td>
<td>• Rx clock absent</td>
</tr>
<tr>
<td></td>
<td>• Tx clock absent</td>
</tr>
<tr>
<td></td>
<td>• DCD absent</td>
</tr>
<tr>
<td></td>
<td>• RTS/CTS absent</td>
</tr>
<tr>
<td></td>
<td>• DSR/DTR absent</td>
</tr>
<tr>
<td>Data signal</td>
<td>Rx clock</td>
</tr>
<tr>
<td>Control signals</td>
<td>• To DTE: CTS, DCD, DSR</td>
</tr>
<tr>
<td></td>
<td>• From DTE: DTR, RTS</td>
</tr>
<tr>
<td>Serial autoresync</td>
<td>• Configurable resync duration</td>
</tr>
<tr>
<td></td>
<td>• Configurable resync interval</td>
</tr>
<tr>
<td>Diagnostic features</td>
<td>• Loopback modes—local, remote, and dce-local loopback</td>
</tr>
<tr>
<td></td>
<td>• Ability to ignore control signals</td>
</tr>
<tr>
<td>Layer 2 features</td>
<td>Encapsulation</td>
</tr>
<tr>
<td></td>
<td>• PPP</td>
</tr>
<tr>
<td></td>
<td>• Cisco HDLC</td>
</tr>
<tr>
<td></td>
<td>• Frame Relay</td>
</tr>
<tr>
<td></td>
<td>• MLPPP</td>
</tr>
<tr>
<td></td>
<td>• MLFR</td>
</tr>
</tbody>
</table>
Table 45: Supported Features (continued)

<table>
<thead>
<tr>
<th>Features</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP features</td>
<td>SNMP information receivable at each port</td>
</tr>
<tr>
<td></td>
<td>• IF-MIB - rfc2863a.mib</td>
</tr>
<tr>
<td></td>
<td>• jnx-chassis.mib</td>
</tr>
<tr>
<td>Anticounterfeit check</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Example: Configuring an 8-Port Synchronous Serial GPIM in Back-to-Back SRX650 Services Gateways

This example shows how to perform a basic back-to-back device configuration with an 8-port synchronous serial GPIM. It describes the most common scenario in which a serial GPIM is deployed.

In this example, the SRX650 devices are shown as both data communication equipment (DCE) and data terminal equipment (DTE). In certain deployment scenarios, the DTE can be a serial modem or an encryptor or decryptor.

NOTE: Serial interfaces, including the 8-port synchronous serial GPIM, are no longer supported on SRX300, SRX320, SRX340, SRX345, and SRX550HM devices.
Requirements

This example uses the following hardware and software components:

- Junos OS Release 12.1 R2 or later for SRX Series Services Gateways.
- Two SRX650 devices connected back-to-back.
- Two 8-port synchronous serial GPIMs.
- Four pairs of DCE and DTE cables. The cable can be any type as mentioned in 8-Port Serial GPIM Interface Cables.

Before you begin:

- Establish basic connectivity. See the Getting Started Guide for your device.
- Configure network interfaces as necessary. See “Example: Creating an Ethernet Interface” on page 282.

Overview and Topology

In this scenario, the configuration is done on two interfaces. All ports are configured with different encapsulations, such as Cisco High-Level Data Link Control (HDLC), Frame Relay, and Point-to-Point Protocol (PPP). When Frame Relay is set, then the data link connection identifier (in this example, 111) must also be set.

In this example, all eight ports on Device 1 (SRX650) are configured in DTE mode and their respective eight ports on Device 2 (SRX650) are configured in DCE mode.

For Device 1, you set the encapsulation type to ppp. Then you set the logical interface to 0. The logical unit number can range from 0 through 16,384. You can enter additional values for properties you need to configure on the logical interface, such as logical encapsulation or protocol family. Finally, you set the IPv4 address to 10.10.10.1/24 on the serial port. For Device 2, you follow a procedure similar to Device 1, but you set the clocking mode to dce.

Figure 34 on page 683 shows the topology used in this example.
Figure 34: Basic Back-to-Back Device Configuration

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device 1

```
set interfaces se-7/0/0 mtu 9192
set interfaces se-7/0/0 encapsulation ppp
set interfaces se-7/0/0 serial-options clocking-mode internal
set interfaces se-7/0/0 unit 0 family inet address 10.10.10.1/24
set interfaces se-7/0/1 mtu 9192
set interfaces se-7/0/1 encapsulation cisco-hdlc
set interfaces se-7/0/1 serial-options clocking-mode internal
set interfaces se-7/0/1 unit 0 family inet address 11.11.11.1/24
```
set interfaces se-7/0/2 dce
set interfaces se-7/0/2 mtu 9192
set interfaces se-7/0/2 encapsulation frame-relay
set interfaces se-7/0/2 serial-options clocking-mode internal
set interfaces se-7/0/2 unit 0 dci 111
set interfaces se-7/0/2 unit 0 family inet address 12.12.12.1/24
set interfaces se-7/0/3 mtu 9192
set interfaces se-7/0/3 encapsulation ppp
set interfaces se-7/0/3 unit 0 family inet address 13.13.13.1/24
set interfaces se-7/0/4 mtu 9192
set interfaces se-7/0/4 encapsulation cisco-hdlc
set interfaces se-7/0/4 serial-options clocking-mode internal
set interfaces se-7/0/4 unit 0 family inet address 14.14.14.1/24
set interfaces se-7/0/5 dce
set interfaces se-7/0/5 mtu 9192
set interfaces se-7/0/5 encapsulation frame-relay
set interfaces se-7/0/5 serial-options clocking-mode internal
set interfaces se-7/0/5 unit 0 dci 112
set interfaces se-7/0/5 unit 0 family inet address 15.15.15.1/24
set interfaces se-7/0/6 mtu 9192
set interfaces se-7/0/6 encapsulation cisco-hdlc
set interfaces se-7/0/6 serial-options clocking-mode internal
set interfaces se-7/0/6 unit 0 family inet address 16.16.16.1/24
set interfaces se-7/0/7 mtu 9192
set interfaces se-7/0/7 encapsulation ppp
set interfaces se-7/0/7 serial-options clocking-mode internal
set interfaces se-7/0/7 unit 0 family inet address 17.17.17.1/24
set routing-options static route 21.21.21.0/24 next-hop 10.10.10.2
set routing-options static route 23.23.23.0/24 next-hop 11.11.11.2
set routing-options static route 25.25.25.0/24 next-hop 12.12.12.2
set routing-options static route 27.27.27.0/24 next-hop 13.13.13.2
set routing-options static route 29.29.29.0/24 next-hop 14.14.14.2
set routing-options static route 31.31.31.0/24 next-hop 15.15.15.2
set routing-options static route 33.33.33.0/24 next-hop 16.16.16.2
set routing-options static route 35.35.35.0/24 next-hop 17.17.17.2

Device 2

set interfaces se-3/0/0 mtu 9192
set interfaces se-3/0/0 encapsulation ppp
set interfaces se-3/0/0 serial-options clocking-mode dce
set interfaces se-3/0/0 unit 0 family inet address 10.10.10.2/24
set interfaces se-3/0/1 mtu 9192
set interfaces se-3/0/1 encapsulation cisco-hdlc
set interfaces se-3/0/1 serial-options clocking-mode dce
set interfaces se-3/0/1 unit 0 family inet address 11.11.11.2/24
set interfaces se-3/0/2 dce
set interfaces se-3/0/2 mtu 9192
set interfaces se-3/0/2 encapsulation frame-relay
set interfaces se-3/0/2 serial-options clocking-mode dce
set interfaces se-3/0/2 unit 0 dlc 111
set interfaces se-3/0/2 unit 0 family inet address 12.12.12.2/24
set interfaces se-3/0/3 dce
set interfaces se-3/0/3 encapsulation ppp
set interfaces se-3/0/3 serial-options clocking-mode dce
set interfaces se-3/0/3 unit 0 family inet address 13.13.13.2/24
set interfaces se-3/0/4 mtu 9192
set interfaces se-3/0/4 encapsulation cisco-hdlc
set interfaces se-3/0/4 serial-options clocking-mode dce
set interfaces se-3/0/4 unit 0 family inet address 14.14.14.2/24
set interfaces se-3/0/5 dce
set interfaces se-3/0/5 mtu 9192
set interfaces se-3/0/5 encapsulation frame-relay
set interfaces se-3/0/5 serial-options clocking-mode dce
set interfaces se-3/0/5 unit 0 dlc 112
set interfaces se-3/0/5 unit 0 family inet address 15.15.15.2/24
set interfaces se-3/0/6 mtu 9192
set interfaces se-3/0/6 encapsulation cisco-hdlc
set interfaces se-3/0/6 serial-options clocking-mode dce
set interfaces se-3/0/6 unit 0 family inet address 16.16.16.2/24
set interfaces se-3/0/7 mtu 9192
set interfaces se-3/0/7 encapsulation ppp
set interfaces se-3/0/7 serial-options clocking-mode dce
set interfaces se-3/0/7 unit 0 family inet address 17.17.17.2/24
set routing-options static route 20.20.20.0/24 next-hop 10.10.10.1
set routing-options static route 22.22.22.0/24 next-hop 11.11.11.1
set routing-options static route 24.24.24.0/24 next-hop 12.12.12.1
set routing-options static route 30.30.30.0/24 next-hop 15.15.15.1
set routing-options static route 32.32.32.0/24 next-hop 16.16.16.1
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode.

To configure the interfaces on Device 1:

1. Specify the maximum transmission unit (MTU) value for the interface.

   ```
   [edit interfaces]
   user@host# set se-7/0/0 mtu 9192
   ```

2. Configure the encapsulation type.

   ```
   [edit interfaces]
   user@host# set se-7/0/0 encapsulation ppp
   ```

3. Configure the serial options, such as the clocking mode.

   ```
   [edit interfaces]
   user@host# set se-7/0/0 serial-options clocking-mode internal
   ```

4. Set the IPv4 address on the serial port.

   ```
   [edit interfaces]
   user@host# set se-7/0/0 unit 0 family inet address 10.10.10.1/24
   ```

5. Configure the static route information.

   ```
   [edit routing-options]
   user@host# set static route 21.21.21.0/24 next-hop 10.10.10.2
   ```

NOTE: Repeat the same configuration for the other seven ports on Device 1.
6. If you are done configuring the device, commit the configuration.

 [edit]
 user@host# commit

Step-by-Step Procedure

To configure the interfaces on Device 2:

1. Specify the MTU value for the interface.

 [edit interfaces]
 user@host# set se-3/0/0 mtu 9192

2. Configure the encapsulation type.

 [edit interfaces]
 user@host# set se-3/0/0 encapsulation ppp

3. Configure the serial options, such as the clocking mode.

 [edit interfaces]
 user@host# set se-3/0/0 serial-options clocking-mode dce

4. Set the IPv4 address on the serial port.

 [edit interfaces]
 user@host# set se-3/0/0 unit 0 family inet address 10.10.10.2/24

5. Configure the static route information.

 [edit routing-options]
 user@host# set static route 20.20.20.0/24 next-hop 10.10.10.1

 NOTE: Repeat the same configuration for the other seven ports on Device 2.

6. If you are done configuring the device, commit the configuration.
Results

From configuration mode, confirm your configuration by entering the `show interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

Device 1

```plaintext
[edit]
user@host# commit

[edit]
user@host# show interfaces
se-7/0/0 {  
mtu 9192;
encapsulation ppp;
serial-options {
    clocking-mode internal;
}
unit 0 {
    family inet {
        address 10.10.10.1/24;
    }
}
}
se-7/0/1 {  
mtu 9192;
encapsulation cisco-hdlc;
serial-options {
    clocking-mode internal;
}
unit 0 {
    family inet {
        address 11.11.11.1/24;
    }
}
}
se-7/0/2 {  
dce;
mtu 9192;
encapsulation frame-relay;
```
serial-options {
 clocking-mode internal;
}

unit 0 {
 dlc 111;
 family inet {
 address 12.12.12.1/24;
 }
}

se-7/0/3 {
 mtu 9192;
 encapsulation ppp;
 serial-options {
 clocking-mode internal;
 }
 unit 0 {
 family inet {
 address 13.13.13.1/24;
 }
 }
}

se-7/0/4 {
 mtu 9192;
 encapsulation cisco-hdlc;
 serial-options {
 clocking-mode internal;
 }
 unit 0 {
 family inet {
 }
 }
}

se-7/0/5 {
 dce;
 mtu 9192;
 encapsulation frame-relay;
 serial-options {
 clocking-mode internal;
 }
 unit 0 {
dlci 112;
family inet {
 address 15.15.15.1/24;
}
}
}
se-7/0/6 {
 mtu 9192;
 encapsulation cisco-hdlc;
 serial-options {
 clocking-mode internal;
 }
 unit 0 {
 family inet {
 address 16.16.16.1/24;
 }
 }
}
}
se-7/0/7 {
 mtu 9192;
 encapsulation ppp;
 serial-options {
 clocking-mode internal;
 }
 unit 0 {
 family inet {
 address 17.17.17.1/24;
 }
 }
}
}
[edit]
user@host# show routing-options
static {
 route 21.21.21.0/24 next-hop 10.10.10.2;
 route 23.23.23.0/24 next-hop 11.11.11.2;
 route 25.25.25.0/24 next-hop 12.12.12.2;
 route 27.27.27.0/24 next-hop 13.13.13.2;
 route 29.29.29.0/24 next-hop 14.14.14.2;
 route 31.31.31.0/24 next-hop 15.15.15.2;
 route 33.33.33.0/24 next-hop 16.16.16.2;
route 35.35.35.0/24 next-hop 17.17.17.2;
}

If you are done configuring the device, enter **commit** from configuration mode.

Device 2

```
[edit]
user@host# show interfaces
se-3/0/0 {
    mtu 9192;
    encapsulation ppp;
    serial-options {
        clocking-mode dce;
    }
    unit 0 {
        family inet {
            address 10.10.10.2/24;
        }
    }
}

se-3/0/1 {
    mtu 9192;
    encapsulation cisco-hdlc;
    serial-options {
        clocking-mode dce;
    }
    unit 0 {
        family inet {
            address 11.11.11.2/24;
        }
    }
}

se-3/0/2 {
    dce;
    mtu 9192;
    encapsulation frame-relay;
    serial-options {
        clocking-mode dce;
    }
    unit 0 {
        dlc 11;
family inet {
    address 12.12.12.2/24;
}
}
}

se-3/0/3 {
    mtu 9192;
    encapsulation ppp;
    serial-options {
        clocking-mode dce;
    }
    unit 0 {
        family inet {
            address 13.13.13.2/24;
        }
    }
}

se-3/0/4 {
    mtu 9192;
    encapsulation cisco-hdlc;
    serial-options {
        clocking-mode dce;
    }
    unit 0 {
        family inet {
        }
    }
}

se-3/0/5 {
    dce;
    mtu 9192;
    encapsulation frame-relay;
    serial-options {
        clocking-mode dce;
    }
    unit 0 {
        dlci 112;
        family inet {
            address 15.15.15.2/24;
        }
    }
}
} 
se-3/0/6 {  
  mtu 9192;  
  encapsulation cisco-hdlc;  
  serial-options {  
    clocking-mode dce;  
  }  
  unit 0 {  
    family inet {  
      address 16.16.16.2/24;  
    }  
  }  
} 
se-3/0/7 {  
  mtu 9192;  
  encapsulation ppp;  
  serial-options {  
    clocking-mode dce;  
  }  
  unit 0 {  
    family inet {  
      address 17.17.17.2/24;  
    }  
  }  
}  

[edit]  
user@host# show routing-options  
static {  
  route 20.20.20.0/24 next-hop 10.10.10.1;  
  route 22.22.22.0/24 next-hop 11.11.11.1;  
  route 24.24.24.0/24 next-hop 12.12.12.1;  
  route 30.30.30.0/24 next-hop 15.15.15.1;  
  route 32.32.32.0/24 next-hop 16.16.16.1;  
  route 34.34.34.0/24 next-hop 17.17.17.1;  
}  

If you are done configuring the device, enter commit from configuration mode.
Verification

IN THIS SECTION

- Verifying Interface Link Status | 694
- Verifying Interface Statistics for DCE | 695
- Verifying Interface Statistics for DTE | 698

Confirm that the configuration is working properly.

**Verifying Interface Link Status**

**Purpose**

Verify that the interface link status is up.

**Action**

From operational mode, enter the `show interface terse se-7/0/*` command.

```
user@srx650-1> show interface terse se-7/0/*
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>se-7/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>se-7/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.10.10.1/24</td>
<td></td>
</tr>
<tr>
<td>se-7/0/1</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>se-7/0/1.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>11.11.11.1/24</td>
<td></td>
</tr>
<tr>
<td>se-7/0/2</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>se-7/0/2.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>12.12.12.1/24</td>
<td></td>
</tr>
<tr>
<td>se-7/0/3</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>se-7/0/3.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>13.13.13.1/24</td>
<td></td>
</tr>
<tr>
<td>se-7/0/4</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>se-7/0/4.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>14.14.14.1/24</td>
<td></td>
</tr>
<tr>
<td>se-7/0/5</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>se-7/0/5.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>15.15.15.1/24</td>
<td></td>
</tr>
<tr>
<td>se-7/0/6</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>se-7/0/6.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>16.16.16.1/24</td>
<td></td>
</tr>
<tr>
<td>se-7/0/7</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>se-7/0/7.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>17.17.17.1/24</td>
<td></td>
</tr>
</tbody>
</table>
Meaning
The output displays a list of all interfaces configured. If the Link column displays up for all interfaces, the configuration is working properly. This verifies that the GPIM is up and end-to-end ping is working.

Verifying Interface Statistics for DCE

Purpose
Verify that the interfaces are configured properly for DCE.

Action
From operational mode, enter the `show interface se-7/0/0 extensive | no-more` command.

```
user@srx650-1>show interface se-7/0/0 extensive | no-more

Physical interface: se-7/0/0, Enabled, Physical link is Up
 Interface index: 161, SNMP ifIndex: 592, Generation: 164
 Type: Serial, Link-level type: PPP, MTU: 1504, Maximum speed: 8mbps
 Device flags : Present Running
 Interface flags: Point-To-Point Internal: 0x0
 Link flags : Keepalives
 Hold-times : Up 0 ms, Down 0 ms
 Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
 Keepalive statistics:
 Input : 123 (last seen 00:00:02 ago)
 Output: 123 (last sent 00:00:01 ago)
 LCP state: Opened
 CHAP state: Closed
 PAP state: Closed
 CoS queues : 8 supported, 8 maximum usable queues
Statistics last cleared: Never
Traffic statistics:
 Input bytes : 23792 160 bps
 Output bytes : 22992 536 bps
 Input packets: 404 0 pps
 Output packets: 409 0 pps
Input errors:
 Errors: 3, Drops: 0, Framing errors: 3, Runts: 0, Giants: 0,
 Policed discards: 0, Resource errors: 0
Output errors:
 Carrier transitions: 1, Errors: 0, Drops: 0, MTU errors: 0,
 Resource errors: 0
```
Egress queues: 8 supported, 4 in use

<table>
<thead>
<tr>
<th>Queue number</th>
<th>Queued packets</th>
<th>Transmitted packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 expedited-fo</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 assured-forw</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 network-cont</td>
<td>409</td>
<td>409</td>
<td>0</td>
</tr>
</tbody>
</table>

Queue number: Mapped forwarding classes
- 0 best-effort
- 1 expedited-forwarding
- 2 assured-forwarding
- 3 network-control

Serial media information:
- Line protocol: eia530
- Sync loss count: 0
- Data signal:
  - Rx Clock: OK
- Control signals:
  - Local mode: DCE
  - To DTE: CTS: up, DCD: up, DSR: up
  - From DTE: DTR: up, RTS: up
- DCE loopback override: Off
- Clocking mode: internal
- Loopback: none
- Tx clock: non-invert
- Line encoding: nrz

Packet Forwarding Engine configuration:
- Destination slot: 7

CoS information:
- Direction: Output

<table>
<thead>
<tr>
<th>CoS transmit queue</th>
<th>Bandwidth (%)</th>
<th>Buffer Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>95</td>
<td>95, low</td>
</tr>
<tr>
<td>3 network-control</td>
<td>5</td>
<td>5, low</td>
</tr>
</tbody>
</table>

Logical interface se-7/0/0.0 (Index 82) (SNMP ifIndex 600) (Generation 147)
- Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: PPP
- Security: Zone: HOST
- Allowed host-inbound traffic: any-service bfd bgp dvmrp igmp ldp msdp nhrp ospf pgm pim rip router-discovery rsvp sap vrrp
- Flow Statistics:
Flow Input statistics:
- Self packets: 153
- ICMP packets: 0
- VPN packets: 0
- Multicast packets: 0
- Bytes permitted by policy: 13152
- Connections established: 1

Flow Output statistics:
- Multicast packets: 0
- Bytes permitted by policy: 0

Flow error statistics (Packets dropped due to):
- Address spoofing: 0
- Authentication failed: 0
- Incoming NAT errors: 0
- Invalid zone received packet: 0
- Multiple user authentications: 0
- Multiple incoming NAT: 0
- No parent for a gate: 0
- No one interested in self packets: 0
- No minor session: 0
- No more sessions: 0
- No NAT gate: 0
- No route present: 0
- No SA for incoming SPI: 0
- No tunnel found: 0
- No session for a gate: 0
- No zone or NULL zone binding: 0
- Policy denied: 0
- Security association not active: 0
- TCP sequence number out of window: 0
- Syn-attack protection: 0
- User authentication errors: 0

Protocol inet, MTU: 1500, Generation: 162, Route table: 0
Flags: Sendbcast-pkt-to-re
Addresses, Flags: Is-Preferred Is-Primary
  Destination: 10.10.10/24, Local: 10.10.10.1, Broadcast: 10.10.10.255,
  Generation: 175

Meaning
The output displays a list of all DCE verification parameters and the mode configured. If the local mode displays DCE, the configuration is working properly.
Verifying Interface Statistics for DTE

Purpose
Verify that the interfaces are configured properly for DTE.

Action
From operational mode, enter the `show interfaces se-3/0/0 extensive | no-more` command.

```bash
user@srx650-2>show interfaces se-3/0/0 extensive | no-more
```

Physical interface: se-3/0/0, Enabled, Physical link is Up
  Interface index: 168, SNMP ifIndex: 594, Generation: 171
  Type: Serial, Link-level type: PPP, MTU: 1504, Maximum speed: 8mbps
  Device flags  : Present Running
  Interface flags: Point-To-Point Internal: 0x0
  Link flags    : Keepalives
  Hold-times    : Up 0 ms, Down 0 ms
  Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
  Keepalive statistics:
    Input: 242 (last seen 00:00:09 ago)
    Output: 242 (last sent 00:00:10 ago)
  LCP state: Opened
  CHAP state: Closed
  PAP state: Closed
  CoS queues    : 8 supported, 8 maximum usable queues
  Last flapped  : 2011-06-27 22:52:06 PDT (00:40:41 ago)
  Statistics last cleared: Never
  Traffic statistics:
    Input bytes    : 44582            0 bps
    Output bytes   : 42872            0 bps
    Input packets  : 776               0 pps
    Output packets : 779               0 pps
  Input errors:
    Errors: 6, Drops: 0, Framing errors: 6, Runts: 0, Giants: 0,
    Policed discards: 0, Resource errors: 0
  Output errors:
    Carrier transitions: 1, Errors: 0, Drops: 0, MTU errors: 0,
    Resource errors: 0
  Egress queues: 8 supported, 4 in use
  Queue counters: Queued packets Transmitted packets Dropped packets
    0 best-effort        2            2            0
    1 expedited-fo       0            0            0
2 assured-forwarding  0  0  0
3 network-control  777  777  0

Queue number: Mapped forwarding classes
0  best-effort
1  expedited-forwarding
2  assured-forwarding
3  network-control

Serial media information:
  Line protocol: eia530
  Resync history:
    Sync loss count: 0
  Data signal:
    Rx Clock: OK
  Control signals:
    Local mode: DTE
    To DCE: DTR: up, RTS: up
    From DCE: CTS: up, DCD: up, DSR: up
  Clocking mode: loop-timed
  Loopback: none
  Tx clock: non-invert
  Line encoding: nrz

Packet Forwarding Engine configuration:
  Destination slot: 3

CoS information:
  Direction: Output
  CoS transmit queue  Bandwidth  Buffer Priority
  Limit            %     bps    %     usec
  0 best-effort    95    7600000  95    0     low
  none
  3 network-control 5    4000000  5    0     low
  none

Logical interface se-3/0/0.0 (Index 82) (SNMP ifIndex 602) (Generation 147)
  Flags: Point-To-Point SNMP-Traps 0x0 Encapsulation: PPP
  Security: Zone: HOST
  Allowed host-inbound traffic: any-service bfd bgp dvmrp igmp ldp madp nhrp
  ospf pgm pim rip router-discovery rsvp sap vrrp

Flow Statistics:
  Flow Input statistics:
    Self packets: 287
    ICMP packets: 0
    VPN packets: 0
    Multicast packets: 0
    Bytes permitted by policy: 24044
Meaning
The output displays a list of all DTE verification parameters and the mode configured. If the local mode displays DTE, the configuration is working properly.
PART 1

Configuration Statements and Operational Commands

Configuration Statements | 703
Operational Commands | 859
CHAPTER 11

Configuration Statements

IN THIS CHAPTER

- accept-source-mac | 707
- access-point name | 708
- apply-groups | 709
- activation-delay | 710
- arp (Interfaces) | 711
- arp-resp | 715
- authentication-method (Interfaces) | 716
- bandwidth (Interfaces) | 717
- bundle (Interfaces) | 718
- cbr rate | 719
- callback | 720
- callback-wait-period | 721
- caller | 722
- cellular-options | 723
- classifiers (CoS) | 724
- client-identifier (Interfaces) | 725
- code-points (CoS) | 726
- compression-device (Interfaces) | 727
- credit (Interfaces) | 728
- data-rate | 729
- deactivation-delay | 730
- disable (PoE) | 731
- dialer-options | 732
- dialin | 733
- dial-string | 734
- dhcp (Interfaces) | 735
- duration (PoE) | 736
- family inet (Interfaces) | 737
family inet6 | 741
flag (Interfaces) | 744
flexible-vlan-tagging (Interfaces) | 745
flow-control (Interfaces) | 746
flow-monitoring (Services) | 747
forwarding-classes (CoS) | 749
fpc (Interfaces) | 752
gratuitous-arp-reply | 753
gsm-options | 754
guard-band (PoE) | 755
hold-time (Redundant Ethernet Interfaces) | 756
hub-assist | 757
idle-timeout | 758
incoming-map | 759
initial-route-check | 760
inline-jflow (Forwarding Options) | 761
interface (PIC Bundle) | 762
interface (PoE) | 763
interfaces (CoS) | 765
interval (Interfaces) | 767
interval (PoE) | 768
isdn-options | 769
ipv4-template (Services) | 770
ipv6-template (Services) | 771
lacp (Interfaces) | 772
latency (Interfaces) | 773
lease-time | 774
line-rate (Interfaces) | 775
link-speed (Interfaces) | 776
load-interval | 777
load-threshold | 778
loopback (Aggregated Ethernet, Fast Ethernet, and Gigabit Ethernet) | 779
loss-priority (CoS Loss Priority) | 781
loss-priority (CoS Rewrite Rules) | 782
accept-source-mac

Syntax

```plaintext
accept-source-mac {
 mac-address mac-address;
}
```

Hierarchy Level

```plaintext
[edit interfaces interface-name unit logical-unit-number]
```

Release Information

Statement introduced in Junos OS Release 11.4.

Description

For Gigabit Ethernet (GE), Fast Ethernet (FE), or 10 Gigabit Ethernet (XE) interfaces, specify the MAC addresses from which the interface can receive packets. Ensure that you update the MAC address if the remote Ethernet card is replaced. Replacing the interface card changes the MAC address. If you do not update the MAC address, the interface cannot receive packets from the new card.

NOTE:

- Software-based MAC limiting is supported on SRX300, SRX320, and SRX340 devices. A maximum of 32 MAC addresses is supported per device.

Options

mac-address — MAC address filter. You can specify the MAC address as six hexadecimal bytes in one of the following formats: `nn:nn:nn:nn:nn:nn` (for example, `00:11:22:33:44:55`) or `nnnn:nnnn:nnnn` (for example, `0011.2233.4455`). You can configure up to 32 source addresses. To specify more than one address, include multiple `mac-addresses` in the `source-address-filter` statement.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Understanding Ethernet Interfaces | 277 |
**access-point name**

**Syntax**

```plaintext
access-point-name apn;
```

**Hierarchy Level**

```
[edit interfaces interface-name cellular-options gsm-options profiles profile-name]
```

**Release Information**

Statement introduced in Junos OS Release 9.5.

**Description**

Configure the access point name (APN) provided by the service provider for connection to a Global System for Mobile Communications (GSM) cellular network.

**Options**

- `apn`—Access point name.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.
apply-groups

Syntax

apply-groups;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number radio-router]

Release Information
Statement modified in Junos OS Release 15.1.

Description
Apply the groups from which to inherit configuration data. If radio-router is set without any other attributes specified, the first four values become 100 and threshold stays at 10, and capacity, margin, and delay are deprecated. If radio-router is set, do not change the OSPF reference-bandwidth value because this generates an incorrect link cost.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring PPPoE-Based Radio-to-Router Protocols
activation-delay

Syntax

activation-delay seconds;

Hierarchy Level

[edit interfaces dln unit logical-unit-number dialer-options]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

(J Series Services Routers) For ISDN interfaces, configure the ISDN dialer activation delay. Used only for dialer backup and dialer watch cases.

Options

seconds—Interval before the backup interface is activated after the primary interface has gone down.

Range: 1 through 4,294,967,295 seconds

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Junos OS Interfaces and Routing Configuration Guide
arp (Interfaces)

Syntax

arp ip-address (mac | multicast-mac) mac-address publish;

arp {
    aging-timer minutes;
    gratuitous-arp-delay seconds;
    gratuitous-arp-on-ifup;
    interfaces {
        interface-name {
            aging-timer minutes;
        }
    }
    passive-learning;
    purging;
}

Syntax (EX Series)

arp {
    aging-timer minutes;
}

Hierarchy Level

[edit system]

[edit interfaces interface-name unit logical-unit-number family inet address address]

[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet address address]

**NOTE:** The edit logical-systems hierarchy is not available on QFabric systems.

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
For Ethernet, Fast Ethernet, and Gigabit Ethernet interfaces only, configure Address Resolution Protocol (ARP) table entries mapping IP addresses to MAC addresses. You can enable backup VRRP routers to learn ARP requests for VRRP-IP to VRRP-MAC address translation. You can also set the time interval between ARP updates.

NOTE: By default, an ARP policer is installed that is shared among all the Ethernet interfaces on which you have configured the `family inet` statement. By including the `arp` statement at the `edit interfaces interface-name unit logical-unit-number family inet policer` hierarchy level, you can apply a specific ARP-packet policer to an interface. This feature is not available on EX Series switches.

When you need to conserve IP addresses, you can configure an Ethernet interface to be unnumbered by including the `unnumbered-address` statement at the `edit interfaces interface-name unit logical-unit-number family inet` hierarchy level.

NOTE: For EX-Series switches, set only the time interval between ARP updates.
Options

**ip-address**—IP address to map to the MAC address. The IP address specified must be part of the subnet defined in the enclosing *address* statement.

**mac mac-address**—MAC address to map to the IP address. Specify the MAC address as six hexadecimal bytes in one of the following formats: `nnnn.nnnn.nnnn` or `nn:nn:nn:nn:nn:nn`. For example, `0000.5e00.5355` or `00:00:5e:00:53:55`.

**multicast-mac mac-address**—Multicast MAC address to map to the IP address. Specify the multicast MAC address as six hexadecimal bytes in one of the following formats: `nnnn.nnnn.nnnn` or `nn:nn:nn:nn:nn:nn`. For example, `0000.5e00.5355` or `00:00:5e:00:53:55`.

**publish**—(Optional) Have the router or switch reply to ARP requests for the specified IP address. If you omit this option, the router or switch uses the entry to reach the destination but does not reply to ARP requests.

**NOTE:** For unicast MAC addresses only, if you include the **publish** option, the router or switch replies to proxy ARP requests.

**aging-timer**—Time interval in minutes between ARP updates. In environments where the number of ARP entries to update is high (for example, on routers only, metro Ethernet environments), increasing the time between updates can improve system performance.

**gratuitous-arp-delay**—(T Series only) Configure a delay for gratuitous ARP requests at the system level. By default, Junos OS sends gratuitous ARP requests immediately after network-related configuration changes are made on an interface (for example, a VLAN ID, MAC address, or IP address change). This might lead to the Packet Forwarding Engine dropping some initial request packets if the configuration updates have not been fully processed. To avoid such request packets being dropped, you can configure a delay in gratuitous ARP requests.

*Values:*
- `seconds`—Configure the ARP request delay in seconds. We recommend configuring a value in the range of 3 through 6 seconds.

**gratuitous-arp-on-ifup**—(ACX Series, SRX Series, T Series only) Add this statement to the `[edit system arp]` hierarchy to configure Junos OS to automatically issue a gratuitous ARP announcement when an interface is online.

**interfaces**—(T Series only) Specify the ARP aging timer in minutes for a logical interface of family type *inet*.

*Values:*
- `aging-timer minutes`—Time between ARP updates, in minutes.
- **Default:** 20
- **Range:** 1 through 6,000,000
passive-learning—(M Series, MX Series, PTX Series, SRX Series, T Series only) Configure backup VRRP routers or switches to learn the ARP mappings (IP-to-MAC address) for hosts sending the requests. By default, the backup VRRP router drops these requests; therefore, if the master router fails, the backup router must learn all entries present in the ARP cache of the master router. Configuring passive learning reduces transition delay when the backup router is activated. Learning of ARP mappings (IP-to-MAC address) by backup VRRP routers or switches for hosts sending the requests is disabled unless this statement is configured.

purgine—(M Series, MX Series, PTX Series, SRX Series, T Series only) Purge obsolete ARP entries from the cache when an interface or link goes offline.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
system—To view this statement in the configuration.
system-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Static ARP Table Entries For Mapping IP Addresses to MAC Addresses
- Configuring Junos OS ARP Learning and Aging Options for Mapping IPv4 Network Addresses to MAC Addresses
- Junos OS Network Interfaces Library for Routing Devices
- Junos OS System Basics Configuration Guide
- Adjusting the ARP Aging Timer
arp-resp

Syntax

arp-resp (restricted|unrestricted);

Hierarchy Level

[edit interfaces interfaces-name unit logical-unit-number ]

Release Information

Statement introduced in Junos OS Release 10.1.

Description

Configure Address Resolution Protocol (ARP) response on the interface.

Options

- restricted—Enable restricted proxy ARP response on the interface. This is the default.
- unrestricted—Enable unrestricted ARP response on the interface.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Interfaces User Guide for Security Devices
authentication-method (Interfaces)

Syntax

```
authentication-method (pap | chap | none);
```

Hierarchy Level

```
[edit interfaces interface-name cellular-options gsm-options profiles profile-name]
```

Release Information
Statement introduced in Junos OS Release 9.5.

Description
Specify the authentication method for connection to a Global System for Mobile Communications (GSM) cellular network.

Options
- **pap**—Password Authentication Protocol.
- **chap**—Challenge Handshake Authentication Protocol.
- **none**—No authentication method is used.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.
**bandwidth (Interfaces)**

**Syntax**

```
bandwidth bandwidth;
```

**Hierarchy Level**

```
[edit interfaces interface-name radio-router]
```

**Release Information**

Statement introduced in Junos OS Release 10.1.

**Description**

This option controls the weight of the current (vs. maximum) data rate (value 0–100).

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- **PPPoE-Based Radio-to-Router Protocols Overview**
bundle (Interfaces)

Syntax

bundle bundle-name;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number family mppp ]

Release Information

Statement introduced in Junos OS Release 9.5.

Description

Specify the logical interface name the link joins.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Understanding Interfaces | 31 |
cbr rate

Syntax

cbr rate;

Hierarchy Level

[edit interfaces interface-name atm-options vpi vpi-identifier shaping]

Release Information
Command introduced in Release 9.5 of Junos OS.

Description
For ATM encapsulation only, define a constant bit rate bandwidth utilization in the traffic-shaping profile.

Options
• CBR Value—Constant bandwidth utilization (range: 33,000 through 1,199,920)
• CDVT—Cell delay variation tolerance in microseconds (range: 1 through 9999)

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Junos OS Interfaces Configuration Guide for Security Devices
callback

Syntax

callback;

Hierarchy Level

[edit interfaces dl n unit logical-unit-number dialer-options incoming-map],
[edit logical-systems logical-system-name interfaces dl n unit logical-unit-number dialer-options incoming-map]

Release Information
Statement introduced in Junos OS Release 7.5.

Description
On J Series Services Routers with interfaces configured for ISDN, configure the dialer to terminate the incoming call and call back the originator after the callback wait period. The default wait time is 5 seconds. To configure the wait time, include the callback-wait-period statement at the [edit interfaces dl n unit logical-unit-number dialer-options] hierarchy level.

NOTE: The incoming-map statement is mandatory for the router to accept any incoming ISDN calls.

If the callback statement is configured, you cannot use the caller caller-id statement at the [edit interfaces dl n unit logical-unit-number dialer-options] hierarchy level.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Junos OS Interfaces and Routing Configuration Guide
| callback-wait-period | 721 |
callback-wait-period

Syntax

callback-wait-period time;

Hierarchy Level

[edit interfaces dln unit logical-unit-number dialer-options],
[edit logical-systems logical-system-name interfaces dln unit logical-unit-number dialer-options]

Release Information

Statement introduced in Junos OS Release 7.5.

Description

On J Series Services Routers with interfaces configured for ISDN with callback, specify the amount of time the dialer waits before calling back the caller. The default wait time is 5 seconds. The wait time is necessary because, when a call is rejected, the switch waits for up to 4 seconds on point-to-multipoint connections to ensure no other device accepts the call before sending the DISCONNECT message to the originator of the call. However, the default time of 5 seconds may not be sufficient for different switches or may not be needed on point-to-point connections.

To configure callback mode, include the callback statement at the [edit interfaces dln unit logical-unit-number dialer-options] hierarchy level.

If the callback statement is configured, you cannot use the caller caller-id statement at the [edit interfaces dln unit logical-unit-number dialer-options] hierarchy level.

Options

time—Time the dialer waits before calling back the caller.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Junos OS Interfaces and Routing Configuration Guide |
caller

Syntax

caller (caller-id | accept-all);

Hierarchy Level

[edit interfaces dln unit logical-unit-number dialer-options incoming-map],
[edit logical-systems logical-system-name interfaces dln unit logical-unit-number dialer-options incoming-map]

Release Information

Statement introduced in Junos OS Release 7.5.

Description

On J Series Services Routers with interfaces configured for ISDN, specify the dialer to accept a specified caller number or accept all incoming calls.

Options

caller-id—Incoming caller number. You can configure multiple caller IDs on a dialer. The caller ID of the incoming call is matched against all caller IDs configured on all dialers. The dialer matching the caller ID is looked at for further processing. Only a precise match is a valid match. For example, the configured caller ID 1-222-333-4444 or 222-333-4444 will match the incoming caller ID 1-222-333-4444.

If the incoming caller ID has fewer digits than the number configured, it is not a valid match. Duplicate caller IDs are not allowed on different dialers; however, for example, the numbers 1-408-532-1091, 408-532-1091, and 532-1091 can still be configured on different dialers.

Only one B-channel can map to one dialer. If one dialer is already mapped, any other call mapping to the same dialer is rejected (except in the case of a multilink dialer). If no dialer caller is configured on a dialer, that dialer will not accept any calls.

accept-all—Any incoming call in an associated interface is accepted.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Junos OS Interfaces and Routing Configuration Guide
cellular-options

Syntax

```
cellular-options {
 roaming-mode (home only | automatic)
 gsm-options {
 select-profile profile-name;
 profiles {
 profile-name {
 sip-user-id simple-ip-user-id;
 sip-password simple-ip-password;
 access-point-name apn;
 authentication-method (pap | chap | none);
 }
 }
 }
}
```

Hierarchy Level

```
[edit interfaces interface-name]
```

Release Information

Statement introduced in Junos OS Release 9.5.

Description

Configure options for connecting a 3G wireless modem interface to a cellular network.

Options

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
classifiers (CoS)

Syntax

classifiers {
  (dscp | dscp-ipv6 | exp | ieee-802.1 | ieee-802.1ad | inet-precedence) classifier-name {
    forwarding-class forwarding-class-name {
      loss-priority (high | low | medium-high | medium-low) {
        code-point alias-or-bit-string ;
      }
      import (default | user-defined;
    }
  }
}

Hierarchy Level

[edit class-of-service]

Release Information
Statement introduced in Junos OS Release 9.2

Description
Configure a user-defined behavior aggregate (BA) classifier.

Options
- **classifier-name**—User-defined name for the classifier.
- **import (default | user-defined)**—Specify the template to use to map any code points not explicitly mapped in this configuration. For example, if the classifier is of type **dscp** and you specify **import default**, code points you do not map in your configuration will use the predefined DSCP default mapping; if you specify **import mymap**, for example, code points not mapped in the forwarding-class configuration would use the mappings in a user-defined classifier named **mymap**.
- **forwarding-class class-name**—Specify the name of the forwarding class. You can use the default forwarding class names or define new ones.
- **loss-priority level**—Specify a loss priority for this forwarding class: **high, low, medium-high, medium-low**.
- **code-points (alias | bits)**—Specify a code-point alias or the code points that map to this forwarding class.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.
client-identifier (Interfaces)

Syntax

```
client-identifier {
 (ascii string | hexadecimal string);
}
```

Hierarchy Level

```
[edit interfaces interface-name unit logical-unit-number family family-name dhcp]
```

Release Information

Statement introduced in Junos OS Release 9.2.

Description

Specify an ASCII or hexadecimal identifier for the Dynamic Host Configuration Protocol (DHCP) client. The DHCP server identifies a client by a client-identifier value.

Options

- `ascii` — Identifier consisting of ASCII characters.
- `hexadecimal` — Identifier consisting of hexadecimal characters.

Required Privilege Level

- `interface` — To view this statement in the configuration.
- `interface-control` — To add this statement to the configuration.
code-points (CoS)

Syntax

```
code-points ([aliases] | [bit-patterns]);
```

Hierarchy Level

```
[edit class-of-service classifiers type classifier-name forwarding-class class-name loss-priority level]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.2 for SRX Series devices.
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 12.1X44 for the SRX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Specify one or more DSCP code-point aliases or bit sets to apply to a forwarding class.

NOTE: OCX Series switches do not support MPLS, and therefore, do not support EXP code points or code point aliases.

Options

- **aliases**—Name of the DSCP alias.
- **bit-patterns**—Value of the code-point bits, in six-bit binary form.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding Interfaces | 31
- Understanding How Behavior Aggregate Classifiers Prioritize Trusted Traffic
- Example: Configuring Behavior Aggregate Classifiers
compression-device (Interfaces)

Syntax

compression-device name;

Hierarchy Level

[edit interfaces interface-name unit (Interfaces) logical-unit-number]

Release Information
Statement introduced in Junos OS Release 9.2.

Description
Specify the compression interface for voice services traffic.

Options
name—Name of the AC.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Understanding Interfaces | 31
credit (Interfaces)

Syntax

```plaintext
credit {
 interval number;
}
```

Hierarchy Level

```plaintext
[edit interfaces interface-name radio—router]
```

Release Information

Statement introduced in Junos OS Release 10.1.

Description

This parameter controls credit-based scheduling parameters and includes an interval option to set the grant rate interval to a value between 1–60 seconds.

Required Privilege Level

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding Interfaces | 31
**data-rate**

**Syntax**

```plaintext
data-rate weight;
```

**Hierarchy Level**

```plaintext
[edit interfaces interface-name unit logical-unit-number radio-router]
```

**Release Information**

Statement introduced in Release 10.2 of Junos OS.

**Description**

Configure the weight of the resource factor when calculating an effective data rate.

**Options**

- **weight**—Factor used to calculate data rate.

**Range:** 0 through 100

**Default:** 100

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Configuring PPpOE-Based Radio-to-Router Protocols
deactivation-delay

Syntax

deactivation-delay seconds;

Hierarchy Level

[edit interfaces dln unit logical-unit-number dialer-options]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
On J Series Services Routers with ISDN interfaces, configure the ISDN deactivation delay. Used only for dialer backup and dialer watch cases.

Options
seconds—Interval before the backup interface is deactivated after the primary interface has comes up.

Range: 1 through 4,294,967,295 seconds
Default: 0 (zero)

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Junos OS Interfaces and Routing Configuration Guide
disable (PoE)

Syntax

```plaintext
disable;
```

Hierarchy Level

```plaintext
[edit poe interface (all | interface-name)]
[edit poe interface (all | interface-name) telemetries]
```

Release Information

Statement introduced in Junos OS Release 9.5.

Description

Disables the PoE capabilities of the port. If PoE capabilities are disabled for a port, the port operates as a standard network access port. If the disable statement is specified after the telemetries statement, logging of PoE power consumption for the port is disabled. To disable monitoring and retain the stored interval and duration values for possible future use, you can specify the disable sub statement in the sub stanza for telemetries. Similarly for retaining the port configuration but disabling the PoE feature on the port, disable can be used in sub stanza for interface.

Default

The PoE capabilities are automatically enabled when a PoE interface is set. Specifying the telemetries statement enables monitoring of PoE per-port power consumption.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Disabling a PoE Interface | 426
**dialer-options**

**Syntax**

```plaintext
dialer-options {
 activation-delay seconds;
 callback;
 callback-wait-period time;
 deactivation-delay seconds;
 dial-string [dial-string-numbers];
 idle-timeout seconds;
 incoming-map {
 caller caller-number | accept-all;
 initial-route-check seconds;
 load-interval seconds;
 load-threshold percent;
 pool pool-name;
 redial-delay time;
 watch-list {
 [routes];
 }
 }
}
```

**Hierarchy Level**

- [edit interfaces umd0],
- [edit interfaces dln unit logical-unit-number],
- [edit logical-systems logical-system-name interfaces dln unit logical-unit-number]

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Specify the dialer options for configuring logical interfaces for group and user sessions.

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.
dialin

Syntax

dialin (console | routable);

Hierarchy Level

[edit interfaces umd0 modem-options]

Release Information

Statement introduced in Junos OS Release 8.5.

Description

For J Series Services Routers, configure a USB modem port to act as a dial-in console or WAN backup port.

Options

console—Configure the USB modem port to operate as a dial-in console for management.

routable—Configure the USB modem port to operate as a dial-in WAN backup interface.

Default: console

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
dial-string

Syntax

```plaintext
dial-string [dial-string-numbers];
```

Hierarchy Level

```plaintext
[edit interfaces br-pim/0/port unit logical-unit-number dialer-options],
[edit logical-systems logical-system-name interfaces br-pim/0/port unit logical-unit-number dialer-options]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

On J Series Services Routers with ISDN interfaces, specify one or more ISDN dial strings used to reach a destination subnetwork.

Options

- **dial-string-numbers**—One or more strings of numbers to call.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- None
dhcp (Interfaces)

Syntax

dhcp {
  client-identifier {
    (ascii string | hexadecimal string);
  }
  lease-time (length | infinite);
  retransmission-attempt value;
  retransmission-interval seconds;
  server-address server-address;
  update-server;
  vendor-id vendor-id;
}

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number family family ]

Release Information
Statement introduced in Junos OS Release 9.2.

Description
Configure the Dynamic Host Configuration Protocol (DHCP) client.

Options
The statements are explained separately.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Understanding Interfaces | 31
duration (PoE)

Syntax

```plaintext
duration hours;
```

Hierarchy Level

```
[edit poe interface (all | interface-name) telemetries]
```

Release Information

Statement introduced in Junos OS Release 9.5.

Description

Modifies the duration for which telemetry records are stored. If telemetry logging continues beyond the specified duration, the older records are discarded one by one as new records are collected.

Options

hours—Hours for which telemetry data should be retained.

Range: 1 through 24 hours

Default: 1 hour

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring PoE on All Interfaces | 423
family inet (Interfaces)

Syntax

inet {
    accounting {
        destination-class-usage;
        source-class-usage {
            input;
            output;
        }
    }
}

address (source-address/prefix) {
    arp destination-address {
        (mac mac-address | multicast-mac multicast-mac-address);
        publish publish-address;
    }
    broadcast address;
    preferred;
    primary;
    vrrp-group group-id {
        (accept-data | no-accept-data);
        advertise-interval seconds;
        advertisements-threshold number;
        authentication-key key-value;
        authentication-type (md5 | simple);
        fast-interval milliseconds;
        inet6-advertise-interval milliseconds
        (preempt <hold-time seconds> | no-preempt );
        priority value;
        track {
            interface interface-name {
                bandwidth-threshold bandwidth;
                priority-cost value;
            }
            priority-hold-time seconds;
            route route-address{
                routing-instance routing-instance;
                priority-cost value;
            }
        }
    virtual-address [address];
    virtual-link-local-address address;
    vrrp-inherit-from {
        active-group value;
active-interface interface-name;
}
}
}
web-authentication {
  http;
  https;
  redirect-to-https;
}
}
dhcp {
  client-identifier {
    (ascii string | hexadecimal string);
  }
  lease-time (length | infinite);
  retransmission-attempt value;
  retransmission-interval seconds;
  server-address server-address;
  update-server;
  vendor-id vendor-id;
}
dhcp-client {
  client-identifier {
    prefix {
      host-name;
      logical-system-name;
      routing-instance-name;
    }
    use-interface-description (device | logical);
    user-id (ascii string | hexadecimal string);
  }
  lease-time (length | infinite);
  retransmission-attempt value;
  retransmission-interval seconds;
  server-address server-address;
  update-server;
  vendor-id vendor-id;
}
filter {
  group number;
  input filter-name;
  input-list [filter-name];
  output filter-name;
  output-list [filter-name];
}
mtu value;
no-neighbor-learn;
no-redirects;
policer {
  arp arp-name;
  input input-name;
  output output-name;
}
primary;
rpf-check {
  fail-filter filter-name;
  mode {
    loose;
  }
}
sampling {
  input;
  output;
  simple-filter;
}
targeted-broadcast {
  (forward-and-send-to-re |forward-only);
}
unnumbered-address {
  interface-name;
  preferred-source-address preferred-source-address;
}
}

Hierarchy Level

[edit interfaces interface unit unit ]

Release Information
Statement supported in Junos 10.2 for SRX Series devices.

Description
Assign an IP address to a logical interface.
Options

`ipaddress`—Specify the IP address for the interface. The remaining statements are explained separately.

**NOTE:** You use family `inet` to assign an IPv4 address. You use family `inet6` to assign an IPv6 address. An interface can be configured with both an IPv4 and IPv6 address.

Required Privilege Level

`interface`—To view this statement in the configuration.

`interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

| Understanding Interfaces | 31 |
family inet6

Syntax

inet6 {
    accounting {
        destination-class-usage;
        source-class-usage {
            input;
            output;
        }
    }
}

address source-address/prefix {
    eui-64;
    ndp address {
        (mac mac-address | multicast-mac multicast-mac-address);
        publish;
    }
    preferred;
    primary;
    vrrp-inet6-group group_id {
        (accept-data | no-accept-data);
        advertisements-threshold number;
        authentication-key value;
        authentication-type (md5 | simple);
        fast-interval milliseconds;
        inet6-advertise-interval milliseconds;
        (preempt <hold-time seconds>| no-preempt );
        priority value;
        track {
            interface interface-name {
                bandwidth-threshold value;
                priority-cost value;
            }
        }
        priority-hold-time seconds;
        route route-address{
            routing-instance routing-instance;
        }
    }
}

virtual-inet6-address [address];
virtual-link-local-address address;
vrrp-inherit-from {
    active-group value;
    active-interface interface-name;
}
web-authentication {
    http;
    https;
    redirect-to-https;
}
(dad-disable | no-dad-disable);

dhcpv6-client {
    client-ia-type (ia-na | ia-pd);
    client-identifier duid-type (duid-ll | duid-llt | vendor);
    client-type (autoconfig | stateful);
    rapid-commit;
    req-option (dns-server | domain | fqdn | nis-domain | nis-server | ntp-server | sip-domain | sip-server |time-zone | vendor-spec);
    retransmission-attempt number;
    update-router-advertisement {
        interface interface-name;
    }
    update-server;
}

filter {
    group number;
    input filter-name;
    input-list [filter-name];
    output filter-name;
    output-list [filter-name];
}
mtu value;
nd6-stale-time seconds;
no-neighbor-learn;
policer {
    input input-name;
    output output-name;
}
rpf-check {
    fail-filter filter-name;
    mode {
        loose;
    }
}
}
Hierarchical Level

```
[edit interfaces interface unit unit]
```

Release Information

Statement supported in Junos 10.2 for SRX Series devices.

Description

Assign an IPv6 address to a logical interface.

Options

- `ipaddress`—Specify the IP address for the interface. The remaining statements are explained separately.

**NOTE:** You use family `inet6` to assign an IPv6 address. You use family `inet` to assign an IPv4 address. An interface can be configured with both an IPv4 and IPv6 address.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Understanding Interfaces | 31
flag (Interfaces)

Syntax

flag

Hierarchy Level

[edit interfaces interface-name traceoptions]

Release Information

Statement introduced in Junos OS Release 10.1.

Description

Define tracing operations for individual interfaces. To specify more than one tracing operation, include multiple flag statements.

Options

• all—Enable all interface trace flags.
• event—Trace interface events.
• cache—Enable interface flags for Web filtering cache maintained on the routing table.
• enhanced—Enable interface flags for processing through Enhanced Web Filtering.
• ipc—Trace interface IPC messages.
• media—Trace interface media changes.
• critical—Trace critical events.
• major—Trace major events.

NOTE:

• MTU is limited to 1518 on this interface.
• Cache and enhanced options are applicable only to Enhanced Web Filtering.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
flexible-vlan-tagging (Interfaces)

Syntax

```text
flexible-vlan-tagging;
```

Hierarchy Level

```
[edit interfaces interface]
```

Release Information

Statement introduced in Junos OS Release 12.1X44-D10.

Description

Simultaneously supports transmission of 802.1Q VLAN single-tag and dual-tag frames on logical interfaces on the same Ethernet port.

NOTE: The `flexible-vlan-tagging` is supported only with either no encapsulation or VPLS VLAN encapsulation.

Options

`native-vlan-id`—Configures a VLAN identifier for single-tag frames, dual-tag frames, or a mixture of single-tag and dual-tag frames.

Required Privilege Level

`interface`—To view this statement in the configuration.
`interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring VLAN Tagging | 66 |
flow-control (Interfaces)

Syntax

(flow-control | no-flow-control); 

Hierarchy Level

[edit interfaces interface-name fastether-options]
[edit interfaces interface-name gigether-options]
[edit interfaces interface-name redundant-ether-options]

Release Information

Statement modified in Junos OS Release 9.2.

Description

For Fast Ethernet, Gigabit Ethernet, and redundant Ethernet interfaces, flow control regulates the flow of packets from the device to the remote side of the connection.

Default

Flow control is the default behavior for Fast Ethernet and Gigabit Ethernet interfaces. Flow control is disabled by default for redundant Ethernet interfaces.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Understanding Ethernet Interfaces | 277 |
flow-monitoring (Services)

Syntax

```plaintext
flow-monitoring {
 version9 {
 template template-name {
 flow-active-timeout seconds;
 flow-inactive-timeout seconds;
 ipv4-template;
 ipv6-template;
 option-refresh-rate {
 packets packets;
 seconds seconds;
 }
 }
 template-refresh-rate {
 packets packets;
 seconds seconds;
 }
 }
}
```

Hierarchy Level

```
[edit services]
```

Release Information

Statement introduced in Junos OS Release 10.4.

Description

Configure flow monitoring.

Options

- **version9**—Version 9 configuration.

Required Privilege Level

- services—To view this statement in the configuration.
- services-control—To add this statement to the configuration.
forwarding-classes (CoS)

List of Syntax
SRX Series on page 749
M320, MX Series, T Series, EX Series, PTX Series on page 749

SRX Series

```plaintext
forwarding-classes {
 class class-name {
 priority (high | low);
 queue-num number;
 spu-priority (high | low | medium);
 }
 queue queue-number {
 class-name {
 priority (high | low);
 }
 }
}
```

M320, MX Series, T Series, EX Series, PTX Series

```plaintext
forwarding-classes {
 class queue-num queue-number priority (high | low);
 queue queue-number class-name priority (high | low) [policing-priority (premium | normal)];
}
```

Hierarchy Level

```
[edit class-of-service]
```

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 8.5.
**policing-priority** option introduced in Junos OS Release 9.5.
Statement updated in Junos OS Release 11.4.
The **spu-priority** option introduced in Junos OS Release 11.4R2.
Change from 2 to 4 queues was made in Junos OS Release 12.3X48-D40 and in Junos OS Release 15.1X49-D70.
**medium-high** and **medium-low** priorities for **spu-priority** are deprecated and **medium** priority is added in Junos OS Release 19.1R1.
Description

Command used to associate forwarding classes with class names and queues with queue numbers.

All traffic traversing the SRX Series device is passed to an SPC to have service processing applied. Junos OS provides a configuration option to enable packets with specific Differentiated Services (DiffServ) code points (DSCP) precedence bits to enter a high-priority queue or a medium-priority queue or low-priority queue on the SPC. The Services Processing Unit (SPU) draws packets from the highest priority queue first, then from the medium priority queue, last from the low priority queue. The processing of queue is weighted-based not strict-priority-based. This feature can reduce overall latency for real-time traffic, such as voice traffic.

Initially, the spu-priority queue options were "high" and "low". Then, these options (depending on the devices) were expanded to "high", "medium-high", "medium-low", and "low". The two middle options ("medium-high" and "medium-low") have now been deprecated (again, depending on the devices) and replaced with "medium". So, the available options for spu-priority queue are "high", "medium", and "low".

We recommend that the high-priority queue be selected for real-time and high-value traffic. The other options would be selected based on user judgement on the value or sensitivity of the traffic.

For M320, MX Series, T Series routers and EX Series switches only, you can configure fabric priority queuing by including the priority statement. For Enhanced IQ PICs, you can include the policing-priority option.

NOTE: The priority and policing-priority options are not supported on PTX Series Packet Transport Routers.
Options

- **class class-name**—Displays the forwarding class name assigned to the internal queue number.

  **NOTE:** This option is supported only on SRX5400, SRX5600, and SRX5800.

  **NOTE:** AppQoS forwarding classes must be different from those defined for interface-based rewriters.

- **priority**—Fabric priority value:
  - **high**—Forwarding class’ fabric queuing has high priority.
  - **low**—Forwarding class’ fabric queuing has low priority.

  The default **priority** is **low**.

- **queue queue-number**—Specify the internal queue number to which a forwarding class is assigned.

- **spu-priority**—Services Processing Unit (SPU) priority queue, **high**, **medium**, or **low**. The default **spu-priority** is **low**.

  **NOTE:** The **spu-priority** option is supported only on SRX5000 line devices.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- *Example: Configuring AppQoS*
- *Configuring a Custom Forwarding Class for Each Queue*
- *Forwarding Classes and Fabric Priority Queues*
- *Configuring Hierarchical Layer 2 Policers on IQE PICs*
- *Classifying Packets by Egress Interface*
fpc (Interfaces)

Syntax

```
fpc slot-number ;
```

Hierarchy Level

```
[edit interfaces pic-set pic-set-name]
```

Release Information


Description

Sets the PIC bundle and the FPC slot.

The `pic-set` bundles all the PICs and corresponding logical interfaces. A PIC can only join only one pic-bundle, and cannot join multiple pic-bundles at same time. When the `pic-set` configuration changes, all the logical interfaces related to the PIC should be synchronized to all member IOC.

Options

- `apply-groups`—Inherit configuration data from these groups.
- `apply-groups-except`—Do not inherit configuration data from these groups.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Understanding Interfaces</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface (PIC Bundle)</td>
<td>762</td>
</tr>
</tbody>
</table>
gratuitous-arp-reply

Syntax

(gratuitous-arp-reply | no-gratuitous-arp-reply);

Hierarchy Level

[edit interfaces interface-name]
[edit interfaces interface-range interface-range-name]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 in EX Series switches.
Statement introduced in Junos OS Release 12.2 for ACX Series Universal Metro Routers.

Description

For Ethernet interfaces, enable updating of the Address Resolution Protocol (ARP) cache for gratuitous ARPs.

Default

Updating of the ARP cache is disabled on all Ethernet interfaces.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Gratuitous ARP
no-gratuitous-arp-request
gsm-options

Syntax

```
gsm-options {
 select-profile profile-name;
 profiles {
 profile-name {
 sip-user-id simple-ip-user-id;
 sip-password simple-ip-password;
 access-point-name apn;
 authentication-method (pap | chap | none);
 }
 }
}
```

Hierarchy Level

```
[edit interfaces interface-name cellular-options]
```

Release Information
Statement introduced in Junos OS Release 9.5.

Description
Configure the 3G wireless modem interface to establish a data call with a Global System for Mobile Communications (GSM) cellular network.

Options
The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
guard-band (PoE)

Syntax

```
guard-band watts;
```

Hierarchy Level

```
[edit poe]
```

Release Information

Statement introduced in Junos OS Release 9.5.

Description

Reserves the specified amount of power for the SRX Series device in case of a spike in PoE consumption.

Options

- **watts**—Amount of power to be reserved for the SRX Series device in case of a spike in PoE consumption.

  **Range:** 0 through 19 W
  **Default:** 0 W

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding Power over Ethernet | 413
hold-time (Redundant Ethernet Interfaces)

Syntax

    hold-time (up | down) timer

Hierarchy Level

    [edit interfaces interface-name ]

Release Information

Statement introduced in Junos OS Release 18.4R1 for the SRX Series.

Description

The hold timer enables interface damping by not advertising interface transitions until the hold timer duration has passed. When a hold-down timer is configured for a parent RETH interface and the primary child interface goes from up to down, the down hold-time timer is triggered. Every interface transition that occurs during the down hold-time is ignored. When the timer expires and the primary child interface state is still down, then the router begins to advertise the parent RETH interface as being down. Similarly, when a hold-up timer is configured for a parent RETH interface and the primary child interface goes from down to up, the up hold-time timer is triggered. Every interface transition that occurs during the up hold-time is ignored. When the timer expires and the primary child interface state is still up, then the router begins to advertise the parent RETH interface as being up.

The hold timer (both up and down) improves the flexibility and resilience of SRX devices. Specify the timer value in seconds to reduce unnecessary loss of traffic and downtime.

NOTE: Starting in Junos OS release 18.4R1, all SRX devices have default delay timer of 11 seconds for both up hold-time and down hold-time.

Options

down seconds—Hold time to use when an interface transitions from up to down.

up seconds—Hold time to use when an interface transitions from down to up.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.
Related topics

Related topics

Physical Interface Damping Overview

hold-time

**hub-assist**

**Syntax**

```sh
hub-assist weight;
```

**Hierarchy Level**

```
[edit interfaces interface-name unit logical-unit-number radio-router]
```

**Release Information**

Statement introduced in Junos OS Release 10.2.

**Description**

Configure the weight of the resource factor when calculating an effective interface bandwidth.

**Options**

- `weight`—Factor used to calculate interface bandwidth.

**Range**: 0 through 100

**Default**: 100

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Configuring PPPoE-Based Radio-to-Router Protocols
idle-timeout

Syntax

idle-timeout seconds;

Hierarchy Level

[edit interfaces dln unit logical-unit-number dialer-options]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

On J Series Services Routers with ISDN interfaces, configure the number of seconds the link is idle before losing connectivity.

Options

seconds—Time for which the connection can remain idle. For interfaces configured to use a filter for traffic, the idle timeout is based on traffic.

Range: 1 through 429497295

Default: 120 seconds

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Junos OS Interfaces and Routing Configuration Guide
incoming-map

Syntax

incoming-map {
    caller caller-number | accept-all;
}

Hierarchy Level

[edit interfaces dln unit logical-unit-number dialer-options],
[edit logical-systems logical-system-name interfaces dln unit logical-unit-number dialer-options]

Release Information

Statement introduced in Junos OS Release 7.5.

Description

On J Series Services Routers with interfaces configured for ISDN, specify the dialer to accept incoming calls.

The remaining statements are explained separately. See CLI Explorer.

