
Junos OS

Junos Node Slicing User Guide

Published

2024-01-05

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Junos OS Junos Node Slicing User Guide
Copyright © 2024 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | vi

1 Junos Node Slicing Overview

Understanding Junos Node Slicing | 2

Junos Node Slicing Overview | 2

Components of Junos Node Slicing | 4

Abstracted Fabric Interface | 8

Optimizing Fabric Path for Abstracted Fabric Interface | 13

Choosing Between External Server Model and In-Chassis Model | 14

Primary-role Behavior of BSYS and GNF | 14

Junos Node Slicing Administrator Roles | 16

Sub Line Card Overview | 16

Multiversion Software Interoperability Overview | 19

Next Gen Services on Junos node slicing | 19

Comparing Junos Node Slicing with Logical Systems | 20

Licensing for Junos Node Slicing | 21

2 Setting Up Junos Node Slicing

Minimum Hardware and Software Requirements for Junos Node Slicing | 23

Preparing for Junos Node Slicing Setup | 29

Connecting the Servers and the Router | 29

x86 Server CPU BIOS Settings | 32

x86 Server Linux GRUB Configuration | 33

Updating Intel X710 NIC Driver for x86 Servers | 36

Installing Additional Packages for JDM | 37

Completing the Connection Between the Servers and the Router | 38

iii

Setting Up Junos Node Slicing | 39

Configuring an MX Series Router to Operate in BSYS Mode (External Server Model) | 40

Installing JDM RPM Package on x86 Servers Running RHEL (External Server Model) | 41

Installing JDM Ubuntu Package on x86 Servers Running Ubuntu 20.04 (External Server Model) | 42

Configuring JDM on the x86 Servers (External Server Model) | 43

Configuring Non-Root Users in JDM (Junos Node Slicing) | 45

Configuring JDM interfaces (External Server Model) | 47

Configuring MX Series Router to Operate in In-Chassis Mode | 50

Installing and Configuring JDM for In-Chassis Model | 51

Installing JDM RPM Package on MX Series Router (In-Chassis Model) | 52

Configuring JDM (In-Chassis Model) | 53

Assigning MAC Addresses to GNF | 57

Configuring Guest Network Functions | 58

Configuring Abstracted Fabric Interfaces Between a Pair of GNFs | 61

Optimizing Fabric Path for Abstracted Fabric Interface | 64

SNMP Trap Support: Configuring NMS Server (External Server Model) | 65

Chassis Configuration Hierarchy at BSYS and GNF | 68

Configuring Sub Line Cards and Assigning Them to GNFs | 68

Sample Configuration for Junos Node Slicing | 71

Sample Configuration for Sub Line Cards | 80

3 Upgrading and Managing Junos Node Slicing

Junos Node Slicing Upgrade | 84

Upgrading Junos Node Slicing | 84

Downgrading JDM for External Server Model | 90

Downgrading JDM for In-Chassis Model | 93

Unified ISSU Support | 95

Managing Multiversion Software Interoperability | 95

iv

Viewing Software Incompatibility Alarms | 98

Viewing Incompatibilities Between Software Versions | 98

Restarting External Servers | 98

Updating Host OS on the External Servers | 100

Applying Security Updates to Host OS | 100

Applying Security Patches for Ubuntu Container | 103

Managing Junos Node Slicing | 104

Deleting Guest Network Functions | 104

Disabling Junos Node Slicing | 105

Managing Sub Line Cards | 107

4 Configuration Statements and Operational Commands

Generic Guidelines for Using JDM Server Commands | 115

Junos CLI Reference Overview | 115

v

About This Guide

Use this guide to set up, configure and manage Junos Node Slicing. This guide contains procedures such
as installing the required software packages, configuring the JDM and server interfaces, configuring the
BSYS mode, creating GNFs, and configuring abstracted fabric interfaces. It also has the configuration
statements and command summaries used for Junos Node Slicing.

vi

1
CHAPTER

Junos Node Slicing Overview

Understanding Junos Node Slicing | 2

Understanding Junos Node Slicing

IN THIS SECTION

Junos Node Slicing Overview | 2

Components of Junos Node Slicing | 4

Abstracted Fabric Interface | 8

Optimizing Fabric Path for Abstracted Fabric Interface | 13

Choosing Between External Server Model and In-Chassis Model | 14

Primary-role Behavior of BSYS and GNF | 14

Junos Node Slicing Administrator Roles | 16

Sub Line Card Overview | 16

Multiversion Software Interoperability Overview | 19

Next Gen Services on Junos node slicing | 19

Comparing Junos Node Slicing with Logical Systems | 20

Licensing for Junos Node Slicing | 21

Junos Node Slicing Overview

IN THIS SECTION

Benefits of Junos Node Slicing | 3

Junos node slicing enables service providers and large enterprises to create a network infrastructure
that consolidates multiple routing functions into a single physical device. It helps in hosting multiple
services on a single physical infrastructure while avoiding the operational complexity involved. It also
maintains operational, functional, and administrative separation of the functions hosted on the device.

Using Junos node slicing, you can create multiple partitions in a single physical MX Series router. These
partitions are referred to as guest network functions (GNFs). Each GNF behaves as an independent
router, with its own dedicated control plane, data plane, and management plane. This enables you to run

2

multiple services on a single converged MX Series router, while still maintaining operational isolation
between them. You can leverage the same physical device to create parallel partitions that do not share
the control plane or the forwarding plane, but only share the same chassis, space, and power.

You can also send traffic between GNFs through the switch fabric by using an abstracted fabric (af)
interface, a pseudo interface that behaves as a first class Ethernet interface. An abstracted fabric
interface facilitates routing control, data, and management traffic between GNFs.

Junos node slicing offers two models - an external server model and an in-chassis model. In the external
server model, the GNFs are hosted on a pair of industry-standard x86 servers. For the in-chassis model,
the GNFs are hosted on the Routing Engines of the MX Series router itself.

Junos node slicing supports multiversion software compatibility, thereby allowing the GNFs to be
independently upgraded.

Benefits of Junos Node Slicing

• Converged network—With Junos node slicing, service providers can consolidate multiple network
services, such as video edge and voice edge, into a single physical router, while still maintaining
operational separation between them. You can achieve both horizontal and vertical convergence.
Horizontal convergence consolidates router functions of the same layer to a single router, while
vertical convergence collapses router functions of different layers into a single router.

• Improved scalability—Focusing on virtual routing partitions, instead of physical devices, improves the
programmability and scalability of the network, enabling service providers and enterprises to respond
to infrastructure requirements without having to buy additional hardware.

• Easy risk management—Though multiple network functions converge on a single chassis, all the
functions run independently, benefiting from operational, functional, and administrative separation.
Partitioning a physical system, such as Broadband Network Gateway (BNG), into multiple
independent logical instances ensures that failures are isolated. The partitions do not share the
control plane or the forwarding plane, but only share the same chassis, space, and power. This means
failure in one partition does not cause any widespread service outage.

• Reduced network costs—Junos node slicing enables interconnection of GNFs through internal
switching fabrics, which leverages abstracted fabric (af) interface, a pseudo interface that represents
a first class Ethernet interface behavior. With af interface in place, companies no longer need to
depend on physical interfaces to connect GNFs, resulting in significant savings.

• Reduced time-to-market for new services and capabilities—Each GNF can operate on a different
Junos software version. This advantage enables companies to evolve each GNF at its own pace. If a
new service or a feature needs to be deployed on a certain GNF, and it requires a new software
release, only the GNF involved requires an update. Additionally, with the increased agility, Junos
node slicing enables service providers and enterprises to introduce highly flexible Everything-as-a-
service business model to rapidly respond to ever-changing market conditions.

3

Components of Junos Node Slicing

IN THIS SECTION

Base System (BSYS) | 6

Guest Network Function (GNF) | 6

Juniper Device Manager (JDM) | 7

Junos node slicing enables you to partition a single MX Series router to make it appear as multiple,
independent routers. Each partition has its own Junos OS control plane, which runs as a virtual machine
(VM), and a dedicated set of line cards. Each partition is called a guest network function (GNF).

The MX Series router functions as the base system (BSYS). The BSYS owns all the physical components
of the router, including the line cards and the switching fabric. The BSYS assigns line cards to GNFs.

