Table of Contents

About the Documentation .. vii
Documentation and Release Notes vii
Using the Examples in This Manual vii
 Merging a Full Example ... viii
 Merging a Snippet ... viii
Documentation Conventions ... ix
Documentation Feedback .. xi
Requesting Technical Support ... xi
Self-Help Online Tools and Resources xii
Opening a Case with JTAC ... xii

Part 1 Overview

Chapter 1 Accessing Standards Documents 3
 Accessing Standards Documents on the Internet 3

Part 2 Supported Standards

Chapter 2 Chassis and System Standards 7
 Supported BFD Standards .. 7
 Supported BOOTP and DHCP Standards 8
 Supported Mobile IP Standards 9
 Supported Network Management Standards 9
 Supported Port Extension Standards 20
 Supported RADIUS and TACACS+ Standards for User Authentication 20
 Supported System Access Standards 21
 Supported Time Synchronization Standard 23

Chapter 3 Interface Standards ... 25
 Supported ATM Interface Standards 25
 Supported Ethernet Interface Standards 26
 Supported Frame Relay Interface Standards 27
 Supported GRE and IP-IP Interface Standards 27
 Supported PPP Interface Standards 28
 Supported SDH and SONET Interface Standards 29
 Supported Serial Interface Standards 30
 Supported T3 Interface Standard 30

Chapter 4 Layer 2 Standards .. 31
 Supported Layer 2 Networking Standards 31
 Supported L2TP Standards ... 32
 Supported VPWS Standards .. 32
Supported Layer 2 VPN Standards .. 33
Supported Security Standards ... 34
Supported VPWS Standards ... 34

Chapter 5
MPLS Applications Standards .. 37
Supported GMPLS Standards .. 37
Supported LDP Standards ... 38
Supported MPLS Standards .. 39
Supported PCEP Standards .. 42
Supported RSVP Standards .. 42

Chapter 6
Open Standards .. 45
Supported Open Standards ... 45

Chapter 7
Packet Processing Standards .. 49
Supported CoS Standards ... 49
 Supported Packet Filtering Standards ... 50
Supported Policing Standard ... 50

Chapter 8
Routing Protocol Standards .. 53
Supported Standards for BGP .. 53
Supported ES-IS Standards ... 56
Supported ICMP Router Discovery and IPv6 Neighbor Discovery Standards .. 56
Supported IP Multicast Protocol Standards 57
Supported IPv4, TCP, and UDP Standards .. 58
Supported IPv6 Standards ... 60
Supported Standards for IS-IS .. 63
Supported OSPF and OSPFv3 Standards .. 64
Supported RIP and RIPng Standards ... 66

Chapter 9
Services PIC and DPC Standards ... 67
Supported DTCP Standard ... 67
Supported Flow Monitoring and Discard Accounting Standards 67
Supported IPsec and IKE Standards ... 68
Supported L2TP Standards .. 70
Supported Link Services Standards ... 70
Supported NAT and SIP Standards .. 71
Supported RPM Standard .. 71
Supported Voice Services Standards .. 72

Chapter 10
VPLS and VPN Standards .. 73
Supported Carrier-of-Carriers and Interprovider VPN Standards 73
Supported EVPN Standards .. 74
Supported VPWS Standards .. 74
Supported Layer 2 VPN Standards .. 75
Supported Layer 3 VPN Standards .. 76
Supported Multicast VPN Standards .. 77
Supported VPLS Standards ... 77
List of Tables

About the Documentation .. vii
Table 1: Notice Icons ... ix
Table 2: Text and Syntax Conventions x
About the Documentation

- Documentation and Release Notes on page vii
- Using the Examples in This Manual on page vii
- Documentation Conventions on page ix
- Documentation Feedback on page xi
- Requesting Technical Support on page xi

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product documentation page on the Juniper Networks website at https://www.juniper.net/documentation/.

If the information in the latest release notes differs from the information in the documentation, follow the product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts. These books go beyond the technical documentation to explore the nuances of network architecture, deployment, and administration. The current list can be viewed at https://www.juniper.net/books.

Using the Examples in This Manual

If you want to use the examples in this manual, you can use the load merge or the load merge relative command. These commands cause the software to merge the incoming configuration into the current candidate configuration. The example does not become active until you commit the candidate configuration.

If the example configuration contains the top level of the hierarchy (or multiple hierarchies), the example is a full example. In this case, use the load merge command.

If the example configuration does not start at the top level of the hierarchy, the example is a snippet. In this case, use the load merge relative command. These procedures are described in the following sections.
Merging a Full Example

To merge a full example, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration example into a
 text file, save the file with a name, and copy the file to a directory on your routing
 platform.

 For example, copy the following configuration to a file and name the file `ex-script.conf`.
 Copy the `ex-script.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   system {
     scripts {
       commit {
         file ex-script.xsl;
       }
     }
   }
   interfaces {
     fxp0 {
       disable;
       unit 0 {
         family inet {
           address 10.0.0.1/24;
         }
       }
     }
   }
   ```

2. Merge the contents of the file into your routing platform configuration by issuing the
 `load merge` configuration mode command:

   ```
   [edit]
   user@host# load merge /var/tmp/ex-script.conf
   load complete
   ```

Merging a Snippet

To merge a snippet, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration snippet into a text
 file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following snippet to a file and name the file `ex-script-snippet.conf`.
 Copy the `ex-script-snippet.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   commit {
     file ex-script-snippet.xsl; }
2. Move to the hierarchy level that is relevant for this snippet by issuing the following configuration mode command:

```
[edit]
user@host# edit system scripts
[edit system scripts]
```

3. Merge the contents of the file into your routing platform configuration by issuing the `load merge relative` configuration mode command:

```
[edit system scripts]
user@host# load merge relative /var/tmp/ex-script-snippet.conf
load complete
```

For more information about the `load` command, see CLI Explorer.

**Documentation Conventions**

*Table 1 on page ix* defines notice icons used in this guide.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="icon" alt="i" /></td>
<td>Informational note</td>
<td>Indicates important features or instructions.</td>
</tr>
<tr>
<td>![!]</td>
<td>Caution</td>
<td>Indicates a situation that might result in loss of data or hardware damage.</td>
</tr>
<tr>
<td>![!]</td>
<td>Warning</td>
<td>Alerts you to the risk of personal injury or death.</td>
</tr>
<tr>
<td>![!]</td>
<td>Laser warning</td>
<td>Alerts you to the risk of personal injury from a laser.</td>
</tr>
<tr>
<td>![!]</td>
<td>Tip</td>
<td>Indicates helpful information.</td>
</tr>
<tr>
<td>![!]</td>
<td>Best practice</td>
<td>Alerts you to a recommended use or implementation.</td>
</tr>
</tbody>
</table>

*Table 2 on page x* defines the text and syntax conventions used in this guide.
### Table 2: Text and Syntax Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Bold text like this</strong></td>
<td>Represents text that you type.</td>
<td>To enter configuration mode, type the <code>configure</code> command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>user@host&gt; configure</code></td>
</tr>
<tr>
<td><strong>Fixed-width text like this</strong></td>
<td>Represents output that appears on the terminal screen.</td>
<td><code>user@host&gt; show chassis alarms</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No alarms currently active</td>
</tr>
<tr>
<td><strong>Italic text like this</strong></td>
<td>• Introduces or emphasizes important new terms.</td>
<td>• A policy term is a named structure that defines match conditions and actions.</td>
</tr>
<tr>
<td></td>
<td>• Identifies guide names.</td>
<td>• Junos OS CLI User Guide</td>
</tr>
<tr>
<td></td>
<td>• Identifies RFC and Internet draft titles.</td>
<td>• RFC 1997, BGP Communities Attribute</td>
</tr>
<tr>
<td><strong>Italic text like this</strong></td>
<td>Represents variables (options for which you substitute a value) in commands or configuration statements.</td>
<td>Configure the machine’s domain name:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>[edit] root@# set system domain-name domain-name</code></td>
</tr>
<tr>
<td><strong>Text like this</strong></td>
<td>Represents names of configuration statements, commands, files, and directories; configuration hierarchy levels; or labels on routing platform components.</td>
<td>• To configure a stub area, include the stub statement at the `[edit protocols ospf area area-id] hierarchy level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The console port is labeled CONSOLE.</td>
</tr>
<tr>
<td><code>&lt; &gt;</code> (angle brackets)</td>
<td>Encloses optional keywords or variables.</td>
<td><code>stub &lt;default-metric metric&gt;</code>;</td>
</tr>
<tr>
<td>`</td>
<td>` (pipe symbol)</td>
<td>Indicates a choice between the mutually exclusive keywords or variables on either side of the symbol. The set of choices is often enclosed in parentheses for clarity.</td>
</tr>
<tr>
<td><code>#</code> (pound sign)</td>
<td>Indicates a comment specified on the same line as the configuration statement to which it applies.</td>
<td><code>rsvp [ # Required for dynamic MPLS only</code></td>
</tr>
<tr>
<td><code>[]</code> (square brackets)</td>
<td>Encloses a variable for which you can substitute one or more values.</td>
<td><code>community name members [ community-ids ]</code></td>
</tr>
<tr>
<td>Indention and braces <code>{ }</code></td>
<td>Identifies a level in the configuration hierarchy.</td>
<td><code>[edit] routing-options { static { route default { nexthop address; retain; } } }</code></td>
</tr>
<tr>
<td><code>:</code> (semicolon)</td>
<td>Identifies a leaf statement at a configuration hierarchy level.</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Text and Syntax Conventions (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUI Conventions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Bold text like this** | Represents graphical user interface (GUI) items you click or select. | • In the Logical Interfaces box, select All Interfaces.  
• To cancel the configuration, click Cancel. |
| > (bold right angle bracket) | Separates levels in a hierarchy of menu selections. | In the configuration editor hierarchy, select Protocols > Ospf. |

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation. You can use either of the following methods:

- Online feedback system—Click TechLibrary Feedback, on the lower right of any page on the Juniper Networks TechLibrary site, and do one of the following:
  - Click the thumbs-up icon if the information on the page was helpful to you.
  - Click the thumbs-down icon if the information on the page was not helpful to you or if you have suggestions for improvement, and use the pop-up form to provide feedback.
  - E-mail—Send your comments to techpubs-comments@juniper.net. Include the document or topic name, URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC). If you are a customer with an active J-Care or Partner Support Service support contract, or are covered under warranty, and need post-sales technical support, you can access our tools and resources online or open a case with JTAC.

- Product warranties—For product warranty information, visit https://www.juniper.net/support/warranty/.
• JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called the Customer Support Center (CSC) that provides you with the following features:

• Find CSC offerings: https://www.juniper.net/customers/support/
• Search for known bugs: https://prsearch.juniper.net/
• Find product documentation: https://www.juniper.net/documentation/
• Find solutions and answer questions using our Knowledge Base: https://kb.juniper.net/
• Download the latest versions of software and review release notes: https://www.juniper.net/customers/csc/software/
• Search technical bulletins for relevant hardware and software notifications: https://kb.juniper.net/InfoCenter/
• Join and participate in the Juniper Networks Community Forum: https://www.juniper.net/company/communities/
• Open a case online in the CSC Case Management tool: https://www.juniper.net/cm/

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool: https://entitlementsearch.juniper.net/entitlementsearch/

Opening a Case with JTAC

You can open a case with JTAC on the Web or by telephone.

• Use the Case Management tool in the CSC at https://www.juniper.net/cm/.
• Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see https://www.juniper.net/support/requesting-support.html.
PART 1

Overview

- Accessing Standards Documents on page 3
CHAPTER 1

Accessing Standards Documents

Accessing Standards Documents on the Internet

The following information about the location of standards on the Internet is accurate as of March 2018. It is subject to change and is provided only as a courtesy to the reader.

Information about accessing MIBs is provided in the entry for each MIB.

- ANSI standards are published by the American National Standards Institute. You can search for specific standards at http://webstore.ansi.org/.
- FRF (Frame Relay Forum) standards are published by the Broadband Forum. They can be accessed at https://www.broadband-forum.org/component/sppagebuilder/?view=page&id=185.
- GR (Generic Requirements) standards are published by Ericsson (Telcordia is now part of Ericsson). Information about them can be accessed by clicking the "Documents" link at http://telecom-info.telcordia.com/site-cgi/ido/.
- IEEE standards are published by the Institute of Electrical and Electronics Engineers. They can be accessed at http://ieeexplore.ieee.org/browse/standards/get-program/page/.
- INCITS standards are published by the InterNational Committee for Information Technology Standards. They can be accessed at http://www.incits.org/standards-information/.
- Internet drafts are published by the Internet Engineering Task Force (IETF). They can be accessed at https://www.ietf.org/standards/ids/.
- ITU–T Recommendations are published by the International Telecommunication Union. They can be accessed at http://www.itu.int/rec/T-REC.
NOTE: Junos OS supports ITU-T Y.1731 (year 2006 version) that defines Ethernet service OAM features for fault monitoring, diagnostics, and performance monitoring.

- RFCs are published by the IETF. They can be accessed at https://www.ietf.org/standards/rfc/.
PART 2

Supported Standards

• Chassis and System Standards on page 7
• Interface Standards on page 25
• Layer 2 Standards on page 31
• MPLS Applications Standards on page 37
• Open Standards on page 45
• Packet Processing Standards on page 49
• Routing Protocol Standards on page 53
• Services PIC and DPC Standards on page 67
• VPLS and VPN Standards on page 73
Chassis and System Standards

- Supported BFD Standards on page 7
- Supported BOOTP and DHCP Standards on page 8
- Supported Mobile IP Standards on page 9
- Supported Network Management Standards on page 9
- Supported Port Extension Standards on page 20
- Supported RADIUS and TACACS+ Standards for User Authentication on page 20
- Supported System Access Standards on page 21
- Supported Time Synchronization Standard on page 23

**Supported BFD Standards**

Junos OS substantially supports the following standards for Bidirectional Forwarding Detection (BFD).

- RFC 5880, Bidirectional Forwarding Detection. (Partial support—Echo and Demand mode is not supported).
- RFC 5881, Bidirectional Forwarding Detection (BFD) for IPv4 and IPv6 (Fully compliant).
- RFC 5882, Generic Application of Bidirectional Forwarding Detection (BFD).
- RFC 5883, Bidirectional Forwarding Detection (BFD) (Fully compliant).
- RFC 5884, Bidirectional Forwarding Detection (BFD) for MPLS Label Switched Paths (LSPs). (Partial support—Packets from egress to ingress come with singlehop port and while sending packets, the router alert option is used setting TTL to 1).
- RFC 5885, Bidirectional Forwarding Detection (BFD) for the Pseudowire Virtual Circuit Connectivity Verification (VCCV). (Fully compliant)
Supported BOOTP and DHCP Standards

The Junos operating system (Junos OS) substantially supports the following RFCs, which define standards for the bootstrap protocol (BOOTP) and the Dynamic Host Control Protocol (DHCP).

- RFC 951, *BOOTSTRAP PROTOCOL (BOOTP)*
- RFC 1001, *PROTOCOL STANDARD FOR A NetBIOS SERVICE ON A TCP/UDP TRANSPORT: CONCEPTS AND METHODS*
- RFC 1002, *PROTOCOL STANDARD FOR A NetBIOS SERVICE ON A TCP/UDP TRANSPORT: DETAILED SPECIFICATIONS*
- RFC 1035, *DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION*
- RFC 1534, *Interoperation Between DHCP and BOOTP*
- RFC 1542, *Clarifications and Extensions for the Bootstrap Protocol*
- RFC 1700, *ASSIGNED NUMBERS*
- RFC 2131, *Dynamic Host Configuration Protocol*
  DHCP over virtual LAN (VLAN)-tagged interfaces is not supported.
- RFC 2132, *DHCP Options and BOOTP Vendor Extensions*
- RFC 3046, *DHCP Relay Agent Information Option*
- RFC 3118, *Authentication for DHCP Messages*
  Only Section 4, "Configuration token," is supported.
- RFC 3315, *Dynamic Host Configuration Protocol for IPv6 (DHCPv6)*
- RFC 3397, *Dynamic Host Configuration Protocol (DHCP) Domain Search Option*
- RFC 3633, *IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) version 6*
- RFC 3925, *Vendor-Identifying Vendor Options for Dynamic Host Configuration Protocol version 4 (DHCPv4)*
- RFC 4649, *Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Relay Agent Remote-ID Option*

**Related Documentation**
- Accessing Standards Documents on the Internet on page 3
Supported Mobile IP Standards

Junos OS supports only static configuration of home agent addresses and IP tunnels; dynamic configuration is not supported. Junos OS does not support the Mobile IP foreign agent, accounting, QoS, policy, data path, or logical interfaces per mobile node (for a mobile subscriber).

Junos OS substantially supports the following RFCs, which define standards for Mobile IP.

- RFC 2794, *Mobile IP Network Access Identifier Extension for IPv4*
- RFC 3024, *Reverse Tunneling for Mobile IP, revised*
- RFC 3344, *IP Mobility Support for IPv4*

Only the Mobile IP home agent is supported.

- RFC 3543, *Registration Revocation in Mobile IPv4*
- RFC 4433, *Mobile IPv4 Dynamic Home Agent (HA) Assignment*

The following RFC does not define a standard, but provides information about Mobile IP. The IETF classifies it as “Informational.”

- RFC 2977, *Mobile IP Authentication, Authorization, and Accounting Requirements*

Accounting is not supported.

Related Documentation

- Accessing Standards Documents on the Internet on page 3

Supported Network Management Standards

Junos OS supports the majority of network management features defined in the following standards documents.


As of February 2011, the text of this MIB is accessible at http://www.snmp.com/eso/esoConsortiumMIB.txt.

- Institute of Electrical and Electronics Engineers (IEEE) Standard 802.3ad, *Aggregation of Multiple Link Segments* (published as Clause 43 in Section 3 of the 802.3 specification)

Only the following MIB objects are supported:

- `dot3adAggPortDebugActorChangeCount`
- `dot3adAggPortDebugActorSyncTransitionCount`
- `dot3adAggPortDebugMuxState`
- `dot3adAggPortDebugPartnerChangeCount`
• dot3adAggPortDebugPartnerSyncTransitionCount
• dot3adAggPortDebugRxState
• dot3adAggPortListTable
• dot3adAggPortStatsTable
• dot3adAggPortTable
• dot3adAggTable
• dot3adTablesLastChanged

• Integrated Local Management Interface (ILMI) MIB in the Integrated Local Management Interface (ILMI) Specification, Version 4.0.

This document is accessible at https://www.broadband-forum.org/component/sppagebuilder/?view=page&id=185 under ATM Forum Technical Specifications.

Only the atmfMYIPNmAddress and atmfPortMyIfname objects are supported.

• Internet Assigned Numbers Authority (IANA), IANAIfType Textual Convention MIB (referenced by RFC 2863, The Interfaces Group MIB)

As of February 2011, the text of this MIB is accessible at http://www.iana.org/assignments/ianaiftype-mib.

• RFC 1122, Requirements for Internet Hosts -- Communication Layers

• RFC 1155, Structure and Identification of Management Information for TCP/IP-based Internets

• RFC 1156, Management Information Base for Network Management of TCP/IP-based Internets

• RFC 1157, A Simple Network Management Protocol (SNMP)

• RFC 1195, Use of OSI IS-IS for Routing in TCP/IP and Dual Environments

Only the following MIB objects are supported:

• isisAdjIPAddr
• isisAreaAddr
• isisCirc
• isisCircLevel
• isisiPRA
• isisiISAdj
• isisiISAdjAreaAddr
• isisiISAdjProtSupp
• isisMANAreaAddr
• isisPacketCount
Only the following features are supported:
- Junos OS-specific secured access list
- Master configuration keywords
- MIB II and its SNMP version 2 derivatives, including the following:
  - Interface management
  - IP (except for the `ipRouteTable` object, which has been replaced by the `inetCidrRouteTable` object, [RFC 4292, IP Forwarding MIB])