NOTE: The incoming-map statement is mandatory for the router to accept any incoming ISDN calls.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Junos OS Interfaces and Routing Configuration Guide |
**initial-route-check**

**Syntax**

```
initial-route-check seconds;
```

**Hierarchy Level**

```
[edit interfaces dln unit logical-unit-number dialer-options]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

On J Series Services Routers with ISDN interfaces, allows the router to check whether the primary route is up after the initial startup of the router is complete and the timer expires.

**Options**

- **seconds**—How long to wait to check if the primary interface is up after the router comes up.

**Range:** 1 through 300 seconds  
**Default:** 120 seconds

**Required Privilege Level**

- interface—To view this statement in the configuration.  
- interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- ISDN Interfaces Overview
- Junos OS Interfaces and Routing Configuration Guide
inline-jflow (Forwarding Options)

Syntax

```inline-jflow{
 flow-export-rate number;
 source-address ip-address;
}
```

Hierarchy Level

```
[edit forwarding-options sampling instance instance-name family inet output]
[edit forwarding-options sampling instance instance-name family inet6 output]
```

Release Information


Description

Specify Inline processing of sampled packets.

Options

- **flow-export-rate value**—Flow export rate of monitored packets in kpps. The range is from 1 through 400.

- **source-address address**—Address to use for generating monitored packets.

Required Privilege Level

services—To view this statement in the configuration.
services-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Understanding Interfaces | 31 |
**interface (PIC Bundle)**

**Syntax**

```
interface interface-name;
```

**Hierarchy Level**

```
[edit interfaces pic-set pic-set-name]
```

**Release Information**

**Description**
Sets the PIC bundle and the interface.

**Options**
- **apply-groups** - Groups from which to inherit configuration data.
- **apply-groups-except** - Do not inherit configuration data from these groups.

**Required Privilege Level**
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Understanding Interfaces | 31
interface (PoE)

Syntax

```plaintext
interface (all | interface-name) {
 disable;
 maximum-power watts;
 priority (high | low);
 telemetries {
 disable;
 duration hours;
 interval minutes;
 }
}
```

Hierarchy Level

[edit poe]

Release Information

Statement introduced in Junos OS Release 9.5.

Description

Enable a PoE interface for a PoE port. The PoE interface must be enabled in order for the port to provide power to a connected powered device.

Default

The PoE interface is enabled by default

Options

- **all**— Apply the configuration to all interfaces on the SRX Series device that have not been explicitly configured otherwise.

- **interface-name**— Explicitly configure a specific interface.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
interfaces (CoS)

Syntax

```plaintext
interfaces

 interface-name {
 input-scheduler-map map-name;
 input-shaping-rate rate;
 scheduler-map map-name;
 scheduler-map-chassis map-name;
 shaping-rate rate;
 unit logical-unit-number {
 adaptive-shaper adaptive-shaper-name;
 classifiers {
 (dscp | dscp-ipv6 | exp | ieee-802.1 | inet-precedence)
 (classifier-name | default);
 }
 forwarding-class class-name;
 fragmentation-map map-name;
 input-scheduler-map map-name;
 input-shaping-rate (percent percentage | rate);
 input-traffic-control-profile profiler-name shared-instance instance-name;
 loss-priority-maps {
 default;
 map-name;
 }
 output-traffic-control-profile profile-name shared-instance instance-name;
 rewrite-rules {
 dscp (rewrite-name | default);
 dscp-ipv6 (rewrite-name | default);
 exp (rewrite-name | default) protocol protocol-types;
 frame-relay-de (rewrite-name | default);
 inet-precedence (rewrite-name | default);
 }
 scheduler-map map-name;
 shaping-rate rate;
 virtual-channel-group group-name;
 }
 }
}
```

Hierarchy Level

[edit class-of-service interface interface-name unit number]
Release Information
Statement introduced in Junos OS Release 8.5.

Description
Associate the class-of-service configuration elements with an interface.

Options
interface interface-name unit number—The user-specified interface name and unit number.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
Class of Service User Guide (Security Devices)
interval (Interfaces)

Syntax

interval seconds;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number radio-router credit]

Release Information
Statement introduced in Release 10.1 of Junos OS.

Description
Configure the frequency that the router generates credit announcement messages.

Options
seconds—Interval between PADG credit announcements for each session.

Range: 0 through 60
Default: 1

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring PPPoE-Based Radio-to-Router Protocols
**interval (PoE)**

**Syntax**

```
interval minutes;
```

**Hierarchy Level**

```
[edit poe interface (all | interface-name) telemetries]
```

**Release Information**

Statement introduced in Junos OS Release 9.5.

**Description**

Modifies the interval for logging telemetries if you are monitoring the per-port power consumption for PoE interfaces.

**Options**

- `minutes`—Interval at which data is logged.

**Range:** 1 through 30 minutes

**Default:** 5 minutes

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Understanding Interfaces | 31
isdn-options

Syntax

```plaintext
isdn-options {
 bchannel-allocation (ascending | descending);
 calling-number number;
 incoming-called-number number <reject>;
 spid1 spid-string;
 spid2 spid-string;
 static-tei-val value;
 switch-type (att5e | etsi | ni1 | ntdms100 | ntt);
 t310 seconds;
 tei-option (first-call | power-up);
}
```

Hierarchy Level

- [edit interfaces br-pim/0/port],
- [edit interfaces ct1-pim/0/port],
- [edit interfaces ce1-pim/0/port]

Release Information

Statement introduced before Junos OS Release 7.4.
bchannel-allocation option added in Junos OS Release 8.3.

Description

For J Series Services Routers only. Specify the ISDN options for configuring ISDN interfaces for group and user sessions.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring ISDN Physical Interface Properties
- Allocating B-Channels for Dialout
- Junos OS Interfaces and Routing Configuration Guide
ipv4-template (Services)

Syntax

ipv4-template;

Hierarchy Level

[edit services flow-monitoring version9 template template-name]

Release Information
Statement introduced in Junos OS Release 10.4.

Description
Specify that the flow monitoring version 9 template is used only for IPv4 records.

Required Privilege Level
services—To view this in the configuration.
services-control—To add this to the configuration.

RELATED DOCUMENTATION

Understanding Traffic Processing on Security Devices
Understanding Interfaces | 31
**ipv6-template (Services)**

**Syntax**

```
ipv6-template;
```

**Hierarchy Level**

```
[edit services flow-monitoring version9 template template-name]
```

**Release Information**

Statement introduced in Junos OS Release 12.1X45-D10.

**Description**

Specify that the flow monitoring version 9 template is used only for IPv6 records.

**Required Privilege Level**

services—To view this in the configuration.
services-control—To add this to the configuration.

**RELATED DOCUMENTATION**

- *Understanding Traffic Processing on Security Devices*
- *Understanding Interfaces* | 31
lcap (Interfaces)

Syntax

lcap {
  (active | passive);
  periodic;
}

Hierarchy Level

[edit interfaces interface-name redundant-ether-options]

Release Information
Statement introduced in Junos OS Release 10.2.

Description
For redundant Ethernet interfaces in a chassis cluster only, configure Link Aggregation Control Protocol (LACP).

Options
• active—Initiate transmission of LACP packets.
• passive—Respond to LACP packets.
• periodic—Interval for periodic transmission of LACP packets.

Default: If you do not specify lcap as either active or passive, LACP remains off (the default).

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding LACP on Standalone Devices | 310
- periodic (Interfaces) | 798
latency (Interfaces)

Syntax

```
latency number;
```

Hierarchy Level

```
[edit interfaces interface-name unit logical-unit-number radio-router]
```

Release Information

Statement introduced in Junos OS Release 10.1.

Description

This option controls the latency weight (value 0–100).

Required Privilege Level

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

RELATED DOCUMENTATION

- **PPPoE-Based Radio-to-Router Protocols Overview**
lease-time

Syntax

lease-time (length | infinite);

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number family inet dhcp]

Release Information
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 9.2 for SRX Series devices.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Request a specific lease time for the IP address. The lease time is the length of time in seconds that a client holds the lease for an IP address assigned by a DHCP server.

Default
If no lease time is requested by client, then the server sends the lease time. The default lease time on a Junos OS DHCP server is one day.

Options
seconds — Request a lease time of a specific duration.

Range: 60 through 2147483647 seconds

infinite — Request that the lease never expire.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring a DHCP Client (CLI Procedure)

interfaces
unit
family
**line-rate (Interfaces)**

**Syntax**

```
line-rate
```

**Hierarchy Level**

```
[edit interfaces interfaces name shdsl-options]
```

**Release Information**
Command introduced in Junos OS Release 10.0.

**Description**
Specify a line rate for a G.SHDSL interface.

**Options**
- **auto**— Automatically selects a line rate.
- **value** — Select the values between 192 kbps and 22784 kbps for the speed of transmission of data on the G.SHDSL connection.

**Required Privilege Level**
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

*Example: Configuring the G.SHDSL Interface on SRX Series Devices*
link-speed (Interfaces)

Syntax

```
link-speed speed;
```

Hierarchy Level

```
[edit interfaces interface-name redundant-ether-options]
```

Release Information

Statement modified in Release 9.0 of Junos OS.

Description

For redundant Ethernet interfaces in a chassis cluster only, set the required link speed.

Options

`speed`—For redundant Ethernet links, you can specify `speed` in bits per second either as a complete decimal number or as a decimal number followed by the abbreviation `k` (1000), `m` (1,000,000), or `g` (1,000,000,000).

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Junos OS Interfaces Configuration Guide for Security Devices
**load-interval**

Syntax

```text
load-interval seconds;
```

Hierarchy Level

```
[edit interfaces dln unit logical-unit-number dialer-options],
[edit logical-systems logical-system-name interfaces dln unit logical-unit-number dialer-options]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

On J Series Services Routers with ISDN logical interfaces, specify the interval used to calculate the average load on the network. By default, the average interface load is calculated every 60 seconds.

Options

- **seconds**—Number of seconds at which the average load calculation is triggered.

Range: 20 through 180, in 10-second intervals

Default: 60 seconds

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- *Junos OS Interfaces and Routing Configuration Guide*
### load-threshold

**Syntax**

```plaintext
load-threshold percent;
```

**Hierarchy Level**

```
[edit interfaces dl unit logical-unit-number dialer-options],
[edit logical-systems logical-system-name interfaces dl unit logical-unit-number dialer-options]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

On J Series Services Routers with ISDN logical interfaces, specify the bandwidth threshold percentage used for adding interfaces. Another link is added to the multilink bundle when the load reaches the threshold value you set. Specify a percentage between 0 and 100.

**Options**

- **percent**—Bandwidth threshold percentage used for adding interfaces. When set to 0, all available channels are dialed.

**Range:** 0 through 100 seconds

**Default:** 100 seconds

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- *Junos OS Interfaces and Routing Configuration Guide*
loopback (Aggregated Ethernet, Fast Ethernet, and Gigabit Ethernet)

Syntax

(loopback | no-loopback);

Hierarchy Level

[edit interfaces interface-name aggregated-ether-options],
[edit interfaces interface-name ether-options],
[edit interfaces interface-name fastether-options],
[edit interfaces interface-name gigether-options],
[edit interfaces interface-range name ether-options]

For QFX Series and EX Series:

[edit interfaces interface-name aggregated-ether-options],
[edit interfaces interface-name ether-options],

For SRX Series Devices and vSRX:

[edit interfaces interface-name redundant-ether-options]

Release Information

Statement introduced before Junos OS Release 7.4 for MX Series.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 12.2 for ACX Series Universal Metro Routers.
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.
Statement modified in Junos OS Release 9.2 for the SRX Series.

Description

For aggregated Ethernet, Fast Ethernet, Gigabit Ethernet, and 10-Gigabit Ethernet interfaces, enable or disable loopback mode.
NOTE:

- By default, local aggregated Ethernet, Fast Ethernet, Tri-Rate Ethernet copper, Gigabit Ethernet, and 10-Gigabit Ethernet interfaces connect to a remote system.

- IPv6 Neighbor Discovery Protocol (NDP) addresses are not supported on Gigabit Ethernet interfaces when loopback mode is enabled on the interface. That is, if the `loopback` statement is configured at the `[edit interfaces ge-fpc/pic/port gigether-options]` hierarchy level, an NDP address cannot be configured at the `[edit interfaces ge-fpc/pic/port unit logical-unit-number family inet6 address]` hierarchy level.

Default

By default, loopback is disabled.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Ethernet Loopback Capability
- Understanding Interfaces | 31
loss-priority (CoS Loss Priority)

Syntax

```
loss-priority level code-points [values];
```

Hierarchy Level

```
[edit class-of-service loss-priority-maps frame-relay-de map-name]
```

Release Information
Statement introduced in Junos OS Release 9.2.

Description
Map CoS values to a packet loss priority (PLP). In Junos OS, classifiers associate incoming packets with a forwarding class (FC) and PLP. PLPs allow you to set the priority for dropping packets. Typically, you mark packets exceeding some service level with a high loss priority—that is, a greater likelihood of being dropped.

Options

`level` can be one of the following:

- **high**—Packet has high loss priority.
- **medium-high**—Packet has medium-high loss priority.
- **medium-low**—Packet has medium-low loss priority.
- **low**—Packet has low loss priority.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding Interfaces | 31
- Understanding Packet Loss Priorities
loss-priority (CoS Rewrite Rules)

Syntax

loss-priority level;

Hierarchy Level

[edit class-of-service rewrite-rules type rewrite-name forwarding-class class-name]

Release Information

Statement introduced in Junos OS Release 9.2.

Description

Specify a loss priority to which to apply a rewrite rule. The rewrite rule sets the code-point aliases and bit patterns for a specific forwarding class and packet loss priority (PLP). The inputs for the map are the forwarding class and the PLP. The output of the map is the code-point alias or bit pattern.

Options

level can be one of the following:

• high—The rewrite rule applies to packets with high loss priority.
• low—The rewrite rule applies to packets with low loss priority.
• medium-high—The rewrite rule applies to packets with medium-high loss priority.
• medium-low—The rewrite rule applies to packets with medium-low loss priority.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Class of Service User Guide (Security Devices) |
**loss-priority-maps (CoS Interfaces)**

**Syntax**

```plaintext
text

Hierarchy Level

```text

**Release Information**

Statement introduced in Junos OS Release 9.2.

**Description**

Assign the loss priority map to a logical interface.

**Options**

- **default**—Apply default loss priority map. The default map contains the following:

  ```plaintext
 loss-priority low code-point 0;
 loss-priority high code-point 1;
  ```

- **map-name**—Name of loss priority map to be applied.

**Required Privilege Level**

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Understanding Interfaces | 31
loss-priority-maps (CoS)

Syntax

```plaintext
loss-priority-maps {
 frame-relay-de loss-priority-map-name {
 loss-priority (high | low | medium-high | medium-low) {
 code-points [bit-string];
 }
 }
}
```

Hierarchy Level

```plaintext
[edit class-of-service]
```

Release Information
Statement introduced in Junos OS Release 9.2.

Description
Map the loss priority of incoming packets based on CoS values.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding Interfaces | 31
management (PoE)

Syntax

management (class | static);

Hierarchy Level

[edit poe]

Release Information
Statement introduced in Junos OS Release 9.5.

Description
Designates how the SRX Series device allocates power to the PoE ports.

Default
static

Options
• **static**—When a powered device is connected to a PoE port, the power allocated to it is equal to the maximum power configured for the port.

• **class**—When a powered device is connected to a PoE port, the power allocated to it is equal to the maximum power for the class as defined by the IEEE 802.3 AF standard.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Example: Configuring PoE on All Interfaces | 423 |
maximum-power (PoE)

Syntax

```plaintext
maximum-power watts;
```

Hierarchy Level

```
[edit poe interface (all | interface-name)]
```

Release Information

Statement introduced in Junos OS Release 9.5.

Description

Maximum amount of power that can be supplied to the port.

Default

15.4 W

Options

**Watts**—The maximum number of watts that can be supplied to the port.

Range  

—0 through 15.4

Default—15.4 W

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring PoE on All Interfaces | 423
media-type (Interfaces)

Syntax

media-type

Hierarchy Level

[edit interfaces interface-name media-type]

Release Information

Command introduced in Junos OS Release 10.2.

Description

Configure the operating modes for the 2-Port 10 Gigabit Ethernet XPIM.

Options

• copper
• fiber

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Understanding Interfaces | 31 |
**minimum-links (Interfaces)**

**Syntax**

```
minimum-links number;
```

**Hierarchy Level**

```
[edit interfaces interface-name redundant-ether-options]
```

**Release Information**

Statement added in Release 10.1 of Junos OS.

**Description**

For redundant Ethernet interfaces configured as 802.3ad redundant Ethernet interface link aggregation groups (LAGs) in a chassis cluster only, set the required minimum number of physical child links on the primary node that must be working to prevent the interface from being down. Interfaces configured as redundant Ethernet interface LAGs typically have between 4 and 16 physical interfaces, but only half, those on the primary node, are relevant to the minimum-links setting.

If the number of operating interfaces on the primary node falls below the configured value, it will cause the interface to be down even if some of the interfaces are still working.

**Options**

- `number`—For redundant Ethernet interface link aggregation group links, specify the number of physical child links on the primary node in the redundant Ethernet interface that must be working. The default `minimum-links` value is 1. The maximum value is half of the total number of physical child interfaces bound to the redundant Ethernet interface being configured or 8, whichever is smaller.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- *Junos OS Interfaces Configuration Guide for Security Devices*
**modem-options**

**Syntax**

```plaintext
modem-options {
 dialin (console | routable);
 init-command-string initialization-command-string;
}
```

**Hierarchy Level**

```
[edit interfaces umd0]
```

**Release Information**

Statement introduced in Junos OS Release 8.2.

**Description**

For J Series Services Routers, configure a USB port to act as a USB modem.

The remaining statement is explained separately. See CLI Explorer.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.
**mtu**

**Syntax**

```mtu bytes;```

Hierarchy Level

```[edit interfaces interface-name],
[edit interfaces interface-name unit logical-unit-number family family],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family family]```  

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Maximum transmission unit (MTU) size for the media or protocol. The default MTU size depends on the device type. Not all devices allow you to set an MTU value, and some devices have restrictions on the range of allowable MTU values.

**Options**

- `bytes`—MTU size.

**Range:** 0 through 5012 bytes

**Default:** 1500 bytes (inet, inet6, and iso families), 1448 bytes (mpls)

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- *Configuring MRRU on Multilink and Link Services Logical Interfaces*
- *Junos OS Network Interfaces Library for Routing Devices*
native-vlan-id

Syntax

native-vlan-id vlan-id;

Hierarchy Level (QFX Series and EX4600)

For platforms without ELS:

[edit interfaces (QFX Series) interface-name unit 0 family ethernet-switching]

For platforms with ELS:

[edit interfaces (QFX Series) interface-name]

Hierarchy Level (ACX Series, EX Series, SRX Series, M Series, MX Series, and T Series)

[edit interfaces ge-fpc/pic/port],
[edit interfaces interface-name]

Hierarchy Level (SRX Series)

[edit interfaces interface-name ]

Release Information

Statement introduced in Junos OS Release 8.3.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 9.5 for SRX Series.
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 12.2 for ACX Series Universal Metro Routers.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.
Statement introduced in Junos OS Release 13.2X51-D20 for the QFX Series.

Description

Configure the VLAN identifier to associate with untagged packets received on the physical interface of a trunk mode interface for the following:

- QFX Series and EX4600
- M Series routers with Gigabit Ethernet IQ PICs with SFP and Gigabit Ethernet IQ2 PICs with SFP configured for 802.1Q flexible VLAN tagging
• MX Series routers with Gigabit Ethernet DPCs and MICs, Tri-Rate Ethernet DPCs and MICs, and 10-Gigabit Ethernet DPCs and MICs and MPCs configured for 802.1Q flexible VLAN tagging
• T4000 routers with 100-Gigabit Ethernet Type 5 PIC with CFP
• EX Series switches with Gigabit Ethernet, 10-Gigabit Ethernet, 40-Gigabit Ethernet, and aggregated Ethernet interfaces

The logical interface on which untagged packets are received must be configured with the same VLAN ID as the native VLAN ID configured on the physical interface, otherwise the untagged packets are dropped. To configure the logical interface, include the `vlan-id` statement (matching the `native-vlan-id` statement on the physical interface) at the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level.

When the `native-vlan-id` statement is included with the `flexible-vlan-tagging` statement, untagged packets are accepted on the same mixed VLAN-tagged port and on the interfaces that are configured for Q-in-Q tunneling.

When the `native-vlan-id` statement is combined with the `interface-mode` statement, untagged packets are accepted and forwarded within the bridge domain or VLAN that is configured with the matching VLAN ID.

To configure the logical interface, include the `vlan-id` statement (matching the `native-vlan-id` statement on the physical interface) at the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level.

NOTE: Starting in Junos OS Release 17.1R1, you can send untagged traffic without a native VLAN ID to the remote end of the network. To do this, remove the native VLAN ID from the untagged traffic configuration by setting the `no-native-vlan-insert` statement. If you do not configure this statement, the native VLAN ID is added to the untagged traffic.

Default

By default, the untagged packets are dropped. That is, if you do not configure the `native-vlan-id` option, the untagged packets are dropped.

Options

`vlan-id`—Numeric identifier of the VLAN.

Range: 1 through 4094

`number`—VLAN ID number.

Range: (ACX Series routers, SRX Series devices and EX Series switches) 0 through 4094.
Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Gigabit Ethernet Interfaces (CLI Procedure)
- Configuring Gigabit Ethernet Interfaces (J-Web Procedure)
- Understanding Bridging and VLANs on Switches
- Enabling VLAN Tagging
- Configuring Access Mode on a Logical Interface
- Configuring the Native VLAN Identifier on Switches With ELS Support
- Understanding Interfaces
  - Understanding Q-in-Q Tunneling and VLAN Translation
  - no-native-vlan-insert
  - Sending Untagged Traffic Without VLAN ID to Remote End
  - show ethernet-switching interfaces
  - show vlans
  - flexible-vlan-tagging

Junos OS Network Interfaces Configuration Guide
**next-hop-tunnel**

**Syntax**

```
next-hop-tunnel gateway-address ipsec-vpn vpn-name;
```

**Hierarchy Level**

```
[edit interfaces interface-name unit logical-unit-number family family-name]
```

**Release Information**

Statement introduced in Junos OS Release 9.5.

**Description**

For the secure tunnel (st) interface, create entries in the Next-Hop Tunnel Binding (NHTB) table, which is used to map the next-hop gateway IP address to a particular IP Security (IPsec) Virtual Private Network (VPN) tunnel. NHTB allows the binding of multiple IPsec VPN tunnels to a single IPsec tunnel interface.

**Options**

- `gateway-address`—Next-hop gateway IP address.
- `ipsec-vpn vpn-name`—VPN to which the next-hop gateway IP address is mapped.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- [Understanding Interfaces](#) 31
no-dns-propagation

Syntax

no-dns-propagation;

Hierarchy Level

[edit interface interface-name unit unit-number family inet | inet6 dhcp-client]

Release Information

Statement introduced in Junos OS Release 12.1X47-D35.

Description

Disable the propagation of DNS information to the kernel.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Understanding Interfaces | 31 |
option-refresh-rate (Services)

Syntax

```plaintext
option-refresh-rate
```

Hierarchy Level

```
[edit services flow-monitoring version9 template template-name]
```

Release Information

Statement introduced in Junos OS Release 10.4.

Description

Specify the option refresh rate.

Options

- **packets**—Specify the number of packets. The range is from 1 through 480,000.
- **seconds**—Specify the number of seconds. The range is from 10 through 600.

Required Privilege Level

services—To view this statement in the configuration.

services-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Flow Aggregation to Use Version 9 Flow Templates
**pic-mode (Chassis T1 Mode)**

**Syntax**

```
pic-mode (clear-channel);
```

**Hierarchy Level**

```
[edit chassis fpc slot-number pic pic-number ethernet]
```

**Release Information**

Statement added in Junos OS Release 10.2.

**Description**

Configure normal T1 mode or channelized T1 mode.

**Options**

- **clear-channel**—(default) Normal T1 mode.
- **ct1**—Channelized T1 mode.

**NOTE:** When chassis clustering is enabled, it is necessary to indicate in the command which node is being configured. In such circumstances, the `edit chassis fpc` command becomes `edit chassis node node-id fpc`.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Understanding Interfaces | 31
periodic (Interfaces)

Syntax

```
periodic (fast | slow);
```

Hierarchy Level

```
[edit interfaces interface-name redundant-ether-options lacp]
```

Release Information

Statement introduced in Junos OS Release 10.2.

Description

For redundant Ethernet interfaces in a chassis cluster only, configure the interval at which the interfaces on the remote side of the link transmit link aggregation control protocol data units (PDUs) by configuring the periodic statement on the interfaces on the local side. It is the configuration on the local side that specifies the behavior of the remote side. That is, the remote side transmits link aggregation control PDUs at the specified interval.

Options

- **fast**—Transmit link aggregation control PDUs every second.
- **slow**—Transmit link aggregation control PDUs every 30 seconds.

Default: fast

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding Ethernet Interfaces | 277
pool

Syntax

```plaintext
pool pool-name <priority priority>;
```

Hierarchy Level

```plaintext
[edit interfaces br-pim/0/port dialer-options],
[edit interfaces umd0 dialer-options],
[edit interfaces dln unit logical-unit-number dialer-options],
[edit logical-systems logical-system-name interfaces dln unit logical-unit-number dialer-options]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

On J Series Services Routers, for logical and physical ISDN interfaces, specify the dial pool. The dial pool allows logical (dialer) and physical (br-pim/0/port) interfaces to be bound together dynamically on a per-call basis. On a dialer interface, pool directs the dialer interface which dial pool to use. On br-pim/0/port interface, pool defines the pool to which the interface belongs.

Options

- `pool-name`—Pool identifier.
- `priority priority`—(Physical br-pim/0/port interfaces only) Specify a priority value of 0 (lowest) to 255 (highest) for the interface within the pool.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Junos OS Interfaces and Routing Configuration Guide
**ppp-over-ether**

**Syntax**

```plaintext
ppp-over-ether;
```

**Hierarchy Level**

```plaintext
[edit interfaces interface-name unit logical-unit-number encapsulation]
```

**Release Information**

Statement introduced before Junos OS Release 11.2.
This encapsulation is supported for Redundant Ethernet interface in Junos OS Release 11.2.

**Description**

This encapsulation is used for underlying interfaces of pp0 interfaces. This encapsulation is supported on Fast Ethernet interface, Gigabit Ethernet interface, and Redundant Ethernet interface. When Redundant Ethernet interface is used as underlying interface, an existing pppoe session can be continued in case of failover.

**Required Privilege Level**

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

| Understanding Ethernet Interfaces | 277 |
pppoe

Syntax

```plaintext
pppoe {
 command binary-file-path;
 disable;
 failover (alternate-media | other-routing-engine);
}
```

Hierarchy Level

```
[edit system processes]
```

Release Information
Statement introduced in Junos OS Release 9.2.

Description
Enable users to connect to a network of hosts over a bridge or access concentrator.

Options

- **command binary-file-path**—Path to the binary process.
- **disable**—Disable the Point-to-Point Protocol over Ethernet process.
- **failover**—Configure the device to reboot if the software process fails four times within 30 seconds, and specify the software to use during the reboot.
  - **alternate-media**—Configure the device to switch to backup media that contains a version of the system if a software process fails repeatedly.
  - **other-routing-engine**—Instruct the secondary Routing Engine to take mastership if a software process fails. If this statement is configured for a process, and that process fails four times within 30 seconds, then the device reboots from the secondary Routing Engine.

Required Privilege Level
system—To view this statement in the configuration.
system-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding Ethernet Interfaces | 277
pppoe-options

Syntax

```
pppoe-options {
 access-concentrator name ;
 auto-reconnect seconds;
 (client | server);
 ignore-eol-tag;
 service-name name;
 underlying-interface interface-name;
}
```

Hierarchy Level

```
[edit interfaces pp0 unit logical-unit-number],
[edit logical-systems logical-system-name interfaces pp0 unit logical-unit-number]
```

Release Information
Statement modified in Junos OS Release 12.3X48 to include ignore-eol-tag statement.

Description
Configure PPP over Ethernet-specific interface properties.

Options

access-concentrator name—(SRX Series devices with Point-to-Point Protocol over Ethernet (PPPoE) interfaces) Configure the name of the access concentrator. If you configure a specific access concentrator name on the client and the same access concentrator name server is available, then a PPPoE session is established. If there is a mismatch between the access concentrator names of the client and the server, the PPPoE session gets closed.

auto-reconnect seconds—Configure the amount of time to wait before reconnecting after a session has terminated.

client—Configure the device to operate in the PPPoE client mode.

idle-timeout seconds—Configure the maximum time that a session can be idle.

ignore-eol-tag—Disable the End-of-List (EOL) tag to process the tags after the End-of-List (EOL) tag in a PPPoE Active Discovery Offer (PADO) packet.

service-name name—Configure the service to be requested from the PPP over Ethernet server; that is, the access concentrator. For example, you can use this statement to indicate an Internet service provider (ISP) name or a class of service.
server—Configure the device to operate in the PPPoE server mode.

underlying-interface interface-name—Configure the interface on which PPP over Ethernet is running.

**Required Privilege Level**

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Example: Configuring PPPoE Interfaces | 466
priority (PoE)

Syntax

priority (high | low);

Hierarchy Level

[edit poe interface (all | interface-name)]

Release Information
Statement introduced in Junos OS Release 9.5.

Description
Sets the priority of individual ports. When it is not possible to maintain power to all connected ports, lower-priority ports are powered off before higher priority ports. When a new device is connected on a higher-priority port, a lower-priority port will be powered off automatically if available power is insufficient to power on the higher-priority port. Note that for ports with the same priority configuration, ports on the left are given higher priority than the ports on the right.

Default
low

Options
value—high or low:

• high—Specify that this port is to be treated as high priority in terms of power allocation
• low—Specify that this port is to be treated as low priority in terms of power allocation.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Example: Configuring PoE on All Interfaces | 423 |
profile (Access)

Syntax

```plaintext
profile profile-name {
 accounting {
 accounting-stop-on-access-deny;
 accounting-stop-on-failure;
 coa-immediate-update;
 duplication;
 immediate-update;
 order [accounting-method];
 statistics (time | volume-time);
 update-interval minutes;
 }
 accounting-order [accounting-method];
 address-assignment pool pool-name;
 authentication-order [ldap | none | password | securid];
 authorization-order [jsrc];
 client client-name {
 chap-secret chap-secret;
 client-group [group-names];
 firewall-user {
 password password;
 }
 no-rfc2486;
 pap-password pap-password;
 x-auth ip-address;
 }
 client-name-filter {
 count number;
 domain-name domain-name;
 separator special-character;
 }
 ldap-options {
 assemble {
 common-name common-name;
 }
 base-distinguished-name base-distinguished-name;
 revert-interval seconds;
 search {
 admin-search {
 distinguished-name distinguished-name;
 password password;
 }
```
Hierarchy Level

[edit access]

Release Information
Statement introduced in Junos OS Release 10.4.

Description
Create a profile containing a set of attributes that define device management access.

Required Privilege Level
access—To view this statement in the configuration.
access-control—To add this statement to the configuration.
RELATED DOCUMENTATION

Understanding Interfaces | 31
Understanding User Authentication for Security Devices
Ethernet Switching and Layer 2 Transparent Mode Overview
profiles

Syntax

profiles {
  profile-name {
    sip-user-id simple-ip-user-id;
    sip-password simple-ip-password;
    access-point-name apn;
    authentication-method (pap | chap | none);
  }
}

Hierarchy Level

[edit interfaces interface-name cellular-options gsm-options]

Release Information
Statement introduced in Junos OS Release 9.5.

Description
Configure a profile to establish a data call with a Global System for Mobile Communications (GSM) cellular network. You can configure up to 16 profiles.

Options
profile-name—Name of the profile.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Understanding Ethernet Interfaces | 277 |
promiscuous-mode (Interfaces)

Syntax

promiscuous-mode;

Hierarchy Level

[edit interfaces interface-name ]

Release Information
Statement introduced in Junos OS Release 10.1.

Description
Enable promiscuous mode on Layer 3 Ethernet interfaces. When promiscuous mode is enabled on an interface, all packets received on the interface are sent to the central point or Services Processing Unit regardless of the destination MAC address of the packet.

You can also enable promiscuous mode on chassis cluster redundant Ethernet interfaces and on aggregated Ethernet interfaces. If you enable promiscuous mode on a redundant Ethernet interface, promiscuous mode is then enabled on any child physical interfaces. If you enable promiscuous mode on an aggregated Ethernet interface, promiscuous mode is then enabled on all member interfaces.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Enabling and Disabling Promiscuous Mode on Ethernet Interfaces (CLI Procedure)
quality (Interfaces)

Syntax

```
quality <value>;
```

Hierarchy Level

```
[edit interfaces interface-name unit logical-unit-number radio—router]
```

Release Information
Statement introduced in Junos OS Release 10.1.

Description
This option controls relative link quality weight (value 0–100).

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

`PPPoE-Based Radio-to-Router Protocols Overview`
r2cp

Syntax

```r2cp {
 command binary-file-path;
 disable;
}
```

Hierarchy Level

```[edit system processes]```

Release Information

Statement introduced in Junos OS Release 9.2.

Description

Specify the Radio-to-Router Control Protocol (R2CP) used to exchange dynamic metric changes in the network that routers use to update the OSPF topologies.

Options

- `command binary-file-path`—Path to the binary process.
- `disable`—Disable the Radio-to-Router Control Protocol process.

Required Privilege Level

- `system`—To view this statement in the configuration.
- `system-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- *PPPoE-Based Radio-to-Router Protocols Overview*
radio-router (Interfaces)

Syntax

```plaintext
radio-router {
  bandwidth number;
  credit {
    interval number;
  }
  data-rate number;
  latency number;
  quality number;
  resource number;
  threshold number;
}
```

Hierarchy Level

```plaintext
[edit interfaces interface-name unit logical-unit-number]
```

Release Information

Statement introduced in Junos OS Release 10.1.

Description

Point-to-Point Protocol over Ethernet (PPPoE)-based radio-to-router protocols include messages that define how an external system will provide the device with timely information about the quality of a link’s connection. They also include a flow control mechanism to indicate how much data the device can forward. The device can then use the information provided in the PPPoE messages to dynamically adjust the interface speed of PPP links.

Options

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

RELATED DOCUMENTATION

- **PPPoE-Based Radio-to-Router Protocols Overview**
redial-delay

Syntax

redial-delay time;

Hierarchy Level

[edit interfaces dln unit logical-unit-number dialer-options],
[edit logical-systems logical-system-name interfaces dln unit logical-unit-number dialer-options]

Release Information
Statement introduced in Junos OS Release 7.5.

Description
On J Series Services Routers with interfaces configured for ISDN with dialout, specify the delay (in seconds) between two successive calls made by the dialer. To configure callback mode, include the callback statement at the [edit interfaces dln unit logical-unit-number dialer-options] hierarchy level.

If the callback statement is configured, you cannot use the caller caller-id statement at the [edit interfaces dln unit logical-unit-number dialer-options] hierarchy level.

Options

time—Delay (in seconds) between two successive calls.

Range: 2 through 255 seconds
Default: 3 seconds

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

ISDN Interfaces Overview
Junos OS Interfaces and Routing Configuration Guide
redundancy-group (Interfaces)

Syntax

redundancy-group number;

Hierarchy Level

[edit interfaces interface-name redundant-ether-options]

Release Information
Statement introduced in Junos OS Release 9.0.

Description
Specify the redundancy group that a redundant Ethernet interface belongs to.

Options

number — Number of the redundancy group that the redundant interface belongs to. Failover properties of the interface are inherited from the redundancy group.

Range: 1 through 255

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Interfaces User Guide for Security Devices
redundant-ether-options

Syntax

```
redundant-ether-options {
  (flow-control | no-flow-control);
  lacp {
    (active | passive);
    periodic (fast | slow);
  }
  link-speed speed;
  (loopback | no-loopback);
  minimum-links number;
  redundancy-group number;
  source-address-filter mac-address;
  (source-filtering | no-source-filtering);
}
```

Hierarchy Level

```
[edit interfaces interface-name]
```

Release Information
Statement introduced in Junos OS Release 9.2.

Description
Configure Ethernet redundancy options for a chassis cluster.

In a chassis cluster setup, a redundant Ethernet interface is a pseudointerface that includes at minimum one physical interface from each node of the cluster.

A reth is a special type of interface that has the characteristics of aggregated Ethernet interface.

Options
flow-control—Enable flow control.

link-speed—Link speed of individual interface that joins the reth interface.

Values:
- 100m—Links are 100 Mbps
- 10g—Links are 10 Gbps
- 10m—Links are 10 Mbps
- 1g—Links are 1 Gbps
loopback—Enable loopback.

minimum-links—Minimum number of active links.
- Default: 1
- Range: 1-8

no-flow-control—Do not enable flow control.

no-loopback—Do not enable loopback.

no-source-filtering—Do not enable source address filtering.

redundancy-group—Redundancy group of this interface.
- Range: 1-128

source-filtering—Enable source address filtering.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- *Example: Enabling Eight-Queue Class of Service on Redundant Ethernet Interfaces on SRX Series Devices in a Chassis Cluster*
- *Example: Configuring Chassis Cluster Redundant Ethernet Interfaces*
redundant-parent (Interfaces Fast Ethernet)

Syntax

redundant-parent interface-name;

Hierarchy Level

[edit interfaces interface-name fastether-options]

Release Information
Statement introduced in Junos OS Release 9.2.

Description
Configure Fast Ethernet-specific interface properties for Ethernet redundancy in a chassis cluster.

Options
interface —Parent redundant interface of the Fast Ethernet interface.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Understanding Ethernet Interfaces | 277 |
redundant-parent (Interfaces Gigabit Ethernet)

Syntax

```
redundant-parent interface-name;
```

Hierarchy Level

```
[edit interfaces interface-name gigether-options]
```

Release Information

Statement introduced in Release 9.0 of Junos OS.

Description

Configure Gigabit Ethernet-specific interface properties for Ethernet redundancy in a chassis cluster.

Options

Required Privilege Level

- `interface` — To view this statement in the configuration.
- `interface-control` — To add this statement to the configuration.

RELATED DOCUMENTATION

- *Junos OS Interfaces Configuration Guide for Security Devices*
request pppoe connect

Syntax

```
request pppoe connect
```

Release Information

Statement supported on SRX300, SRX320, SRX340, and SRX345 is introduced in Junos OS Release 15.1X49-D60.
Statement supported on SRX1500 and vSRX instances is introduced in Junos OS Release 15.1X49-D100.

Description

Connect all sessions that are down.

Options

- **pppoe interface name**— (Optional) Connect to a specified session.

Required Privilege Level

maintenance

RELATED DOCUMENTATION

- Understanding PPPoE Interfaces | 466
- Example: Configuring PPPoE Interfaces | 466

List of Sample Output

request pppoe connect on page 819

Output Fields

When you enter this command, this command returns no output.

Sample Output

```
request pppoe connect
user@host> request pppoe connect
```
request pppoe disconnect

Syntax

```plaintext
request pppoe disconnect
```

Release Information

Statement supported on SRX300, SRX320, SRX340, and SRX345 is introduced in Junos OS Release 15.1X49-D60.
Statement supported on SRX1500 and vSRX instances is introduced in Junos OS Release 15.1X49-D100.

Description

Disconnect all active sessions.

Options

- `session id` — (Optional) Disconnect the session for which the session ID is specified.
- `pppoe interface name`— (Optional) Disconnect the session for a specific pppoe interface name.

Required Privilege Level

maintenance

RELATED DOCUMENTATION

- Understanding PPPoE Interfaces | 466
- Example: Configuring PPPoE Interfaces | 466

List of Sample Output

request pppoe disconnect on page 820

Output Fields

When you enter this command, this command returns no output.

Sample Output

```plaintext
request pppoe disconnect

user@host> request pppoe disconnect
```
resource (Interfaces)

Syntax

resource number;

Hierarchy Level

[edit interfaces interface-name radio—router]

Release Information
Statement introduced in Junos OS Release 10.1.

Description
This option controls the resource weight (value 1–100).

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| PPPoE-Based Radio-to-Router Protocols Overview |
retransmission-attempt (DHCP Client)

Syntax

retransmission-attempt number;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number family inet dhcp]

Release Information

Statement introduced in Junos OS Release 8.5 for J Series devices.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 9.2 for SRX Series devices.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Specify the number of times the device retransmits a Dynamic Host Control Protocol (DHCP) packet if a DHCP server fails to respond. After the specified number of attempts, no further attempts at reaching a server are made.

Options

number—Number of retransmit attempts.

Range: 0 through 6
Default: 4

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring a DHCP Client (CLI Procedure)

interfaces
unit family
retransmission-interval (DHCP Client)

Syntax

retransmission-interval seconds;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number family family-name dhcp]

Release Information

Statement introduced in Release 8.5 of Junos OS.

Description

Specify the time between successive retransmission attempts.

Options

seconds—Number of seconds between successive retransmission.

Range: 4 through 64 seconds

Default: 4 seconds

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Junos OS Initial Configuration Guide for Security Devices
roaming-mode

Syntax

roaming-mode (home-only | automatic)

Hierarchy Level

[edit interfaces interface-name cellular-options]

Release Information

Statement introduced in Junos OS Release 9.5.

Description

Specify whether the 3G wireless modem interface can access networks other than the home network.

Options

• home-only—No roaming is allowed.
• automatic—Allows access to networks other than the home network. This is the default.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Understanding Ethernet Interfaces | 277
scheduler-map (CoS Virtual Channels)

Syntax

```
scheduler-map map-name;
```

Hierarchy Level

```
[edit class-of-service virtual-channel-groups group-name virtual-channel-name]
```

Release Information

Statement introduced in Junos OS Release 9.2.

Description

Apply a scheduler map to this virtual channel.

Options

- `map-name`—Name of the scheduler map.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- `default (CoS)`
- `shaping-rate (CoS Virtual Channels)`
- `virtual-channel-group (CoS Interfaces)`
- `virtual-channel-groups`
- `virtual-channels`
select-profile

Syntax

```
select-profile profile-name
```

Hierarchy Level

```
[edit interfaces interface-name cellular-options gsm-options]
```

Release Information

Statement introduced in Junos OS Release 9.5.

Description

Select the active profile to establish a data call with a Global System for Mobile Communications (GSM) cellular network.

Options

`profile-name`—Name of a configured profile that is to be used to establish a data call.

Required Privilege Level

`interface`—To view this statement in the configuration.

`interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

Understanding Ethernet Interfaces | 277
server-address

Syntax

server-address ip-address;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number family inet dhcp]

Release Information
Statement introduced in Junos OS Release 8.5 for J Series devices.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 9.2 for SRX Series devices.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Specify the address of the DHCP server that the client should accept DHCP offers from. If this option is included in the DHCP configuration, the client accepts offers only from this server and ignores all other offers.

Default
The client accepts the first offer it receives from any DHCP server.

Options
ip-address—DHCP server address.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring a DHCP Client (CLI Procedure)

interfaces
unit
family
shaping-rate (CoS Interfaces)

Syntax

```
shaping-rate rate <overhead bytes> ;
```

Hierarchy Level

```
[edit class-of-service interfaces interface-name],
[edit class-of-service interfaces interface-name unit logical-unit-number]
```

Release Information

Statement introduced in Junos OS Release 9.2.

`overhead` option introduced in Junos OS Release 18.1.

Description

For logical interfaces on which you configure packet scheduling, configure traffic shaping by specifying the amount of bandwidth to be allocated to the logical interface.

Logical and physical interface traffic shaping can be configured together. This means you can include the `shaping-rate` statement at the `[edit class-of-service interfaces interface interface-name]` hierarchy level and the `[edit class-of-service interfaces interface interface-name unit logical-unit-number]` hierarchy level. If you configure traffic shaping at both the logical and physical interface levels, the logical interface shaping credit is checked and updated before the physical interface shaping credit.

Alternatively, you can configure a shaping rate for a logical interface and oversubscribe the physical interface by including the `shaping-rate` statement at the `[edit class-of-service traffic-control-profiles]` hierarchy level. With this configuration approach, you can independently control the delay-buffer rate.

On the physical interface, you can set the Layer 2 overhead adjustment to the shaping rate calculation at egress.

Default

If you do not include this statement at the `[edit class-of-service interfaces interface interface-name unit logical-unit-number]` hierarchy level, the default logical interface bandwidth is the average of unused bandwidth for the number of logical interfaces that require default bandwidth treatment. If you do not include this statement at the `[edit class-of-service interfaces interface interface-name]` hierarchy level, the default physical interface bandwidth is the average of unused bandwidth for the number of physical interfaces that require default bandwidth treatment.

Options
rate—Peak rate, in bits per second (bps). You can specify a value in bits per second either as a complete
decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or
g (1,000,000,000).
Range: 1000 through 6,400,000,000,000 bps

overhead—Layer 2 shaping overhead adjustment to be applied at egress (bytes).
Range: -62 through 192

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| policer-overhead |
simple-filter (Interfaces)

Syntax

```plaintext
simple-filter;
```

Hierarchy Level

```
[edit interfaces interfaces-name unit logical-unit-number family family-name]
```

Release Information

Statement introduced in Junos OS Release 9.5.

Description

Apply a simple filter to an interface. You can apply simple filters on ingress interfaces only.

Options

input `filter-name`: Name of one filter to evaluate when packets are received on the interface.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Understanding Ethernet Interfaces | 277 |
sip-password

Syntax

```
sip-password simple-ip-password;
```

Hierarchy Level

```
[edit interfaces interface-name cellular-options gsm-options profiles profile-name]
```

Release Information

Statement introduced in Junos OS Release 9.5.

Description

Configure the password provided by the service provider for connection to a Global System for Mobile Communications (GSM) cellular network.

Options

* `simple-ip-password`—Password.

Required Privilege Level

* `interface`—To view this statement in the configuration.
* `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

* [Understanding Ethernet Interfaces](#)
sip-user-id

Syntax

```
sip-user-id simple-ip-user-id;
```

Hierarchy Level

```
[edit interfaces interface-name cellular-options gsm-options profiles profile-name]
```

Release Information

Statement introduced in Junos OS Release 9.5.

Description

Configure the username provided by the service provider for connection to a Global System for Mobile Communications (GSM) cellular network.

Options

- `simple-ip-user-id`—Username.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.
source-address-filter (Interfaces)

Syntax

```
source-address-filter mac-address;
```

Hierarchy Level

```
[edit interfaces interface-name redundant-ether-options]
```

Release Information

Statement modified in Junos OS Release 9.2.

Description

For redundant Ethernet interfaces, specify the MAC addresses from which the interface can receive packets. For this statement to have any effect, you must include the `source-filtering` statement in the configuration to enable source address filtering.

Be sure to update the MAC address if the remote Ethernet card is replaced. Replacing the interface card changes the MAC address. Otherwise, the interface cannot receive packets from the new card.

NOTE:

- Software based MAC limiting is supported on SRX300, SRX320, and SRX340 devices.

 A maximum of 32 devices are supported per device.

Options

`mac-address` — MAC address filter. You can specify the MAC address as six hexadecimal bytes in one of the following formats: `nn:nn:nn:nn:nn:nn` (for example, `00:11:22:33:44:55`) or `nnnn:nnnn:nnnn` (for example, `0011.2233.4455`). You can configure up to 64 source addresses. To specify more than one address, include multiple `mac-address` options in the `source-address-filter` statement.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding Ethernet Interfaces | 277
source-filtering (Interfaces)

Syntax
(source-filtering | no-source-filtering);

Hierarchy Level
[edit interfaces interface-name redundant-ether-options]

Release Information
Statement modified in Junos OS Release 9.2.

Description
For redundant Ethernet interfaces, enable the filtering of MAC source addresses, which blocks all incoming packets to that interface. To allow the interface to receive packets from specific MAC addresses, include the source-address-filter statement.

If the remote Ethernet card is changed, the interface cannot receive packets from the new card because it has a different MAC address.

By default, source address filtering is disabled.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
- Understanding Ethernet Interfaces | 277
speed (Interfaces)

Syntax

speed (100m | 10m | 1g);

Hierarchy Level

[edit interfaces interface-name speed]

Release Information

Command introduced in Junos OS Release 10.2.

Description

Configure the operating speed for the 2-Port 10 Gigabit Ethernet XPIIM.

Options

- 100m — Link speed of 100 Mbps
- 10g — Link speed of 10 Gbps
- 10m — Link speed of 10 Mbps
- 1g — Link speed of 1 Gbps

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Understanding Ethernet Interfaces | 277 |
| Example: Configuring the 2-Port 10-Gigabit Ethernet XPIIM Interface | 339 |
speed (Gigabit Ethernet interface)

Syntax

speed (1g |10g);

Hierarchy Level

[edit interfaces interface-name gigether-options]

Release Information
Statement introduced in Junos OS Release 18.1R1 for SRX4600.

Description
Configure the operating speed of the 8-port 10-Gigabit Ethernet PIC from default 10-Gbps port speed to 1-Gbps port speed. Each of the interfaces in the 8-port 10-Gigabit Ethernet PIC can be independently configured to 1Gbps or 10Gbps speeds.

Following are the list of optics supported on SRX4600:

- SRX-SFP-1GE-LX
- SRX-SFP-1GE-LX-ET
- SRX-SFP-1GE-SX
- SRX-SFP-1GE-SX-ET
- SRX-SFP-1GE-T

Autonegotiation is automatically disabled when 1-Gbps speed is configured on the interfaces.
NOTE:

- The interface name for any xe interface remains same after converting its speed from 10G to 1G.

- If a speed configuration is changed, you cannot change it again in the next 180 seconds. The interface link might drop down, if you try to change the speed configuration again within 180 seconds of the first speed configuration change.

- The 8x10-Gbps ports supports multiple port speeds, that is, some ports operates at 10G speed and some at 1G speed.

- To view the speed configured for the interface, execute the `show interfaces extensive` command. The `Speed Configuration` field's value of 1G or AUTO in the command output indicates whether the current operation speed of the interface is 1 Gbps or the default 10 Gbps, respectively.

Options

- 1g — Link speed of 1 Gbps
- 10g — Link speed of 10 Gbps

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- speed (Chassis Cluster) | 1124
spid1

Syntax

spid1 spid1-string;

Hierarchy Level

[edit interfaces br-pim/0/port isdn-options]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure the Service Profile Identifier (SPID).

Options

spid1-string—Numeric SPID.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Junos OS Interfaces and Routing Configuration Guide
spid2

Syntax

```
spid2 spid2-string;
```

Hierarchy Level

```
[edit interfaces br-pim/0/port isdn-options]
```

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Configure an additional SPID.

Options

- `spid2-string`—Numeric SPID.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
static-tei-val

Syntax

```plaintext
static-tei-val value;
```

Hierarchy Level

[edit interfaces br-pim/0/port isdn-options]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For J Series Services Routers only. Statically configure the Terminal Endpoint Identifier (TEI) value. The TEI value represents any ISDN-capable device attached to an ISDN network that is the terminal endpoint. TEIs are used to distinguish between several different devices using the same ISDN links.

Options

value—Value between 0 through 63.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

* Junos OS Interfaces and Routing Configuration Guide
switch-type

Syntax

switch-type (att5e | etsi | ni1 | ntdms-100)

Hierarchy Level

[edit interfaces br-pim/0/port isdn-options]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For J Series Services Routers only. Configure the ISDN variant supported.

Options

att5e—AT&T switch variant.

etsi—European Telecommunications Standards Institute switch variant.

ni1—National ISDN 1 switch variant.

ntdms-100—Northern Telecom DMS-100.

ntt—NTT Group switch for Japan.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Junos OS Interfaces and Routing Configuration Guide
t310

Syntax

```
t310-value seconds;
```

Hierarchy Level

```
[edit interfaces br-pim/0/port isdn-options]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For ISDN interfaces, configure the Q.931-specific timer for T310, in seconds. The Q.931 protocol is involved in the setup and termination of connections.

Options

- `seconds`—Timer value, in seconds.

Range: 1 through 65,536 seconds

Default: 10 seconds

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- *Junos OS Interfaces and Routing Configuration Guide*
tei-option

Syntax

```plaintext
tei-option (first-call | power-up);
```

Hierarchy Level

```plaintext
[edit interfaces br-pim/0/portisdn-options ]
```

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For ISDN interfaces, configure when the Terminal Endpoint Identifier (TEI) negotiates with the ISDN provider.

Options
- `first-call`—Activation does not occur until the call setup is sent.
- `power-up`—Activation occurs when the Services Router is powered on.

Default: `power-up`

Required Privilege Level
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Junos OS Interfaces and Routing Configuration Guide
telemetries (PoE)

Syntax

```plaintext
telemetries {
   disable;
   duration hours;
   interval minutes;
}
```

Hierarchy Level

```
[edit poe interface (all | interface-name)]
```

Release Information

Statement introduced in Junos OS Release 9.5.

Description

Allow logging of per-port PoE power consumption. The telemetries section must be explicitly specified to enable logging. If left unspecified, telemetries is disabled by default.

Default

If the telemetries statement is specified, logging is enabled with the default values for interval and duration.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring PoE on All Interfaces | 423
template-refresh-rate (Services)

Syntax

```
template-refresh-rate;
```

Hierarchy Level

```
[edit services flow-monitoring version9 template template-name]
```

Release Information
Statement introduced in Junos OS Release 10.4.

Description
Specify the template refresh rate.

Options
- **packets**—Specify the number of packets. The range is from 1 through 480,000.
- **seconds**—Specify the number of seconds. The range is from 10 through 600.

Required Privilege Level
services—To view this statement in the configuration.
services-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding Interfaces | 31
threshold (Interfaces)

Syntax

threshold <value>;

Hierarchy Level

[edit interfaces interface-name radio-router]

Release Information
Statement introduced in Junos OS Release 10.1.

Description
This option controls the percentage of bandwidth change required for routing updates.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

PPPoE-Based Radio-to-Router Protocols Overview
traceoptions (Interfaces)

Syntax

traceoptions

Hierarchy Level

[edit interfaces interface-name traceoptions]

Release Information

Command introduced in Junos OS Release 10.1.

Description

Define tracing operations for individual interfaces. To specify more than one tracing operation, include multiple flag statements.

Options

flag - Tracing parameters

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

PPPoE-Based Radio-to-Router Protocols Overview
update-server

Syntax

update-server;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number family inet dhcp]

Release Information

Statement introduced in Junos OS Release 8.5 for J Series devices.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 9.2 for SRX Series devices.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Propagate TCP/IP settings learned from an external DHCP server to the DHCP server running on the switch, router, or device.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring a DHCP Client (CLI Procedure)
Example: Configuring the Device as a DHCP Client
interfaces
unit
family
vbr rate

Syntax

vbr rate;

Hierarchy Level

[edit interfaces interface-name atm-options vpi vpi-identifier shaping]

Release Information

Command introduced in Junos OS Release 9.5.

Description

For ATM encapsulation only, define a variable bit rate bandwidth utilization in the traffic-shaping profile.

Options

- Burst Size—The maximum burst size that can be sent at the peak rate.
- Peak Rate—The maximum instantaneous rate at which the user will transmit.
- Sustained Rate—The average rate as measured over a long interval.
- CDVT—Cell Delay Variation Tolerance in microseconds (range: 1 – 9999).

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Understanding Interfaces | 31 |
vdsl-profile

Syntax

vdsl-profile

Hierarchy Level

[edit interfaces interface-name vdsl-options]

Release Information

Command introduced in Junos OS Release 10.1.

Description

Configure the type of VDSL2 profiles. A profile is a table that contains a list of preconfigured VDSL2 settings.

Options

- Auto (default)
- 8a
- 8b
- 8c
- 8d
- 12a
- 12b
- 17a

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

VDSL2 Interface Support on SRX Series Devices | 183
vendor-id (Interfaces)

Syntax

```
vendor-id vendor-id ;
```

Hierarchy Level

```
[edit interfaces interface-name unit logical-unit-number family family-name dhcp]
```

Release Information

Statement introduced in Junos OS Release 9.2.

Description

Configure a vendor class ID for the Dynamic Host Configuration Protocol (DHCP) client.

Options

`vendor-id` — vendor class ID.

Required Privilege Level

`interface`—To view this statement in the configuration.

`interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding Interfaces | 31
watch-list

Syntax

```conf
watch-list {
    [ routes ];
}
```

Hierarchy Level

```
[edit interfaces dl n unit logical-unit-number dialer-options]
```

Release Information
Statement introduced before Junos OS Release 7.4.

Description
On J Series Services Routers with ISDN interfaces, configure an ISDN list of routes to watch. Used only for dialer watch.

Options

- `routes`—IP prefix of a route. Specify one or more. The primary interface is considered up if there is at least one valid route for any of the addresses in the watch list to an interface other than the backup interface.

Required Privilege Level
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- *Junos OS Interfaces and Routing Configuration Guide*
web-authentication (Interfaces)

Syntax

web-authentication {
 http;
 https;
 redirect-to-https;
}

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number family family-name address address]

Release Information

Statement introduced in Junos OS Release 9.2.
Support for **https** and **redirect-to-https** introduced for SRX5400, SRX5600, and SRX5800 Services Gateways starting from Junos OS Release 12.1X44-D10 and on vSRX, SRX300, SRX320, SRX340, SRX345, SRX550, and SRX1500 Services Gateways starting from Junos OS Release 15.1X49-D40.

Description

Enable the Web authentication process for firewall user authentication.

Options

http—Enable HTTP service.

https—Enable authentication through HTTPS.

redirect-to-https—Redirect Web authentication to HTTPS.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Understanding Interfaces | 31 |
wlan

Syntax (SRX Series)

```bash
wlan {
    access-point name {
        description description;
        interface wl interface;
        access-point-options {
            country country-code;
        }
        location location;
        mac-address mac address
        radio [1] 2 { 
            radio-options {
                channel {
                    number (auto | channel number);
                    bandwidth (20 | 40 | 80)
                }
                mode (gn | an | acn);
                radio-off;
                transmit-power percent;
            }
            virtual-access-point-id {
                description description;
                no-broadcast-ssid;
                maximum-stations number;
                station-isolation;
                security {
                    none;
                    wpa-enterprise {
                        cipher-suites (ccmp);
                        radius-server ip-address;
                        radius-port port;
                        radius-key secret-key;
                        wpa-version (v2);
                    }
                    wpa-personal {
                        cipher-suites (ccmp);
                        key (ascii | hex) key;
                        wpa-version (v2);
                    }
                }
            }
        }
    }
    upload-limit upload-limit-rate;
    download-limit download-limit-rate;
```
ssid ssid;
 vlan vlan-id;
 station-mac-filter {
 (allow-list | deny-list)
 mac-address addr1 addr
 }
}
}
}

Hierarchy Level

[edit]

[edit wlan access-point access-point name]

Release Information
Statement introduced in Junos OS Release 19.4R1 for SRX Series devices.

Description
Configure WLAN properties on SRX Series devices.
Options

access-point name—Name of the wireless access point.

interface—Wireless LAN interface (wl-x/0/0) created for the access-point setting.

description—Description of the access point and virtual access point (VAP). The maximum length is 64 characters.

country—The country code.

location—Location of the access point. The maximum number of characters you can use is 64.

channel number (auto | channel number)—Channel number of the radio. If you select auto, then the Mini-PIM chooses the channel automatically.

bandwidth—Radio 1 (5 GHz) supports bandwidth of 20MHz, 40MHz, and 80MHz, whereas Radio 2 (2.4 GHz) supports bandwidth of 20MHz and 40MHz. The default value is 20MHz for 2.4GHz and 40MHz for 5GHz.

radio modes (an | acn | gn)—Mode for the radio operation.

Radio 1 supports the following modes:

- an—802.11a and 802.11n clients operating in 5-GHz frequency can connect to the access point.
- acn—802.11a, 802.11b, 802.11n and 802.11ac clients operating in 5-GHz frequency can connect to the access point.

Radio 2 supports the following mode:

- gn—802.11g, 802.11b, and 802.11n clients operating in 2.4-GHz frequency can connect to the access point. This is the default mode for this radio.

- radio-off—Radio is turned off.
- transmit-power—The percentage of transmit power.

NOTE: When you configure the transmit power, the Mini-PIM card will fix transmit power to the specified value set, in this case the power by rate functionality does not work. So it is recommended not to set transmit power to a specified value. When you do not configure the transmit power (do not fix the transmit power to a specified value), the power by rate functionality works. If you configure the transmit power percentage to 100, then it chooses the option "auto", the behavior is same as no transmit power configuration is done and power by rate functionality will work.
no-broadcast-ssid—Disable broadcast SSID. By default, the broadcast SSID is enabled.

maximum-stations—The number of maximum clients that can be connected to the virtual access point. The range is 1 through 127.

station-isolation—Isolate the clients connected to the same VAP.

security (none | wpa-enterprise | wpa-personal)—Security settings for the VAP. WPA enterprise is a Wi-Fi Alliance standard that uses RADIUS server authentication with AES-CCMP. This mode allows the use of high-security encryption along with centrally managed user authentication. WPA personal is a Wi-Fi Alliance standard that uses preshared key (PSK) authentication with AES-CCMP. Only WPA2 standards are supported on Wi-Fi Mini-PIM.

none—No security. The data transferred between clients and the access point is not encrypted. This method allows clients to associate with the access point without any authentication.

cipher-suites (ccmp)—Select the appropriate WPA cipher algorithm. The value is CCMP algorithms.

radius-server—IP address of the radius server.

radius-port—Port number of the RADIUS server. The default value is 1812.

radius-key —Secret key of the RADIUS. The maximum number of characters you can use is 64.

key (ascii | hex)—WPA shared key. The range of key length is 8 through 63 for ASCII or 8 through 64 hexadecimal characters.

wpa-version (v2)—Version of the WPA version. Only supported value is WPA2.

upload-limit—Specify the upload rate limit. The range is from 256 Kbps through 1,048,576 Kbps.

download-limit —Specify the download rate limit. The range is from 256 Kbps through 1,048,576 Kbps.

ssid—SSID value for the virtual access point. The range is 2 through 32. SSID value can include only letters, numbers and five special characters—hyphen (-), underscore (_), at (@), hash (#), and period (.) in the value of the SSID.

vlan-id—VLAN ID for the virtual access point. The range is 1 through 4094. The default value is 1.

station-mac-filter (allow-list| deny-list)—Specify the MAC filter. You can set either allow the mac address list or deny it. The MAC address format is like xx:xx:xx:xx:xx:xx. The maximum number of the MAC addresses listed is 16.

Required Privilege Level
routing—To view this statement in the configuration.
routing–control—To add this statement to the configuration.
system—To view this statement in the configuration.
system–control—To add this statement to the configuration.
RELATED DOCUMENTATION

| Wi-Fi Mini-Physical Interface Module Overview | 593 |
| Configure Wi-Fi Mini-PIM | 594 |
CHAPTER 12

Operational Commands

IN THIS CHAPTER

- clear oam ethernet connectivity-fault-management path-database | 861
- clear dhcpv6 server binding (Local Server) | 862
- clear ethernet-switching statistics mac-learning | 863
- clear interfaces statistics swfabx | 864
- clear ipv6 neighbors | 865
- clear lacp statistics interfaces | 866
- restart (Reset) | 867
- request modem wireless create-profile | 872
- request modem wireless fota | 874
- request modem wireless sim-lock | 875
- request modem wireless sim-unlock | 877
- show chassis fpc (View) | 879
- show chassis hardware (View) | 890
- show ethernet-switching mac-learning-log | 910
- show ethernet-switching table | 916
- show igmp-snooping route (View) | 947
- show interfaces | 949
- show interfaces diagnostics optics | 1056
- show interfaces flow-statistics | 1062
- show interfaces queue | 1068
- show interfaces statistics (View) | 1074
- show interfaces terse zone | 1075
- show ipv6 neighbors | 1076
- show lacp interfaces (View) | 1078
- show lacp statistics interfaces (View) | 1083
- show modem wireless firmware | 1085
- show modem wireless network | 1088
- show modem wireless profiles | 1091
- show oam ethernet link-fault-management | 1093
- show poe controller (View) | 1100
- show pppoe interfaces | 1102
- show pppoe statistics | 1107
- show poe telemetries | 1110
- show services accounting | 1112
- show services accounting aggregation (View) | 1115
- show services accounting aggregation template (View) | 1116
- show services accounting flow-detail (View) | 1117
- show wlan access-points | 1118
- speed (Chassis Cluster) | 1124
clear oam ethernet connectivity-fault-management path-database

Syntax

```
clear oam ethernet connectivity-fault-management path-database maintenance-domain m\d-name
 maintenance-association ma-name host <mac-addr>
```  

Release Information
Statement introduced in Junos OS Release 12.1X44-D10.

Description
Clear the relevant path information from the database for the specified remote host.

Options
- **maintenance-association**—Name of the maintenance association.
- **maintenance-domain**—Name of the maintenance domain.

Required Privilege Level
clear

RELATED DOCUMENTATION
- show oam ethernet connectivity-fault-management path-database

List of Sample Output
clear oam ethernet connectivity-fault-management path-database on page 861

Sample Output

clear oam ethernet connectivity-fault-management path-database

```
user@host> clear oam ethernet connectivity-fault-management path-database maintenance-domain private maintenance-association private-ma 00:00:5E:00:53:AA
```

Path database entries cleared for the remote-host
clear dhcpv6 server binding (Local Server)

Syntax

```plaintext
clear dhcpv6 server binding
    <all | client-id | ip-address | session-id>
    <interface interface-name>
    <routing-instance routing-instance-name>
```

Release Information
Command introduced in Junos OS Release 10.4.

Description
Clear the binding state of a DHCPv6 client from the client table on the DHCPv6 local server.

Options
- `all`—(Optional) Clear the binding state for all DHCPv6 clients.
- `client-id`—(Optional) Clear the binding state for the DHCPv6 client with the specified client ID (option 1).
- `ip-address`—(Optional) Clear the binding state for the DHCPv6 client with the specified address.
- `session-id`—(Optional) Clear the binding state for the DHCPv6 client with the specified session ID.
- `interface interface-name`—(Optional) Clear the binding state for DHCPv6 clients on the specified interface.
- `routing-instance routing-instance-name`—(Optional) Clear the binding state for DHCPv6 clients on the specified routing instance.

Required Privilege Level
`clear`

RELATED DOCUMENTATION
- `show dhcpv6 server binding (View)`
clear ethernet-switching statistics mac-learning

Syntax
clear ethernet-switching statistics mac-learning

Release Information
Command introduced in Junos OS Release 10.1.

Description
Clear the media access control (MAC) learning statistics.

Options
- none—Clear MAC learning statistics on all interfaces.
- interface interface-name—(Optional) Clear MAC learning statistics on the specified interface.

Required Privilege Level
view

RELATED DOCUMENTATION
- show ethernet-switching table

List of Sample Output
clear ethernet-switching statistics mac-learning on page 863
clear ethernet-switching statistics mac-learning interface interface-name on page 863

Sample Output

clear ethernet-switching statistics mac-learning
user@host> clear ethernet-switching statistics mac-learning

clear ethernet-switching statistics mac-learning interface interface-name
user@host> clear ethernet-switching statistics mac-learning interface interface-name
clear interfaces statistics swfabx

Syntax

 clear interfaces statistics <swfab0 | swfab1>

Release Information

Command introduced in Junos OS Release 11.1.

Description

Clear interface statistics for the specified swfab interface.

Required Privilege Level

clear

RELATED DOCUMENTATION

 show interfaces swfabx

List of Sample Output

clear interfaces statistics <swfab0 | swfab1> on page 864

Output Fields

When you enter this command, interface statistics for swfab0 and swfab1 are cleared.

Sample Output

clear interfaces statistics <swfab0 | swfab1>

 user@host> clear interfaces statistics <swfab0 | swfab1>
clear ipv6 neighbors

Syntax

```
clear ipv6 neighbors
<all | host hostname>
```

Release Information

Command introduced in Junos OS Release 12.1X45-D10.

Description

Clear IPv6 neighbor cache information.

Options

- **none**—Clear all IPv6 neighbor cache information.
- **all**—(Optional) Clear all IPv6 neighbor cache information.
- **host hostname**—(Optional) Clear the information for the specified IPv6 neighbors.

Required Privilege Level

clear

RELATED DOCUMENTATION

- show ipv6 neighbors | 1076

List of Sample Output

clear ipv6 neighbors on page 865

Sample Output

clear ipv6 neighbors

```
user@host> clear ipv6 neighbors

11:11::2      00:19:e2:4b:61:83 deleted
12:12::2      00:19:e2:4b:61:83 deleted
10:1::2       00:00:0a:00:00:00 deleted
```
clear lACP statistics interfaces

Syntax

`clear lACP statistics interfaces <interface-name>`

Release Information

Command modified in Junos OS Release 10.2.

Description

Clear the LACP statistics. If you do not specify an interface name, LACP statistics for all interfaces are cleared.

Options

`interface-name`—(Optional) Name of an interface.

Required Privilege Level

clear

RELATED DOCUMENTATION

`show lACP statistics interfaces (View) | 1083`

Verifying LACP on Redundant Ethernet Interfaces

Output Fields

This command produces no output.
restart (Reset)

Syntax

restart

Release Information
Command introduced before Junos OS Release 9.2

Description
Restart a Junos OS process.

CAUTION: Never restart a software process unless instructed to do so by a customer support engineer. A restart might cause the router to drop calls and interrupt transmission, resulting in possible loss of data.