The Juniper Device Manager (JDM) software orchestrates the GNF VMs. In JDM, a GNF VM is referred
to as a virtual network function (VNF). A GNF thus comprises a VNF and a set of line cards.

Through configuration at the BSYS, you can assign line cards of the chassis to different GNFs.
Additionally, depending on the linecard type, you can even assign sets of PFEs within a linecard to
different GNFs. See "Sub Line Card Overview" on page 16 for details.

Junos node slicing supports two models:

• External server model

• In-chassis model

In the external server model, JDM and VNFs are hosted on a pair of external industry standard x86
servers.

Figure 1 on page 5 shows three GNFs with their dedicated line cards running on an external server.

4

Figure 1: GNFs on External Server

See "Connecting the Servers and the Router" on page 29 for information about how to connect an MX
Series router to a pair of external x86 servers.

In the in-chassis model, all components (JDM, BSYS, as well as GNFs) run within the Routing Engine of
the MX Series router. See Figure 2 on page 6 .

5

Figure 2: In-chassis Junos Node Slicing

Base System (BSYS)

In Junos node slicing, the MX Series router functions as the base system (BSYS). The BSYS owns all the
physical components of the router, including all line cards and fabric. Through Junos OS configuration at
the BSYS, you can assign line cards to GNFs and define abstracted fabric (af) interfaces between GNFs.
The BSYS software runs on a pair of redundant Routing Engines of the MX Series router.

Guest Network Function (GNF)

A guest network function (GNF) logically owns the line cards assigned to it by the base system (BSYS),
and maintains the forwarding state of the line cards. You can configure multiple GNFs on an MX Series
router (see "Configuring Guest Network Functions" on page 58). The Junos OS control plane of each
GNF runs as a virtual machine (VM). The Juniper Device Manager (JDM) software orchestrates the GNF
VMs. In the JDM context, the GNFs are referred to as virtual network functions (VNF).

A GNF is equivalent to a standalone router. GNFs are configured and administered independently, and
are operationally isolated from each other.

Creating a GNF requires two sets of configurations, one to be performed at the BSYS, and the other at
the JDM.

A GNF is defined by an ID. This ID must be the same at the BSYS and JDM.

6

The BSYS part of the GNF configuration comprises giving it an ID and a set of line cards.

The JDM part of the GNF configuration comprises specifying the following attributes:

• A VNF name.

• A GNF ID. This ID must be the same as the GNF ID used at the BSYS.

• The MX Series platform type (for the external server model).

• A Junos OS image to be used for the VNF.

• The VNF server resource template.

The server resource template defines the number of dedicated (physical) CPU cores and the size of
DRAM to be assigned to a GNF. For a list of predefined server resource templates available for GNFs,
see the Server Hardware Resource Requirements (Per GNF) section in "Minimum Hardware and
Software Requirements for Junos Node Slicing" on page 23 .

After a GNF is configured, you can access it by connecting to the virtual console port of the GNF. Using
the Junos OS CLI at the GNF, you can then configure the GNF system properties such as hostname and
management IP address, and subsequently access it through its management port.

Juniper Device Manager (JDM)

The Juniper Device Manager (JDM), a virtualized Linux container, enables provisioning and management
of the GNF VMs.

JDM supports Junos OS-like CLI, NETCONF for configuration and management and SNMP for
monitoring.

NOTE: In the in-chassis model, JDM does not support SNMP.

A JDM instance is hosted on each of the x86 servers in the external server model, and on each Routing
Engine for the in-chassis model. The JDM instances are typically configured as peers that synchronize
the GNF configurations: when a GNF VM is created on one server, its backup VM is automatically
created on the other server or Routing Engine.

An IP address and an administrator account need to be configured on the JDM. After these are
configured, you can directly log in to the JDM.

SEE ALSO

Junos Node Slicing Overview | 2

7

Primary-role Behavior of BSYS and GNF | 14

Abstracted Fabric Interface

IN THIS SECTION

Understanding Abstracted Fabric Interface Bandwidth | 9

Features Supported on Abstracted Fabric Interfaces | 9

Abstracted Fabric Interface Restrictions | 12

Abstracted fabric (af) interface is a pseudo interface that represents a first class Ethernet interface
behavior. An af interface facilitates routing control and management traffic between guest network
functions (GNFs) through the switch fabric. An af interface is created on a GNF to communicate with its
peer GNF when the two GNFs are configured to be connected to each other. Abstracted fabric
interfaces must be created at BSYS. The bandwidth of the af interfaces changes dynamically based on
the insertion or reachability of the remote line card/MPC. Because the fabric is the communication
medium between GNFs, af interfaces are considered to be the equivalent WAN interfaces. See Figure 3
on page 8 .

Figure 3: Abstracted Fabric Interface

8

Understanding Abstracted Fabric Interface Bandwidth

An abstracted fabric (af) interface connects two GNFs through the fabric and aggregates all the Packet
Forwarding Engines (PFEs) that connect the two GNFs. An af interface can leverage the sum of the
bandwidth of each Packet Forwarding Engine belonging to the af interface.

For example, if GNF1 has one MPC8 (which has four Packet Forwarding Engines with 240 Gbps capacity
each), and GNF1 is connected with GNF2 and GNF3 using af interfaces (af1 and af2), the maximum af
interface capacity on GNF1 would be 4x240 Gbps = 960 Gbps.

GNF1—af1——GNF2

GNF1—af2——GNF3

Here, af1 and af2 share the 960 Gbps capacity.

For information on the bandwidth supported on each MPC, see Table 1 on page 10 .

Features Supported on Abstracted Fabric Interfaces

Abstracted fabric interfaces support the following features:

• Unified in-service software upgrade (ISSU)

• Hyper mode configuration at the BSYS level (starting in Junos OS Release 19.3R2). This feature is
supported on MPC6E, MPC8E, MPC9E, and MPC11E line cards.

NOTE:

• You cannot have different hyper mode configurations for individual GNFs as they inherit
the configuration from the BSYS.

• The MX2020 and MX2010 routers with SFB3 come up in hyper mode by default. If you
require hyper mode to be disabled at any GNF, you must configure it at the BSYS, and it
will apply to all GNFs of that chassis.

• Load balancing based on the remote GNF line cards present

• Class of service (CoS) support:

• Inet-precedence classifier and rewrite

• DSCP classifier and rewrite

• MPLS EXP classifier and rewrite

9

• DSCP v6 classifier and rewrite for IP v6 traffic

• Support for OSPF, IS-IS, BGP, OSPFv3 protocols, and L3VPN

NOTE: The non-af interfaces support all the protocols that work on Junos OS.

• Multicast forwarding

• Graceful Routing Engine switchover (GRES)

• MPLS applications where the af interface acts as a core interface (L3VPN, VPLS, L2VPN, L2CKT,
EVPN, and IP over MPLS)

• The following protocol families are supported:

• IPv4 Forwarding

• IPv6 Forwarding

• MPLS

• ISO

• CCC

• Junos Telemetry Interface (JTI) sensor support

• Starting in Junos OS Release 19.1R1, guest network functions (GNFs) support Ethernet VPNs (EVPN)
with Virtual Extensible LAN protocol (VXLAN) encapsulation. This support is available with non-af
(that is, physical) interface and af interface as the core facing interface. This support is not available
for the MPC11E line card.

• With the af interface configuration, GNFs support af-capable MPCs. Table 1 on page 10 lists the af-
capable MPCs, the number of PFEs supported per MPC, and the bandwidth supported per MPC.