  - SNMP management
  - Statistics counters
- Reconfigurations upon receipt of the SIGHUP signal
- SNMP version 1 `Get` and `GetNext` requests and version 2 `GetBulk` requests
- RFC 1215, A Convention for Defining Traps for use with the SNMP
  Only MIB II SNMP version 1 traps and version 2 notifications are supported.
- RFC 1406, Definitions of Managed Objects for the DS1 and E1 Interface Types (obsoleted by RFC 2495)
  The T1 MIB is supported.
- RFC 1407, Definitions of Managed Objects for the DS3/E3 Interface Type (obsoleted by RFC 2496)
  The T3 MIB is supported.
- RFC 1472, The Definitions of Managed Objects for the Security Protocols of the Point-to-Point Protocol
- RFC 1473, The Definitions of Managed Objects for the IP Network Control Protocol of the Point-to-Point Protocol
- RFC 1657, Definitions of Managed Objects for the Fourth Version of the Border Gateway Protocol (BGP-4) using SMiv2
  The `bgpBackwardTransition` and `bgpEstablished` notifications are not supported.
- RFC 1695, Definitions of Managed Objects for ATM Management Version 8.0 Using SMiv2 (obsoleted by RFC 2515)
• RFC 1724, *RIP Version 2 MIB Extension*

• RFC 1850, *OSPF Version 2 Management Information Base*

    The following features are not supported:

    • Host Table
    • `ospfLsdbApproachingOverflow` trap
    • `ospfLsdbOverflow` trap
    • `ospfOriginateLSA` trap
    • `ospfOriginateNewLsas` MIB object
    • `ospfRxNewLsas` MIB object


• RFC 2011, *SNMPv2 Management Information Base for the Internet Protocol using SMIPv2*

• RFC 2012, *SNMPv2 Management Information Base for the Transmission Control Protocol using SMIPv2*

• RFC 2013, *SNMPv2 Management Information Base for the User Datagram Protocol using SMIPv2*

• RFC 2068, *Hypertext Transfer Protocol -- HTTP/1.1*

• RFC 2096, *IP Forwarding Table MIB*

    The `ipCidrRouteTable` object is extended to include the tunnel name when the next hop is through an RSVP-signaled label-switched path (LSP).

    ![](image)

    **NOTE:** RFC 2096 has been replaced by RFC 4292. However, Junos OS currently supports both RFC 2096 and RFC 4292.

• RFC 2115, *Management Information Base for Frame Relay DTEs Using SMIPv2*

    Only the `frDlcmiTable` object is supported.

• RFC 2233, *The Interfaces Group MIB using SMIPv2* (obsoleted by RFC 2863)

• RFC 2287, *Definitions of System-Level Managed Objects for Applications*

    Only the following MIB objects are supported:

    • `sysApplElmtRunTable`
    • `sysApplInstallElmtTable`
    • `sysApplInstallPkgTable`
    • `sysApplMapTable`
• RFC 2465, Management Information Base for IP Version 6: Textual Conventions and General Group
  IP version 6 (IPv6) and Internet Control Message Protocol version 6 (ICMPv6) statistics are not supported.
• RFC 2466, Management Information Base for IP Version 6: ICMPv6 Group
• RFC 2495, Definitions of Managed Objects for the DS1, E1, DS2 and E2 Interface Types
  The following MIB objects are not supported:
  • dsx1FarEndConfigTable
  • dsx1FarEndCurrentTable
  • dsx1FarEndIntervalTable
  • dsx1FarEndTotalTable
  • dsx1FracTable
• RFC 2496, Definitions of Managed Objects for the DS3/E3 Interface Type
  The following MIB objects are not supported:
  • dsx3FarEndConfigTable
  • dsx3FarEndCurrentTable
  • dsx3FarEndIntervalTable
  • dsx3FarEndTotalTable
  • dsx3FracTable
• RFC 2515, Definitions of Managed Objects for ATM Management
  The following MIB objects are not supported:
  • aal5VccTable
  • atmVcCrossConnectTable
  • atmVpCrossConnectTable
• RFC 2558, Definitions of Managed Objects for the SONET/SDH Interface Type (obsoleted by RFC 3592)
• RFC 2571, An Architecture for Describing SNMP Management Frameworks
  Only read-only access is supported.
• RFC 2572, Message Processing and Dispatching for the Simple Network Management Protocol (SNMP) (obsoleted by RFC 3412)
  Only read-only access is supported.
• RFC 2578, Structure of Management Information Version 2 (SMIv2)
• RFC 2579, Textual Conventions for SMIv2
• RFC 2580, Conformance Statements for SMIv2
• RFC 2662, Definitions of Managed Objects for the ADSL Lines
• RFC 2665, Definitions of Managed Objects for the Ethernet-like Interface Types
• RFC 2787, Definitions of Managed Objects for the Virtual Router Redundancy Protocol

The following features are not supported:

• Row creation
• Set operation
• *vrpStatsPacketLengthErrors* MIB object

• RFC 2790, Host Resources MIB

Only the following MIB objects are supported:

• *hrStorageTable* object. The file systems `/`, `/config`, `/var`, and `/tmp` always return the same index number. When SNMP restarts, the index numbers for the remaining file systems might change.

• Objects in the *hrSystem* group.

• Objects in the *hrSWInstalled* group.

• RFC 2819, Remote Network Monitoring Management Information Base

Only the following MIB objects are supported:

• *alarmTable*
• *etherStatsTable* object for Ethernet interfaces
• *eventTable*
• *logTable*

• RFC 2863, The Interfaces Group MIB

• RFC 2864, The Inverted Stack Table Extension to the Interfaces Group MIB

• RFC 2925, Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations

Only the following MIB objects are supported:

• *pingCtlTable*
• *pingMaxConcurrentRequests*
• *pingProbeHistoryTable*
• *pingResultsTable*
• *traceRouteCtlTable*
• *traceRouteHopsTable*
• traceRouteProbeHistoryTable
• traceRouteResultsTable

• RFC 2932, IPv4 Multicast Routing MIB
• RFC 2981, Event MIB
• RFC 3014, Notification Log MIB
• RFC 3019, IP Version 6 Management Information Base for The Multicast Listener Discovery Protocol
• RFC 3411, An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks
• RFC 3412, Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)
• RFC 3413, Simple Network Management Protocol (SNMP) Applications
  The proxy MIB is not supported.
• RFC 3414, User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
• RFC 3415, View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)
• RFC 3417, Transport Mappings for the Simple Network Management Protocol (SNMP)
• RFC 3418, Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)
• RFC 3498, Definitions of Managed Objects for Synchronous Optical Network (SONET) Linear Automatic Protection Switching (APS) Architectures
  Support is implemented under the Juniper Networks Enterprise branch.
• RFC 3592, Definitions of Managed Objects for the Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) Interface Type
• RFC 3635, Definitions of Managed Objects for the Ethernet-like Interface Types
  Supports all objects, except dot3StatsRateControlAbility and dot3StatsRateControlStatus in dot3StatsEntry table.

**NOTE:** The values of the following objects in dot3HCStatsEntry table will be always zero for both 32-bit counters and 64-bit counters:

• dot3HCStatsSymbolErrors
• dot3HCStatsInternalMacTransmitErrors
• RFC 3811, *Definitions of Textual Conventions (TCs) for Multiprotocol Label Switching (MPLS) Management*

• RFC 3812, *Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base (MIB)*

Only read-only access is supported, and the following features and MIB objects are not supported:

- MPLS tunnels as interfaces
- mplsTunnelCRLDPResTable object
- mplsTunnelPerfTable object
- The following objects in the TunnelResource table:
  - mplsTunnelResourceExBurstSize
  - mplsTunnelResourceMaxBurstSize
  - mplsTunnelResourceMeanBurstSize
  - mplsTunnelResourceMeanRate
  - mplsTunnelResourceWeight

The mplsTunnelCHopTable object is supported on ingress routers only.

NOTE: The branch used by the proprietary LDP MIB (ldpmib.mib) conflicts with RFC 3812. ldpmib.mib has been deprecated and replaced by jnx-mpls-ldp.mib.

• RFC 3813, *Multiprotocol Label Switching (MPLS) Label Switching Router (LSR) Management Information Base (MIB)*

Only read-only access is supported, and the following MIB objects are not supported:

- mplsInSegmentMapTable
- mplsInSegmentPerfTable
- mplsInterfacePerfTable
- mplsOutSegmentPerfTable
- mplsXCDown
- mplsXCUp

• RFC 3815, *Definitions of Managed Objects for the Multiprotocol Label Switching (MPLS), Label Distribution Protocol (LDP)*

Only the following MIB objects are supported:

- mplsLdpLsrID
- mplsLdpSesPeerAddrTable
• RFC 3826, The Advanced Encryption Standard (AES) Cipher Algorithm in the SNMP User-based Security Model

• RFC 4087, IP Tunnel MIB
  Supports MIB objects with MAX-ACCESS of read-only in the following tables:
  • tunnelIfTable
  • tunnelInetConfigTable

• RFC 4133, Entity MIB
  Supports tables and objects except:
  • entityLogicalGroup table
  • entPhysicalMfgDate and entPhysicalUris objects in entityPhysical2Group table
  • entLPMappingTable and entPhysicalContainsTable in entityMappingGroup table
  • entityNotificationsGroup table

  NOTE: Supported only on MX240, MX480, and MX960 routers.

• RFC 4188, Definitions of Managed Objects for Bridges

• RFC 4268, Entity State MIB

  NOTE: Supported only on MX240, MX480, and MX960 routers.

• RFC 4292, IP Forwarding MIB
  Supports the following table and associated MIB objects:
  • inetCidrRouteTable
  • inetCidrRouteNumber
  • inetCidrRouteDiscards

• RFC 4382, MPLS/BGP Layer 3 Virtual Private Network (VPN) MIB
  Supports the following scalar objects and tables:
  • mplsL3VpnConfiguredVrfs
  • mplsL3VpnActiveVrfs
  • mplsL3VpnConnectedInterfaces
  • mplsL3VpnNotificationEnable
  • mplsL3VpnVrfConfMaxPossRts
  • mplsL3VpnVrfConfRteMxThrshTime
  • mplsL3VpnIllLblRcvThrsh
• mplsL3VpnVrfTable
• mplsL3VpnVrfPerfTable
• mplsL3VpnVrfRteTable
• mplsVpnVrfRTTable

• Internet draft draft-ietf-bfd-mib-02.txt, Bidirectional Forwarding Detection Management Information Base

Only read-only access is supported, and the bfdSessDown and bfdSessUp traps are supported. Objects in the bfdSessMapTable and bfdSessPerfTable tables are not supported. The MIB that supports this draft is mib-jnx-bfd-exp.txt under the Juniper Networks Enterprise jnxExperiment branch.

• RFC 4273, Definitions of Managed Objects for the Fourth Version of Border Gateway Protocol (BGP-4), Second Version

Only the following MIB objects are supported:

• jnxBgpM2PrefixInPrefixes
• jnxBgpM2PrefixInPrefixesAccepted
• jnxBgpM2PrefixInPrefixesRejected

• RFC 4444, Management Information Base for Intermediate System to Intermediate System (IS-IS)

Only the following tables are supported:

• isisISAdjAreaAddrTable
• isisISAdjIPAddrTable
• isisISAdjProtSuppTable
• isisISAdjTable

• RFC 4741, NETCONF Configuration Protocol (RFC 4741 is obsoleted by RFC 6241)
• RFC 4742, Using the NETCONF Configuration Protocol over Secure Shell (SSH) (RFC 4742 is obsoleted by RFC 6242)
• RFC 5424, The Syslog Protocol
• RFC 5601, Pseudowire (PW) Management Information Base (MIB)
• RFC 5603, Ethernet Pseudowire (PW) Management Information Base (MIB)
• Internet draft draft-ietf-msdp-mib-08.txt, Multicast Source Discovery protocol MIB

The following MIB objects are not supported:

• msdpBackwardTransition
• msdpEstablished
• msdpRequestsTable
• RFC 6020, YANG - A data modeling language for NETCONF
• RFC 6241, Network Configuration Protocol (NETCONF) (RFC 6241 obsoletes RFC 4741)

The following features are not supported:

- Advertisement of NETCONF 1.1 capabilities during session establishment
- :confirmed-commit:1.1 capability, which includes the <cancel-commit> operation and the <persist> and <persist-id> parameters for the <commit> operation

• RFC 6242, Using the NETCONF Protocol over Secure Shell (SSH) (RFC 6242 obsoletes RFC 4742)

The following feature is not supported:

- Chunked framing

• RFC 6527, Definitions of Managed Objects for the Virtual Router Redundancy Protocol Version 3 (VRRPv3)

The following features are not supported:

- Row creation
- Set operation
- vrrpv3StatisticsPacketLengthErrors MIB object
- vrrpv3StatisticsRowDiscontinuityTime MIB object

• Internet draft draft-ietf-ospf-ospfv3-mib-11.txt, Management Information Base for OSPFv3

Only read-only access is supported, and only for the ospfv3NbrTable table. The MIB that supports this draft is mib-jnx-ospfv3mib.txt under the Juniper Networks Enterprise jnxExperiment branch; MIB object names are prefixed with jnx (for example, jnxOspfv3NbrAddressType).

• Internet draft draft-reeder-snmpv3-usm-3desede-00.txt, Extension to the User-Based Security Model (USM) to Support Triple-DES EDE in “Outside” CBC Mode

The following RFCs do not define standards, but provide information about network management. The IETF classifies them variously as “Best Current Practice,” “Experimental” or “Informational.”

• RFC 1901, Introduction to Community-based SNMPv2
• RFC 2330, Framework for IP Performance Metrics
• RFC 2934, Protocol Independent Multicast MIB for IPv4
• RFC 3410, Introduction and Applicability Statements for Internet Standard Management Framework
• RFC 3584, Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard Network Management Framework
• RFC 5601, PW-FRAME-MIB
Supported on MX Series routers with MPC/MIC interfaces that use the ATM MIC with SFP.

- RFC 5603, PWE3 MIB

Supported on MX Series routers with MPC/MIC interfaces that use the ATM MIC with SFP.

- Internet draft draft-ietf-l3vpn-mvpn-mib-03.txt, MPLS/BGP Layer 3 VPN Multicast Management Information Base

Implemented under the Juniper Networks enterprise branch [jnxEperiment]. OID for jnxMvpnExperiment is .1.3.6.1.4.1.2636.5.12. This includes jnxMvpnNotifications traps.

Related Documentation
- network management and monitoring Guide
- Accessing Standards Documents on the Internet on page 3

Supported Port Extension Standards

Junos OS substantially supports Institute of Electrical and Electronics Engineers (IEEE) Standard 802.1BR, Standard for Local and Metropolitan Area Networks - Virtual Bridged Local Area Networks - Bridge Port Extension.

Related Documentation
- Accessing Standards Documents on the Internet on page 3

Supported RADIUS and TACACS+ Standards for User Authentication

For validation of the identity of users who attempt to access a router, Junos OS supports RADIUS authentication, TACACS+ authentication, and authentication by means of Junos OS user accounts configured on the router. Junos OS supports the configuration of Juniper Networks-specific RADIUS and TACACS+ attributes, and the creation of template accounts.

All users who can log in to the router must already be assigned to a Junos OS login class. A login class defines its members’ access privileges during a login session, the commands they can and cannot issue, the configuration statements they can and cannot view or change, and the idle time before a member’s login session is terminated.

Junos OS substantially supports the following RFCs, which define standards for RADIUS and TACACS+.

- RFC 1492, An Access Control Protocol, Sometimes Called TACACS
- RFC 2865, Remote Authentication Dial In User Service (RADIUS)
- RFC 3162, RADIUS and IPv6
- RFC 4818, RADIUS Delegated-IPv6-Prefix Attribute
The following Internet drafts do not define standards, but provide information about RADIUS. The IETF classifies them as "Informational."

- RFC 2866, RADIUS Accounting
- RFC 2868, RADIUS Attributes for Tunnel Protocol Support
- RFC 2869, RADIUS Extensions