Options

- application-identification—(Optional) Restart the process that identifies an application using intrusion detection and prevention (IDP) to allow or deny traffic based on applications running on standard or nonstandard ports.
- application-security—(Optional) Restart the application security process.
- audit-process—(Optional) Restart the RADIUS accounting process that gathers statistical data that can be used for general network monitoring, for analyzing and tracking usage patterns, and for billing a user based upon the amount of time used or the type of services accessed.
- chassis-control—(Optional) Restart the chassis management process.
- class-of-service—(Optional) Restart the class-of-service (CoS) process, which controls the router’s or switch’s CoS configuration.
• commitd-service—(Optional) Restart the committed services.
• database-replication—(Optional) Restart the database replication process.
• datapath-trace-service—(Optional) Restart the packet path tracing process.
• ddns—(Optional) Restart the dynamic domain name system, which dynamically updates IP addresses for registered domain names.
• dhcp—(Optional) Restart the software process for a Dynamic Host Configuration Protocol (DHCP) server. A DHCP server allocates network IP addresses and delivers configuration settings to client hosts without user intervention.
• dhcp-service—(Optional) Restart the Dynamic Host Configuration Protocol process.
• disk-monitoring—(Optional) Restart disk monitoring, which checks the health of the hard disk drive on the Routing Engine.
• dynamic-flow-capture—(Optional) Restart the dynamic flow capture (DFC) process, which controls DFC configurations on PIC3 monitoring services cards.
• ethernet-connectivity-fault-management—(Optional) Restart the process that provides IEEE 802.1ag Operation, Administration, and Maintenance (OAM) connectivity fault management (CFM) database information for CFM maintenance association end points (MEPs) in a CFM session.
• ethernet-link-fault-management—(Optional) Restart the process that provides the OAM link fault management (LFM) information for Ethernet interfaces.
• event-processing—(Optional) Restart the event process (eventd).
• extensible-subscriber-services—(Optional) Restart the extensible subscriber services process.
• fipsd—(Optional) Restart the fipsd services.
• firewall—(Optional) Restart the firewall management process, which manages the firewall configuration and accepts or rejects packets that are transiting an interface on a router or switch.
• firewall-authentication-service—(Optional) Restart the firewall authentication service process.
• general-authentication-service—(Optional) Restart the general authentication process.
• gprs-process—(Optional) Restart the General Packet Radio Service (GPRS) process.
• gracefully—(Optional) Restart the software process.
• idp-policy—(Optional) Restart the intrusion detection and prevention (IDP) protocol process.
• immediately—(Optional) Immediately restart the software process.
• interface-control—(Optional) Restart the interface process, which controls the router's or switch's physical interface devices and logical interfaces.
• ipmi—(Optional) Restart the intelligent platform management interface process.
• ipsec-key-management—(Optional) Restart the IPsec key management process.
• jflow-service—(Optional) Restart jflow service process.
• jnu-management—(Optional) Restart jnu management process.
• jnx-wmicd-service—(Optional) Restart jnx wmicd service process.
• jsrp-service—(Optional) Restart the Juniper Services Redundancy Protocol (jsrdp) process, which controls chassis clustering.
• kernel-replication—(Optional) Restart the kernel replication process, which replicates the state of the backup Routing Engine when graceful Routing Engine switchover (GRES) is configured.
• lacp—(Optional) Restart the Link Aggregation Control Protocol (LACP) process. LACP provides a standardized means for exchanging information between partner systems on a link. The LACP process allows link aggregation control instances to reach agreement on the identity of the LAG to which a link belongs, moves the link to that LAG, and enables the transmission and reception processes for the link to function in an orderly manner.
• l2cpd-service—(SRX5400, SRX5600, and SRX5800 devices only) (Optional) Restart the Layer 2 Control Protocol (L2CP) process, which enables features such as L2 protocol tunneling and nonstop bridging.
• l2-learning—(Optional) Restart the Layer 2 (L2) address flooding and learning process.
• license-service—(Optional) Restart the feature license management process.
• logical-system-service—(Optional) Restart the logical system service process.
• mib-process—(Optional) Restart the MIB version II process, which provides the router’s MIB II agent.
• mountd-service—(Optional) Restart the service for Network File System (NFS) mount requests.
• named-service—(Optional) Restart the DNS Server process, which is used by a router or a switch to resolve hostnames into addresses.
• network-security—(Optional) Restart the network security process.
• network-security-trace—(Optional) Restart the network security trace process.
• nfsd-service—(Optional) Restart the remote NFS server process, which provides remote file access for applications that need NFS-based transport.
• ntpd-service—(Optional) Restart the Network Time Protocol (NTP) process.
• pgm—(Optional) Restart the process that implements the Pragmatic General Multicast (PGM) protocol for assisting in the reliable delivery of multicast packets.
• pic-services-logging—(Optional) Restart the logging process for some PICs. With this process, also known as fsad (the file system access daemon), PICs send special logging information to the Routing Engine for archiving on the hard disk.
• pki-service—(Optional) Restart the public key infrastructure (PKI) service process.
• profilerd—(Optional) Restart the profiler process.
• remote-operations—(Optional) Restart the remote operations process, which provides the ping and traceroute MIBs.
- rest-api—(Optional) Restart the rest api process.
- routing—(Optional) Restart the routing protocol process (rpd).
- sampling—(Optional) Restart the sampling process, which performs packet sampling based on particular input interfaces and various fields in the packet header.
- sampling-route-record—(Optional) Restart the sampling route record process.
- scc-chassisd—(Optional) Restart the scc chassisd process.
- secure-neighbor-discovery—(Optional) Restart the secure Neighbor Discovery Protocol (NDP) process, which provides support for protecting NDP messages.
- security-intelligence—(Optional) Restart security intelligence process.
- security-log—(Optional) Restart the security log process.
- service-deployment—(Optional) Restart the service deployment process, which enables Junos OS to work with the Session and Resource Control (SRC) software.
- services—(Optional) Restart a service.
- simple-mail-client-service—(Optional) Restart the simple mail client service process.
- snmp—(Optional) Restart the SNMP process, which enables the monitoring of network devices from a central location and provides the router's or switch's SNMP master agent.
- static-routed—(Optional) Restart the static routed process.
- soft—(Optional) Reread and reactivate the configuration without completely restarting the software processes. For example, BGP peers stay up and the routing table stays constant. Omitting this option results in a graceful restart of the software process.
- statistics-service—(Optional) Restart the process that manages the Packet Forwarding Engine statistics.
- subscriber-management—(Optional) Restart the subscriber management process.
- subscriber-management-helper—(Optional) Restart the subscriber management helper process.
- system-log-vital—(Optional) Restart system log vital process.
- tunnel-oamd—(Optional) Restart the tunnel OAM process for L2 tunneled networks.
- uac-service—(Optional) Restart the Unified Access Control (UAC) process.
- user-ad-authentication—(Optional) Restart User ad Authentication process
- vrrp—(Optional) Restart the Virtual Router Redundancy Protocol (VRRP) process, which enables hosts on a LAN to make use of redundant routing platforms on that LAN without requiring more than the static configuration of a single default route on the hosts.
- web-management—(Optional) Restart the Web management process.

Required Privilege Level

reset
RELATED DOCUMENTATION

Restart Commands Overview

List of Sample Output
restart interfaces on page 871

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

restart interfaces

user@host> restart interfaces

interfaces process terminated
interfaces process restarted
request modem wireless create-profile

Syntax

request modem wireless create-profile interface-name access-point-name access-point-name authentication-method authentication-method profile-id profile-id sip-password sip-password sip-user-id sip-id slot sim-slot-number

Release Information

Command introduced in Junos OS 9.5. The `slot sim-slot-number` option is introduced in Junos OS 15.1X49-D100.

Description

Create a profile. The Subscriber Identity Module (SIM) uses a profile to establish a connection with the network. You can configure up to 16 profiles for each SIM card. The LTE Mini-PIM supports two SIM cards and so you can configure a total of 32 profiles, although only one profile can be active at a time.

To create a profile, you must obtain the following information from the service provider:

- Username and password
- Access point name (APN)
- Authentication (Challenge Handshake Authentication Protocol (CHAP) or Password Authentication Protocol (PAP))

Options

- `interface-name`—The LTE interface is cl-x/0/0, where x is the slot number in which the LTE Mini-PIM is installed.
- `access-point-name access-point-name`—Access point name (APN). Obtain the APN from the service provider. You can specify only a single APN in a profile.
- `authentication-method`—The authentication protocol that the SIM card uses to authenticate with the wireless network. Obtain the authentication information from the service provider. The authentication protocol used by the SIM card must match the protocol used by the service provider. The `authentication-method` can be one of the following:
 - CHAP
 - PAP
 - None
- `profile-id profile-id`—Profile identification number for the profile. The default value is 1. The range of possible values is from 1 through 16.
- `sip-password sip-password`—Simple IP password. Obtain the password from the service provider.
- **sip-user-id** *sip-id*—Simple IP user identification. Obtain the username from the service provider.
- **slot** *sim-slot-number*—The slot in which the SIM card is inserted. The value can be either 1 or 2.

Required Privilege Level
maintenance

RELATED DOCUMENTATION

| show modem wireless profiles | 1091 |

List of Sample Output
request modem wireless create-profile on page 873

Sample Output

```bash
request modem wireless create-profile

user@host> request modem wireless create-profile cl-1/0 access-point-name apn
authentication-method pap profile-id 2 sip-password 123 sip-user-id userid slot 1

Issued create profile request successfully.
Please use 'show modem wireless profiles' to check profile status
```
request modem wireless fota

Syntax

request modem wireless fota interface-name (enable | disable)

Release Information
Command introduced in Junos OS 15.1X49-D100.

Description
Enable or disable over-the-air (OTA) firmware upgrade for the modem on the LTE Mini-PIM. OTA firmware upgrade enables automatic and timely upgrade of modem firmware when new firmware versions are available. The OTA upgrade can be enabled or disabled on the LTE Mini-PIM. OTA is disabled by default.

Required Privilege Level
maintenance

RELATED DOCUMENTATION

show modem wireless firmware | 1085

List of Sample Output
request modem wireless fota (enable) on page 874
request modem wireless fota (disable) on page 874

Sample Output

request modem wireless fota (enable)

user@host> request modem wireless fota cl-1/0/0 enable
Set FOTA on modem succeeded

request modem wireless fota (disable)

user@host> request modem wireless fota cl-1/0/0 disable
Set FOTA on modem succeeded
request modem wireless sim-lock

Syntax

request modem wireless sim-lock enable interface-name pin pin

Release Information
Command introduced in Junos OS Release 9.5.

Description
Lock the Subscriber Identity Module (SIM) on the Mini-PIM. The SIM lock does not take effect until the next reboot of the services gateway. You can verify the locked mode using the show modem wireless firmware command.

NOTE: If there are two SIMs installed on the LTE Mini-PIM, then only the active SIM is locked. After the SIM is locked, it cannot connect to the network. The SIM must be unlocked before it is used to connect to the network.

Options
• interface-name—The LTE Mini-PIM is denoted as cl-x/0/0, where x is the slot number in which the LTE Mini-PIM is installed.
• pin pin—Four-digit personal identification number (PIN). Obtain the PIN from the service provider.

NOTE: If the PIN is entered incorrectly three consecutive times, the SIM card is blocked. Obtain a PIN unblocking key (PUK) from the service provider.

Required Privilege Level
maintenance

RELATED DOCUMENTATION
request modem wireless sim-unlock | 877

List of Sample Output
request modem wireless sim-lock on page 876
Sample Output

request modem wireless sim-lock

user@host> request modem wireless sim-lock enable cl-1/0/0 pin 4321

Issued SIM 2 lock state request successfully.
Please use 'show modem wireless firmware' to check SIM status
request modem wireless sim-unlock

Syntax

```
request modem wireless sim-unlock interface-name pin unlock-code
```

Release Information
Command introduced in Junos OS Release 9.5.

Description
Unlock the Subscriber Identity Module (SIM) on the LTE Mini-PIM. Some service providers lock the SIM to prevent unauthorized access to the service provider's network. If this is the case, you will need to unlock the SIM by using a personal identification number (PIN), which is provided by the service provider. You can verify the unlocked mode using the `show modem wireless firmware` command.

```
NOTE: If there are two SIM cards installed on the Mini-PIM, then only the active SIM card is unlocked.

The SIM must be unlocked before it can be used to connect to the service provider's network.
```

Options
- **interface-name**—The LTE interface is denoted as cl-x/0/0, where x is the slot number in which the LTE Mini-PIM is installed.
- **pin unlock-code**—Four-digit personal identification number (PIN). Obtain the PIN from the service provider.

```
NOTE: If the PIN is entered incorrectly three consecutive times, the SIM card is blocked. Obtain a PIN unblocking key (PUK) from the service provider.
```

Required Privilege Level
maintenance

RELATED DOCUMENTATION

| request modem wireless sim-lock | 875 |

List of Sample Output
request modem wireless sim-unlock on page 878
Sample Output

```
request modem wireless sim-unlock
user@host> request modem wireless sim-unlock cl-1/0/0 pin 1234
Issued SIM 2 unlock request successfully.
Please use 'show modem wireless firmware' to check SIM status
```
show chassis fpc (View)

Syntax

show chassis fpc
<detail < fpc-slot >| <node (node-id | local | primary)>> |
<node (node-id | local | primary)> |
<pic-status < fpc-slot >| <node (node-id | local | primary)>>

Release Information

Command modified in Junos OS Release 9.2.
Starting with Junos OS Release 15.1X49-D10 and Junos OS Release 17.3R1, the SRX5K-MPC3-100G10G (IOC3) and the SRX5K-MPC3-40G10G (IOC3) are introduced.

NOTE: On SRX5K-MPC3-40G10G (IOC3), all four PICs cannot be powered on. A maximum of two PICs can be powered on at the same time. By default, PIC0 and PIC1 are online.

Use the set chassis fpc <slot> pic <pic> power off command to choose the PICs you want to power on. When you use the set chassis fpc <slot> pic <pic> power off command to power off PIC0 and PIC1, PIC2 and PIC3 are automatically turned on.
When you switch from one set of PICs to another set of PICs using the set chassis fpc <slot> pic <pic> power off command again, ensure that there is 60 seconds duration between the two actions, otherwise core files are seen during the configuration.
The Table 46 on page 879 summarizes the SRX5K-MPC3-40G10G (IOC3) PICs selected for various configuration scenarios.

Table 46: SRX5K-MPC3-40G10G (IOC3) PIC Selection Summary

<table>
<thead>
<tr>
<th>CLI Configuration</th>
<th>PIC Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default (i.e. no CLI configuration)</td>
<td>Online: PIC-0, PIC-1</td>
</tr>
<tr>
<td></td>
<td>Offline: PIC-2, PIC-3</td>
</tr>
<tr>
<td>PIC-1, PIC-2 and PIC-3 powered OFF</td>
<td>Online: PIC-0</td>
</tr>
<tr>
<td></td>
<td>Offline: PIC-1, PIC-2, PIC-3</td>
</tr>
<tr>
<td>PIC-0, PIC-2 and PIC-3 powered OFF</td>
<td>Online: PIC-1</td>
</tr>
<tr>
<td></td>
<td>Offline: PIC-0, PIC-2, PIC-3</td>
</tr>
<tr>
<td>PIC-0, PIC-1 and PIC-3 powered OFF</td>
<td>Online: PIC-2</td>
</tr>
<tr>
<td></td>
<td>Offline: PIC-0, PIC-1, PIC-3</td>
</tr>
</tbody>
</table>
Table 46: SRX5K-MPC3-40G10G (IOC3) PIC Selection Summary (continued)

<table>
<thead>
<tr>
<th>CLI Configuration</th>
<th>PIC Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC-0, PIC-1 and PIC-2 powered OFF</td>
<td>Online: PIC-3</td>
</tr>
<tr>
<td></td>
<td>Offline: PIC-0, PIC-1, PIC-2</td>
</tr>
<tr>
<td>PIC-2 and PIC-3 powered OFF</td>
<td>Online: PIC-0, PIC-1</td>
</tr>
<tr>
<td></td>
<td>Offline: PIC-2, PIC-3</td>
</tr>
<tr>
<td>PIC-2 and PIC-3 powered OFF</td>
<td>Online: PIC-0, PIC-1</td>
</tr>
<tr>
<td></td>
<td>Offline: PIC-2, PIC-3</td>
</tr>
<tr>
<td>PIC-1 and PIC-2 powered OFF</td>
<td>Online: PIC-0, PIC-3</td>
</tr>
<tr>
<td></td>
<td>Offline: PIC-1, PIC-2</td>
</tr>
<tr>
<td>PIC-0 and PIC-3 powered OFF</td>
<td>Online: PIC-2, PIC-1</td>
</tr>
<tr>
<td></td>
<td>Offline: PIC-0, PIC-3</td>
</tr>
<tr>
<td>PIC-0 and PIC-1 powered OFF</td>
<td>Online: PIC-2, PIC-3</td>
</tr>
<tr>
<td></td>
<td>Offline: PIC-0, PIC-1</td>
</tr>
<tr>
<td>All other combinations of PICs being powered OFF (Invalid)</td>
<td>Online: PIC-0, PIC-1</td>
</tr>
<tr>
<td></td>
<td>Offline: PIC-2, PIC-3</td>
</tr>
<tr>
<td></td>
<td>Default PICs will be selected for the invalid combinations. Also, a system log message will be displayed to indicate the invalid combination PIC selection.</td>
</tr>
</tbody>
</table>

Description
Display status information about the installed Flexible PIC Concentrators (FPCs) and PICs.

Options
- **none**—Display status information for all FPCs.
- **detail**—(Optional) Display detailed FPC status information.
- **fpc-slot**—(Optional) Display information about the FPC in this slot.
- **node**—(Optional) For chassis cluster configurations, display status information for all FPCs or for the specified FPC on a specific node (device) in the cluster.
 - **node-id**—Identification number of the node. It can be 0 or 1.
- **local**—Display information about the local node.
- **primary**—Display information about the primary node.
- **pic-status**—(Optional) Display status information for all FPCs or for the FPC in the specified slot (see `fpc-slot`).

Required Privilege Level

`view`

RELATED DOCUMENTATION

- Understanding Interfaces | 31

List of Sample Output

- `show chassis fpc` on page 883
- `show chassis fpc (SRX5600 and SRX5800 devices)` on page 883
- `show chassis fpc (SRX5400, SRX5600, and SRX5800 devices with SRX5K-MPC3-100G10G (IOC3) or SRX5K-MPC3-40G10G (IOC3))` on page 883
- `show chassis fpc detail 2` on page 884
- `show chassis fpc pic-status (SRX5600 and SRX5800 devices)` on page 884
- `show chassis fpc pic-status (SRX5600 and SRX5800 devices with SPC2)` on page 885
- `show chassis fpc pic-status (SRX5600 and SRX5800 devices with SRX5K-MPC)` on page 885
- `show chassis fpc pic-status (SRX5600 and SRX5800 devices when Express Path [formerly known as services offloading] is configured)` on page 886
- `show chassis fpc pic-status (with 20-Gigabit Ethernet MIC with SFP)` on page 886
- `show chassis fpc pic-status (SRX5400, SRX5600, and SRX5800 devices with SRX5K-MPC3-100G10G (IOC3) or SRX5K-MPC3-40G10G (IOC3 and when Express Path [formerly known as services offloading] is configured)` on page 887
- `show chassis fpc pic-status for HA (SRX5600 and SRX5800 devices)` on page 888
- `show chassis fpc pic-status for HA (SRX5400, SRX5600, and SRX5800 devices with SRX5K-MPC3-100G10G (IOC3) or SRX5K-MPC3-40G10G (IOC3)` on page 888

Output Fields

Table 47 on page 882 lists the output fields for the `show chassis fpc` command. Output fields are listed in the approximate order in which they appear.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot or Slot State</td>
<td>Slot number and state. The state can be one of the following conditions:</td>
</tr>
<tr>
<td></td>
<td>• Dead—Held in reset because of errors.</td>
</tr>
<tr>
<td></td>
<td>• Diag—Slot is being ignored while the device is running diagnostics.</td>
</tr>
<tr>
<td></td>
<td>• Dormant—Held in reset.</td>
</tr>
<tr>
<td></td>
<td>• Empty—No FPC is present.</td>
</tr>
<tr>
<td></td>
<td>• Online—FPC is online and running.</td>
</tr>
<tr>
<td></td>
<td>• Present—FPC is detected by the device, but is either not supported by the</td>
</tr>
<tr>
<td></td>
<td>current version of Junos OS or inserted in the wrong slot. The output also</td>
</tr>
<tr>
<td></td>
<td>states either Hardware Not Supported or Hardware Not In Right Slot. FPC</td>
</tr>
<tr>
<td></td>
<td>is coming up but not yet online.</td>
</tr>
<tr>
<td></td>
<td>• Probed—Probe is complete; awaiting restart of the Packet Forwarding Engine</td>
</tr>
<tr>
<td></td>
<td>(PFE).</td>
</tr>
<tr>
<td></td>
<td>• Probe-wait—Waiting to be probed.</td>
</tr>
<tr>
<td>Temp (C) or Temperature</td>
<td>Temperature of the air passing by the FPC, in degrees Celsius or in both Celsius</td>
</tr>
<tr>
<td></td>
<td>and Fahrenheit.</td>
</tr>
<tr>
<td>Total CPU Utilization (%)</td>
<td>Total percentage of CPU being used by the FPC’s processor.</td>
</tr>
<tr>
<td>Interrupt CPU Utilization (%)</td>
<td>Of the total CPU being used by the FPC’s processor, the percentage being used</td>
</tr>
<tr>
<td></td>
<td>for interrupts.</td>
</tr>
<tr>
<td>Memory DRAM (MB)</td>
<td>Total DRAM, in megabytes, available to the FPC’s processor.</td>
</tr>
<tr>
<td>Heap Utilization (%)</td>
<td>Percentage of heap space (dynamic memory) being used by the FPC’s processor.</td>
</tr>
<tr>
<td></td>
<td>If this number exceeds 80 percent, there may be a software problem (memory</td>
</tr>
<tr>
<td></td>
<td>leak).</td>
</tr>
<tr>
<td>Buffer Utilization (%)</td>
<td>Percentage of buffer space being used by the FPC’s processor for buffering</td>
</tr>
<tr>
<td></td>
<td>internal messages.</td>
</tr>
<tr>
<td>Start Time</td>
<td>Time when the Routing Engine detected that the FPC was running.</td>
</tr>
<tr>
<td>Uptime</td>
<td>How long the Routing Engine has been connected to the FPC and, therefore, how</td>
</tr>
<tr>
<td></td>
<td>long the FPC has been up and running.</td>
</tr>
<tr>
<td>PIC type</td>
<td>(pic-status output only) Type of FPC.</td>
</tr>
</tbody>
</table>
Sample Output

show chassis fpc

user@host> show chassis fpc

<table>
<thead>
<tr>
<th>Slot State</th>
<th>Temp (C)</th>
<th>CPU Utilization (%)</th>
<th>Memory Utilization (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Online</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Online</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Online</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show chassis fpc (SRX5600 and SRX5800 devices)

user@host> show chassis fpc

<table>
<thead>
<tr>
<th>Slot State</th>
<th>Temp (C)</th>
<th>CPU Utilization (%)</th>
<th>Memory Utilization (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Empty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Empty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Empty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Online</td>
<td>37</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4 Empty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Empty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Online</td>
<td>30</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>7 Empty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Empty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Empty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Empty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Empty</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show chassis fpc (SRX5400, SRX5600, and SRX5800 devices with SRX5K-MPC3-100G10G (IOC3) or SRX5K-MPC3-40G10G (IOC3))

user@host> show chassis fpc

<table>
<thead>
<tr>
<th>Slot State</th>
<th>Temp (C)</th>
<th>CPU Utilization (%)</th>
<th>CPU Utilization (%)</th>
<th>Memory Utilization (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Online</td>
<td>36</td>
<td>20</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>10 Online</td>
<td></td>
<td></td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>11 Online</td>
<td></td>
<td></td>
<td>1024</td>
<td></td>
</tr>
</tbody>
</table>
Sample Output

show chassis fpc detail 2

user@host> show chassis fpc detail 2

Slot 2 information:
 State Online
 Temperature 37
 Total CPU DRAM 1024 MB
 Total RLDRAM 0 MB
 Total DDR DRAM 0 MB
 Start time: 2012-07-18 07:18:50 PDT
 Uptime: 4 days, 21 hours, 51 minutes, 59 seconds
 Max Power Consumption 0 Watts

Sample Output

show chassis fpc pic-status (SRX5600 and SRX5800 devices)

user@host> show chassis fpc pic-status

Slot 3 Online SRX5k SPC
PIC 0 Online SPU Cp
PIC 1 Online SPU Flow
Slot 6 Online SRX5k DPC 4x 10GE
PIC 0 Online 1x 10GE(LAN/WAN) RichQ
PIC 1 Online 1x 10GE(LAN/WAN) RichQ
PIC 2 Online 1x 10GE(LAN/WAN) RichQ
PIC 3 Online 1x 10GE(LAN/WAN) RichQ
show chassis fpc pic-status (SRX5600 and SRX5800 devices with SPC2)

```
show chassis fpc pic-status

<table>
<thead>
<tr>
<th>Slot</th>
<th>Status</th>
<th>PIC 0</th>
<th>PIC 1</th>
<th>PIC 2</th>
<th>PIC 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Online</td>
<td>SRX5k DPC 40x 1GE</td>
<td>10x 1GE RichQ</td>
<td>10x 1GE RichQ</td>
<td>10x 1GE RichQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIC 0</td>
<td>PIC 1</td>
<td>PIC 2</td>
<td>PIC 3</td>
</tr>
<tr>
<td>0</td>
<td>Online</td>
<td>10x 1GE RichQ</td>
<td>10x 1GE RichQ</td>
<td>10x 1GE RichQ</td>
<td>10x 1GE RichQ</td>
</tr>
<tr>
<td>1</td>
<td>Online</td>
<td>10x 1GE RichQ</td>
<td>10x 1GE RichQ</td>
<td>10x 1GE RichQ</td>
<td>10x 1GE RichQ</td>
</tr>
<tr>
<td>2</td>
<td>Online</td>
<td>SRX5k SPC II</td>
<td>PIC 0</td>
<td>PIC 1</td>
<td>PIC 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Online</td>
<td>Online</td>
<td>Online</td>
<td>Online</td>
</tr>
<tr>
<td>0</td>
<td>Online</td>
<td>SPU Cp</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>1</td>
<td>Online</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>2</td>
<td>Online</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>3</td>
<td>Online</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>5</td>
<td>Online</td>
<td>SRX5k SPC</td>
<td>PIC 0</td>
<td>PIC 1</td>
<td>PIC 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Online</td>
<td>Online</td>
<td>Online</td>
<td>Online</td>
</tr>
<tr>
<td>0</td>
<td>Online</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>1</td>
<td>Online</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>2</td>
<td>Online</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>3</td>
<td>Online</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
</tr>
</tbody>
</table>
```

show chassis fpc pic-status (SRX5600 and SRX5800 devices with SRX5K-MPC)

```
show chassis fpc pic-status

<table>
<thead>
<tr>
<th>Slot</th>
<th>Status</th>
<th>PIC 0</th>
<th>PIC 1</th>
<th>PIC 2</th>
<th>PIC 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Online</td>
<td>SRX5k SPC II</td>
<td>PIC 0</td>
<td>PIC 1</td>
<td>PIC 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Online</td>
<td>Online</td>
<td>Online</td>
<td>Online</td>
</tr>
<tr>
<td>0</td>
<td>Online</td>
<td>SPU Cp</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>1</td>
<td>Online</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>2</td>
<td>Online</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>3</td>
<td>Online</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>1</td>
<td>Offline</td>
<td>SRX5k SPC II</td>
<td>PIC 0</td>
<td>PIC 1</td>
<td>PIC 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Offline</td>
<td>Online</td>
<td>Online</td>
<td>Online</td>
</tr>
<tr>
<td>0</td>
<td>Online</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>1</td>
<td>Online</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>2</td>
<td>Online</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>3</td>
<td>Online</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>2</td>
<td>Online</td>
<td>SRX5k DPC 4X 10GE</td>
<td>PIC 0</td>
<td>PIC 1</td>
<td>PIC 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Online</td>
<td>Online</td>
<td>Online</td>
<td>Online</td>
</tr>
<tr>
<td>0</td>
<td>Online</td>
<td>1x 10GE(LAN/WAN) RichQ</td>
<td>PIC 1</td>
<td>PIC 2</td>
<td>PIC 3</td>
</tr>
<tr>
<td>1</td>
<td>Online</td>
<td>1x 10GE(LAN/WAN) RichQ</td>
<td>PIC 1</td>
<td>PIC 2</td>
<td>PIC 3</td>
</tr>
<tr>
<td>2</td>
<td>Online</td>
<td>1x 10GE(LAN/WAN) RichQ</td>
<td>PIC 1</td>
<td>PIC 2</td>
<td>PIC 3</td>
</tr>
<tr>
<td>3</td>
<td>Online</td>
<td>1x 10GE(LAN/WAN) RichQ</td>
<td>PIC 1</td>
<td>PIC 2</td>
<td>PIC 3</td>
</tr>
<tr>
<td>6</td>
<td>Offline</td>
<td>SRX5k SPC II</td>
<td>PIC 0</td>
<td>PIC 1</td>
<td>PIC 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Offline</td>
<td>Online</td>
<td>Online</td>
<td>Online</td>
</tr>
</tbody>
</table>
show chassis fpc pic-status (SRX5600 and SRX5800 devices when Express Path [formerly known as services offloading] is configured)

user@host>  show chassis fpc pic-status

Slot 0  Offline  SRX5k DPC 40x 1GE
Slot 1  Online   SRX5k SPC II
  PIC 0  Online  SPU Cp
  PIC 1  Online  SPU Flow
  PIC 2  Online  SPU Flow
  PIC 3  Online  SPU Flow
Slot 2  Offline  SRX5k SPC
Slot 4  Online   SRX5k IOC3 24XGE+6XLG
  PIC 2  Online  3x 40GE QSFP+- np-cache/services-offload
  PIC 3  Online  3x 40GE QSFP+- np-cache/services-offload
Slot 5  Online   SRX5k IOC II
  PIC 0  Online  10x 1GE(LAN) SFP- np-cache/services-offload
  PIC 1  Online  10x 1GE(LAN) SFP- np-cache/services-offload
  PIC 2  Online  10x 10GE SFP+- np-cache/services-offload

show chassis fpc pic-status (with 20-Gigabit Ethernet MIC with SFP)

user@host>  show chassis fpc pic-status

node0:
----------------------------------------------------------------------------------------------------------------------------------
Slot 0  Online   SRX5k SPC II
  PIC 0  Online  SPU Cp
  PIC 1  Online  SPU Flow

node1:
----------------------------------------------------------------------------------------------------------------------------------
Slot 0  Online   SRX5k SPC II
  PIC 0  Online  SPU Cp
  PIC 1  Online  SPU Flow
  PIC 2  Online  SPU Flow
  PIC 3  Online  SPU Flow
Slot 4  Online   SRX5k IOC3 24XGE+6XLG
  PIC 2  Online  3x 40GE QSFP+- np-cache/services-offload
  PIC 3  Online  3x 40GE QSFP+- np-cache/services-offload
Slot 5  Online   SRX5k IOC II
  PIC 0  Online  10x 1GE(LAN) SFP- np-cache/services-offload
  PIC 1  Online  10x 1GE(LAN) SFP- np-cache/services-offload
  PIC 2  Online  10x 10GE SFP+- np-cache/services-offload

PIC 2  Online       SPU Flow
PIC 3  Online       SPU Flow
Slot 1  Offline      SRX5k SPC II
Slot 2  Online       SRX5k DPC 4X 10GE
   PIC 0  Online     1x 10GE (LAN/WAN) RichQ
   PIC 1  Online     1x 10GE (LAN/WAN) RichQ
   PIC 2  Online     1x 10GE (LAN/WAN) RichQ
   PIC 3  Online     1x 10GE (LAN/WAN) RichQ
Slot 9  Online       SRX5k IOC II
   PIC 0  Online     10x 1GE (LAN) SFP
   PIC 1  Online     10x 1GE (LAN) SFP
   PIC 2  Online     10x 1GE (LAN) SFP
   PIC 3  Online     10x 1GE (LAN) SFP
Slot 10 Online       SRX5k IOC II
   PIC 0  Online     10x 10GE SFP+
   PIC 2  Online     1x 100GE CFP
Slot 11 Offline      SRX5k IOC II

show chassis fpc pic-status
(SRX5400, SRX5600, and SRX5800 devices with SRX5K-MPC3-100G10G (IOC3) or SRX5K-MPC3-40G10G (IOC3 and when Express Path [formerly known as services offloading] is configured)

user@host> show chassis fpc pic-status

Slot 0  Offline      SRX5k DPC 40x 1GE
Slot 1  Online       SRX5k SPC II
   PIC 0  Online     SPU Cp
   PIC 1  Online     SPU Flow
   PIC 2  Online     SPU Flow
   PIC 3  Online     SPU Flow
Slot 2  Offline      SRX5k SPC
Slot 4  Online       SRX5k IOC3 24XGE+6XLG
   PIC 2  Online     3x 40GE QSFP++ np-cache/services-offload
   PIC 3  Online     3x 40GE QSFP++ np-cache/services-offload
Slot 5  Online       SRX5k IOC II
   PIC 0  Online     10x 1GE (LAN) SFP- np-cache/services-offload
   PIC 1  Online     10x 1GE (LAN) SFP- np-cache/services-offload
   PIC 2  Online     10x 10GE SFP+- np-cache/services-offload
Sample Output

```
show chassis fpc pic-status for HA (SRX5600 and SRX5800 devices)
```
```
user@host> show chassis fpc pic-status

node0:
--
Slot 4 Online SRX5k DPC 40x 1GE
 PIC 0 Online 10x 1GE RichQ
 PIC 1 Online 10x 1GE RichQ
 PIC 2 Online 10x 1GE RichQ
 PIC 3 Online 10x 1GE RichQ
Slot 5 Online SRX5k SPC
 PIC 0 Online SPU Cp-Flow
 PIC 1 Online SPU Flow

node1:
--
Slot 4 Online SRX5k DPC 40x 1GE
 PIC 0 Online 10x 1GE RichQ
 PIC 1 Online 10x 1GE RichQ
 PIC 2 Online 10x 1GE RichQ
 PIC 3 Online 10x 1GE RichQ
Slot 5 Online SRX5k SPC
 PIC 0 Online SPU Cp-Flow
 PIC 1 Online SPU Flow
```

```
show chassis fpc pic-status for HA
(SRX5400, SRX5600, and SRX5800 devices with SRX5K-MPC3-100G10G (IOC3) or SRX5K-MPC3-40G10G (IOC3))
```
```
user@host> show chassis fpc pic-status

user@host> show chassis fpc pic-status
node0:
--
Slot 2 Online SRX5k IOC3 24XGE+6XLG
 PIC 0 Online 12x 10GE SFP+
 PIC 1 Online 12x 10GE SFP+
 PIC 2 Offline 3x 40GE QSFP+
 PIC 3 Offline 3x 40GE QSFP+
Slot 4 Online SRX5k IOC II
 PIC 2 Online 10x 10GE SFP+
Slot 5 Online SRX5k SPC II
```
<table>
<thead>
<tr>
<th>PIC 0</th>
<th>Online</th>
<th>SPU Cp</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC 1</td>
<td>Online</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td>Offline</td>
<td></td>
</tr>
<tr>
<td>PIC 3</td>
<td>Offline</td>
<td></td>
</tr>
</tbody>
</table>

node1:

<table>
<thead>
<tr>
<th>Slot 2</th>
<th>Online</th>
<th>SRX5k IOC3 24XGE+6XLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC 0</td>
<td>Online</td>
<td>12x 10GE SFP+</td>
</tr>
<tr>
<td>PIC 1</td>
<td>Online</td>
<td>12x 10GE SFP+</td>
</tr>
<tr>
<td>PIC 2</td>
<td>Offline</td>
<td>3x 40GE QSFP+</td>
</tr>
<tr>
<td>PIC 3</td>
<td>Offline</td>
<td>3x 40GE QSFP+</td>
</tr>
<tr>
<td>Slot 4</td>
<td>Online</td>
<td>SRX5k IOC II</td>
</tr>
<tr>
<td>PIC 2</td>
<td>Online</td>
<td>10x 10GE SFP+</td>
</tr>
<tr>
<td>Slot 5</td>
<td>Online</td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>PIC 0</td>
<td>Online</td>
<td>SPU Cp</td>
</tr>
<tr>
<td>PIC 1</td>
<td>Online</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td>Offline</td>
<td></td>
</tr>
<tr>
<td>PIC 3</td>
<td>Offline</td>
<td></td>
</tr>
</tbody>
</table>
**show chassis hardware (View)**

**Syntax**

```
show chassis hardware
<clei-models | detail | extensive | models | node (node-id | all | local | primary)>
```

**Release Information**

Command introduced in Junos OS Release 9.2. Command modified in Junos OS Release 9.2 to include `node` option.

**Description**

Display chassis hardware information.

**Options**

- **clei-models**—(Optional) Display Common Language Equipment Identifier Code (CLEI) barcode and model number for orderable field-replaceable units (FRUs).
- **detail | extensive**—(Optional) Display the specified level of output.
- **models**—(Optional) Display model numbers and part numbers for orderable FRUs.
- **node**—(Optional) For chassis cluster configurations, display chassis hardware information on a specific node (device) in the cluster.
  - **node-id**—Identification number of the node. It can be 0 or 1.
  - **local**—Display information about the local node.
  - **primary**—Display information about the primary node.

**Required Privilege Level**

`view`

**RELATED DOCUMENTATION**

- *Understanding Traffic Processing on Security Devices*
- *Interface Naming Conventions* | 37

**Output Fields**

Table 48 on page 891 lists the output fields for the `show chassis hardware` command. Output fields are listed in the approximate order in which they appear.
### Table 48: show chassis hardware Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Item</strong></td>
<td>Chassis component—Information about the backplane; power supplies; fan trays; Routing Engine; each Physical Interface Module (PIM)—reported as FPC and PIC—and each fan, blower, and impeller.</td>
</tr>
<tr>
<td><strong>Version</strong></td>
<td>Revision level of the chassis component.</td>
</tr>
<tr>
<td><strong>Part Number</strong></td>
<td>Part number for the chassis component.</td>
</tr>
<tr>
<td><strong>Serial Number</strong></td>
<td>Serial number of the chassis component. The serial number of the backplane is also the serial number of the device chassis. Use this serial number when you need to contact Juniper Networks Customer Support about the device chassis.</td>
</tr>
<tr>
<td><strong>Assb ID or Assembly ID</strong></td>
<td>Identification number that describes the FRU hardware.</td>
</tr>
<tr>
<td><strong>FRU model number</strong></td>
<td>Model number of FRU hardware component.</td>
</tr>
<tr>
<td><strong>CLEI code</strong></td>
<td>Common Language Equipment Identifier code. This value is displayed only for hardware components that use ID EEPROM format v2. This value is not displayed for components that use ID EEPROM format v1.</td>
</tr>
<tr>
<td><strong>EEPROM Version</strong></td>
<td>ID EEPROM version used by hardware component: 0x01 (version 1) or 0x02 (version 2).</td>
</tr>
</tbody>
</table>
Table 48: show chassis hardware Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
</tr>
</tbody>
</table>
Table 48: show chassis hardware Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief description of the hardware item:</td>
<td></td>
</tr>
<tr>
<td>• Type of power supply.</td>
<td></td>
</tr>
<tr>
<td>• Switch Control Board (SCB)</td>
<td></td>
</tr>
</tbody>
</table>

Starting with Junos OS Release 12.1X47-D15 and Junos OS Release 17.3R1, the SRX5K-SCBE (SCB2) is introduced.

• There are three SCB slots in SRX5800 devices. The third slot can be used for an SCB or an FPC. When an SRX5K-SCB was used, the third SCB slot was used as an FPC. SCB redundancy is provided in chassis cluster mode.
• With an SCB2, a third SCB is supported. If a third SCB is plugged in, it provides intra-chassis fabric redundancy.
• The Ethernet switch in the SCB2 provides the Ethernet connectivity among all the FPCs and the Routing Engine. The Routing Engine uses this connectivity to distribute forwarding and routing tables to the FPCs. The FPCs use this connectivity to send exception packets to the Routing Engine.
• Fabric connects all FPCs in the data plane. The Fabric Manager executes on the Routing Engine and controls the fabric system in the chassis. Packet Forwarding Engines on the FPC and fabric planes on the SCB are connected through HSL2 channels.
• SCB2 supports HSL2 with both 3.11 Gbps and 6.22 Gbps (SerDes) link speed and various HSL2 modes. When an FPC is brought online, the link speed and HSL2 mode are determined by the type of FPC.

Starting with Junos OS Release 15.1X49-D10 and Junos OS Release 17.3R1, the SRX5K-SCB3 (SCB3) with enhanced midplane is introduced.

• All existing SCB software that is supported by SCB2 is supported on SCB3.
• SRX5K-RE-1800X4 mixed Routing Engine use is not supported.
• SCB3 works with the SRX5K-MPC (IOC2), SRX5K-MPC3-100G10G (IOC3), SRX5K-MPC3-40G10G (IOC3), and SRX5K-SPC-4-15-320 (SPC2) with current midplanes and the new enhanced midplanes.
• Mixed SCB use is not supported. If an SCB2 and an SCB3 are used, the system will only power on the master Routing Engine's SCB and will power off the other SCBs. Only the SCB in slot 0 is powered on and a system log is generated.
• SCB3 supports up to 400 Gbps per slot with old midplanes and up to 500 Gbps per slot with new midplanes.
• SCB3 supports fabric intra-chassis redundancy.
• SCB3 supports the same chassis cluster function as the SRX5K-SCB (SCB1) and the SRX5K-SCBE (SCB2), except for in-service software upgrade (ISSU)
### Table 48: show chassis hardware Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>and in-service hardware upgrade (ISHU).</td>
</tr>
<tr>
<td></td>
<td>• SCB3 has a second external Ethernet port.</td>
</tr>
<tr>
<td></td>
<td>• Fabric bandwidth increasing mode is not supported.</td>
</tr>
</tbody>
</table>

Starting in Junos OS 19.3R1, SRX5K-SCB4 is supported on SRX5600 and SRX5800 devices along with SRX5K-SPC3.

**SRX5K-SCB4:**

- Interoperate with SRX5K-RE3-128G, SRX5K-RE-1800X4, IOC2, IOC3, IOC4, SPC2, and SPC3. SCB4 is compatible with all midplanes and interoperate with existing PEMs, fan trays, and front panel displays.
- Does not interoperate with SCB, SCB2, and SCB3.
- Supports 480-Gbps link speed per slot.
- Supports 1-Gigabit Ethernet interfaces speed with SRX5K-RE-1800X4 and 1-Gigabit, 2.5-Gigabit, and 10-Gigabit Ethernet speeds with SRX5K-RE3-128G.
- Support ISHU and ISSU in chassis cluster.
- Supports fabric bandwidth mode and redundant fabric mode on SRX5600 and SRX5800 devices. The bandwidth mode is the new default mode which is necessary to configure redundant mode in setting up the chassis cluster successfully.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Type of Flexible PIC Concentrator (FPC), Physical Interface Card (PIC), Modular Interface Cards (MICs), and PIMs.</td>
</tr>
</tbody>
</table>
Table 48: show chassis hardware Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• IOCs</td>
<td>Starting with Junos OS Release 15.1X49-D10 and Junos OS Release 17.3R1, the SRX5K-MPC3-100G10G (IOC3) and the SRX5K-MPC3-40G10G (IOC3) are introduced.</td>
</tr>
<tr>
<td></td>
<td>• IOC3 has two types of IOC3 MPCs, which have different built-in MICs: the 24x10GE + 6x40GE MPC and the 2x100GE + 4x10GE MPC.</td>
</tr>
<tr>
<td></td>
<td>• IOC3 supports SCB3 and SRX5000 line backplane and enhanced backplane.</td>
</tr>
<tr>
<td></td>
<td>• IOC3 can only work with SRX5000 line SCB2 and SCB3. If an SRX5000 line SCB is detected, IOC3 is offline, an FPC misconfiguration alarm is raised, and a system log message is generated.</td>
</tr>
<tr>
<td></td>
<td>• IOC3 interoperates with SCB2 and SCB3.</td>
</tr>
<tr>
<td></td>
<td>• IOC3 interoperates with the SRX5K-SPC-4-15-320 (SPC2) and the SRX5K-MPC (IOC2).</td>
</tr>
<tr>
<td></td>
<td>• The maximum power consumption for one IOC3 is 645W. An enhanced power module must be used.</td>
</tr>
<tr>
<td></td>
<td>• The IOC3 does not support the following command to set a PIC to go offline or online:</td>
</tr>
<tr>
<td></td>
<td>request chassis pic fpc-slot &lt;fpc-slot&gt; pic-slot &lt;pic-slot&gt; &lt;offline</td>
</tr>
<tr>
<td></td>
<td>• IOC3 supports 240 Gbps of throughput with the enhanced SRX5000 line backplane.</td>
</tr>
<tr>
<td></td>
<td>• Chassis cluster functions the same as for the SRX5000 line IOC2.</td>
</tr>
<tr>
<td></td>
<td>• IOC3 supports intra-chassis and inter-chassis fabric redundancy mode.</td>
</tr>
<tr>
<td></td>
<td>• IOC3 supports ISSU and ISHU in chassis cluster mode.</td>
</tr>
<tr>
<td></td>
<td>• IOC3 supports intra-FPC and Inter-FPC Express Path (previously known as services offloading) with IPv4.</td>
</tr>
<tr>
<td></td>
<td>• NAT of IPv4 and IPv6 in normal mode and IPv4 for Express Path mode.</td>
</tr>
<tr>
<td></td>
<td>• All four PICs on the 24x10GE + 6x40GE cannot be powered on. A maximum of two PICs can be powered on at the same time.</td>
</tr>
<tr>
<td></td>
<td>Use the set chassis fpc &lt;slot&gt; pic &lt;pic&gt; power off command to choose the PICs you want to power on.</td>
</tr>
<tr>
<td></td>
<td>• Fabric bandwidth increasing mode is not supported on IOC3.</td>
</tr>
<tr>
<td>• SRX Clustering Module (SCM)</td>
<td></td>
</tr>
<tr>
<td>• Fan tray</td>
<td>Starting in Junos OS Release 19.3R1, the SRX5K-IOC4-10G and SRX5K-IOC4-MRAT line cards are supported along with SRX5K-SPC3 on the SRX5000 series devices.</td>
</tr>
</tbody>
</table>
Table 48: show chassis hardware Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX5K-IOC4-10G:</td>
<td></td>
</tr>
<tr>
<td>• Supports 480-Gbps speed.</td>
<td></td>
</tr>
<tr>
<td>• Supports 40X10GE Interfaces with SCB3.</td>
<td></td>
</tr>
<tr>
<td>• 40 10-Gigabit Ethernet port provides 10-Gigabit Ethernet MACsec support.</td>
<td></td>
</tr>
<tr>
<td>• Supports reth and aggregated interfaces on the chassis cluster.</td>
<td></td>
</tr>
<tr>
<td>• Supports ISSU and logical system on the chassis cluster.</td>
<td></td>
</tr>
<tr>
<td>• Does not support SCB2.</td>
<td></td>
</tr>
<tr>
<td>• SRX5K-IOC4-MRAT with SCB3 supports 10-Gigabit, 40-Gigabit, and 100-Gigabit Ethernet Interfaces.</td>
<td></td>
</tr>
<tr>
<td>• For hosts, the Routing Engine type.</td>
<td></td>
</tr>
<tr>
<td>Starting with Junos OS Release 12.1X47-D15 and Junos OS Release 17.3R1, the SRX5K-RE-1800X4 Routing Engine is introduced.</td>
<td></td>
</tr>
<tr>
<td>• The SRX5K-RE-1800X4 has an Intel Quad core Xeon processor, 16 GB of DRAM, and a 128-GB solid-state drive (SSD).</td>
<td></td>
</tr>
<tr>
<td>The number 1800 refers to the speed of the processor (1.8 GHz). The maximum required power for this Routing Engine is 90W.</td>
<td></td>
</tr>
<tr>
<td>NOTE: The SRX5K-RE-1800X4 provides significantly better performance than the previously used Routing Engine, even with a single core.</td>
<td></td>
</tr>
<tr>
<td>Starting in Junos OS Release 19.3R1, SRX5K-RE3-128G Routing Engine is supported along with SRX5K-SPC3 on the SRX5000 series devices.</td>
<td></td>
</tr>
<tr>
<td>SRX5K-RE3-128G:</td>
<td></td>
</tr>
<tr>
<td>• Provides improved control plane performance and scalability.</td>
<td></td>
</tr>
<tr>
<td>SRX5K-RE3-128G has Intel’s Haswell-EP based processor with six cores.</td>
<td></td>
</tr>
<tr>
<td>• Supports two 200G SSDs to store log files and 128-GB of memory for storing routing and forwarding tables and for other routing engines.</td>
<td></td>
</tr>
<tr>
<td>• Interoperates with SCB3, SCB4, SRX5K-RE3-128G, SPC2, SPC3, IOC2, IOC3, and IOC4.</td>
<td></td>
</tr>
<tr>
<td>• Does not support SCB2 and SRX5K-RE-1800X4.</td>
<td></td>
</tr>
</tbody>
</table>
show chassis hardware

**show chassis hardware (SRX5800)**

```
user@host> show chassis hardware

node0:

```
<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td></td>
<td>JN1267B0FAGA</td>
<td>SRX5800</td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 42</td>
<td>760-063937</td>
<td>ACRL3065</td>
<td>Enhanced SRX5800 Backplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 05</td>
<td>760-061272</td>
<td>CAHE4860</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PDM</td>
<td>Rev 01</td>
<td>740-063049</td>
<td>QCS2209509D</td>
<td>Power Distribution Module</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 04</td>
<td>740-034724</td>
<td>QCS171002016</td>
<td>PS 4.1kW; 200-240V AC in</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 11</td>
<td>740-027760</td>
<td>QCS1825N07S</td>
<td>PS 4.1kW; 200-240V AC in</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 01</td>
<td>750-095568</td>
<td>CALK8884</td>
<td>SRX5k RE-2000x6</td>
</tr>
<tr>
<td>Routing Engine 1</td>
<td>REV 01</td>
<td>750-095568</td>
<td>CADZ9076</td>
<td>SRX5k RE-2000x6</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 26</td>
<td>750-031391</td>
<td>CALV3002</td>
<td>SRX5k SCB4</td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 26</td>
<td>750-031391</td>
<td>CALV3009</td>
<td>SRX5k SCB4</td>
</tr>
<tr>
<td>FPC 2</td>
<td>REV 28</td>
<td>750-073435</td>
<td>CALS4630</td>
<td>SPC3</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SRX5k vCPP Broadwell</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Cp-Flow</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 3</td>
<td>REV 17</td>
<td>750-044175</td>
<td>CABLE7777</td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SRX5k DPC PPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 3</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 4</td>
<td>REV 08</td>
<td>750-061262</td>
<td>CAFD8147</td>
<td>SRX5k IOC II</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 02</td>
<td>711-061263</td>
<td>CAFV7488</td>
<td>SRX5k MPC PMB</td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 03</td>
<td>750-055732</td>
<td>CAFV9369</td>
<td>20x 1GE(LAN) SFP</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>10x 1GE(LAN) SFP</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 02</td>
<td>740-011613</td>
<td>PNB1GJR</td>
<td>SFP-SX</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>10x 1GE(LAN) SFP</td>
</tr>
<tr>
<td>FPC 5</td>
<td>REV 10</td>
<td>750-062242</td>
<td>CAXX2328</td>
<td>SRX5k IOC3 2CGE+4XGE</td>
</tr>
<tr>
<td>Item</td>
<td>Version</td>
<td>Part number</td>
<td>Serial number</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Chassis</td>
<td></td>
<td></td>
<td></td>
<td>SRX5800</td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 42</td>
<td>760-063937</td>
<td>ACRL3068</td>
<td>Enhanced SRX5800 Backplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 05</td>
<td>760-061272</td>
<td>CAJX9988</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PDM</td>
<td>Rev 01</td>
<td>740-063049</td>
<td>QCS2209507A</td>
<td>Power Distribution Module</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 11</td>
<td>740-027760</td>
<td>QCS1822N0EY</td>
<td>PS 4.1kW; 200-240V AC in</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 03</td>
<td>740-034724</td>
<td>QCS17020203F</td>
<td>PS 4.1kW; 200-240V AC in</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 01</td>
<td>750-095568</td>
<td>CALK8904</td>
<td>SRX5k RE-2000x6</td>
</tr>
<tr>
<td>Routing Engine 1</td>
<td>REV 01</td>
<td>750-095568</td>
<td>CAD29076</td>
<td>SRX5k RE-2000x6</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 26</td>
<td>750-031391</td>
<td>CALV3010</td>
<td>SRX5k SCB4</td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 26</td>
<td>750-031391</td>
<td>CALV3000</td>
<td>SRX5k SCB4</td>
</tr>
<tr>
<td>FPC 2</td>
<td>REV 28</td>
<td>750-073435</td>
<td>CAKZ9620</td>
<td>SPC3</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td></td>
<td>SRX5k vCPP Broadwell</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td></td>
<td></td>
<td>SPU Cp-Flow</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 3</td>
<td>REV 18</td>
<td>750-054877</td>
<td>CACH4082</td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td></td>
<td>SRX5k DPC PPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td></td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 3</td>
<td></td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
</tbody>
</table>
### show chassis hardware (SRX5600 and SRX5800 devices for SRX5K-MPC)

```
user@host> show chassis hardware
```

#### Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>JN12170EAAGA</td>
<td>SRX 5800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 01</td>
<td>710-041799</td>
<td>ACAX3849</td>
<td>SRX 5800 Backplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 01</td>
<td>710-024632</td>
<td>CAAAX7297</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PDM</td>
<td>Rev 03</td>
<td>740-013110</td>
<td>QCS170250DU</td>
<td>Power Distribution Module</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 03</td>
<td>740-034724</td>
<td>QCS17020203F</td>
<td>PS 4.1kW; 200-240V AC in</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 03</td>
<td>740-034724</td>
<td>QCS17020203C</td>
<td>PS 4.1kW; 200-240V AC in</td>
</tr>
<tr>
<td>PEM 2</td>
<td>Rev 04</td>
<td>740-034724</td>
<td>QCS17100200A</td>
<td>PS 4.1kW; 200-240V AC in</td>
</tr>
<tr>
<td>PEM 3</td>
<td>Rev 03</td>
<td>740-034724</td>
<td>QCS17080200M</td>
<td>PS 4.1kW; 200-240V AC in</td>
</tr>
</tbody>
</table>

*Enhanced Fan Tray*
<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
<th>Part Number</th>
<th>Revision</th>
<th>PIC Number</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing Engine 0 REV 11</td>
<td>740-023530</td>
<td>9012047437</td>
<td></td>
<td></td>
<td>SRX5k RE-13-20</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 09</td>
<td>710-024802</td>
<td>CAA7202</td>
<td></td>
<td>SRX5k SCB</td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 09</td>
<td>710-024802</td>
<td>CAA7157</td>
<td></td>
<td>SRX5k SCB</td>
</tr>
<tr>
<td>FPC 0</td>
<td>REV 07</td>
<td>750-044175</td>
<td>CAAD0791</td>
<td></td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>SRX5k DPC PPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>SPU Cp</td>
</tr>
<tr>
<td>PIC 1</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 3</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 1</td>
<td>REV 07</td>
<td>750-044175</td>
<td>CAAD0751</td>
<td></td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>SRX5k DPC PPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 1</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 3</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 2</td>
<td>REV 28</td>
<td>750-020751</td>
<td>CAAW1817</td>
<td></td>
<td>SRX5k DPC 4X 10GE</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 04</td>
<td>710-024633</td>
<td>CAAZ5269</td>
<td></td>
<td>SRX5k DPC PMB</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>1x 10GE(LAN/WAN) RichQ</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 02</td>
<td>740-014289</td>
<td>T10A0040</td>
<td></td>
<td>XFP-10G-SR</td>
</tr>
<tr>
<td>PIC 1</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>1x 10GE(LAN/WAN) RichQ</td>
</tr>
<tr>
<td>PIC 2</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>1x 10GE(LAN/WAN) RichQ</td>
</tr>
<tr>
<td>PIC 3</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>1x 10GE(LAN/WAN) RichQ</td>
</tr>
<tr>
<td>FPC 6</td>
<td>REV 02</td>
<td>750-044175</td>
<td>ZY2552</td>
<td></td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>SRX5k DPC PPC</td>
</tr>
<tr>
<td>FPC 9</td>
<td>REV 10</td>
<td>750-044175</td>
<td>CAAP5932</td>
<td></td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>SRX5k DPC PPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 1</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 3</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 10</td>
<td>REV 22</td>
<td>750-043157</td>
<td>ZH8192</td>
<td></td>
<td>SRX5k IOC II</td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 01</td>
<td>750-049488</td>
<td>YZ2084</td>
<td></td>
<td>10x 10GE SFP+</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>10x 10GE SFP+</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AMB0HG3</td>
<td></td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 1</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AM20B6F</td>
<td></td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>MIC 1</td>
<td>REV 19</td>
<td>750-049486</td>
<td>CAAH3504</td>
<td></td>
<td>1x 100GE CFP</td>
</tr>
<tr>
<td>PIC 2</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>1x 100GE CFP</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 01</td>
<td>740-035329</td>
<td>X000D375</td>
<td></td>
<td>CFP-100G-SR10</td>
</tr>
<tr>
<td>FPC 11</td>
<td>REV 07.04.07</td>
<td>750-043157</td>
<td>CAAJ8771</td>
<td></td>
<td>SRX5k IOC II</td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 19</td>
<td>750-049486</td>
<td>CAAH0979</td>
<td></td>
<td>1x 100GE CFP</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td>1x 100GE CFP</td>
</tr>
</tbody>
</table>
show chassis hardware (with 20-Gigabit Ethernet MIC with SFP)

user@host> show chassis hardware

Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td>JN108DA5AAGA</td>
<td>SRX 5800</td>
<td>SRX 5800</td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 02</td>
<td>710-013698</td>
<td>TR0037</td>
<td>SRX 5600 Midplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 02</td>
<td>710-014974</td>
<td>JY4635</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PDM</td>
<td>Rev 02</td>
<td>740-013110</td>
<td>QCS10465005</td>
<td>Power Distribution Module</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 03</td>
<td>740-023514</td>
<td>QCS11154040</td>
<td>PS 1.7kW; 200-240VAC in</td>
</tr>
<tr>
<td>PEM 2</td>
<td>Rev 02</td>
<td>740-023514</td>
<td>QCS10504014</td>
<td>PS 1.7kW; 200-240VAC in</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>Rev 05</td>
<td>740-015113</td>
<td>1000681023</td>
<td>RE-S-1300</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 05</td>
<td>710-013385</td>
<td>JY4775</td>
<td>SRX5k SCB</td>
</tr>
<tr>
<td>FPC 1</td>
<td>REV 17</td>
<td>750-020751</td>
<td>WZ6349</td>
<td>SRX5k DPC 4X 10GE</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 02</td>
<td>710-024633</td>
<td>W20718</td>
<td>SRX5k DPC PMB</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>1x 10GE(LAN/WAN) RichQ</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td></td>
<td>C724XM088</td>
<td></td>
<td>XFP-10G-SR</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td></td>
<td>1x 10GE(LAN/WAN) RichQ</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 02</td>
<td>740-011571</td>
<td>C831XJ08S</td>
<td>XFP-10G-SR</td>
</tr>
<tr>
<td>PIC 2</td>
<td></td>
<td>BUILTIN</td>
<td></td>
<td>1x 10GE(LAN/WAN) RichQ</td>
</tr>
<tr>
<td>PIC 3</td>
<td></td>
<td>BUILTIN</td>
<td></td>
<td>1x 10GE(LAN/WAN) RichQ</td>
</tr>
<tr>
<td>FPC 3</td>
<td>REV 22</td>
<td>750-043157</td>
<td>ZH8189</td>
<td>SRX5k IOC II</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 06</td>
<td>711-043360</td>
<td>YX3912</td>
<td>SRX5k MPC PMB</td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 01</td>
<td>750-055732</td>
<td>CACF9115</td>
<td>20x 1GE(LAN) SFP</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>10x 1GE(LAN) SFP</td>
</tr>
<tr>
<td>Xcvr 2</td>
<td>REV 02</td>
<td>740-013111</td>
<td>B358549</td>
<td>SFP-T</td>
</tr>
<tr>
<td>Xcvr 9</td>
<td>REV 02</td>
<td>740-011613</td>
<td>PNB1FQS</td>
<td>SFP-SX</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>10x 1GE(LAN) SFP</td>
</tr>
<tr>
<td>Xcvr 9</td>
<td>REV 02</td>
<td>740-011613</td>
<td>PNB1FFF</td>
<td>SFP-SX</td>
</tr>
<tr>
<td>FPC 5</td>
<td>REV 01</td>
<td>750-027945</td>
<td>JW9665</td>
<td>SRX5k FIOC</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td></td>
<td>SRX5k SPC</td>
</tr>
<tr>
<td>FPC 8</td>
<td>REV 08</td>
<td>750-023996</td>
<td>XA7234</td>
<td>SRX5k DPC PMB</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 02</td>
<td>710-024633</td>
<td>XA1599</td>
<td>SRX5k DPC PMB</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Cp-Flow</td>
</tr>
</tbody>
</table>
show chassis hardware
(SRX5600 and SRX5800 devices with SRX5000 line SRX5K-SCBE [SCB2] and SRX5K-RE-1800X4 [RE2])

user@host> show chassis hardware

node0:

Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>JN1251EA1AGB</td>
<td>SRX5600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 01</td>
<td>760-063936</td>
<td>ACRE2657</td>
<td>Enhanced SRX5600 Midplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 01</td>
<td>710-024631</td>
<td>CABY3551</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 03</td>
<td>740-034701QCS13380901P</td>
<td>PS 1.4-2.6kW; 90-264V AC</td>
<td></td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 03</td>
<td>740-034701QCS133809019</td>
<td>PS 1.4-2.6kW; 90-264V AC</td>
<td></td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 02</td>
<td>740-056658</td>
<td>9009210105</td>
<td>SRX5k RE-1800X4</td>
</tr>
<tr>
<td>Routing Engine 1</td>
<td>REV 02</td>
<td>740-056658</td>
<td>9013115551</td>
<td>SRX5k RE-1800X4</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 01</td>
<td>750-062257</td>
<td>CADW3663</td>
<td>SRX5k SCB3</td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 01</td>
<td>750-062257</td>
<td>CADZ3263</td>
<td>SRX5k SCB3</td>
</tr>
<tr>
<td>FPC 0</td>
<td>REV 18</td>
<td>750-054877</td>
<td>CABG6043</td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SRX5k DPC PPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Cp</td>
</tr>
<tr>
<td>PIC 1</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 3</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 1</td>
<td>REV 01</td>
<td>750-062243</td>
<td>CAEE5918</td>
<td>SRX5k IOC3 24XGE+6XLG</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 02</td>
<td>711-062244</td>
<td>CADX8509</td>
<td>RPMC PMB</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>12x 10GE SFP+</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 01</td>
<td>740-031980</td>
<td>273363A01891</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 1</td>
<td>REV 01</td>
<td>740-031980</td>
<td>273363A01915</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 2</td>
<td>REV 01</td>
<td>740-031980</td>
<td>ANAOBK6</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 3</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AP407GA</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 9</td>
<td>REV 01</td>
<td>740-021308</td>
<td>MUC20G1</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>PIC 1</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>12x 10GE SFP+</td>
</tr>
<tr>
<td>PIC 2</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>3x 40GE QSFP+</td>
</tr>
<tr>
<td>PIC 3</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>3x 40GE QSFP+</td>
</tr>
<tr>
<td>WAN MEZZ</td>
<td>REV 15</td>
<td>750-049136</td>
<td>CAEE5845</td>
<td>MPC5E 24XGE OTN Mezz</td>
</tr>
<tr>
<td>FPC 3</td>
<td>REV 11</td>
<td>750-043157</td>
<td>CACL7452</td>
<td>SRX5k IOC II</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 04</td>
<td>711-043360</td>
<td>CACP1977</td>
<td>SRX5k MPC PMB</td>
</tr>
<tr>
<td>Item</td>
<td>Version</td>
<td>Part number</td>
<td>Serial number</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Chassis</td>
<td></td>
<td>JN124FE77AGB</td>
<td></td>
<td>SRX5600</td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 01</td>
<td>760-063936</td>
<td>ACRE2970</td>
<td>Enhanced SRX5600 Midplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 01</td>
<td>710-024631</td>
<td>CABY3552</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 03</td>
<td>740-034701</td>
<td>QCS133809028</td>
<td>PS 1.4-2.6kW; 90-264V AC</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 03</td>
<td>740-034701</td>
<td>QCS133809027</td>
<td>PS 1.4-2.6kW; 90-264V AC</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 02</td>
<td>740-056658</td>
<td>9009218294</td>
<td>SRX5k RE-1800X4</td>
</tr>
<tr>
<td>Routing Engine 1</td>
<td>REV 02</td>
<td>740-056658</td>
<td>9013104758</td>
<td>SRX5k RE-1800X4</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 01</td>
<td>750-062257</td>
<td>CAEB8180</td>
<td>SRX5k SCB3</td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 01</td>
<td>750-062257</td>
<td>CADZ3334</td>
<td>SRX5k SCB3</td>
</tr>
<tr>
<td>FPC 0</td>
<td>REV 18</td>
<td>750-054877</td>
<td>CACJ9834</td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SRX5k DPC PPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Cp</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 3</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 1</td>
<td>REV 01</td>
<td>750-062243</td>
<td>CAEB0981</td>
<td>SRX5k IOC3 24XGE+6XLG</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 02</td>
<td>711-062244</td>
<td>CAEA4644</td>
<td>RMPC PMB</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>12x 10GE SFP+</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AP41BLH</td>
<td>SFP++10G-SR</td>
</tr>
<tr>
<td>Xcvr 1</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AQ400SL</td>
<td>SFP++10G-SR</td>
</tr>
<tr>
<td>Xcvr 2</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AP422LJ</td>
<td>SFP++10G-SR</td>
</tr>
<tr>
<td>Xcvr 3</td>
<td>REV 01</td>
<td>740-021308</td>
<td>AMG0RBT</td>
<td>SFP++10G-SR</td>
</tr>
<tr>
<td>Xcvr 9</td>
<td>REV 01</td>
<td>740-021308</td>
<td>MUC2FRG</td>
<td>SFP++10G-SR</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>12x 10GE SFP+</td>
</tr>
</tbody>
</table>
show chassis hardware
(SRX5400, SRX5600, and SRX5800 devices with SRX5000 line SRX5K-SCB3 [SCB3] with enhanced midplanes and SRX5K-MPC3-100G10G [IOC3] or SRX5K-MPC3-40G10G [IOC3])

user@host> show chassis hardware

node0:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>JN1250870AGB</td>
<td>SRX5600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 01</td>
<td>760-063936</td>
<td>ACRE2578</td>
<td>Enhanced SRX5600 Midplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 02</td>
<td>710-017254</td>
<td>KD9027</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 03</td>
<td>740-034701</td>
<td>QCS13090900T</td>
<td>PS 1.4-2.6kW; 90-264V A</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 03</td>
<td>740-034701</td>
<td>QCS13090904T</td>
<td>PS 1.4-2.6kW; 90-264V A</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 01</td>
<td>740-056658</td>
<td>9009196496</td>
<td>SRX5k RE-1800X4</td>
</tr>
<tr>
<td>Item</td>
<td>Version</td>
<td>Part number</td>
<td>Serial number</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Chassis</td>
<td>JN124FEC0AGB</td>
<td></td>
<td></td>
<td>SRX5600</td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 01</td>
<td>760-063936</td>
<td>ACRE2946</td>
<td>Enhanced SRX5600 Midplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>test</td>
<td>710-017254</td>
<td>test</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 01</td>
<td>740-038623</td>
<td>MOC13156230449</td>
<td>3x 40GE QSFP+</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 01</td>
<td>740-038623</td>
<td>MOC13156230449</td>
<td>3x 40GE QSFP+</td>
</tr>
<tr>
<td>Routing Engine</td>
<td>REV 01</td>
<td>740-049488</td>
<td></td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>Fan Tray</td>
<td></td>
<td></td>
<td></td>
<td>Enhanced Fan Tray</td>
</tr>
</tbody>
</table>

node1:

Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>JN124FEC0AGB</td>
<td></td>
<td></td>
<td>SRX5600</td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 01</td>
<td>760-063936</td>
<td>ACRE2946</td>
<td>Enhanced SRX5600 Midplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>test</td>
<td>710-017254</td>
<td>test</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 01</td>
<td>740-038623</td>
<td>MOC13156230449</td>
<td>3x 40GE QSFP+</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 01</td>
<td>740-038623</td>
<td>MOC13156230449</td>
<td>3x 40GE QSFP+</td>
</tr>
<tr>
<td>Routing Engine</td>
<td>REV 01</td>
<td>740-049488</td>
<td></td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>Fan Tray</td>
<td></td>
<td></td>
<td></td>
<td>Enhanced Fan Tray</td>
</tr>
</tbody>
</table>
### show chassis hardware (SRX4200)

**user@host> show chassis hardware**

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>REV 01</td>
<td>DK2816AR0020</td>
<td>16061032317</td>
<td>SRX4200</td>
</tr>
<tr>
<td>Mainboard</td>
<td>REV 01</td>
<td>650-071675</td>
<td>16061032317</td>
<td>SRX4200</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SRX Routing Engine</td>
</tr>
<tr>
<td>FPC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>FEB</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>8x10G-SFP</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 01</td>
<td>740-038153</td>
<td>MOC11511530020</td>
<td>SFP+/-10G-CU3M</td>
</tr>
<tr>
<td>Xcvr 1</td>
<td>REV 01</td>
<td>740-038153</td>
<td>MOC11511530020</td>
<td>SFP+/-10G-CU3M</td>
</tr>
<tr>
<td>Xcvr 2</td>
<td>REV 01</td>
<td>740-038153</td>
<td>MOC11511530020</td>
<td>SFP+/-10G-CU3M</td>
</tr>
<tr>
<td>Xcvr 3</td>
<td>REV 01</td>
<td>740-038153</td>
<td>MOC11511530020</td>
<td>SFP+/-10G-CU3M</td>
</tr>
<tr>
<td>Xcvr 4</td>
<td>REV 01</td>
<td>740-021308</td>
<td>04DZ06A00364</td>
<td>SFP+/-10G-SR</td>
</tr>
<tr>
<td>Xcvr 5</td>
<td>REV 01</td>
<td>740-031980</td>
<td>233363A03066</td>
<td>SFP+/-10G-SR</td>
</tr>
<tr>
<td>Xcvr 6</td>
<td>REV 01</td>
<td>740-021308</td>
<td>AL70SWE</td>
<td>SFP+/-10G-SR</td>
</tr>
<tr>
<td>Xcvr 7</td>
<td>REV 01</td>
<td>740-031980</td>
<td>ALN0N6C</td>
<td>SFP+/-10G-SR</td>
</tr>
<tr>
<td>Item</td>
<td>Version</td>
<td>Part number</td>
<td>CLEI code</td>
<td>FRU model number</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Xcvr 8</td>
<td>REV 01</td>
<td>740-030076</td>
<td>APF162220018NK1</td>
<td>SFP+-10G-CU1M</td>
</tr>
<tr>
<td>Power Supply 0</td>
<td>REV 04</td>
<td>740-041741</td>
<td>1GA26241849</td>
<td>JPSU-650W-AC-AFO</td>
</tr>
<tr>
<td>Power Supply 1</td>
<td>REV 04</td>
<td>740-041741</td>
<td>1GA26241846</td>
<td>JPSU-650W-AC-AFO</td>
</tr>
<tr>
<td>Fan Tray 0</td>
<td></td>
<td></td>
<td></td>
<td>SRX4200 0, Front to Back</td>
</tr>
<tr>
<td>Fan Tray 1</td>
<td></td>
<td></td>
<td></td>
<td>SRX4200 1, Front to Back</td>
</tr>
<tr>
<td>Fan Tray 2</td>
<td></td>
<td></td>
<td></td>
<td>SRX4200 2, Front to Back</td>
</tr>
<tr>
<td>Fan Tray 3</td>
<td></td>
<td></td>
<td></td>
<td>SRX4200 3, Front to Back</td>
</tr>
</tbody>
</table>

**show chassis hardware clei-models**

(show chassis hardware clei-models
(SRX5600 and SRX5800 devices with SRX5000 line SRX5K-SCBE [SCB2] and SRX5K-RE-1800X4 [RE2])

user@host>  show chassis hardware clei-models node 1

node1:

Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>CLEI code</th>
<th>FRU model number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midplane</td>
<td>REV 01</td>
<td>710-024803</td>
<td></td>
<td>SRX5800-BP-A</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 01</td>
<td>710-024632</td>
<td></td>
<td>SRX5800-CRAFT-A</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 04</td>
<td>740-034724</td>
<td></td>
<td>SRX5800-PWR-4100-AC</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 05</td>
<td>740-034724</td>
<td></td>
<td>SRX5800-PWR-4100-AC</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 01</td>
<td>740-056658</td>
<td>COUCATTBAA</td>
<td>SRX5K-RE-1800X4</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 01</td>
<td>750-056587</td>
<td>COUCATSBAA</td>
<td>SRX5K-SCBE</td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 01</td>
<td>750-056587</td>
<td>COUCATSBAA</td>
<td>SRX5K-SCBE</td>
</tr>
<tr>
<td>CB 2</td>
<td>REV 01</td>
<td>750-056587</td>
<td>COUCATSBAA</td>
<td>SRX5K-SCBE</td>
</tr>
<tr>
<td>FPC 0</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBAA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td></td>
<td>BUILTIN</td>
</tr>
<tr>
<td>FPC 1</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBAA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td></td>
<td>BUILTIN</td>
</tr>
<tr>
<td>FPC 2</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBAA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td></td>
<td>BUILTIN</td>
</tr>
<tr>
<td>FPC 3</td>
<td>REV 11</td>
<td>750-043157</td>
<td>COUIBCWBBA</td>
<td>SRX5K-MPC</td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 05</td>
<td>750-049486</td>
<td>COUIBCYBAA</td>
<td>SRX-MIC-1X100G-CFP</td>
</tr>
<tr>
<td>MIC 1</td>
<td>REV 04</td>
<td>750-049488</td>
<td>COUIBCXBA</td>
<td>SRX-MIC-10XG-SFP</td>
</tr>
<tr>
<td>FPC 4</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBAA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td></td>
<td>BUILTIN</td>
</tr>
<tr>
<td>Component</td>
<td>Revision</td>
<td>Part Number</td>
<td>Supplier Code</td>
<td>Model</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>FPC 7</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBAA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td>BUILTIN</td>
<td></td>
</tr>
<tr>
<td>FPC 8</td>
<td>REV 11</td>
<td>750-043157</td>
<td>COUIBCWBAA</td>
<td>SRX5K-MPC</td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 05</td>
<td>750-049486</td>
<td>COUIBCYBAA</td>
<td>SRX-MIC-1X100G-CFP</td>
</tr>
<tr>
<td>FPC 9</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBAA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td>BUILTIN</td>
<td></td>
</tr>
<tr>
<td>FPC 10</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBAA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td>BUILTIN</td>
<td></td>
</tr>
<tr>
<td>Fan Tray 0</td>
<td>REV 04</td>
<td>740-035409</td>
<td></td>
<td>SRX5800-HC-FAN</td>
</tr>
<tr>
<td>Fan Tray 1</td>
<td>REV 04</td>
<td>740-035409</td>
<td></td>
<td>SRX5800-HC-FAN</td>
</tr>
</tbody>
</table>
**show ethernet-switching mac-learning-log**

**Syntax**