Table 1: Supported Abstracted Fabric-capable MPCs

MPC Initial Release Number of PFEs Total Bandwidth

MPC7E-MRATE 17.4R1 2 480G (240*2)

MPC7E-10G 17.4R1 2 480G (240*2)

10

Table 1: Supported Abstracted Fabric-capable MPCs (Continued)

MPC Initial Release Number of PFEs Total Bandwidth

MX2K-MPC8E 17.4R1 4 960G (240*4)

MX2K-MPC9E 17.4R1 4 1.6T (400*4)

MPC2E 19.1R1 2 80 (40*2)

MPC2E NG 17.4R1 1 80G

MPC2E NG Q 17.4R1 1 80G

MPC3E 19.1R1 1 130G

MPC3E NG 17.4R1 1 130G

MPC3E NG Q 17.4R1 1 130G

32x10GE MPC4E 19.1R1 2 260G (130*2)

2x100GE + 8x10GE MPC4E 19.1R1 2 260G (130*2)

MPC5E-40G10G 18.3R1 2 240G (120*2)

MPC5EQ-40G10G 18.3R1 2 240G (120*2)

MPC5E-40G100G 18.3R1 2 240G (120*2)

MPC5EQ-40G100G 18.3R1 2 240G (120*2)

MX2K-MPC6E 18.3R1 4 520G (130*4)

11

Table 1: Supported Abstracted Fabric-capable MPCs (Continued)

MPC Initial Release Number of PFEs Total Bandwidth

Multiservices MPC (MS-MPC) 19.1R1 1 120G

16x10GE MPC 19.1R1 4 160G (40*4)

MX2K-MPC11E 19.3R2 8 4T (500G*8)

NOTE: We recommend that you set the MTU settings on the af interface to align to the
maximum allowed value on the XE/GE interfaces. This ensures minimal or no fragmentation of
packets over the af interface.

Abstracted Fabric Interface Restrictions

The following are the current restrictions of abstracted fabric interfaces:

• Configurations such as single endpoint af interface, af interface-to-GNF mapping mismatch or
multiple af interfaces mapping to same remote GNF are not checked during commit on the BSYS.
Ensure that you have the correct configurations.

• Bandwidth allocation is static, based on the MPC type.

• There can be minimal traffic drops (both transit and host) during the offline/restart of an MPC hosted
on a remote GNF.

• Interoperability between MPCs that are af-capable and the MPCs that are not af-capable is not
supported.

SEE ALSO

Configuring Abstracted Fabric Interfaces Between a Pair of GNFs | 61

12

Optimizing Fabric Path for Abstracted Fabric Interface

You can optimize the traffic flowing over the abstracted fabric (af) interfaces between two guest
network functions (GNFs), by configuring a fabric path optimization mode. This feature reduces fabric
bandwidth consumption by preventing any additional fabric hop (switching of traffic flows from one
Packet Forwarding Engine to another) before the packets eventually reach the destination Packet
Forwarding Engine. Fabric path optimization, supported on MX2008, MX2010, and MX2020 with
MPC9E and MX2K-MPC11E, prevents only a single additional traffic hop that results from abstracted
fabric interface load balancing.

You can configure one of the following fabric path optimization modes:

• monitor—If you configure this mode, the peer GNF monitors the traffic flow and sends information to
the source GNF about the Packet Forwarding Engine to which the traffic is being forwarded currently
and the desired Packet Forwarding Engine that could provide an optimized traffic path. In this mode,
the source GNF does not forward the traffic towards the desired Packet Forwarding Engine.

• optimize—If you configure this mode, the peer GNF monitors the traffic flow and sends information to
the source GNF about the Packet Forwarding Engine to which the traffic is being forwarded currently
and the desired Packet Forwarding Engine that could provide an optimized traffic path. The source
GNF then forwards the traffic towards the desired Packet Forwarding Engine.

To configure a fabric path optimization mode, use the following CLI commands at BSYS.

user@router# set chassis network-slices guest-network-functions gnf id af-name collapsed-forward (monitor
| optimize)
user@router# commit

After configuring fabric path optimization, you can use the command show interfaces af-interface-name in
GNF to view the number of packets that are currently flowing on the optimal / non-optimal path.

SEE ALSO

collapsed-forward

show interfaces (Abstracted Fabric)

13

Choosing Between External Server Model and In-Chassis Model

The external server model allows you to configure more instances of GNFs with higher scale, since you
can choose a server of sufficient capacity to match GNF requirements. With the in-chassis model, the
number of GNFs that can be configured is a function of the scale requirements of the constituent GNFs
and the overall capacity of the Routing Engine.

The external server and in-chassis models of Junos node slicing are mutually exclusive. An MX Series
router can be configured to operate in only one of these models at one time.

Primary-role Behavior of BSYS and GNF

IN THIS SECTION

BSYS Primary Role | 15

GNF Primary Role | 15

The following sections address the primary-role behavior of BSYS and GNF in the context of Routing
Engine redundancy.

Figure 4 on page 15 shows the primary-role behavior of GNF and BSYS with Routing Engine
redundancy.

14

Figure 4: Primary-role Behavior of GNF and BSYS (External Server Model)

BSYS Primary Role

The BSYS Routing Engine primary-role arbitration behavior is identical to that of Routing Engines on MX
Series routers.

GNF Primary Role

The GNF VM primary-role arbitration behavior is similar to that of MX Series Routing Engines. Each
GNF runs as a primary-backup pair of VMs. A GNF VM that runs on server0 (or re0 for in-chassis) is
equivalent to Routing Engine slot 0 of an MX Series router, and the GNF VM that runs on server1 (or re1
for in-chassis) is equivalent to Routing Engine slot 1 of an MX Series router.

The GNF primary role is independent of the BSYS primary role and that of other GNFs. The GNF
primary role arbitration is done through Junos OS. Under connectivity failure conditions, GNF primary
role is handled conservatively.

The GNF primary-role model is the same for both external server and in-chassis models.

NOTE: As with the MX Series Routing Engines, you must configure graceful Routing Engine
switchover (GRES) at each GNF. This is a prerequisite for the backup GNF VM to automatically
take over the primary role when the primary GNF VM fails or is rebooted.

15

Junos Node Slicing Administrator Roles

The following administrator roles enable you to carry out the node slicing tasks:

• BSYS administrator—Responsible for the physical chassis, as well as for GNF provisioning (assignment
of line cards to GNFs). Junos OS CLI commands are available for these tasks.

• GNF administrator—Responsible for configuration, operation, and management of Junos OS at the
GNF. All regular Junos OS CLI commands are available to the GNF administrator for these tasks.

• JDM administrator—Responsible for the JDM server port configuration (for the external server
model), and for the provisioning and life-cycle management of the GNF VMs (VNFs). JDM CLI
commands are available for these tasks.

Sub Line Card Overview

IN THIS SECTION

Line Card Resources for SLCs | 17

MPC11E Line Card Resources for SLCs | 18

In Junos node slicing, each GNF comprises a set of line cards (FPCs). By default, the finest granularity
provided by a GNF is at the line card level, because each GNF is assigned whole line cards (that is, the
complete set of Packet Forwarding Engines in each line card). With the sub line card (SLC) feature, you
can define even finer granularity of partitioning, by assigning subsets of Packet Forwarding Engines in a
single line card to different GNFs.

Such user-defined subsets of Packet Forwarding Engines in a line card are referred to as sub line cards
(SLCs). Operationally, SLCs function like independent line cards.

When you slice a line card, every SLC of that line card must be assigned to a different GNF.

You can assign SLCs from multiple line cards to the same GNF.

In a Junos node slicing setup with the SLC feature, a GNF can comprise a set of whole line cards as well
as a set of slices (SLCs) of line cards, providing a higher level of flexibility.

When a line card is sliced, two types of software instances run on that line card - a single base line card
(BLC) instance and multiple SLC instances (as many as the number of slices of that line card). Currently,

16

the SLC capability is available only on the MPC11E, which supports two SLCs. The BLC instance is
responsible for managing hardware common to all SLCs of that line card, while each SLC instance is
responsible for managing the set of Packet Forwarding Engines exclusively assigned to it. The BLC
instance runs the Junos software of the BSYS, while each SLC instance runs the Junos software of its
associated GNF.

Figure 5: SLCs assigned to GNFs in an external server-based Junos node slicing setup

SLCs support abstracted fabric interface and collapsed forwarding (see Optimizing Fabric Path for
Abstracted Fabric Interface). You can use the show interface af-interface-name command to view the load
balance statistics of the remote FPC slice-specific Packet Forwarding Engines. See show interfaces
(Abstracted Fabric) for details.

The SLC capability is available only on the MPC11E (model number: MX2K-MPC11E).