- RFC 4679, DSL Forum Vendor-Specific RADIUS Attributes
- RFC 5176, Dynamic Authorization Extensions to Remote Authentication Dial In User Service (RADIUS)

### Supported System Access Standards

Junos OS substantially supports the following protocols and applications for remote access to devices: telnet, FTP, rlogin, and finger.


For jurisdictions without limits on dataplane encryption, that version of Junos OS substantially supports the following RFCs, which define standards for technologies used with Secure Sockets Layer (SSL).

- RFC 1319, The MD2 Message-Digest Algorithm
- RFC 1321, The MD5 Message-Digest Algorithm
- RFC 2246, The TLS Protocol Version 1.0
- RFC 3280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

Junos OS substantially supports the following RFCs and standards that apply to the SSH protocol. These are used for control plane administration on devices running Junos OS either directly using the CLI or in conjunction with NETCONF:

- RFC 4250, The Secure Shell (SSH) Protocol Assigned Numbers
  
  You can find the assigned SSH numbers at https://www.iana.org/assignments/ssh-parameters/ssh-parameters.xhtml.

- RFC 4251, The Secure Shell (SSH) Protocol Architecture
- RFC 4252, The Secure Shell (SSH) Authentication Protocol
- RFC 4253, The Secure Shell (SSH) Transport Layer Protocol
- RFC 4254, The Secure Shell (SSH) Connection Protocol
• RFC 4256, *Generic Message Exchange Authentication for the Secure Shell Protocol (SSH)*  
   Also known as “keyboard-interactive” authentication.
• RFC 4335, *The Secure Shell (SSH) Session Channel Break Extension*
• RFC 4344, *The Secure Shell (SSH) Transport Layer Encryption Modes*
   The following encryption methods are supported:
   - aes128-ctr
   - aes192-ctr
   - aes256-ctr
• RFC 4419, *Diffie-Hellman Group Exchange for the Secure Shell (SSH) Transport Layer Protocol*
• RFC 4432, *RSA Key Exchange for the Secure Shell (SSH) Transport Layer Protocol*
• RFC 4819, *Secure Shell Public Key Subsystem*
   Junos OS supports SSH file transfer protocol (SFTP).
• RFC 5656, *Elliptic Curve Algorithm Integration in the Secure Shell Transport Layer*
   The following Elliptic Curves are supported:
   - nistp256
   - nistp384
   - nistp521
   The following public keys are supported:
   - ecdsa-sha2-nistp256
   - ecdsa-sha2-nistp384
   - ecdsa-sha2-nistp521
• RFC 6668, *SHA-2 Data Integrity Verification for the Secure Shell (SSH) Transport Layer Protocol*
   The hmac-sha2-256 and hmac-sha2-512 integrity algorithms are supported.
• RFC 8270, *Increase the Secure Shell Minimum Recommended Diffie-Hellman Modulus Size to 2048 Bits*
• OpenSSH per the openssh-portable/PROTOCOL.
   For more information about OpenSSH, see

The following RFCs provide information about TFTP, which Junos OS supports as a remote access protocol. The IETF does not include the RFCs in its Standards track, instead assigning them status “Unknown (Legacy Stream.)”
• RFC 783, *THE TFTP PROTOCOL (REVISION 2)*
RFC 906, *Bootstrap Loading using TFTP*

**Related Documentation**
- Supported RADIUS and TACACS+ Standards for User Authentication on page 20
- Accessing Standards Documents on the Internet on page 3

**Supported Time Synchronization Standard**


RFC 2030, *Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI,* does not define a standard, but provides information about time synchronization technology. The IETF classifies it as "Informational."

In CLI operational mode, you can set the current date and time on the router manually or from an NTP server.

On MX Series routers with the Channelized OC3/STM1 (Multi-Rate) Circuit Emulation MIC with SFP, Junos OS substantially supports RFC 4553, *Structure-Agnostic Time Division Multiplexing (TDM) over Packet (SAToP)*

**Related Documentation**
- Accessing Standards Documents on the Internet on page 3
Supported ATM Interface Standards

Junos OS substantially supports the following standards for Asynchronous Transfer Mode (ATM) interfaces.

- RFC 1483, *Multiprotocol Encapsulation over ATM Adaptation Layer 5*
  Only routed protocol data units (PDUs) are supported.
- RFC 2225, *Classical IP and ARP over ATM*
  Only responses are supported.
- RFC 2684, *Multiprotocol Encapsulation over ATM Adaptation Layer 5*
  Only routed PDUs and Ethernet bridged PDUs are supported.
- RFC 4717, *Encapsulation Methods for Transport of Asynchronous Transfer Mode (ATM) over MPLS Networks*
Supported Ethernet Interface Standards

Junos OS substantially supports the following standards for Ethernet interfaces.

- Institute of Electrical and Electronics Engineers (IEEE) Standard 802.1ag, **IEEE Standard for Local and metropolitan area networks—Virtual Bridged Local Area Networks, Amendment 5: Connectivity Fault Management**
- IEEE Standard 802.1ah, **IEEE Standard for Local and metropolitan area networks—Virtual Bridged Local Area Networks, Amendment 7: Provider Backbone Bridges**
- IEEE Standard 802.1Q, **IEEE Standard for Local and metropolitan area networks—Virtual Bridged Local Area Networks**
- IEEE Standard 802.1Qaz, **IEEE Standard for Local and Metropolitan Area Networks—Virtual Bridged Local Area Networks-Amendment: Enhanced Transmission Selection**
- IEEE Standard 802.1Qbb, **IEEE Standard for Local and Metropolitan Area Networks—Virtual Bridged Local Area Networks-Amendment: Priority-based Flow Control**
- IEEE Standard 802.1s, **IEEE Standard for Multiple Instances of Spanning Tree Protocol (MSTP)—Virtual Bridged Local Area Networks**
- IEEE Standard 802.3, **IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements, Part 3: Carrier sense multiple access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications**
- IEEE Standard 802.3ab, **1000BASE-T** (published as Clause 40 in Section 3 of the 802.3 specification)
- IEEE Standard 802.3ad, **Aggregation of Multiple Link Segments** (published as Clause 43 in Section 3 of the 802.3 specification)
- IEEE Standard 802.3ae, **10-Gigabit Ethernet** (published as Clauses 44-53 in Section 4 of the 802.3 specification)
- IEEE Standard 802.3ah, **Operations, Administration, and Maintenance (OAM)** (published as Clause 57 in Section 5 of the 802.3 specification)
- IEEE Standard 802.3z, **1000BASE-X** (published as Clauses 34-39, 41-42 in Section 3 of the 802.3 specification)
- InterNational Committee for Information Technology Standards (INCITS) T11, **Fibre Channel Interfaces**
- International Telecommunication Union–Telecommunication Standardization (ITU–T) Recommendation Y.1731, **OAM functions and mechanisms for Ethernet based networks**

Related Documentation

- Accessing Standards Documents on the Internet on page 3
Supported Frame Relay Interface Standards

Junos OS substantially supports the following standards for Frame Relay interfaces.

- Broadband Forum standard FRF.12, Frame Relay Fragmentation Implementation Agreement
- FRF.15, *End-to-End Multilink Frame Relay Implementation Agreement*
- FRF.16, *Multilink Frame Relay UNI/NNI Implementation Agreement*
- International Telecommunication Union—Telecommunication Standardization (ITU–T), Annex A, Additional procedures for Permanent Virtual Connection (PVC) status management (using Unnumbered Information frames) to Recommendation Q.933, ISDN Digital Subscriber Signalling System No. 1 (DSS1) - Signalling specifications for frame mode switched and permanent virtual connection control and status monitoring
- RFC 1973, *PPP in Frame Relay*
- RFC 2390, *Inverse Address Resolution Protocol*
- RFC 2427, *Multiprotocol Interconnect over Frame Relay* (obsoletes RFC 1490)
- RFC 2590, *Transmission of IPv6 Packets over Frame Relay Networks Specification*

Translation of the command/response bit and sequence numbers and padding are not supported.

Related Documentation
- Accessing Standards Documents on the Internet on page 3

Supported GRE and IP-IP Interface Standards

Junos OS substantially supports the following RFCs, which define standards for generic routing encapsulation (GRE) and IP-IP interfaces.

- RFC 2003, *IP Encapsulation within IP*
- RFC 2784, *Generic Routing Encapsulation (GRE)*
- RFC 2890, *Key and Sequence Number Extensions to GRE*

The key field is supported, but the sequence number field is not.
The following RFCs do not define standards, but provide information about GRE, IP-IP, and related technologies. The IETF classifies them as “Informational.”

- RFC 1701, Generic Routing Encapsulation (GRE)
- RFC 1702, Generic Routing Encapsulation over IPv4 networks
- RFC 2547, BGP/MPLS VPNs (over GRE tunnels)

**Related Documentation**
- Accessing Standards Documents on the Internet on page 3

## Supported PPP Interface Standards

Junos OS substantially supports the following RFCs, which define standards for Point-to-Point Protocol (PPP) interfaces.

- RFC 1332, The PPP Internet Protocol Control Protocol (IPCP)
- RFC 1334, PPP Authentication Protocols
- RFC 1661, The Point-to-Point Protocol (PPP)
- RFC 1662, PPP in HDLC-like Framing
- RFC 1989, PPP Link Quality Monitoring
- RFC 1990, The PPP Multilink Protocol (MP)
- RFC 2364, PPP Over AAL5
- RFC 2615, PPP over SONET/SDH
- RFC 2686, The Multi-Class Extension to Multi-Link PPP

The following features are not supported:

- Negotiation of address field compression and protocol field compression PPP NCP options; instead, a full 4-byte PPP header is always sent
- Prefix elision

- RFC 3021, Using 31-Bit Prefixes on IPv4 Point-to-Point Links

The following RFCs do not define standards, but provide information about PPP. The IETF classifies them as “Informational.”

- RFC 1877, PPP Internet Protocol Control Protocol Extensions for Name Server Addresses
- RFC 2153, PPP Vendor Extensions

**Related Documentation**
- Accessing Standards Documents on the Internet on page 3
Supported SDH and SONET Interface Standards

Junos OS substantially supports the following standards for SDH and SONET interfaces.

- American National Standards Institute (ANSI) standard T1.105-2001, Synchronous Optical Network (SONET) – Basic Description including Multiplex Structure, Rates, and Formats
- ANSI standard T1.105.02-2001, Synchronous Optical Network (SONET) – Payload Mappings
- ANSI standard T1.105.06-2002, Synchronous Optical Network (SONET): Physical Layer Specifications
- GR-499-CORE, Transport Systems Generic Requirements (TSGR): Common Requirements
- International Telecommunication Union–Telecommunication Standardization (ITU–T) Recommendation G.691, Optical interfaces for single channel STM-64 and other SDH systems with optical amplifiers
- ITU–T Recommendation G.825 (1993), The control of jitter and wander within digital networks which are based on the synchronous digital hierarchy (SDH)
- ITU–T Recommendation G.826 (1999), Error performance parameters and objectives for international, constant bit-rate digital paths at or above the primary rate
- RFC 1619, PPP over SONET/SDH
Supported Serial Interface Standards

Junos OS substantially supports the following standards for serial interfaces.

- International Telecommunication Union–Telecommunication Standardization (ITU–T) Recommendation V.35, *Data transmission at 48 kilobits per second using 60-108 kHz group band circuits*
- ITU–T Recommendation X.21 (1992), *Interface between Data Terminal Equipment and Data Circuit-terminating Equipment for synchronous operation on public data networks*

Supported T3 Interface Standard

Layer 2 Standards

- Supported Layer 2 Networking Standards on page 31
- Supported L2TP Standards on page 32
- Supported VPWS Standards on page 32
- Supported Layer 2 VPN Standards on page 33
- Supported Security Standards on page 34
- Supported VPWS Standards on page 34

Supported Layer 2 Networking Standards

Junos OS substantially supports the following standards for Layer 2 networking.

- Institute of Electrical and Electronics Engineers (IEEE) Standard 802.1ab, *IEEE Standard for Local and metropolitan area networks—Station and Media Access Control Connectivity Discovery* (Link Layer Discovery Protocol (LLDP))

- IEEE Standard 802.1D, *IEEE Standard for Local and Metropolitan Area Networks: Media Access Control (MAC) Bridges*

  This document includes the standard for Rapid Spanning Tree Protocol (RSTP), which is often referred to as 802.1w. It also discusses Quality of Service (QoS) at the MAC level, often referred to as 802.1p.

Related Documentation

- Supported L2TP Standards on page 32
- Supported VPWS Standards on page 32
- Supported Layer 2 VPN Standards on page 33
- Accessing Standards Documents on the Internet on page 3
Supported L2TP Standards

On routers equipped with one or more Adaptive Services PICs (both standalone and integrated versions) or Multiservices PICs or DPCs, Junos OS substantially supports the following RFC, which defines the standard for Layer 2 Tunneling Protocol (L2TP).

- RFC 2661, Layer Two Tunneling Protocol “L2TP”

The following RFC does not define a standard, but provides information about technology related to L2TP. The IETF classifies it as “Informational.”

- RFC 2866, RADIUS Accounting

Related Documentation
- Services Interfaces Overview for Routing Devices
- MX Series Interface Module Reference
- Accessing Standards Documents on the Internet on page 3

Supported VPWS Standards

Junos OS substantially supports the following RFCs, which define standards for VPWS and Layer 2 circuits.

- RFC 4447, Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)
  Junos OS does not support Section 5.3, “The Generalized PWid FEC Element.”
- RFC 4448, Encapsulation Methods for Transport of Ethernet over MPLS Networks
- RFC 6074, Provisioning, Auto-Discovery, and Signaling in Layer 2 Virtual Private Networks (L2VPNs)
- RFC 6391, Flow-Aware Transport of Pseudowires over an MPLS Packet Switched Network
- RFC 6790, The Use of Entropy Labels in MPLS Forwarding
The following Internet drafts do not define standards, but provide information about Layer 2 technologies. The IETF classifies them as “Historic.”

- Internet draft draft-martini-l2circuit-encap-mpls-11.txt, *Encapsulation Methods for Transport of Layer 2 Frames Over IP and MPLS Networks*

  Junos OS differs from the Internet draft in the following ways:

  - A packet with a sequence number of 0 (zero) is treated as out of sequence.
  - Any packet that does not have the next incremental sequence number is considered out of sequence.
  - When out-of-sequence packets arrive, the expected sequence number for the neighbor is set to the sequence number in the Layer 2 circuit control word.

- Internet draft draft-martini-l2circuit-trans-mpls-19.txt, *Transport of Layer 2 Frames Over MPLS*

**Supported Layer 2 VPN Standards**

Junos OS substantially supports the following Internet drafts, which define standards for Layer 2 virtual private networks (VPNs).

- Internet draft draft-kompella-l2vpn-vpls-multihoming, *Multi-homing in BGP-based Virtual Private LAN Service*

  - Internet draft draft-kompella-ppvpn-l2vpn-03.txt, *Layer 2 VPNS Over Tunnels*

**Related Documentation**

- Supported Carrier-of-Carriers and Interprovider VPN Standards on page 73
- Supported Layer 2 VPN Standards on page 33
- Supported Layer 3 VPN Standards on page 76