```
show ethernet-switching mac-learning-log
```

**Release Information**
Command introduced in Junos OS Release 9.0 for EX Series switches.
Command introduced in Junos OS Release 9.5 for SRX Series devices.
Command introduced in Junos OS Release 11.1 for the QFX Series.

**Description**
Displays the event log of learned MAC addresses.

**Required Privilege Level**
view

**RELATED DOCUMENTATION**

| show ethernet-switching table | 916 |
| show ethernet-switching interfaces |
| show ethernet-switching table | 916 |
| show ethernet-switching interfaces |

*Example: Setting Up Basic Bridging and a VLAN for an EX Series Switch*
*Example: Setting Up Bridging with Multiple VLANs for EX Series Switches*
*Example: Connecting an EX Series Access Switch to a Distribution Switch*

**List of Sample Output**

*show ethernet-switching mac-learning-log (EX Series switch) on page 912*
*show ethernet-switching mac-learning-log (QFX Series Switches, QFabric, NFX Series Devices and EX4600) on page 913*
*show ethernet-switching mac-learning-log (SRX Series devices) on page 913*

**Output Fields**
Output fields for EX Series switches:

The following table lists the output fields for the `show ethernet-switching mac-learning-log` command. Output fields are listed in the approximate order in which they appear.
Table 49: show ethernet-switching mac-learning-log Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and Time</td>
<td>Timestamp when the MAC address was added or deleted from the log.</td>
</tr>
<tr>
<td>vlan_name</td>
<td>VLAN name. A value defined by the user for all user-configured VLANs.</td>
</tr>
<tr>
<td>MAC</td>
<td>Learned MAC address.</td>
</tr>
<tr>
<td>Deleted</td>
<td>MAC address deleted or added to the MAC learning log.</td>
</tr>
<tr>
<td>Added</td>
<td></td>
</tr>
<tr>
<td>Blocking</td>
<td>The forwarding state of the interface:</td>
</tr>
<tr>
<td></td>
<td>• blocked—Traffic is not being forwarded on the interface.</td>
</tr>
<tr>
<td></td>
<td>• unblocked—Traffic is forwarded on the interface.</td>
</tr>
<tr>
<td>Flags</td>
<td>Displays the MAC address flags in which the MAC event occurred. This option is for debugging purposes.</td>
</tr>
</tbody>
</table>

Output fields for QFX Series switches, QFabric, NFX Series devices and EX4600:

Table 50 on page 911 lists the output fields for the `show ethernet-switching mac-learning-log` command. Output fields are listed in the approximate order in which they appear.

Table 50: show ethernet-switching mac-learning-log Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and Time</td>
<td>Timestamp in UTC when the MAC operation occurred.</td>
</tr>
<tr>
<td>vlan_name</td>
<td>VLAN name. A value defined by the user for all user-configured VLANs. The name of the VLAN on which the MAC is learned.</td>
</tr>
<tr>
<td>MAC</td>
<td>Learned MAC address.</td>
</tr>
<tr>
<td>Event op</td>
<td>MAC address that are added, learned, deleted, changed or moved from one interface to another interface.</td>
</tr>
<tr>
<td>Interface Name</td>
<td>The name of the interface on which the MAC address is learned. When a MAC address is moved, there is another field with the name of the interface. The log displays the name of the interface from where the MAC address moved, and the name of the interface to where the MAC address moved.</td>
</tr>
<tr>
<td>Flags</td>
<td>Displays the MAC address flags in which the MAC event occurred. This option is for debugging purposes.</td>
</tr>
</tbody>
</table>
Output fields for SRX Series devices:

*Table 51 on page 912* lists the output fields for the `show ethernet-switching mac-learning-log` command on SRX Series devices. Output fields are listed in the approximate order in which they appear.

**Table 51: show ethernet-switching-mac-learning-log Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and Time</td>
<td>Timestamp when the MAC address was added or deleted from the log.</td>
</tr>
<tr>
<td>VLAN-IDX</td>
<td>VLAN index. An internal value assigned by Junos OS for each VLAN.</td>
</tr>
<tr>
<td>MAC</td>
<td>Learned MAC address.</td>
</tr>
<tr>
<td>Deleted</td>
<td>Added</td>
</tr>
<tr>
<td>Blocking</td>
<td>The forwarding state of the interface:</td>
</tr>
<tr>
<td></td>
<td>• blocked—Traffic is not being forwarded on the interface.</td>
</tr>
<tr>
<td></td>
<td>• unblocked—Traffic is forwarded on the interface.</td>
</tr>
</tbody>
</table>

**Sample Output**

`show ethernet-switching mac-learning-log (EX Series switch)`

```
user@switch> show ethernet-switching mac-learning-log

Mon Feb 25 08:07:05 2008
vlan_name v1 mac 00:00:00:00:00:00 was deleted
Mon Feb 25 08:07:05 2008
vlan_name v9 mac 00:00:00:00:00:00 was deleted
Mon Feb 25 08:07:05 2008
vlan_name HR_vlan mac 00:00:00:00:00:00 was deleted
Mon Feb 25 08:07:05 2008
vlan_name v3 mac 00:00:00:00:00:00 was deleted
Mon Feb 25 08:07:05 2008
vlan_name v12 mac 00:00:00:00:00:00 was deleted
Mon Feb 25 08:07:05 2008
vlan_name v13 mac 00:00:00:00:00:00 was deleted
Mon Feb 25 08:07:05 2008
vlan_name sales_vlan mac 00:00:00:00:00:00 was deleted
Mon Feb 25 08:07:05 2008
vlan_name employee1 mac 00:00:00:00:00:00 was deleted
```
show ethernet-switching mac-learning-log (QFX Series Switches, QFabric, NFX Series Devices and EX4600)

user@switch> show ethernet-switching mac-learning-log

Mon Jun 30 13:49:49 2014 vlan_name v11+11 mac 00:10:94:00:00:02 was learned on ge-1/0/22.0 with flags: 0x2001f  << MAC address that was dynamically learned
Mon Jun 30 13:50:29 2014 vlan_name v11+11 mac 00:10:94:00:00:02 was deleted from ge-1/0/22.0 with flags: 0x1080  << MAC address that was deleted
Mon Jun 30 13:51:28 2014 vlan_name v11+11 mac 00:00:00:01:01:01 was added to ge-1/0/22.0 with flags: 0x2013f  << Static MAC address that was added
Mon Jun 30 13:51:46 2014 vlan_name v11+11 mac 00:00:00:01:01:01 was deleted from ge-1/0/22.0 with flags: 0x1120  << delete of Static MAC address that was deleted
Mon Jun 30 13:52:03 2014 vlan_name v11+11 mac 00:10:94:00:00:02 was learned on ge-1/0/22.0 with flags: 0x2001f  << MAC address that was dynamically learned
Mon Jun 30 13:52:11 2014 vlan_name v11+11 mac 00:10:94:00:00:02 was moved from ge-1/0/22.0 to ge-1/0/21.0 with flags: 0x2101f  << MAC address that was moved
Mon Jun 30 13:54:24 2014 vlan_name v11+11 mac 00:10:94:00:00:02 was changed on ge-1/0/21.0 with flags: 0x2113f  << MAC address that changed from a dynamic address to a static address

show ethernet-switching mac-learning-log (SRX Series devices)

user@host> show ethernet-switching mac-learning-log
Wed Mar 18 08:07:05 2009 vlan_idx 7 mac 00:00:5E:00:53:00 was deleted
Wed Mar 18 08:07:05 2009 vlan_idx 9 mac 00:00:5E:00:53:00 was deleted
Wed Mar 18 08:07:05 2009 vlan_idx 10 mac 00:00:5E:00:53:00 was deleted
Wed Mar 18 08:07:05 2009 vlan_idx 11 mac 00:00:5E:00:53:00 was deleted
Wed Mar 18 08:07:05 2009 vlan_idx 12 mac 00:00:5E:00:53:00 was deleted
Wed Mar 18 08:07:05 2009 vlan_idx 13 mac 00:00:5E:00:53:00 was deleted
Wed Mar 18 08:07:05 2009 vlan_idx 14 mac 00:00:5E:00:53:00 was deleted
Wed Mar 18 08:07:05 2009 vlan_idx 15 mac 00:00:5E:00:53:00 was deleted
Wed Mar 18 08:07:05 2009 vlan_idx 16 mac 00:00:5E:00:53:00 was deleted
Wed Mar 18 08:07:05 2009 vlan_idx 17 mac 00:00:5E:00:53:00 was added
Wed Mar 18 08:07:05 2009 vlan_idx 18 mac 00:00:5E:00:53:AA was learned
Wed Mar 18 08:07:05 2009
vlan_idx 5 mac 00:00:5E:00:53:AB was learned
Wed Mar 18 08:07:05 2009
vlan_idx 6 mac 00:00:5E:00:53:AC was learned
Wed Mar 18 08:07:05 2009
vlan_idx 16 mac 00:00:5E:00:53:AD was learned
Wed Mar 18 08:07:05 2009
vlan_idx 7 mac 00:00:5E:00:53:AE was learned
Wed Mar 18 08:07:05 2009
vlan_idx 8 mac 00:00:5E:00:53:AF was learned
Wed Mar 18 08:07:05 2009
vlan_idx 12 mac 00:00:5E:00:53:AG was learned
[output truncated]
show ethernet-switching table

List of Syntax
Syntax (QFX Series, QFabric, NFX Series and EX4600) on page 916
Syntax (EX Series) on page 916
Syntax (EX Series, MX Series and QFX Series) on page 916
Syntax (SRX Series) on page 916

Syntax (QFX Series, QFabric, NFX Series and EX4600)

```
show ethernet-switching table
<brief | detail | extensive | summary>
<interface interface-name>
<management-vlan>
<sort-by (name | tag)>
<vlan vlan-name>
```

Syntax (EX Series)

```
show ethernet-switching table
<brief | detail | extensive | summary>
<interface interface-name>
<management-vlan>
<persistent-mac <interface interface-name>>>
<sort-by (name | tag)>
<vlan vlan-name>
```

Syntax (EX Series, MX Series and QFX Series)

```
show ethernet-switching table
<brief | count | detail | extensive | summary>
<address>
<instance instance-name>
<interface interface-name>
isid isid
<logical-system logical-system-name>
<persistent-learning (interface interface-name | mac mac-address)>
<address>
<vlan-id (all-vlan | vlan-id)>
<vlan-name (all | vlan-name)>
```

Syntax (SRX Series)
show ethernet-switching table (brief | detail | extensive) interface  interface-name

Release Information
Command introduced in Junos OS Release 9.0 for EX Series switches.
Command introduced in Junos OS Release 9.5 for SRX Series.
Options summary, management-vlan, and vlan vlan-name introduced in Junos OS Release 9.6 for EX Series switches.
Option sort-by and field name tag introduced in Junos OS Release 10.1 for EX Series switches.
Command introduced in Junos OS Release 11.1 for the QFX Series.
Output for private VLANs introduced in Junos OS Release 12.1 for the QFX Series.
Option persistent-mac introduced in Junos OS Release 11.4 for EX Series switches.
Command introduced in Junos OS Release 12.3R2.
Command introduced in Junos OS Release 12.3R2 for EX Series switches.
Options logical-system, persistent-learning, and summary introduced in Junos OS Release 13.2X50-D10 (ELS).

Description
Displays the Ethernet switching table.

(MX Series routers, EX Series switches only) Displays Layer 2 MAC address information.

Options
For QFX Series, QFabric, NFX Series and EX4600:

none—(Optional) Display brief information about the Ethernet switching table.

brief | detail | extensive | summary—(Optional) Display the specified level of output.

interface interface-name—(Optional) Display the Ethernet switching table for a specific interface.

management-vlan—(Optional) Display the Ethernet switching table for a management VLAN.

persistent-mac <interface interface-name>—(Optional) Display the persistent MAC addresses learned for all interfaces or a specified interface. You can use this command to view entries that you want to clear for an interface that you intentionally disabled.

sort-by (name | tag)—(Optional) Display VLANs in ascending order of VLAN IDs or VLAN names.

vlan vlan-name—(Optional) Display the Ethernet switching table for a specific VLAN.

For EX Series, MX Series and QFX Series:

none—Display all learned Layer 2 MAC address information.

brief | count | detail | extensive | summary—(Optional) Display the specified level of output.

address—(Optional) Display the specified learned Layer 2 MAC address information.
instance **instance-name**—(Optional) Display learned Layer 2 MAC addresses for the specified routing instance.

interface **interface-name**—(Optional) Display learned Layer 2 MAC addresses for the specified interface.

isid **isd**—(Optional) Display learned Layer 2 MAC addresses for the specified ISID.

**logical-system logical-system-name**—(Optional) Display Ethernet-switching statistics information for the specified logical system.

**persistent-learning (interface interface-name | mac mac-address)**—(Optional) Display dynamically learned MAC addresses that are retained despite device restarts and interface failures for a specified interface, or information about a specified MAC address.

**vlan-id (all-vlan | vlan-id)**—(Optional) Display learned Layer 2 MAC addresses for all VLANs or for the specified VLAN.

**vlan-name (all | vlan-name)**—(Optional) Display learned Layer 2 MAC addresses for all VLANs or for the specified VLAN.

For SRX Series:

- **none**—(Optional) Display brief information about the Ethernet switching table.
- **brief | detail | extensive**—(Optional) Display the specified level of output.
- **interface-name**—(Optional) Display the Ethernet switching table for a specific interface.

**Additional Information**

When Layer 2 protocol tunneling is enabled, the tunneling MAC address 01:00:0c:cd:cd:d0 is installed in the MAC table. When the Cisco Discovery Protocol (CDP), Spanning Tree Protocol (STP), or VLAN Trunk Protocol (VTP) is configured for Layer 2 protocol tunneling on an interface, the corresponding protocol MAC address is installed in the MAC table.

**Required Privilege Level**

**view**

---

**RELATED DOCUMENTATION**

- Example: Setting Up Basic Bridging and a VLAN on Switches
- Example: Setting Up Bridging with Multiple VLANs
- Example: Setting Up Basic Bridging and a VLAN for an EX Series Switch
- Example: Setting Up Bridging with Multiple VLANs for EX Series Switches
- Example: Setting Up Q-in-Q Tunneling on EX Series Switches

**clear ethernet-switching table**
List of Sample Output
show ethernet-switching table (Enhanced Layer 2 Software on QFX Series, QFabric, NFX Series and EX460) on page 923
show ethernet-switching table (QFX Series, QFabric, NFX Series and EX460) on page 925
show ethernet-switching table (Private VLANs on QFX Series, QFabric, NFX Series and EX460) on page 926
show ethernet-switching table (Junos Fusion Data Center with EVPN on QFX Series switches) on page 926
show ethernet-switching table brief (QFX Series, QFabric, NFX Series and EX460) on page 928
show ethernet-switching table detail (QFX Series, QFabric, NFX Series and EX460) on page 929
show ethernet-switching table extensive (QFX Series, QFabric, NFX Series and EX460) on page 931
show ethernet-switching table interface (QFX Series, QFabric, NFX Series and EX460) on page 933
show ethernet-switching table (EX Series switches) on page 933
show ethernet-switching table brief (EX Series switches) on page 934
show ethernet-switching table detail (EX Series switches) on page 935
show ethernet-switching table extensive (EX Series switches) on page 935
show ethernet-switching table persistent-mac (EX Series switches) on page 936
show ethernet-switching table persistent-mac interface ge-0/0/16.0 (EX Series switches) on page 936
show ethernet-switching table (EX Series, MX Series and QFX Series) on page 936
show ethernet-switching table brief on page 938
show ethernet-switching table count on page 940
show ethernet-switching table extensive on page 941
show ethernet-switching table detail (SRX Series) on page 943
show ethernet-switching table extensive (SRX Series) on page 944
show ethernet-switching table interface ge-0/0/1 (SRX Series) on page 945

Output Fields
For QFX Series, QFabric, NFX Series and EX4600:

The following table lists the output fields for the show ethernet-switching table command on QFX Series, QFabric, NFX Series and EX4600. Output fields are listed in the approximate order in which they appear.

Table 52: show ethernet-switching table Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td>Name of a VLAN.</td>
<td>All levels</td>
</tr>
<tr>
<td>MAC address</td>
<td>MAC address associated with the VLAN.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 52: show ethernet-switching table Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
</table>
| Type       | Type of MAC address:  
  • static—The MAC address is manually created.  
  • learn—The MAC address is learned dynamically from a packet's source MAC address.  
  • flood—The MAC address is unknown and flooded to all members. | All levels |
| Age        | Time remaining before the entry ages out and is removed from the Ethernet switching table. | All levels |
| Interfaces | Interface associated with learned MAC addresses or with the All-members option (flood entry). | All levels |
| Learned    | For learned entries, the time at which the entry was added to the Ethernet switching table. | detail, extensive |

For EX Series switches:

The following table lists the output fields for the `show ethernet-switching table` command on EX Series switches. Output fields are listed in the approximate order in which they appear.

Table 53: show ethernet-switching table Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td>The name of a VLAN.</td>
<td>All levels</td>
</tr>
<tr>
<td>Tag</td>
<td>The VLAN ID tag name or number.</td>
<td>extensive</td>
</tr>
<tr>
<td>MAC or MAC address</td>
<td>The MAC address associated with the VLAN.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
| Type                 | The type of MAC address. Values are:  
  • static—The MAC address is manually created.  
  • learn—The MAC address is learned dynamically from a packet’s source MAC address.  
  • flood—The MAC address is unknown and flooded to all members.  
  • persistent—The learned MAC addresses that will persist across restarts of the switch or interface-down events. | All levels except persistent-mac |
Table 53: show ethernet-switching table Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>The type of MAC address. Values are:</td>
<td>persistent-mac</td>
</tr>
<tr>
<td></td>
<td>• installed—addresses that are in the Ethernet switching table.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• uninstalled—addresses that could not be installed in the table or were uninstalled in an interface-down event and will be reinstalled in the table when the interface comes back up.</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>The time remaining before the entry ages out and is removed from the Ethernet switching table.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interfaces</td>
<td>Interface associated with learned MAC addresses or All-members (flood entry).</td>
<td>All levels</td>
</tr>
<tr>
<td>Learned</td>
<td>For learned entries, the time which the entry was added to the Ethernet switching table.</td>
<td>detail, extensive</td>
</tr>
<tr>
<td>Nexthop index</td>
<td>The next-hop index number.</td>
<td>detail, extensive</td>
</tr>
</tbody>
</table>

For EX Series, MX Series and QFX Series:

The table describes the output fields for the `show ethernet-switching table` command on EX Series, MX Series and QFX Series. Output fields are listed in the approximate order in which they appear.

Table 54: show ethernet-switching table Output fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing instance</td>
<td>Name of the routing instance.</td>
</tr>
<tr>
<td>VLAN name</td>
<td>Name of the VLAN.</td>
</tr>
<tr>
<td>MAC address</td>
<td>MAC address or addresses learned on a logical interface.</td>
</tr>
</tbody>
</table>
Table 54: show ethernet-switching table Output fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC flags</td>
<td>Status of MAC address learning properties for each interface:</td>
</tr>
<tr>
<td></td>
<td>• S—Static MAC address is configured.</td>
</tr>
<tr>
<td></td>
<td>• D—Dynamic MAC address is configured.</td>
</tr>
<tr>
<td></td>
<td>• L—Locally learned MAC address is configured.</td>
</tr>
<tr>
<td></td>
<td>• SE—MAC accounting is enabled.</td>
</tr>
<tr>
<td></td>
<td>• NM—Non-configured MAC.</td>
</tr>
<tr>
<td></td>
<td>• R—Locally learned MAC address is configured.</td>
</tr>
<tr>
<td>Age</td>
<td>This field is not supported.</td>
</tr>
<tr>
<td>Logical interface</td>
<td>Name of the logical interface.</td>
</tr>
<tr>
<td>Active source</td>
<td>IP address of remote entity on which MAC address is learned.</td>
</tr>
<tr>
<td>MAC count</td>
<td>Number of MAC addresses learned on the specific routing instance or interface.</td>
</tr>
<tr>
<td>Learning interface</td>
<td>Name of the logical interface on which the MAC address was learned.</td>
</tr>
<tr>
<td>Learning VLAN</td>
<td>VLAN ID of the routing instance or VLAN in which the MAC address was learned.</td>
</tr>
<tr>
<td>Layer 2 flags</td>
<td>Debugging flags signifying that the MAC address is present in various lists.</td>
</tr>
<tr>
<td>Epoch</td>
<td>Spanning-tree-protocolepoch number identifying when the MAC address was learned.</td>
</tr>
<tr>
<td></td>
<td>Used for debugging.</td>
</tr>
<tr>
<td>Sequence number</td>
<td>Sequence number assigned to this MAC address. Used for debugging.</td>
</tr>
<tr>
<td>Learning mask</td>
<td>Mask of the Packet Forwarding Engines where this MAC address was learned. Used for</td>
</tr>
<tr>
<td></td>
<td>debugging.</td>
</tr>
<tr>
<td>IPC generation</td>
<td>Creation time of the logical interface when this MAC address was learned. Used for</td>
</tr>
<tr>
<td></td>
<td>debugging.</td>
</tr>
</tbody>
</table>

For SRX Series:

Table 55 on page 923 lists the output fields for the `show ethernet-switching table` command. Output fields are listed in the approximate order in which they appear.
### Table 55: show ethernet-switching table Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td>The name of a VLAN.</td>
</tr>
<tr>
<td>MAC address</td>
<td>The MAC address associated with the VLAN.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of MAC address. Values are:</td>
</tr>
<tr>
<td></td>
<td>• static—The MAC address is manually created.</td>
</tr>
<tr>
<td></td>
<td>• learn—The MAC address is learned dynamically from a packet's source MAC address.</td>
</tr>
<tr>
<td></td>
<td>• flood—The MAC address is unknown and flooded to all members.</td>
</tr>
<tr>
<td>Age</td>
<td>The time remaining before the entry ages out and is removed from the Ethernet switching table.</td>
</tr>
<tr>
<td>Interfaces</td>
<td>Interface associated with learned MAC addresses or All-members (flood entry).</td>
</tr>
<tr>
<td>Learned</td>
<td>For learned entries, the time which the entry was added to the Ethernet switching table.</td>
</tr>
</tbody>
</table>

### Sample Output

show ethernet-switching table (Enhanced Layer 2 Software on QFX Series, QFabric, NFX Series and EX460)

```bash
user@switch> show ethernet-switching table

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned, P - Persistent static
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC, O - ovsdb MAC)

Ethernet switching table : 2 entries, 2 learned
Routing instance : default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan1</td>
<td>b0:c6:9a:ca:3c:01</td>
<td>D</td>
<td></td>
<td>ae1.0</td>
</tr>
<tr>
<td>vlan1</td>
<td>b0:c6:9a:ca:3c:03</td>
<td>D</td>
<td></td>
<td>ae1.0</td>
</tr>
</tbody>
</table>
```
MAC flags (S - static MAC, D - dynamic MAC, L - locally learned, P - Persistent static
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC, O - ovsdb MAC)

Ethernet switching table : 2 entries, 2 learned

Routing instance : default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan10</td>
<td>b0:c6:9a:ca:3c:01</td>
<td>D</td>
<td>-</td>
<td>ae1.0</td>
</tr>
<tr>
<td>vlan10</td>
<td>b0:c6:9a:ca:3c:03</td>
<td>D</td>
<td>-</td>
<td>ae1.0</td>
</tr>
</tbody>
</table>

Ethernet switching table : 2 entries, 2 learned
Routing instance : default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan2</td>
<td>b0:c6:9a:ca:3c:01</td>
<td>D</td>
<td>-</td>
<td>ae1.0</td>
</tr>
<tr>
<td>vlan2</td>
<td>b0:c6:9a:ca:3c:03</td>
<td>D</td>
<td>-</td>
<td>ae1.0</td>
</tr>
</tbody>
</table>

Ethernet switching table : 2 entries, 2 learned
Routing instance : default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan3</td>
<td>b0:c6:9a:ca:3c:01</td>
<td>D</td>
<td>-</td>
<td>ae1.0</td>
</tr>
</tbody>
</table>
MAC flags (S - static MAC, D - dynamic MAC, L - locally learned, P - Persistent static
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC, O - ovsdb MAC)

Ethernet switching table : 2 entries, 2 learned
Routing instance : default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan4</td>
<td>b0:c6:9a:ca:3c:01</td>
<td>D</td>
<td>-</td>
<td>ae1.0</td>
</tr>
<tr>
<td>vlan4</td>
<td>b0:c6:9a:ca:3c:03</td>
<td>D</td>
<td>-</td>
<td>ae1.0</td>
</tr>
</tbody>
</table>

show ethernet-switching table (QFX Series, QFabric, NFX Series and EX460)

user@switch> show ethernet-switching table

Ethernet-switching table: 57 entries, 17 learned

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC address</th>
<th>Type</th>
<th>Age</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>F2</td>
<td>00:00:05:00:00:03</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/44.0</td>
</tr>
<tr>
<td>F2</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>Linux</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>Linux</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>Linux</td>
<td>00:30:48:90:54:89</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/47.0</td>
</tr>
<tr>
<td>T1</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T1</td>
<td>00:00:05:00:00:01</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/46.0</td>
</tr>
<tr>
<td>T1</td>
<td>00:00:05:e0:00:01</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T1</td>
<td>00:19:e2:50:63:e0</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/46.0</td>
</tr>
<tr>
<td>T1</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T10</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T10</td>
<td>00:00:5e:00:01:09</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T10</td>
<td>00:19:e2:50:63:e0</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/46.0</td>
</tr>
<tr>
<td>T10</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T111</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T111</td>
<td>00:19:e2:50:63:e0</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/15.0</td>
</tr>
<tr>
<td>T111</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T111</td>
<td>00:19:e2:50:ac:00</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/15.0</td>
</tr>
<tr>
<td>T2</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T2</td>
<td>00:00:5e:00:01:01</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
</tbody>
</table>
show ethernet-switching table (Private VLANs on QFX Series, QFabric, NFX Series and EX460)

user@switch> show ethernet-switching table

Ethernet-switching table: 10 entries, 3 learned

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC address</th>
<th>Type</th>
<th>Age</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>pvlan</td>
<td>*</td>
<td>Flood</td>
<td></td>
<td>All-members</td>
</tr>
<tr>
<td>pvlan</td>
<td>00:10:94:00:00:02</td>
<td>Replicated</td>
<td>-</td>
<td>xe-0/0/28.0</td>
</tr>
<tr>
<td>pvlan</td>
<td>00:10:94:00:00:35</td>
<td>Replicated</td>
<td>-</td>
<td>xe-0/0/46.0</td>
</tr>
<tr>
<td>c2</td>
<td>*</td>
<td>Flood</td>
<td></td>
<td>All-members</td>
</tr>
<tr>
<td>c2</td>
<td>00:10:94:00:00:02</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/28.0</td>
</tr>
<tr>
<td>c1</td>
<td>*</td>
<td>Flood</td>
<td></td>
<td>All-members</td>
</tr>
<tr>
<td>c1</td>
<td>00:10:94:00:00:46</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/4.0</td>
</tr>
<tr>
<td><strong>pvlan</strong></td>
<td>pvlan_xe-0/0/46.0</td>
<td>*</td>
<td>Learn</td>
<td>xe-0/0/46.0</td>
</tr>
<tr>
<td><strong>pvlan</strong></td>
<td>pvlan_xe-0/0/46.0</td>
<td>00:10:94:00:00:35</td>
<td>Learn</td>
<td>xe-0/0/46.0</td>
</tr>
</tbody>
</table>

show ethernet-switching table (Junos Fusion Data Center with EVPN on QFX Series switches)

user@switch> show ethernet-switching table

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned, P - Persistent static
static
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC, O - ovsdb MAC)

Ethernet switching table : 30 entries, 30 learned
Routing instance : default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC flags</th>
<th>Logical interface</th>
<th>Active source</th>
</tr>
</thead>
<tbody>
<tr>
<td>v100</td>
<td>00:31:46:e8:f9:d6</td>
<td>D</td>
<td>vtep.32768</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>-----</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>192.168.2.22</td>
<td>7c:e2:ca:e2:75:7c</td>
<td>D</td>
<td>vtep.32771</td>
<td></td>
</tr>
<tr>
<td>v100</td>
<td>7c:e2:ca:e4:05:9a</td>
<td>D</td>
<td>vtep.32770</td>
<td></td>
</tr>
<tr>
<td>192.168.3.33</td>
<td>00:31:46:e8:f9:d6</td>
<td>D</td>
<td>vtep.32768</td>
<td></td>
</tr>
<tr>
<td>v101</td>
<td>7c:e2:ca:e2:75:7c</td>
<td>D</td>
<td>vtep.32771</td>
<td></td>
</tr>
<tr>
<td>v101</td>
<td>7c:e2:ca:e4:05:9a</td>
<td>D</td>
<td>vtep.32770</td>
<td></td>
</tr>
<tr>
<td>v102</td>
<td>00:31:46:e8:f9:d6</td>
<td>D</td>
<td>vtep.32768</td>
<td></td>
</tr>
<tr>
<td>v102</td>
<td>7c:e2:ca:e2:75:7c</td>
<td>D</td>
<td>vtep.32771</td>
<td></td>
</tr>
<tr>
<td>v103</td>
<td>7c:e2:ca:e4:05:9a</td>
<td>D</td>
<td>vtep.32770</td>
<td></td>
</tr>
<tr>
<td>v103</td>
<td>00:31:46:e8:f9:d6</td>
<td>D</td>
<td>vtep.32768</td>
<td></td>
</tr>
<tr>
<td>v104</td>
<td>7c:e2:ca:e2:75:7c</td>
<td>D</td>
<td>vtep.32771</td>
<td></td>
</tr>
<tr>
<td>v104</td>
<td>7c:e2:ca:e4:05:9a</td>
<td>D</td>
<td>vtep.32770</td>
<td></td>
</tr>
<tr>
<td>v301</td>
<td>00:31:46:e8:f9:d6</td>
<td>D</td>
<td>vtep.32768</td>
<td></td>
</tr>
<tr>
<td>v301</td>
<td>28:c0:da:6a:9f:c2</td>
<td>DL</td>
<td>ae11.0</td>
<td></td>
</tr>
<tr>
<td>v301</td>
<td>7c:e2:ca:e2:75:7c</td>
<td>D</td>
<td>vtep.32771</td>
<td></td>
</tr>
<tr>
<td>v302</td>
<td>7c:e2:ca:e4:05:9a</td>
<td>D</td>
<td>vtep.32770</td>
<td></td>
</tr>
<tr>
<td>v302</td>
<td>00:31:46:e8:f9:d6</td>
<td>D</td>
<td>vtep.32768</td>
<td></td>
</tr>
<tr>
<td>v303</td>
<td>7c:e2:ca:e2:75:7c</td>
<td>D</td>
<td>vtep.32771</td>
<td></td>
</tr>
<tr>
<td>v303</td>
<td>7c:e2:ca:e4:05:9a</td>
<td>D</td>
<td>vtep.32770</td>
<td></td>
</tr>
<tr>
<td>v303</td>
<td>00:31:46:e8:f9:d6</td>
<td>D</td>
<td>vtep.32768</td>
<td></td>
</tr>
<tr>
<td>v303</td>
<td>28:c0:da:6a:9f:c2</td>
<td>DL</td>
<td>ae11.0</td>
<td></td>
</tr>
<tr>
<td>v303</td>
<td>7c:e2:ca:e2:75:7c</td>
<td>D</td>
<td>vtep.32771</td>
<td></td>
</tr>
<tr>
<td>v303</td>
<td>7c:e2:ca:e4:05:9a</td>
<td>D</td>
<td>vtep.32770</td>
<td></td>
</tr>
</tbody>
</table>
show ethernet-switching table brief (QFX Series, QFabric, NFX Series and EX460)

user@switch> show ethernet-switching table brief

Ethernet-switching table: 57 entries, 17 learned

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC address</th>
<th>Type</th>
<th>Age</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>F2</td>
<td>00:00:05:00:00:03</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/44.0</td>
</tr>
<tr>
<td>F2</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>Linux</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>Linux</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>Linux</td>
<td>00:30:48:90:54:89</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/47.0</td>
</tr>
<tr>
<td>T1</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T1</td>
<td>00:00:05:00:00:01</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/46.0</td>
</tr>
<tr>
<td>T1</td>
<td>00:00:5e:00:01:00</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T1</td>
<td>00:19:e2:50:63:e0</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/46.0</td>
</tr>
<tr>
<td>T1</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T10</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T10</td>
<td>00:00:5e:00:01:09</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T10</td>
<td>00:19:e2:50:63:e0</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/46.0</td>
</tr>
<tr>
<td>T10</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T111</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T111</td>
<td>00:19:e2:50:63:e0</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/15.0</td>
</tr>
<tr>
<td>T111</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T111</td>
<td>00:19:e2:50:ac:00</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/15.0</td>
</tr>
<tr>
<td>T2</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T2</td>
<td>00:00:5e:00:01:01</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T2</td>
<td>00:19:e2:50:63:e0</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/46.0</td>
</tr>
<tr>
<td>T2</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T3</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>IPv6 address</td>
<td>Type</td>
<td>Age</td>
<td>Interface</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>-----</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>T3 00:00:5e:00:01:02</td>
<td>Static</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3 00:19:e2:50:63:e0</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/46.0</td>
<td></td>
</tr>
<tr>
<td>T3 00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
<td></td>
</tr>
<tr>
<td>T4 *</td>
<td>Flood</td>
<td></td>
<td>All-members</td>
<td></td>
</tr>
<tr>
<td>T4 00:00:5e:00:01:03</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
<td></td>
</tr>
<tr>
<td>T4 00:19:e2:50:63:e0</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/46.0</td>
<td></td>
</tr>
</tbody>
</table>

show ethernet-switching table detail (QFX Series, QFabric, NFX Series and EX460)

user@switch> show ethernet-switching table detail

Ethernet-switching table: 57 entries, 17 learned
F2, *
  Interface(s): xe-0/0/44.0
  Type: Flood
  Nexthop index: 0

F2, 00:00:05:00:00:03
  Interface(s): xe-0/0/44.0
  Type: Learn, Age: 0, Learned: 2:03:09
  Nexthop index: 0

F2, 00:19:e2:50:7d:e0
  Interface(s): Router
  Type: Static
  Nexthop index: 0

Linux, *
  Interface(s): xe-0/0/47.0
  Type: Flood
  Nexthop index: 0

Linux, 00:19:e2:50:7d:e0
  Interface(s): Router
  Type: Static
  Nexthop index: 0

Linux, 00:30:48:90:54:89
  Interface(s): xe-0/0/47.0
  Type: Learn, Age: 0, Learned: 2:03:08
  Nexthop index: 0

T1, *
Interface(s): xe-0/0/46.0
Type: Flood
Nexthop index: 0

T1, 00:00:05:00:00:01
   Interface(s): xe-0/0/46.0
   Type: Learn, Age: 0, Learned: 2:03:07
   Nexthop index: 0

T1, 00:00:5e:00:01:00
   Interface(s): Router
   Type: Static
   Nexthop index: 0

T1, 00:19:e2:50:63:e0
   Interface(s): xe-0/0/46.0
   Type: Learn, Age: 0, Learned: 2:03:07
   Nexthop index: 0

T1, 00:19:e2:50:7d:e0
   Interface(s): Router
   Type: Static
   Nexthop index: 0

T10, *
   Interface(s): xe-0/0/46.0
   Type: Flood
   Nexthop index: 0

T10, 00:00:5e:00:01:09
   Interface(s): Router
   Type: Static
   Nexthop index: 0

T10, 00:19:e2:50:63:e0
   Interface(s): xe-0/0/46.0
   Type: Learn, Age: 0, Learned: 2:03:08
   Nexthop index: 0

T10, 00:19:e2:50:7d:e0
   Interface(s): Router
   Type: Static
   Nexthop index: 0
show ethernet-switching table extensive (QFX Series, QFabric, NFX Series and EX460)

user@switch> show ethernet-switching table extensive

Ethernet-switching table: 57 entries, 17 learned
  F2, *
    Interface(s): xe-0/0/44.0
    Type: Flood
    Nexthop index: 0

  F2, 00:00:05:00:00:03
    Interface(s): xe-0/0/44.0
    Type: Learn, Age: 0, Learned: 2:03:09
    Nexthop index: 0

  F2, 00:19:e2:50:7d:e0
    Interface(s): Router
    Type: Static
    Nexthop index: 0

  Linux, *
    Interface(s): xe-0/0/47.0
    Type: Flood
    Nexthop index: 0

  Linux, 00:19:e2:50:7d:e0
    Interface(s): Router
    Type: Static
    Nexthop index: 0

  Linux, 00:30:48:90:54:89
    Interface(s): xe-0/0/47.0
    Type: Learn, Age: 0, Learned: 2:03:08
    Nexthop index: 0

  T1, *
    Interface(s): xe-0/0/46.0
    Type: Flood
Nexthop index: 0

T1, 00:00:05:00:00:01
  Interface(s): xe-0/0/46.0
  Type: Learn, Age: 0, Learned: 2:03:07
  Nexthop index: 0

T1, 00:00:5e:00:01:00
  Interface(s): Router
  Type: Static
  Nexthop index: 0

T1, 00:19:e2:50:63:e0
  Interface(s): xe-0/0/46.0
  Type: Learn, Age: 0, Learned: 2:03:07
  Nexthop index: 0

T1, 00:19:e2:50:7d:e0
  Interface(s): Router
  Type: Static
  Nexthop index: 0

T10, *
  Interface(s): xe-0/0/46.0
  Type: Flood
  Nexthop index: 0

T10, 00:00:5e:00:01:09
  Interface(s): Router
  Type: Static
  Nexthop index: 0

T10, 00:19:e2:50:63:e0
  Interface(s): xe-0/0/46.0
  Type: Learn, Age: 0, Learned: 2:03:08
  Nexthop index: 0

T10, 00:19:e2:50:7d:e0
  Interface(s): Router
  Type: Static
  Nexthop index: 0

T111, *
  Interface(s): xe-0/0/15.0
show ethernet-switching table interface (QFX Series, QFabric, NFX Series and EX460)

user@switch> show ethernet-switching table interface xe-0/0/1

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC address</th>
<th>Type</th>
<th>Age</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>V1</td>
<td>00:00:05:00:00:05</td>
<td>Learn</td>
<td>0</td>
<td>xe-0/0/1.0</td>
</tr>
</tbody>
</table>

show ethernet-switching table (EX Series switches)

user@switch> show ethernet-switching table

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC address</th>
<th>Type</th>
<th>Age</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>F2</td>
<td>00:00:05:00:00:03</td>
<td>Learn</td>
<td>0</td>
<td>ge-0/0/44.0</td>
</tr>
<tr>
<td>F2</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>Linux</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>Linux</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>Linux</td>
<td>00:30:48:90:54:89</td>
<td>Learn</td>
<td>0</td>
<td>ge-0/0/47.0</td>
</tr>
<tr>
<td>T1</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T1</td>
<td>00:00:05:00:00:01</td>
<td>Persistent</td>
<td>0</td>
<td>ge-0/0/46.0</td>
</tr>
<tr>
<td>T1</td>
<td>00:00:5e:00:01:00</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T1</td>
<td>00:19:e2:50:63:e0</td>
<td>Persistent</td>
<td>0</td>
<td>ge-0/0/46.0</td>
</tr>
<tr>
<td>T1</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T10</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T10</td>
<td>00:00:5e:00:01:09</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T10</td>
<td>00:19:e2:50:63:e0</td>
<td>Learn</td>
<td>0</td>
<td>ge-0/0/46.0</td>
</tr>
<tr>
<td>T10</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T111</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T111</td>
<td>00:19:e2:50:63:e0</td>
<td>Learn</td>
<td>0</td>
<td>ge-0/0/15.0</td>
</tr>
<tr>
<td>T111</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T111</td>
<td>00:19:e2:50:ac:00</td>
<td>Static</td>
<td>0</td>
<td>ge-0/0/15.0</td>
</tr>
<tr>
<td>T2</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T2</td>
<td>00:00:5e:00:01:01</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T2</td>
<td>00:19:e2:50:63:e0</td>
<td>Learn</td>
<td>0</td>
<td>ge-0/0/46.0</td>
</tr>
<tr>
<td>T2</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T3</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
</tbody>
</table>
show ethernet-switching table brief (EX Series switches)

```
user@switch> show ethernet-switching table brief

Ethernet-switching table: 57 entries, 15 learned, 2 persistent entries

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC address</th>
<th>Type</th>
<th>Age</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>F2</td>
<td>00:00:05:00:00:03</td>
<td>Learn</td>
<td>0</td>
<td>ge-0/0/44.0</td>
</tr>
<tr>
<td>F2</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>Linux</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>Linux</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>Linux</td>
<td>00:30:48:90:54:89</td>
<td>Learn</td>
<td>0</td>
<td>ge-0/0/47.0</td>
</tr>
<tr>
<td>T1</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T1</td>
<td>00:00:05:00:00:01</td>
<td>Persistent</td>
<td>0</td>
<td>ge-0/0/46.0</td>
</tr>
<tr>
<td>T1</td>
<td>00:00:5e:00:01:00</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T1</td>
<td>00:19:e2:50:63:e0</td>
<td>Persistent</td>
<td>0</td>
<td>ge-0/0/46.0</td>
</tr>
<tr>
<td>T1</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T10</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T10</td>
<td>00:00:5e:00:01:09</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T10</td>
<td>00:19:e2:50:63:e0</td>
<td>Learn</td>
<td>0</td>
<td>ge-0/0/46.0</td>
</tr>
<tr>
<td>T111</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T111</td>
<td>00:19:e2:50:63:e0</td>
<td>Learn</td>
<td>0</td>
<td>ge-0/0/15.0</td>
</tr>
<tr>
<td>T111</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T111</td>
<td>00:19:e2:50:ac:00</td>
<td>Learn</td>
<td>0</td>
<td>ge-0/0/15.0</td>
</tr>
<tr>
<td>T2</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T2</td>
<td>00:00:5e:00:01:01</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T2</td>
<td>00:19:e2:50:63:e0</td>
<td>Learn</td>
<td>0</td>
<td>ge-0/0/46.0</td>
</tr>
<tr>
<td>T2</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T3</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T3</td>
<td>00:00:5e:00:01:02</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T3</td>
<td>00:19:e2:50:63:e0</td>
<td>Learn</td>
<td>0</td>
<td>ge-0/0/46.0</td>
</tr>
<tr>
<td>T3</td>
<td>00:19:e2:50:7d:e0</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
<tr>
<td>T4</td>
<td>*</td>
<td>Flood</td>
<td>-</td>
<td>All-members</td>
</tr>
<tr>
<td>T4</td>
<td>00:00:5e:00:01:03</td>
<td>Static</td>
<td>-</td>
<td>Router</td>
</tr>
</tbody>
</table>
```
**show ethernet-switching table detail (EX Series switches)**

```
user@switch> show ethernet-switching table detail
```

**show ethernet-switching table extensive (EX Series switches)**

```
user@switch> show ethernet-switching table extensive
```
ge-0/0/5.0, ge-0/0/6.0, ge-0/0/7.0, ge-0/0/8.0, ge-0/0/10.0, ge-0/0/0.0
Type: Flood
Nexthop index: 567

VLAN: v1, Tag: 10, MAC: 00:21:59:c6:93:22, Interface: Router
Type: Static
Nexthop index: 0

VLAN: v1, Tag: 10, MAC: 00:21:59:c9:9a:4e, Interface: ge-0/0/14.0
Type: Learn, Age: 0, Learned: 18:40:50
Nexthop index: 564

**show ethernet-switching table persistent-mac (EX Series switches)**

```plaintext
user@switch> show ethernet-switching table persistent-mac

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC address</th>
<th>Type</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>00:10:94:00:00:02</td>
<td>installed</td>
<td>ge-0/0/42.0</td>
</tr>
<tr>
<td>default</td>
<td>00:10:94:00:00:03</td>
<td>installed</td>
<td>ge-0/0/42.0</td>
</tr>
<tr>
<td>default</td>
<td>00:10:94:00:00:04</td>
<td>installed</td>
<td>ge-0/0/42.0</td>
</tr>
<tr>
<td>default</td>
<td>00:10:94:00:00:05</td>
<td>installed</td>
<td>ge-0/0/42.0</td>
</tr>
<tr>
<td>default</td>
<td>00:10:94:00:00:06</td>
<td>installed</td>
<td>ge-0/0/42.0</td>
</tr>
<tr>
<td>default</td>
<td>00:10:94:00:05:02</td>
<td>uninstalled</td>
<td>ge-0/0/16.0</td>
</tr>
<tr>
<td>default</td>
<td>00:10:94:00:06:03</td>
<td>uninstalled</td>
<td>ge-0/0/16.0</td>
</tr>
<tr>
<td>default</td>
<td>00:10:94:00:07:04</td>
<td>uninstalled</td>
<td>ge-0/0/16.0</td>
</tr>
</tbody>
</table>
```

**show ethernet-switching table persistent-mac interface ge-0/0/16.0 (EX Series switches)**

```plaintext
<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC address</th>
<th>Type</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>00:10:94:00:05:02</td>
<td>uninstalled</td>
<td>ge-0/0/16.0</td>
</tr>
<tr>
<td>default</td>
<td>00:10:94:00:06:03</td>
<td>uninstalled</td>
<td>ge-0/0/16.0</td>
</tr>
<tr>
<td>default</td>
<td>00:10:94:00:07:04</td>
<td>uninstalled</td>
<td>ge-0/0/16.0</td>
</tr>
</tbody>
</table>
```

**show ethernet-switching table (EX Series, MX Series and QFX Series)**

```plaintext
user@host> show ethernet-switching table

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC)

Routing instance : default-switch
```
<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC address flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN101</td>
<td>88:e0:f3:bb:07:f0</td>
<td>D</td>
<td>-</td>
<td>ae20.0</td>
</tr>
</tbody>
</table>

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC)

Routing instance : default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC address flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN102</td>
<td>88:e0:f3:bb:07:f0</td>
<td>D</td>
<td>-</td>
<td>ae20.0</td>
</tr>
</tbody>
</table>

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC)

Routing instance : default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC address flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN103</td>
<td>88:e0:f3:bb:07:f0</td>
<td>D</td>
<td>-</td>
<td>ae20.0</td>
</tr>
</tbody>
</table>

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC)

Routing instance : default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC address flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN104</td>
<td>88:e0:f3:bb:07:f0</td>
<td>D</td>
<td>-</td>
<td>ae20.0</td>
</tr>
</tbody>
</table>

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC)

Routing instance : default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC address flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN1101</td>
<td>00:1f:12:32:f5:c1</td>
<td>D</td>
<td>-</td>
<td>ae0.0</td>
</tr>
</tbody>
</table>

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC)
Routing instance: default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN1102</td>
<td>00:1f:12:32:05:c1</td>
<td>D</td>
<td>-</td>
<td>ae0.0</td>
</tr>
</tbody>
</table>

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC)

Routing instance: default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN1103</td>
<td>00:1f:12:32:05:c1</td>
<td>D</td>
<td>-</td>
<td>ae0.0</td>
</tr>
</tbody>
</table>

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC)

Routing instance: default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN1104</td>
<td>00:1f:12:32:05:c1</td>
<td>D</td>
<td>-</td>
<td>ae0.0</td>
</tr>
</tbody>
</table>

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC)

Routing instance: default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN1105</td>
<td>00:1f:12:32:05:c1</td>
<td>D</td>
<td>-</td>
<td>ae0.0</td>
</tr>
</tbody>
</table>

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC)

Routing instance: default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN1106</td>
<td>00:1f:12:32:05:c1</td>
<td>D</td>
<td>-</td>
<td>ae0.0</td>
</tr>
</tbody>
</table>

[...output truncated...]

show ethernet-switching table brief

user@host> show ethernet-switching table brief
MAC flags (S - static MAC, D - dynamic MAC, L - locally learned
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC)

Routing instance: default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN101</td>
<td>88:e0:f3:bb:07:f0</td>
<td>D</td>
<td>-</td>
<td>ae20.0</td>
</tr>
</tbody>
</table>

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC)

Routing instance: default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN102</td>
<td>88:e0:f3:bb:07:f0</td>
<td>D</td>
<td>-</td>
<td>ae20.0</td>
</tr>
</tbody>
</table>

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC)

Routing instance: default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN103</td>
<td>88:e0:f3:bb:07:f0</td>
<td>D</td>
<td>-</td>
<td>ae20.0</td>
</tr>
</tbody>
</table>

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC)

Routing instance: default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN104</td>
<td>88:e0:f3:bb:07:f0</td>
<td>D</td>
<td>-</td>
<td>ae20.0</td>
</tr>
</tbody>
</table>

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned
SE - statistics enabled, NM - non configured MAC, R - remote PE MAC)

Routing instance: default-switch

<table>
<thead>
<tr>
<th>Vlan name</th>
<th>MAC address</th>
<th>MAC flags</th>
<th>Age</th>
<th>Logical interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN1101</td>
<td>00:1f:12:32:ff:01</td>
<td>D</td>
<td>-</td>
<td>ae0.0</td>
</tr>
</tbody>
</table>

[...output truncated...]
show ethernet-switching table count

user@host> show ethernet-switching table count

0 MAC address learned in routing instance default-switch VLAN VLAN1000
   ae26.0:1000

1 MAC address learned in routing instance default-switch VLAN VLAN101
   ae20.0:101

   MAC address count per learn VLAN within routing instance:
   Learn VLAN ID   MAC count   Static MAC count
       101         1             0

1 MAC address learned in routing instance default-switch VLAN VLAN102
   ae20.0:102

   MAC address count per learn VLAN within routing instance:
   Learn VLAN ID   MAC count   Static MAC count
       102         1             0

1 MAC address learned in routing instance default-switch VLAN VLAN103
   ae20.0:103

   MAC address count per learn VLAN within routing instance:
   Learn VLAN ID   MAC count   Static MAC count
       103         1             0

1 MAC address learned in routing instance default-switch VLAN VLAN104
   ae20.0:104

   MAC address count per learn VLAN within routing instance:
   Learn VLAN ID   MAC count   Static MAC count
       104         1             0

0 MAC address learned in routing instance default-switch VLAN VLAN105
   ae20.0:105

0 MAC address learned in routing instance default-switch VLAN VLAN106
   ae20.0:106

0 MAC address learned in routing instance default-switch VLAN VLAN107
   ae20.0:107

0 MAC address learned in routing instance default-switch VLAN VLAN108
MAC address: 88:e0:f3:bb:07:f0
Routing instance: default-switch
VLAN ID: 101
  Learning interface: ae20.0
  Layer 2 flags: in_hash,in_ifd,in_ifl,in_vlan,in_rtt,kernel,in_ifbd
  Epoch: 0  Sequence number: 2
  Learning mask: 0x00000008

MAC address: 88:e0:f3:bb:07:f0
Routing instance: default-switch
VLAN ID: 102
  Learning interface: ae20.0
  Layer 2 flags: in_hash,in_ifd,in_ifl,in_vlan,in_rtt,kernel,in_ifbd
  Epoch: 0  Sequence number: 2
  Learning mask: 0x00000008
MAC address: 88:e0:f3:bb:07:f0
Routing instance: default-switch
VLAN ID: 103
   Learning interface: ae20.0
   Layer 2 flags: in_hash,in_ifd,in_ifl,in_vlan,in_rtt,kernel,in_ifbd
   Epoch: 0                            Sequence number: 2
   Learning mask: 0x00000008

MAC address: 88:e0:f3:bb:07:f0
Routing instance: default-switch
VLAN ID: 104
   Learning interface: ae20.0
   Layer 2 flags: in_hash,in_ifd,in_ifl,in_vlan,in_rtt,kernel,in_ifbd
   Epoch: 0                            Sequence number: 2
   Learning mask: 0x00000008

MAC address: 00:1f:12:32:f5:c1
Routing instance: default-switch
VLAN ID: 1101
   Learning interface: ae0.0
   Layer 2 flags: in_hash,in_ifd,in_ifl,in_vlan,in_rtt,kernel,in_ifbd
   Epoch: 0                            Sequence number: 2
   Learning mask: 0x00000008

MAC address: 00:1f:12:32:f5:c1
Routing instance: default-switch
VLAN ID: 1102
   Learning interface: ae0.0
   Layer 2 flags: in_hash,in_ifd,in_ifl,in_vlan,in_rtt,kernel,in_ifbd
   Epoch: 0                            Sequence number: 2
   Learning mask: 0x00000008

MAC address: 00:1f:12:32:f5:c1
Routing instance: default-switch
VLAN ID: 1103
   Learning interface: ae0.0
   Layer 2 flags: in_hash,in_ifd,in_ifl,in_vlan,in_rtt,kernel,in_ifbd
   Epoch: 0                            Sequence number: 2
   Learning mask: 0x00000008

MAC address: 00:1f:12:32:f5:c1
Routing instance: default-switch
VLAN ID: 1104
   Learning interface: ae0.0
Sample Output

show ethernet-switching table detail (SRX Series)

user@host> show ethernet-switching table detail

Ethernet-switching table: 57 entries, 17 learned
F2, *
  Interface(s): ge-0/0/44.0
  Type: Flood
F2, 00:00:5E:00:53:AC
  Interface(s): ge-0/0/44.0
  Type: Learn, Age: 0, Learned: 2:03:09
F2, 00:00:5E:00:53:AA
  Interface(s): Router
  Type: Static
Linux, *
  Interface(s): ge-0/0/47.0
  Type: Flood
Linux, 00:00:5E:00:53:AB
  Interface(s): Router
  Type: Static
Linux, 00:00:5E:00:53:AC
  Interface(s): ge-0/0/47.0
  Type: Learn, Age: 0, Learned: 2:03:08
T1, *
  Interface(s): ge-0/0/46.0
  Type: Flood
T1, 00:00:5E:00:53:AD
  Interface(s): ge-0/0/46.0
  Type: Learn, Age: 0, Learned: 2:03:07
T1, 00:00:5E:00:53:AE
  Interface(s): Router
  Type: Static
T1, 00:00:5E:00:53:AF
  Interface(s): ge-0/0/46.0
  Type: Learn, Age: 0, Learned: 2:03:07
T1, 00:00:5E:00:53:AG
Interface(s): Router
Type: Static
T10, *

Interface(s): ge-0/0/46.0
Type: Flood
T10, 00:00:5E:00:53:AH

Interface(s): Router
Type: Static
T10, 00:00:5E:00:53:AI

Interface(s): ge-0/0/46.0
Type: Learn, Age: 0, Learned: 2:03:08
T10, 00:00:5E:00:53:AJ

Interface(s): Router
Type: Static
T111, *

Interface(s): ge-0/0/15.0
Type: Flood

[output truncated]

---

Sample Output

**show ethernet-switching table extensive (SRX Series)**

```
user@host> show ethernet-switching table extensive

Ethernet-switching table: 57 entries, 17 learned
F2, *
Interface(s): ge-0/0/44.0
Type: Flood
F2, 00:00:5E:00:53:AC
Interface(s): ge-0/0/44.0
Type: Learn, Age: 0, Learned: 2:03:09
F2, 00:00:5E:00:53:AA
Interface(s): Router
Type: Static
Linux, *
Interface(s): ge-0/0/47.0
Type: Flood
Linux, 00:00:5E:00:53:AB
Interface(s): Router
Type: Static
Linux, 00:00:5E:00:53:AC
```
Interface(s): ge-0/0/47.0
Type: Learn, Age: 0, Learned: 2:03:08
T1, *
Interface(s): ge-0/0/46.0
Type: Flood
T1, 00:00:5E:00:53:AD
Interface(s): ge-0/0/46.0
Type: Learn, Age: 0, Learned: 2:03:07
T1, 00:00:5E:00:53:AE
Interface(s): Router
Type: Static
T1, 00:00:5E:00:53:AF
Interface(s): ge-0/0/46.0
Type: Learn, Age: 0, Learned: 2:03:07
T1, 00:00:5E:00:53:AG
Interface(s): Router
Type: Static
T10, *
Interface(s): ge-0/0/46.0
Type: Flood
T10, 00:00:5E:00:53:AH
Interface(s): Router
Type: Static
T10, 00:00:5E:00:53:AI
Interface(s): ge-0/0/46.0
Type: Learn, Age: 0, Learned: 2:03:08
T10, 00:00:5E:00:53:AJ
Interface(s): Router
Type: Static
T111, *
Interface(s): ge-0/0/15.0
Type: Flood
[output truncated]
<table>
<thead>
<tr>
<th>V1</th>
<th>*</th>
<th>Flood</th>
<th>All-members</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>00:00:5E:00:53:AF</td>
<td>Learn</td>
<td>ge-0/0/1.0</td>
</tr>
</tbody>
</table>
**show igmp-snooping route (View)**

**Syntax**

```
show igmp-snooping route { brief | detail | ethernet-switching | inet | vlan }
```

**Release Information**

Command introduced in Junos OS Release 9.5.

**Description**

Display IGMP snooping route information.

**Options**

- **none**—Display general parameters.
- **brief | detail**—(Optional) Display the specified level of output.
- **ethernet-switching**—(Optional) Display Ethernet switching information.
- **inet**—(Optional) Display inet information.
- **vlan** `vlan-id | vlan-name`—(Optional) Display route information for the specified VLAN.

**Required Privilege Level**

`view`

---

**RELATED DOCUMENTATION**

Understanding Interfaces | 31

**Output Fields**

Table 56 on page 947 lists the output fields for the `show igmp-snooping route` command. Output fields are listed in the approximate order in which they appear.

**Table 56: show igmp-snooping route Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td>Name of the VLAN.</td>
</tr>
<tr>
<td>Group</td>
<td>Multicast group address.</td>
</tr>
<tr>
<td>Next-hop</td>
<td>ID associated with the next-hop device.</td>
</tr>
</tbody>
</table>
### Sample Output

**show igmp-snooping route**

```plaintext
user@host> show igmp-snooping route

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Group</th>
<th>Next-hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>v11</td>
<td>203.0.113.0, *</td>
<td>533</td>
</tr>
<tr>
<td></td>
<td>Interfaces: ge-0/0/13.0, ge-0/0/1.0</td>
<td></td>
</tr>
<tr>
<td>v12</td>
<td>203.0.113.1, *</td>
<td>534</td>
</tr>
<tr>
<td></td>
<td>Interfaces: ge-0/0/13.0, ge-0/0/0.0</td>
<td></td>
</tr>
</tbody>
</table>
```

**show igmp-snooping route vlan v1**

```plaintext
user@host> show igmp-snooping route vlan v1

Table: 0
<table>
<thead>
<tr>
<th>VLAN</th>
<th>Group</th>
<th>Next-hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td>203.0.113.2, *</td>
<td>1266</td>
</tr>
<tr>
<td></td>
<td>Interfaces: ge-0/0/0.0</td>
<td></td>
</tr>
<tr>
<td>v1</td>
<td>203.0.113.3, *</td>
<td>1266</td>
</tr>
<tr>
<td></td>
<td>Interfaces: ge-0/0/0.0</td>
<td></td>
</tr>
<tr>
<td>v1</td>
<td>203.0.113.4, *</td>
<td>1266</td>
</tr>
<tr>
<td></td>
<td>Interfaces: ge-0/0/0.0</td>
<td></td>
</tr>
<tr>
<td>v1</td>
<td>203.0.113.5, *</td>
<td>1266</td>
</tr>
<tr>
<td></td>
<td>Interfaces: ge-0/0/0.0</td>
<td></td>
</tr>
<tr>
<td>v1</td>
<td>203.0.113.6, *</td>
<td>1266</td>
</tr>
<tr>
<td></td>
<td>Interfaces: ge-0/0/0.0</td>
<td></td>
</tr>
</tbody>
</table>
```
show interfaces

List of Syntax
Syntax (Gigabit Ethernet) on page 949
Syntax (10 Gigabit Ethernet) on page 949
Syntax (SRX Series Devices and (vSRX and vSRX 3.0 platforms)) on page 949

Syntax (Gigabit Ethernet)

```
show interfaces ge-fpc/pic/port
<brief | detail | extensive | terse>
<descriptions>
<media>
<snmp-index snmp-index>
<statistics>
```

Syntax (10 Gigabit Ethernet)

```
show interfaces xe-fpc/pic/port
<brief | detail | extensive | terse>
<descriptions>
<media>
<snmp-index snmp-index>
<statistics>
```

Syntax (SRX Series Devices and (vSRX and vSRX 3.0 platforms))