Line Card Resources for SLCs

An SLC or a slice of a line card defines the set of Packet Forwarding Engines (of that line card) that must
operate together. Packet Forwarding Engines in a line card are identified by numeric IDs. If a line card
has ‘n’ Packet Forwarding Engines, the individual Packet Forwarding Engines are numbered 0 to (n-1). In
addition, CPU cores and DRAM on the control board of the line card must also be divided and allocated
to the slice. To define an SLC, then, is to define the following line card resources to be dedicated to that
SLC:

• A Packet Forwarding Engine range

• The number of CPU cores on the control board of the line card

• The size of DRAM (in GB) on the control board of the line card

17

https://www.juniper.net/documentation/en_US/junos/topics/topic-map/junos-node-slicing-overview-topic-map.html#id-abstracted-fabric-af-interface
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/junos-node-slicing-overview-topic-map.html#id-optimizing-fabric-path-for-abstracted-fabric-interface
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/junos-node-slicing-overview-topic-map.html#id-optimizing-fabric-path-for-abstracted-fabric-interface
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-interfaces-af.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-interfaces-af.html

NOTE: A certain amount of the DRAM is automatically reserved for the BLC instance on that line
card, and the remainder is available for SLC instances.

Every SLC is identified by a numeric ID, assigned by the user.

When a line card is sliced, the resource partitions for every slice on that line card must be completely
defined.

MPC11E Line Card Resources for SLCs

An MPC11E line card has:

• 8 Packet Forwarding Engines

• 8 CPU cores on the control board

• 32 GB of DRAM on the control board

5 GB of DRAM is automatically reserved for BLC use, 1 GB of DRAM is allocated to the line card host,
and the remaining 26 GB is available for SLC slices.

An MPC11E is capable of supporting two SLCs.

The Table 2 on page 19 defines two types of resource allocation profiles supported by an MPC11E for
the two SLCs, referred to here as SLC1 and SLC2.

In the symmetric profile, the Packet Forwarding Engines and other line card resources are distributed
evenly between the slices. In the asymmetric profile, only the specified line card resource combinations
shown in Table 2 on page 19 are supported.

NOTE: You can configure the following SLC profiles, based on how the Packet Forwarding
Engines [0-7] are split between the two SLCs:

• Packet Forwarding Engines 0-3 for one SLC, and 4-7 for the other SLC (symmetric profile)

• Packet Forwarding Engines 0-1 for one SLC, and 2-7 for the other SLC (asymmetric profile)

• Packet Forwarding Engines 0-5 for one SLC and 6-7 for the other SLC (asymmetric profile)

In the asymmetric profile, you can assign either 9 GB or 17 GB of DRAM to an SLC. Since all the line
card resources must be fully assigned, and the total DRAM available for SLCs is 26 GB, assigning 9 GB of
DRAM to an SLC requires that the remaining 17 GB must be assigned to the other SLC.

18

Table 2: SLC Profiles Supported by MPC11E

Symmetric Profile Asymmetric Profile

Resource Type SLC1 SLC2 SLC1 SLC2

Packet Forwarding Engine 4 4 2 6

DRAM 13 GB 13 GB 17 GB/9 GB 9 GB/17 GB

CPU 4 4 4 4

See also: Configuring Sub Line Cards and Assigning Them to GNFs and Managing Sub Line Cards.

Multiversion Software Interoperability Overview

Starting from Junos OS Release 17.4R1, Junos node slicing supports multiversion software compatibility,
enabling the BSYS to interoperate with a guest network function (GNF) which runs a Junos OS version
that is higher than the software version of the BSYS. This feature supports a range of up to two versions
between GNF and BSYS. That is, the GNF software can be two versions higher than the BSYS software.
Both BSYS and GNF must meet a minimum version requirement of Junos OS Release 17.4R1.

NOTE: The restrictions in multiversion support are also applicable to the unified ISSU upgrade
process.

While JDM software versioning does not have a similar restriction with respect to the GNF or BSYS
software versions, we recommend that you regularly update the JDM software. A JDM upgrade does
not affect any of the running GNFs.

Next Gen Services on Junos node slicing

Junos node slicing supports MX-SPC3 Services Card, a security services card that provides additional
processing power to run the Next Gen Services on the MX platforms. You can enable Next Gen Services
at guest network function (GNF), by using the CLI request system enable unified-services at GNF. To
support an MX-SPC3, a GNF must have a line card associated with it.

19

https://www.juniper.net/documentation/us/en/software/junos/node-slicing/topics/topic-map/junos-node-slicing-setup-topic-map.html#id_khq_nhb_x4b
https://www.juniper.net/documentation/us/en/software/junos/node-slicing/topics/topic-map/junos-node-slicing-manage-topic-map.html#id_edl_rfb_x4b
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/spc3-mx-series.html

In a Junos node slicing setup, you can use both MX-SPC3 and MS-MPC on the same chassis but on
different GNF Routing Engines. If you have enabled Next Gen Services at GNF, by using request system
enable unified-services, the MX-SPC3 comes online. If you have not enabled Next Gen Services, the MS-
MPC comes online.

The software installation or upgrade of an MX-SPC3 card happens when you install or upgrade the
associated GNF Routing Engine.

NOTE: The MX-SPC3 does not support abstracted fabric interfaces. Therefore, a GNF that has
an MX-SPC3 card linked to it must also have a line card associated with it.

Comparing Junos Node Slicing with Logical Systems

Junos node slicing is a layer below logical systems in Junos. Both technologies have some overlapping
capabilities but differ in other aspects. With Junos node slicing, complete line cards, and therefore,
physical interfaces, are assigned to a GNF, while with logical systems, a single physical interface itself
can be shared across different logical systems, since multiple logical interfaces defined over a physical
interface can all be assigned to separate logical systems. This means, logical systems allow finer
granularity of sharing than Junos node slicing. But all logical systems share a single Junos kernel, thus
necessarily running the same Junos version, besides having to share the Routing Engine and line card
physical resources such as CPU, memory and storage. With Junos node slicing, each GNF gets its own
equivalent of a pair of Routing Engines, as also line cards dedicated to that GNF, so the GNFs do not
share most physical resources – they only share the chassis and switch fabric. GNFs, unlike logical
systems, can be independently upgraded and administered like a MX standalone router.

Junos node slicing is a technology that complements, and even augments logical systems, since a GNF
can itself have multiple logical systems within it. Where physical isolation, guaranteed resources and
complete administrative isolation is paramount, Junos node slicing would be a better match. And where
fine granularity of sharing, down to the logical interface level, is paramount, a logical system would be
the better match.

20

Licensing for Junos Node Slicing

Operating Junos node slicing requires licenses for the GNFs and abstracted fabric interfaces to be
installed at the BSYS. Running a GNF without a license installed at the BSYS will result in the following
syslog message and minor alarm:

CHASSISD_LICENSE_EVENT: License Network-Slices: Failed to get valid license('216') 'gnf-creation'
Minor alarm set, 1 Guest network functions creation for JUNOS requires a license.

Please contact Juniper Networks if you have queries pertaining to Junos node slicing licenses.

RELATED DOCUMENTATION

Junos Node Slicing Upgrade | 84

Configuring Abstracted Fabric Interfaces Between a Pair of GNFs | 61

21

2
CHAPTER

Setting Up Junos Node Slicing

Minimum Hardware and Software Requirements for Junos Node Slicing | 23

Preparing for Junos Node Slicing Setup | 29

Setting Up Junos Node Slicing | 39

Minimum Hardware and Software Requirements for
Junos Node Slicing

IN THIS SECTION

MX Series Router | 23

x86 Servers (External Server Model) | 24

To set up Junos node slicing using the external server model, you need an MX Series router and a pair of
industry standard x86 servers. The x86 servers host the Juniper Device Manager (JDM) along with the
GNF VMs.

To set up Junos node slicing using the in-chassis model, you need an MX Series router with MX Series
Routing Engines that support x86 virtualization and have sufficient resources to host JDM and GNF
VMs.

MX Series Router

The following routers support Junos node slicing:

• MX2010

• MX2020

• MX480

• MX960

• MX2008

NOTE:

23

• For the MX960 and MX480 routers, the Control Boards must be SCBE2; and the Routing
Engines must be interoperable with SCBE2 (RE-S-1800X4-32G, RE-S-1800X4-16G, RE-S-
X6-64G, RE-S-X6-128G, REMX2K-X8-128G).