- Supported Multicast VPN Standards on page 77
- Supported VPLS Standards on page 77
- Accessing Standards Documents on the Internet on page 3
Supported Security Standards

Junos OS substantially supports the following standard for security.


  This document will facilitate standard secure communication between two security devices through secure chassis cluster control and fabric ports.
  
  SRX340 and SRX345 supports only 802.1AE-2006 standard.

Related Documentation

- Accessing Standards Documents on the Internet on page 3

Supported VPWS Standards

Junos OS substantially supports the following RFCs, which define standards for VPWS and Layer 2 circuits.

- RFC 4447, *Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)*
  
  Junos OS does not support Section 5.3, “The Generalized PWid FEC Element.”

- RFC 4448, *Encapsulation Methods for Transport of Ethernet over MPLS Networks*

- RFC 6074, *Provisioning, Auto-Discovery, and Signaling in Layer 2 Virtual Private Networks (L2VPNs)*

- RFC 6391, *Flow-Aware Transport of Pseudowires over an MPLS Packet Switched Network*

- RFC 6790, *The Use of Entropy Labels in MPLS Forwarding*

The following Internet drafts do not define standards, but provide information about Layer 2 technologies. The IETF classifies them as “Historic.”

- Internet draft draft-martini-l2circuit-encap-mpls-11.txt, *Encapsulation Methods for Transport of Layer 2 Frames Over IP and MPLS Networks*

  Junos OS differs from the Internet draft in the following ways:

  - A packet with a sequence number of 0 (zero) is treated as out of sequence.
  
  - Any packet that does not have the next incremental sequence number is considered out of sequence.
  
  - When out-of-sequence packets arrive, the expected sequence number for the neighbor is set to the sequence number in the Layer 2 circuit control word.

- Internet draft draft-martini-l2circuit-trans-mpls-19.txt, *Transport of Layer 2 Frames Over MPLS*
Chapter 4: Layer 2 Standards

Related Documentation

- Supported Carrier-of-Carriers and Interprovider VPN Standards on page 73
- Supported Layer 2 VPN Standards on page 33
- Supported Layer 3 VPN Standards on page 76
- Supported Multicast VPN Standards on page 77
- Supported VPLS Standards on page 77
- Accessing Standards Documents on the Internet on page 3
Supported GMPLS Standards

Junos OS substantially supports the following RFCs and Internet drafts, which define standards for Generalized MPLS (GMPLS).

- RFC 3471, *Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description*
  
  Only the following features are supported:
  
  - Bidirectional LSPs (upstream label only)
  - Control channel separation
  - Generalized label (suggested label only)
  - Generalized label request (bandwidth encoding only)

  
  Only Section 9, “Fault Handling,” is supported.

  
  Only interface switching is supported.


- Internet draft draft-ietf-ccamp-gmpls-sonet-sdh-08.txt, *Generalized Multi-Protocol Label Switching Extensions for SONET and SDH Control*
Only S,U,K,L,M-format labels and SONET traffic parameters are supported.

- Internet draft draft-ietf-ccamp-lmp-10.txt, *Link Management Protocol (LMP)*

The following sub-TLV types for the Link type, link, value (TLV) are not supported:

- Link Local/Remote Identifiers (type 11)
- Link Protection Type (type 14)
- Shared Risk Link Group (SRLG) (type 16)

The features described in Section 2 of the draft, "Implications on Graceful Restart," are also not supported.

The Interface Switching Capability Descriptor (type 15) sub-TLV type is implemented, but only for packet switching.

- Internet draft draft-ietf-mpls-bundle-04.txt, *Link Bundling in MPLS Traffic Engineering*

---

### Related Documentation

- Supported LDP Standards on page 38
- Supported MPLS Standards on page 39
- Supported RSVP Standards on page 42
- Accessing Standards Documents on the Internet on page 3

---

### Supported LDP Standards

Junos OS substantially supports the following RFCs and Internet drafts, which define standards for LDP.

- RFC 3212, *Constraint-Based LSP Setup using LDP*
- RFC 3478, *Graceful Restart Mechanism for Label Distribution Protocol*
- Internet draft draft-napierala-mpls-targeted-mldp-01.txt, *Using LDP Multipoint Extensions on Targeted LDP Sessions*

The following RFCs do not define standards, but provide information about LDP. The IETF classifies them as “Informational.”

- RFC 3215, *LDP State Machine*
- RFC 5036, *LDP Specification*

For the following features described in the indicated sections of the RFC, Junos OS supports one of the possible modes but not the others:

- Label distribution control (section 2.6.1): Ordered mode is supported, but not Independent mode.
• Label retention (section 2.6.2): Liberal mode is supported, but not Conservative mode.

• Label advertisement (section 2.6.3): Both Downstream Unsolicited mode and Downstream on Demand mode are supported.

• RFC 5443, LDP IGP Synchronization

• RFC 6826, Multipoint LDP In-Band Signaling for Point-to-Multipoint and Multipoint-to-Multipoint Label Switched Paths

Junos OS support limited to point-to-multipoint extensions for LDP.

Related Documentation

• Supported GMPLS Standards on page 37
• Supported MPLS Standards on page 39
• Supported RSVP Standards on page 42
• Accessing Standards Documents on the Internet on page 3

Supported MPLS Standards

Junos OS substantially supports the following RFCs and Internet drafts, which define standards for MPLS and traffic engineering.

• RFC 2858, Multiprotocol Extensions for BGP-4
• RFC 3031, Multiprotocol Label Switching Architecture
• RFC 3032, MPLS Label Stack Encoding
• RFC 3140, Per Hop Behavior Identification Codes
• RFC 3270, Multi-Protocol Label Switching (MPLS) Support of Differentiated Services

Only E-LSPs are supported.

• RFC 3443, Time To Live (TTL) Processing in Multi-Protocol Label Switching (MPLS) Networks
• RFC 3478, Graceful Restart Mechanism for Label Distribution Protocol
• RFC 4090, Fast Reroute Extensions to RSVP-TE for LSP Tunnels

Node protection in facility backup is not supported.

• RFC 4124, Protocol Extensions for Support of Diffserv-aware MPLS Traffic Engineering
• RFC 4364, BGP/MPLS IP Virtual Private Networks (VPNs)
• RFC 4379, Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures
• RFC 4385, Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN.

Supported on MX Series routers with the Channelized OC3/STM1 (Multi-Rate) Circuit Emulation MIC with SFP.
The following capabilities are supported in the Junos OS implementation of MPLS Transport Profile (MPLS-TP):

- MPLS-TP OAM can send and receive packets with GAL and G-Ach, without IP encapsulation.
- Two unidirectional RSVP LSPs between a pair of routers can be associated with each other to create an associated bidirectional LSP for binding a path for the GAL and G-Ach OAM messages. A single Bidirectional Forwarding Detection (BFD) session is established for the associated bidirectional LSP.
• RFC 6425, Detecting Data-Plane Failures in Point-to-Multipoint MPLS - Extensions to LSP Ping
• RFC 6426, MPLS On-Demand Connectivity Verification and Route Tracing
• RFC 6428, Proactive Connectivity Verification, Continuity Check, and Remote Defect Indication for the MPLS Transport Profile
• RFC 6510, Resource Reservation Protocol (RSVP) Message Formats for Label Switched Path (LSP) Attributes Objects
• Internet draft draft-ietf-mpls-rsvp-te-no-php-oob-mapping-01.txt, Non PHP behavior and Out-of-Band Mapping for RSVP-TE LSPs

The following RFCs and Internet drafts do not define standards, but provide information about MPLS, traffic engineering, and related technologies. The IETF classifies them variously as “Experimental,” “Historic,” or “Informational.”

• RFC 2547, BGP/MPLS VPNs
• RFC 2702, Requirements for Traffic Engineering Over MPLS
• RFC 2917, A Core MPLS IP VPN Architecture
• RFC 3063, MPLS Loop Prevention Mechanism
• RFC 3208, PGM Reliable Transport Protocol Specification

Only the network element is supported.

• RFC 3469, Framework for Multi-Protocol Label Switching (MPLS)-based Recovery
• RFC 3564, Requirements for Support of Differentiated Services-aware MPLS Traffic Engineering
• RFC 4125, Maximum Allocation Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering
• RFC 4127, Russian Dolls Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering

• Internet draft draft-martini-l2circuit-encap-mpls-11.txt, Encapsulation Methods for Transport of Layer 2 Frames Over IP and MPLS Networks

Junos OS differs from the Internet draft in the following ways:

• A packet with a sequence number of 0 is treated as out of sequence.
• Any packet that does not have the next incremental sequence number is considered out of sequence.
• When out-of-sequence packets arrive, the expected sequence number for the neighbor is set to the sequence number in the Layer 2 circuit control word.

• Internet draft draft-martini-l2circuit-trans-mpls-19.txt, Transport of Layer 2 Frames Over MPLS
• Internet draft draft-raggarwa-mpls-p2mp-te-02.txt, Establishing Point to Multipoint MPLS TE LSPs
The features discussed in the indicated sections of the draft are not supported:

- Nonadjacent signaling for branch LSPs (section 7.1)
- Make-before-break and fast reroute (section 9)
- LSP hierarchy using point-to-point LSPs (section 10)

**Related Documentation**

- Supported GMPLS Standards on page 37
- Supported LDP Standards on page 38
- Supported PCEP Standards on page 42
- Supported RSVP Standards on page 42
- Accessing Standards Documents on the Internet on page 3

**Supported PCEP Standards**

Junos OS substantially supports the following RFCs and Internet drafts, which define standards for PCEP.

- RFC 5440, *Path Computation Element (PCE) Communication Protocol (PCEP)—Stateful PCE*
- Internet draft-ietf-pce-stateful-pce-07.txt, *PCEP Extensions for Stateful PCE*
- Internet draft-crabbe-pce-pce-initiated-lsp-03.txt, *PCEP Extensions for PCE-initiated LSP Setup in a Stateful PCE Model*
- Internet draft-ietf-pce-segment-routing-06.txt, *PCEP Extensions for Segment Routing*

**Related Documentation**

- Supported LDP Standards on page 38
- Supported MPLS Standards on page 39
- Supported RSVP Standards on page 42
- Accessing Standards Documents on the Internet on page 3

**Supported RSVP Standards**

Junos OS substantially supports the following RFCs and Internet drafts, which define standards for RSVP.

- RFC 2210, *The Use of RSVP with IETF Integrated Services*
- RFC 2211, Specification of the Controlled-Load Network Element Service
- RFC 2212, Specification of Guaranteed Quality of Service
- RFC 2215, General Characterization Parameters for Integrated Service Network Elements
- RFC 2745, RSVP Diagnostic Messages
- RFC 2747, RSVP Cryptographic Authentication (updated by RFC 3097)
- RFC 2750, RSVP Extensions for Policy Control (RFC is not supported. Fully compliant with devices that support this RFC).
- RFC 2961, RSVP Refresh Overhead Reduction Extensions
- RFC 3097, RSVP Cryptographic Authentication—Updated Message Type Value
- RFC 3209, RSVP-TE: Extensions to RSVP for LSP Tunnels
  The Null Service Object for maximum transmission unit (MTU) signaling in RSVP is not supported.
  Only Section 9, “Fault Handling,” is supported.
- RFC 3477, Signalling Unnumbered Links in Resource ReSerVation Protocol - Traffic Engineering (RSVP-TE)
- RFC 4090, Fast Reroute Extensions to RSVP-TE for LSP Tunnels
- RFC 4203, OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)
  (OSPF extensions can carry traffic engineering information over unnumbered links.)
- RFC 4558, Node-ID Based Resource Reservation Protocol (RSVP) Hello: A Clarification Statement
- RFC 4561, Definition of a Record Route Object (RRO) Node-Id Sub-Object
  The RRO node id subobject is for use in inter-AS link and node protection configurations.
- RFC 4875, Extensions to RSVP-TE for Point-to-Multipoint TE LSPs

The following RFCs do not define standards, but provide information about RSVP and related technologies. The IETF classifies them variously as “Experimental” or “Informational.”

- RFC 2209, Resource ReSerVation Protocol (RSVP)—Version 1 Message Processing Rules
- RFC 2216, Network Element Service Specification Template
- RFC 4125, Maximum Allocation Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering
- RFC 4127, Russian Dolls Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering
Related Documentation

- Supported GMPLS Standards on page 37
- Supported LDP Standards on page 38
- Supported MPLS Standards on page 39
- Supported PCEP Standards on page 42
- Accessing Standards Documents on the Internet on page 3
CHAPTER 6

Open Standards

Supported Open Standards on page 45

Supported Open Standards

Junos OS substantially supports the following open standards:

- **OpenFlow Switch Specification, Version 1.0.0**
  
  For a detailed list of supported messages and fields, match conditions, wild cards, flow actions, statistics, and features, see *OpenFlow v1.0 Compliance Matrix for Devices Running Junos OS*.

  The Junos OS implementation of OpenFlow v1.0 differs from the specification in the following ways:

  (The sections of the OpenFlow specification are indicated in the parentheses.)

  - Junos OS supports only the following flow action types (section 5.2.4):
    - OFPAT_OUTPUT—supports OFPP_NORMAL, OFPP_FLOOD, OFPP_ALL, and OFPP_CONTROLLER for normal flow actions, and OFPP_FLOOD and OFPP_ALL for Send Packet flow actions.
    - OFPAT_SET_VLAN_VID—support varies by platform.
    - OFPAT_STRIP_VLAN—support varies by platform
  
  - Flow priority is supported according to OpenFlow Switch Specification v1.3.0 in which there is no prioritization of exact match entries over wildcard entries.
  
  - Emergency mode as defined in OpenFlow v1.0 is not supported. If the controller connection is lost and cannot be reestablished, the switch maintains all flow states in the control and data planes.

  The following features are not supported:

  - Encryption through TLS connection (section 4.4)
  
  - 802.1D Spanning Tree Protocol (sections 4.5 and 5.2.1)
  
  - OFPP_LOCAL virtual port (section 5.2.1)
  
  - Physical port features OFPPF_PAUSE and OFPPF_PAUSEASYM (section 5.2.1)
• Queue structures and queue configuration messages (section 5.2.2 and 5.3.4)
• Flow action types: OFPAT_SET_VLAN_PCP, OFPAT_SET_DL_SRC/DST, OFPAT_SET_NW_SRC/DST/TOS, OFPAT_SET_TP_SRC/DST and OFPAT_ENQUEUE (section 5.2.4)
• buffer_id for Modify Flow Entry Message, Send Packet Message, and Packet-In Message (sections 5.3.3, 5.3.6, and 5.4.1)
• Port Modification Message (section 5.3.3)
• Vendor Statistics (section 5.3.5)
• Vendor message (section 5.5.4)

• OpenFlow Switch Specification, Version 1.3.1

For a detailed list of supported messages and fields, port structure flags and numbering, match conditions, flow actions, multipart messages, flow instructions, and group types, see OpenFlow v1.3.1 Compliance Matrix for Devices Running Junos OS.

The Junos OS implementation of OpenFlow v1.3.1 differs from the specification in the following ways:

(The sections of the OpenFlow specification are indicated in the parentheses.)