```
show interfaces (
 <interface-name>
 <brief | detail | extensive | terse>
 <controller interface-name>
 <descriptions interface-name>
 <destination-class (all | destination-class-name logical-interface-name)>
 <diagnostics optics interface-name>
 <far-end-interval interface-fpc/pic/port>
 <filters interface-name>
 <flow-statistics interface-name>
 <interval interface-name>
 <load-balancing (detail | interface-name)>
 <mac-database mac-address mac-address>
 <mc-ae id identifier unit number revertive-info>
 <media interface-name>
 <policers interface-name>
```
Release Information

Command introduced before Junos OS Release 7.4 for Gigabit interfaces.
Command introduced in Junos OS Release 8.0 for 10 Gigabit interfaces.
Command modified in Junos OS Release 9.5 for SRX Series devices.
Command introduced in Junos OS Release 18.1 for Gigabit interfaces.
Command modified in Junos OS Release 19.3R1 for MX Series Routers.

Starting in Junos OS Release 19.3R1, Output fields **Ifindex** and **speed** is modified in the **show interfaces interface name extensive** command, on all MX Series routers.

- The default behavior of WAN-PHY interface remains the same. The new **precise-bandwidth** option reflects the new speed (9.294-Gbps) configured on the supported line cards.
- The WAN-PHY framing mode is supported only on MPC5E and MPC6E line cards.

Starting in Junos OS Release 19.3R1, class of service (CoS) features can be configured on the physical interface with speed rates of 1-Gbps, 10-Gbps, 40-Gbps, and 100-Gbps to provide better bandwidth for processing traffic during congestion using variant speeds.

Description

Display status information about the specified Gigabit Ethernet interface.

(M320, M120, MX Series, and T Series routers only) Display status information about the specified 10-Gigabit Ethernet interface.

Display the IPv6 interface traffic statistics about the specified Gigabit Ethernet interface for MX series routers. The input and output bytes (bps) and packets (pps) rates are not displayed for IFD and local traffic.

Display status information and statistics about interfaces on SRX Series, vSRX, and vSRX 3.0 platforms running Junos OS.
NOTE: On SRX Series appliances, on configuring identical IPs on a single interface, you will not see a warning message; instead, you will see a syslog message.

Starting in Junos OS Release 18.4R1, Output fields **Next-hop** and **vpls-status** is displayed in the **show interfaces interface name detail** command, only for Layer 2 protocols on MX480 routers.

**Options**

For Gigabit interfaces:

- **ge-fpc/pic/port**—Display standard information about the specified Gigabit Ethernet interface.

**NOTE:** Interfaces with different speeds are named uniformly with ge-0/0/x for backward compatibility. Use the **show interfaces** command to view the interface speeds.

- **brief | detail | extensive | terse**—(Optional) Display the specified level of output.
- **descriptions**—(Optional) Display interface description strings.
- **media**—(Optional) Display media-specific information about network interfaces.
- **snmp-index snmp-index**—(Optional) Display information for the specified SNMP index of the interface.
- **statistics**—(Optional) Display static interface statistics.

For 10 Gigabit interfaces:

- **xe-fpc/pic/port**—Display standard information about the specified 10-Gigabit Ethernet interface.

**brief | detail | extensive | terse**—(Optional) Display the specified level of output.

- **descriptions**—(Optional) Display interface description strings.
- **media**—(Optional) Display media-specific information about network interfaces.
- **snmp-index snmp-index**—(Optional) Display information for the specified SNMP index of the interface.
- **statistics**—(Optional) Display static interface statistics.

For SRX interfaces:

- **interface-name**—(Optional) Display standard information about the specified interface. Following is a list of typical interface names. Replace pim with the PIM slot and port with the port number.
• **at-pim/0/port**—ATM-over-ADSL or ATM-over-SHDSL interface.
• **ce1-pim/0/port**—Channelized E1 interface.
• **cl-0/0/8**—3G wireless modem interface for SRX320 devices.
• **ct1-pim/0/port**—Channelized T1 interface.
• **dl0**—Dialer Interface for initiating ISDN and USB modem connections.
• **e1-pim/0/port**—E1 interface.
• **e3-pim/0/port**—E3 interface.
• **fe-pim/0/port**—Fast Ethernet interface.
• **ge-pim/0/port**—Gigabit Ethernet interface.
• **se-pim/0/port**—Serial interface.
• **t1-pim/0/port**—T1 (also called DS1) interface.
• **t3-pim/0/port**—T3 (also called DS3) interface.
• **wx-slot/0/0**—WAN acceleration interface, for the WXC Integrated Services Module (ISM 200).

**interface-name**—(Optional) Display standard information about the specified interface. Following is a list of typical interface names. Replace pim with the PIM slot and port with the port number.

• **at-pim/0/port**—ATM-over-ADSL or ATM-over-SHDSL interface.
• **ce1-pim/0/port**—Channelized E1 interface.
• **cl-0/0/8**—3G wireless modem interface for SRX320 devices.
• **ct1-pim/0/port**—Channelized T1 interface.
• **dl0**—Dialer Interface for initiating ISDN and USB modem connections.
• **e1-pim/0/port**—E1 interface.
• **e3-pim/0/port**—E3 interface.
• **fe-pim/0/port**—Fast Ethernet interface.
• **ge-pim/0/port**—Gigabit Ethernet interface.
• **se-pim/0/port**—Serial interface.
• **t1-pim/0/port**—T1 (also called DS1) interface.
• **t3-pim/0/port**—T3 (also called DS3) interface.
• **wx-slot/0/0**—WAN acceleration interface, for the WXC Integrated Services Module (ISM 200).

**Additional Information**

In a logical system, this command displays information only about the logical interfaces and not about the physical interfaces.
Required Privilege Level

view

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.4R1</td>
<td>Starting in Junos OS Release 18.4R1, Output fields <strong>Next-hop</strong> and <strong>vpls-status</strong> is displayed in the <strong>show interfaces interface name detail</strong> command, only for Layer 2 protocols on MX480 routers.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- **Understanding Layer 2 Interfaces on Security Devices**
- **Verifying and Managing Agent Circuit Identifier-Based Dynamic VLAN Configuration**
- **Verifying and Managing Configurations for Dynamic VLANs Based on Access-Line Identifiers**

List of Sample Output

- `show interfaces (Gigabit Ethernet) on page 1002`
- `show interfaces (Gigabit Ethernet on MX Series Routers) on page 1003`
- `show interfaces (link degrade status) on page 1004`
- `show interfaces extensive (Gigabit Ethernet on MX Series Routers showing interface transmit statistics configuration) on page 1005`
- `show interfaces brief (Gigabit Ethernet) on page 1006`
- `show interfaces detail (Gigabit Ethernet) on page 1006`
- `show interfaces extensive (Gigabit Ethernet IQ2) on page 1008`
- `show interfaces (Gigabit Ethernet Unnumbered Interface) on page 1012`
- `show interfaces (ACI Interface Set Configured) on page 1012`
- `show interfaces (ALI Interface Set) on page 1013`
- `show interfaces extensive (10-Gigabit Ethernet, LAN PHY Mode, IQ2) on page 1013`
- `show interfaces extensive (10-Gigabit Ethernet, WAN PHY Mode) on page 1016`
- `show interfaces extensive (10-Gigabit Ethernet, DWDM OTN PIC) on page 1019`
- `show interfaces extensive (10-Gigabit Ethernet, LAN PHY Mode, Unidirectional Mode, Transmit-Only) on page 1023`
- `show interfaces extensive (10-Gigabit Ethernet, LAN PHY Mode, Unidirectional Mode, Receive-Only) on page 1024`
- `Sample Output SRX Gigabit Ethernet on page 1026`
- `Sample Output SRX Gigabit Ethernet on page 1026`
- `show interfaces (Gigabit Ethernet for vSRX and vSRX 3.0) on page 1027`
- `show interfaces detail (Gigabit Ethernet) on page 1028`
- `show interfaces statistics st0.0 detail on page 1030`
show interfaces extensive (Gigabit Ethernet) on page 1031
show interfaces terse on page 1034
show interfaces terse (vSRX and vSRX 3.0) on page 1035
show interfaces controller (Channelized E1 IQ with Logical E1) on page 1036
show interfaces controller (Channelized E1 IQ with Logical DS0) on page 1036
show interfaces descriptions on page 1036
show interfaces destination-class all on page 1037
show interfaces diagnostics optics on page 1037
show interfaces far-end-interval coc12-5/2/0 on page 1038
show interfaces far-end-interval coc1-5/2/1:1 on page 1039
show interfaces filters on page 1039
show interfaces flow-statistics (Gigabit Ethernet) on page 1040
show interfaces interval (Channelized OC12) on page 1041
show interfaces interval (E3) on page 1042
show interfaces interval (SONET/SDH) (SRX devices) on page 1042
show interfaces load-balancing (SRX devices) on page 1043
show interfaces load-balancing detail (SRX devices) on page 1043
show interfaces mac-database (All MAC Addresses on a Port SRX devices) on page 1043
show interfaces mac-database (All MAC Addresses on a Service SRX devices) on page 1044
show interfaces mac-database mac-address on page 1045
show interfaces mc-ae (SRX devices) on page 1045
show interfaces media (SONET/SDH) on page 1045
show interfaces policers (SRX devices) on page 1046
show interfaces policers interface-name (SRX devices) on page 1047
show interfaces queue (SRX devices) on page 1047
show interfaces redundancy (SRX devices) on page 1048
show interfaces redundancy (Aggregated Ethernet SRX devices) on page 1048
show interfaces redundancy detail (SRX devices) on page 1049
show interfaces routing brief (SRX devices) on page 1049
show interfaces routing detail (SRX devices) on page 1050
show interfaces routing-instance all (SRX devices) on page 1050
show interfaces snmp-index (SRX devices) on page 1051
show interfaces source-class all (SRX devices) on page 1051
show interfaces statistics (Fast Ethernet SRX devices) on page 1052
show interfaces switch-port (SRX devices) on page 1053
show interfaces transport pm (SRX devices) on page 1053
show security zones (SRX devices) on page 1055

Output Fields
Table 57 on page 955 describes the output fields for the show interfaces (Gigabit Ethernet) command. Output fields are listed in the approximate order in which they appear. For Gigabit Ethernet IQ and IQE PICs, the traffic and MAC statistics vary by interface type. For more information, see Table 58 on page 993.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Physical Interface</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface. Possible values are described in the &quot;Enabled Field&quot; section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface index</td>
<td>Index number of the physical interface, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation being used on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Speed</td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td>Loopback</td>
<td>Loopback status: Enabled or Disabled. If loopback is enabled, type of loopback: Local or Remote.</td>
<td>All levels</td>
</tr>
<tr>
<td>Source filtering</td>
<td>Source filtering status: Enabled or Disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td>LAN-PHY mode</td>
<td>10-Gigabit Ethernet interface operating in Local Area Network Physical Layer Device (LAN PHY) mode. LAN PHY allows 10-Gigabit Ethernet wide area links to use existing Ethernet applications.</td>
<td>All levels</td>
</tr>
<tr>
<td>WAN-PHY mode</td>
<td>10-Gigabit Ethernet interface operating in Wide Area Network Physical Layer Device (WAN PHY) mode. WAN PHY allows 10-Gigabit Ethernet wide area links to use fiber-optic cables and other devices intended for SONET/SDH.</td>
<td>All levels</td>
</tr>
<tr>
<td>Unidirectional</td>
<td>Unidirectional link mode status for 10-Gigabit Ethernet interface: Enabled or Disabled for parent interface; Rx-only or Tx-only for child interfaces.</td>
<td>All levels</td>
</tr>
<tr>
<td>Flow control</td>
<td>Flow control status: Enabled or Disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td>Auto-negotiation</td>
<td>(Gigabit Ethernet interfaces) Autonegotiation status: Enabled or Disabled.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 57: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote-fault</td>
<td>(Gigabit Ethernet interfaces) Remote fault status:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• <strong>Online</strong>—Autonegotiation is manually configured as online.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Offline</strong>—Autonegotiation is manually configured as offline.</td>
<td></td>
</tr>
<tr>
<td>Device flags</td>
<td>Information about the physical device. Possible values are described in the &quot;Device Flags&quot; section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface flags</td>
<td>Information about the interface. Possible values are described in the &quot;Interface Flags&quot; section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link flags</td>
<td>Information about the link. Possible values are described in the &quot;Links Flags&quot; section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Wavelength</td>
<td>(10-Gigabit Ethernet dense wavelength-division multiplexing [DWDM] interfaces)Displays the configured wavelength, in nanometers (nm).</td>
<td>All levels</td>
</tr>
<tr>
<td>Frequency</td>
<td>(10-Gigabit Ethernet DWDM interfaces only) Displays the frequency associated with the configured wavelength, in terahertz (THz).</td>
<td>All levels</td>
</tr>
<tr>
<td>CoS queues</td>
<td>Number of CoS queues configured.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Schedulers</td>
<td>(Gigabit Ethernet intelligent queuing 2 [IQ2] interfaces only) Number of CoS schedulers configured.</td>
<td>extensive</td>
</tr>
<tr>
<td>Hold-times</td>
<td>Current interface hold-time up and hold-time down, in milliseconds (ms).</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Current address</td>
<td>Configured MAC address.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Hardware address</td>
<td>Hardware MAC address.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Last flapped</td>
<td>Date, time, and how long ago the interface went from down to up. The format is Last flapped: year-month-day hour:minute:second:timezone (hour:minute:second ago). For example, Last flapped: 2002-04-26 10:52:40 PDT (04:33:20 ago).</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Input Rate</td>
<td>Input rate in bits per second (bps) and packets per second (pps). The value in this field also includes the Layer 2 overhead bytes for ingress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td>None</td>
</tr>
</tbody>
</table>
Table 57: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Output Rate</strong></td>
<td>Output rate in bps and pps. The value in this field also includes the Layer 2 overhead bytes for egress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td>None</td>
</tr>
<tr>
<td><strong>Statistics last cleared</strong></td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Egress account overhead</strong></td>
<td>Layer 2 overhead in bytes that is accounted in the interface statistics for egress traffic.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Ingress account overhead</strong></td>
<td>Layer 2 overhead in bytes that is accounted in the interface statistics for ingress traffic.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Traffic statistics</strong></td>
<td>Number and rate of bytes and packets received and transmitted on the physical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>- <strong>Input bytes</strong></td>
<td>Number of bytes received on the interface. The value in this field also includes the Layer 2 overhead bytes for ingress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td></td>
</tr>
<tr>
<td>- <strong>Output bytes</strong></td>
<td>Number of bytes transmitted on the interface. The value in this field also includes the Layer 2 overhead bytes for egress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td></td>
</tr>
<tr>
<td>- <strong>Input packets</strong></td>
<td>Number of packets received on the interface.</td>
<td></td>
</tr>
<tr>
<td>- <strong>Output packets</strong></td>
<td>Number of packets transmitted on the interface.</td>
<td></td>
</tr>
</tbody>
</table>

Gigabit Ethernet and 10-Gigabit Ethernet IQ PICs count the overhead and CRC bytes.

For Gigabit Ethernet IQ PICs, the input byte counts vary by interface type. For more information, see Table 31 under the `show interfaces` command.
Table 57: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input errors</td>
<td>Input errors on the interface. The following paragraphs explain the counters whose meaning might not be obvious:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Errors</strong>—Sum of the incoming frame aborts and FCS errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Drops</strong>—Number of packets dropped by the input queue of the I/O Manager ASIC. If the interface is saturated, this number increments once for every packet that is dropped by the ASIC’s RED mechanism.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Framing errors</strong>—Number of packets received with an invalid frame checksum (FCS).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Runts</strong>—Number of frames received that are smaller than the runt threshold.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Policed discards</strong>—Number of frames that the incoming packet match code discarded because they were not recognized or not of interest. Usually, this field reports protocols that Junos OS does not handle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>L3 incompletes</strong>—Number of incoming packets discarded because they failed Layer 3 (usually IPv4) sanity checks of the header. For example, a frame with less than 20 bytes of available IP header is discarded. L3 incomplete errors can be ignored by configuring the ignore-l3-incompletes statement.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>L2 channel errors</strong>—Number of times the software did not find a valid logical interface for an incoming frame.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>L2 mismatch timeouts</strong>—Number of malformed or short packets that caused the incoming packet handler to discard the frame as unreadable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>FIFO errors</strong>—Number of FIFO errors in the receive direction that are reported by the ASIC on the PIC. If this value is ever nonzero, the PIC is probably malfunctioning.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Resource errors</strong>—Sum of transmit drops.</td>
<td></td>
</tr>
</tbody>
</table>
Table 57: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Output errors</strong></td>
<td>Output errors on the interface. The following paragraphs explain the counters whose meaning might not be obvious:</td>
<td>extensive</td>
</tr>
<tr>
<td>• <strong>Carrier transitions</strong>—Number of times the interface has gone from down to up. This number does not normally increment quickly, increasing only when the cable is unplugged, the far-end system is powered down and then up, or another problem occurs. If the number of carrier transitions increments quickly (perhaps once every 10 seconds), the cable, the far-end system, or the PIC or PIM is malfunctioning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Errors</strong>—Sum of the outgoing frame aborts and FCS errors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Drops</strong>—Number of packets dropped by the output queue of the I/O Manager ASIC. If the interface is saturated, this number increments once for every packet that is dropped by the ASIC’s RED mechanism.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Collisions</strong>—Number of Ethernet collisions. The Gigabit Ethernet PIC supports only full-duplex operation, so for Gigabit Ethernet PICs, this number must always be 0. If it is nonzero, there is a software bug.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Aged packets</strong>—Number of packets that remained in shared packet SDRAM so long that the system automatically purged them. The value in this field must never increment. If it does, it is most likely a software bug or possibly malfunctioning hardware.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>FIFO errors</strong>—Number of FIFO errors in the send direction as reported by the ASIC on the PIC. If this value is ever nonzero, the PIC is probably malfunctioning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>HS link CRC errors</strong>—Number of errors on the high-speed links between the ASICs responsible for handling the router interfaces.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>MTU errors</strong>—Number of packets whose size exceeded the MTU of the interface.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Resource errors</strong>—Sum of transmit drops.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 57: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Egress queues</strong></td>
<td>Total number of egress queues supported on the specified interface. &lt;br&gt; NOTE: In DPCs that are not of the enhanced type, such as DPC 40x 1GE R, DPCE 20x 1GE + 2x 10GE R, or DPCE 40x 1GE R, you might notice a discrepancy in the output of the <code>show interfaces</code> command because incoming packets might be counted in the Egress queues section of the output. This problem occurs on non-enhanced DPCs because the egress queue statistics are polled from IMQ (Inbound Message Queuing) block of the I-chip. The IMQ block does not differentiate between ingress and egress WAN traffic; as a result, the combined statistics are displayed in the egress queue counters on the Routing Engine. In a simple VPLS scenario, if there is no MAC entry in DMAC table (by sending unidirectional traffic), traffic is flooded and the input traffic is accounted in IMQ. For bidirectional traffic (MAC entry in DMAC table), if the outgoing interface is on the same I-chip then both ingress and egress statistics are counted in a combined way. If the outgoing interface is on a different I-chip or FPC, then only egress statistics are accounted in IMQ. This behavior is expected with non-enhanced DPCs.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Queue counters</strong>&lt;br&gt;(Egress)</td>
<td>CoS queue number and its associated user-configured forwarding class name. &lt;br&gt; • Queued packets—Number of queued packets. &lt;br&gt; • Transmitted packets—Number of transmitted packets. &lt;br&gt; • Dropped packets—Number of packets dropped by the ASIC’s RED mechanism. &lt;br&gt; NOTE: Due to accounting space limitations on certain Type 3 FPCs (which are supported in M320 and T640 routers), the Dropped packets field does not always display the correct value for queue 6 or queue 7 for interfaces on 10-port 1-Gigabit Ethernet PICs.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Ingress queues</strong></td>
<td>Total number of ingress queues supported on the specified interface. Displayed on IQ2 interfaces.</td>
<td>extensive</td>
</tr>
<tr>
<td><strong>Queue counters</strong>&lt;br&gt;(Ingress)</td>
<td>CoS queue number and its associated user-configured forwarding class name. Displayed on IQ2 interfaces. &lt;br&gt; • Queued packets—Number of queued packets. &lt;br&gt; • Transmitted packets—Number of transmitted packets. &lt;br&gt; • Dropped packets—Number of packets dropped by the ASIC’s RED mechanism.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
Table 57: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
</table>
| **Active alarms and Active defects** | Ethernet-specific defects that can prevent the interface from passing packets. When a defect persists for a certain amount of time, it is promoted to an alarm. Based on the router configuration, an alarm can ring the red or yellow alarm bell on the router, or turn on the red or yellow alarm LED on the craft interface. These fields can contain the value **None** or **Link**.  
  - **None**—There are no active defects or alarms.  
  - **Link**—Interface has lost its link state, which usually means that the cable is unplugged, the far-end system has been turned off, or the PIC is malfunctioning. | **detail extensive** none |
| **Interface transmit statistics** | (On MX Series devices) Status of the `interface-transmit-statistics` configuration: Enabled or Disabled.  
  - **Enabled**—When the `interface-transmit-statistics` statement is included in the configuration. If this is configured, the interface statistics show the actual transmitted load on the interface.  
  - **Disabled**—When the `interface-transmit-statistics` statement is not included in the configuration. If this is not configured, the interface statistics show the offered load on the interface. | **detail extensive** |
| **OTN FEC statistics** | The forward error correction (FEC) counters provide the following statistics:  
  - **Corrected Errors**—Count of corrected errors in the last second.  
  - **Corrected Error Ratio**—Corrected error ratio in the last 25 seconds. For example, 1e-7 is 1 error per 10 million bits. | **detail extensive** |
| **PCS statistics** | (10-Gigabit Ethernet interfaces) Displays Physical Coding Sublayer (PCS) fault conditions from the WAN PHY or the LAN PHY device.  
  - **Bit errors**—Number of seconds during which at least one bit error rate (BER) occurred while the PCS receiver is operating in normal mode.  
  - **Errored blocks**—Number of seconds when at least one errored block occurred while the PCS receiver is operating in normal mode. | **detail extensive** |
Table 57: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Link Degrade</strong></td>
<td>Shows the link degrade status of the physical link and the estimated bit error rates (BERs). This field is available only for the PICs supporting the physical link monitoring feature.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Link Monitoring</strong>—Indicates if physical link degrade monitoring is enabled on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Enable</strong>—Indicates that link degrade monitoring has been enabled (using the link-degrade-monitor statement) on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Disable</strong>—Indicates that link degrade monitoring has not been enabled on the interface. If link degrade monitoring has not been enabled, the output does not show any related information, such as BER values and thresholds.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Link Degrade Set Threshold</strong>—The BER threshold value at which the link is considered degraded and a corrective action is triggered.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Link Degrade Clear Threshold</strong>—The BER threshold value at which the degraded link is considered recovered and the corrective action applied to the interface is reverted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Estimated BER</strong>—The estimated bit error rate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Link-degrade event</strong>—Shows link degrade event information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Seconds</strong>—Time (in seconds) elapsed after a link degrade event occurred.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Count</strong>—The number of link degrade events recorded.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>State</strong>—Shows the link degrade status (example: Defect Active).</td>
<td></td>
</tr>
</tbody>
</table>
Table 57: show interfaces (Gigabit Ethernet) Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC statistics</td>
<td></td>
<td>extensive</td>
</tr>
</tbody>
</table>
Table 57: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Receive</strong> and <strong>Transmit</strong> statistics reported by the PIC's MAC subsystem, including the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Total octets</strong> and <strong>total packets</strong>—Total number of octets and packets. For Gigabit Ethernet IQ PICs, the received octets count varies by interface type. For more information, see Table 31 under the show interfaces command.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Unicast packets</strong>, <strong>Broadcast packets</strong>, and <strong>Multicast packets</strong>—Number of unicast, broadcast, and multicast packets.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>CRC/Align errors</strong>—Total number of packets received that had a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, and had either a bad FCS with an integral number of octets (FCS Error) or a bad FCS with a nonintegral number of octets (Alignment Error).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>FIFO error</strong>—Number of FIFO errors that are reported by the ASIC on the PIC. If this value is ever nonzero, the PIC or a cable is probably malfunctioning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>MAC control frames</strong>—Number of MAC control frames.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>MAC pause frames</strong>—Number of MAC control frames with <strong>pause</strong> operational code.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Oversized frames</strong>—There are two possible conditions regarding the number of oversized frames:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Packet length exceeds interface MTU, or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Packet length exceeds MRU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Jabber frames</strong>—Number of frames that were longer than 1518 octets (excluding framing bits, but including FCS octets), and had either an FCS error or an alignment error. This definition of jabber is different from the definition in IEEE-802.3 section 8.2.1.5 (10BASE5) and section 10.3.1.4 (10BASE2). These documents define jabber as the condition in which any packet exceeds 20 ms. The allowed range to detect jabber is from 20 ms to 150 ms.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Fragment frames</strong>—Total number of packets that were less than 64 octets in length (excluding framing bits, but including FCS octets) and had either an FCS error or an alignment error. Fragment frames normally increment because both runts (which are normal occurrences caused by collisions) and noise hits are counted.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>VLAN tagged frames</strong>—Number of frames that are VLAN tagged. The system uses the TPID of 0x8100 in the frame to determine whether a frame is tagged or not.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 57: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE:</td>
<td>The 20-port Gigabit Ethernet MIC (MIC-3D-20GE-SFP) does not have hardware counters for VLAN frames. Therefore, the <strong>VLAN tagged frames</strong> field displays 0 when the <strong>show interfaces</strong> command is executed on a 20-port Gigabit Ethernet MIC. In other words, the number of VLAN tagged frames cannot be determined for the 20-port Gigabit Ethernet MIC.</td>
<td></td>
</tr>
<tr>
<td>• Code violations</td>
<td>Number of times an event caused the PHY to indicate “Data reception error” or “invalid data symbol error.”</td>
<td></td>
</tr>
<tr>
<td>OTN Received Overhead Bytes</td>
<td>APS/PCC0: 0x02, APS/PCC1: 0x11, APS/PCC2: 0x47, APS/PCC3: 0x58 Payload Type: 0x08</td>
<td>extensive</td>
</tr>
<tr>
<td>OTN Transmitted Overhead Bytes</td>
<td>APS/PCC0: 0x00, APS/PCC1: 0x00, APS/PCC2: 0x00, APS/PCC3: 0x00 Payload Type: 0x08</td>
<td>extensive</td>
</tr>
</tbody>
</table>
Filter statistics

**Receive** and **Transmit** statistics reported by the PIC’s MAC address filter subsystem. The filtering is done by the content-addressable memory (CAM) on the PIC. The filter examines a packet’s source and destination MAC addresses to determine whether the packet may enter the system or be rejected.

- **Input packet count**—Number of packets received from the MAC hardware that the filter processed.
- **Input packet rejects**—Number of packets that the filter rejected because of either the source MAC address or the destination MAC address.
- **Input DA rejects**—Number of packets that the filter rejected because the destination MAC address of the packet is not on the accept list. It is normal for this value to increment. When it increments very quickly and no traffic is entering the router from the far-end system, either there is a bad ARP entry on the far-end system, or multicast routing is not on and the far-end system is sending many multicast packets to the local router (which the router is rejecting).
- **Input SA rejects**—Number of packets that the filter rejected because the source MAC address of the packet is not on the accept list. The value in this field must increment only if source MAC address filtering has been enabled. If filtering is enabled, if the value increments quickly, and if the system is not receiving traffic that it should from the far-end system, it means that the user-configured source MAC addresses for this interface are incorrect.
- **Output packet count**—Number of packets that the filter has given to the MAC hardware.
- **Output packet pad count**—Number of packets the filter padded to the minimum Ethernet size (60 bytes) before giving the packet to the MAC hardware. Usually, padding is done only on small ARP packets, but some very small IP packets can also require padding. If this value increments rapidly, either the system is trying to find an ARP entry for a far-end system that does not exist or it is misconfigured.
- **Output packet error count**—Number of packets with an indicated error that the filter was given to transmit. These packets are usually aged packets or are the result of a bandwidth problem on the FPC hardware. On a normal system, the value of this field must not increment.
- **CAM destination filters, CAM source filters**—Number of entries in the CAM dedicated to destination and source MAC address filters. There can only be up to 64 source entries. If source filtering is disabled, which is the default, the values for these fields must be 0.
Table 57: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PMA PHY</strong></td>
<td>(10-Gigabit Ethernet interfaces, WAN PHY mode) SONET error information:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Seconds</strong>—Number of seconds the defect has been active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Count</strong>—Number of times that the defect has gone from inactive to active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>State</strong>—State of the error. Any state other than <strong>OK</strong> indicates a problem.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subfields are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>PHY Lock</strong>—Phase-locked loop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>PHY Light</strong>—Loss of optical signal</td>
<td></td>
</tr>
<tr>
<td><strong>WIS section</strong></td>
<td>(10-Gigabit Ethernet interfaces, WAN PHY mode) SONET error information:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Seconds</strong>—Number of seconds the defect has been active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Count</strong>—Number of times that the defect has gone from inactive to active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>State</strong>—State of the error. Any state other than <strong>OK</strong> indicates a problem.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subfields are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>BIP-B1</strong>—Bit interleaved parity for SONET section overhead</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>SEF</strong>—Severely errored framing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>LOL</strong>—Loss of light</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>LOF</strong>—Loss of frame</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>ES-S</strong>—Errored seconds (section)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>SES-S</strong>—Severely errored seconds (section)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>SEFS-S</strong>—Severely errored framing seconds (section)</td>
<td></td>
</tr>
</tbody>
</table>
Table 57: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>WIS line</strong></td>
<td>(10-Gigabit Ethernet interfaces, WAN PHY mode) Active alarms and defects, plus counts of specific SONET errors with detailed information:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Seconds</strong>—Number of seconds the defect has been active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Count</strong>—Number of times that the defect has gone from inactive to active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>State</strong>—State of the error. Any state other than <strong>OK</strong> indicates a problem. Subfields are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>BIP-B2</strong>—Bit interleaved parity for SONET line overhead</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>REI-L</strong>—Remote error indication (near-end line)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>RDI-L</strong>—Remote defect indication (near-end line)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>AIS-L</strong>—Alarm indication signal (near-end line)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>BERR-SF</strong>—Bit error rate fault (signal failure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>BERR-SD</strong>—Bit error rate defect (signal degradation)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>ES-L</strong>—Errored seconds (near-end line)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>SES-L</strong>—Severely errored seconds (near-end line)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>UAS-L</strong>—Unavailable seconds (near-end line)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>ES-LFE</strong>—Errored seconds (far-end line)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>SES-LFE</strong>—Severely errored seconds (far-end line)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>UAS-LFE</strong>—Unavailable seconds (far-end line)</td>
<td></td>
</tr>
</tbody>
</table>
Table 57: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
</table>
| **WIS path** | (10-Gigabit Ethernet interfaces, WAN PHY mode) Active alarms and defects, plus counts of specific SONET errors with detailed information:  
  • **Seconds**—Number of seconds the defect has been active.  
  • **Count**—Number of times that the defect has gone from inactive to active.  
  • **State**—State of the error. Any state other than **OK** indicates a problem. Subfields are:  
    • **BIP-B3**—Bit interleaved parity for SONET section overhead  
    • **REI-P**—Remote error indication  
    • **LOP-P**—Loss of pointer (path)  
    • **AIS-P**—Path alarm indication signal  
    • **RDI-P**—Path remote defect indication  
    • **UNEQ-P**—Path unequipped  
    • **PLM-P**—Path payload (signal) label mismatch  
    • **ES-P**—Errored seconds (near-end STS path)  
    • **SES-P**—Severely errored seconds (near-end STS path)  
    • **UAS-P**—Unavailable seconds (near-end STS path)  
    • **SES-PFE**—Severely errored seconds (far-end STS path)  
    • **UAS-PFE**—Unavailable seconds (far-end STS path) | extensive        |
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonegotiation</td>
<td>Information about link autonegotiation.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>- <strong>Negotiation status:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Incomplete</strong>—Ethernet interface has the speed or link mode configured.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>No autonegotiation</strong>—Remote Ethernet interface has the speed or link mode configured, or does not perform autonegotiation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Complete</strong>—Ethernet interface is connected to a device that performs autonegotiation and the autonegotiation process is successful.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Link partner status</strong>—<strong>OK</strong> when Ethernet interface is connected to a device that performs autonegotiation and the autonegotiation process is successful.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Link partner</strong>—Information from the remote Ethernet device:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Link mode</strong>—Depending on the capability of the link partner, either <strong>Full-duplex</strong> or <strong>Half-duplex</strong>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Flow control</strong>—Types of flow control supported by the link partner.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- For Gigabit Ethernet interfaces, types are <strong>Symmetric</strong> (link partner supports PAUSE on receive and transmit), <strong>Asymmetric</strong> (link partner supports PAUSE on transmit), <strong>Symmetric/Asymmetric</strong> (link partner supports PAUSE on receive and transmit or only PAUSE on transmit), and <strong>None</strong> (link partner does not support flow control).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Remote fault</strong>—Remote fault information from the link partner—<strong>Failure</strong> indicates a receive link error. <strong>OK</strong> indicates that the link partner is receiving. <strong>Negotiation error</strong> indicates a negotiation error. <strong>Offline</strong> indicates that the link partner is going offline.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Local resolution</strong>—Information from the local Ethernet device:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Flow control</strong>—Types of flow control supported by the local device.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- For Gigabit Ethernet interfaces, advertised capabilities are <strong>Symmetric/Asymmetric</strong> (local device supports PAUSE on receive and transmit or only PAUSE on receive) and <strong>None</strong> (local device does not support flow control). Depending on the result of the negotiation with the link partner, local resolution flow control type will display <strong>Symmetric</strong> (local device supports PAUSE on receive and transmit), <strong>Asymmetric</strong> (local device supports PAUSE on receive), and <strong>None</strong> (local device does not support flow control).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Remote fault</strong>—Remote fault information. <strong>Link OK</strong> (no error detected on receive), <strong>Offline</strong> (local interface is offline), and <strong>Link Failure</strong> (link error detected on receive).</td>
<td></td>
</tr>
</tbody>
</table>
Table 57: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Received path trace, Transmitted path trace</strong></td>
<td>(10-Gigabit Ethernet interfaces, WAN PHY mode) SONET/SDH interfaces allow path trace bytes to be sent inband across the SONET/SDH link. Juniper Networks and other router manufacturers use these bytes to help diagnose misconfigurations and network errors by setting the transmitted path trace message so that it contains the system hostname and name of the physical interface. The received path trace value is the message received from the router at the other end of the fiber. The transmitted path trace value is the message that this router transmits.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
| **Packet Forwarding Engine configuration** | Information about the configuration of the Packet Forwarding Engine:  
• **Destination slot**—FPC slot number. | extensive |
| **CoS information** | Information about the CoS queue for the physical interface.  
• **CoS transmit queue**—Queue number and its associated user-configured forwarding class name.  
• **Bandwidth %**—Percentage of bandwidth allocated to the queue.  
• **Bandwidth bps**—Bandwidth allocated to the queue (in bps).  
• **Buffer %**—Percentage of buffer space allocated to the queue.  
• **Buffer usec**—Amount of buffer space allocated to the queue, in microseconds. This value is nonzero only if the buffer size is configured in terms of time.  
• **Priority**—Queue priority: **low** or **high**.  
• **Limit**—Displayed if rate limiting is configured for the queue. Possible values are **none** and **exact**. If **exact** is configured, the queue transmits only up to the configured bandwidth, even if excess bandwidth is available. If **none** is configured, the queue transmits beyond the configured bandwidth if bandwidth is available. | extensive |
<p>| <strong>Logical Interface</strong> | | |
| <strong>Logical interface</strong> | Name of the logical interface. | All levels |
| <strong>Index</strong> | Index number of the logical interface, which reflects its initialization sequence. | detail extensive none |
| <strong>SNMP ifIndex</strong> | SNMP interface index number for the logical interface. | detail extensive none |
| <strong>Generation</strong> | Unique number for use by Juniper Networks technical support only. | detail extensive |</p>
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags</td>
<td>Information about the logical interface. Possible values are described in the &quot;Logical Interface Flags&quot; section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>VLAN-Tag</td>
<td>Rewrite profile applied to incoming or outgoing frames on the outer (Out) VLAN tag or for both the outer and inner (In) VLAN tags.</td>
<td>brief detail extensive</td>
</tr>
<tr>
<td></td>
<td>• push—An outer VLAN tag is pushed in front of the existing VLAN tag.</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>• pop—The outer VLAN tag of the incoming frame is removed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• swap—The outer VLAN tag of the incoming frame is overwritten with the user-specified VLAN tag information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• push—An outer VLAN tag is pushed in front of the existing VLAN tag.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• push-push—Two VLAN tags are pushed in from the incoming frame.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• swap-push—The outer VLAN tag of the incoming frame is replaced by a user-specified VLAN tag value. A user-specified outer VLAN tag is pushed in front. The outer tag becomes an inner tag in the final frame.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• swap-swap—Both the inner and the outer VLAN tags of the incoming frame are replaced by the user-specified VLAN tag value.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• pop-swap—The outer VLAN tag of the incoming frame is removed, and the inner VLAN tag of the incoming frame is replaced by the user-specified VLAN tag value. The inner tag becomes the outer tag in the final frame.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• pop-pop—Both the outer and inner VLAN tags of the incoming frame are removed.</td>
<td></td>
</tr>
<tr>
<td>Demux</td>
<td>IP demultiplexing (demux) value that appears if this interface is used as the demux underlying interface. The output is one of the following:</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Source Family Inet</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>• Destination Family Inet</td>
<td></td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Encapsulation on the logical interface.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
### Table 57: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ACI VLAN</strong></td>
<td>Information displayed for agent circuit identifier (ACI) interface set configured with the <strong>agent-circuit-id</strong> autoconfiguration stanza.</td>
<td>brief detail extensive none</td>
</tr>
<tr>
<td></td>
<td><strong>Dynamic Profile</strong>—Name of the dynamic profile that defines the ACI interface set.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If configured, the ACI interface set enables the underlying Ethernet interface to create dynamic VLAN subscriber interfaces based on ACI information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: The ACI VLAN field is replaced with the Line Identity field when an ALI interface set is configured with the <strong>line-identity</strong> autoconfiguration stanza.</td>
<td></td>
</tr>
<tr>
<td><strong>Line Identity</strong></td>
<td>Information displayed for access-line-identifier (ALI) interface sets configured with the <strong>line-identity</strong> autoconfiguration stanza.</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• <strong>Dynamic Profile</strong>—Name of the dynamic profile that defines the ALI interface set.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Trusted option used to create the ALI interface set: <strong>Circuit-id</strong>, <strong>Remote-id</strong>, or <strong>Accept-no-ids</strong>. More than one option can be configured.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If configured, the ALI interface set enables the underlying Ethernet interface to create dynamic VLAN subscriber interfaces based on ALI information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: The Line Identity field is replaced with the ACI VLAN field when an ACI interface set is configured with the <strong>agent-circuit-id</strong> autoconfiguration stanza.</td>
<td></td>
</tr>
<tr>
<td><strong>Protocol</strong></td>
<td>Protocol family. Possible values are described in the &quot;Protocol Field&quot; section under <strong>Common Output Fields Description</strong>.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>MTU</strong></td>
<td>Maximum transmission unit size on the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>Neighbor Discovery Protocol (NDP) Queue Statistics</strong></td>
<td>NDP statistics for protocol <strong>inet6</strong> under logical interface statistics.</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• <strong>Max nh cache</strong>—Maximum interface neighbor discovery nexthop cache size.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>New hold nh limit</strong>—Maximum number of new unresolved nexthops.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Curr nh cnt</strong>—Current number of resolved nexthops in the NDP queue.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Curr new hold cnt</strong>—Current number of unresolved nexthops in the NDP queue.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>NH drop cnt</strong>—Number of NDP requests not serviced.</td>
<td></td>
</tr>
</tbody>
</table>
Table 57: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Profile</td>
<td>Name of the dynamic profile that was used to create this interface configured with a Point-to-Point Protocol over Ethernet (PPPoE) family.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Service Name Table</td>
<td>Name of the service name table for the interface configured with a PPPoE family.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Max Sessions</td>
<td>Maximum number of PPPoE logical interfaces that can be activated on the underlying interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Duplicate Protection</td>
<td>State of PPPoE duplicate protection: On or Off. When duplicate protection is configured for the underlying interface, a dynamic PPPoE logical interface cannot be activated when an existing active logical interface is present for the same PPPoE client.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Direct Connect</td>
<td>State of the configuration to ignore DSL Forum VSAs: On or Off. When configured, the router ignores any of these VSAs received from a directly connected CPE device on the interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>AC Name</td>
<td>Name of the access concentrator.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Maximum labels</td>
<td>Maximum number of MPLS labels configured for the MPLS protocol family on the logical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the specified interface set.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Input bytes, Output bytes—Number of bytes received and transmitted on the interface set. The value in this field also includes the Layer 2 overhead bytes for ingress or egress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets, Output packets—Number of packets received and transmitted on the interface set.</td>
<td></td>
</tr>
<tr>
<td>IPv6 transit statistics</td>
<td>Number of IPv6 transit bytes and packets received and transmitted on the logical interface if IPv6 statistics tracking is enabled.</td>
<td>extensive</td>
</tr>
<tr>
<td>Local statistics</td>
<td>Number and rate of bytes and packets destined to the router.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
### Table 57: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transit statistics</strong></td>
<td>Number and rate of bytes and packets transiting the switch.</td>
<td><strong>extensive</strong></td>
</tr>
<tr>
<td></td>
<td>NOTE: For Gigabit Ethernet intelligent queuing 2 (IQ2) interfaces, the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>logical interface egress statistics might not accurately reflect the traffic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>on the wire when output shaping is applied. Traffic management output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>shaping might drop packets after they are tallied by the <strong>Output bytes</strong> and</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Output packets</strong> interface counters. However, correct values display for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>both of these egress statistics when per-unit scheduling is enabled for the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gigabit Ethernet IQ2 physical interface, or when a single logical interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>is actively using a shared scheduler.</td>
<td></td>
</tr>
<tr>
<td><strong>Generation</strong></td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td><strong>detail extensive</strong></td>
</tr>
<tr>
<td><strong>Route Table</strong></td>
<td>Route table in which the logical interface address is located. For example,</td>
<td><strong>detail extensive</strong></td>
</tr>
<tr>
<td></td>
<td>0 refers to the routing table inet.0.</td>
<td><strong>none</strong></td>
</tr>
<tr>
<td><strong>Flags</strong></td>
<td>Information about protocol family flags. Possible values are described in the</td>
<td><strong>detail extensive</strong></td>
</tr>
<tr>
<td></td>
<td>“Family Flags” section under <strong>Common Output Fields Description</strong>.</td>
<td></td>
</tr>
<tr>
<td><strong>Donor interface</strong></td>
<td>(Unnumbered Ethernet) Interface from which an unnumbered Ethernet interface</td>
<td><strong>detail extensive</strong></td>
</tr>
<tr>
<td></td>
<td>borrows an IPv4 address.</td>
<td><strong>none</strong></td>
</tr>
<tr>
<td><strong>Preferred source</strong></td>
<td>(Unnumbered Ethernet) Secondary IPv4 address of the donor loopback</td>
<td><strong>detail extensive</strong></td>
</tr>
<tr>
<td><strong>address</strong></td>
<td>interface that acts as the preferred source address for the unnumbered Ethernet</td>
<td><strong>none</strong></td>
</tr>
<tr>
<td></td>
<td>interface.</td>
<td></td>
</tr>
<tr>
<td><strong>Input Filters</strong></td>
<td>Names of any input filters applied to this interface. If you specify a</td>
<td><strong>detail extensive</strong></td>
</tr>
<tr>
<td></td>
<td>precedence value for any filter in a dynamic profile, filter precedence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>values appear in parentheses next to all interfaces.</td>
<td></td>
</tr>
<tr>
<td><strong>Output Filters</strong></td>
<td>Names of any output filters applied to this interface. If you specify a</td>
<td><strong>detail extensive</strong></td>
</tr>
<tr>
<td></td>
<td>precedence value for any filter in a dynamic profile, filter precedence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>values appear in parentheses next to all interfaces.</td>
<td></td>
</tr>
<tr>
<td><strong>Mac-Validate Failures</strong></td>
<td>Number of MAC address validation failures for packets and bytes. This field is</td>
<td><strong>detail extensive</strong></td>
</tr>
<tr>
<td></td>
<td>displayed when MAC address validation is enabled for the logical interface.</td>
<td><strong>none</strong></td>
</tr>
<tr>
<td><strong>Addresses, Flags</strong></td>
<td>Information about the address flags. Possible values are described in the</td>
<td><strong>detail extensive</strong></td>
</tr>
<tr>
<td></td>
<td>“Addresses Flags” section under <strong>Common Output Fields Description</strong>.</td>
<td><strong>none</strong></td>
</tr>
</tbody>
</table>
The following table describes the output fields for the `show interfaces` (10-Gigabit Ethernet) command.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface. Possible values are described in the &quot;Enabled Field&quot; section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface index</td>
<td>Index number of the physical interface, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation being used on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Speed</td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td>Loopback</td>
<td>Loopback status: Enabled or Disabled. If loopback is enabled, type of loopback: Local or Remote.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Source filtering</strong></td>
<td>Source filtering status: <strong>Enabled</strong> or <strong>Disabled</strong>.</td>
<td>All levels</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td><strong>LAN-PHY mode</strong></td>
<td>10-Gigabit Ethernet interface operating in Local Area Network Physical Layer Device (LAN PHY) mode. LAN PHY allows 10-Gigabit Ethernet wide area links to use existing Ethernet applications.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>WAN-PHY mode</strong></td>
<td>10-Gigabit Ethernet interface operating in Wide Area Network Physical Layer Device (WAN PHY) mode. WAN PHY allows 10-Gigabit Ethernet wide area links to use fiber-optic cables and other devices intended for SONET/SDH.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Unidirectional</strong></td>
<td>Unidirectional link mode status for 10-Gigabit Ethernet interface: <strong>Enabled</strong> or <strong>Disabled</strong> for parent interface; <strong>Rx-only</strong> or <strong>Tx-only</strong> for child interfaces.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Flow control</strong></td>
<td>Flow control status: <strong>Enabled</strong> or <strong>Disabled</strong>.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Auto-negotiation</strong></td>
<td>(Gigabit Ethernet interfaces) Autonegotiation status: <strong>Enabled</strong> or <strong>Disabled</strong>.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
| **Remote-fault**     | (Gigabit Ethernet interfaces) Remote fault status:  
  - **Online**—Autonegotiation is manually configured as online.  
  - **Offline**—Autonegotiation is manually configured as offline. | All levels |
<p>| <strong>Device flags</strong>     | Information about the physical device. Possible values are described in the &quot;Device Flags&quot; section under <strong>Common Output Fields Description</strong>. | All levels |
| <strong>Interface flags</strong>  | Information about the interface. Possible values are described in the &quot;Interface Flags&quot; section under <strong>Common Output Fields Description</strong>. | All levels |
| <strong>Link flags</strong>       | Information about the link. Possible values are described in the &quot;Links Flags&quot; section under <strong>Common Output Fields Description</strong>. | All levels |
| <strong>Wavelength</strong>       | (10-Gigabit Ethernet dense wavelength-division multiplexing [DWDM] interfaces) Displays the configured wavelength, in nanometers (nm). | All levels |
| <strong>Frequency</strong>        | (10-Gigabit Ethernet DWDM interfaces only) Displays the frequency associated with the configured wavelength, in terahertz (THz). | All levels |
| <strong>CoS queues</strong>       | Number of CoS queues configured. | detail extensive none |
| <strong>Schedulers</strong>       | (Gigabit Ethernet intelligent queuing 2 (IQ2) interfaces only) Number of CoS schedulers configured. | extensive |
| <strong>Hold-times</strong>       | Current interface hold-time up and hold-time down, in milliseconds. | detail extensive |</p>
<table>
<thead>
<tr>
<th><strong>Current address</strong></th>
<th>Configured MAC address.</th>
<th>detail extensive none</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hardware address</strong></td>
<td>Hardware MAC address.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>Last flapped</strong></td>
<td>Date, time, and how long ago the interface went from down to up. The format is Last flapped: <em>year-month-day hour:minute:second timezone (hour:minute:second ago)</em>. For example, Last flapped: 2002-04-26 10:52:40 PDT (04:33:20 ago).</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>Input Rate</strong></td>
<td>Input rate in bits per second (bps) and packets per second (pps). The value in this field also includes the Layer 2 overhead bytes for ingress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td>None specified</td>
</tr>
<tr>
<td><strong>Output Rate</strong></td>
<td>Output rate in bps and pps. The value in this field also includes the Layer 2 overhead bytes for egress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td>None specified</td>
</tr>
<tr>
<td><strong>Statistics last cleared</strong></td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Egress account overhead</strong></td>
<td>Layer 2 overhead in bytes that is accounted in the interface statistics for egress traffic.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Ingress account overhead</strong></td>
<td>Layer 2 overhead in bytes that is accounted in the interface statistics for ingress traffic.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Traffic statistics</strong></td>
<td>Number and rate of bytes and packets received and transmitted on the physical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>• <strong>Input bytes</strong>—Number of bytes received on the interface. The value in this field also includes the Layer 2 overhead bytes for ingress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Output bytes</strong>—Number of bytes transmitted on the interface. The value in this field also includes the Layer 2 overhead bytes for egress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Input packets</strong>—Number of packets received on the interface.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Output packets</strong>—Number of packets transmitted on the interface.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Input errors | Input errors on the interface. The following paragraphs explain the counters whose meaning might not be obvious:

- **Errors**—Sum of the incoming frame aborts and FCS errors.
- **Drops**—Number of packets dropped by the input queue of the I/O Manager ASIC. If the interface is saturated, this number increments once for every packet that is dropped by the ASIC's RED mechanism.
- **Framing errors**—Number of packets received with an invalid frame checksum (FCS).
- **Runts**—Number of frames received that are smaller than the runt threshold.
- **Policed discards**—Number of frames that the incoming packet match code discarded because they were not recognized or not of interest. Usually, this field reports protocols that the Junos OS does not handle.
- **L3 incompletes**—Number of incoming packets discarded because they failed Layer 3 (usually IPv4) sanity checks of the header. For example, a frame with less than 20 bytes of available IP header is discarded. L3 incomplete errors can be ignored by configuring the `ignore-l3-incompletes` statement.
- **L2 channel errors**—Number of times the software did not find a valid logical interface for an incoming frame.
- **L2 mismatch timeouts**—Number of malformed or short packets that caused the incoming packet handler to discard the frame as unreadable.
- **FIFO errors**—Number of FIFO errors in the receive direction that are reported by the ASIC on the PIC. If this value is ever nonzero, the PIC is probably malfunctioning.
- **Resource errors**—Sum of transmit drops.
<table>
<thead>
<tr>
<th>Output errors</th>
<th>Output errors on the interface. The following paragraphs explain the counters whose meaning might not be obvious:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Carrier transitions</strong></td>
<td>Number of times the interface has gone from down to up. This number does not normally increment quickly, increasing only when the cable is unplugged, the far-end system is powered down and then up, or another problem occurs. If the number of carrier transitions increments quickly (perhaps once every 10 seconds), the cable, the far-end system, or the PIC or PIM is malfunctioning.</td>
</tr>
<tr>
<td><strong>Errors</strong></td>
<td>Sum of the outgoing frame aborts and FCS errors.</td>
</tr>
<tr>
<td><strong>Drops</strong></td>
<td>Number of packets dropped by the output queue of the I/O Manager ASIC. If the interface is saturated, this number increments once for every packet that is dropped by the ASIC's RED mechanism.</td>
</tr>
<tr>
<td><strong>Collisions</strong></td>
<td>Number of Ethernet collisions. The Gigabit Ethernet PIC supports only full-duplex operation, so for Gigabit Ethernet PICs, this number should always remain 0. If it is nonzero, there is a software bug.</td>
</tr>
<tr>
<td><strong>Aged packets</strong></td>
<td>Number of packets that remained in shared packet SDRAM so long that the system automatically purged them. The value in this field should never increment. If it does, it is most likely a software bug or possibly malfunctioning hardware.</td>
</tr>
<tr>
<td><strong>FIFO errors</strong></td>
<td>Number of FIFO errors in the send direction as reported by the ASIC on the PIC. If this value is ever nonzero, the PIC is probably malfunctioning.</td>
</tr>
<tr>
<td><strong>HS link CRC errors</strong></td>
<td>Number of errors on the high-speed links between the ASICs responsible for handling the router interfaces.</td>
</tr>
<tr>
<td><strong>MTU errors</strong></td>
<td>Number of packets whose size exceeded the MTU of the interface.</td>
</tr>
<tr>
<td><strong>Resource errors</strong></td>
<td>Sum of transmit drops.</td>
</tr>
</tbody>
</table>
### Egress queues
Total number of egress queues supported on the specified interface.

**NOTE:** In DPCs that are not of the enhanced type, such as DPC 40x 1GE R, DPCE 20x 1GE + 2x 10GE R, or DPCE 40x 1GE R, you might notice a discrepancy in the output of the `show interfaces` command because incoming packets might be counted in the Egress queues section of the output. This problem occurs on non-enhanced DPCs because the egress queue statistics are polled from IMQ (Inbound Message Queuing) block of the I-chip. The IMQ block does not differentiate between ingress and egress WAN traffic; as a result, the combined statistics are displayed in the egress queue counters on the Routing Engine. In a simple VPLS scenario, if there is no MAC entry in DMAC table (by sending unidirectional traffic), traffic is flooded and the input traffic is accounted in IMQ. For bidirectional traffic (MAC entry in DMAC table), if the outgoing interface is on the same I-chip then both ingress and egress statistics are counted in a combined way. If the outgoing interface is on a different I-chip or FPC, then only egress statistics are accounted in IMQ. This behavior is expected with non-enhanced DPCs.

<table>
<thead>
<tr>
<th>Queue counters (Egress)</th>
<th>CoS queue number and its associated user-configured forwarding class name. Displayed on IQ2 interfaces.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queued packets</td>
<td>Number of queued packets.</td>
</tr>
<tr>
<td>Transmitted packets</td>
<td>Number of transmitted packets.</td>
</tr>
<tr>
<td>Dropped packets</td>
<td>Number of packets dropped by the ASIC's RED mechanism.</td>
</tr>
</tbody>
</table>

### Ingress queues
Total number of ingress queues supported on the specified interface. Displayed on IQ2 interfaces.

<table>
<thead>
<tr>
<th>Queue counters (Ingress)</th>
<th>CoS queue number and its associated user-configured forwarding class name. Displayed on IQ2 interfaces.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queued packets</td>
<td>Number of queued packets.</td>
</tr>
<tr>
<td>Transmitted packets</td>
<td>Number of transmitted packets.</td>
</tr>
<tr>
<td>Dropped packets</td>
<td>Number of packets dropped by the ASIC's RED mechanism.</td>
</tr>
</tbody>
</table>

### Active alarms and Active defects
Ethernet-specific defects that can prevent the interface from passing packets. When a defect persists for a certain amount of time, it is promoted to an alarm. Based on the routing device configuration, an alarm can ring the red or yellow alarm bell on the routing device, or turn on the red or yellow alarm LED on the craft interface. These fields can contain the value **None** or **Link**.

- **None**—There are no active defects or alarms.
- **Link**—Interface has lost its link state, which usually means that the cable is unplugged, the far-end system has been turned off, or the PIC is malfunctioning.

### OTN alarms
Active OTN alarms identified on the interface.
<table>
<thead>
<tr>
<th><strong>OTN defects</strong></th>
<th>OTN defects received on the interface.</th>
<th>detail extensive</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>OTN FEC Mode</strong></td>
<td>The FEC mode configured on the interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>• efec</td>
<td>Enhanced forward error correction (EFEC) is configured to detect and correct bit errors.</td>
<td></td>
</tr>
<tr>
<td>• gfec</td>
<td>G.709 Forward error correction (GFEC) mode is configured to detect and correct bit errors.</td>
<td></td>
</tr>
<tr>
<td>• none</td>
<td>FEC mode is not configured.</td>
<td></td>
</tr>
<tr>
<td><strong>OTN Rate</strong></td>
<td>OTN mode.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>• fixed-stuff-bytes</td>
<td>Fixed stuff bytes 11.0957 Gbps.</td>
<td></td>
</tr>
<tr>
<td>• no-fixed-stuff-bytes</td>
<td>No fixed stuff bytes 11.0491 Gbps.</td>
<td></td>
</tr>
<tr>
<td>• pass-through</td>
<td>Enable OTN passthrough mode.</td>
<td></td>
</tr>
<tr>
<td>• no-pass-through</td>
<td>Do not enable OTN passthrough mode.</td>
<td></td>
</tr>
<tr>
<td><strong>OTN Line Loopback</strong></td>
<td>Status of the line loopback, if configured for the DWDM OTN PIC. Its value can be: enabled or disabled.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>OTN FEC statistics</strong></td>
<td>The forward error correction (FEC) counters for the DWDM OTN PIC.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>• Corrected Errors</td>
<td>The count of corrected errors in the last second.</td>
<td></td>
</tr>
<tr>
<td>• Corrected Error Ratio</td>
<td>The corrected error ratio in the last 25 seconds. For example, 1e-7 is 1 error per 10 million bits.</td>
<td></td>
</tr>
<tr>
<td><strong>OTN FEC alarms</strong></td>
<td>OTN FEC excessive or degraded error alarms triggered on the interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>• FEC Degraded</td>
<td>OTU FEC Degraded defect.</td>
<td></td>
</tr>
<tr>
<td>• FEC Excessive</td>
<td>OTU FEC Excessive Error defect.</td>
<td></td>
</tr>
<tr>
<td><strong>OTN OC</strong></td>
<td>OTN OC defects triggered on the interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>• LOS</td>
<td>OC Loss of Signal defect.</td>
<td></td>
</tr>
<tr>
<td>• LOF</td>
<td>OC Loss of Frame defect.</td>
<td></td>
</tr>
<tr>
<td>• LOM</td>
<td>OC Loss of Multiframe defect.</td>
<td></td>
</tr>
<tr>
<td>• Wavelength Lock</td>
<td>OC Wavelength Lock defect.</td>
<td></td>
</tr>
<tr>
<td>OTN OTU</td>
<td>OTN OTU defects detected on the interface</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------------------------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AIS—OTN AIS alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BDI—OTN OTU BDI alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IAE—OTN OTU IAE alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TTIM—OTN OTU TTIM alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SF—OTN ODU bit error rate fault alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SD—OTN ODU bit error rate defect alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TCA-ES—OTN ODU ES threshold alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TCA-SES—OTN ODU SES threshold alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TCA-UAS—OTN ODU UAS threshold alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TCA-BBE—OTN ODU BBE threshold alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BIP—OTN ODU BIP threshold alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BBE—OTN OTU BBE threshold alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ES—OTN OTU ES threshold alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SES—OTN OTU SES threshold alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UAS—OTN OTU UAS threshold alarm.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Received DAPI</th>
<th>Destination Access Port Interface (DAPI) from which the packets were received.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received SAPI</td>
<td>Source Access Port Interface (SAPI) from which the packets were received.</td>
</tr>
<tr>
<td>Transmitted DAPI</td>
<td>Destination Access Port Interface (DAPI) to which the packets were transmitted.</td>
</tr>
<tr>
<td>Transmitted SAPI</td>
<td>Source Access Port Interface (SAPI) to which the packets were transmitted.</td>
</tr>
<tr>
<td>PCS statistics</td>
<td>(10-Gigabit Ethernet interfaces) Displays Physical Coding Sublayer (PCS) fault conditions from the WAN PHY or the LAN PHY device.</td>
</tr>
<tr>
<td></td>
<td>• Bit errors—The number of seconds during which at least one bit error rate (BER) occurred while the PCS receiver is operating in normal mode.</td>
</tr>
<tr>
<td></td>
<td>•Errored blocks—The number of seconds when at least one errored block occurred while the PCS receiver is operating in normal mode.</td>
</tr>
</tbody>
</table>
**MAC statistics**

*Receive and Transmit* statistics reported by the PIC’s MAC subsystem, including the following:

- **Total octets** and **total packets**—Total number of octets and packets. For Gigabit Ethernet IQ PICs, the received octets count varies by interface type.

- **Unicast packets, Broadcast packets, and Multicast packets**—Number of unicast, broadcast, and multicast packets.

- **CRC/Align errors**—Total number of packets received that had a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, and had either a bad FCS with an integral number of octets (FCS Error) or a bad FCS with a nonintegral number of octets (Alignment Error).

- **FIFO error**—Number of FIFO errors that are reported by the ASIC on the PIC. If this value is ever nonzero, the PIC or a cable is probably malfunctioning.

- **MAC control frames**—Number of MAC control frames.

- **MAC pause frames**—Number of MAC control frames with pause operational code.

- **Oversized frames**—Number of frames that exceed 1518 octets.

- **Jabber frames**—Number of frames that were longer than 1518 octets (excluding framing bits, but including FCS octets), and had either an FCS error or an alignment error. This definition of jabber is different from the definition in IEEE-802.3 section 8.2.1.5 (10BASE5) and section 10.3.1.4 (10BASE2). These documents define jabber as the condition in which any packet exceeds 20 ms. The allowed range to detect jabber is from 20 ms to 150 ms.

- **Fragment frames**—Total number of packets that were less than 64 octets in length (excluding framing bits, but including FCS octets), and had either an FCS error or an alignment error. Fragment frames normally increment because both runts (which are normal occurrences caused by collisions) and noise hits are counted.

- **VLAN tagged frames**—Number of frames that are VLAN tagged. The system uses the TPID of 0x8100 in the frame to determine whether a frame is tagged or not.

- **Code violations**—Number of times an event caused the PHY to indicate “Data reception error” or “invalid data symbol error.”

| OTN Received Overhead Bytes | APS/PCC0: 0x02, APS/PCC1: 0x11, APS/PCC2: 0x47, APS/PCC3: 0x58 Payload Type: 0x08 | extensive |
| OTN Transmitted Overhead Bytes | APS/PCC0: 0x00, APS/PCC1: 0x00, APS/PCC2: 0x00, APS/PCC3: 0x00 Payload Type: 0x08 | extensive |
### Filter statistics

**Receive and Transmit** statistics reported by the PIC’s MAC address filter subsystem. The filtering is done by the content-addressable memory (CAM) on the PIC. The filter examines a packet’s source and destination MAC addresses to determine whether the packet should enter the system or be rejected.

- **Input packet count**—Number of packets received from the MAC hardware that the filter processed.
- **Input packet rejects**—Number of packets that the filter rejected because of either the source MAC address or the destination MAC address.
- **Input DA rejects**—Number of packets that the filter rejected because the destination MAC address of the packet is not on the accept list. It is normal for this value to increment. When it increments very quickly and no traffic is entering the routing device from the far-end system, either there is a bad ARP entry on the far-end system, or multicast routing is not on and the far-end system is sending many multicast packets to the local routing device (which the routing device is rejecting).
- **Input SA rejects**—Number of packets that the filter rejected because the source MAC address of the packet is not on the accept list. The value in this field should increment only if source MAC address filtering has been enabled. If filtering is enabled, if the value increments quickly, and if the system is not receiving traffic that it should from the far-end system, it means that the user-configured source MAC addresses for this interface are incorrect.
- **Output packet count**—Number of packets that the filter has given to the MAC hardware.
- **Output packet pad count**—Number of packets the filter padded to the minimum Ethernet size (60 bytes) before giving the packet to the MAC hardware. Usually, padding is done only on small ARP packets, but some very small IP packets can also require padding. If this value increments rapidly, either the system is trying to find an ARP entry for a far-end system that does not exist or it is misconfigured.
- **Output packet error count**—Number of packets with an indicated error that the filter was given to transmit. These packets are usually aged packets or are the result of a bandwidth problem on the FPC hardware. On a normal system, the value of this field should not increment.
- **CAM destination filters, CAM source filters**—Number of entries in the CAM dedicated to destination and source MAC address filters. There can only be up to 64 source entries. If source filtering is disabled, which is the default, the values for these fields should be 0.

### PMA PHY

(10-Gigabit Ethernet interfaces, WAN PHY mode) SONET error information:

- **Seconds**—Number of seconds the defect has been active.
- **Count**—Number of times that the defect has gone from inactive to active.
- **State**—State of the error. Any state other than **OK** indicates a problem.
### WIS section

(10-Gigabit Ethernet interfaces, WAN PHY mode) SONET error information:

- **Seconds**—Number of seconds the defect has been active.
- **Count**—Number of times that the defect has gone from inactive to active.
- **State**—State of the error. Any state other than **OK** indicates a problem.

Subfields are:

- **BIP-B1**—Bit interleaved parity for SONET section overhead
- **SEF**—Severely errored framing
- **LOL**—Loss of light
- **LOF**—Loss of frame
- **ES-S**—Errored seconds (section)
- **SES-S**—Severely errored seconds (section)
- **SEFS-S**—Severely errored framing seconds (section)

### WIS line

(10-Gigabit Ethernet interfaces, WAN PHY mode) Active alarms and defects, plus counts of specific SONET errors with detailed information.

- **Seconds**—Number of seconds the defect has been active.
- **Count**—Number of times that the defect has gone from inactive to active.
- **State**—State of the error. State other than **OK** indicates a problem.

Subfields are:

- **BIP-B2**—Bit interleaved parity for SONET line overhead
- **REI-L**—Remote error indication (near-end line)
- **RDI-L**—Remote defect indication (near-end line)
- **AIS-L**—Alarm indication signal (near-end line)
- **BERR-SF**—Bit error rate fault (signal failure)
- **BERR-SD**—Bit error rate defect (signal degradation)
- **ES-L**—Errored seconds (near-end line)
- **SES-L**—Severely errored seconds (near-end line)
- **UAS-L**—Unavailable seconds (near-end line)
- **ES-LFE**—Errored seconds (far-end line)
- **SES-LFE**—Severely errored seconds (far-end line)
- **UAS-LFE**—Unavailable seconds (far-end line)
<table>
<thead>
<tr>
<th>WIS path</th>
<th>(10-Gigabit Ethernet interfaces, WAN PHY mode) Active alarms and defects, plus counts of specific SONET errors with detailed information.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Seconds</strong>—Number of seconds the defect has been active.</td>
<td><strong>Count</strong>—Number of times that the defect has gone from inactive to active.</td>
</tr>
<tr>
<td>Subfields are:</td>
<td></td>
</tr>
<tr>
<td>• <strong>BIP-B3</strong>—Bit interleaved parity for SONET section overhead</td>
<td></td>
</tr>
<tr>
<td>• <strong>REI-P</strong>—Remote error indication</td>
<td></td>
</tr>
<tr>
<td>• <strong>LOP-P</strong>—Loss of pointer (path)</td>
<td></td>
</tr>
<tr>
<td>• <strong>AIS-P</strong>—Path alarm indication signal</td>
<td></td>
</tr>
<tr>
<td>• <strong>RDI-P</strong>—Path remote defect indication</td>
<td></td>
</tr>
<tr>
<td>• <strong>UNEQ-P</strong>—Path unequipped</td>
<td></td>
</tr>
<tr>
<td>• <strong>PLM-P</strong>—Path payload label mismatch</td>
<td></td>
</tr>
<tr>
<td>• <strong>ES-P</strong>—Errored seconds (near-end STS path)</td>
<td></td>
</tr>
<tr>
<td>• <strong>SES-P</strong>—Severely errored seconds (near-end STS path)</td>
<td></td>
</tr>
<tr>
<td>• <strong>UAS-P</strong>—Unavailable seconds (near-end STS path)</td>
<td></td>
</tr>
<tr>
<td>• <strong>SES-PFE</strong>—Severely errored seconds (far-end STS path)</td>
<td></td>
</tr>
<tr>
<td>• <strong>UAS-PFE</strong>—Unavailable seconds (far-end STS path)</td>
<td></td>
</tr>
</tbody>
</table>
Autonegotiation information

Information about link autonegotiation.

- **Negotiation status:**
  - *Incomplete*—Ethernet interface has the speed or link mode configured.
  - *No autonegotiation*—Remote Ethernet interface has the speed or link mode configured, or does not perform autonegotiation.
  - *Complete*—Ethernet interface is connected to a device that performs autonegotiation and the autonegotiation process is successful.

- **Link partner status**—*OK* when Ethernet interface is connected to a device that performs autonegotiation and the autonegotiation process is successful.

- **Link partner:**
  - **Link mode**—Depending on the capability of the attached Ethernet device, either *Full-duplex* or *Half-duplex*.
  - **Flow control**—Types of flow control supported by the remote Ethernet device. For Fast Ethernet interfaces, the type is *None*. For Gigabit Ethernet interfaces, types are *Symmetric* (link partner supports PAUSE on receive and transmit), *Asymmetric* (link partner supports PAUSE on transmit), and *Symmetric/Asymmetric* (link partner supports both PAUSE on receive and transmit or only PAUSE receive).
  - **Remote fault**—Remote fault information from the link partner—*Failure* indicates a receive link error, *OK* indicates that the link partner is receiving. *Negotiation error* indicates a negotiation error. *Offline* indicates that the link partner is going offline.

- **Local resolution**—Information from the link partner:
  - **Flow control**—Types of flow control supported by the remote Ethernet device. For Gigabit Ethernet interfaces, types are *Symmetric* (link partner supports PAUSE on receive and transmit), *Asymmetric* (link partner supports PAUSE on transmit), and *Symmetric/Asymmetric* (link partner supports both PAUSE on receive and transmit or only PAUSE receive).
  - **Remote fault**—Remote fault information. *Link OK* (no error detected on receive), *Offline* (local interface is offline), and *Link Failure* (link error detected on receive).

---

**Received path trace, Transmitted path trace**

(10-Gigabit Ethernet interfaces, WAN PHY mode) SONET/SDH interfaces allow path trace bytes to be sent inband across the SONET/SDH link. Juniper Networks and other router manufacturers use these bytes to help diagnose misconfigurations and network errors by setting the transmitted path trace message so that it contains the system hostname and name of the physical interface. The received path trace value is the message received from the routing device at the other end of the fiber. The transmitted path trace value is the message that this routing device transmits.
### Packet Forwarding Engine configuration

Information about the configuration of the Packet Forwarding Engine:

- **Destination slot**—FPC slot number.

### CoS information

Information about the CoS queue for the physical interface.

- **CoS transmit queue**—Queue number and its associated user-configured forwarding class name.
- **Bandwidth %**—Percentage of bandwidth allocated to the queue.
- **Bandwidth bps**—Bandwidth allocated to the queue (in bps).
- **Buffer %**—Percentage of buffer space allocated to the queue.
- **Buffer usec**—Amount of buffer space allocated to the queue, in microseconds. This value is nonzero only if the buffer size is configured in terms of time.
- **Priority**—Queue priority: low or high.
- **Limit**—Displayed if rate limiting is configured for the queue. Possible values are none and exact. If exact is configured, the queue transmits only up to the configured bandwidth, even if excess bandwidth is available. If none is configured, the queue transmits beyond the configured bandwidth if bandwidth is available.

### Logical Interface

<table>
<thead>
<tr>
<th>Logical interface</th>
<th>Name of the logical interface.</th>
<th>All levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Index number of the logical interface, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP interface index number for the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the logical interface. Possible values are described in the “Logical Interface Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>VLAN-Tag</td>
<td>Rewrite profile applied to incoming or outgoing frames on the outer (Out) VLAN tag or for both the outer and inner (In) VLAN tags.</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------------------------------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>push</td>
<td>An outer VLAN tag is pushed in front of the existing VLAN tag.</td>
<td></td>
</tr>
<tr>
<td>pop</td>
<td>The outer VLAN tag of the incoming frame is removed.</td>
<td></td>
</tr>
<tr>
<td>swap</td>
<td>The outer VLAN tag of the incoming frame is overwritten with the user specified VLAN tag information.</td>
<td></td>
</tr>
<tr>
<td>push</td>
<td>An outer VLAN tag is pushed in front of the existing VLAN tag.</td>
<td></td>
</tr>
<tr>
<td>push-push</td>
<td>Two VLAN tags are pushed in from the incoming frame.</td>
<td></td>
</tr>
<tr>
<td>swap-push</td>
<td>The outer VLAN tag of the incoming frame is replaced by a user-specified VLAN tag value. A user-specified outer VLAN tag is pushed in front. The outer tag becomes an inner tag in the final frame.</td>
<td></td>
</tr>
<tr>
<td>swap-swap</td>
<td>Both the inner and the outer VLAN tags of the incoming frame are replaced by the user specified VLAN tag value.</td>
<td></td>
</tr>
<tr>
<td>pop-swap</td>
<td>The outer VLAN tag of the incoming frame is removed, and the inner VLAN tag of the incoming frame is replaced by the user-specified VLAN tag value. The inner tag becomes the outer tag in the final frame.</td>
<td></td>
</tr>
<tr>
<td>pop-pop</td>
<td>Both the outer and inner VLAN tags of the incoming frame are removed.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demux:</th>
<th>IP demultiplexing (demux) value that appears if this interface is used as the demux underlying interface. The output is one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Source Family Inet</td>
</tr>
<tr>
<td></td>
<td>• Destination Family Inet</td>
</tr>
</tbody>
</table>

<p>| Encapsulation | Encapsulation on the logical interface.                                                                                      | All levels |
| Protocol      | Protocol family. Possible values are described in the “Protocol Field” section under Common Output Fields Description.       | detail     |
| MTU           | Maximum transmission unit size on the logical interface.                                                                     | detail     |
| Maximum labels| Maximum number of MPLS labels configured for the MPLS protocol family on the logical interface.                             | detail     |</p>
<table>
<thead>
<tr>
<th><strong>Traffic statistics</strong></th>
<th>Number and rate of bytes and packets received and transmitted on the specified interface set.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• <strong>Input bytes, Output bytes</strong>—Number of bytes received and transmitted on the interface set. The value in this field also includes the Layer 2 overhead bytes for ingress or egress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td></td>
</tr>
<tr>
<td>• <strong>Input packets, Output packets</strong>—Number of packets received and transmitted on the interface set.</td>
<td></td>
</tr>
<tr>
<td><strong>IPv6 transit statistics</strong></td>
<td>Number of IPv6 transit bytes and packets received and transmitted on the logical interface if IPv6 statistics tracking is enabled.</td>
</tr>
<tr>
<td><strong>Local statistics</strong></td>
<td>Number and rate of bytes and packets destined to the routing device.</td>
</tr>
<tr>
<td><strong>Transit statistics</strong></td>
<td>Number and rate of bytes and packets transiting the switch. <strong>NOTE:</strong> For Gigabit Ethernet intelligent queuing 2 (IQ2) interfaces, the logical interface egress statistics might not accurately reflect the traffic on the wire when output shaping is applied. Traffic management output shaping might drop packets after they are tallied by the <strong>Output bytes</strong> and <strong>Output packets</strong> interface counters. However, correct values display for both of these egress statistics when per-unit scheduling is enabled for the Gigabit Ethernet IQ2 physical interface, or when a single logical interface is actively using a shared scheduler.</td>
</tr>
<tr>
<td><strong>Generation</strong></td>
<td>Unique number for use by Juniper Networks technical support only.</td>
</tr>
<tr>
<td><strong>Route Table</strong></td>
<td>Route table in which the logical interface address is located. For example, 0 refers to the routing table inet.0.</td>
</tr>
<tr>
<td><strong>Flags</strong></td>
<td>Information about protocol family flags. Possible values are described in the “Family Flags” section under <strong>Common Output Fields Description</strong>.</td>
</tr>
<tr>
<td><strong>Donor interface</strong></td>
<td>(Unnumbered Ethernet) Interface from which an unnumbered Ethernet interface borrows an IPv4 address.</td>
</tr>
<tr>
<td><strong>Preferred source address</strong></td>
<td>(Unnumbered Ethernet) Secondary IPv4 address of the donor loopback interface that acts as the preferred source address for the unnumbered Ethernet interface.</td>
</tr>
<tr>
<td><strong>Input Filters</strong></td>
<td>Names of any input filters applied to this interface. If you specify a precedence value for any filter in a dynamic profile, filter precedence values appear in parenthesis next to all interfaces.</td>
</tr>
<tr>
<td><strong>Output Filters</strong></td>
<td>Names of any output filters applied to this interface. If you specify a precedence value for any filter in a dynamic profile, filter precedence values appear in parenthesis next to all interfaces.</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Mac-Validate Failures</strong></td>
<td>Number of MAC address validation failures for packets and bytes. This field is displayed when MAC address validation is enabled for the logical interface.</td>
</tr>
<tr>
<td><strong>Addresses, Flags</strong></td>
<td>Information about the address flags. Possible values are described in the &quot;Addresses Flags&quot; section under Common Output Fields Description.</td>
</tr>
<tr>
<td><strong>protocol-family</strong></td>
<td>Protocol family configured on the logical interface. If the protocol is inet, the IP address of the interface is also displayed.</td>
</tr>
<tr>
<td><strong>Flags</strong></td>
<td>Information about address flag (possible values are described in the &quot;Addresses Flags&quot; section under Common Output Fields Description.</td>
</tr>
<tr>
<td><strong>Destination</strong></td>
<td>IP address of the remote side of the connection.</td>
</tr>
<tr>
<td><strong>Local</strong></td>
<td>IP address of the logical interface.</td>
</tr>
<tr>
<td><strong>Broadcast</strong></td>
<td>Broadcast address of the logical interface.</td>
</tr>
<tr>
<td><strong>Generation</strong></td>
<td>Unique number for use by Juniper Networks technical support only.</td>
</tr>
</tbody>
</table>

For Gigabit Ethernet IQ PICs, traffic and MAC statistics output varies. The following table describes the traffic and MAC statistics for two sample interfaces, each of which is sending traffic in packets of 500 bytes (including 478 bytes for the Layer 3 packet, 18 bytes for the Layer 2 VLAN traffic header, and 4 bytes for cyclic redundancy check [CRC] information). The ge-0/3/0 interface is the inbound physical interface, and the ge-0/0/0 interface is the outbound physical interface. On both interfaces, traffic is carried on logical unit .50 (VLAN 50).
Table 58: Gigabit and 10 Gigabit Ethernet IQ PIC Traffic and MAC Statistics by Interface Type

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>Sample Command</th>
<th>Byte and Octet Counts Include</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound physical interface</td>
<td>show interfaces ge-0/3/0</td>
<td>Traffic statistics:</td>
<td>The additional 4 bytes are for the CRC.</td>
</tr>
<tr>
<td></td>
<td>extensive</td>
<td>Input bytes: 496 bytes per packet, representing the Layer 2 packet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAC statistics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Received octets: 500 bytes per packet, representing the Layer 2 packet + 4 bytes</td>
<td></td>
</tr>
<tr>
<td>Inbound logical interface</td>
<td>show interfaces ge-0/3/0.50</td>
<td>Traffic statistics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>extensive</td>
<td>Input bytes: 478 bytes per packet, representing the Layer 3 packet</td>
<td></td>
</tr>
<tr>
<td>Outbound physical interface</td>
<td>show interfaces ge-0/0/0</td>
<td>Traffic statistics:</td>
<td>For input bytes, the additional 12 bytes include 6 bytes for the destination MAC address plus 4 bytes for VLAN plus 2 bytes for the Ethernet type.</td>
</tr>
<tr>
<td></td>
<td>extensive</td>
<td>Input bytes: 490 bytes per packet, representing the Layer 3 packet + 12 bytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAC statistics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Received octets: 478 bytes per packet, representing the Layer 3 packet</td>
<td></td>
</tr>
<tr>
<td>Outbound logical interface</td>
<td>show interfaces ge-0/0/0.50</td>
<td>Traffic statistics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>extensive</td>
<td>Input bytes: 478 bytes per packet, representing the Layer 3 packet</td>
<td></td>
</tr>
</tbody>
</table>

Table 59 on page 994 lists the output fields for the show interfaces command. Output fields are listed in the approximate order in which they appear.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Physical Interface</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface index</td>
<td>Index number of the physical interface, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation being used on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link mode</td>
<td>Link mode: Full-duplex or Half-duplex.</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td>BPDU error</td>
<td>Bridge protocol data unit (BPDU) error: Detected or None</td>
<td></td>
</tr>
<tr>
<td>Loopback</td>
<td>Loopback status: Enabled or Disabled. If loopback is enabled, type of loopback: Local or Remote.</td>
<td>All levels</td>
</tr>
<tr>
<td>Source filtering</td>
<td>Source filtering status: Enabled or Disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td>Flow control</td>
<td>Flow control status: Enabled or Disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Auto-negotiation</strong></td>
<td>(Gigabit Ethernet interfaces) Autonegotiation status: Enabled or Disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Remote-fault</strong></td>
<td>(Gigabit Ethernet interfaces) Remote fault status:</td>
<td>All levels</td>
</tr>
<tr>
<td>• Online</td>
<td>Autonegotiation is manually configured as online.</td>
<td></td>
</tr>
<tr>
<td>• Offline</td>
<td>Autonegotiation is manually configured as offline.</td>
<td></td>
</tr>
<tr>
<td><strong>Device flags</strong></td>
<td>Information about the physical device.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Interface flags</strong></td>
<td>Information about the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Link flags</strong></td>
<td>Information about the physical link.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 59: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoS queues</td>
<td>Number of CoS queues configured.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Current address</td>
<td>Configured MAC address.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Last flapped</td>
<td>Date, time, and how long ago the interface went from down to up. The format is Last flapped: <code>year-month-day hour:minute:second:timezone (hour:minute:second ago)</code>. For example, Last flapped: 2002-04-26 10:52:40 PDT (04:33:20 ago).</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Input Rate</td>
<td>Input rate in bits per second (bps) and packets per second (pps).</td>
<td>None</td>
</tr>
<tr>
<td>Output Rate</td>
<td>Output rate in bps and pps.</td>
<td>None</td>
</tr>
</tbody>
</table>
| Active alarms and Active defects | Ethernet-specific defects that can prevent the interface from passing packets. When a defect persists for a certain amount of time, it is promoted to an alarm. These fields can contain the value **None** or **Link**.  
  - **None**—There are no active defects or alarms.  
  - **Link**—Interface has lost its link state, which usually means that the cable is unplugged, the far-end system has been turned off, or the PIC is malfunctioning. | detail extensive |
| Statistics last cleared | Time when the statistics for the interface were last set to zero.                  | detail extensive |
| Traffic statistics       | Number and rate of bytes and packets received and transmitted on the physical interface.  
  - **Input bytes**—Number of bytes received on the interface.  
  - **Output bytes**—Number of bytes transmitted on the interface.  
  - **Input packets**—Number of packets received on the interface.  
  - **Output packets**—Number of packets transmitted on the interface. | detail extensive |
Table 59: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input errors</td>
<td>Input errors on the interface.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Errors—Sum of the incoming frame aborts and FCS errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drops—Number of packets dropped by the input queue of the I/O Manager ASIC. If</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the interface is saturated, this number increments once for every packet that is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>is dropped by the ASIC's RED mechanism.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Framing errors—Number of packets received with an invalid frame checksum (FCS).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Runts—Number of frames received that are smaller than the runt threshold.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Policed discards—Number of frames that the incoming packet match code discarded</td>
<td></td>
</tr>
<tr>
<td></td>
<td>because they were not recognized or not of interest. Usually, this field reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>protocols that Junos OS does not handle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• L3 incompletes—Number of incoming packets discarded because they failed Layer 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(usually IPv4) sanity checks of the header. For example, a frame with less than</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 bytes of available IP header is discarded. L3 incomplete errors can be ignored</td>
<td></td>
</tr>
<tr>
<td></td>
<td>by configuring the ignore-l3-incompletes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• L2 channel errors—Number of times the software did not find a valid logical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>interface for an incoming frame.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• L2 mismatch timeouts—Number of malformed or short packets that caused the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>incoming packet handler to discard the frame as unreadable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FIFO errors—Number of FIFO errors in the receive direction that are reported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>by the ASIC on the PIC. If this value is ever nonzero, the PIC is probably</td>
<td></td>
</tr>
<tr>
<td></td>
<td>malfunctioning.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resource errors—Sum of transmit drops.</td>
<td></td>
</tr>
</tbody>
</table>
### Table 59: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Output errors</strong></td>
<td>Output errors on the interface.</td>
<td>extensive</td>
</tr>
<tr>
<td>• <strong>Carrier transitions</strong>—Number of times the interface has gone from down to up. This number does not normally increment quickly, increasing only when the cable is unplugged, the far-end system is powered down and then up, or another problem occurs. If the number of carrier transitions increments quickly (perhaps once every 10 seconds), the cable, the far-end system, or the PIC or PIM is malfunctioning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Errors</strong>—Sum of the outgoing frame aborts and FCS errors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Drops</strong>—Number of packets dropped by the output queue of the I/O Manager ASIC. If the interface is saturated, this number increments once for every packet that is dropped by the ASIC's RED mechanism.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Collisions</strong>—Number of Ethernet collisions. The Gigabit Ethernet PIC supports only full-duplex operation; therefore, for Gigabit Ethernet PICs, this number must always remain 0. If it is nonzero, there is a software bug.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Aged packets</strong>—Number of packets that remained in shared packet SDRAM so long that the system automatically purged them. The value in this field must never increment. If it does, it is most likely a software bug or possibly malfunctioning hardware.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>FIFO errors</strong>—Number of FIFO errors in the send direction as reported by the ASIC on the PIC. If this value is ever nonzero, the PIC is probably malfunctioning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>HS link CRC errors</strong>—Number of errors on the high-speed links between the ASICs responsible for handling the interfaces.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>MTU errors</strong>—Number of packets whose size exceeded the MTU of the interface.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Resource errors</strong>—Sum of transmit drops.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ingress queues</strong></td>
<td>Total number of ingress queues supported on the specified interface.</td>
<td>extensive</td>
</tr>
<tr>
<td><strong>Queue counters and queue number</strong></td>
<td>CoS queue number and its associated user-configured forwarding class name.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>• <strong>Queued packets</strong>—Number of queued packets.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Transmitted packets</strong>—Number of transmitted packets.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>Dropped packets</strong>—Number of packets dropped by the ASIC's RED mechanism.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 59: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MAC statistics</strong></td>
<td><strong>Receive</strong> and <strong>Transmit</strong> statistics reported by the PIC’s MAC subsystem, including the following:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Total octets</strong> and <strong>total packets</strong>—Total number of octets and packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Unicast packets</strong>, <strong>Broadcast packets</strong>, and <strong>Multicast packets</strong>—Number of unicast, broadcast, and multicast packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>CRC/Align errors</strong>—Total number of packets received that had a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, and had either a bad FCS with an integral number of octets (FCS Error) or a bad FCS with a nonintegral number of octets (Alignment Error).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>FIFO error</strong>—Number of FIFO errors that are reported by the ASIC on the PIC. If this value is ever nonzero, the PIC or a cable is probably malfunctioning.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>MAC control frames</strong>—Number of MAC control frames.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>MAC pause frames</strong>—Number of MAC control frames with <strong>pause</strong> operational code.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Oversized frames</strong>—There are two possible conditions regarding the number of oversized frames:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packet length exceeds 1518 octets, or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packet length exceeds MRU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Jabber frames</strong>—Number of frames that were longer than 1518 octets (excluding framing bits, but including FCS octets), and had either an FCS error or an alignment error. This definition of jabber is different from the definition in IEEE-802.3 section 8.2.1.5 (10BASE5) and section 10.3.1.4 (10BASE2). These documents define jabber as the condition in which any packet exceeds 20 ms. The allowed range to detect jabber is from 20 ms to 150 ms.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Fragment frames</strong>—Total number of packets that were less than 64 octets in length (excluding framing bits, but including FCS octets) and had either an FCS error or an alignment error. Fragment frames normally increment because both runts (which are normal occurrences caused by collisions) and noise hits are counted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>VLAN tagged frames</strong>—Number of frames that are VLAN tagged. The system uses the TPID of 0x8100 in the frame to determine whether a frame is tagged or not.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Code violations</strong>—Number of times an event caused the PHY to indicate “Data reception error” or “invalid data symbol error.”</td>
<td></td>
</tr>
</tbody>
</table>
Table 59: show interfaces Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Filter statistics</strong></td>
<td><strong>Receive and Transmit</strong> statistics reported by the PIC's MAC address filter subsystem. The filtering is done by the content-addressable memory (CAM) on the PIC. The filter examines a packet's source and destination MAC addresses to determine whether the packet should enter the system or be rejected.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Input packet count</strong>—Number of packets received from the MAC hardware that the filter processed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Input packet rejects</strong>—Number of packets that the filter rejected because of either the source MAC address or the destination MAC address.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Input DA rejects</strong>—Number of packets that the filter rejected because the destination MAC address of the packet is not on the accept list. It is normal for this value to increment. When it increments very quickly and no traffic is entering the device from the far-end system, either there is a bad ARP entry on the far-end system, or multicast routing is not on and the far-end system is sending many multicast packets to the local device (which the router is rejecting).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Input SA rejects</strong>—Number of packets that the filter rejected because the source MAC address of the packet is not on the accept list. The value in this field should increment only if source MAC address filtering has been enabled. If filtering is enabled, if the value increments quickly, and if the system is not receiving traffic that it should from the far-end system, it means that the user-configured source MAC addresses for this interface are incorrect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Output packet count</strong>—Number of packets that the filter has given to the MAC hardware.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Output packet pad count</strong>—Number of packets the filter padded to the minimum Ethernet size (60 bytes) before giving the packet to the MAC hardware. Usually, padding is done only on small ARP packets, but some very small IP packets can also require padding. If this value increments rapidly, either the system is trying to find an ARP entry for a far-end system that does not exist or it is misconfigured.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Output packet error count</strong>—Number of packets with an indicated error that the filter was given to transmit. These packets are usually aged packets or are the result of a bandwidth problem on the FPC hardware. On a normal system, the value of this field should not increment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>CAM destination filters, CAM source filters</strong>—Number of entries in the CAM dedicated to destination and source MAC address filters. There can only be up to 64 source entries. If source filtering is disabled, which is the default, the values for these fields must be 0.</td>
<td></td>
</tr>
</tbody>
</table>
### Table 59: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
</table>
| **Autonegotiation information** | Information about link autonegotiation.  
  - **Negotiation status:**  
    - **Incomplete**—Ethernet interface has the speed or link mode configured.  
    - **No autonegotiation**—Remote Ethernet interface has the speed or link mode configured, or does not perform autonegotiation.  
    - **Complete**—Ethernet interface is connected to a device that performs autonegotiation and the autonegotiation process is successful. | extensive       |
| **Packet Forwarding Engine configuration** | Information about the configuration of the Packet Forwarding Engine:  
  - **Destination slot**—FPC slot number. | extensive       |
| **CoS information**         | Information about the CoS queue for the physical interface.  
  - **CoS transmit queue**—Queue number and its associated user-configured forwarding class name.  
  - **Bandwidth %**—Percentage of bandwidth allocated to the queue.  
  - **Bandwidth bps**—Bandwidth allocated to the queue (in bps).  
  - **Buffer %**—Percentage of buffer space allocated to the queue.  
  - **Buffer usec**—Amount of buffer space allocated to the queue, in microseconds. This value is nonzero only if the buffer size is configured in terms of time.  
  - **Priority**—Queue priority: **low** or **high**.  
  - **Limit**—Displayed if rate limiting is configured for the queue. Possible values are **none** and **exact**. If **exact** is configured, the queue transmits only up to the configured bandwidth, even if excess bandwidth is available. If **none** is configured, the queue transmits beyond the configured bandwidth if bandwidth is available. | extensive       |
| **Interface transmit statistics** | Status of the **interface-transmit-statistics** configuration: Enabled or Disabled. | detail extensive |
| **Queue counters (Egress)**  | CoS queue number and its associated user-configured forwarding class name.  
  - **Queued packets**—Number of queued packets.  
  - **Transmitted packets**—Number of transmitted packets.  
  - **Dropped packets**—Number of packets dropped by the ASIC's RED mechanism. | detail extensive |
Table 59: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Logical Interface</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical interface</td>
<td>Name of the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Index</td>
<td>Index number of the logical interface, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP interface index number for the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Encapsulation on the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Traffic statistics</strong></td>
<td>Number and rate of bytes and packets received and transmitted on the specified interface set.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>- <strong>Input bytes, Output bytes</strong> — Number of bytes received and transmitted on the interface set. The value in this field also includes the Layer 2 overhead bytes for ingress or egress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Input packets, Output packets</strong> — Number of packets received and transmitted on the interface set.</td>
<td></td>
</tr>
<tr>
<td><strong>Local statistics</strong></td>
<td>Number and rate of bytes and packets destined to the device.</td>
<td>extensive</td>
</tr>
<tr>
<td><strong>Transit statistics</strong></td>
<td>Number and rate of bytes and packets transiting the switch.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>NOTE: For Gigabit Ethernet intelligent queuing 2 (IQ2) interfaces, the logical interface egress statistics might not accurately reflect the traffic on the wire when output shaping is applied. Traffic management output shaping might drop packets after they are tallied by the <strong>Output bytes</strong> and <strong>Output packets</strong> interface counters. However, correct values display for both of these egress statistics when per-unit scheduling is enabled for the Gigabit Ethernet IQ2 physical interface, or when a single logical interface is actively using a shared scheduler.</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td>Security zones that interface belongs to.</td>
<td>extensive</td>
</tr>
<tr>
<td>Flow Input statistics</td>
<td>Statistics on packets received by flow module.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
### Table 59: show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Flow Output statistics</strong></td>
<td>Statistics on packets sent by flow module.</td>
<td>extensive</td>
</tr>
<tr>
<td><strong>Flow error statistics</strong> (Packets dropped due to)</td>
<td>Statistics on errors in the flow module.</td>
<td>extensive</td>
</tr>
<tr>
<td><strong>Protocol</strong></td>
<td>Protocol family.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>MTU</strong></td>
<td>Maximum transmission unit size on the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>Generation</strong></td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Route Table</strong></td>
<td>Route table in which the logical interface address is located. For example, 0 refers to the routing table inet.0.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>Flags</strong></td>
<td>Information about protocol family flags.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Addresses, Flags</strong></td>
<td>Information about the address flags.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>Destination</strong></td>
<td>IP address of the remote side of the connection.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>Local</strong></td>
<td>IP address of the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>Broadcast</strong></td>
<td>Broadcast address of the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>Generation</strong></td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>

---

### Sample Output Gigabit Ethernet

**show interfaces (Gigabit Ethernet)**