• To configure in-chassis Junos node slicing, the MX Series router must have one of the
following types of Routing Engines installed:

• RE-S-X6-128G (used in MX480 and MX960 routers)

• REMX2K-X8-128G (used in MX2010 and MX2020 routers)

• REMX2008-X8-128G (used in MX2008 routers)

x86 Servers (External Server Model)

Ensure that both the servers have similar (preferably identical) hardware configuration.

The x86 server hardware resource requirements comprise:

• Per-GNF resource requirements (CPU, memory, and storage).

• Shared resource requirements (CPU, memory, storage and network ports).

The server hardware requirements are thus the sum of the requirements of the individual GNFs, and the
shared resource requirements. The server hardware requirements are a function of how many GNFs you
plan to use.

x86 CPU:

• Must be Intel Haswell-EP or newer.

BIOS:

• Must have hyperthreading disabled.

• Must have performance mode enabled.

Storage:

• Must be local to the server.

• Must be solid-state drive (SSD)-based.

The storage space for GNFs is allocated from the following:

24

• /(root), which must have a minimum available storage space of 50 GB.

• /vm-primary, which must have a minimum available storage space of 350 GB.

NOTE: We recommend that you:

• use hardware RAID 1 configuration for storage resiliency.

• set up /vm-primary as a Linux partition.

• do not use software RAID.

Server Hardware Resource Requirements (Per GNF)

Each GNF must be associated with a resource template, which defines the number of dedicated CPU
cores and the size of DRAM to be assigned for that GNF.

Table 3 on page 25 lists the GNF resource templates available for configuring Junos node slicing on
external servers:

Table 3: GNF Resource Template (External Server Model)

Template CPU cores DRAM (GB)

2core-16g 2 16

4core-32g 4 32

6core-48g 6 48

8core-64g 8 64

NOTE: Each GNF requires a minimum of 64 GB storage.

Table 4 on page 26 lists the GNF resource templates available for configuring in-chassis Junos node
slicing:

25

Table 4: GNF Resource Templates for In-Chassis Model

Template CPU cores DRAM (GiB)

1core-16g 1 16

1core-32g 1 32

1core-48g 1 48

2core-16g 2 16

2core-32g 2 32

2core-48g 2 48

4core-32g 4 32

4core-48g 4 48

Shared Server Hardware Resource Requirements (External Server Model)

Table 5 on page 26 lists the server hardware resources that are shared between all the guest network
functions (GNFs) on a server:

NOTE: These requirements are in addition to the per-GNF requirements mentioned in the Server
Hardware Resource Requirements (Per GNF) section.

Table 5: Shared Server Resources Requirements (External Server Model)

Component Specification

CPU • Four cores to be allocated for JDM and Linux host processing.

26

Table 5: Shared Server Resources Requirements (External Server Model) (Continued)

Component Specification

Memory • Minimum of 32 GB DRAM for JDM and Linux host processing.

Storage • Minimum of 64 GB storage for JDM and Linux host.

Network Ports • Two 10-Gbps Ethernet interfaces for control plane connection between the server and the
router.

• Minimum—1 PCIe NIC card with Intel X710 dual port 10-Gbps Direct Attach, SFP+,
Converged Network Adapter, PCIe 3.0, x8

• Recommended—2 NIC cards of the above type. Use one port from each card to provide
redundancy at the card level.

• One Ethernet interface (1/10 Gbps) for Linux host management network.

• One Ethernet interface (1/10 Gbps) for JDM management network.

• One Ethernet interface (1/10 Gbps) for GNF management network. (This port is shared by
all the GNFs on that server).

• Serial port or an equivalent interface (iDRAC, IPMI) for server console access.

Server Software Requirements (External Server Model)

The x86 servers must have the following installed:

• Red Hat® Enterprise Linux® (RHEL) 9 or Ubuntu 20.04 LTS - with virtualization packages.

To enable virtualization for RHEL, choose “Virtualization Host" for the Base Environment and
"Virtualization Platform" as an Add-On from the Software Selection screen during installation.

NOTE:

• The hypervisor supported is KVM.

27

• Install additional packages required for Intel X710 NIC Driver and JDM. For more information, see
the "Updating Intel X710 NIC Driver for x86 Servers" on page 36 and "Installing Additional
Packages for JDM" on page 37 sections.

• Ensure that you have the latest X710 NIC driver (2.4.10 or later version) and firmware (18.5.17 or
later version) installed. For more details, see "Updating Intel X710 NIC Driver for x86 Servers" on
page 36 .

The servers must also have the BIOS setup as described in "x86 Server CPU BIOS Settings" on page 32
and the Linux GRUB configuration as described in "x86 Server Linux GRUB Configuration" on page 33 .

Ensure that the host OS is up to date.

NOTE:

• The x86 servers require internet connectivity for you to be able to perform host OS updates
and install the additional packages.

• Ensure that you have the same host OS software version on both the servers.

NOTE: The following software packages are required to set up Junos node slicing:

• JDM package

• Junos OS image for GNFs

• Junos OS package for BSYS

• Junos OS vmhost package for REMX2K-X8-64G and RE-S-X6-64G Control Board-Routing
Engine based BSYS

RELATED DOCUMENTATION

Components of Junos Node Slicing | 4

Connecting the Servers and the Router | 29

28

Preparing for Junos Node Slicing Setup

IN THIS SECTION

Connecting the Servers and the Router | 29

x86 Server CPU BIOS Settings | 32

x86 Server Linux GRUB Configuration | 33

Updating Intel X710 NIC Driver for x86 Servers | 36

Installing Additional Packages for JDM | 37

Completing the Connection Between the Servers and the Router | 38

NOTE: Topics in this section apply only to Junos node slicing set up using the external server
model. For the in-chassis Junos node slicing, proceed to "Configuring MX Series Router to
Operate in In-Chassis Mode" on page 50 .

Before setting up Junos node slicing (external server model), you need to perform a few preparatory
steps, such as connecting the servers and the router, installing additional packages, configuring x86
server Linux GRUB, and setting up the BIOS of the x86 server CPUs.

Connecting the Servers and the Router

To set up Junos node slicing, you must directly connect a pair of external x86 servers to the MX Series
router. Besides the management port for the Linux host, each server also requires two additional ports
for providing management connectivity for the JDM and the GNF VMs, respectively, and two ports for
connecting to the MX Series router.

NOTE:

29

• Do not connect the loopback cable to external CB port when Junos node slicing is enabled on
the MX series router. Also, ensure that the external CB port is not connected to the other
CB's external port.

• To prevent the host server from any SSH brute force attack, we recommend that you add
IPtables rules on the host server. The following is an example:

iptables -N SSH_CONNECTIONS_LIMIT
iptables -A INPUT -i jmgmt0 -p tcp -m tcp --dport 22 -m state --state NEW -j
SSH_CONNECTIONS_LIMIT iptables -A SSH_CONNECTIONS_LIMIT -m recent --set --name SSH --
rsource iptables -A SSH_CONNECTIONS_LIMIT -m recent --update --seconds 120 --hitcount 10 --
name SSH --rsource -j DROP iptables -A SSH_CONNECTIONS_LIMIT -j ACCEPT

The rule in the above example is used to rate-limit the incoming SSH connections. It allows
you to block connections from the remote IP for a certain period of time when a particular
number of SSH attempts are made. As per the example above, after 10 attempts, connections
from remote IP will be blocked for 120 seconds.

Figure 6 on page 31 shows how an MX2020 router is connected to a pair of x86 external servers.

30

Figure 6: MX2020 Router—External x86 Server Connectivity

According to the example in Figure 6 on page 31 , em1, em2, and em3 on the x86 servers are the ports that
are used for the management of the Linux host, the JDM and the GNFs, respectively. p3p1 and p3p2 on
each server are the two 10-Gbps ports that are connected to the Control Boards of the MX Series
router.

NOTE: The names of interfaces on the server, such as em1, p3p1 might vary according to the server
hardware configuration.

For more information on the XGE ports of the MX Series router Control Board (CB) mentioned in Figure
6 on page 31 , see:

• SCBE2-MX Description (for MX960 and MX480)

NOTE: The XGE port numbers are not labeled on the SCBE2. On a vertically oriented SCBE2,
the upper port is XGE-0 and the lower port is XGE-1. On a horizontally oriented SCBE2, the
left port is XGE-0 and the right port is XGE-1.