• Junos OS supports only the following flow action types (section 5.12):
  • OFPAT_SET_VLAN_VID
  • OFPAT_POP_VLAN
  • OFPAT_GROUP

• Junos OS supports only the following group types (section 5.6.1):
  • OFPGT_ALL
  • OFPGT_INDIRECT

• Junos OS supports only one flow instruction per flow entry. Further, only the following flow instructions (section A.2.4) are supported:
  • OFPIT_WRITE_ACTIONS
  • OFPIT_APPLY_ACTIONS

• For OFPT_SET_CONFIG (section A.3.2), Junos OS supports only the OFPC_FRAG_NORMAL configuration flag, and the OFPCML_NO_BUFFER setting for the miss_send_len field.

• On MX Series routers, Junos OS supports only the following IPv6-related match conditions (A.2.3.7):
  • OFPXMT_OFB_IPV6_SRC
  • OFPXMT_OFB_IPV6_DST
The following features are not supported:

- Multiple flow tables (section 5)
- Table metadata (section 2)
- Action sets (section 5.10)
- Meter (section 5.7)
- MPLS fields (section 5.12.1)
- MPLS actions (section 5.10 and 5.12)
- Encryption through TLS connection (section 6.3.3)
- Per-port queues (section A.2.2)
- Auxiliary connections (section 6.3.5)
- Multiple virtual switches (section A.3.1)
- IPv6-related set-field actions (5.12)

Related Documentation

- OpenFlow v1.0 Compliance Matrix for Devices Running Junos OS
- OpenFlow v1.0 Compliance Matrix for QFX5100 and EX4600 Switches
- OpenFlow v1.3.1 Compliance Matrix for Devices Running Junos OS
- Understanding OpenFlow Operation and Forwarding Actions on Devices Running Junos OS
Packet Processing Standards

- Supported CoS Standards on page 49
- Supported Packet Filtering Standards on page 50
- Supported Policing Standard on page 50

**Supported CoS Standards**

Junos OS substantially supports the following standards for class of service (CoS).

- IEEE Standard 802.1D, *IEEE Standard for Local and Metropolitan Area Networks: Media Access Control (MAC) Bridges*
  This document discusses Quality of Service (QoS) at the MAC level, often referred to as 802.1p.
- RFC 2474, *Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers*
- RFC 2597, *Assured Forwarding PHB Group*
- RFC 2598, *An Expedited Forwarding PHB*

The following RFCs do not define standards, but provide information about CoS and related technologies. The IETF classifies them as “Informational.”

- RFC 2475, *An Architecture for Differentiated Services*
- RFC 2697, *A Single Rate Three Color Marker*
- RFC 2698, *A Two Rate Three Color Marker*
- RFC 2983, *Differentiated Services and Tunnels*
- RFC 3140, *Per Hop Behavior Identification Codes*
- RFC 3246, *An Expedited Forwarding PHB (Per-Hop Behavior)*
- RFC 3260, *New Terminology and Clarifications for Diffserv*

**Related Documentation**

- Accessing Standards Documents on the Internet on page 3
Supported Packet Filtering Standards

Junos OS provides a packet filtering language that enables you to control the flow of packets being forwarded to a network destination, as well as packets destined for and sent by the router. It substantially supports the following RFCs, which define standards for packet filtering.

- RFC 792, *INTERNET CONTROL MESSAGE PROTOCOL - DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION*
- RFC 2474, *Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers*
- RFC 2597, *Assured Forwarding PHB Group*
- RFC 2598, *An Expedited Forwarding PHB*
- RFC 3246, *An Expedited Forwarding PHB (Per-Hop Behavior)*
- RFC 4291, *IP Version 6 Addressing Architecture*
- RFC 4443, *Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification*

The following RFCs do not define standards, but provide information about packet filtering and related technologies. The IETF classifies them as "Informational."

- RFC 2267, *Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing*
- RFC 2475, *An Architecture for Differentiated Services*
- RFC 2983, *Differentiated Services and Tunnels*
- RFC 3260, *New Terminology and Clarifications for Diffserv*

**Related Documentation**

- *Routing Policies, Firewall Filters, and Traffic Policers Feature Guide*
- *Accessing Standards Documents on the Internet on page 3*

Supported Policing Standard

Junos OS supports policing, or rate limiting, to limit the amount of traffic that passes through an interface. For information about rate limiting, see RFC 2698, *A Two Rate Three Color Marker*.

The Junos OS implementation of policing uses a token-bucket algorithm and supports the following features:

- Adaptive shaping for Frame Relay traffic
- Virtual channels
Related Documentation

- Accessing Standards Documents on the Internet on page 3
Supported Standards for BGP

Junos OS substantially supports the following RFCs and Internet drafts, which define standards for IP version 4 (IPv4) BGP.

For a list of supported IP version 6 (IPv6) BGP standards, see “Supported IPv6 Standards” on page 60.

Junos OS BGP supports authentication for protocol exchanges (MD5 authentication).

- RFC 1745, BGP4/IDRP for IP—OSPF Interaction
- RFC 1772, Application of the Border Gateway Protocol in the Internet
- RFC 1997, BGP Communities Attribute
- RFC 2283, Multiprotocol Extensions for BGP-4
- RFC 2385, Protection of BGP Sessions via the TCP MD5 Signature Option
- RFC 2439, BGP Route Flap Damping
- RFC 2545, Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing
- RFC 2796, BGP Route Reflection – An Alternative to Full Mesh IBGP
- RFC 2858, Multiprotocol Extensions for BGP-4
- RFC 2918, Route Refresh Capability for BGP-4
- RFC 3065, Autonomous System Confederations for BGP
- RFC 3107, Carrying Label Information in BGP-4
- RFC 3345, Border Gateway Protocol (BGP) Persistent Route Oscillation Condition
- RFC 3392, Capabilities Advertisement with BGP-4
- RFC 4271, A Border Gateway Protocol 4 (BGP-4)
- RFC 4273, Definitions of Managed Objects for BGP-4
- RFC 4360, BGP Extended Communities Attribute
- RFC 4364, BGP/MPLS IP Virtual Private Networks (VPNs)
- RFC 4456, BGP Route Reflection: An Alternative to Full Mesh Internal BGP (IBGP)
- RFC 4486, Subcodes for BGP Cease Notification Message
- RFC 4659, BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN
- RFC 4632, Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan
- RFC 4684, Constrained Route Distribution for Border Gateway Protocol/MultiProtocol Label Switching (BGP/MPLS) Internet Protocol (IP) Virtual Private Networks (VPNs)
- RFC 4724, Graceful Restart Mechanism for BGP
- RFC 4760, Multiprotocol Extensions for BGP-4
- RFC 4781, Graceful Restart Mechanism for BGP with MPLS
- RFC 4798, Connecting IPv6 Islands over IPv4 MPLS Using IPv6 Provider Edge Routers (6PE)
  Option 4b (eBGP redistribution of labeled IPv6 routes from AS to neighboring AS) is not supported.
- RFC 4893, BGP Support for Four-octet AS Number Space
- RFC 5004, Avoid BGP Best Path Transitions from One External to Another
- RFC 5065, Autonomous System Confederations for BGP
- RFC 5082, The Generalized TTL Security Mechanism (GTSM)
- RFC 5291, Outbound Route Filtering Capability for BGP-4 (partial support)
- RFC 5292, Address-Prefix-Based Outbound Route Filter for BGP-4 (partial support)
  Devices running Junos OS can receive prefix-based ORF messages.
- RFC 5396, Textual Representation of Autonomous System (AS) Numbers
- RFC 5492, Capabilities Advertisement with BGP-4
- RFC 5512, The BGP Encapsulation Subsequent Address Family Identifier (SAFI) and the BGP Tunnel Encapsulation Attribute
- RFC 5549, Advertising IPv4 Network Layer Reachability Information with an IPv6 Next Hop
• RFC 5575, Dissemination of flow specification rules
• RFC 5668, 4-Octet AS Specific BGP Extended Community
• RFC 6368, Internal BGP as the Provider/Customer Edge Protocol for BGP/MPLS IP Virtual Private Networks (VPNs)
• RFC 6810, The Resource Public Key Infrastructure (RPKI) to Router Protocol
• RFC 6811, BGP Prefix Origin Validation
• RFC 6996, Autonomous System (AS) Reservation for Private Use
• RFC 7300, Reservation of Last Autonomous System (AS) Numbers
• RFC 7752, North-Bound Distribution of Link-State and Traffic Engineering (TE) Information Using BGP
• RFC 7854, BGP Monitoring Protocol (BMP)
• RFC 7911, Advertisement of Multiple Paths in BGP
• Internet draft draft-ietf-idr-aigp-06, The Accumulated IGP Metric Attribute for BGP (expires December 2011)
• Internet draft draft-ietf-idr-as0-06, Codification of AS 0 processing (expires February 2013)
• Internet draft draft-ietf-idr-link-bandwidth-06.txt, BGP Link Bandwidth Extended Community (expires July 2013)
• Internet draft draft-ietf-sidr-origin-validation-signaling-00, BGP Prefix Origin Validation State Extended Community (partial support) (expires May 2011)
  The extended community (origin validation state) is supported in Junos OS routing policy. The specified change in the route selection procedure is not supported.
• Internet draft draft-kato-bgp-ipv6-link-local-00.txt, BGP4 + Peering Using IPv6 Link-local Address

The following RFCs and Internet draft do not define standards, but provide information about BGP and related technologies. The IETF classifies them variously as “Experimental” or “Informational.”
• RFC 1965, Autonomous System Confederations for BGP
• RFC 1966, BGP Route Reflection—An alternative to full mesh IBGP
• RFC 2270, Using a Dedicated AS for Sites Homed to a Single Provider
• Internet draft draft-ietf-ngtrans-bgp-tunnel-04.txt, Connecting IPv6 Islands across IPv4 Clouds with BGP (expires July 2002)

Related Documentation
• Supported IPv6 Standards on page 60
• Accessing Standards Documents on the Internet on page 3
Supported ES-IS Standards

Junos OS substantially supports the following standards for End System–to–Intermediate System (ES-IS).

- ISO/IEC standard 9542, *Information processing systems — Telecommunications and information exchange between systems — End system to Intermediate system routeing exchange protocol for use in conjunction with the Protocol for providing the connectionless-mode network service (ISO 8473)*

Related Documentation
- Supported Standards for IS-IS on page 63
- IS-IS Overview
- Accessing Standards Documents on the Internet on page 3

Supported ICMP Router Discovery and IPv6 Neighbor Discovery Standards

Junos OS substantially supports the following RFCs, which define standards for the Internet Control Message Protocol (ICMP for IP version 4 [IPv4]) and neighbor discovery (for IP version 6 [IPv6]).

- RFC 1256, *ICMP Router Discovery Messages*
- RFC 4861, *Neighbor Discovery for IP version 6 (IPv6)*
- RFC 2462, *IPv6 Stateless Address Autoconfiguration*
- RFC 2463, *Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPV6) Specification*
- RFC 4443, *Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification*
- RFC 4861, *IPv6 Stateless Address Autoconfiguration*
- RFC 4862, *Neighbor Discovery for IP version 6 (IPv6)*
- RFC 6106, *IPv6 Router Advertisement Options for DNS Configuration*

Related Documentation
- Supported IPv4, TCP, and UDP Standards on page 58
- Supported IPv6 Standards on page 60
- Accessing Standards Documents on the Internet on page 3
Supported IP Multicast Protocol Standards

Junos OS substantially supports the following RFCs and Internet drafts, which define standards for IP multicast protocols, including the Distance Vector Multicast Routing Protocol (DVMRP), Internet Group Management Protocol (IGMP), Multicast Listener Discovery (MLD), Multicast Source Discovery Protocol (MSDP), Pragmatic General Multicast (PGM), Protocol Independent Multicast (PIM), Session Announcement Protocol (SAP), and Session Description Protocol (SDP).

- RFC 1112, Host Extensions for IP Multicasting (defines IGMP Version 1)
- RFC 2236, Internet Group Management Protocol, Version 2
- RFC 2327, SDP: Session Description Protocol
- RFC 2710, Multicast Listener Discovery (MLD) for IPv6
- RFC 2858, Multiprotocol Extensions for BGP-4
- RFC 3031, Multiprotocol Label Switching Architecture
- RFC 3376, Internet Group Management Protocol, Version 3
- RFC 3956, Embedding the Rendezvous Point (RP) Address in an IPv6 Multicast Address
- RFC 3590, Source Address Selection for the Multicast Listener Discovery (MLD) Protocol
- RFC 4604, Using IGMPv3 and MLDv2 for Source-Specific Multicast
- RFC 4607, Source-Specific Multicast for IP
- RFC 4610, Anycast-RP Using Protocol Independent Multicast (PIM)
- RFC 5015, Bidirectional Protocol Independent Multicast (BIDIR-PIM)
- RFC 5059, Bootstrap Router (BSR) Mechanism for Protocol Independent Multicast (PIM)

The scoping mechanism is not supported.

- RFC 6513, Multicast in MPLS/BGP IP VPNs
- RFC 6514, BGP Encodings and Procedures for Multicast in MPLS/BGP IP VPNs
- Internet draft draft-ragarwa-l3vpn-bgp-mvpn-extranet-08.txt, Extranet in BGP Multicast VPN (MVPN)
- Internet draft draft-rosen-l3vpn-spmsi-joins-mldp-03.txt, MVPN: S-PMSI Join Extensions for mLDP-Created Tunnels

The following RFCs and Internet drafts do not define standards, but provide information about multicast protocols and related technologies. The IETF classifies them variously as “Best Current Practice,” “Experimental,” or “Informational.”

- RFC 1075, Distance Vector Multicast Routing Protocol
- RFC 2365, *Administratively Scoped IP Multicast*
- RFC 2547, *BGP/MPLS VPNs*
- RFC 2974, *Session Announcement Protocol*
- RFC 3208, *PGM Reliable Transport Protocol Specification*
- RFC 3446, *Anycast Rendezvous Point (RP) mechanism using Protocol Independent Multicast (PIM) and Multicast Source Discovery Protocol (MSDP)*
- RFC 3569, *An Overview of Source-Specific Multicast (SSM)*
- RFC 3618, *Multicast Source Discovery Protocol (MSDP)*
- RFC 3810, *Multicast Listener Discovery Version 2 (MLDv2) for IPv6*
- RFC 4364, *BGP/MPLS IP Virtual Private Networks (VPNs)*
- Internet draft draft-ietf-idmr-dvmrp-v3-11.txt, *Distance Vector Multicast Routing Protocol*
- Internet draft draft-ietf-mboned-ssm232-08.txt, *Source-Specific Protocol Independent Multicast in 232/8*
- Internet draft draft-ietf-mmusic-sap-00.txt, *SAP: Session Announcement Protocol*
- Internet draft draft-rosen-vpn-mcast-07.txt, *Multicast in MPLS/BGP VPNs*

Only section 7, “Data MDT: Optimizing flooding,” is supported.

**Related Documentation**

- Accessing Standards Documents on the Internet on page 3

### Supported IPv4, TCP, and UDP Standards

Junos OS substantially supports the following RFCs, which define standards for IP version 4 (IPv4), Transmission Control Protocol (TCP), and User Datagram Protocol (UDP).

- RFC 768, *User Datagram Protocol*
- RFC 791, *INTERNET PROTOCOL - DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION*
- RFC 792, *INTERNET CONTROL MESSAGE PROTOCOL - DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION*
- RFC 793, *TRANSMISSION CONTROL PROTOCOL - DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION*
- RFC 826, *Ethernet Address Resolution Protocol—or—Converting Network Protocol Addresses to 48-bit Ethernet Addresses for Transmission on Ethernet Hardware*
- RFC 854, *TELNET PROTOCOL SPECIFICATION*
- RFC 855, *TELNET OPTION SPECIFICATIONS*
• RFC 856, TELNET BINARY TRANSMISSION
  To transmit using an 8-bit binary path, use the `telnet host 8bit` command, where `host` is the name or address of the remote system.
• RFC 862, Echo Protocol