```
user@host> show interfaces ge-3/0/2
```

Physical interface: ge-3/0/2, Enabled, Physical link is Up
Interface index: 167, SNMP ifIndex: 35
Link-level type: 52, MTU: 1522, Speed: 1000mbps, Loopback: Disabled,
Remote fault: Online
Device flags : Present Running
Interface flags: SNMP-Traps Internal: 0x4000
CoS queues : 4 supported, 4 maximum usable queues
Current address: 00:00:5e:00:53:7c, Hardware address: 00:00:5e:00:53:7c
Last flapped : 2006-08-10 17:25:10 PDT (00:01:08 ago)
Input rate : 0 bps (0 pps)
Output rate : 0 bps (0 pps)
Ingress rate at Packet Forwarding Engine : 0 bps (0 pps)
Ingress drop rate at Packet Forwarding Engine : 0 bps (0 pps)
Active alarms : None
Active defects : None

Logical interface ge-3/0/2.0 (Index 72) (SNMP ifIndex 69)
   Flags: SNMP-Traps 0x4000
   VLAN-Tag [ 0x8100.512 0x8100.513 ] In(pop-swap 0x8100.530) Out(swap-push
       0x8100.512 0x8100.513)
   Encapsulation: VLAN-CCC
   Egress account overhead: 100
   Ingress account overhead: 90
   Input packets : 0
   Output packets: 0
   Protocol ccc, MTU: 1522
       Flags: Is-Primary

show interfaces (Gigabit Ethernet on MX Series Routers)

user@host> show interfaces ge-2/2/2

Physical interface: ge-2/2/2, Enabled, Physical link is Up
   Interface index: 156, SNMP ifIndex: 188
   Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps, MAC-REWRITE Error: None,
   Loopback: Disabled,
   Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
   Remote fault: Online
   Device flags : Present Running
   Interface flags: SNMP-Traps Internal: 0x4000
   Link flags : None
   CoS queues : 8 supported, 4 maximum usable queues
   Schedulers : 0
   Current address: 00:00:5e:00:53:c0, Hardware address: 00:00:5e:00:53:76
   Last flapped : 2008-09-05 16:44:30 PDT (3d 01:04 ago)
   Input rate : 0 bps (0 pps)
   Output rate : 0 bps (0 pps)
   Active alarms : None
show interfaces (link degrade status)

user@host> show interfaces et-3/0/0

Physical interface: et-3/0/0, Enabled, Physical link is Down
Interface index: 157, SNMP ifIndex: 537
Link-level type: Ethernet, MTU: 1514, MRU: 0, Speed: 100Gbps, BPDU Error: None,
Loopback: Disabled, Source filtering: Disabled, Flow control: Enabled
Device flags : Present Running Down
Interface flags: Hardware-Down SNMP-Traps Internal: 0x4000
Link flags : None
CoS queues : 8 supported, 8 maximum usable queues
Current address: 54:e0:32:23:9d:38, Hardware address: 54:e0:32:23:9d:38
Last flapped : 2014-06-18 02:36:38 PDT (02:50:50 ago)
Input rate : 0 bps (0 pps)
Output rate : 0 bps (0 pps)
Active alarms : LINK
Active defects : LINK
PCS statistics Seconds
Bit errors 0
Errored blocks 0
Link Degrade* :
Link Monitoring : Enable
Link Degrade Set Threshold:       : 1E-7
Link Degrade Clear Threshold:     : 1E-12
Estimated BER                     : 1E-7
Link-degrade event                : Seconds  Count  State
                                      782      1  Defect Active

show interfaces extensive (Gigabit Ethernet on MX Series Routers showing interface transmit statistics configuration)

user@host> show interfaces ge-2/1/2 extensive | match "output|interface"

Physical interface: ge-2/1/2, Enabled, Physical link is Up
Interface index: 151, SNMP ifIndex: 530, Generation: 154
Interface flags: SNMP-Traps Internal: 0x4000
Output bytes : 240614363944    772721536 bps
Output packets: 3538446506    1420444 pps
Direction : Output
Interface transmit statistics: Enabled

Logical interface ge-2/1/2.0 (Index 331) (SNMP ifIndex 955) (Generation 146)
Output bytes : 195560312716    522726272 bps
Output packets: 4251311146    1420451 pps

user@host> show interfaces ge-5/2/0.0 statistics detail

Logical interface ge-5/2/0.0 (Index 71) (SNMP ifIndex 573) (Generation 135)
Flags: SNMP-Traps 0x4000 Encapsulation: ENET2
Egress account overhead: 100
Ingress account overhead: 90
Traffic statistics:
  Input bytes : 271524
  Output bytes : 37769598
  Input packets: 3664
  Output packets: 885790
IPv6 transit statistics:
  Input bytes : 0
  Output bytes : 16681118
  Input packets: 0
  Output packets: 362633
Local statistics:
  Input bytes : 271524
  Output bytes : 308560
  Input packets: 3664
Output packets: 3659

Transit statistics:
- Input bytes: 0, 0 bps
- Output bytes: 37461038, 0 bps
- Input packets: 0, 0 pps
- Output packets: 882131, 0 pps

IPv6 transit statistics:
- Input bytes: 0, 0 bps
- Output bytes: 16681118, 0 bps
- Input packets: 0, 0 pps
- Output packets: 362633, 0 pps

show interfaces brief (Gigabit Ethernet)

user@host> show interfaces ge-3/0/2 brief

Physical interface: ge-3/0/2, Enabled, Physical link is Up
Link-level type: 52, MTU: 1522, Speed: 1000mbps, Loopback: Disabled,
Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
Remote fault: Online
Device flags: Present Running
Interface flags: SNMP-Traps Internal: 0x4000
Link flags: None

Logical interface ge-3/0/2.0
Flags: SNMP-Traps 0x4000
VLAN-Tag [0x8100.512 0x8100.513] In(pop-swap 0x8100.530) Out(swap-push
0x8100.512 0x8100.513)
Encapsulation: VLAN-CCC
ccc

Logical interface ge-3/0/2.32767
Flags: SNMP-Traps 0x4000 VLAN-Tag [0x0000.0] Encapsulation: ENET2

show interfaces detail (Gigabit Ethernet)

user@host> show interfaces ge-3/0/2 detail

Physical interface: ge-3/0/2, Enabled, Physical link is Up
Interface index: 167, SNMP ifIndex: 35, Generation: 177
Link-level type: 52, MTU: 1522, Speed: 1000mbps, Loopback: Disabled,
Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
Remote fault: Online
Device flags     : Present Running
Interface flags: SNMP-Traps Internal: 0x4000
Link flags      : None
CoS queues      : 4 supported, 4 maximum usable queues
Hold-times      : Up 0 ms, Down 0 ms
Current address: 00:00:5e:00:53:7c, Hardware address: 00:00:5e:00:53:7c
Last flapped    : 2006-08-09 17:17:00 PDT (01:31:33 ago)
Statistics last cleared: Never
Traffic statistics:
  Input  bytes : 0 0 bps
  Output bytes: 0 0 bps
  Input  packets: 0 0 pps
  Output packets: 0 0 pps
Ingress traffic statistics at Packet Forwarding Engine:
  Input  bytes : 0 0 bps
  Input  packets: 0 0 pps
  Drop  bytes : 0 0 bps
  Drop  packets: 0 0 pps
Ingress queues: 4 supported, 4 in use
  Queue counters:  Queued packets  Transmitted packets  Dropped packets
        0 best-effort        0 0 0
        1 expedited-fo       0 0 0
        2 assured-forw       0 0 0
        3 network-cont       0 0 0
Egress queues: 4 supported, 4 in use
  Queue counters:  Queued packets  Transmitted packets  Dropped packets
        0 best-effort        0 0 0
        1 expedited-fo       0 0 0
        2 assured-forw       0 0 0
        3 network-cont       0 0 0
Active alarms   : None
Active defects  : None

Logical interface ge-3/0/2.0 (Index 72) (SNMP ifIndex 69) (Generation 140)
  Flags: SNMP-Traps 0x4000
  VLAN-Tag [0x8100.512 0x8100.513 ] In(pop-swap 0x8100.530)
Out(swap-push 0x8100.512 0x8100.513)
  Encapsulation: VLAN-CCC
  Egress account overhead: 100
  Ingress account overhead: 90
Traffic statistics:
  Input  bytes : 0
  Output bytes : 0
  Input  packets: 0
show interfaces extensive (Gigabit Ethernet IQ2)

user@host> show interfaces ge-7/1/3 extensive

Physical interface: ge-7/1/3, Enabled, Physical link is Up
Interface index: 170, SNMP ifIndex: 70, Generation: 171
Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps, Loopback: Disabled,
Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
Remote fault: Online
Device flags : Present Running
Interface flags: SNMP-Traps Internal: 0x4004000
Link flags : None
CoS queues : 8 supported, 4 maximum usable queues
Schedulers : 256
Hold-times : Up 0 ms, Down 0 ms
Current address: 00:00:5e:00:53:74, Hardware address: 00:00:5e:00:53:74
Statistics last cleared: Never
Traffic statistics:
  Input bytes : 38910844056  7952 bps
  Output bytes : 7174605  8464 bps
  Input packets: 418398473  11 pps
  Output packets: 78903  12 pps
IPv6 transit statistics:
  Input bytes : 0
  Output bytes : 0
  Input packets: 0
  Output packets: 0
Ingress traffic statistics at Packet Forwarding Engine:
  Input bytes : 38910799145  7952 bps
  Input packets: 418397956  11 pps
  Drop bytes : 0  0 bps
  Drop packets: 0  0 pps
Input errors:
  Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0,
  L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0,
  FIFO errors: 0, Resource errors: 0
Output errors:
  Carrier transitions: 1, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0,
  FIFO errors: 0, HS link CRC errors: 0, MTU errors: 0, Resource errors: 0
Ingress queues: 4 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
  0 best-effort 418390823 418390823 0
  1 expedited-fo 0 0 0
  2 assured-forw 0 0 0
  3 network-cont 7133 7133 0
Egress queues: 4 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
  0 best-effort 1031 1031 0
  1 expedited-fo 0 0 0
  2 assured-forw 0 0 0
  3 network-cont 77872 77872 0
Active alarms : None
Active defects : None
MAC statistics: Receive Transmit
<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total octets</td>
<td>38910844056</td>
<td>7174605</td>
</tr>
<tr>
<td>Total packets</td>
<td>418398473</td>
<td>78903</td>
</tr>
<tr>
<td>Unicast packets</td>
<td>408021893366</td>
<td>1026</td>
</tr>
<tr>
<td>Broadcast packets</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Multicast packets</td>
<td>418398217</td>
<td>77865</td>
</tr>
<tr>
<td>CRC/Align errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FIFO errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC control frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC pause frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oversized frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jabber frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fragment frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VLAN tagged frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Code violations</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**OTN Received Overhead Bytes:**
- APS/PCC0: 0x02, APS/PCC1: 0x11, APS/PCC2: 0x47, APS/PCC3: 0x58
- Payload Type: 0x08

**OTN Transmitted Overhead Bytes:**
- APS/PCC0: 0x00, APS/PCC1: 0x00, APS/PCC2: 0x00, APS/PCC3: 0x00
- Payload Type: 0x08

**Filter statistics:**
- Input packet count: 418398473
- Input packet rejects: 479
- Input DA rejects: 479
- Input SA rejects: 0
- Output packet count: 78903
- Output packet pad count: 0
- Output packet error count: 0
- CAM destination filters: 0, CAM source filters: 0

**Autonegotiation information:**
- Negotiation status: Complete
- Link partner:
  - Link mode: Full-duplex, Flow control: Symmetric/Asymmetric,
  - Remote fault: OK
- Local resolution:
  - Flow control: Symmetric, Remote fault: Link OK

**Packet Forwarding Engine configuration:**
- Destination slot: 7

**CoS information:**
- Direction: Output
- CoS transmit queue | Bandwidth % | Buffer % | Priority | Limit
- 0 best-effort     | 95          | 95       | 0        | low  none
- 3 network-control | 5           | 5        | 0        | low  none


Direction : Input
CoS transmit queue        Bandwidth        Buffer        Priority   Limit
                     %        bps         %        usec
0 best-effort                        95      950000000     95              0      low    none
3 network-control                   5      500000000     5              0      low    none

Logical interface ge-7/1/3.0 (Index 70) (SNMP ifIndex 85) (Generation 150)
Flags: SNMP-Traps Encapsulation: ENET2
Traffic statistics:
    Input  bytes  :               812400
    Output bytes  :              1349206
    Input  packets:                 9429
    Output packets:                 9449
IPv6 transit statistics:
    Input  bytes  :                   0
    Output bytes  :                   0
    Input  packets:                   0
    Output packets:                   0
Local statistics:
    Input  bytes  :               812400
    Output bytes  :              1349206
    Input  packets:                 9429
    Output packets:                 9449
Transit statistics:
    Input  bytes  :                    0                 7440 bps
    Output bytes  :                    0                 7888 bps
    Input  packets:                    0                   10 pps
    Output packets:                    0                   11 pps
IPv6 transit statistics:
    Input  bytes  :                   0
    Output bytes  :                   0
    Input  packets:                   0
    Output packets:                   0
Protocol inet, MTU: 1500, Generation: 169, Route table: 0
Flags: Is-Primary, Mac-Validate-Strict
Mac-Validate Failures: Packets: 0, Bytes: 0
Addresses, Flags: Is-Preferred Is-Primary
Input Filters: F1-ge-3/0/1.0-in, F3-ge-3/0/1.0-in
Output Filters: F2-ge-3/0/1.0-out (53)
Destination: 203.0.113/24, Local: 203.0.113.2, Broadcast: 203.0.113.255,
    Generation: 196
Protocol multiservice, MTU: Unlimited, Generation: 170, Route table: 0
Flags: Is-Primary
Policer: Input: __default_arp_policer__

**NOTE:** For Gigabit Ethernet intelligent queuing 2 (IQ2) interfaces, the logical interface egress statistics displayed in the `show interfaces` command output might not accurately reflect the traffic on the wire when output shaping is applied. Traffic management output shaping might drop packets after they are tallied by the interface counters. For detailed information, see the description of the logical interface Transit statistics fields in Table 57 on page 955.

**show interfaces (Gigabit Ethernet Unnumbered Interface)**

```
user@host> show interfaces ge-3/2/0
```

Physical interface: ge-3/2/0, Enabled, Physical link is Up
- Interface index: 148, SNMP ifIndex: 50
- Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps, Loopback: Disabled,
- Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
- Remote fault: Online
- Device flags : Present Running
- Interface flags: SNMP-Traps Internal: 0x4000
- Link flags : None
- CoS queues : 8 supported, 4 maximum usable queues
- Current address: 00:00:5e:00:53:f8, Hardware address: 00:00:5e:00:53:f8
- Last flapped : 2006-10-27 04:42:23 PDT (08:01:52 ago)
- Input rate : 0 bps (0 pps)
- Output rate : 624 bps (1 pps)
- Active alarms : None
- Active defects : None

Logical interface ge-3/2/0.0 (Index 67) (SNMP ifIndex 85)
- Flags: SNMP-Traps Encapsulation: ENET2
- Input packets : 0
- Output packets: 6
- Protocol inet, MTU: 1500
  - Flags: Unnumbered
  - Donor interface: lo0.0 (Index 64)
  - Preferred source address: 203.0.113.22

**show interfaces (ACI Interface Set Configured)**

```
user@host> show interfaces ge-1/0/0.4001
```

Logical interface ge-1/0/0.4001 (Index 340) (SNMP ifIndex 548)
Flags: SNMP-Traps 0x4000 VLAN-Tag [ 0x8100.4001 ] Encapsulation: PPP-over-Ethernet
ACI VLAN:
  Dynamic Profile: aci-vlan-set-profile
PPPoE:
  Dynamic Profile: aci-vlan-pppoe-profile,
  Service Name Table: None,
  Max Sessions: 32000, Max Sessions VSA Ignore: Off,
  Duplicate Protection: On, Short Cycle Protection: Off,
  Direct Connect: Off,
  AC Name: nbc
Input packets: 9
Output packets: 8
Protocol multiservice, MTU: Unlimited

show interfaces (ALI Interface Set)
user@host> show interfaces ge-1/0/0.10

Logical interface ge-1/0/0.10 (Index 346) (SNMP ifIndex 554) (Generation 155)
Flags: Up SNMP-Traps 0x4000 VLAN-Tag [ 0x8100.10 ] Encapsulation: ENET2
Line Identity:
  Dynamic Profile: ali-set-profile
  Circuit-id Remote-id Accept-no-ids
PPPoE:
  Dynamic Profile: ali-vlan-pppoe-profile,
  Service Name Table: None,
  Max Sessions: 32000, Max Sessions VSA Ignore: Off,
  Duplicate Protection: On, Short Cycle Protection: Off,
  Direct Connect: Off,
  AC Name: nbc
Input packets: 9
Output packets: 8
Protocol multiservice, MTU: Unlimited

Sample Output Gigabit Ethernet

show interfaces extensive (10-Gigabit Ethernet, LAN PHY Mode, IQ2)
user@host> show interfaces xe-5/0/0 extensive
Physical interface: xe-5/0/0, Enabled, Physical link is Up

  Interface index: 177, SNMP ifIndex: 630, Generation: 178

  Link-level type: Ethernet, MTU: 1518, LAN-PHY mode, Speed: 10Gbps, Loopback: None, Source filtering: Enabled,

  Flow control: Enabled

  Device flags   : Present Running

  Interface flags: SNMP-Traps Internal: 0x4000

  Link flags     : None

  CoS queues     : 8 supported, 4 maximum usable queues

  Schedulers     : 1024

  Hold-times     : Up 0 ms, Down 0 ms

  Current address: 00:00:5e:00:53:f6, Hardware address: 00:00:5e:00:53:f6

  Last flapped   : Never

  Statistics last cleared: Never

  Traffic statistics:

    Input  bytes : 6970332384 0 bps
    Output bytes : 0 0 bps
    Input packets: 81050506 0 pps
    Output packets: 0 0 pps

  IPv6 transit statistics:

    Input  bytes : 0
    Output bytes : 0
    Input packets: 0
    Output packets: 0

  Ingress traffic statistics at Packet Forwarding Engine:

    Input  bytes : 6970299398 0 bps
    Input packets: 81049992 0 pps
    Drop  bytes : 0 0 bps
    Drop packets: 0 0 pps

  Input errors:

    Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0, L3 incompletes: 0, L2 channel errors: 0,

    L2 mismatch timeouts: 0, FIFO errors: 0, Resource errors: 0

  Output errors:

    Carrier transitions: 0, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0,

    FIFO errors: 0, HS link CRC errors: 0,

    MTU errors: 0, Resource errors: 0

  Ingress queues: 4 supported, 4 in use

  Queue counters:

    Queue  Queued packets  Transmitted packets  Dropped packets
     0 best-effort 81049992 81049992 0
     1 expedited-fo 0 0 0
     2 assured-forw 0 0 0
     3 network-cont 0 0 0

  Egress queues: 4 supported, 4 in use
### Queue counters:

<table>
<thead>
<tr>
<th></th>
<th>Queued packets</th>
<th>Transmitted packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 expedited-fo</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 assured-forw</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 network-cont</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Active alarms: None

Active defects: None

### PCS statistics:

<table>
<thead>
<tr>
<th></th>
<th>Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit errors</td>
<td>0</td>
</tr>
<tr>
<td>Errored blocks</td>
<td>0</td>
</tr>
</tbody>
</table>

### MAC statistics:

<table>
<thead>
<tr>
<th></th>
<th>Receive</th>
<th>Transmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total octets</td>
<td>6970332384</td>
<td>0</td>
</tr>
<tr>
<td>Total packets</td>
<td>81050506</td>
<td>0</td>
</tr>
<tr>
<td>Unicast packets</td>
<td>81050000</td>
<td>0</td>
</tr>
<tr>
<td>Broadcast packets</td>
<td>506</td>
<td>0</td>
</tr>
<tr>
<td>Multicast packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CRC/Align errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FIFO errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC control frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC pause frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oversized frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jabber frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fragment frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VLAN tagged frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Code violations</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

### Filter statistics:

<table>
<thead>
<tr>
<th></th>
<th>Receive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input packet count</td>
<td>81050506</td>
</tr>
<tr>
<td>Input packet rejects</td>
<td>506</td>
</tr>
<tr>
<td>Input DA rejects</td>
<td>0</td>
</tr>
<tr>
<td>Input SA rejects</td>
<td>0</td>
</tr>
<tr>
<td>Output packet count</td>
<td>0</td>
</tr>
<tr>
<td>Output packet pad count</td>
<td>0</td>
</tr>
<tr>
<td>Output packet error count</td>
<td>0</td>
</tr>
</tbody>
</table>

CAM destination filters: 0, CAM source filters: 0

### Packet Forwarding Engine configuration:

**Destination slot:** 5

### CoS information:

**Direction:** Output

<table>
<thead>
<tr>
<th>CoS transmit queue</th>
<th>Bandwidth</th>
<th>Buffer Priority</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>95% 950000000</td>
<td>95 low none</td>
<td></td>
</tr>
<tr>
<td>3 network-control</td>
<td>5% 50000000</td>
<td>0 low none</td>
<td></td>
</tr>
</tbody>
</table>

**Direction:** Input

<table>
<thead>
<tr>
<th>CoS transmit queue</th>
<th>Bandwidth</th>
<th>Buffer Priority</th>
<th>Limit</th>
</tr>
</thead>
</table>
Logical interface xe-5/0/0.0 (Index 71) (SNMP ifIndex 95) (Generation 195)

Flags: SNMP-Traps 0x4000 VLAN-Tag [ 0x8100.100 ] Encapsulation: ENET2

Egress account overhead: 100

Ingress account overhead: 90

Traffic statistics:

<table>
<thead>
<tr>
<th>%</th>
<th>bps</th>
<th>%</th>
<th>usec</th>
<th>Status</th>
<th>Policer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>95</td>
<td>950000000</td>
<td>95</td>
<td>0</td>
<td>low</td>
</tr>
<tr>
<td>3 network-control</td>
<td>5</td>
<td>50000000</td>
<td>5</td>
<td>0</td>
<td>low</td>
</tr>
</tbody>
</table>

Ingress account overhead: 90

IPv6 transit statistics:

Input bytes: 0
Output bytes: 0
Input packets: 0
Output packets: 0

Local statistics:

Input bytes: 0
Output bytes: 46
Input packets: 0
Output packets: 1

Transit statistics:

Input bytes: 0
Output bytes: 0
Input packets: 0
Output packets: 0

IPv6 transit statistics:

Input bytes: 0
Output bytes: 0
Input packets: 0
Output packets: 0

Protocol inet, MTU: 1500, Generation: 253, Route table: 0

Addresses, Flags: Is-Preferred Is-Primary

Destination: 192.0.2/24, Local: 192.0.2.1, Broadcast: 192.0.2.255,

Generation: 265

Protocol multiservice, MTU: Unlimited, Generation: 254, Route table: 0

Flags: None

Policer: Input: __default_arp_policer__

show interfaces extensive (10-Gigabit Ethernet, WAN PHY Mode)

user@host> show interfaces xe-1/0/0 extensive
Physical interface: xe-1/0/0, Enabled, Physical link is Up

Interface index: 141, SNMP ifIndex: 630, Generation: 47

Link-level type: Ethernet, MTU: 1514, Speed: 9.294Gbps, Loopback: Disabled

WAN-PHY mode

Source filtering: Disabled, Flow control: Enabled, Speed Configuration: Auto

Device flags : Present Running

Interface flags: SNMP-Traps 16384

Link flags : None

CoS queues : 4 supported

Hold-times : Up 0 ms, Down 0 ms

Current address: 00:00:5e:00:53:9d, Hardware address: 00:00:5e:00:53:9d


Statistics last cleared: Never

Traffic statistics:

Input bytes : 0 0 bps
Output bytes : 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps

Input errors:

Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0,
L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0,
HS Link CRC errors: 0, HS Link FIFO overflows: 0,
Resource errors: 0

Output errors:

Carrier transitions: 1, Errors: 0, Drops: 0, Collisions: 0,
Aged packets: 0, FIFO errors: 0, HS link CRC errors: 0, MTU errors: 0,
Resource errors: 0

Queue counters: Queued packets Transmitted packets Dropped packets
0 best-effort 0 0 0
1 expedited-fo 0 0 0
2 assured-forw 0 0 0
3 network-cont 0 0 0

Active alarms : LOL, LOS, LBL
Active defects: LOL, LOS, LBL, SEF, AIS-L, AIS-P

PCS statistics

Bit errors 0 0
Errored blocks 0 0

MAC statistics:

Receive Transmit
Total octets 0 0
Total packets 0 0
Unicast packets 0 0
Broadcast packets 0 0
Multicast packets 0 0
CRC/Align errors 0 0
<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIFO errors</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MAC control frames</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MAC pause frames</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Oversized frames</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Jabber frames</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fragment frames</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>VLAN tagged frames</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Code violations</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Filter statistics:
- Input packet count: 0
- Input packet rejections: 0
- Input DA rejections: 0
- Input SA rejections: 0
- Output packet count: 0
- Output packet pad count: 0
- Output packet error count: 0

CAM destination filters: 0, CAM source filters: 0

<table>
<thead>
<tr>
<th>PMA PHY</th>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL lock</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>PHY light</td>
<td>63159</td>
<td>1</td>
<td>Light Missing</td>
</tr>
</tbody>
</table>

WIS section:

<table>
<thead>
<tr>
<th>Category</th>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIP-B1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SEF</td>
<td>434430</td>
<td>434438</td>
<td>Defect Active</td>
</tr>
<tr>
<td>LOS</td>
<td>434430</td>
<td>1</td>
<td>Defect Active</td>
</tr>
<tr>
<td>LOF</td>
<td>434430</td>
<td>1</td>
<td>Defect Active</td>
</tr>
<tr>
<td>ES-S</td>
<td>434430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SES-S</td>
<td>434430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEFS-S</td>
<td>434430</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WIS line:

<table>
<thead>
<tr>
<th>Category</th>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIP-B2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>REI-L</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RDI-L</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>AIS-L</td>
<td>434430</td>
<td>1</td>
<td>Defect Active</td>
</tr>
<tr>
<td>BERR-SF</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>BERR-SD</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>ES-L</td>
<td>434430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SES-L</td>
<td>434430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UAS-L</td>
<td>434420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES-LFE</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SES-LFE</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UAS-LFE</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WIS path:

<table>
<thead>
<tr>
<th>Category</th>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIP-B3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>REI-P</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
show interfaces extensive (10-Gigabit Ethernet, DWDM OTN PIC)

user@host> show interfaces ge-7/0/0 extensive

Physical interface: ge-7/0/0, Enabled, Physical link is Down
  Interface index: 143, SNMP ifIndex: 508, Generation: 208
  Link-level type: Ethernet, MTU: 1514, Speed: 10Gbps, BPDU Error: None,
  MAC-REWRITE Error: None, Loopback: Disabled, Source filtering: Disabled,
  Flow control: Enabled
  Device flags   : Present Running Down
  Interface flags: Hardware-Down SNMP-Traps Internal: 0x4000
  Link flags : None
  Wavelength : 1550.12 nm, Frequency: 193.40 THz
  CoS queues : 8 supported, 8 maximum usable queues
  Hold-times : Up 0 ms, Down 0 ms
  Current address: 00:00:5e:00:53:72, Hardware address: 00:00:5e:00:53:72
  Statistics last cleared: Never
  Traffic statistics:
    Input bytes : 0 0 bps
    Output bytes : 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps

IPv6 transit statistics:
Input bytes: 0
Output bytes: 0
Input packets: 0
Output packets: 0

Input errors:
Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0,
L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0,
FIFO errors: 0, Resource errors: 0

Output errors:
Carrier transitions: 2, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0,
FIFO errors: 0, HS link CRC errors: 0, MTU errors: 0, Resource errors: 0

Egress queues: 8 supported, 4 in use

<table>
<thead>
<tr>
<th>Queue counters:</th>
<th>Queued packets</th>
<th>Transmitted packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 expedited-fo</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 assured-forw</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 network-cont</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Queue number: Mapped forwarding classes
0 best-effort
1 expedited-forwarding
2 assured-forwarding
3 network-control

Active alarms: LINK
Active defects: LINK

MAC statistics:

<table>
<thead>
<tr>
<th>Receive</th>
<th>Transmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total octets</td>
<td>0</td>
</tr>
<tr>
<td>Total packets</td>
<td>0</td>
</tr>
<tr>
<td>Unicast packets</td>
<td>0</td>
</tr>
<tr>
<td>Broadcast packets</td>
<td>0</td>
</tr>
<tr>
<td>Multicast packets</td>
<td>0</td>
</tr>
<tr>
<td>CRC/Align errors</td>
<td>0</td>
</tr>
<tr>
<td>FIFO errors</td>
<td>0</td>
</tr>
<tr>
<td>MAC control frames</td>
<td>0</td>
</tr>
<tr>
<td>MAC pause frames</td>
<td>0</td>
</tr>
<tr>
<td>Oversized frames</td>
<td>0</td>
</tr>
<tr>
<td>Jabber frames</td>
<td>0</td>
</tr>
<tr>
<td>Fragment frames</td>
<td>0</td>
</tr>
<tr>
<td>VLAN tagged frames</td>
<td>0</td>
</tr>
<tr>
<td>Code violations</td>
<td>0</td>
</tr>
<tr>
<td>Total octets</td>
<td>0</td>
</tr>
<tr>
<td>Total packets</td>
<td>0</td>
</tr>
<tr>
<td>Packets</td>
<td>Count</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Unicast packets</td>
<td>0</td>
</tr>
<tr>
<td>Broadcast packets</td>
<td>0</td>
</tr>
<tr>
<td>Multicast packets</td>
<td>0</td>
</tr>
<tr>
<td>CRC/Align errors</td>
<td>0</td>
</tr>
<tr>
<td>FIFO errors</td>
<td>0</td>
</tr>
<tr>
<td>MAC control frames</td>
<td>0</td>
</tr>
<tr>
<td>MAC pause frames</td>
<td>0</td>
</tr>
<tr>
<td>Oversized frames</td>
<td>0</td>
</tr>
<tr>
<td>Jabber frames</td>
<td>0</td>
</tr>
<tr>
<td>Fragment frames</td>
<td>0</td>
</tr>
<tr>
<td>VLAN tagged frames</td>
<td>0</td>
</tr>
<tr>
<td>Code violations</td>
<td>0</td>
</tr>
<tr>
<td>OTN alarms</td>
<td>None</td>
</tr>
<tr>
<td>OTN defects</td>
<td>None</td>
</tr>
<tr>
<td>OTN FEC Mode</td>
<td>GFEC</td>
</tr>
<tr>
<td>OTN Rate</td>
<td>Fixed Stuff Bytes 11.0957Gbps</td>
</tr>
<tr>
<td>OTN Line Loopback</td>
<td>Enabled</td>
</tr>
<tr>
<td>OTN FEC statistics</td>
<td></td>
</tr>
<tr>
<td>Corrected Errors</td>
<td>0</td>
</tr>
<tr>
<td>Corrected Error Ratio</td>
<td>0e-0</td>
</tr>
</tbody>
</table>

**OTN FEC alarms:**

<table>
<thead>
<tr>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEC Degrade</td>
<td>0</td>
<td>0 OK</td>
</tr>
<tr>
<td>FEC Excessive</td>
<td>0</td>
<td>0 OK</td>
</tr>
</tbody>
</table>

**OTN OC:**

<table>
<thead>
<tr>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS</td>
<td>2</td>
<td>1 OK</td>
</tr>
<tr>
<td>LOF</td>
<td>67164</td>
<td>2 Defect Active</td>
</tr>
<tr>
<td>LOM</td>
<td>67164</td>
<td>71 Defect Active</td>
</tr>
<tr>
<td>Wavelength Lock</td>
<td>0</td>
<td>0 OK</td>
</tr>
</tbody>
</table>

**OTN OTU:**

<table>
<thead>
<tr>
<th></th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS</td>
<td>0</td>
<td>0 OK</td>
</tr>
<tr>
<td>BDI</td>
<td>65919</td>
<td>4814 Defect Active</td>
</tr>
<tr>
<td>IAE</td>
<td>67158</td>
<td>1 Defect Active</td>
</tr>
<tr>
<td>TTIM</td>
<td>7</td>
<td>1 OK</td>
</tr>
<tr>
<td>SF</td>
<td>67164</td>
<td>2 Defect Active</td>
</tr>
<tr>
<td>SD</td>
<td>67164</td>
<td>3 Defect Active</td>
</tr>
<tr>
<td>TCA-ES</td>
<td>0</td>
<td>0 OK</td>
</tr>
<tr>
<td>TCA-SES</td>
<td>0</td>
<td>0 OK</td>
</tr>
<tr>
<td>TCA-UAS</td>
<td>80</td>
<td>40 OK</td>
</tr>
<tr>
<td>TCA-BBE</td>
<td>0</td>
<td>0 OK</td>
</tr>
<tr>
<td>BIP</td>
<td>0</td>
<td>0 OK</td>
</tr>
<tr>
<td>BBE</td>
<td>0</td>
<td>0 OK</td>
</tr>
<tr>
<td>ES</td>
<td>0</td>
<td>0 OK</td>
</tr>
<tr>
<td>SES</td>
<td>0</td>
<td>0 OK</td>
</tr>
<tr>
<td>UAS</td>
<td>587</td>
<td>0 OK</td>
</tr>
</tbody>
</table>
Received DAPI:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... 
Received SAPI:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... 
Transmitted DAPI:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... 
Transmitted SAPI:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............... 
OTN Received Overhead Bytes:
APS/PCC0: 0x02, APS/PCC1: 0x42, APS/PCC2: 0xa2, APS/PCC3: 0x48 
Payload Type: 0x03 
OTN Transmitted Overhead Bytes:
APS/PCC0: 0x00, APS/PCC1: 0x00, APS/PCC2: 0x00, APS/PCC3: 0x00 
Payload Type: 0x03 
Filter statistics:
Input packet count 0 
Input packet rejects 0 
Input DA rejects 0 
Input SA rejects 0 
Output packet count 0 
Output packet pad count 0 
Output packet error count 0 
CAM destination filters: 0, CAM source filters: 0 
Packet Forwarding Engine configuration:
Destination slot: 7 
CoS information:
Direction : Output 
CoS transmit queue Bandwidth Buffer Priority Limit 
% bps % usec
0 best-effort 95 9500000000 95 0 low
none
3 network-control 5 500000000 5 0 low
none
...

show interfaces extensive (10-Gigabit Ethernet, LAN PHY Mode, Unidirectional Mode)

user@host> show interfaces xe-7/0/0 extensive

Physical interface: xe-7/0/0, Enabled, Physical link is Up 
Interface index: 173, SNMP ifIndex: 212, Generation: 174 
Link-level type: Ethernet, MTU: 1514, LAN-PHY mode, Speed: 10Gbps, Unidirectional: 
Enabled,
show interfaces extensive (10-Gigabit Ethernet, LAN PHY Mode, Unidirectional Mode, Transmit-Only)

user@host> show interfaces xe-7/0/0-tx extensive

Physical interface: xe-7/0/0-tx, Enabled, Physical link is Up
  Interface index: 176, SNMP ifIndex: 137, Generation: 177
  Link-level type: Ethernet, MTU: 1514, LAN-PHY mode, Speed: 10Gbps, Unidirectional: Tx-Only
  Device flags : Present Running
  Interface flags: SNMP-Traps Internal: 0x4000
  Link flags : None
  CoS queues : 8 supported, 8 maximum usable queues
  Hold-times : Up 0 ms, Down 0 ms
  Current address: 00:00:5e:00:53:83, Hardware address: 00:00:5e:00:53:83
  Last flapped : 2007-06-01 09:08:19 PDT (3d 02:31 ago)
  Statistics last cleared: Never
  Traffic statistics:
    Input  bytes: 0 0 bps
    Output bytes: 322891152287160 9627472888 bps
    Input  packets: 0 0 pps
    Output packets: 328809727380 1225492 pps

... Filter statistics:
  Output packet count 328810554250
  Output packet pad count 0
  Output packet error count 0

Logical interface xe-7/0/0-tx.0 (Index 73) (SNMP ifIndex 138) (Generation 139)
  Flags: SNMP-Traps Encapsulation: ENET2
  Egress account overhead: 100
  Ingress account overhead: 90
  Traffic statistics:
    Input  bytes: 0
    Output bytes: 322891152287160
    Input  packets: 0
    Output packets: 328809727380
  IPv6 transit statistics:
show interfaces extensive (10-Gigabit Ethernet, LAN PHY Mode, Unidirectional Mode, Receive-Only)

user@host> show interfaces xe-7/0/0-rx extensive

Physical interface: xe-7/0/0-rx, Enabled, Physical link is Up
   Interface index: 174, SNMP ifIndex: 118, Generation: 175
   Link-level type: Ethernet, MTU: 1514, LAN-PHY mode, Speed: 10Gbps, Unidirectional: Rx-Only
   Device flags : Present Running
   Interface flags: SNMP-Traps Internal: 0x4000
   Link flags : None
   CoS queues : 8 supported, 8 maximum usable queues
   Hold-times : Up 0 ms, Down 0 ms
   Current address: 00:00:5e:00:53:83, Hardware address: 00:00:5e:00:53:83
   Last flapped : 2007-06-01 09:08:22 PDT (3d 02:31 ago)
   Statistics last cleared: Never
   Traffic statistics:
Input bytes : 322857456303482 9627496104 bps
Output bytes : 0 0 bps
Input packets: 328775413751 1225495 pps
Output packets: 0 0 pps

Filter statistics:
Input packet count 328775015056
Input packet rejects 1
Input DA rejects 0

Logical interface xe-7/0/0-rx.0 (Index 72) (SNMP ifIndex 120) (Generation 138)
Flags: SNMP-Traps Encapsulation: ENET2
Traffic statistics:
Input bytes : 322857456303482
Output bytes : 0
Input packets: 328775413751
Output packets: 0
IPv6 transit statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0
Local statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0
Transit statistics:
Input bytes : 322857456303482 9627496104 bps
Output bytes : 0 0 bps
Input packets: 328775413751 1225495 pps
Output packets: 0 0 pps
IPv6 transit statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0
Protocol inet, MTU: 1500, Generation: 145, Route table: 0
Addresses, Flags: Is-Preferred Is-Primary
  Destination: 192.0.2/24, Local: 192.0.2.1, Broadcast: 192.0.2.255,
Sample Output

Sample Output SRX Gigabit Ethernet

user@host> show interfaces ge-0/0/1

Physical interface: ge-0/0/1, Enabled, Physical link is Down
  Interface index: 135, SNMP ifIndex: 510
  Link-level type: Ethernet, MTU: 1514, Link-mode: Full-duplex, Speed: 1000mbps,
  BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled,
  Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
  Remote fault: Online
  Device flags : Present Running Down
  Interface flags: Hardware-Down SNMP-Traps Internal: 0x0
  Link flags : None
  CoS queues : 8 supported, 8 maximum usable queues
  Current address: 00:00:5e:00:53:01, Hardware address: 00:00:5e:00:53:01
  Last flapped : 2015-05-12 08:36:59 UTC (1w1d 22:42 ago)
  Input rate : 0 bps (0 pps)
  Output rate : 0 bps (0 pps)
  Active alarms : LINK
  Active defects : LINK
  Interface transmit statistics: Disabled

Logical interface ge-0/0/1.0 (Index 71) (SNMP ifIndex 514)
  Flags: Device-Down SNMP-Traps 0x0 Encapsulation: ENET2
  Input packets : 0
  Output packets: 0
  Security: Zone: public
  Protocol inet, MTU: 1500
  Flags: Sendbcast-pkt-to-re
  Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
  Destination: 1.1.1/24, Local: 1.1.1.1, Broadcast: 1.1.1.255

Sample Output SRX Gigabit Ethernet

user@host> show interfaces ge-0/0/1
Physical interface: ge-0/0/1, Enabled, Physical link is Down
  Interface index: 135, SNMP ifIndex: 510
  Link-level type: Ethernet, MTU: 1514, Link-mode: Full-duplex, Speed: 1000mbps,
  BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled,
  Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
  Remote fault: Online
  Device flags   : Present Running Down
  Interface flags: Hardware-Down SNMP-Traps Internal: 0x0
  Link flags     : None
  CoS queues     : 8 supported, 8 maximum usable queues
  Current address: 00:00:5e:00:53:01, Hardware address: 00:00:5e:00:53:01
  Last flapped   : 2015-05-12 08:36:59 UTC (1w1d 22:42 ago)
  Input rate     : 0 bps (0 pps)
  Output rate    : 0 bps (0 pps)
  Active alarms  : LINK
  Active defects : LINK
  Interface transmit statistics: Disabled

Logical interface ge-0/0/1.0 (Index 71) (SNMP ifIndex 514)
  Flags: Device-Down SNMP-Traps 0x0 Encapsulation: ENET2
  Input packets : 0
  Output packets: 0
  Security: Zone: public
  Protocol inet, MTU: 1500
  Flags: Sendbcast-pkt-to-re
  Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
  Destination: 1.1.1/24, Local: 1.1.1.1, Broadcast: 1.1.1.255

show interfaces (Gigabit Ethernet for vSRX and vSRX 3.0)

user@host> show interfaces ge-0/0/0

Physical interface: ge-0/0/0, Enabled, Physical link is Up
  Interface index: 136, SNMP ifIndex: 510
  Link-level type: Ethernet, MTU: 1518, LAN-PHY mode, Link-mode: Half-duplex,
  Speed: 1000mbps, BPDU Error: None, Loop Detect PDU Error: None, Ethernet-Switching
  Error: None, MAC-REWRITE Error: None, Loopback: Disabled, Source filtering:
  Disabled, Flow control: Enabled,
  Auto-negotiation: Enabled, Remote fault: Online
  Device flags   : Present Running
  Interface flags: SNMP-Traps Internal: 0x4000
  CoS queues     : 8 supported, 8 maximum usable queues
  Current address: 00:50:56:93:ef:25, Hardware address: 00:50:56:93:ef:25
  Last flapped   : 2019-03-29 01:57:45 UTC (00:00:41 ago)
show interfaces detail (Gigabit Ethernet)

user@host> show interfaces ge-0/0/1 detail

Physical interface: ge-0/0/1, Enabled, Physical link is Down
  Interface index: 135, SNMP ifIndex: 510, Generation: 138
  Link-level type: Ethernet, MTU: 1514, Link-mode: Full-duplex, Speed: 1000mbps,
  BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled, Source filtering: Disabled,
  Flow control: Enabled, Auto-negotiation: Enabled, Remote fault: Online
  Device flags  : Present Running Down
  Interface flags: Hardware-Down SNMP-Traps Internal: 0x0
  Link flags    : None
  CoS queues    : 8 supported, 8 maximum usable queues
  Hold-times    : Up 0 ms, Down 0 ms
  Current address: 00:00:5e:00:53:01, Hardware address: 00:00:5e:00:53:01
  Last flapped  : 2015-05-12 08:36:59 UTC (1w2d 00:00 ago)
  Statistics last cleared: Never
  Traffic statistics:
  Input bytes : 0 0 bps
  Output bytes : 0 0 bps
  Input packets: 0 0 pps
  Output packets: 0 0 pps
  Egress queues: 8 supported, 4 in use
  Queue counters: Queued packets Transmitted packets Dropped packets
  0 best-effort 0 0 0
  1 expedited-fo 0 0 0
  2 assured-forw 0 0 0
  3 network-cont 0 0 0
  Queue number: Mapped forwarding classes
  0 best-effort
  1 expedited-forwarding
  2 assured-forwarding
  3 network-control
  Active alarms  : LINK
  Active defects : LINK
  Interface transmit statistics: Disabled

Logical interface ge-0/0/1.0 (Index 71) (SNMP ifIndex 514) (Generation 136)
  Flags: Device-Down SNMP-Traps 0x0 Encapsulation: ENET2
Traffic statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0
Local statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0
Transit statistics:
Input bytes : 0 0 bps
Output bytes : 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps
Security: Zone: public
Flow Statistics :
Flow Input statistics :
Self packets : 0
ICMP packets : 0
VPN packets : 0
Multicast packets : 0
Bytes permitted by policy : 0
Connections established : 0
Flow Output statistics:
Multicast packets : 0
Bytes permitted by policy : 0
Flow error statistics (Packets dropped due to):
Address spoofing: 0
Authentication failed: 0
Incoming NAT errors: 0
Invalid zone received packet: 0
Multiple user authentications: 0
Multiple incoming NAT: 0
No parent for a gate: 0
No one interested in self packets: 0
No minor session: 0
No more sessions: 0
No NAT gate: 0
No route present: 0
No SA for incoming SPI: 0
No tunnel found: 0
No session for a gate: 0
No zone or NULL zone binding 0
Policy denied: 0
Security association not active: 0
TCP sequence number out of window: 0
Syn-attack protection: 0
User authentication errors: 0
Protocol inet, MTU: 1500, Generation: 150, Route table: 0
Flags: Sendbcast-pkt-to-re
Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
  Destination: 1.1.1/24, Local: 1.1.1.1, Broadcast: 1.1.1.255, Generation: 150

show interfaces statistics st0.0 detail

user@host> show interfaces statistics st0.0 detail

Logical interface st0.0 (Index 71) (SNMP ifIndex 609) (Generation 136)
  Flags: Up Point-To-Point SNMP-Traps Encapsulation: Secure-Tunnel
  Traffic statistics:
    Input bytes : 528152756774
    Output bytes : 575950643520
    Input packets: 11481581669
    Output packets: 12520666095
  Local statistics:
    Input bytes : 0
    Output bytes : 0
    Input packets: 0
    Output packets: 0
  Transit statistics:
    Input bytes : 0 121859888 bps
    Output bytes : 0 128104112 bps
    Input packets: 0 331141 pps
    Output packets: 0 348108 pps
  Security: Zone: untrust
  Allowed host-inbound traffic : any-service bfd bgp dvmrp igmp ldp msdp nhrp ospf ospf3 pgm pim rip ripng router-discovery rsvp sap vrrp
  Flow Statistics :
  Flow Input statistics :
    Self packets : 0
    ICMP packets : 0
    VPN packets : 0
    Multicast packets : 0
    Bytes permitted by policy : 525984295844
    Connections established : 7
Flow Output statistics:
  Multicast packets :                0
  Bytes permitted by policy :        576003290222
Flow error statistics (Packets dropped due to):
  Address spoofing:                  0
  Authentication failed:             0
  Incoming NAT errors:               0
  Invalid zone received packet:      0
  Multiple user authentications:     0
  Multiple incoming NAT:             0
  No parent for a gate:              0
  No one interested in self packets: 0
  No minor session:                  0
  No more sessions:                  0
  No NAT gate:                       0
  No route present:                  2000280
  No SA for incoming SPI:            0
  No tunnel found:                   0
  No session for a gate:             0
  No zone or NULL zone binding      0
  Policy denied:                     0
  Security association not active:   0
  TCP sequence number out of window: 0
  Syn-attack protection:             0
  User authentication errors:        0
  Protocol inet, MTU: 9192
    Max nh cache: 0, New hold nh limit: 0, Curr nh cnt: 0, Curr new hold cnt: 0, NH drop cnt: 0
    Generation: 155, Route table: 0
    Flags: Sendbcast-pkt-to-re

show interfaces extensive (Gigabit Ethernet)

user@host> show interfaces ge-0/0/1.0 extensive

Physical interface: ge-0/0/1, Enabled, Physical link is Down
  Interface index: 135, SNMP ifIndex: 510, Generation: 138
  Link-level type: Ethernet, MTU: 1514, Link-mode: Full-duplex, Speed: 1000mbps,
  BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled,
  Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
  Remote fault: Online
  Device flags   : Present Running Down
  Interface flags: Hardware-Down SNMP-Traps Internal: 0x0
Link flags : None
Cos queues : 8 supported, 8 maximum usable queues
Hold-times : Up 0 ms, Down 0 ms
Current address: 00:00:5e:00:53:01, Hardware address: 00:00:5e:00:53:01
Last flapped : 2015-05-12 08:36:59 UTC (1w1d 22:57 ago)
Statistics last cleared: Never
Traffic statistics:
  Input bytes : 0 0 bps
  Output bytes : 0 0 bps
  Input packets: 0 0 pps
  Output packets: 0 0 pps
Input errors:
  Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0,
  L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0,
  FIFO errors: 0, Resource errors: 0
Output errors:
  Carrier transitions: 0, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0,
  FIFO errors: 0, HS link CRC errors: 0, MTU errors: 0, Resource errors: 0
Egress queues: 8 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
  0 best-effort 0 0 0
  1 expedited-fo 0 0 0
  2 assured-forw 0 0 0
  3 network-cont 0 0 0
Queue number: Mapped forwarding classes
  0 best-effort
  1 expedited-forwarding
  2 assured-forwarding
  3 network-control
Active alarms : LINK
Active defects : LINK
MAC statistics: Receive Transmit
  Total octets 0 0
  Total packets 0 0
  Unicast packets 0 0
  Broadcast packets 0 0
  Multicast packets 0 0
  CRC/Align errors 0 0
  FIFO errors 0 0
  MAC control frames 0 0
  MAC pause frames 0 0
  Oversized frames 0 0
  Jabber frames 0 0
  Fragment frames 0 0
VLAN tagged frames  0
Code violations  0

Filter statistics:
  Input packet count  0
  Input packet rejects  0
  Input DA rejects  0
  Input SA rejects  0
  Output packet count  0
  Output packet pad count  0
  Output packet error count  0
  CAM destination filters: 2, CAM source filters: 0

Autonegotiation information:
  Negotiation status: Incomplete

Packet Forwarding Engine configuration:
  Destination slot: 0

CoS information:
  Direction : Output
  CoS transmit queue   Bandwidth   Buffer Priority
                      %       bps     %       usec
  0 best-effort      95       950000000 95       0     low
  none
  3 network-control  5        50000000   5       0     low
  none

Interface transmit statistics: Disabled

Logical interface ge-0/0/1.0 (Index 71) (SNMP ifIndex 514) (Generation 136)
  Flags: Device-Down SNMP-Traps 0x0 Encapsulation: ENET2

Traffic statistics:
  Input bytes :  0
  Output bytes :  0
  Input packets:  0
  Output packets:  0

Local statistics:
  Input bytes :  0
  Output bytes :  0
  Input packets:  0
  Output packets:  0

Transit statistics:
  Input bytes :  0 0 bps
  Output bytes :  0 0 bps
  Input packets:  0 0 pps
  Output packets:  0 0 pps

Security: Zone: public
Flow Statistics:

Flow Input statistics:
- Self packets: 0
- ICMP packets: 0
- VPN packets: 0
- Multicast packets: 0
- Bytes permitted by policy: 0
- Connections established: 0

Flow Output statistics:
- Multicast packets: 0
- Bytes permitted by policy: 0

Flow error statistics (Packets dropped due to):
- Address spoofing: 0
- Authentication failed: 0
- Incoming NAT errors: 0
- Invalid zone received packet: 0
- Multiple user authentications: 0
- Multiple incoming NAT: 0
- No parent for a gate: 0
- No one interested in self packets: 0
- No minor session: 0
- No more sessions: 0
- No NAT gate: 0
- No route present: 0
- No SA for incoming SPI: 0
- No tunnel found: 0
- No session for a gate: 0
- No zone or NULL zone binding: 0
- Policy denied: 0
- Security association not active: 0
- TCP sequence number out of window: 0
- Syn-attack protection: 0
- User authentication errors: 0

Protocol inet, MTU: 1500, Generation: 150, Route table: 0
- Flags: Sendbcast-pkt-to-re
- Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
  - Destination: 1.1.1/24, Local: 1.1.1.1, Broadcast: 1.1.1.255,
  - Generation: 150

show interfaces terse

user@host> show interfaces terse
<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.209.4.61/18</td>
<td></td>
</tr>
<tr>
<td>gr-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>st0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>st0.1</td>
<td>up</td>
<td>ready</td>
<td>inet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ls-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lt-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mt-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pd-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pe-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e3-1/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t3-2/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e1-3/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>se-4/0/0</td>
<td>up</td>
<td>up</td>
<td>down</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t1-5/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>br-6/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dc-6/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dc-6/0/0.32767</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bc-6/0/0:1</td>
<td>down</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bc-6/0/0:1.0</td>
<td>up</td>
<td>down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d10</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d10.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dsc</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gre</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipip</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lo0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lo0.16385</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.0.0.1</td>
<td>--&gt; 0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0.0.16</td>
<td>--&gt; 0/0</td>
</tr>
<tr>
<td>lsi</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mtun</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pimd</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pime</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pp0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**show interfaces terse (vSRX and vSRX 3.0)**

`user@host> show interfaces terse`

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>1.1.65.1/24</td>
<td></td>
</tr>
<tr>
<td>ge-0/0/1</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show interfaces controller (Channelized E1 IQ with Logical E1)

user@host> show interfaces controller ce1-1/2/6

<table>
<thead>
<tr>
<th>Controller</th>
<th>Admin Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>ce1-1/2/6</td>
<td>up</td>
</tr>
<tr>
<td>el-1/2/6</td>
<td>up</td>
</tr>
</tbody>
</table>

show interfaces controller (Channelized E1 IQ with Logical DS0)

user@host> show interfaces controller ce1-1/2/3

<table>
<thead>
<tr>
<th>Controller</th>
<th>Admin Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>ce1-1/2/3</td>
<td>up</td>
</tr>
<tr>
<td>ds-1/2/3:1</td>
<td>up</td>
</tr>
<tr>
<td>ds-1/2/3:2</td>
<td>up</td>
</tr>
</tbody>
</table>

show interfaces descriptions

user@host> show interfaces descriptions

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Link</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>so-1/0/0</td>
<td>up</td>
<td>M20-3#1</td>
</tr>
<tr>
<td>so-2/0/0</td>
<td>up</td>
<td>GSR-12#1</td>
</tr>
<tr>
<td>ge-3/0/0</td>
<td>up</td>
<td>SMB-OSPF_Area300</td>
</tr>
<tr>
<td>so-3/3/0</td>
<td>up</td>
<td>GSR-13#1</td>
</tr>
<tr>
<td>so-3/3/1</td>
<td>up</td>
<td>GSR-13#2</td>
</tr>
<tr>
<td>ge-4/0/0</td>
<td>up</td>
<td>T320-7#1</td>
</tr>
<tr>
<td>ge-5/0/0</td>
<td>up</td>
<td>T320-7#2</td>
</tr>
<tr>
<td>so-7/1/0</td>
<td>up</td>
<td>M160-6#1</td>
</tr>
<tr>
<td>ge-8/0/0</td>
<td>up</td>
<td>T320-7#3</td>
</tr>
<tr>
<td>ge-9/0/0</td>
<td>up</td>
<td>T320-7#4</td>
</tr>
<tr>
<td>so-10/0/0</td>
<td>up</td>
<td>M160-6#2</td>
</tr>
<tr>
<td>so-13/0/0</td>
<td>up</td>
<td>M20-3#2</td>
</tr>
<tr>
<td>so-14/0/0</td>
<td>up</td>
<td>GSR-12#2</td>
</tr>
</tbody>
</table>
show interfaces destination-class all

user@host> show interfaces destination-class all

Logical interface so-4/0/0.0

<table>
<thead>
<tr>
<th>Destination class</th>
<th>Packets (packet-per-second)</th>
<th>Bytes (bits-per-second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gold</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>silver</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Logical interface so-0/1/3.0

<table>
<thead>
<tr>
<th>Destination class</th>
<th>Packets (packet-per-second)</th>
<th>Bytes (bits-per-second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gold</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>silver</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

show interfaces diagnostics optics

user@host> show interfaces diagnostics optics ge-2/0/0

Physical interface: ge-2/0/0

- Laser bias current: 7.408 mA
- Laser output power: 0.3500 mW / -4.56 dBm
- Module temperature: 23 degrees C / 73 degrees F
- Module voltage: 3.3450 V
- Receiver signal average optical power: 0.0002 mW / -36.99 dBm
- Laser bias current high alarm: Off
- Laser bias current low alarm: Off
- Laser bias current high warning: Off
- Laser bias current low warning: Off
- Laser output power high alarm: Off
- Laser output power low alarm: Off
- Laser output power high warning: Off
- Laser output power low warning: Off
- Module temperature high alarm: Off
- Module temperature low alarm: Off
- Module temperature high warning: Off
show interfaces far-end-interval coc12-5/2/0
user@host> show interfaces far-end-interval coc12-5/2/0

Physical interface: coc12-5/2/0, SNMP ifIndex: 121
05:30-current:
    ES-L: 1, SES-L: 1, UAS-L: 0
05:15-05:30:
    ES-L: 0, SES-L: 0, UAS-L: 0
05:00-05:15:
    ES-L: 0, SES-L: 0, UAS-L: 0
04:45-05:00:
    ES-L: 0, SES-L: 0, UAS-L: 0
show interfaces far-end-interval coc1-5/2/1:1

user@host> run show interfaces far-end-interval coc1-5/2/1:1

Physical interface: coc1-5/2/1:1, SNMP ifIndex: 342

05:30-current:
  ES-L: 1, SES-L: 1, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0

05:15-05:30:
  ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0

05:00-05:15:
  ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0

04:45-05:00:
  ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0

04:30-04:45:
  ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0

04:15-04:30:
  ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0

04:00-04:15:
  ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0, SES-P: 0, UAS-P: 0

show interfaces filters

user@host> show interfaces filters

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Link</th>
<th>Proto</th>
<th>Input Filter</th>
<th>Output Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>iso</td>
<td></td>
</tr>
<tr>
<td>ge-5/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-5/0/0.0</td>
<td>up</td>
<td>up</td>
<td>any</td>
<td>f-any</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>inet</td>
<td>f-inet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>multiservice</td>
<td></td>
</tr>
<tr>
<td>gr-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mt-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pd-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pe-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show interfaces flow-statistics (Gigabit Ethernet)

user@host> show interfaces flow-statistics ge-0/0/1.0

Logical interface ge-0/0/1.0 (Index 70) (SNMP ifIndex 49)
  Flags: SNMP-Traps Encapsulation: ENET2
  Input packets: 5161
  Output packets: 83
  Security: Zone: zone2
  Allowed host-inbound traffic: bootp bfd bgp dns dvmrp ldp msdp nhrp ospf pgm
  pim rip router-discovery rsvp sap vrrp dhcp finger ftp tftp ident-reset http
  https ike
  netconf ping rlogin rpm rsh snmp snmp-trap ssh telnet traceroute xnm-clear-text
  xnm-ssl
  lsping
  Flow Statistics:
  Flow Input statistics:
    Self packets: 0
    ICMP packets: 0
    VPN packets: 2564
    Bytes permitted by policy: 3478
    Connections established: 1
  Flow Output statistics:
    Multicast packets: 0
    Bytes permitted by policy: 16994
  Flow error statistics (Packets dropped due to):
    Address spoofing: 0
    Authentication failed: 0
    Incoming NAT errors: 0
    Invalid zone received packet: 0
    Multiple user authentications: 0
    Multiple incoming NAT: 0
    No parent for a gate: 0
    No one interested in self packets: 0
No minor session: 0
No more sessions: 0
No NAT gate: 0
No route present: 0
No SA for incoming SPI: 0
No tunnel found: 0
No session for a gate: 0
No zone or NULL zone binding 0
Policy denied: 0
Security association not active: 0
TCP sequence number out of window: 0
Syn-attack protection: 0
User authentication errors: 0
Protocol inet, MTU: 1500
Flags: None
Addresses, Flags: Is-Preferred Is-Primary
  Destination: 203.0.113.1/24, Local: 203.0.113.2, Broadcast: 2.2.2.255

show interfaces interval (Channelized OC12)
user@host> show interfaces interval t3-0/3/0:0

Physical interface: t3-0/3/0:0, SNMP ifIndex: 23
  17:43-current:
    LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0, SEFS: 0, UAS: 0
  17:28-17:43:
    LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0, SEFS: 0, UAS: 0
  17:13-17:28:
    LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0, SEFS: 0, UAS: 0
  16:58-17:13:
    LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0, SEFS: 0, UAS: 0
  16:43-16:58:
    LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0, SEFS: 0, UAS: 0
  ...
Interval Total:
show interfaces interval (E3)

user@host> show interfaces interval e3-0/3/0

Physical interface: e3-0/3/0, SNMP ifIndex: 23

17:43-current:
   LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
   SEFS: 0, UAS: 0

17:28-17:43:
   LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
   SEFS: 0, UAS: 0

17:13-17:28:
   LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
   SEFS: 0, UAS: 0

16:58-17:13:
   LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
   SEFS: 0, UAS: 0

16:43-16:58:
   LCV: 0, PCV: 0, CCV: 0, LES: 0, PES: 0, PSES: 0, CES: 0, CSES: 0,
   SEFS: 0, UAS: 0

....

Interval Total:
   LCV: 230, PCV: 1145859, CCV: 455470, LES: 0, PES: 230, PSES: 230,

show interfaces interval (SONET/SDH) (SRX devices)

user@host> show interfaces interval so-0/1/0

Physical interface: so-0/1/0, SNMP ifIndex: 19

20:02-current:
   ES-S: 0, SES-S: 0, SEFS-S: 0, ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0,
   SES-P: 0, UAS-P: 0

19:47-20:02:
   ES-S: 267, SES-S: 267, SEFS-S: 267, ES-L: 267, SES-L: 267, UAS-L: 267,
   ES-P: 267, SES-P: 267, UAS-P: 267

19:32-19:47:
   ES-S: 56, SES-S: 56, SEFS-S: 56, ES-L: 56, SES-L: 56, UAS-L: 46, ES-P: 56,
   SES-P: 56, UAS-P: 46

19:17-19:32:
   ES-S: 0, SES-S: 0, SEFS-S: 0, ES-L: 0, SES-L: 0, UAS-L: 0, ES-P: 0,
   SES-P: 0, UAS-P: 0

19:02-19:17:
   ....
show interfaces load-balancing (SRX devices)

user@host> show interfaces load-balancing

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Last change</th>
<th>Member count</th>
</tr>
</thead>
<tbody>
<tr>
<td>ams0</td>
<td>Up</td>
<td>1d 00:50</td>
<td>2</td>
</tr>
<tr>
<td>ams1</td>
<td>Up</td>
<td>00:00:59</td>
<td>2</td>
</tr>
</tbody>
</table>

show interfaces load-balancing detail (SRX devices)

user@host> show interfaces load-balancing detail

Load-balancing interfaces detail
Interface : ams0
State      : Up
Last change: 1d 00:51
Member count: 2
Members :
<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>mams-2/0/0</td>
<td>10</td>
<td>Active</td>
</tr>
<tr>
<td>mams-2/1/0</td>
<td>10</td>
<td>Active</td>
</tr>
</tbody>
</table>

show interfaces mac-database (All MAC Addresses on a Port SRX devices)

user@host> show interfaces mac-database xe-0/3/3

Physical interface: xe-0/3/3, Enabled, Physical link is Up
  Interface index: 372, SNMP ifIndex: 788
  Link-level type: Ethernet, MTU: 1514, LAN-PHY mode, Speed: 10Gbps, Loopback: None, Source filtering: Disabled, Flow control: Enabled
  Device flags : Present Running
  Interface flags: SNMP-Traps Internal: 0x4000
  Link flags : None

Logical interface xe-0/3/3.0 (Index 364) (SNMP ifIndex 829)
  Flags: SNMP-Traps 0x4004000 Encapsulation: ENET2
  MAC address | Input frames | Input bytes | Output frames | Output bytes
  -----------|--------------|-------------|---------------|----------------|
  00:00:00:00:00:00 | 1            | 56          | 0             | 0              |
Number of MAC addresses: 21