31

https://www.juniper.net/documentation/en_US/release-independent/junos/topics/concept/scbe2-mx960-desc.html

• REMX2K-X8-64G and REMX2K-X8-64G-LT CB-RE Description (for MX2010 and MX2020)

NOTE: Use the show chassis ethernet-switch command to view these XGE ports. In the command
output on MX960, refer to the port numbers 24 and 26 to view these ports on the SCBE2. In the
command output on MX2010 and MX2020, refer to the port numbers 26 and 27 to view these
ports on the Control Board-Routing Engine (CB-RE).

x86 Server CPU BIOS Settings

For Junos node slicing, the BIOS of the x86 server CPUs should be set up such that:

• Hyperthreading is disabled.

• The CPU cores always run at their rated frequency.

• The CPU cores are set to reduce jitter by limiting C-state use.

To find the rated frequency of the CPU cores on the server, run the Linux host command lscpu, and
check the value for the field Model name. See the following example:

Linux server0:~# lscpu

..
Model name: Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz
..

To find the frequency at which the CPU cores are currently running, run the Linux host command grep
MHz /proc/cpuinfo and check the value for each CPU core.

On a server that has the BIOS set to operate the CPU cores at their rated frequency, the observed
values for the CPU cores will all match the rated frequency (or be very close to it), as shown in the
following example.

Linux server0:~# grep MHz /proc/cpuinfo
…
cpu MHz : 2499.902
cpu MHz : 2500.000
cpu MHz : 2500.000

32

https://www.juniper.net/documentation/en_US/release-independent/junos/topics/concept/mx2010-routing-engine-remx2k-x8-64g-cb-re-components.html

cpu MHz : 2499.902
…

On a server that does not have the BIOS set to operate the CPU cores at their rated frequency, the
observed values for the CPU cores do not match the rated frequency, and the values could also vary
with time (you can check this by rerunning the command).

Linux server0:~# grep MHz /proc/cpuinfo
…
cpu MHz : 1200.562
cpu MHz : 1245.468
cpu MHz : 1217.625
cpu MHz : 1214.156

To set the x86 server BIOS system profile to operate the CPU cores at their rated frequency, reduce
jitter, and disable hyperthreading, consult the server manufacturer, because these settings vary with
server model and BIOS versions.

Typical BIOS system profile settings to achieve this include:

• Logical processor: set to Disabled.

• CPU power management: set to Maximum performance.

• Memory frequency: set to Maximum performance.

• Turbo boost: set to Disabled.

• C-states and C1E state: set to Disabled.

• Energy efficient policy: set to Performance.

• Monitor/Mwait: set to Disabled.

A custom BIOS system profile might be required to set these values.

x86 Server Linux GRUB Configuration

In Junos node slicing, each GNF VM is assigned dedicated CPU cores. This assignment is managed by
Juniper Device Manager (JDM). On each x86 server, JDM requires that all CPU cores other than CPU
cores 0 and 1 be reserved for Junos node slicing – and in effect, that these cores be isolated from other
applications. CPU cores 2 and 3 are dedicated for GNF virtual disk and network I/O. CPU cores 4 and

33

above are available for assignment to GNF VMs. To reserve these CPU cores, you must set the isolcpus
parameter in the Linux GRUB configuration as described in the following procedure:

For x86 servers running Red Hat Enterprise Linux (RHEL) 9, perform the following steps:

1. Determine the number of CPU cores on the x86 server. Ensure that hyperthreading has already been
disabled, as described in "x86 Server CPU BIOS Settings" on page 32 . You can use the Linux
command lscpu to find the total number of CPU cores, as shown in the following example:

Linux server0:~# lscpu
…
Cores per socket: 12
Sockets: 2
…

Here, there are 24 cores (12 x 2). The CPU cores are numbered as core 0 to core 23.

2. As per this example, the isolcpus parameter must be set to ’isolcpus=4-23’ (isolate all CPU cores other
than cores 0, 1, 2, and 3 for use by the GNF VMs). The isolcpus parameter is set to ’isolcpus=4-23’
because of the following:

• On each x86 server, JDM requires that all CPU cores other than CPU cores 0 and 1 be reserved
for Junos node slicing.

• CPU cores 2 and 3 are dedicated for GNF virtual disk and network I/O.

NOTE: Previously, the isolcpus parameter 'isolcpus=2-23' was used. This has now been
updated to 'isolcpus=4-23'. For more information, see KB35301.

To set the isolcpus parameter in the Linux GRUB configuration file, follow the procedure described in
the section Isolating CPUs from the process scheduler in this Red Hat document. A summary of the
section is as follows:

a. Edit the Linux GRUB file /etc/default/grub to append the isolcpus parameter to the variable
GRUB_CMDLINE_LINUX, as shown in the following example:

GRUB_CMDLINE_LINUX=
"crashkernel=auto rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap rhgb quiet isolcpus=4-23”

b. Run the Linux shell command grub2-mkconfig to generate the updated GRUB file as shown below:

34

https://kb.juniper.net/InfoCenter/index?page=content&id=S:KB35301&act=login
https://access.redhat.com/solutions/2144921

If you are using legacy BIOS, issue the following command:

grub2-mkconfig -o /boot/grub2/grub.cfg

If you are using UEFI, issue the following command:

grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

c. Reboot the x86 server.

d. Verify that the isolcpus parameter has now been set, by checking the output of the Linux
command cat /proc/cmdline, as shown in the following example:

cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-3.10.0-327.36.3.el7.x86_64 … quiet isolcpus=4-23

For x86 servers running Ubuntu 20.04, perform the following steps:

1. Determine the number of CPU cores on the x86 server. Ensure that hyperthreading has already been
disabled, as described in x86 Server CPU BIOS Settings. You can use the Linux command lscpu to find
the total number of CPU cores.

2. Edit the /etc/default/grub file to append the isolcpus parameter to the variable
GRUB_CMDLINE_LINUX_DEFAULT, as shown in the following example:

GRUB_CMDLINE_LINUX_DEFAULT=
"intel_pstate=disable processor.ignore_ppc=1 isolcpus=4-23"

3. To update the changes, run update-grub.

4. Reboot the server.

5. Verify that the isolcpus parameter has now been set, by checking the output of the Linux command
cat /proc/cmdline.

35

Updating Intel X710 NIC Driver for x86 Servers

If you are using Intel X710 NIC, ensure that you have the latest driver (2.4.10 or later) installed on the
x86 servers, and that X710 NIC firmware version is 18.5.17 or later.

You need to first identify the X710 NIC interface on the servers. For example, this could be p3p1.

You can check the NIC driver version by running the Linux command ethtool -i interface. See the
following example:

root@Linux server0# ethtool -i p3p1

driver: i40e
version: 2.4.10
firmware-version: 5.05 0x80002899 18.5.17
...

Refer to the Intel support page for instructions on updating the driver.

NOTE: Updating the host OS may replace the Intel X710 NIC driver. Therefore, ensure that the
host OS is up to date prior to updating the Intel X710 NIC driver.

You need the following packages for building the driver:

• For RedHat:

• kernel-devel

• Development Tools

• For Ubuntu:

• make

• gcc

If you are using RedHat, run the following commands to install the packages:

root@Linux server0#yum install kernel-devel
root@Linux server0#yum group install "Development Tools"

36

https://downloadcenter.intel.com/download/24411/Intel-Network-Adapter-Driver-for-PCIe-Intel-40-Gigabit-Ethernet-Network-Connections-Under-Linux-?product=82947

If you are using Ubuntu, run the following commands to install the packages:

root@Linux server0# apt-get install make
root@Linux server0# apt-get install gcc

NOTE: After updating the Intel X710 NIC driver, you might notice the following message in the
host OS log:

"i40e: module verification failed: signature and/or required key missing - tainting kernel"

Ignore this message. It appears because the updated NIC driver module has superseded the base
version of the driver that was packaged with the host OS.

SEE ALSO

Minimum Hardware and Software Requirements for Junos Node Slicing | 23

Installing Additional Packages for JDM

The x86 servers must have Red Hat Enterprise Linux (RHEL) 9 or Ubuntu 20.04 LTS installed.

NOTE: The x86 Servers must have the virtualization packages installed.

For RHEL 9, install the following additional packages, which can be downloaded from the Red Hat
Customer Portal.