• RFC 863, Discard Protocol
• RFC 894, A Standard for the Transmission of IP Datagrams over Ethernet Networks
• RFC 896, Congestion Control in IP/TCP Internetworks
• RFC 903, A Reverse Address Resolution Protocol
• RFC 919, BROADCASTING INTERNET DATAGRAMS
• RFC 922, BROADCASTING INTERNET DATAGRAMS IN THE PRESENCE OF SUBNETS
• RFC 950, Internet Standard Subnetting Procedure
• RFC 959, FILE TRANSFER PROTOCOL (FTP)
• RFC 1027, Using ARP to Implement Transparent Subnet Gateways
• RFC 1042, A Standard for the Transmission of IP Datagrams over IEEE 802 Networks
• RFC 1157, A Simple Network Management Protocol (SNMP)
• RFC 1166, INTERNET NUMBERS
• RFC 1195, Use of OSI IS-IS forRouting in TCP/IP and Dual Environments
• RFC 1256, ICMP Router Discovery Messages
• RFC 1305, Network Time Protocol (Version 3) Specification, Implementation and Analysis
• RFC 1519, Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy
• RFC 1812, Requirements for IP Version 4 Routers
• RFC 2338, Virtual Router Redundancy Protocol (obsoleted by RFC 3768 in April 2004)
• RFC 2873, TCP Processing of the IPv4 Precedence Field
• RFC 3021, Using 31-Bit Prefixes on IPv4 Point-to-Point Links
• RFC 3246, An Expedited Forwarding PHB (Per-Hop Behavior)
• RFC 3768, Virtual Router Redundancy Protocol (VRRP)
• RFC 5798, Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6
• RFC 6527, Definitions of Managed Objects for the Virtual Router Redundancy Protocol Version 3 (VRRPv3)

The following features are not supported:
• Row creation
• **Set** operation
• **vrrpv3StatisticsRowDiscontinuityTime** MIB object
• **vrrpv3StatisticsPacketLengthErrors** MIB object

The following RFCs do not define standards, but provide information about IP, TCP, UDP, and related technologies. The IETF classifies them as “Informational.”

- RFC 1878, *Variable Length Subnet Table For IPv4*
- RFC 1948, *Defending Against Sequence Number Attacks*

### Related Documentation
- Supported IPv6 Standards on page 60
- Accessing Standards Documents on the Internet on page 3

### Supported IPv6 Standards

Junos OS substantially supports the following RFCs and Internet drafts, which define standards for IP version 6 (IPv6):

- RFC 1981, *Path MTU Discovery for IP version 6*
- RFC 2373, *IP Version 6 Addressing Architecture*
- RFC 2375, *Multicast Address Assignments*
- RFC 2461, *Neighbor Discovery for IP Version 6 (IPv6)*
- RFC 2462, *IPv6 Stateless Address Autoconfiguration*
- RFC 2464, *Transmission of IPv6 Packets over Ethernet Networks*
- RFC 2465, *Management Information Base for IP Version 6: Textual Conventions and General Group*

IP version 6 (IPv6) and Internet Control Message Protocol version 6 (ICMPv6) statistics are not supported.

- RFC 2472, *IP Version 6 over PPP*
- RFC 2474, *Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers*
- RFC 2491, *IPv6 Over Non-Broadcast Multiple Access (NBMA) networks*
- RFC 2492, *IPv6 over ATM Networks*
- RFC 2526, *Reserved IPv6 Subnet Anycast Addresses*
- RFC 2545, *Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing*
- RFC 2578, *Structure of Management Information Version 2 (SMIV2)*
• RFC 2675, IPv6 Jumbograms
• RFC 2711, IPv6 Router Alert Option
• RFC 2767, Dual Stack Hosts using the “Bump-In-the-Stack” Technique (BIS)
• RFC 2784, Generic Routing Encapsulation
• RFC 2878, PPP Bridging Control Protocol (BCP)
• RFC 3306, Unicast-Prefix-based IPv6 Multicast Addresses
• RFC 3307, Allocation Guidelines for IPv6 Multicast Addresses
• RFC 3315, Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
  Address assignment is supported with IP version 4 (IPv4) but not IP version 6 (IPv6).
• RFC 3484, Default Address Selection for Internet Protocol version 6 (IPv6)
• RFC 3513, Internet Protocol Version 6 (IPv6) Addressing Architecture
• RFC 3515, The Session Initiation Protocol (SIP) Refer Method
• RFC 3590, Source Address Selection for the Multicast Listener D (Supported for SSM include mode only)
• RFC 3768, Virtual Router Redundancy Protocol (VRRP)
• RFC 3810, Multicast Listener Discovery Version 2 (MLDv2) for IPv6
• RFC 3971, Secure Neighbor Discovery for IPv6 (No support for certification paths, anchored on trusted parties)
• RFC 3972, Cryptographically Generated Addresses
• RFC 4087, IP Tunnel MIB
• RFC 4213, Basic Transition Mechanisms for IPv6 Hosts and Routers

NOTE: On EX Series switches, except for the EX9200 Series, only dual IP layer is supported. On EX9200 Series switches, both dual IP layer and configured tunneling of IPv6 over IPv4 are supported.

• RFC 4291, IP Version 6 Addressing Architecture
• RFC 4292, IP Forwarding Table MIB
• RFC 4293, Management Information Base for the Internet Protocol (IP)
• RFC 4294, IPv6 Node Requirements (Partial support)
• RFC 4443, Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification
• RFC 4552, Authentication/Confidentiality for OSPFv3
• RFC 4604, Using Internet Group Management Protocol Version 3 (IGMPv3)
RFC 4659, BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN

RFC 4798, Connecting IPv6 Islands over IPv4 MPLS Using IPv6 Provider Edge Routers (6PE)

Option 4b (eBGP redistribution of labeled IPv6 routes from AS to neighboring AS) is not supported.

RFC 4861, Neighbor Discovery for IP Version 6 (IPv6)

RFC 4862, IPv6 Stateless Address Autoconfiguration

RFC 4890, Recommendations for Filtering ICMPv6 Messages in Firewalls

RFC 4942, IPv6 Transition/Coexistence Security Considerations

RFC 5072, IP Version 6 over PPP

RFC 5095, Deprecation of Type 0 Routing Headers in IPv6

RFC 5308, Routing IPv6 with IS-IS

RFC 5340, OSPF for IPv6 (RFC 2740 is obsoleted by RFC 5340)

RFC 5575, Dissemination of Flow Specification Rules

RFC 5798, Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6

RFC 5905, Network Time Protocol Version 4 (for IPv6)

RFC 5952, A Recommendation for IPv6 Address Text Representation

RFC 6164, Using 127-Bit IPv6 Prefixes on Inter-Router Links

RFC 6527, Definitions of Managed Objects for the Virtual Router Redundancy Protocol Version 3 (VRRPv3)

The following features are not supported:

- Row creation
- Set operation
- `vrrpv3StatisticsPacketLengthErrors` MIB object
- `vrrpv3StatisticsRowDiscontinuityTime` MIB object

RFC 6583, Operational Neighbor Discovery Problems

Only Prioritize NDP Activities, Tuning of the NDP Queue Rate Limit, and Queue Tuning are supported.

Internet draft draft-ietf-l3vpn-bgp-ipv6-07.txt, BGP-MPLS IP VPN extension for IPv6 VPN

Internet draft draft-ietf-idr-flow-spec-00.txt, Dissemination of flow specification rules

Internet draft draft-ietf-softwire-dual-stack-lite-04.txt, Dual-Stack Lite Broadband Deployments Following IPv4 Exhaustion

Internet draft draft-kato-bgp-ipv6-link-local-00.txt, BGP4+ Peering Using IPv6 Link-local Address
The following RFCs and Internet draft do not define standards, but provide information about IPv6 and related technologies. The IETF classifies them variously as "Experimental" or "Informational."

- RFC 1901, Introduction to Community-based SNMPv2
- RFC 2767, Dual Stack Hosts using the "Bump-In-the-Stack" Technique (BIS)
- RFC 3587, IPv6 Global Unicast Address Format
- Internet draft draft-ietf-ngtrans-bgp-tunnel-04.txt, Connecting IPv6 Islands across IPv4 Clouds with BGP

Only MP-BGP over IP version 4 (IPv4) approach is supported.

Related Documentation
- Supported IPv4, TCP, and UDP Standards on page 58
- Accessing Standards Documents on the Internet on page 3

Supported Standards for IS-IS

Junos OS substantially supports the following standards for IS-IS.

- International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) 8473, Information technology — Protocol for providing the connectionless-mode network service
- ISO/IEC 10589, Information technology — Telecommunications and information exchange between systems — Intermediate System to Intermediate System intra-domain routing information exchange protocol for use in conjunction with the protocol for providing the connectionless-mode network service (ISO 8473)
- RFC 1195, Use of OSI IS-IS for Routing in TCP/IP and Dual Environments
- RFC 3719, Recommendations for Interoperable Networks using Intermediate System to Intermediate System (IS-IS)
- RFC 3847, Restart Signaling for Intermediate System to Intermediate System (IS-IS)
- RFC 5130, A Policy Control Mechanism in IS-IS Using Administrative Tags
- RFC 5286, Basic Specification for IP Fast Reroute: Loop-Free Alternates
- RFC 5301, Dynamic Hostname Exchange Mechanism for IS-IS
- RFC 5302, Domain-Wide Prefix Distribution with Two-Level IS-IS
- RFC 5303, Three-Way Handshake for IS-IS Point-to-Point Adjacencies
- RFC 5304, IS-IS Cryptographic Authentication
- RFC 5305, IS-IS Extensions for Traffic Engineering
- RFC 5306, Restart Signaling for IS-IS
- RFC 5307, IS-IS Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)
- RFC 5308, Routing IPv6 with IS-IS
- RFC 5310, IS-IS Generic Cryptographic Authentication
- RFC 5880, Bidirectional Forwarding Detection (BFD)
- RFC 6232, Purge Originator Identification TLV for IS-IS

The following RFCs do not define standards, but provide information about IS-IS and related technologies. The IETF classifies them as "Informational."

- RFC 2973, IS-IS Mesh Groups
- RFC 3358, Optional Checksums in Intermediate System to Intermediate System (ISIS)
- RFC 3359, Reserved Type, Length and Value (TLV) Codepoints in Intermediate System to Intermediate System
- RFC 3373, Three-Way Handshake for Intermediate System to Intermediate System (IS-IS) Point-to-Point Adjacencies
- RFC 3787, Recommendations for Interoperable IP Networks using Intermediate System to Intermediate System (IS-IS)
- RFC 5309, Point-to-Point Operation over LAN in Link State Routing Protocols
- Internet draft draft-ietf-isis-wg-255adj-02.txt, Maintaining more than 255 circuits in IS-IS

Related Documentation

- IS-IS Overview
- Supported ES-IS Standards on page 56
- Accessing Standards Documents on the Internet on page 3

Supported OSPF and OSPFv3 Standards

Junos OS substantially supports the following RFCs and Internet drafts, which define standards for OSPF and OSPF version 3 (OSPFv3).

- RFC 1583, OSPF Version 2
- RFC 1765, OSPF Database Overflow
- RFC 1793, Extending OSPF to Support Demand Circuits
- RFC 1850, OSPF Version 2 Management Information Base
• RFC 2154, OSPF with Digital Signatures
• RFC 2328, OSPF Version 2
• RFC 2370, The OSPF Opaque LSA Option
  Support is provided by the `update-threshold` configuration statement at the `[edit protocols rsvp interface interface-name]` hierarchy level.
• RFC 3101, The OSPF Not-So-Stubby Area (NSSA) Option
• RFC 3623, Graceful OSPF Restart
• RFC 3630, Traffic Engineering (TE) Extensions to OSPF Version 2
• RFC 4136, OSPF Refresh and Flooding Reduction in Stable Topologies
• RFC 4203, OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)
  Only interface switching is supported.
• RFC 4552, Authentication/Confidentiality for OSPFv3
• RFC 4576, Using a Link State Advertisement (LSA) Options Bit to Prevent Looping in BGP/MPLS IP Virtual Private Networks (VPNs)
• RFC 4577, OSPF as the Provider/Customer Edge Protocol for BGP/MPLS IP Virtual Private Networks (VPNs)
• RFC 4811, OSPF Out-of-Band Link State Database (LSDB) Resynchronization
• RFC 4812, OSPF Restart Signaling
• RFC 4813, OSPF Link-Local Signaling
• RFC 4915, Multi-Topology (MT) Routing in OSPF
• RFC 5185, OSPF Multi-Area Adjacency
• RFC 5187, OSPFv3 Graceful Restart
• RFC 5250, The OSPF Opaque LSA Option

  NOTE: RFC 4750, mentioned in this RFC as a "should" requirement is not supported. However, RFC 1850, the predecessor to RFC 4750 is supported.

• RFC 5286, Basic Specification for IP Fast Reroute: Loop-Free Alternates
• RFC 5340, OSPF for IPv6 (RFC 2740 is obsoleted by RFC 5340)
• RFC 5838, Support of Address Families in OSPFv3
• Internet draft draft-ietf-ospf-af-alt-10.txt, Support of address families in OSPFv3
• Internet draft draft-katz-ward-bfd-02.txt, Bidirectional Forwarding Detection
  Transmission of echo packets is not supported.
The following RFCs do not define standards, but provide information about OSPF and related technologies. The IETF classifies them as “Informational.”

- RFC 3137, *OSPF Stub Router Advertisement*
- RFC 3509, *Alternative Implementations of OSPF Area Border Routers*
- RFC 5309, *Point-to-Point Operation over LAN in Link State Routing Protocols*

**Supported IPv6 Standards on page 60**

**OSPF Overview**

**Accessing Standards Documents on the Internet on page 3**

### Supported RIP and RIPng Standards

Junos OS substantially supports the following RFCs, which define standards for RIP (for IP version 4 [IPv4]) and RIP next generation (RIPng, for IP version 6 [IPv6]).

Junos OS supports authentication for all RIP protocol exchanges (MD5 or simple authentication).

- RFC 1058, *Routing Information Protocol*
- RFC 2080, *RIPng for IPv6*
- RFC 2082, *RIP-2 MD5 Authentication*
  
  Multiple keys using distinct key IDs are not supported.
- RFC 2453, *RIP Version 2*

The following RFC does not define a standard, but provides information about RIPng. The IETF classifies it as “Informational.”

- RFC 2081, *RIPng Protocol Applicability Statement*

**Supported IPv4, TCP, and UDP Standards on page 58**

**Supported IPv6 Standards on page 60**

**Accessing Standards Documents on the Internet on page 3**
CHAPTER 9

Services PIC and DPC Standards

- Supported DTCP Standard on page 67
- Supported Flow Monitoring and Discard Accounting Standards on page 67
- Supported IPsec and IKE Standards on page 68
- Supported L2TP Standards on page 70
- Supported Link Services Standards on page 70
- Supported NAT and SIP Standards on page 71
- Supported RPM Standard on page 71
- Supported Voice Services Standards on page 72

Supported DTCP Standard

Junos OS substantially supports Internet draft draft-cavuto-dtcp-03.txt, *DTCP: Dynamic Tasking Control Protocol*.

Related Documentation

- Accessing Standards Documents on the Internet on page 3

Supported Flow Monitoring and Discard Accounting Standards

On routers equipped with one or more Adaptive Services PICs (both standalone and integrated versions), Monitoring Services PICs, or DPCs, Junos OS substantially supports the standards for cflowd version 5 and version 8 formats that are maintained by CAIDA and accessible at [http://www.caida.org](http://www.caida.org).

The following RFC does not define a standard, but provides information about flow monitoring. The IETF classifies it as “Informational.”

- RFC 3954, *Cisco Systems NetFlow Services Export Version 9*

On MX Series routers, Junos OS partially supports the following RFCs:

- RFC 5102, *Information Model for IP Flow Information Export*
Related Documentation

- Services Interfaces Overview for Routing Devices
- MX Series Interface Module Reference
- Accessing Standards Documents on the Internet on page 3

Supported IPsec and IKE Standards

On routers equipped with one or more MS-MPCs, MS-MICs, or DPCs, the Canada and U.S. version of Junos OS substantially supports the following RFCs, which define standards for IP Security (IPsec) and Internet Key Exchange (IKE).

- RFC 2085, HMAC-MD5 IP Authentication with Replay Prevention