```
show interfaces mac-database (All MAC Addresses on a Service SRX devices)
user@host> show interfaces mac-database xe-0/3/3

Logical interface xe-0/3/3.0 (Index 364) (SNMP ifIndex 829)
Flags: SNMP-Traps 0x4004000 Encapsulation: ENET2

<table>
<thead>
<tr>
<th>MAC address</th>
<th>Input frames</th>
<th>Input bytes</th>
<th>Output frames</th>
<th>Output bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:00:00:00:00</td>
<td>1</td>
<td>56</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:02</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:03</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:04</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:05</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:06</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:07</td>
<td>7023810</td>
<td>323095260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:08</td>
<td>7023809</td>
<td>323095214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:09</td>
<td>7023809</td>
<td>323095214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:0a</td>
<td>7023809</td>
<td>323095214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c0:01:01:0b</td>
<td>7023809</td>
<td>323095214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00:00:c8:01:01:02</td>
<td>30424784</td>
<td>1399540064</td>
<td>37448598</td>
<td>1722635508</td>
</tr>
<tr>
<td>00:00:c8:01:01:03</td>
<td>30424784</td>
<td>1399540064</td>
<td>37448598</td>
<td>1722635508</td>
</tr>
<tr>
<td>00:00:c8:01:01:04</td>
<td>30424716</td>
<td>1399536936</td>
<td>37448523</td>
<td>1722632058</td>
</tr>
<tr>
<td>00:00:c8:01:01:05</td>
<td>30424789</td>
<td>1399540294</td>
<td>37448597</td>
<td>1722635462</td>
</tr>
<tr>
<td>00:00:c8:01:01:06</td>
<td>30424788</td>
<td>1399540248</td>
<td>37448597</td>
<td>1722635462</td>
</tr>
<tr>
<td>00:00:c8:01:01:07</td>
<td>30424783</td>
<td>1399540018</td>
<td>37448597</td>
<td>1722635462</td>
</tr>
<tr>
<td>00:00:c8:01:01:08</td>
<td>30424783</td>
<td>1399540018</td>
<td>37448596</td>
<td>1722635416</td>
</tr>
<tr>
<td>00:00:c8:01:01:09</td>
<td>8836796</td>
<td>406492616</td>
<td>8836795</td>
<td>406492570</td>
</tr>
<tr>
<td>00:00:c8:01:01:0a</td>
<td>30424712</td>
<td>1399536752</td>
<td>37448521</td>
<td>1722631966</td>
</tr>
<tr>
<td>00:00:c8:01:01:0b</td>
<td>30424715</td>
<td>1399536890</td>
<td>37448523</td>
<td>1722632058</td>
</tr>
</tbody>
</table>
```
**show interfaces mac-database mac-address**

```bash
user@host> show interfaces mac-database xe-0/3/3 mac-address (SRX devices) 00:00:c8:01:01:09
```

Physical interface: xe-0/3/3, Enabled, Physical link is Up
- Interface index: 372, SNMP ifIndex: 788
- Device flags : Present Running
- Interface flags: SNMP-Traps Internal: 0x4000
- Link flags : None

Logical interface xe-0/3/3.0 (Index 364) (SNMP ifIndex 829)
- Flags: SNMP-Traps 0x4004000 Encapsulation: ENET2
- MAC address: 00:00:c8:01:01:09, Type: Configured,
- Input bytes : 202324652
- Output bytes : 202324560
- Input frames : 4398362
- Output frames : 4398360
- Policer statistics:
  - Policer type Discarded frames Discarded bytes
    - Output aggregate 3992386 183649756

**show interfaces mc-ae (SRX devices)**

```bash
user@host> show interfaces mc-ae ae0 unit 512
```

Member Links : ae0
Local Status : active
Peer Status : active
Logical Interface : ae0.512
Core Facing Interface : Label Ethernet Interface
ICL-PL : Label Ethernet Interface

**show interfaces media (SONET/SDH)**

The following example displays the output fields unique to the `show interfaces media` command for a SONET interface (with no level of output specified):
user@host> show interfaces media so-4/1/2

Physical interface: so-4/1/2, Enabled, Physical link is Up
   Interface index: 168, SNMP ifIndex: 495
   Link-level type: PPP, MTU: 4474, Clocking: Internal, SONET mode, Speed: OC48,
   Loopback: None, FCS: 16, Payload scrambler: Enabled
   Device flags   : Present Running
   Interface flags: Point-To-Point SNMP-Traps 16384
   Link flags     : Keepalives
   Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
   Keepalive: Input: 1783 (00:00:00 ago), Output: 1786 (00:00:08 ago)
   LCP state: Opened
   NCP state: inet: Not-configured, inet6: Not-configured, iso: Not-configured,
   mpls: Not-configured
   CHAP state: Not-configured
   CoS queues     : 8 supported
   Input rate     : 0 bps (0 pps)
   Output rate    : 0 bps (0 pps)
   SONET alarms   : None
   SONET defects  : None
   SONET errors:
   Received path trace: routerb so-1/1/2
   Transmitted path trace: routera so-4/1/2

show interfaces policers (SRX devices)

user@host> show interfaces policers
show interfaces policers interface-name (SRX devices)

user@host> show interfaces policers so-2/1/0

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Input Policer</th>
<th>Output Policer</th>
</tr>
</thead>
<tbody>
<tr>
<td>so-2/1/0</td>
<td>up</td>
<td>down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>so-2/1/0.0</td>
<td>up</td>
<td>down</td>
<td>inet</td>
<td>so-2/1/0.0-in-policer</td>
<td>so-2/1/0.0-out-policer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>iso</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>inet6</td>
<td></td>
</tr>
</tbody>
</table>

show interfaces queue (SRX devices)

The following truncated example shows the CoS queue sizes for queues 0, 1, and 3. Queue 1 has a queue buffer size (guaranteed allocated memory) of 9192 bytes.

user@host> show interfaces queue

Physical interface: ge-0/0/0, Enabled, Physical link is Up
  Interface index: 134, SNMP ifIndex: 509
Forwarding classes: 8 supported, 8 in use
Egress queues: 8 supported, 8 in use
Queue: 0, Forwarding classes: class0

Queued:
  Packets : 0 0 pps
  Bytes : 0 0 bps

Transmitted:
  Packets : 0 0 pps
  Bytes : 0 0 bps
  Tail-dropped packets : 0 0 pps
  RL-dropped packets : 0 0 pps
  RL-dropped bytes : 0 0 bps
  RED-dropped packets : 0 0 pps
  Low : 0 0 pps
  Medium-low : 0 0 pps
  Medium-high : 0 0 pps
  High : 0 0 pps
  RED-dropped bytes : 0 0 bps
  Low : 0 0 bps
  Medium-low : 0 0 bps
show interfaces redundancy (SRX devices)

user@host> show interfaces redundancy

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Last change</th>
<th>Primary</th>
<th>Secondary</th>
<th>Current status</th>
</tr>
</thead>
<tbody>
<tr>
<td>rsp0</td>
<td>Not present</td>
<td></td>
<td>sp-1/0/0</td>
<td>sp-0/2/0</td>
<td>both down</td>
</tr>
<tr>
<td>rsp1</td>
<td>On secondary</td>
<td>1d 23:56</td>
<td>sp-1/2/0</td>
<td>sp-0/3/0</td>
<td>primary down</td>
</tr>
<tr>
<td>rsp2</td>
<td>On primary</td>
<td>10:10:27</td>
<td>sp-1/3/0</td>
<td>sp-0/2/0</td>
<td>secondary down</td>
</tr>
<tr>
<td>rlslq0</td>
<td>On primary</td>
<td>00:06:24</td>
<td>lsq-0/3/0</td>
<td>lsq-1/0/0</td>
<td>both up</td>
</tr>
</tbody>
</table>

show interfaces redundancy (Aggregated Ethernet SRX devices)

user@host> show interfaces redundancy
show interfaces redundancy detail (SRX devices)

user@host> show interfaces redundancy detail

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Last change</th>
<th>Primary</th>
<th>Secondary</th>
<th>Current status</th>
</tr>
</thead>
<tbody>
<tr>
<td>rlsq0</td>
<td>On secondary</td>
<td>00:56:12</td>
<td>lsq-4/0/0</td>
<td>lsq-3/0/0</td>
<td>both up</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Last change</th>
<th>Primary</th>
<th>Secondary</th>
<th>Current status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ae1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ae2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ae3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ae4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show interfaces routing brief (SRX devices)

user@host> show interfaces routing brief

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>so-5/0/3.0</td>
<td>Down</td>
<td>ISO enabled</td>
</tr>
</tbody>
</table>
| so-5/0/2.0| Up    | MPLS enabled
|           |       | ISO enabled
|           |       | INET 192.168.2.120      |
|           |       | INET enabled            |
| so-5/0/1.0| Up    | MPLS enabled
|           |       | ISO enabled
|           |       | INET 192.168.2.130      |
|           |       | INET enabled            |
| at-1/0/0.3| Up    | CCC enabled             |
at-1/0/0.2       Up    CCC   enabled
at-1/0/0.0       Up    ISO   enabled
INET 192.168.90.10
INET enabled
lo0.0            Up    ISO   47.0005.80ff.f800.0000.0108.0001.1921.6800.5061.00
ISO   enabled
INET 127.0.0.1
fxp1.0           Up
fxp0.0           Up    INET 192.168.6.90

show interfaces routing detail (SRX devices)
user@host> show interfaces routing detail

so-5/0/3.0
  Index: 15, Refcount: 2, State: Up <Broadcast PointToPoint Multicast> Change:<>
  Metric: 0, Up/down transitions: 0, Full-duplex
  Link layer: HDLC serial line Encapsulation: PPP Bandwidth: 155Mbps
  ISO address (null)
  State: <Broadcast PointToPoint Multicast> Change: <>
  Preference: 0 (120 down), Metric: 0, MTU: 4470 bytes
so-5/0/2.0
  Index: 14, Refcount: 7, State: <Up Broadcast PointToPoint Multicast> Change:<>
  Metric: 0, Up/down transitions: 0, Full-duplex
  Link layer: HDLC serial line Encapsulation: PPP Bandwidth: 155Mbps
  MPLS address (null)
  State: <Up Broadcast PointToPoint Multicast> Change: <>
  Preference: 0 (120 down), Metric: 0, MTU: 4458 bytes
  ISO address (null)
  State: <Up Broadcast PointToPoint Multicast> Change: <>
  Preference: 0 (120 down), Metric: 0, MTU: 4470 bytes
INET address 192.168.2.120
  State: <Up Broadcast PointToPoint Multicast Localup> Change: <>
  Preference: 0 (120 down), Metric: 0, MTU: 4470 bytes
  Local address: 192.168.2.120
  Destination: 192.168.2.110/32
INET address (null)
  State: <Up Broadcast PointToPoint Multicast> Change: <>
  Preference: 0 (120 down), Metric: 0, MTU: 4470 bytes
...

show interfaces routing-instance all (SRX devices)
user@host> show interfaces terse routing-instance all
show interfaces snmp-index (SRX devices)

user@host>  show interfaces snmp-index 33

Physical interface: so-2/1/1, Enabled, Physical link is Down
   Interface index: 149, SNMP ifIndex: 33
   Link-level type: PPP, MTU: 4474, Clocking: Internal, SONET mode, Speed: OC48,
   Loopback: None, FCS: 16, Payload scrambler: Enabled
   Device flags   : Present Running Down
   Interface flags: Hardware-Down Point-To-Point SNMP-Traps 16384
   Link flags     : Keepalives
   CoS queues     : 8 supported
   Input rate     : 0 bps (0 pps)
   Output rate    : 0 bps (0 pps)
   SONET alarms   : LOL, PLL, LOS
   SONET defects  : LOL, PLL, LOF, LOS, SEF, AIS-L, AIS-P

show interfaces source-class all (SRX devices)

user@host>  show interfaces source-class all

Logical interface so-0/1/0.0

<table>
<thead>
<tr>
<th>Source class</th>
<th>Packets (packet-per-second)</th>
<th>Bytes (bits-per-second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gold</td>
<td>1928095</td>
<td>161959980</td>
</tr>
<tr>
<td></td>
<td>(889)</td>
<td>(597762)</td>
</tr>
<tr>
<td>bronze</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>silver</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Logical interface so-0/1/3.0

<table>
<thead>
<tr>
<th>Source class</th>
<th>Packets (packet-per-second)</th>
<th>Bytes (bits-per-second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gold</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>bronze</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
</tbody>
</table>
show interfaces statistics (Fast Ethernet SRX devices)

user@host> show interfaces fe-1/3/1 statistics

Physical interface: fe-1/3/1, Enabled, Physical link is Up
  Interface index: 144, SNMP ifIndex: 1042
  Description: ford fe-1/3/1
  Link-level type: Ethernet, MTU: 1514, Speed: 100mbps, Loopback: Disabled,
  Source filtering: Disabled, Flow control: Enabled
  Device flags : Present Running
  Interface flags: SNMP-Traps Internal: 0x4000
  CoS queues : 4 supported, 4 maximum usable queues
  Current address: 00:90:69:93:04:dc, Hardware address: 00:90:69:93:04:dc
  Last flapped : 2006-04-18 03:08:59 PDT (00:01:24 ago)
  Statistics last cleared: Never
  Input rate : 0 bps (0 pps)
  Output rate : 0 bps (0 pps)
  Input errors: 0, Output errors: 0
  Active alarms : None
  Active defects : None

Logical interface fe-1/3/1.0 (Index 69) (SNMP ifIndex 50)
  Flags: SNMP-Traps Encapsulation: ENET2
  Protocol inet, MTU: 1500
    Flags: Is-Primary, DCU, SCU-in

<table>
<thead>
<tr>
<th>Destination class</th>
<th>Packets (packet-per-second)</th>
<th>Bytes (bits-per-second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>silver1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>silver2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>silver3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Addresses, Flags: Is-Default Is-Preferred Is-Primary
  Destination: 10.27.245/24, Local: 10.27.245.2,
  Broadcast: 10.27.245.255
  Protocol iso, MTU: 1497
    Flags: Is-Primary
show interfaces switch-port (SRX devices)

user@host# show interfaces ge-slot/0/0 switch-port port-number

Port 0, Physical link is Up
   Speed: 100mbps, Auto-negotiation: Enabled
Statistics:

<table>
<thead>
<tr>
<th></th>
<th>Receive</th>
<th>Transmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total bytes</td>
<td>28437086</td>
<td>21792250</td>
</tr>
<tr>
<td>Total packets</td>
<td>409145</td>
<td>88008</td>
</tr>
<tr>
<td>Unicast packets</td>
<td>9987</td>
<td>83817</td>
</tr>
<tr>
<td>Multicast packets</td>
<td>145002</td>
<td>0</td>
</tr>
<tr>
<td>Broadcast packets</td>
<td>254156</td>
<td>4191</td>
</tr>
<tr>
<td>Multiple collisions</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>FIFO/CRC/Align errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC pause frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oversized frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Runt frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jabber frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fragment frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Discarded frames</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Autonegotiation information:
   Negotiation status: Complete
   Link partner:
      Link mode: Full-duplex, Flow control: None, Remote fault: OK, Link partner Speed: 100 Mbps
      Local resolution:
         Flow control: None, Remote fault: Link OK

show interfaces transport pm (SRX devices)

user@host> show interfaces transport pm all current et-0/1/0

Physical interface: et-0/1/0, SNMP ifIndex 515
14:45-current Elapse time:900 Seconds
Near End Suspect Flag:False Reason:None
PM            COUNT    THRESHOLD TCA-ENABLED TCA-RAISED
OTU-BBE           0       800       No        No
OTU-ES            0       135       No        No
OTU-SES           0       90        No        No
OTU-UAS           427      90        No        No
Far End Suspect Flag:True Reason:Unknown
PM            COUNT    THRESHOLD TCA-ENABLED TCA-RAISED
OTU-BBE           0       800       No        No
<table>
<thead>
<tr>
<th>PM</th>
<th>COUNT</th>
<th>THRESHOLD</th>
<th>TCA-ENABLED</th>
<th>TCA-RAISED</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTU-ES</td>
<td>0</td>
<td>135</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>OTU-SES</td>
<td>0</td>
<td>90</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>OTU-UAS</td>
<td>0</td>
<td>90</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Near End</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suspect Flag:False</td>
<td>Reason:None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>COUNT</td>
<td>THRESHOLD</td>
<td>TCA-ENABLED</td>
<td>TCA-RAISED</td>
</tr>
<tr>
<td>ODU-BBE</td>
<td>0</td>
<td>800</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ODU-ES</td>
<td>0</td>
<td>135</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ODU-SES</td>
<td>0</td>
<td>90</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ODU-UAS</td>
<td>427</td>
<td>90</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Far End</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suspect Flag:True</td>
<td>Reason:Unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>COUNT</td>
<td>THRESHOLD</td>
<td>TCA-ENABLED</td>
<td>TCA-RAISED</td>
</tr>
<tr>
<td>ODU-BBE</td>
<td>0</td>
<td>800</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ODU-ES</td>
<td>0</td>
<td>135</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ODU-SES</td>
<td>0</td>
<td>90</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ODU-UAS</td>
<td>0</td>
<td>90</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>FEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suspect Flag:False</td>
<td>Reason:None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>COUNT</td>
<td>THRESHOLD</td>
<td>TCA-ENABLED</td>
<td>TCA-RAISED</td>
</tr>
<tr>
<td>FEC-CorrectedErr</td>
<td>2008544300</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>FEC-UncorrectedWords</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suspect Flag:False</td>
<td>Reason:None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>MIN</td>
<td>MAX</td>
<td>AVG</td>
<td>THRESHOLD</td>
</tr>
<tr>
<td>BER</td>
<td>3.6e-5</td>
<td>5.8e-5</td>
<td>3.6e-5</td>
<td>10.0e-3</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical interface: et-0/1/0, SNMP ifIndex 515</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14:45-current

Suspect Flag:True | Reason:Object Disabled

<table>
<thead>
<tr>
<th>PM</th>
<th>CURRENT</th>
<th>MIN</th>
<th>MAX</th>
<th>AVG</th>
<th>THRESHOLD</th>
<th>TCA-ENABLED</th>
<th>TCA-RAISED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane chromatic dispersion</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane differential group delay</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q Value</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNR</td>
<td>28</td>
<td>28</td>
<td>29</td>
<td>28</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tx output power(0.01dBm)</td>
<td>-5000</td>
<td>-5000</td>
<td>-5000</td>
<td>-5000</td>
<td>-300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-100</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show security zones (SRX devices)

user@host> show security zones

Functional zone: management
  Description: This is the management zone.
  Policy configurable: No
  Interfaces bound: 1
  Interfaces:
    ge-0/0/0.0

Security zone: Host
  Description: This is the host zone.
  Send reset for non-SYN session TCP packets: Off
  Policy configurable: Yes
  Interfaces bound: 1
  Interfaces:
    fxp0.0

Security zone: abc
  Description: This is the abc zone.
  Send reset for non-SYN session TCP packets: Off
  Policy configurable: Yes
  Interfaces bound: 1
  Interfaces:
    ge-0/0/1.0

Security zone: def
  Description: This is the def zone.
  Send reset for non-SYN session TCP packets: Off
  Policy configurable: Yes
  Interfaces bound: 1
  Interfaces:
    ge-0/0/2.0
**show interfaces diagnostics optics**

**Syntax**

```
show interfaces diagnostics optics interface-name
```

**Release Information**
Command introduced in Junos OS Release 10.1.

**Description**
Display diagnostics data and alarms for Gigabit Ethernet optical transceivers (SFP) installed in SRX Series Services Gateways. The information provided by this command is known as digital optical monitoring (DOM) information.

Thresholds that trigger a high alarm, low alarm, high warning, or low warning are set by the transponder vendors. Generally, a high alarm or low alarm indicates that the optics module is not operating properly. This information can be used to diagnose why a transceiver is not working.

**NOTE:** In a chassis cluster, the `show interfaces diagnostics optics` command works only on the node that is primary in redundancy group 0 (RG0).

**Options**

`interface-name`—Name of the interface associated with the port in which the transceiver is installed: `ge-fpc/pic/port`.

**Required Privilege Level**

`view`

**RELATED DOCUMENTATION**

- Understanding Interfaces | 31

**List of Sample Output**

`show interfaces diagnostics optics` on page 1060

**Output Fields**

Table 60 on page 1057 lists the output fields for the `show interfaces diagnostics optics` command. Output fields are listed in the general order in which they appear.
### Table 60: show interfaces diagnostics optics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical interface</td>
<td>Displays the name of the physical interface.</td>
</tr>
<tr>
<td>Laser bias current</td>
<td>Displays the magnitude of the laser bias power setting current, in milliamperes. The laser bias provides direct modulation of laser diodes and modulates currents.</td>
</tr>
<tr>
<td>Laser output power</td>
<td>Displays the laser output power, in milliwatts (mW) and decibels referred to 1.0 mW (dBm).</td>
</tr>
<tr>
<td>Module temperature</td>
<td>Displays the temperature, in Celsius and Fahrenheit.</td>
</tr>
<tr>
<td>Module voltage</td>
<td>Displays the voltage, in Volts.</td>
</tr>
<tr>
<td>Receiver signal average optical power</td>
<td>Displays the receiver signal average optical power, in milliwatts (mW) and decibels referred to 1.0 mW (dBm).</td>
</tr>
<tr>
<td>Laser bias current high alarm</td>
<td>Displays whether the laser bias power setting high alarm is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Laser bias current low alarm</td>
<td>Displays whether the laser bias power setting low alarm is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Laser bias current high warning</td>
<td>Displays whether the laser bias power setting high warning is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Laser bias current low warning</td>
<td>Displays whether the laser bias power setting low warning is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Laser output power high alarm</td>
<td>Displays whether the laser output power high alarm is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Laser output power low alarm</td>
<td>Displays whether the laser output power low alarm is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Laser output power high warning</td>
<td>Displays whether the laser output power high warning is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Laser output power low warning</td>
<td>Displays whether the laser output power low warning is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Module temperature high alarm</td>
<td>Displays whether the module temperature high alarm is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Module temperature low alarm</td>
<td>Displays whether the module temperature low alarm is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Module temperature high warning</td>
<td>Displays whether the module temperature high warning is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Module temperature low warning</td>
<td>Displays whether the module temperature low warning is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Module voltage high alarm</td>
<td>Displays whether the module voltage high alarm is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Module voltage low alarm</td>
<td>Displays whether the module voltage low alarm is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Module voltage high warning</td>
<td>Displays whether the module voltage high warning is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Module voltage low warning</td>
<td>Displays whether the module voltage low warning is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Laser rx power high alarm</td>
<td>Displays whether the receive laser power high alarm is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Laser rx power low alarm</td>
<td>Displays whether the receive laser power low alarm is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Laser rx power high warning</td>
<td>Displays whether the receive laser power high warning is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Laser rx power low warning</td>
<td>Displays whether the receive laser power low warning is <strong>On</strong> or <strong>Off</strong>.</td>
</tr>
<tr>
<td>Laser bias current high alarm threshold</td>
<td>Displays the vendor-specified threshold for the laser bias current high alarm.</td>
</tr>
<tr>
<td>Laser bias current low alarm threshold</td>
<td>Displays the vendor-specified threshold for the laser bias current low alarm.</td>
</tr>
<tr>
<td>Laser bias current high warning threshold</td>
<td>Displays the vendor-specified threshold for the laser bias current high warning.</td>
</tr>
<tr>
<td>Laser bias current low warning threshold</td>
<td>Displays the vendor-specified threshold for the laser bias current low warning.</td>
</tr>
<tr>
<td>Laser output power high alarm threshold</td>
<td>Displays the vendor-specified threshold for the laser output power high alarm.</td>
</tr>
<tr>
<td>Laser output power low alarm threshold</td>
<td>Displays the vendor-specified threshold for the laser output power low alarm.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
</tr>
<tr>
<td>-----------------------------------------</td>
<td>-----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Laser output power high warning threshold</td>
<td>Displays the vendor-specified threshold for the laser output power high warning.</td>
</tr>
<tr>
<td>Laser output power low warning threshold</td>
<td>Displays the vendor-specified threshold for the laser output power low warning.</td>
</tr>
<tr>
<td>Module temperature high alarm threshold</td>
<td>Displays the vendor-specified threshold for the module temperature high alarm.</td>
</tr>
<tr>
<td>Module temperature low alarm threshold</td>
<td>Displays the vendor-specified threshold for the module temperature low alarm.</td>
</tr>
<tr>
<td>Module temperature high warning threshold</td>
<td>Displays the vendor-specified threshold for the module temperature high warning.</td>
</tr>
<tr>
<td>Module temperature low warning threshold</td>
<td>Displays the vendor-specified threshold for the module temperature low warning.</td>
</tr>
<tr>
<td>Module voltage high alarm threshold</td>
<td>Displays the vendor-specified threshold for the module voltage high alarm.</td>
</tr>
<tr>
<td>Module voltage low alarm threshold</td>
<td>Displays the vendor-specified threshold for the module voltage low alarm.</td>
</tr>
<tr>
<td>Module voltage high warning threshold</td>
<td>Displays the vendor-specified threshold for the module voltage high warning.</td>
</tr>
<tr>
<td>Module voltage low warning threshold</td>
<td>Displays the vendor-specified threshold for the module voltage low warning.</td>
</tr>
<tr>
<td>Laser rx power high alarm threshold</td>
<td>Displays the vendor-specified threshold for the laser rx power high alarm.</td>
</tr>
<tr>
<td>Laser rx power low alarm threshold</td>
<td>Displays the vendor-specified threshold for the laser rx power low alarm.</td>
</tr>
<tr>
<td>Laser rx power high warning threshold</td>
<td>Displays the vendor-specified threshold for the laser rx power high warning.</td>
</tr>
<tr>
<td>Laser rx power low warning threshold</td>
<td>Displays the vendor-specified threshold for the laser rx power low warning.</td>
</tr>
</tbody>
</table>
**Sample Output**

```plaintext
show interfaces diagnostics optics

user@host> show interfaces diagnostics optics ge-2/0/0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical interface: ge-2/0/0</td>
<td></td>
</tr>
<tr>
<td>Laser bias current</td>
<td>7.408 mA</td>
</tr>
<tr>
<td>Laser output power</td>
<td>0.3500 mW / -4.56 dBm</td>
</tr>
<tr>
<td>Module temperature</td>
<td>23 degrees C / 73 degrees F</td>
</tr>
<tr>
<td>Module voltage</td>
<td>3.3450 V</td>
</tr>
<tr>
<td>Receiver signal average optical power</td>
<td>0.0002 mW / -36.99 dBm</td>
</tr>
<tr>
<td>Laser bias current high alarm</td>
<td>Off</td>
</tr>
<tr>
<td>Laser bias current low alarm</td>
<td>Off</td>
</tr>
<tr>
<td>Laser bias current high warning</td>
<td>Off</td>
</tr>
<tr>
<td>Laser bias current low warning</td>
<td>Off</td>
</tr>
<tr>
<td>Laser output power high alarm</td>
<td>Off</td>
</tr>
<tr>
<td>Laser output power low alarm</td>
<td>Off</td>
</tr>
<tr>
<td>Laser output power high warning</td>
<td>Off</td>
</tr>
<tr>
<td>Laser output power low warning</td>
<td>Off</td>
</tr>
<tr>
<td>Module temperature high alarm</td>
<td>Off</td>
</tr>
<tr>
<td>Module temperature low alarm</td>
<td>Off</td>
</tr>
<tr>
<td>Module temperature high warning</td>
<td>Off</td>
</tr>
<tr>
<td>Module temperature low warning</td>
<td>Off</td>
</tr>
<tr>
<td>Module voltage high alarm</td>
<td>Off</td>
</tr>
<tr>
<td>Module voltage low alarm</td>
<td>Off</td>
</tr>
<tr>
<td>Module voltage high warning</td>
<td>Off</td>
</tr>
<tr>
<td>Module voltage low warning</td>
<td>Off</td>
</tr>
<tr>
<td>Laser rx power high alarm</td>
<td>Off</td>
</tr>
<tr>
<td>Laser rx power low alarm</td>
<td>On</td>
</tr>
<tr>
<td>Laser rx power high warning</td>
<td>Off</td>
</tr>
<tr>
<td>Laser rx power low warning</td>
<td>On</td>
</tr>
<tr>
<td>Laser bias current high alarm threshold</td>
<td>17.000 mA</td>
</tr>
<tr>
<td>Laser bias current low alarm threshold</td>
<td>1.000 mA</td>
</tr>
<tr>
<td>Laser bias current high warning threshold</td>
<td>14.000 mA</td>
</tr>
<tr>
<td>Laser bias current low warning threshold</td>
<td>2.000 mA</td>
</tr>
<tr>
<td>Laser output power high alarm threshold</td>
<td>0.6310 mW / -2.00 dBm</td>
</tr>
<tr>
<td>Laser output power low alarm threshold</td>
<td>0.0670 mW / -11.74 dBm</td>
</tr>
<tr>
<td>Laser output power high warning threshold</td>
<td>0.6310 mW / -2.00 dBm</td>
</tr>
<tr>
<td>Laser output power low warning threshold</td>
<td>0.0790 mW / -11.02 dBm</td>
</tr>
<tr>
<td>Module temperature high alarm threshold</td>
<td>95 degrees C / 203 degrees F</td>
</tr>
<tr>
<td>Module temperature low alarm threshold</td>
<td>-25 degrees C / -13 degrees F</td>
</tr>
<tr>
<td>Module temperature high warning threshold</td>
<td>90 degrees C / 194 degrees F</td>
</tr>
<tr>
<td>Module temperature low warning threshold</td>
<td>-20 degrees C / -4 degrees F</td>
</tr>
<tr>
<td>Module voltage high alarm threshold</td>
<td>3.900 V</td>
</tr>
</tbody>
</table>
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module voltage low alarm threshold</td>
<td>2.700 V</td>
</tr>
<tr>
<td>Module voltage high warning threshold</td>
<td>3.700 V</td>
</tr>
<tr>
<td>Module voltage low warning threshold</td>
<td>2.900 V</td>
</tr>
<tr>
<td>Laser rx power high alarm threshold</td>
<td>1.2590 mW / 1.00 dBm</td>
</tr>
<tr>
<td>Laser rx power low alarm threshold</td>
<td>0.0100 mW / -20.00 dBm</td>
</tr>
<tr>
<td>Laser rx power high warning threshold</td>
<td>0.7940 mW / -1.00 dBm</td>
</tr>
<tr>
<td>Laser rx power low warning threshold</td>
<td>0.0158 mW / -18.01 dBm</td>
</tr>
</tbody>
</table>
show interfaces flow-statistics

Syntax

```
show interfaces flow-statistics <interface-name>
```

Release Information
Command introduced in Junos OS Release 9.2.

Description
Display interfaces flow statistics.

Options

- **Interface-name**—(Optional) Display flow statistics about the specified interface. Following is a list of typical interface names. Replace `pim` with the PIM slot and `port` with the port number. For a complete list, see the "Interface Naming Conventions" on page 37.
  - `at-pim/0/port`—ATM-over-ADSL or ATM-over-SHDSL interface.
  - `br-pim/0/port`—Basic Rate Interface for establishing ISDN connections.
  - `ce1-pim/0/port`—Channelized E1 interface.
  - `ct1-pim/0/port`—Channelized T1 interface.
  - `dl0`—Dialer Interface for initiating ISDN and USB modem connections.
  - `e1-pim/0/port`—E1 interface.
  - `e3-pim/0/port`—E3 interface.
  - `fe-pim/0/port`—Fast Ethernet interface.
  - `ge-pim/0/port`—Gigabit Ethernet interface.
  - `se-pim/0/port`—Serial interface.
  - `t1-pim/0/port`—T1 (also called DS1) interface.
  - `t3-pim/0/port`—T3 (also called DS3) interface.
  - `wx-slot/0/0`—WAN acceleration interface, for the WXC Integrated Services Module (ISM 200).

Required Privilege Level
view

RELATED DOCUMENTATION

- *Understanding Traffic Processing on Security Devices*
List of Sample Output

*show interfaces flow-statistics (Gigabit Ethernet)* on page 1066

Output Fields

Table 61 on page 1063 lists the output fields for the *show interfaces flow-statistics* command. Output fields are listed in the approximate order in which they appear.

**Table 61: show interfaces flow-statistics Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic statistics</td>
<td>Number of packets and bytes transmitted and received on the physical interface.</td>
</tr>
<tr>
<td>Local statistics</td>
<td>Number of packets and bytes transmitted and received on the physical interface.</td>
</tr>
<tr>
<td>Transit statistics</td>
<td>Number of packets and bytes transiting the physical interface.</td>
</tr>
<tr>
<td>Flow input statistics</td>
<td>Statistics on packets received by flow module.</td>
</tr>
<tr>
<td>Flow output statistics</td>
<td>Statistics on packets sent by flow module.</td>
</tr>
</tbody>
</table>

For further details, see Table 62 on page 1063.

**Table 62: Flow Error Statistics (Packet Drop Statistics for the Flow Module)**

<table>
<thead>
<tr>
<th>Error</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen:</td>
<td></td>
</tr>
<tr>
<td>Address spoofing</td>
<td>The packet was dropped when the screen module detected address spoofing.</td>
</tr>
<tr>
<td>Syn-attack protection</td>
<td>The packet was dropped because of SYN attack protection or SYN cookie protection.</td>
</tr>
<tr>
<td>VPN:</td>
<td></td>
</tr>
<tr>
<td>Authentication failed</td>
<td>The packet was dropped because the IPsec Encapsulating Security Payload (ESP) or Authentication Header (AH) authentication failed.</td>
</tr>
<tr>
<td>No SA for incoming SPI</td>
<td>The packet was dropped because the incoming IPsec packet's security parameter index (SPI) does not match any known SPI.</td>
</tr>
<tr>
<td>Security association not active</td>
<td>The packet was dropped because an IPsec packet was received for an inactive SA.</td>
</tr>
</tbody>
</table>
Table 62: Flow Error Statistics (Packet Drop Statistics for the Flow Module) (continued)

**NAT:**

<table>
<thead>
<tr>
<th>Description</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming NAT errors</td>
<td>The source NAT rule search failed, an invalid source NAT binding was found, or the NAT allocation failed.</td>
</tr>
<tr>
<td>Multiple incoming NAT</td>
<td>Sometimes packets are looped through the system more than once; if source NAT is specified more than once, the packet will be dropped.</td>
</tr>
</tbody>
</table>

**Auth:**

<table>
<thead>
<tr>
<th>Description</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple user authentications</td>
<td>Sometimes packets are looped through the system more than once. Each time a packet passes through the system, that packet must be permitted by a policy. If the packet matches more than one policy that specifies user authentication, then it will be dropped.</td>
</tr>
<tr>
<td>User authentication errors</td>
<td>Packet was dropped because policy requires authentication; however:</td>
</tr>
<tr>
<td></td>
<td>• Only Telnet, FTP, and HTTP traffic can be authenticated.</td>
</tr>
<tr>
<td></td>
<td>• The corresponding authentication entry could not be found, if web-auth is specified.</td>
</tr>
<tr>
<td></td>
<td>• The maximum number of authenticated sessions per user was exceeded.</td>
</tr>
</tbody>
</table>

**Flow:**

<table>
<thead>
<tr>
<th>Description</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No one interested in self packets</td>
<td>This counter is incremented for one of the following reasons:</td>
</tr>
<tr>
<td></td>
<td>• The outbound interface is a self interface, but the packet is not marked as a to-self packet and the destination address is in a source NAT pool.</td>
</tr>
<tr>
<td></td>
<td>• No service is interested in the to-self packet</td>
</tr>
<tr>
<td></td>
<td>• When a zone has ident-reset service enabled, the TCP RST to IDENT request for port 113 is sent back and this counter is incremented.</td>
</tr>
<tr>
<td>No minor session</td>
<td>The packet was dropped because no minor sessions are available and a minor session was requested. Minor sessions are allocated for storing additional TCP state information.</td>
</tr>
<tr>
<td>No more sessions</td>
<td>The packet was dropped because there were no more free sessions available.</td>
</tr>
</tbody>
</table>
Table 62: Flow Error Statistics (Packet Drop Statistics for the Flow Module) (continued)

<table>
<thead>
<tr>
<th>No route present</th>
<th>The packet was dropped because a valid route was not available to forward the packet. For new sessions, the counter is incremented for one of the following reasons:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• No valid route was found to forward the packet.</td>
</tr>
<tr>
<td></td>
<td>• A discard or reject route was found.</td>
</tr>
<tr>
<td></td>
<td>• The route could not be added due to lack of memory.</td>
</tr>
<tr>
<td></td>
<td>• The reverse path forwarding check failed for an incoming multicast packet.</td>
</tr>
<tr>
<td></td>
<td>For existing sessions, the prior route was changed or deleted, or a more specific route was added. The session is rerouted, and this reroute could fail because:</td>
</tr>
<tr>
<td></td>
<td>• A new route could not be found; either the previous route was removed, or the route was changed to discard or reject.</td>
</tr>
<tr>
<td></td>
<td>• Multiple packets may concurrently force rerouting to occur, and only one packet can successfully complete the rerouting process. Other packets will be dropped.</td>
</tr>
<tr>
<td></td>
<td>• The route table was locked for updates by the Routing Engine. Packets that match a new session are retried, whereas packets that match an existing session are not.</td>
</tr>
<tr>
<td>No tunnel found</td>
<td>The packet was dropped because a valid tunnel could not be found.</td>
</tr>
<tr>
<td>No session for a gate</td>
<td>This counter is incremented when a packet is destined for an ALG, and the ALG decides to drop this packet.</td>
</tr>
<tr>
<td>No zone or NULL zone binding</td>
<td>The packet was dropped because its incoming interface was not bound to any zone.</td>
</tr>
<tr>
<td>Policy denied</td>
<td>The error counter is incremented for one of the following reasons:</td>
</tr>
<tr>
<td></td>
<td>• Source and/or destination NAT has occurred and policy says to drop the packet.</td>
</tr>
<tr>
<td></td>
<td>• Policy specifies user authentication, which failed.</td>
</tr>
<tr>
<td></td>
<td>• Policy was configured to deny this packet.</td>
</tr>
<tr>
<td>TCP sequence number out of window</td>
<td>A TCP packet with a sequence number failed the TCP sequence number check that was received.</td>
</tr>
</tbody>
</table>

Counters Not Currently in Use

| No parent for a gate | - |
| Invalid zone received packet | - |
| No NAT gate | - |
Logical interface ge-0/0/1.0 (Index 70) (SNMP ifIndex 49)
   Flags: SNMP-Traps Encapsulation: ENET2
   Input packets: 5161
   Output packets: 83
   Security: Zone: zone2
   Allowed host-inbound traffic: bootp bfd bgp dns dvmrp igmp ldp msdp nhrp
                              ospf pgm
                              pim rip router-discovery rsvp sap vrrp dhcp finger ftp tftp ident-reset http
                              https ike
                              netconf ping rlogin rpm rsh snmp snmp-trap ssh telnet traceroute xnm-clear-text
                              xnm-ssl
   lsping
Flow Statistics:
Flow Input statistics:
   Self packets: 0
   ICMP packets: 0
   VPN packets: 2564
   Bytes permitted by policy: 3478
   Connections established: 1
Flow Output statistics:
   Multicast packets: 0
   Bytes permitted by policy: 16994
Flow error statistics (Packets dropped due to):
   Address spoofing: 0
   Authentication failed: 0
   Incoming NAT errors: 0
   Invalid zone received packet: 0
   Multiple user authentications: 0
   Multiple incoming NAT: 0
   No parent for a gate: 0
   No one interested in self packets: 0
   No minor session: 0
   No more sessions: 0
   No NAT gate: 0
   No route present: 0
   No SA for incoming SPI: 0
   No tunnel found: 0
   No session for a gate: 0
   No zone or NULL zone binding 0
Policy denied: 0
Security association not active: 0
TCP sequence number out of window: 0
Syn-attack protection: 0
User authentication errors: 0

Protocol inet, MTU: 1500
Flags: None
Addresses, Flags: Is-Preferred Is-Primary
   Destination: 203.0.113.1/24, Local: 203.0.113.2, Broadcast: 2.2.2.255
show interfaces queue

Syntax

show interfaces queue
<both-ingress-egress>
<egress>
<forwarding-class forwarding-class>
<ingress>
<interface-name interface-name>
<l2-statistics>

Release Information
Command introduced in Junos OS Release 15.1X49-D30 for vSRX.

Description
Display class-of-service (CoS) queue information for physical interfaces.

NOTE: The queue depth information is only available on vSRX and SRX1500, SRX4100, SRX4200 and SRX4600 platforms.

Options
none—Show detailed CoS queue statistics for all physical interfaces.
both-ingress-egress—Display both ingress and egress queue statistics.
egress—Display egress queue statistics.
forwarding-class forwarding-class—(Optional) Forwarding class name for this queue. Show detailed CoS statistics for the queue that is associated with the specified forwarding class.
ingress—Display ingress queue statistics.
interface-name interface-name—(Optional) Show detailed CoS queue statistics for the specified interface.
l2-statistics—(Optional) Display Layer 2 statistics for MLPPP, FRF.15, and FRF.16 bundles.

Required Privilege Level
view

RELATED DOCUMENTATION
### Understanding Class of Service

**List of Sample Output**

- `show interfaces queue (vSRX) on page 1070`
- `show interfaces queue (vSRX) on page 1072`

**Output Fields**

Table 63 on page 1069 lists the output fields for the `show interfaces queue` command. Output fields are listed in the approximate order in which they appear.

**Table 63: show interfaces queue Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface. Possible values are described in the &quot;Enabled Field&quot; section under Common Output Fields Description.</td>
</tr>
<tr>
<td>Interface index</td>
<td>Index number of the physical interface. The number reflects the interface's initialization sequence.</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the interface.</td>
</tr>
<tr>
<td>Forwarding classes supported</td>
<td>Total number of forwarding classes supported on the specified interface.</td>
</tr>
<tr>
<td>Forwarding classes in use</td>
<td>Total number of forwarding classes in use on the specified interface.</td>
</tr>
<tr>
<td>Egress queues supported</td>
<td>Total number of egress queues supported on the specified interface.</td>
</tr>
<tr>
<td>Egress queues in use</td>
<td>Total number of egress queues in use on the specified interface.</td>
</tr>
</tbody>
</table>

The following output fields are applicable to both the interface component and Packet Forwarding Engine component in the `show interfaces queue` command:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue</td>
<td>Queue number.</td>
</tr>
<tr>
<td>Forwarding classes</td>
<td>Forwarding class name.</td>
</tr>
<tr>
<td>Queued Packets</td>
<td>Number of packets in this queue.</td>
</tr>
<tr>
<td>Queued Bytes</td>
<td>Number of bytes in this queue.</td>
</tr>
</tbody>
</table>
Table 63: show interfaces queue Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitted Packets</td>
<td>Number of packets transmitted by this queue. When fragmentation occurs on the egress interface, the first set of packet counters shows the postfragmentation values. The second set of packet counters (displayed under the Packet Forwarding Engine Chassis Queues field) shows the prefragmentation values.</td>
</tr>
<tr>
<td>Transmitted Bytes</td>
<td>Number of bytes transmitted by this queue.</td>
</tr>
<tr>
<td>Tail-dropped packets</td>
<td>Number of packets dropped because of tail drop.</td>
</tr>
<tr>
<td>RL-dropped bytes</td>
<td>Number of bytes dropped because of rate limiting.</td>
</tr>
<tr>
<td>RED-dropped packets</td>
<td>Number of packets dropped because of random early detection (RED).</td>
</tr>
<tr>
<td>RED-dropped bytes</td>
<td>Number of bytes dropped because of RED.</td>
</tr>
<tr>
<td></td>
<td>• Low, non-TCP—Number of low-loss priority, non-TCP bytes dropped because of RED.</td>
</tr>
<tr>
<td></td>
<td>• Low, TCP—Number of low-loss priority, TCP bytes dropped because of RED.</td>
</tr>
<tr>
<td></td>
<td>• High, non-TCP—Number of high-loss priority, non-TCP bytes dropped because of RED.</td>
</tr>
<tr>
<td></td>
<td>• High, TCP—Number of high-loss priority, TCP bytes dropped because of RED.</td>
</tr>
<tr>
<td>Queue Buffer Usage:</td>
<td>• Reserved buffer—The size of the memory buffer that is allocated for storing packets</td>
</tr>
<tr>
<td></td>
<td>• Current—The amount of buffer memory that is currently in use on this queue.</td>
</tr>
<tr>
<td>Queue-Depth</td>
<td>Current—The maximum number of bytes in this queue, that is currently in use on this queue.</td>
</tr>
</tbody>
</table>

Sample Output

show interfaces queue (vSRX)

The following truncated example shows the CoS queue sizes for queues 0, 1, and 3. Queue 1 has a queue buffer size (guaranteed allocated memory) of 9192 bytes.

user@host> show interfaces queue

Physical interface: ge-0/0/0, Enabled, Physical link is Up
Interface index: 135, SNMP ifIndex: 510
Forwarding classes: 8 supported, 4 in use
Egress queues: 8 supported, 4 in use

Queue: 0, Forwarding classes: best-effort

<table>
<thead>
<tr>
<th>Packets</th>
<th>Bytes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Queued:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14686</td>
<td>616812</td>
<td>0 pps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packets</th>
<th>Bytes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitted:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14686</td>
<td>616812</td>
<td>0 pps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tail-dropped packets</th>
<th>RL-dropped packets</th>
<th>RL-dropped bytes</th>
<th>RED-dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low</th>
<th>Medium-low</th>
<th>Medium-high</th>
<th>High</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low</th>
<th>Medium-low</th>
<th>Medium-high</th>
<th>High</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Queue Buffer Usage:

<table>
<thead>
<tr>
<th>Reserved buffer</th>
<th>Queue-depth bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>118750000 bytes</td>
<td>0</td>
</tr>
</tbody>
</table>

Queue: 1, Forwarding classes: expedited-forwarding

<table>
<thead>
<tr>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queued:</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitted:</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tail-dropped packets</th>
<th>RL-dropped packets</th>
<th>RL-dropped bytes</th>
<th>RED-dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low</th>
<th>Medium-low</th>
<th>Medium-high</th>
<th>High</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low</th>
<th>Medium-low</th>
<th>Medium-high</th>
<th>High</th>
<th>RED-dropped bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low</th>
<th>Medium-low</th>
<th>Medium-high</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low</th>
<th>Medium-low</th>
<th>Medium-high</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
### Sample Output

**show interfaces queue (vSRX)**

```bash
user@host> show interfaces queue ge-0/0/3 forwarding-class ef
```

Physical interface: ge-0/0/3, Enabled, Physical link is Up

```plaintext
Interface index: 143, SNMP ifIndex: 510
Forwarding classes: 8 supported, 4 in use
Egress queues: 8 supported, 4 in use
Queue: 1, Forwarding classes: ef
```
### Queued:
- **Packets**: 55034875, 885424 pps
- **Bytes**: 1526912538034, 835840256 bps

### Transmitted:
- **Packets**: 2772633112, 0 pps
- **Bytes**: 1512013543328, 0 bps
- **Tail-dropped packets**: 0, 0 pps
- **RL-dropped packets**: 0, 0 pps
- **RL-dropped bytes**: 0, 0 bps
- **RED-dropped packets**: 126262505, 885424 pps
  - **Low**: 0, 0 pps
  - **Medium-low**: 0, 0 pps
  - **Medium-high**: 0, 0 pps
  - **High**: 126262505, 885424 pps
- **RED-dropped bytes**: 14898975590, 835840728 bps
  - **Low**: 0, 0 bps
  - **Medium-low**: 0, 0 bps
  - **Medium-high**: 0, 0 bps
  - **High**: 14898975590, 835840728 bps

### Queue Buffer Usage:
- **Reserved buffer**: 9192 bytes
- **Queue-depth bytes**: 18998
show interfaces statistics (View)

Syntax

```
show interfaces statistics interface-name
```

Release Information

Command introduced in Junos OS Release 10.1.