• python-psutil-1.2.1-1.el7.x86_64.rpm

• net-snmp-5.7.2-24.el7.x86_64.rpm

• net-snmp-libs-5.7.2-24.el7.x86_64.rpm

• libvirt-snmp-0.0.3-5.el7.x86_64.rpm

Only for Junos OS Releases 17.4R1 and earlier, and for 18.1R1, if you are running RHEL 9, also install
the following additional package:

• libstdc++-4.8.5-11.el7.i686.rpm

37

https://access.redhat.com
https://access.redhat.com

NOTE:

• The package version numbers shown are the minimum versions. Newer versions might be
available in the latest RHEL 9 patches.

• The libstdc++ package extension .i686 indicates that it is a 32-bit package.

• For RHEL, we recommend that you install the packages using the yum command.

For Ubuntu 20.04, install the following packages:

• python-psutil

Only for Junos OS Releases 17.4R1 and earlier, and for 18.1R1, if you are running Ubuntu, also install
the following additional package:

• libstdc++6:i386

NOTE:

• For Ubuntu, you can use the apt-get command to install the latest version of these packages.
For example, use:

• the command apt-get install python-psutil to install the latest version of the python-psutil
package.

• the command apt-get install libstdc++6:i386 to install the latest version of the libstdc++6
package (the extension :i386 indicates that the package being installed is a 32-bit version).

Completing the Connection Between the Servers and the Router

Complete the following steps before you start installing the JDM:

• Ensure that the MX Series router is connected to the x86 servers as described in Connecting the
Servers and the Router.

• Power on the two x86 servers and both the Routing Engines on the MX Series router.

• Identify the Linux host management port on both the x86 servers. For example, em1.

38

• Identify the ports to be assigned for the JDM and the GNF management ports. For example, em2 and
em3.

• Identify the two 10-Gbps ports that are connected to the Control Boards on the MX Series router.
For example, p3p1 and p3p2.

SEE ALSO

Minimum Hardware and Software Requirements for Junos Node Slicing | 23

RELATED DOCUMENTATION

Junos Node Slicing Overview | 2

Components of Junos Node Slicing | 4

Minimum Hardware and Software Requirements for Junos Node Slicing | 23

Setting Up Junos Node Slicing

IN THIS SECTION

Configuring an MX Series Router to Operate in BSYS Mode (External Server Model) | 40

Installing JDM RPM Package on x86 Servers Running RHEL (External Server Model) | 41

Installing JDM Ubuntu Package on x86 Servers Running Ubuntu 20.04 (External Server Model) | 42

Configuring JDM on the x86 Servers (External Server Model) | 43

Configuring Non-Root Users in JDM (Junos Node Slicing) | 45

Configuring JDM interfaces (External Server Model) | 47

Configuring MX Series Router to Operate in In-Chassis Mode | 50

Installing and Configuring JDM for In-Chassis Model | 51

Assigning MAC Addresses to GNF | 57

Configuring Guest Network Functions | 58

Configuring Abstracted Fabric Interfaces Between a Pair of GNFs | 61

Optimizing Fabric Path for Abstracted Fabric Interface | 64

39

SNMP Trap Support: Configuring NMS Server (External Server Model) | 65

Chassis Configuration Hierarchy at BSYS and GNF | 68

Configuring Sub Line Cards and Assigning Them to GNFs | 68

Sample Configuration for Junos Node Slicing | 71

Sample Configuration for Sub Line Cards | 80

Before proceeding to perform the Junos node slicing setup tasks, if you are using the external server
model, you must have completed the procedures described in the chapter "Preparing for Junos Node
Slicing Setup" on page 29 .

Configuring an MX Series Router to Operate in BSYS Mode (External
Server Model)

NOTE: Ensure that the MX Series router is connected to the x86 servers as described in
"Connecting the Servers and the Router" on page 29 .

Junos node slicing requires the MX Series router to function as the base system (BSYS).

Use the following steps to configure an MX Series router to operate in BSYS mode:

1. Install the Junos OS package for MX Series routers on both the Routing Engines of the router.

You can download the Junos OS package from the Downloads page. From the Downloads page, click
View all products and then select the MX Series device model to download the supported Junos OS
package.

2. On the MX Series router, run the show chassis hardware command and verify that the transceivers on
both the Control Boards (CBs) are detected. The following text represents a sample output:

root@router> show chassis hardware

…
CB 0 REV 23 750-040257 CABL4989 Control Board
 Xcvr 0 REV 01 740-031980 ANT00F9 SFP+-10G-SR
 Xcvr 1 REV 01 740-031980 APG0SC3 SFP+-10G-SR
CB 1 REV 24 750-040257 CABX8889 Control Board

40

https://support.juniper.net/support/downloads/

 Xcvr 0 REV 01 740-031980 AP41BKS SFP+-10G-SR
 Xcvr 1 REV 01 740-031980 ALN0PCM SFP+-10G-SR

3. On the MX Series router, apply the following configuration statements:

root@router# set chassis network-slices guest-network-functions
root@router# set chassis redundancy graceful-switchover
root@router# set chassis network-services enhanced-ip
root@router# set routing-options nonstop-routing
root@router# set system commit synchronize
root@router# commit

NOTE: On MX960 routers, you must configure the network-services mode as enhanced-ip or
enhanced-ethernet. On MX2020 routers, the enhanced-ip configuration statement is already
enabled by default .

The router now operates in BSYS mode.

NOTE: A router in the BSYS mode is not expected to run features other than the ones required
to run the basic management functionalities in Junos node slicing. For example, the BSYS is not
expected to have interface configurations associated with the line cards installed in the system.
Instead, guest network functions (GNFs) will have the full-fledged router configurations.

Installing JDM RPM Package on x86 Servers Running RHEL (External
Server Model)

Before installing the JDM RPM package for x86 servers, ensure that you have installed the additional
packages, as described in "Installing Additional Packages for JDM" on page 37 .

Download and install the JDM RPM package for x86 servers running RHEL as follows:

To install the package on x86 servers running RHEL, perform the following steps on each of the servers:

1. Download the JDM RPM package from the Downloads page.

From the Downloads page, select All Products > Junos Node Slicing - Junos Device Manager to
download the package, which is named JDM for Redhat.

41

https://support.juniper.net/support/downloads/?p=junos-device-manager

2. Disable SELINUX and reboot the server. You can disable SELINUX by setting the value for SELINUX to
disabled in the /etc/selinux/config file.

3. Install the JDM RPM package (indicated by the .rpm extension) by using the following command. An
example of the JDM RPM package used is shown below:

root@Linux Server0# rpm -ivh jns-jdm-1.0-0-17.4R1.13.x86_64.rpm

Preparing... ################################# [100%]
Detailed log of jdm setup saved in /var/log/jns-jdm-setup.log
Updating / installing...
 1:jns-jdm-1.0-0 ################################# [100%]
Setup host for jdm...
Launch libvirtd in listening mode
Done Setup host for jdm
Installing /juniper/.tmp-jdm-install/juniper_ubuntu_rootfs.tgz...
Configure /juniper/lxc/jdm/jdm1/rootfs...
Configure /juniper/lxc/jdm/jdm1/rootfs DONE
Created symlink from /etc/systemd/system/multi-user.target.wants/jdm.service to /usr/lib/
systemd/system/jdm.service.
Done Setup jdm
Redirecting to /bin/systemctl restart rsyslog.service

Repeat the steps for the second server.

Installing JDM Ubuntu Package on x86 Servers Running Ubuntu 20.04
(External Server Model)

Before installing the JDM Ubuntu package for x86 servers, ensure that you have installed the additional
packages. For more details, see "Installing Additional Packages for JDM" on page 37 .

Download and install the JDM Ubuntu package for x86 servers running Ubuntu 20.04 as follows:

To install the JDM package on the x86 servers running Ubuntu 20.04, perform the following steps on
each of the servers:

1. Download the JDM Ubuntu package from the Downloads page.

From the Downloads page, select All Products > Junos Node Slicing - Junos Device Manager to
download the package, which is named JDM for Ubuntu.