- RFC 2401, Security Architecture for the Internet Protocol (obsoleted by RFC 4301)
- RFC 2402, IP Authentication Header (obsoleted by RFC 4302)
- RFC 2403, The Use of HMAC-MD5-96 within ESP and AH
- RFC 2404, The Use of HMAC-SHA-1-96 within ESP and AH (obsoleted by RFC 4305)
- RFC 2405, The ESP DES-CBC Cipher Algorithm With Explicit IV
- RFC 2406, IP Encapsulating Security Payload (ESP) (obsoleted by RFC 4303 and RFC 4305)
- RFC 2407, The Internet IP Security Domain of Interpretation for ISAKMP (obsoleted by RFC 4306)
- RFC 2408, Internet Security Association and Key Management Protocol (ISAKMP) (obsoleted by RFC 4306)
- RFC 2409, The Internet Key Exchange (IKE) (obsoleted by RFC 4306)
- RFC 2410, The NULL Encryption Algorithm and Its Use With IPsec
- RFC 2451, The ESP CBC-Mode Cipher Algorithms
- RFC 2460, Internet Protocol, Version 6 (IPv6)
- RFC 2560, X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP
- RFC 3193, Securing L2TP using IPsec
- RFC 3280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile
- RFC 3602, The AES-CBC Cipher Algorithm and Its Use with IPsec
- RFC 3948, UDP Encapsulation of IPsec ESP Packets
- RFC 4106, The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP)
- RFC 4210, Internet X.509 Public Key Infrastructure Certificate Management Protocol (CMP)
- RFC 4211, Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF)
- RFC 4301, Security Architecture for the Internet Protocol
- RFC 4302, IP Authentication Header
- RFC 4303, IP Encapsulating Security Payload (ESP)
- RFC 4305, Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)
- RFC 4306, Internet Key Exchange (IKEv2) Protocol
- RFC 4307, Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)
- RFC 4308, Cryptographic Suites for IPsec

NOTE: Only Suite VPN-A is supported in Junos OS.

- RFC 4754, IKE and IKEv2 Authentication Using the Elliptic Curve Digital Signature Algorithm (ECDSA)
- RFC 4835, Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)
- RFC 5996, Internet Key Exchange Protocol Version 2 (IKEv2)

Junos OS partially supports the following RFCs for IPsec and IKE:

- RFC 3526, More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE)
- RFC 5114, Additional Diffie-Hellman Groups for Use with IETF Standards
- RFC 5903, Elliptic Curve Groups modulo a Prime (ECP Groups) for IKE and IKEv2

The following RFCs and Internet draft do not define standards, but provide information about IPsec, IKE, and related technologies. The IETF classifies them as “informational.”

- RFC 2104, HMAC: Keyed-Hashing for Message Authentication
- RFC 2412, The OAKLEY Key Determination Protocol
- RFC 3706, A Traffic-Based Method of Detecting Dead Internet Key Exchange (IKE) Peers

Related Documentation

- Services Interfaces Overview for Routing Devices
- MX Series Interface Module Reference
- Accessing Standards Documents on the Internet on page 3
Supported L2TP Standards

On routers equipped with one or more Adaptive Services PICs (both standalone and integrated versions) or Multiservices PICs or DPCs, Junos OS substantially supports the following RFC, which defines the standard for Layer 2 Tunneling Protocol (L2TP).

- RFC 2661, Layer Two Tunneling Protocol “L2TP”

The following RFC does not define a standard, but provides information about technology related to L2TP. The IETF classifies it as “Informational.”

- RFC 2866, RADIUS Accounting

Related Documentation
- Services Interfaces Overview for Routing Devices
- MX Series Interface Module Reference
- Accessing Standards Documents on the Internet on page 3

Supported Link Services Standards

On routers equipped with one or more Adaptive Services PICs (both standalone and integrated versions) or DPCs, Junos OS substantially supports the following RFCs, which define standards for link services.

- RFC 1990, The PPP Multilink Protocol (MP)
- RFC 2364, PPP Over AAL5
- RFC 2686, The Multi-Class Extension to Multi-Link PPP

The following features are not supported:

- Negotiation of address field compression and protocol field compression PPP NCP options; instead, a full 4-byte PPP header is always sent
- Prefix elision

Related Documentation
- Services Interfaces Overview for Routing Devices
- MX Series Interface Module Reference
- Accessing Standards Documents on the Internet on page 3
**Supported NAT and SIP Standards**

On routers equipped with one or more Adaptive Services PICs (both standalone and integrated versions) or DPCs, Junos OS substantially supports the following Network Address Translation (NAT) and Session Initiation Protocol (SIP) standards. NAT supports SIP dialogs and UDP/IP version 4 (IPv4) transport of SIP messages.

Junos OS substantially supports the following RFC and Internet draft.
- RFC 3261, *SIP: Session Initiation Protocol*
- Internet draft draft-mrw-behave-nat66-01.txt, *IPv6-to-IPv6 Network Address Translation (NAT66)*

The following RFCs do not define standards, but provide information about NAT. The IETF classifies them variously as “Best Current Practice,” “Historic,” or “Informational.”
- RFC 1631, *The IP Network Address Translator (NAT)*
- RFC 2663, *IP Network Address Translator (NAT) Terminology and Considerations*
- RFC 2766, *Network Address Translation - Protocol Translation (NAT-PT)*
- RFC 2993, *Architectural Implications of NAT*
- RFC 3022, *Traditional IP Network Address Translator (Traditional NAT)*
- RFC 4787, *Network Address Translation (NAT) Behavioral Requirements for Unicast UDP*
- RFC 5382, *NAT Behavioral Requirements for TCP*
- RFC 5508, *NAT Behavioral Requirements for ICMP*

**Related Documentation**
- *Services Interfaces Overview for Routing Devices*
- *MX Series Interface Module Reference*
- *Accessing Standards Documents on the Internet on page 3*

**Supported RPM Standard**

On routers equipped with one or more Adaptive Services PICs (both standalone and integrated versions) or DPCs, Junos OS substantially supports real-time performance monitoring (RPM), and provides MIB support with extensions in substantial support of RFC 2925, *Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations*.

**Related Documentation**
- *Services Interfaces Overview for Routing Devices*
- *MX Series Interface Module Reference*
- *Accessing Standards Documents on the Internet on page 3*
Supported Voice Services Standards

On routers equipped with one or more Adaptive Services PICs (both standalone and integrated versions) or DPCs, Junos OS substantially supports the following RFCs, which define standards for technologies used with voice services.

- RFC 2508, Compressing IP/UDP/RTP Headers for Low-Speed Serial Links
- RFC 2509, IP Header Compression over PPP

Related Documentation
- Services Interfaces Overview for Routing Devices
- MX Series Interface Module Reference
- Accessing Standards Documents on the Internet on page 3
CHAPTER 10

VPLS and VPN Standards

- Supported Carrier-of-Carriers and Interprovider VPN Standards on page 73
- Supported EVPN Standards on page 74
- Supported VPWS Standards on page 74
- Supported Layer 2 VPN Standards on page 75
- Supported Layer 3 VPN Standards on page 76
- Supported Multicast VPN Standards on page 77
- Supported VPLS Standards on page 77

Supported Carrier-of-Carriers and Interprovider VPN Standards

Junos OS substantially supports the following RFCs, which define standards for carrier-of-carriers and interprovider virtual private networks (VPNs).

- RFC 3107, Carrying Label Information in BGP-4
- RFC 3916, Requirements for Pseudo-Wire Emulation Edge-to-Edge (PWE3)
  Supported on MX Series routers with the Channelized OC3/STM1 (Multi-Rate) Circuit Emulation MIC with SFP.
- RFC 3985, Pseudo Wire Emulation Edge-to-Edge (PWE3) Architecture
  Supported on MX Series routers with the Channelized OC3/STM1 (Multi-Rate) Circuit Emulation MIC with SFP.
- RFC 4364, BGP/MPLS IP Virtual Private Networks (VPNs)
- RFC 5601, Pseudowire (PW) Management Information Base (MIB)
- RFC 5603, Ethernet Pseudowire (PW) Management Information Base (MIB)
- RFC 6368, Internal BGP as the Provider/Customer Edge Protocol for BGP/MPLS IP Virtual Private Networks (VPNs)

Related Documentation

- Supported VPWS Standards on page 32
- Supported Layer 2 VPN Standards on page 33
- Supported Layer 3 VPN Standards on page 76
Supported EVPN Standards

Junos OS supports the following RFCs and Internet drafts that define standards for EVPN:

- RFC 4364, BGP/MPLS IP Virtual Private Networks (VPNs)
- RFC 4761, Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling
- RFC 7432, BGP MPLS-Based Ethernet VPN

The following features are not supported:

- Automatic derivation of Ethernet segment (ES) values. Only static ES configurations are supported.
- Host proxy ARP.
- Internet draft draft-ietf-spring-segment-routing-13, Segment Routing Architecture
- Internet draft draft-ietf-spring-segment-routing-mpls-11, Segment Routing with MPLS data plane
- Internet draft draft-ietf-isis-segment-routing-extensions-13, IS-IS Extensions for Segment Routing

Related Documentation

- EVPN Overview
- Accessing Standards Documents on the Internet on page 3

Supported VPWS Standards

Junos OS substantially supports the following RFCs, which define standards for VPWS and Layer 2 circuits.

- RFC 4447, Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)
- RFC 4448, Encapsulation Methods for Transport of Ethernet over MPLS Networks
- RFC 6074, Provisioning, Auto-Discovery, and Signaling in Layer 2 Virtual Private Networks (L2VPNs)
- RFC 6391, Flow-Aware Transport of Pseudowires over an MPLS Packet Switched Network
- RFC 6790, The Use of Entropy Labels in MPLS Forwarding
The following Internet drafts do not define standards, but provide information about Layer 2 technologies. The IETF classifies them as “Historic.”

- Internet draft draft-martini-l2circuit-encap-mpls-11.txt, *Encapsulation Methods for Transport of Layer 2 Frames Over IP and MPLS Networks*

  Junos OS differs from the Internet draft in the following ways:
  
  - A packet with a sequence number of 0 (zero) is treated as out of sequence.
  - Any packet that does not have the next incremental sequence number is considered out of sequence.
  - When out-of-sequence packets arrive, the expected sequence number for the neighbor is set to the sequence number in the Layer 2 circuit control word.

- Internet draft draft-martini-l2circuit-trans-mpls-19.txt, *Transport of Layer 2 Frames Over MPLS*

**Related Documentation**

- Supported Carrier-of-Carriers and Interprovider VPN Standards on page 73
- Supported Layer 2 VPN Standards on page 33
- Supported Layer 3 VPN Standards on page 76
- Supported Multicast VPN Standards on page 77
- Supported VPLS Standards on page 77
- Accessing Standards Documents on the Internet on page 3

### Supported Layer 2 VPN Standards

Junos OS substantially supports the following Internet drafts, which define standards for Layer 2 virtual private networks (VPNs).

- Internet draft draft-kompella-l2vpn-vpls-multihoming, *Multi-homing in BGP-based Virtual Private LAN Service*

  - Internet draft draft-kompella-ppvpn-l2vpn-03.txt, *Layer 2 VPNs Over Tunnels*

**Related Documentation**

- Supported Carrier-of-Carriers and Interprovider VPN Standards on page 73
- Supported VPWS Standards on page 32
- Supported Layer 3 VPN Standards on page 76
- Supported Multicast VPN Standards on page 77
- Supported VPLS Standards on page 77
- Accessing Standards Documents on the Internet on page 3
Supported Layer 3 VPN Standards

Junos OS substantially supports the following RFCs, which define standards for Layer 3 virtual private networks (VPNs).

- RFC 2283, Multiprotocol Extensions for BGP-4
- RFC 2685, Virtual Private Networks Identifier
- RFC 2858, Multiprotocol Extensions for BGP-4
- RFC 4364, BGP/MPLS IP Virtual Private Networks (VPNs)
- RFC 4379, Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures
  The traceroute functionality is supported only on transit routers.
- RFC 4576, Using a Link State Advertisement (LSA) Options Bit to Prevent Looping in BGP/MPLS IP Virtual Private Networks (VPNs)
- RFC 4577, OSPF as the Provider/Customer Edge Protocol for BGP/MPLS IP Virtual Private Networks (VPNs)
- RFC 4659, BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN
- RFC 4684, Constrained Route Distribution for Border Gateway Protocol/MultiProtocol Label Switching (BGP/MPLS) Internet Protocol (IP) Virtual Private Networks (VPNs)

The following RFCs do not define a standard, but provide information about technology related to Layer 3 VPNs. The IETF classifies them as a “Best Current Practice” or “Informational.”

- RFC 1918, Address Allocation for Private Internets
- RFC 2917, A Core MPLS IP VPN Architecture

Related Documentation

- Supported Carrier-of-Carriers and Interprovider VPN Standards on page 73
- Supported VPWS Standards on page 32
- Supported Layer 2 VPN Standards on page 33
- Supported Multicast VPN Standards on page 77
- Supported VPLS Standards on page 77
- Supported MPLS Standards on page 39
- Supported Standards for BGP on page 53
- Accessing Standards Documents on the Internet on page 3
Supported Multicast VPN Standards

Junos OS substantially supports the following RFCs and Internet draft, which define standards for multicast virtual private networks (VPNs).

- RFC 6513, Multicast in MPLS/BGP IP VPNs
- RFC 6514, BGP Encodings and Procedures for Multicast in MPLS/BGP IP VPNs
- RFC 6515, IPv4 and IPv6 Infrastructure Addresses in BGP Updates for Multicast VPN
- RFC 6625, Wildcards in Multicast VPN Auto-Discovery Routes
- Internet draft draft-morin-l3vpn-mvpn-fast-failover-06.txt, Multicast VPN Fast Upstream Failover
- Internet draft draft-raggarwa-l3vpn-bgp-mvpn-extranet-08.txt, Extranet in BGP Multicast VPN (MVPN)

Related Documentation
- Supported Carrier-of-Carriers and Interprovider VPN Standards on page 73
- Supported VPWS Standards on page 32
- Supported Layer 2 VPN Standards on page 33
- Supported Layer 3 VPN Standards on page 76
- Supported VPLS Standards on page 77
- Supported MPLS Standards on page 39
- Supported Standards for BGP on page 53
- Accessing Standards Documents on the Internet on page 3

Supported VPLS Standards

Junos OS substantially supports the following Internet RFCs and draft, which define standards for virtual private LAN service (VPLS).

- RFC 4761, Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling
- RFC 4762, Virtual Private LAN Service (VPLS) Using Label Distribution Protocol (LDP) Signaling
  - FEC 128, FEC 129, control bit 0, the Ethernet pseudowire type 0x0005, and the Ethernet tagged mode pseudowire type 0x0004 are supported.
- RFC 6391, Flow-Aware Transport of Pseudowires over an MPLS Packet Switched Network
- RFC 6790, The Use of Entropy Labels in MPLS Forwarding
- Internet draft draft-kompella-l2vpn-vpls-multihoming, Multi-homing in BGP-based Virtual Private LAN Service
Related Documentation

- Supported Carrier-of-Carriers and Interprovider VPN Standards on page 73
- Supported VPWS Standards on page 32
- Supported Layer 2 VPN Standards on page 33
- Supported Layer 3 VPN Standards on page 76
- Supported Multicast VPN Standards on page 77
- Accessing Standards Documents on the Internet on page 3