Description

Displays the interface input and output statistics for physical and logical interface.

Required Privilege Level

view

RELATED DOCUMENTATION

| Understanding Interfaces | 31 |

List of Sample Output

show interfaces statistics on page 1074

Sample Output

show interfaces statistics

```
user@host> show interfaces statistics st0.1
```

```
Logical interface st0.1 (Index 91) (SNMP ifIndex 268)
 Flags: Point-To-Point SNMP-Traps Encapsulation: Secure-Tunnel
 Input packets: 2743333
 Output packets: 6790470992
 Security: Zone: untrust
 Allowed host-inbound traffic: bootp bfd bgp dns dvmrp igmp ldp msdp nhrp
 ospf pgm pim rip router-discovery rsvp sap vrrp dhcp finger ftp tftp ident-reset
 http https ike netconf ping reverse-telnet
 reverse-ssh rlogin rpm rsh snmp snmp-trap ssh telnet traceroute xnm-clear-text
 xnm-ssl lsping ntp sip
 Protocol inet, MTU: 9192
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 192.167.1.0/30, Local: 192.167.1.1
```
show interfaces terse zone

Syntax

```
show interfaces terse zone
```

Release Information

Command introduced in Junos OS Release 12.3X48-D20.

Description

Display summary information about zone interfaces.

Options

This command has no options.

Required Privilege Level

view

Sample Output

```
show interface terse zone

user@host> show interface terse zone

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
<th>Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>1.4.253.251/16</td>
<td>trust</td>
<td></td>
</tr>
</tbody>
</table>
```
show ipv6 neighbors

Syntax

show ipv6 neighbors

Release Information
Command introduced in Junos OS Release 12.1X45-D10.

Description
Display information about the IPv6 neighbor cache.

Options
This command has no options.

Required Privilege Level
view

RELATED DOCUMENTATION

| clear ipv6 neighbors | 865 |

List of Sample Output
show ipv6 neighbors on page 1077

Output Fields
Table 64 on page 1076 lists the output fields for the show ipv6 neighbors command. Output fields are listed in the approximate order in which they appear.

Table 64: show ipv6 neighbors Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Address</td>
<td>Name of the IPv6 interface.</td>
</tr>
<tr>
<td>Linklayer Address</td>
<td>Link-layer address.</td>
</tr>
<tr>
<td>State</td>
<td>State of the link: up, down, incomplete, reachable, stale, or unreachable.</td>
</tr>
<tr>
<td>Exp</td>
<td>Number of seconds until the entry expires.</td>
</tr>
<tr>
<td>Rtr</td>
<td>Whether the neighbor is a routing device: yes or no.</td>
</tr>
</tbody>
</table>
Table 64: show ipv6 neighbors Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure</td>
<td>Whether this entry was created using the Secure Neighbor Discovery (SEND) protocol: yes or no.</td>
</tr>
<tr>
<td>Interface</td>
<td>Name of the interface.</td>
</tr>
</tbody>
</table>

Sample Output

show ipv6 neighbors

user@host> show ipv6 neighbors

<table>
<thead>
<tr>
<th>IPv6 Address</th>
<th>Linklayer Address</th>
<th>State</th>
<th>Exp Rtr</th>
<th>Secure</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:1::2</td>
<td>00:00:0a:00:00:00</td>
<td>reachable</td>
<td>17</td>
<td>yes</td>
<td>reth0.0</td>
</tr>
<tr>
<td>11:11::2</td>
<td>00:19:e2:4b:61:83</td>
<td>stale</td>
<td>1197</td>
<td>yes</td>
<td>at-1/0/0.0</td>
</tr>
<tr>
<td>12:12::2</td>
<td>00:19:e2:4b:61:83</td>
<td>stale</td>
<td>1188</td>
<td>yes</td>
<td>at-3/0/0.0</td>
</tr>
</tbody>
</table>
show lACP interfaces (View)

Syntax

```plaintext
show lACP interfaces interface-name
```

Release Information

Command modified in Junos OS Release 10.2.

Description

Display Link Aggregation Control Protocol (LACP) information about the specified aggregated Ethernet interface, redundant Ethernet interface, Gigabit Ethernet interface, or 10-Gigabit Ethernet interface. If you do not specify an interface name, LACP information for all interfaces is displayed.

Options

- **none**—Display LACP information for all interfaces.
- **interface-name**—(Optional) Display LACP information for the specified interface:
  - Aggregated Ethernet—`ae-number`
  - Redundant Ethernet—`re-thnumber`
  - Gigabit Ethernet—`ge-fpc/pic/port`
  - 10-Gigabit Ethernet—`xe-fpc/pic/port`

**NOTE:** The `show lACP interfaces` command returns the following error message if your system is not configured in either active or passive LACP mode:

"Warning: lACP subsystem not running – not needed by configuration"

Required Privilege Level

- view

Related Documentation

- Verifying LACP on Redundant Ethernet Interfaces

List of Sample Output

- show lACP interfaces (Aggregated Ethernet) on page 1081
- show lACP interfaces (Redundant Ethernet) on page 1081
show lacp interfaces (Gigabit Ethernet) on page 1082

Output Fields

Table 65 on page 1079 lists the output fields for the `show lacp interfaces` command. Output fields are listed in the approximate order in which they appear.

Table 65: show lacp interfaces Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregated interface</td>
<td>Aggregated interface value.</td>
</tr>
</tbody>
</table>

**LACP State**

LACP state information for each aggregated interface:

- **Role**—Role played by the interface. It can be one of the following:
  - **Actor**—Local device participating in LACP negotiation.
  - **Partner**—Remote device participating in LACP negotiation.

- **Exp**—Expired state. **Yes** indicates the actor or partner is in an expired state. **No** indicates the actor or partner is not in an expired state.

- **Def**—Default. **Yes** indicates that the actor’s receive machine is using the default operational partner information, administratively configured for the partner. **No** indicates the operational partner information in use has been received in a link aggregation control protocol data unit (PDU).

- **Dist**—Distribution of outgoing frames. **No** indicates distribution of outgoing frames on the link is currently disabled and is not expected to be enabled. Otherwise, the value is **Yes**.

- **Col**—Collection of incoming frames. **Yes** indicates collection of incoming frames on the link is currently enabled and is not expected to be disabled. Otherwise, the value is **No**.

- **Syn**—Synchronization. If the value is **Yes**, the link is considered synchronized. It has been allocated to the correct link aggregation group, the group has been associated with a compatible aggregator, and the identity of the link aggregation group is consistent with the system ID and operational key information transmitted. If the value is **No**, the link is not synchronized. It is currently not in the right aggregation.

- **Aggr**—Ability of aggregation port to aggregate (**Yes**) or to operate only as an individual link (**No**).

- **Timeout**—LACP timeout preference. Periodic transmissions of link aggregation control PDUs occur at either a slow or fast transmission rate, depending upon the expressed LACP timeout preference (**Long Timeout** or **Short Timeout**).

- **Activity**—Actor or partner’s port activity. **Passive** indicates the port’s preference for not transmitting link aggregation control PDUs unless its partner’s control value is **Active**. **Active** indicates the port’s preference to participate in the protocol regardless of the partner’s control value.
Table 65: show lACP interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACP Protocol</td>
<td>LACP protocol information for each aggregated interface:</td>
</tr>
</tbody>
</table>

- Link state (active or standby) indicated in parentheses next to the interface when link protection is configured.
- **Receive State**—One of the following values:
  - **Current**—The state machine receives a link aggregation control PDU and enters the **Current** state.
  - **Defaulted**—If no link aggregation control PDU is received before the timer for the **Current** state expires a second time, the state machine enters the **Defaulted** state.
  - **Expired**—If no link aggregation control PDU is received before the timer for the **Current** state expires once, the state machine enters the **Expired** state.
  - **Initialize**—When the physical connectivity of a link changes or a Begin event occurs, the state machine enters the **Initialize** state.
  - **LACP Disabled**—If the port is operating in half duplex, the operation of LACP is disabled on the port, forcing the state to **LACP Disabled**. This state is similar to the **Defaulted** state, except that the port is forced to operate as an individual port.
  - **Port Disabled**—If the port becomes inoperable and a Begin event has not occurred, the state machine enters the **Port Disabled** state.
- **Transmit State**—Transmit state of state machine. One of the following values:
  - **Fast Periodic**—Periodic transmissions are enabled at a fast transmission rate.
  - **No Periodic**—Periodic transmissions are disabled.
  - **Periodic Timer**—Transitory state entered when the periodic timer expires.
  - **Slow Periodic**—Periodic transmissions are enabled at a slow transmission rate.
- **Mux State**—State of the multiplexer state machine for the aggregation port. The state is one of the following values:
  - **Attached**—Multiplexer state machine initiates the process of attaching the port to the selected aggregator.
  - **Collecting Distributing**—Collecting and distributing states are merged together to form a combined state (coupled control). Because independent control is not possible, the coupled control state machine does not wait for the partner to signal that collection has started before enabling both collection and distribution.
  - **Detached**—Process of detaching the port from the aggregator is in progress.
  - **Waiting**—Multiplexer state machine is in a holding process, awaiting an outcome.
### Sample Output

**show lacp interfaces (Aggregated Ethernet)**

```
user@host> show lacp interfaces ae0
```

<table>
<thead>
<tr>
<th>LACP state:</th>
<th>Role</th>
<th>Exp</th>
<th>Def</th>
<th>Dist</th>
<th>Col</th>
<th>Syn</th>
<th>Aggr</th>
<th>Timeout</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-2/0/0</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-2/0/0</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-2/0/1</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-2/0/1</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-2/2/0</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-2/2/0</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-2/2/1</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-2/2/1</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LACP protocol:</th>
<th>Receive State</th>
<th>Transmit State</th>
<th>Mux State</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-2/0/0</td>
<td>Current</td>
<td>Fast periodic</td>
<td>Collecting distributing</td>
</tr>
<tr>
<td>ge-2/0/1</td>
<td>Current</td>
<td>Fast periodic</td>
<td>Collecting distributing</td>
</tr>
<tr>
<td>ge-2/2/0</td>
<td>Current</td>
<td>Fast periodic</td>
<td>Collecting distributing</td>
</tr>
<tr>
<td>ge-2/2/1</td>
<td>Current</td>
<td>Fast periodic</td>
<td>Collecting distributing</td>
</tr>
</tbody>
</table>

**show lacp interfaces (Redundant Ethernet)**

```
user@host> show lacp interfaces reth0
```

<table>
<thead>
<tr>
<th>LACP state:</th>
<th>Role</th>
<th>Exp</th>
<th>Def</th>
<th>Dist</th>
<th>Col</th>
<th>Syn</th>
<th>Aggr</th>
<th>Timeout</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-11/0/0</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-11/0/0</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-11/0/1</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-11/0/1</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-11/0/2</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-11/0/2</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-11/0/3</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-11/0/3</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-3/0/0</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-3/0/0</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-3/0/1</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-3/0/1</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-3/0/2</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-3/0/2</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-3/0/3</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>Interface</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>LACP protocol:</td>
<td>Receive State</td>
<td>Transmit State</td>
<td>Mux State</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-3/0/3</td>
<td>ge-11/0/0</td>
<td>Current</td>
<td>Fast periodic</td>
<td>Collecting</td>
<td>distributing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-11/0/1</td>
<td>ge-11/0/2</td>
<td>Current</td>
<td>Fast periodic</td>
<td>Collecting</td>
<td>distributing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-11/0/3</td>
<td>ge-3/0/0</td>
<td>Current</td>
<td>Fast periodic</td>
<td>Collecting</td>
<td>distributing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-3/0/1</td>
<td>ge-3/0/2</td>
<td>Current</td>
<td>Fast periodic</td>
<td>Collecting</td>
<td>distributing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-3/0/3</td>
<td>ge-3/0/3</td>
<td>Current</td>
<td>Fast periodic</td>
<td>Collecting</td>
<td>distributing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The command `show lacp interfaces (Gigabit Ethernet)`

```bash
user@host> show lacp interfaces ge-0/3/0
```

Aggregated interface: ae0

<table>
<thead>
<tr>
<th>Interface</th>
<th>Role</th>
<th>Exp</th>
<th>Def</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Fast</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LACP State:</td>
<td>Receive State</td>
<td>Transmit State</td>
<td>Mux State</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/3/0</td>
<td>ge-0/3/0</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
</tr>
<tr>
<td>ge-0/3/0</td>
<td>ge-0/3/0</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
</tr>
<tr>
<td></td>
<td>LACP Protocol:</td>
<td>Receive State</td>
<td>Transmit State</td>
<td>Mux State</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/3/0</td>
<td>ge-0/3/0</td>
<td>Current</td>
<td>Fast periodic</td>
<td>Collecting</td>
<td>distributing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show lACP statistics interfaces (View)

Syntax

```
show lACP statistics interfaces interface-name
```

Release Information

Command modified in Release 10.2 of Junos OS.
Command introduced in Release 11.1 of Junos OS for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Display Link Aggregation Control Protocol (LACP) statistics about the specified aggregated Ethernet interface or redundant Ethernet interface. If you do not specify an interface name, LACP statistics for all interfaces are displayed.

Options

`interface-name`—(Optional) Name of an interface.

Required Privilege Level

`view`

RELATED DOCUMENTATION

- Verifying LACP on Redundant Ethernet Interfaces
- Verifying the Status of a LAG Interface
- Verifying That LACP Is Configured Correctly and Bundle Members Are Exchanging LACP Protocol Packets
- Example: Configuring Link Aggregation Between a QFX Series Product and an Aggregation Switch
- Example: Configuring Link Aggregation with LACP Between a QFX Series Product and an Aggregation Switch

List of Sample Output

`show lACP statistics interfaces` on page 1084

Output Fields

`show lACP statistics interfaces` on page 1084 lists the output fields for the `show lACP statistics interfaces` command. Output fields are listed in the approximate order in which they appear.

Table 66: `show lACP statistics interfaces` Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Aggregated interface</code></td>
<td>Aggregated interface value.</td>
</tr>
</tbody>
</table>
Table 66: show lACP statistics interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACP Statistics</td>
<td>LACP statistics provide the following information:</td>
</tr>
<tr>
<td></td>
<td>• LACP Rx—LACP received counter that increments for each normal hello.</td>
</tr>
<tr>
<td></td>
<td>• LACP Tx—Number of LACP transmit packet errors logged.</td>
</tr>
<tr>
<td></td>
<td>• Unknown Rx—Number of unrecognized packet errors logged.</td>
</tr>
<tr>
<td></td>
<td>• Illegal Rx—Number of invalid packets received.</td>
</tr>
<tr>
<td></td>
<td>NOTE: Starting in Junos OS Evolved Release 18.3R1, the <code>clear interfaces statistics</code> command clears LACP statistics as well as the counters displayed in the <code>show lACP statistics interfaces</code> command.</td>
</tr>
</tbody>
</table>

Sample Output

```
show lACP statistics interfaces

user@host> show lACP statistics interfaces ae0

Aggregated interface: ae0

<table>
<thead>
<tr>
<th>LACP Statistics:</th>
<th>LACP Rx</th>
<th>LACP Tx</th>
<th>Unknown Rx</th>
<th>Illegal Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-2/0/0</td>
<td>1352</td>
<td>2035</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ge-2/0/1</td>
<td>1352</td>
<td>2056</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ge-2/2/0</td>
<td>1352</td>
<td>2045</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ge-2/2/1</td>
<td>1352</td>
<td>2043</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
show modem wireless firmware

Syntax

```plaintext
show modem wireless firmware interface-name
```

Release Information

Command introduced in Junos OS 15.1X49-D100

Description

Display modem firmware details for the LTE Mini-PIM.

Options

- `interface-name`—The LTE interface is cl-x/0/0, where x is the slot number in which the LTE Mini-PIM is installed.

Required Privilege Level

view

RELATED DOCUMENTATION

- show modem wireless network | 1088

List of Sample Output

show modem wireless firmware on page 1086

Output Fields

Table 67 on page 1085 lists some of the output fields for the `show modem wireless firmware` command. Output fields are listed in the approximate order in which they appear.

Table 67: show modem wireless firmware Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTE mPIM firmware details</td>
<td>Displays the details of the firmware installed on the LTE Mini-PIM.</td>
</tr>
<tr>
<td>Wireless modem firmware details</td>
<td>Displays the details of the modem firmware.</td>
</tr>
<tr>
<td>OTA status</td>
<td>Displays the status of over-the-air (OTA) upgrade. The OTA upgrade can be enabled or disabled on the LTE Mini-PIM. OTA upgrade is disabled by default.</td>
</tr>
</tbody>
</table>
Table 67: show modem wireless firmware Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Status of SIM       | • **Number of SIM**—Number of SIM cards installed.  
                       • **Slot of active**—The slot in which the active SIM card is installed.  
                       • **SIM state**—Indicates whether the SIM card is present in the slot.  
                       • **Modem PIN security status**—Indicates the security status of the SIM. If the SIM is locked by using the `request modem wireless sim-lock enable` command, then the security status is displayed as enabled.  
                       • **SIM status**—Status of the Subscriber Identity Module (SIM) in the LTE Mini-PIM. The status can be one of the following:  
                       • **SIM Okay**  
                       • **No status**—The device is being powered on or powered off, or the SIM card has been removed from the slot.  
                       • **SIM init failure**—There is a problem with the SIM; the SIM might need to be replaced.  
                       • **SIM locked**  
                       • **PIN1 blocked**—Obtain a PIN unblocking key (PUK) to unblock the SIM.  
                       • **PIN1 rejected**—The wrong PIN was entered.  
                       • **PIN2 rejected**—The wrong PIN was entered.  
                       • **Network rejected**  
                       • **SIM user operation needed**—Action required by the user. This can be one of the following:  
                       • **No op**—No user operation required.  
                       • **Enter PIN**—Enter the personal identification number (PIN) to unlock the SIM card.  
                       • **Enter PUK**—Enter the PUK to unblock the SIM card.  
                       • **Retries remaining**—If the value of **SIM user operation needed** is **Enter PIN**, this is the number of PIN unlock attempts remaining before the modem is blocked. If the PIN is entered incorrectly three consecutive times, the SIM card is blocked.  
                       If the value of **SIM user operation needed** is **Enter PUK**, this is the number of unblock attempts remaining before the modem is unusable. If the PUK is entered incorrectly ten times, the SIM card must be returned to the service provider for reactivation. |

**Sample Output**

```plaintext
show modem wireless firmware

user@host> show modem wireless firmware cl-1/0/0
```
LTE mPIM firmware details
Product name: Junos LTE mPIM
Serial number: AG50071852
Hardware version: AcceleratedConcepts/sprite
Firmware version: 17.4.3
MAC: 00:00:5e:00:a0:61
System uptime: 3430 seconds
Wireless modem firmware details
Modem firmware version:
9999999_9904609_SWI9X30C_02.23.00.00_00_GENERIC_002.018_000
Modem Firmware build date: 22/10/2016
Card type: MC7430
Modem manufacturer: Sierra Wireless, Inc
Hardware version: 1.0
Power & Temperature: Normal 3343 mV, Normal 30.00 C
OTA status
State: Enabled
New firmware available: No
Number of SIM: 2
Slot of active: 2
Status of SIM 1
SIM state: SIM present
Modem PIN security status: Disabled
SIM status: SIM Okay
SIM user operation needed: No Op
Retries remaining: 3
Status of SIM 2
SIM state: SIM present
Modem PIN security status: Disabled
SIM status: SIM Okay
SIM user operation needed: No Op
Retries remaining: 3
show modem wireless network

Syntax

show modem wireless network interface-name

Release Information

Command introduced in Junos OS Release 15.1X49-D100.

Description

Display the status of the modem and the status of the network connection for the LTE Mini-PIM.

Options

- interface-name—The LTE interface is cl-x/0/0, where x is the slot number in which the LTE Mini-PIM is installed.

Required Privilege Level

view

RELATED DOCUMENTATION

| show modem wireless profiles | 1091 |
| show modem wireless firmware | 1085 |

List of Sample Output

show modem wireless network on page 1090

Output Fields

Table 68 on page 1088 lists some of the output fields for the show modem wireless network command. Output fields are listed in the approximate order in which they appear.

Table 68: show modem wireless network Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Modem Status</td>
<td>Status of the modem on the Mini-PIM. The status can be one of the following states:</td>
</tr>
<tr>
<td></td>
<td>• Disconnected</td>
</tr>
<tr>
<td></td>
<td>• Calling</td>
</tr>
<tr>
<td></td>
<td>• Connected</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Current Service Status</strong></td>
<td>Status of the network connection. The status can be one of the following states:</td>
</tr>
<tr>
<td></td>
<td>• Normal</td>
</tr>
<tr>
<td></td>
<td>• Emergency Call Only</td>
</tr>
<tr>
<td></td>
<td>• No Service Available</td>
</tr>
<tr>
<td></td>
<td>• Unable To Register</td>
</tr>
<tr>
<td></td>
<td>• Forbidden PLMN</td>
</tr>
<tr>
<td></td>
<td>• Forbidden Area</td>
</tr>
<tr>
<td></td>
<td>• Roaming Not Permitted</td>
</tr>
<tr>
<td></td>
<td>• Account Not Permitted</td>
</tr>
<tr>
<td></td>
<td>• Modem Not Permitted</td>
</tr>
<tr>
<td></td>
<td>• Unknown IMSI</td>
</tr>
<tr>
<td></td>
<td>• Authentication Failure</td>
</tr>
<tr>
<td><strong>Current Service Type</strong></td>
<td>One of the following:</td>
</tr>
<tr>
<td></td>
<td>• Circuit switched (CS)</td>
</tr>
<tr>
<td></td>
<td>• Packet switched (PS)</td>
</tr>
<tr>
<td></td>
<td>• Combo (CS, PS)</td>
</tr>
<tr>
<td></td>
<td>• Invalid</td>
</tr>
<tr>
<td><strong>Current Service Mode</strong></td>
<td>One of the following:</td>
</tr>
<tr>
<td></td>
<td>• Unknown</td>
</tr>
<tr>
<td></td>
<td>• LTE</td>
</tr>
<tr>
<td></td>
<td>• DC-HSPA+</td>
</tr>
<tr>
<td></td>
<td>• HSPA+</td>
</tr>
<tr>
<td></td>
<td>• HSPA</td>
</tr>
<tr>
<td></td>
<td>• UMTS</td>
</tr>
<tr>
<td><strong>Current Band</strong></td>
<td>Current radio band in use.</td>
</tr>
<tr>
<td><strong>Mobile Country Code (MCC)</strong></td>
<td>Number that uniquely identifies the country.</td>
</tr>
<tr>
<td><strong>Mobile Network Code</strong></td>
<td>Number that uniquely identifies a network within a country.</td>
</tr>
</tbody>
</table>
Sample Output

show modem wireless network

user@host> show modem wireless network cl-1/0/0

LTE Connection details
Connected time: 147
IP: 172.16.52.4
Gateway: 172.16.52.5
DNS: 123.123.123.123
Input bps: 0
Output bps: 0
Bytes Received: 1308
Bytes Transferred: 1164
Packets Received: 10
Packets Transferred: 10
Wireless Modem Network Info
Current Modem Status: Connected
Current Service Status: Normal
Current Service Type: PS
Current Service Mode: LTE
Current Band: B3
Network: UNICOM
Mobile Country Code (MCC): 460
Mobile Network Code (MNC): 1
Location Area Code (LAC): 65534
Routing Area Code (RAC): 0
Cell Identification: 4865903
Access Point Name (APN): abcde
Public Land Mobile Network (PLMN): CHN-UNICOM
Physical Cell ID (PCI): 333
International Mobile Subscriber Identification (IMSI): ***************
International Mobile Equipment Identification (IMEI/MEID): ***************
Integrate Circuit Card Identity (ICCID): 89860114721100697502
Reference Signal Receiving Power (RSRP): -97
Reference Signal Receiving Quality (RSRQ): -16
Signal to Interference-plus-Noise Ratio (SiNR): 0
Signal Noise Ratio (SNR): 0
Energy per Chip to Interference (ECIO): 0
show modem wireless profiles

Syntax

show modem wireless profiles interface-name slot slot-number

Release Information
Command introduced in Junos OS Release 15.1X49-D100.

Description
Display the profiles configured on the LTE Mini-PIM.

Options
• interface-name—The LTE interface is cl-x/0/0, where x is the slot number in which the LTE Mini-PIM is installed.
• slot-number—The slot in which the SIM card is inserted. The value can be either 1 or 2.

Required Privilege Level
view

RELATED DOCUMENTATION

| show modem wireless firmware | 1085 |
| show modem wireless network | 1088 |

List of Sample Output
show modem wireless profiles on page 1092

Output Fields
Table 68 on page 1088 lists some of the output fields for the show modem wireless profiles command. Output fields are listed in the approximate order in which they appear.

Table 69: show modem wireless profiles Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max profiles</td>
<td>The maximum number of profiles available for each SIM card. This value is always 16. The LTE Mini-PIM supports two SIM cards and so you can configure a total of 32 profiles, although only one profile can be active at a time.</td>
</tr>
<tr>
<td>Default profile Id</td>
<td>The profile used to connect to the network when there is no profile selected. The default profile ID is always 1.</td>
</tr>
</tbody>
</table>
Table 69: show modem wireless profiles Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile details</td>
<td>• Username—The username provided by the service provider.</td>
</tr>
<tr>
<td></td>
<td>• Password—The password provided by the service provider.</td>
</tr>
<tr>
<td></td>
<td>• Access point name (APN)—The APN provided by the service provider.</td>
</tr>
<tr>
<td></td>
<td>• Authentication—The protocol used for authentication.</td>
</tr>
</tbody>
</table>

Sample Output

show modem wireless profiles

user@host> show modem wireless profiles cl-1/0/0 slot 1

Profile details
  Max profiles: 16
  Default profile Id: 1

Profile 1: ACTIVE
  Valid: TRUE
  Access point name (APN): ctnet
  Authentication: None

Profile 2: Inactive
  Valid: TRUE
  Username: myuser
  Password: 123456
  Access point name (APN): testapn
  Authentication: PAP

Profile 3: Invalid
Profile 4: Invalid
Profile 5: Invalid
Profile 6: Invalid
Profile 7: Invalid
Profile 8: Invalid
Profile 9: Invalid
Profile 10: Invalid
Profile 11: Invalid
Profile 12: Invalid
Profile 13: Invalid
Profile 14: Invalid
Profile 15: Invalid
Profile 16: Invalid
show oam ethernet link-fault-management

Syntax

```
show oam ethernet link-fault-management
 <brief | detail>
 <interface-name>
```

Release Information

Statement for SRX Series devices introduced in Junos OS Release 9.5.

Description

Display Operation, Administration, and Maintenance (OAM) link fault management (LFM) information for Ethernet interfaces.

Options

```
brief | detail—(Optional) Display the specified level of output.

interface-name—(Optional) Display link fault management information for the specified Ethernet interface only.
```

Required Privilege Level

view

RELATED DOCUMENTATION

- clear oam ethernet connectivity-fault-management path-database | 861
- clear oam ethernet connectivity-fault-management statistics
- Understanding Ethernet OAM Link Fault Management for SRX Series Services Gateways | 378
- Example: Configuring Ethernet OAM Link Fault Management on a Security Device | 380

List of Sample Output

show oam ethernet link-fault-management brief on page 1098
show oam ethernet link-fault-management detail on page 1098

Output Fields

Table 70 on page 1094 lists the output fields for the show oam ethernet link-fault-management command. Output fields are listed in the approximate order in which they appear.
### Table 70: show oam ethernet link-fault-management Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Status</strong></td>
<td>Status of the established link.</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• <strong>Fail</strong>—A link fault condition exists.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Running</strong>—A link fault condition does not exist.</td>
<td></td>
</tr>
<tr>
<td><strong>Discovery state</strong></td>
<td>State of the discovery mechanism:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• <strong>Passive Wait</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Send Any</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Send Local Remote</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Send Local Remote Ok</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Peer address</strong></td>
<td>Address of the OAM peer.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Flags</strong></td>
<td>Information about the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• <strong>Remote-Stable</strong>—Indicates remote OAM client acknowledgment of, and satisfaction with, local OAM state information. <strong>False</strong> indicates that remote DTE has either not seen or is unsatisfied with local state information. <strong>True</strong> indicates that remote DTE has seen and is satisfied with local state information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Local-Stable</strong>—Indicates local OAM client acknowledgment of, and satisfaction with, remote OAM state information. <strong>False</strong> indicates that local DTE either has not seen or is unsatisfied with remote state information. <strong>True</strong> indicates that local DTE has seen and is satisfied with remote state information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Remote-State-Valid</strong>—Indicates the OAM client has received remote state information found within local information TLVs (type, length, values) of received Information OAM PDUs. <strong>False</strong> indicates that the OAM client has not seen remote state information. <strong>True</strong> indicates that the OAM client has seen remote state information.</td>
<td></td>
</tr>
<tr>
<td><strong>Remote loopback status</strong></td>
<td>An OAM entity can put its remote peer into loopback mode using the Loopback control OAM PDU. In loopback mode, every frame received is transmitted back on the same port (except for OAM PDUs, which are needed to maintain the OAM session).</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 70: show oam ethernet link-fault-management Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote entity</td>
<td>Remote entity information.</td>
<td>All levels</td>
</tr>
<tr>
<td>information</td>
<td>• Remote MUX action—Indicates the state of the multiplexer functions of the OAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sublayer. Device is forwarding non-OAM PDUs to the lower sublayer or discarding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>non-OAM PDUs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Remote parser action—Indicates the state of the parser function of the OAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sublayer. Device is forwarding non-OAM PDUs to the higher sublayer, looping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>back non-OAM PDUs to the lower sublayer, or discarding non-OAM PDUs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Discovery mode—Indicates whether discovery mode is active or inactive.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Unidirectional mode—Indicates the ability to operate a link in unidirectional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mode for diagnostic purposes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Remote loopback mode—Indicates whether remote loopback is supported or not</td>
<td></td>
</tr>
<tr>
<td></td>
<td>supported.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Link events—Indicates whether interpreting link events is supported or not</td>
<td></td>
</tr>
<tr>
<td></td>
<td>supported on the remote peer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Variable requests—Indicates whether variable requests are supported or not</td>
<td></td>
</tr>
<tr>
<td></td>
<td>supported. The Variable Request OAM PDU, is used to request one or more MIB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>variables from the remote peer.</td>
<td></td>
</tr>
</tbody>
</table>

OAM Receive Statistics

| Information         | Number of information PDUs received.                                             | detail          |
| Event               | Number of loopback control PDUs received.                                        | detail          |
| Variable request    | Number of variable request PDUs received.                                       | detail          |
| Variable response   | Number of variable response PDUs received.                                       | detail          |
| Loopback control    | Number of loopback control PDUs received.                                       | detail          |
| Organization specific | Number of vendor organization specific PDUs received.                        | detail          |

OAM Transmit Statistics

| Information         | Number of information PDUs transmitted.                                         | detail          |
| Event               | Number of event notification PDUs transmitted.                                  | detail          |
Table 70: show oam ethernet link-fault-management Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable request</td>
<td>Number of variable request PDU transmitted.</td>
<td>detail</td>
</tr>
<tr>
<td>Variable response</td>
<td>Number of variable response PDU transmitted.</td>
<td>detail</td>
</tr>
<tr>
<td>Loopback control</td>
<td>Number of loopback control PDU transmitted.</td>
<td>detail</td>
</tr>
<tr>
<td>Organization specific</td>
<td>Number of vendor organization specific PDU transmitted.</td>
<td>detail</td>
</tr>
</tbody>
</table>

**OAM Received Symbol Error Event information**

<table>
<thead>
<tr>
<th>Events</th>
<th>Number of symbol error event TLVs that have been received after the OAM sublayer was reset.</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window</td>
<td>Symbol error event window in the received PDU.</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>The protocol default value is the number of symbols that can be received in one second on the underlying physical layer.</td>
<td></td>
</tr>
<tr>
<td>Threshold</td>
<td>Number of errored symbols in the period required for the event to be generated.</td>
<td>detail</td>
</tr>
<tr>
<td>Errors in period</td>
<td>Number of symbol errors in the period reported in the received event PDU.</td>
<td>detail</td>
</tr>
<tr>
<td>Total errors</td>
<td>Number of errored symbols that have been reported in received event TLVs after the OAM sublayer was reset.</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>Symbol errors are coding symbol errors.</td>
<td></td>
</tr>
</tbody>
</table>

**OAM Received Frame Error Event Information**

<table>
<thead>
<tr>
<th>Events</th>
<th>Number of errored frame event TLVs that have been received after the OAM sublayer was reset.</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window</td>
<td>Duration of the window in terms of the number of 100 ms period intervals.</td>
<td>detail</td>
</tr>
<tr>
<td>Threshold</td>
<td>Number of detected errored frames required for the event to be generated.</td>
<td>detail</td>
</tr>
<tr>
<td>Errors in period</td>
<td>Number of detected errored frames in the period.</td>
<td>detail</td>
</tr>
</tbody>
</table>
Table 70: show oam ethernet link-fault-management Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Total errors</strong></td>
<td>Number of errored frames that have been reported in received event TLVs after the OAM sublayer was reset. A frame error is any frame error on the underlying physical layer.</td>
<td>detail</td>
</tr>
<tr>
<td><strong>OAM Received Frame Period Error Event Information</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Events</strong></td>
<td>Number of frame seconds errors event TLVs that have been received after the OAM sublayer was reset.</td>
<td>detail</td>
</tr>
<tr>
<td><strong>Window</strong></td>
<td>Duration of the frame seconds window.</td>
<td>detail</td>
</tr>
<tr>
<td><strong>Threshold</strong></td>
<td>Number of frame seconds errors in the period.</td>
<td>detail</td>
</tr>
<tr>
<td><strong>Errors in period</strong></td>
<td>Number of frame seconds errors in the period.</td>
<td>detail</td>
</tr>
<tr>
<td><strong>Total errors</strong></td>
<td>Number of frame seconds errors that have been reported in received event TLVs after the OAM sublayer was reset.</td>
<td>detail</td>
</tr>
<tr>
<td><strong>OAM Transmitted Symbol Error Event Information</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Events</strong></td>
<td>Number of symbol error event TLVs that have been transmitted after the OAM sublayer was reset.</td>
<td>detail</td>
</tr>
<tr>
<td><strong>Window</strong></td>
<td>The symbol error event window in the transmitted PDU.</td>
<td>detail</td>
</tr>
<tr>
<td><strong>Threshold</strong></td>
<td>Number of errored symbols in the period required for the event to be generated.</td>
<td>detail</td>
</tr>
<tr>
<td><strong>Errors in period</strong></td>
<td>Number of symbol errors in the period reported in the transmitted event PDU.</td>
<td>detail</td>
</tr>
<tr>
<td><strong>Total errors</strong></td>
<td>Number of errored symbols reported in event TLVs that have been transmitted after the OAM sublayer was reset.</td>
<td>detail</td>
</tr>
<tr>
<td><strong>OAM Transmitted Frame Error Event Information</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Events</strong></td>
<td>Number of errored frame event TLVs that have been transmitted after the OAM sublayer was reset.</td>
<td>detail</td>
</tr>
<tr>
<td><strong>Window</strong></td>
<td>Duration of the window in terms of the number of 100-ms period intervals.</td>
<td>detail</td>
</tr>
</tbody>
</table>
### Table 70: show oam ethernet link-fault-management Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Threshold</strong></td>
<td>Number of detected errored frames required for the event to be generated.</td>
<td>detail</td>
</tr>
<tr>
<td><strong>Errors in period</strong></td>
<td>Number of detected errored frames in the period.</td>
<td>detail</td>
</tr>
<tr>
<td><strong>Total errors</strong></td>
<td>Number of errored frames that have been detected after the OAM sublayer was reset.</td>
<td>detail</td>
</tr>
</tbody>
</table>

### Sample Output

**show oam ethernet link-fault-management brief**

```
user@host> show oam ethernet link-fault-management brief
```

```
Interface: ge-0/0/1
 Status: Running, Discovery state: Send Any
 Peer address: 2001:bd8:00:31
 Flags: Remote-Stable Remote-State-Valid Local-Stable 0x50
 Remote loopback status: Disabled on local port, Enabled on peer port
 Remote entity information:
 Remote MUX action: discarding, Remote parser action: loopback
 Discovery mode: active, Unidirectional mode: unsupported
 Remote loopback mode: supported, Link events: supported
 Variable requests: unsupported
```

**show oam ethernet link-fault-management detail**

```
user@host> show oam ethernet link-fault-management detail
```

```
Interface: ge-0/0/1
 Status: Running, Discovery state: Send Any
 Peer address: 2001:bd8:00:31
 Flags: Remote-Stable Remote-State-Valid Local-Stable 0x50
 OAM receive statistics:
 Information: 186365, Event: 0, Variable request: 0, Variable response: 0
 Loopback control: 0, Organization specific: 0
 OAM transmit statistics:
 Information: 186347, Event: 0, Variable request: 0, Variable response: 0
 Loopback control: 0, Organization specific: 0
```
OAM received symbol error event information:
   Events: 0, Window: 0, Threshold: 0
   Errors in period: 0, Total errors: 0
OAM received frame error event information:
   Events: 0, Window: 0, Threshold: 0
   Errors in period: 0, Total errors: 0
OAM received frame period error event information:
   Events: 0, Window: 0, Threshold: 0
   Errors in period: 0, Total errors: 0
OAM transmitted symbol error event information:
   Events: 0, Window: 0, Threshold: 1
   Errors in period: 0, Total errors: 0
OAM transmitted frame error event information:
   Events: 0, Window: 0, Threshold: 1
   Errors in period: 0, Total errors: 0
Remote entity information:
   Remote MUX action: forwarding, Remote parser action: forwarding
   Discovery mode: active, Unidirectional mode: unsupported
   Remote loopback mode: supported, Link events: supported
   Variable requests: unsupported
show poe controller (View)

Syntax

show poe controller

Release Information
Command introduced in Junos OS Release 9.5.

Description
Display the status of the Power over Ethernet (PoE) controller.

Options
none—Display general parameters of the PoE software module controller.

Required Privilege Level
View

RELATED DOCUMENTATION

Example: Configuring PoE on All Interfaces | 423

Output Fields
Table 71 on page 1100 lists the output fields for the show poe controller command. Output fields are listed in the approximate order in which they appear.

Table 71: show poe controller Output Fields

<table>
<thead>
<tr>
<th>Field name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller-index</td>
<td>Identifies the controller.</td>
</tr>
<tr>
<td>Maximum-power</td>
<td>Specifies the maximum power that can be provided by the SRX Series device to PoE ports.</td>
</tr>
<tr>
<td>Power-consumption</td>
<td>Specifies the total amount of power allocated to the PoE ports.</td>
</tr>
<tr>
<td>Guard-band</td>
<td>Shows the guard band configured on the controller.</td>
</tr>
<tr>
<td>Management</td>
<td>Shows the power management mode.</td>
</tr>
</tbody>
</table>
Sample Output

show poe controller

user@host>show poe controller

<table>
<thead>
<tr>
<th>Controller index</th>
<th>Maximum power</th>
<th>Power consumption</th>
<th>Guard band</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>150.0 W</td>
<td>0.0 W</td>
<td>0 W</td>
<td>Static</td>
</tr>
</tbody>
</table>
show pppoe interfaces

Syntax

show pppoe interfaces
  <brief | detail | extensive>
  <pp0.logical>

Release Information
Command introduced in Junos OS Release 9.5.

Description
Display session-specific information about PPoE interfaces.

Options

none—Display interface information for all PPoE interfaces.

brief | detail—(Optional) Display the specified level of output.

extensive—(Optional) Display information about the number of packets sent and received and the number of timeouts during a PPoE session.

pp0.logical—(Optional) Name of an interface. The logical unit number for static interfaces can be a value from 0 through 16,385. The logical unit number for dynamic interfaces can be a value from 1,073,741,824 through the maximum number of logical interfaces supported on your SRX300, SRX320, and SRX340, and SRX550M devices.

Required Privilege Level
view

RELATED DOCUMENTATION

| Understanding Ethernet Interfaces | 277

List of Sample Output

show pppoe interfaces on page 1104
show pppoe interfaces brief on page 1105
show pppoe interfaces detail on page 1105
show pppoe interfaces extensive on page 1105

Output Fields

Table 72 on page 1103 lists the output fields for the show pppoe interfaces command. Output fields are listed in the approximate order in which they appear.
### Table 72: show pppoe interfaces Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Index</strong></td>
<td>Index number of the logical interface, which reflects its initialization sequence.</td>
</tr>
<tr>
<td><strong>State</strong></td>
<td>State of the logical interface: <strong>up</strong> or <strong>down</strong>.</td>
</tr>
<tr>
<td><strong>Session ID</strong></td>
<td>Session ID.</td>
</tr>
<tr>
<td><strong>Service name</strong></td>
<td>Type of service required (can be used to indicate an ISP name, a class, or quality of service).</td>
</tr>
<tr>
<td><strong>Configured AC name</strong></td>
<td>Configured access concentrator name.</td>
</tr>
<tr>
<td><strong>Session AC name</strong></td>
<td>Name of the access concentrator.</td>
</tr>
<tr>
<td><strong>Remote MAC address or Remote MAC</strong></td>
<td>MAC address of the remote side of the connection, either the access concentrator or the PPPoE client.</td>
</tr>
<tr>
<td><strong>Auto-reconnect timeout</strong></td>
<td>Timeout value for reconnecting after a PPPoE session is terminated (in seconds).</td>
</tr>
<tr>
<td><strong>Idle timeout</strong></td>
<td>Length of time (in seconds) that a connection can be idle before disconnecting.</td>
</tr>
<tr>
<td><strong>Session uptime</strong></td>
<td>Length of time the session has been up, in <strong>hh:mm:ss</strong>.</td>
</tr>
<tr>
<td><strong>Ignore End-Of-List tag</strong></td>
<td>Disables the <strong>End-of-List</strong> tag to continue processing of other tags after the <strong>End-of-List</strong> tag in a PPPoE Active Discovery Offer (PADO) packet.</td>
</tr>
<tr>
<td><strong>Underlying interface</strong></td>
<td>Interface on which PPPoE is running.</td>
</tr>
</tbody>
</table>
Table 72: show pppoe interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Packet Type</strong></td>
<td>Number of packets sent and received during the PPPoE session, categorized by packet type and packet errors:</td>
</tr>
<tr>
<td></td>
<td>• PADI—PPPoE Active Discovery Initiation packets.</td>
</tr>
<tr>
<td></td>
<td>• PADO—PPPoE Active Discovery Offer packets.</td>
</tr>
<tr>
<td></td>
<td>• PADR—PPPoE Active Discovery Request packets.</td>
</tr>
<tr>
<td></td>
<td>• PADS—PPPoE Active Discovery Session-Confirmation packets.</td>
</tr>
<tr>
<td></td>
<td>• PADT—PPPoE Active Discovery Termination packets.</td>
</tr>
<tr>
<td></td>
<td>• Service name error—Packets for which the Service-Name request could not be honored.</td>
</tr>
<tr>
<td></td>
<td>• AC system error—Packets for which the access concentrator experienced an error in performing the host request. For example, the host had insufficient resources to create a virtual circuit.</td>
</tr>
<tr>
<td></td>
<td>• Generic error—Packets that indicate an unrecoverable error occurred.</td>
</tr>
<tr>
<td></td>
<td>• Malformed packets—Malformed or short packets that caused the packet handler to discard the frame as unreadable.</td>
</tr>
<tr>
<td></td>
<td>• Unknown packets—Unrecognized packets.</td>
</tr>
<tr>
<td><strong>Timeout</strong></td>
<td>Timeouts that occur during the PPPoE session:</td>
</tr>
<tr>
<td></td>
<td>• PADI—No PADI packets received within the timeout period.</td>
</tr>
<tr>
<td></td>
<td>• PADO—No PADO packets received within the timeout period. (This value is always zero and is not supported.)</td>
</tr>
<tr>
<td></td>
<td>• PADR—No PADR packets received within the timeout period.</td>
</tr>
<tr>
<td><strong>Receive Error Counters</strong></td>
<td>Error counters received during the PPPoE session:</td>
</tr>
<tr>
<td></td>
<td>• PADI—No PADI error counters received during the session.</td>
</tr>
<tr>
<td></td>
<td>• PADO—No PADO error counters received during the session.</td>
</tr>
<tr>
<td></td>
<td>• PADR—No PADR error counters received during the session.</td>
</tr>
<tr>
<td></td>
<td>• PADS—No PADS error counters received during the session.</td>
</tr>
</tbody>
</table>

Sample Output

```
show pppoe interfaces
user@host> show pppoe interfaces
```

show pppoe interfaces brief

user@host> show pppoe interfaces brief

<table>
<thead>
<tr>
<th>Interface</th>
<th>Underlying interface</th>
<th>State</th>
<th>Session ID</th>
<th>Remote MAC address</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp0.0</td>
<td>ge-0/0/1.0</td>
<td>Session up</td>
<td>4</td>
<td>b0:c6:9a:74:5e:c1</td>
</tr>
</tbody>
</table>

show pppoe interfaces detail

user@host> show pppoe interfaces detail

pp0.0 Index 71
State: Session up, Session ID: 4,
Service name: None,
Session AC name: srx-pppoe-ac, Configured AC name: None,
Remote MAC address: b0:c6:9a:74:5e:c1,
Session uptime: 5d 15:21 ago,
Auto-reconnect timeout: Never, Idle timeout: Never,
Underlying interface: ge-0/0/1.0 Index 70
Ignore End-Of-List tag: Enable

show pppoe interfaces extensive

user@host> show pppoe interfaces extensive

pp0.0 Index 71
State: Session up, Session ID: 4,
Service name: None,
Session AC name: srx-pppoe-ac, Configured AC name: None,
Remote MAC address: b0:c6:9a:74:5e:c1,
Session uptime: 5d 15:22 ago,
Auto-reconnect timeout: Never, Idle timeout: Never,
<table>
<thead>
<tr>
<th>PacketType</th>
<th>Sent</th>
<th>Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADI</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PADO</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PADR</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PADS</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PADT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Service name error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC system error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Generic error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Malformed packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unknown packets</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Receive Error Counters**

<table>
<thead>
<tr>
<th>PacketType</th>
<th>Sent</th>
<th>Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADI</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PADO</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PADR</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Timeout**

<table>
<thead>
<tr>
<th>PacketType</th>
<th>Sent</th>
<th>Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADI</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PADO</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PADR</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
show pppe statistics

Syntax

```
show pppe statistics
<logical-interface-name>
```

Release Information

Command is introduced in Junos OS Release 9.5.

Description

Display statistics information about PPoE interfaces.

Options

- `none`—Display PPoE statistics for all interfaces.
- `logical-interface-name`—(Optional) Name of an underlying PPoE logical interface.

Required Privilege Level

view

RELATED DOCUMENTATION

- `show pppe interfaces` | 1102
- `Understanding Ethernet Interfaces` | 277

List of Sample Output

`show pppe statistics` on page 1108

Output Fields

Table 73 on page 1107 lists the output fields for the `show pppe statistics` command. Output fields are listed in the approximate order in which they appear.

**Table 73: show pppe statistics Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active PPoE sessions</td>
<td>Total number of active PPoE sessions.</td>
</tr>
</tbody>
</table>
### Table 73: show pppoe statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
</table>
| **Packet Type**     | Number of packets sent and received during the PPPoE session, categorized by packet type and packet errors:  
  - **PADI**—PPPoE Active Discovery Initiation packets.  
  - **PADO**—PPPoE Active Discovery Offer packets.  
  - **PADR**—PPPoE Active Discovery Request packets.  
  - **PADS**—PPPoE Active Discovery Session-Confirmation packets.  
  - **PADT**—PPPoE Active Discovery Termination packets.  
  - **Service name error**—Packets for which the Service-Name request could not be honored.  
  - **AC system error**—Packets for which the access concentrator experienced an error in performing the host request. For example, the host had insufficient resources to create a virtual circuit.  
  - **Generic error**—Packets that indicate an unrecoverable error occurred.  
  - **Malformed packets**—Malformed or short packets that caused the packet handler to discard the frame as unreadable.  
  - **Unknown packets**—Unrecognized packets. |
| **Timeout**         | Timeouts that occur during the PPPoE session:  
  - **PADI**—No PADI packets received within the timeout period.  
  - **PADO**—No PADO packets received within the timeout period. (This value is always zero and is not supported.)  
  - **PADR**—No PADR packets received within the timeout period. |
| **Receive Error Counters** | Error counters received during the PPPoE session:  
  - **PADI**—No PADI error counters received during the session.  
  - **PADO**—No PADO error counters received during the session.  
  - **PADR**—No PADR error counters received during the session.  
  - **PADS**—No PADS error counters received during the session. |

#### Sample Output

```
show pppoe statistics

user@host> show pppoe statistics
```
Active PPPoE sessions: 0

<table>
<thead>
<tr>
<th>PacketType</th>
<th>Sent</th>
<th>Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADI</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PADO</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PADR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PADS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PADT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Service name error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC system error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Generic error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Malformed packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unknown packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Timeout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PADI</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PADO</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PADR</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Receive Error Counters

<table>
<thead>
<tr>
<th>PacketType</th>
<th>Sent</th>
<th>Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADI</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PADO</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PADR</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PADS</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
show poe telemetries

Syntax

```
show poe telemetries
 <interface interface-name count number>
 <count number interface interface-name>
```

Release Information
Command modified in Junos OS Release 12.3X48-D10.

Description
Display a history of power consumption on the specified interface. Telemetries must be enabled on the interface before you can display a history of power consumption.

Options
- **Interface interface-name**—Display telemetries for the specified PoE interface.
- **count number**—Display the specified number of telemetries records for the specified PoE interface.

Required Privilege Level
View

RELATED DOCUMENTATION

Example: Configuring PoE on All Interfaces | 423

Output Fields

Table 74 on page 1110 lists the output fields for the `show poe telemetries interface` command. Output fields are listed in the approximate order in which they appear.

Table 74: show poe telemetries interface Output Fields

<table>
<thead>
<tr>
<th>Field name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 No</td>
<td>Number of the record for the specified port. The last record is the most is the most recent.</td>
</tr>
<tr>
<td>Timestamp</td>
<td>Time that the power-consumption data was gathered.</td>
</tr>
<tr>
<td>Power</td>
<td>Amount of power provided by the specified port at the time the data was gathered.</td>
</tr>
<tr>
<td>Voltage</td>
<td>Voltage on the specified port at the time the data was gathered.</td>
</tr>
</tbody>
</table>
Sample Output

show poe telemetries interface

user@host>show poe telemetries interface ge-0/0/1 count 8

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Timestamp</th>
<th>Power</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fri Jan 04 11:41:15</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
<tr>
<td>2</td>
<td>Fri Jan 04 11:40:15</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
<tr>
<td>3</td>
<td>Fri Jan 04 11:39:15</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
<tr>
<td>4</td>
<td>Fri Jan 04 11:38:15</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
<tr>
<td>5</td>
<td>Fri Jan 04 11:37:15</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
<tr>
<td>6</td>
<td>Fri Jan 04 11:36:15</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
<tr>
<td>7</td>
<td>Fri Jan 04 11:35:15</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
<tr>
<td>8</td>
<td>Fri Jan 04 11:34:15</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
</tbody>
</table>

user@host>show poe telemetries count 5 interface ge-0/0/1

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Timestamp</th>
<th>Power</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fri Jan 04 11:47:15</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
<tr>
<td>2</td>
<td>Fri Jan 04 11:38:15</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
<tr>
<td>3</td>
<td>Fri Jan 04 11:29:15</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
<tr>
<td>4</td>
<td>Fri Jan 04 11:11:15</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
<tr>
<td>5</td>
<td>Fri Jan 04 11:10:15</td>
<td>6.6 W</td>
<td>47.2 V</td>
</tr>
</tbody>
</table>
show services accounting

Syntax

```
show services accounting
aggregation
errors
<inline-jflow | inline-jflow fpc-slot slot number>
flow
<inline-jflow | inline-jflow fpc-slot slot number>
flow-detail
memory
packet-size-distribution
status
<inline-jflow | inline-jflow fpc-slot slot number>
usage
```

Release Information
Command introduced in Junos OS Release 10.4. The `inline-jflow` and `fpc-slot` options are added in Junos OS Release 12.1X45-D10.

Description
Display sampled accounting service.

Options
- aggregation—Display aggregation information.
- errors—Display error statistics.
  - inline-jflow — Display service accounting inline flow monitoring parameters.
  - fpc-slot slot number— Display Flexible PIC Concentrator (FPC) slot for inline flow monitoring.
- flow—Display flow information.
  - inline-jflow — Display service accounting inline flow monitoring parameters.
  - fpc-slot slot number— Display Flexible PIC Concentrator (FPC) slot for inline flow monitoring.
- flow-detail—Display flow detail.
- memory—Display memory information.
- status—Display service accounting parameters.
  - inline-jflow — Display service accounting inline flow monitoring parameters.
• fpc-slot slot number— Display Flexible PIC Concentrator (FPC) slot for inline flow monitoring.

• usage—Display CPU usage.

Required Privilege Level
view

RELATED DOCUMENTATION

| Configuring Flow Aggregation to Use Version 9 Flow Templates |

List of Sample Output
show services accounting status inline-jflow on page 1113
show services accounting errors inline-jflow on page 1113
show service accounting flow inline-jflow on page 1114

Output Fields
Lists the output fields for the show services accounting command.

Sample Output

show services accounting status inline-jflow
user@host> show services accounting status inline-jflow

Status information
  FPC Slot: 5
  Export format: IP-FIX(V9)
  IPv4 Route Record Count: 16, IPv6 Route Record Count: 5
  Route Record Count: 21, AS Record Count: 1
  Route-Records Set: Yes, Config Set: Yes

show services accounting errors inline-jflow
user@host> show services accounting errors inline-jflow

Error Information
  FPC Slot: 5
  PIC Slot: 0
  Flow Creation Failures: 0
Route Record Lookup Failures: 0
AS Lookup Failures: 0
Export Packet Failures: 0
Memory Overload: No

IPv4 Errors:
IPv4 Flow Creation Failures: 0
IPv4 Route Record Lookup Failures: 0
IPv4 AS Lookup Failures: 0
IPv4 Export Packet Failures: 0

IPv6 Errors:
IPv6 Flow Creation Failures: 0
IPv6 Route Record Lookup Failures: 0
IPv6 AS Lookup Failures: 0
IPv6 Export Packet Failures: 0

show service accounting flow inline-jflow

user@host> show service accounting flow inline-jflow

Flow Information
FPC Slot:  5
PIC Slot:  0
Flow Packets: 2  Flow Bytes: 0
Active Flows: 1  Total Flows: 2
Flows Exported: 0 Flow Packets Exported: 231
Flows Inactive Timed Out: 1 Flows Active Timed Out: 2

IPv4 Flows:
IPv4 Flow Packets: 1  IPv4 Flow Bytes: 0
IPv4 Active Flows: 1  IPv4 Total Flows: 1
IPv4 Flows Exported: 0 IPv4 Flow Packets Exported: 132
IPv4 Flows Inactive Timed Out: 0 IPv4 Flows Active Timed Out: 1

IPv6 Flows:
IPv6 Flow Packets: 1  IPv6 Flow Bytes: 0
IPv6 Active Flows: 0  IPv6 Total Flows: 1
IPv6 Flows Inactive Timed Out: 1 IPv6 Flows Active Timed Out: 1
show services accounting aggregation (View)

Syntax

```
show services accounting aggregation
```

Release Information
Command introduced in Junos OS Release 10.4.

Description
Display aggregation information for the accounting service.

Options
- as—Display aggregation type AS.
- destination-prefix—Display aggregation type destination-prefix.
- protocol-port—Display aggregation type protocol-port.
- source-destination-prefix—Display aggregation type source-destination-prefix.
- source-prefix—Display aggregation type source-prefix.
- template—Display aggregation type template.

Required Privilege Level
view

RELATED DOCUMENTATION
- Configuring Flow Aggregation to Use Version 9 Flow Templates
show services accounting aggregation template (View)

Syntax

    show services accounting aggregation template

Release Information

Command introduced in Junos OS Release 10.4.

Description

Display aggregation type template.

Options

- detail—Display detailed output.
- extensive—Display extensive output.
- template-name—Display name of the template.
- terse—Display terse output (default).

Required Privilege Level

view

RELATED DOCUMENTATION

- Configuring Flow Aggregation to Use Version 9 Flow Templates
show services accounting flow-detail (View)

Syntax

```
show services accounting flow-detail
```

Release Information
Command introduced in Junos OS Release 10.4.

Description
Display flow detail

Options
- `destination-as`—Filter term destination AS.
- `destination-port`—Filter term destination port.
- `destination-prefix`—Filter term destination prefix.
- `detail`—Display detailed output.
- `extensive`—Display extensive output.
- `input-snmp-interface-index`—Filter term input SNMP interface index.
- `limit`—Display maximum number of flows to display.
- `name`—Display name of the service, wildcard, or "all".
- `order`—Display order for displaying flows.
- `output-snmp-interface-index`—Filter term output SNMP interface index.
- `proto`—Filter term protocol.
- `source-as`—Filter term source AS.

Required Privilege Level
view

RELATED DOCUMENTATION

- Configuring Flow Aggregation to Use Version 9 Flow Templates
show wlan access-points

Syntax
Syntax (SRX Series devices)

```
show wlan
<detail>
<virtual-access-points>
<client-associations summary>
<neighbors>
```

Release Information
Command introduced in Junos OS Release 19.4R1 for SRX Series devices.

Description
Display information about wireless and virtual access point WLANs configured on the wireless LAN interface wlx/0/0.

Options
detail—(Optional) Display the specified level of output.

virtual access points—Display Virtual access Points (VAPs) status and statistics.

client-associations—Client association number of the specified access point.

neighbors—List neighboring access point information including the MAC address, WPA, band, channel and SSID values.

Required Privilege Level
view

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Wi-Fi Mini-Physical Interface Module Overview</th>
<th>593</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure Wi-Fi Mini-PIM</td>
<td>594</td>
</tr>
<tr>
<td>wlan</td>
<td>854</td>
</tr>
</tbody>
</table>

List of Sample Output
show wlan access-points (SRX Series devices) on page 1120
show wlan access-points (SRX Series devices) on page 1121
Output Fields

Table 75 on page 1119 lists the output fields for the `show wlan access-points` command. Output fields are listed in the approximate order in which they appear.

Table 75: Show wlan access-points output fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access point</td>
<td>Name of the wireless access point.</td>
<td>All levels.</td>
</tr>
<tr>
<td>Type</td>
<td>Internal.</td>
<td>detail</td>
</tr>
<tr>
<td>Location</td>
<td>Location of the access point.</td>
<td>detail</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Serial number of the Mini-PIM.</td>
<td>detail</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>Firmware version of the Mini-PIM.</td>
<td>detail</td>
</tr>
<tr>
<td>Alternate Version</td>
<td>Alternate firmware version of the Mini-PIM.</td>
<td>detail</td>
</tr>
<tr>
<td>Country</td>
<td>Country code.</td>
<td>detail</td>
</tr>
<tr>
<td>Access Interface</td>
<td>Name of the wireless LAN interface on the Wi-Fi Mini-PIM.</td>
<td>detail</td>
</tr>
<tr>
<td>Packet Capture</td>
<td>Status of the traffic flow.</td>
<td>detail</td>
</tr>
<tr>
<td>Capture Interface</td>
<td>Interface captured on radio.</td>
<td>detail</td>
</tr>
<tr>
<td>Capture File</td>
<td>Capture file name.</td>
<td>detail</td>
</tr>
<tr>
<td>Capture Duration</td>
<td>Duration of capture in seconds.</td>
<td>detail</td>
</tr>
<tr>
<td>Capture File Size</td>
<td>File size of capture in kilobytes.</td>
<td>detail</td>
</tr>
<tr>
<td>MAC Address</td>
<td>MAC address of the Ethernet port.</td>
<td>detail</td>
</tr>
<tr>
<td>IPv4 Address</td>
<td>IPv4 address of the access point.</td>
<td>detail</td>
</tr>
<tr>
<td>Mode</td>
<td>Authentication mode on the radio.</td>
<td>detail</td>
</tr>
</tbody>
</table>
Table 75: Show wlan access-points output fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>Channel bandwidth on the radio.</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>neighbors</td>
</tr>
<tr>
<td>VAP</td>
<td>Name of the virtual access point.</td>
<td></td>
</tr>
<tr>
<td>SSID</td>
<td>Network name of the virtual access point.</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>neighbors</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>VLAN ID associated with the access point.</td>
<td>detail</td>
</tr>
<tr>
<td>Traffic Statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the wireless LAN</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input bytes—Number of bytes received on the wireless LAN interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output bytes—Number of bytes transmitted on the wireless LAN interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets—Number of packets received on the wireless LAN interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output packets—Number of packets transmitted on the wireless LAN interface.</td>
<td></td>
</tr>
<tr>
<td>Client number</td>
<td>Client number on Radios 1 and 2.</td>
<td>client-associations</td>
</tr>
<tr>
<td>MAC Privacy</td>
<td>Client MAC address as per the virtual access.</td>
<td>neighbors</td>
</tr>
<tr>
<td>WPA</td>
<td>Status of the security authentication method.</td>
<td>neighbors</td>
</tr>
<tr>
<td>Band</td>
<td>Status of the band.</td>
<td>neighbors</td>
</tr>
</tbody>
</table>

Sample Output

show wlan access-points (SRX Series devices)

user@router> show wlan access-point

<table>
<thead>
<tr>
<th>Access-Point</th>
<th>Type</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Radio-mode/Channel/Bandwidth

<table>
<thead>
<tr>
<th>Access Point</th>
<th>Type</th>
<th>Access Interface</th>
<th>Packet Capture</th>
<th>Radio1</th>
<th>Radio2</th>
</tr>
</thead>
<tbody>
<tr>
<td>bj340d-ha</td>
<td>Internal</td>
<td>wl-2/0/0</td>
<td>Off</td>
<td>Mode: Off, Channel: Off, Bandwidth: Off</td>
<td>Mode: Off, Channel: Off, Bandwidth: Off</td>
</tr>
</tbody>
</table>

show wlan access-points (SRX Series devices)

user@router> show wlan access-point bj340d-ha

Active access point information

Access Point : bj340d-ha
Type : Internal
Access Interface : wl-2/0/0
Packet Capture : Off
Radio1 : Mode: Off, Channel: Off, Bandwidth: Off
Radio2 : Mode: Off, Channel: Off, Bandwidth: Off

show wlan access-points detail (SRX Series devices)

user@router> show wlan access-point bj340d-ha detail

Active access point detail information

Access Point : bj340d-ha
Type : Internal
Location : Default Location
Serial Number : EV0519AF0022
Firmware Version : v1.2.2
Alternate Version : v1.1.8
Country : US
Access Interface : wl-2/0/0
System Time : Thu Oct 31 12:11:40 UTC 2019
Packet Capture : Off
Ethernet Port:

MAC Address : 94:f7:ad:2c:7b:87
Radio1:

Status : Off
MAC Address : 94:f7:ad:2c:7b:89
Temperature : 0
Mode : Off
Channel : Off
Bandwidth : Off
Transmit Power : Off
Radio2:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Off</td>
</tr>
<tr>
<td>MAC Address</td>
<td>94:f7:ad:2c:7b:88</td>
</tr>
<tr>
<td>Temperature</td>
<td>0</td>
</tr>
<tr>
<td>Mode</td>
<td>Off</td>
</tr>
<tr>
<td>Channel</td>
<td>Off</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Off</td>
</tr>
<tr>
<td>Transmit Power</td>
<td>Off</td>
</tr>
</tbody>
</table>

show wlan virtual access-points (SRX Series devices)

```
user@host> show wlan access-point bj340d-ha virtual-access-points

Virtual access points information
Access Point: bj340d-ha
Radiol:
VAP0:
SSID : juniper_ap_0
MAC Address : 00:11:22:33:44:55
VLAN ID : 5
Traffic Statistics:
Input Bytes : 37979930
Output Bytes : 54231321
Input Packets : 210737
Output Packets : 298451

VAP1:
SSID : juniper_ap_3
MAC Address : 00:11:22:33:44:58
VLAN ID : 15
Traffic Statistics:
Input Bytes : 83421130
Output Bytes : 21221311
Input Packets : 510837
Output Packets : 238451

Radio2:
VAP0:
SSID : juniper_ap_7
MAC Address : 00:11:22:33:44:75
VLAN ID : 5
Traffic Statistics:
Input Bytes : 67079335
Output Bytes : 34932321
Input Packets : 415737
```
Output Packets : 308451
VAP1:
SSID : juniper_ap_3
MAC Address : 00:11:22:33:44:78
VLAN ID : 49
Traffic Statistics:
Input Bytes : 37979930
Output Bytes : 54231321
Input Packets : 512837
Output Packets : 901151

show wlan access-point client-associations summary (SRX Series Devices)
user@host>  show wlan access-point bj340d-ha client associations summary

Access point client associations summary
Access point: bj340d-ha
Client number on radio 1 (5.0 GHz): 30
Client number on radio 2 (2.4 GHz): 20
Total client number on access point: 50

show wlan access-point neighbors (SRX Series Devices)
user@host>  show wlan access-point bj340d-ha neighbors

Access point neighbors information
Access point: bj340d-ha
MAC Privacy WPA Band Channel SSID
00:11:22:33:44:55 Off Off 2.4 10 xyz-ap
00:12:23:45:56:67 On On 5 100 abc-ap
speed (Chassis Cluster)

Syntax

```
set chassis cluster control-port speed (1g |10g);
```

Release Information

Statement introduced in Junos OS Release 18.1R1 for SRX4600.

Description

The SRX4600 supports three different PIC types—8-port 10-Gigabit Ethernet PIC, 4-port 40-Gigabit or 100-Gigabit Ethernet PIC, and 4-port 10-Gigabit Ethernet PIC (in a chassis cluster). Out of the four ports on the 10-Gigabit Ethernet PIC in a chassis cluster, two ports are fabric ports and the other two ports are chassis cluster control ports. The two fabric ports do not support 1-Gbps speed. Only the two control ports of the chassis cluster support a port speed of 1 Gbps.

On chassis cluster control interfaces, you can configure the operating speed of the 4-port 10-Gigabit Ethernet PIC from default 10-Gbps port speed to 1-Gbps port speed. You must reboot the device for the changed configuration to take effect.

The chassis cluster control interfaces do not support multiple speeds.

Following are the list of optics supported on SRX4600:

- SRX-SFP-1GE-LX
- SRX-SFP-1GE-LX-ET
- SRX-SFP-1GE-SX
- SRX-SFP-1GE-SX-ET

Autonegotiation is automatically disabled when 1-Gbps speed is configured on the interfaces.

**NOTE:**

- The interface name for any xe interface remains same after converting its speed from 10G to 1G.

- To view the speed configured for the interface, execute the `show interfaces extensive` command. The Speed Configuration field's value of `1G` or `AUTO` in the command output indicates whether the current operation speed of the interface is 1 Gbps or the default 10 Gbps, respectively.

Options

- 1g — Link speed of 1 Gbps
• 10g — Link speed of 10 Gbps

**Required Privilege Level**

*interface*—To view this statement in the configuration.
*interface-control*—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- speed (Gigabit Ethernet interface) | 836