2. Disable apparmor and reboot the server.

42

https://support.juniper.net/support/downloads/?p=junos-device-manager

root@Linux Server0# systemctl stop apparmor

root@Linux Server0# systemctl disable apparmor

root@Linux Server0# reboot

3. Install the JDM Ubuntu package (indicated by the .deb extension) by using the following command.
An example of the JDM Ubuntu package used is shown below:

root@Linux Server0# dpkg -i jns-jdm-22.3-I.20220605.0.0258.x86_64.deb
Selecting previously unselected package jns-jdm.
(Reading database ... 216562 files and directories currently installed.)
Preparing to unpack .../jns-jdm-22.3-I.20220605.0.0258.x86_64.deb ...
Detailed log of jdm setup saved in /var/log/jns-jdm-setup.log
Doing version check for 20.04
Warning: vm-primary not mounted on SSD
Unpacking jns-jdm (22.3-I.20220605.0.0258) ...
Setting up jns-jdm (22.3-I.20220605.0.0258) ...
Setup host for jdm...
Launch libvirtd in listening mode
Done Setup host for jdm
Installing /juniper/.tmp-jdm-install/juniper_ubuntu_rootfs.tgz...
Configure /juniper/lxc/jdm/jdm1/rootfs...
Configure /juniper/lxc/jdm/jdm1/rootfs DONE
Setup Junos cgroups...Done
Created symlink /etc/systemd/system/multi-user.target.wants/jdm.service → /lib/systemd/system/
jdm.service.
Done Setup jdm
Processing triggers for libc-bin (2.31-0ubuntu9.7) ...

Repeat the steps for the second server.

Configuring JDM on the x86 Servers (External Server Model)

Use the following steps to configure JDM on each of the x86 servers.

1. At each server, start the JDM, and assign identities for the two servers as server0 and server1,
respectively, as follows:

On one server, run the following command:

43

root@Linux server0# jdm start server=0

Starting JDM

On the other server, run the following command:

root@Linux server1# jdm start server=1

Starting JDM

NOTE: The identities, once assigned, cannot be modified without uninstalling the JDM and
then reinstalling it:

2. Enter the JDM console on each server by running the following command:

root@Linux Server0# jdm console

Connected to domain jdm
Escape character is ^]
 * Starting Signal sysvinit that the rootfs is mounted [OK]
 * Starting Populate /dev filesystem [OK]
 * Starting Populate /var filesystem [OK]
 * Stopping Send an event to indicate plymouth is up [OK]
 * Stopping Populate /var filesystem [OK]
 * Starting Clean /tmp directory [OK]
…
 jdm login:

NOTE: Starting in Junos OS Release 23.2R1, the message 'Connected to domain jdm' is not
displayed if the JDM uses the Pod Manager tool (podman). Note that only servers running
RHEL 9 support podman-based JDMs.

3. Log in as the root user.

4. Enter the JDM CLI by running the following command:

root@jdm% cli

44

NOTE: The JDM CLI is similar to the Junos OS CLI.

5. Set the root password for the JDM.

root@jdm# set system root-authentication plain-text-password

New Password:

NOTE:

• The JDM root password must be the same on both the servers.

• Starting in Junos OS Release 18.3R1, you can create non-root users in JDM. For more
information, see Configuring Non-Root Users in JDM (Junos Node Slicing).

• JDM installation blocks libvirt port access from outside the host.

6. Commit the changes:

root@jdm# commit

7. Enter Ctrl-PQ to exit from the JDM console.

8. From the Linux host, run the ssh jdm command to log in to the JDM shell.

Configuring Non-Root Users in JDM (Junos Node Slicing)

In the external server model, you can create non-root users on Juniper Device Manager (JDM) for Junos
node slicing, starting in Junos OS Release 18.3R1. You need a root account to create a non-root user.
The non-root users can log in to JDM by using the JDM console or through SSH. Each non-root user is
provided a username and assigned a predefined login class.

The non-root users can perform the following functions:

• Interact with JDM.

• Orchestrate and manage Guest Network Functions (GNFs).

• Monitor the state of the JDM, the host server and the GNFs by using JDM CLI commands.

45

https://www.juniper.net/documentation/us/en/software/junos/node-slicing/topics/topic-map/junos-node-slicing-setup-topic-map.html#id-configuring-non-root-users-in-jdm-junos-node-slicing

NOTE: The non-root user accounts function only inside JDM, not on the host server.

To create non-root users in JDM:

1. Log in to JDM as a root user.

2. Define a user name and assign the user with a predefined login class.

root@jdm# set system login user username class predefined-login-class
3. Set the password for the user.

root@jdm# set system login user username authentication plain-text-password

New Password:

4. Commit the changes.

root@jdm# commit

Table 6 on page 46 contains the predefined login classes that JDM supports for non-root users:

Table 6: Predefined Login Classes

Login Class Permissions

super-user • Create, delete, start and stop GNFs.

• Start and stop daemons inside the JDM.

• Execute all CLIs.

• Access the shell.

operator • Start and stop GNFs.

• Restart daemons inside the JDM.

• Execute all basic CLI operational commands (except the ones which modify the GNFs or JDM
configuration).

read-only Similar to operator class, except that the users cannot restart daemons inside JDM.

46

Table 6: Predefined Login Classes (Continued)

Login Class Permissions

unauthorized Ping and traceroute operations.

Configuring JDM interfaces (External Server Model)

If you want to modify the server interfaces configured in the JDM, perform the following steps:

In the JDM, you must configure:

• The two 10-Gbps server ports that are connected to the MX Series router.

• The server port to be used as the JDM management port.

• The server port to be used as the GNF management port.

Therefore, you need to identify the following on each server before starting the configuration of the
ports:

• The server interfaces (for example, p3p1 and p3p2) that are connected to CB0 and CB1 on the MX Series
router.

• The server interfaces (for example, em2 and em3) to be used for JDM management and GNF
management.

For more information, see the figure "Connecting the Servers and the Router" on page 29 .

NOTE:

• You need this information for both server0 and server1.

• These interfaces are visible only on the Linux host.

To configure the x86 server interfaces in JDM, perform the following steps on both the servers:

1. On server0, apply the following configuration statements:

root@jdm# set groups server0 server interfaces cb0 p3p1
root@jdm# set groups server0 server interfaces cb1 p3p2

47

root@jdm# set groups server1 server interfaces cb0 p3p1
root@jdm# set groups server1 server interfaces cb1 p3p2
root@jdm# set apply-groups [server0 server1]
root@jdm# commit

root@jdm# set groups server0 server interfaces jdm-management em2
root@jdm# set groups server0 server interfaces vnf-management em3
root@jdm# set groups server1 server interfaces jdm-management em2
root@jdm# set groups server1 server interfaces vnf-management em3
root@jdm# commit

2. Repeat the step 1 on server1.

NOTE: Ensure that you apply the same configuration on both server0 and server1.

3. Share the ssh identities between the two x86 servers.

At both server0 and server1, run the following JDM CLI command:

root@jdm> request server authenticate-peer-server

NOTE: The request server authenticate-peer-server command displays a CLI message requesting
you to log in to the peer server using ssh to verify the operation. To log in to the peer server,
you need to prefix ip netns exec jdm_nv_ns to ssh root@jdm-server1.
For example, to log in to the peer server from server0, exit the JDM CLI, and use the following
command from JDM shell:

root@jdm:~# ip netns exec jdm_nv_ns ssh root@jdm-server1

Similarly, to log in to the peer server from server1, use the following command:

root@jdm:~# ip netns exec jdm_nv_ns ssh root@jdm-server0

4. Apply the configuration statements in the JDM CLI configuration mode to set the JDM management
IP address, default route, and the JDM hostname for each JDM instance as shown in the following
example.

NOTE:

48

• The management IP address and default route must be specific to your network.

root@jdm# set groups server0 interfaces jmgmt0 unit 0 family inet
address 10.216.105.112/21
root@jdm# set groups server1 interfaces jmgmt0 unit 0 family inet
address 10.216.105.113/21
root@jdm# set groups server0 routing-options static route
0.0.0.0/0 next-hop 10.216.111.254
root@jdm# set groups server1 routing-options static route
0.0.0.0/0 next-hop 10.216.111.254
root@jdm# set groups server0 system host-name test-jdm-server0
root@jdm# set groups server1 system host-name test-jdm-server1
root@jdm# commit synchronize

Remember to configure commit synchronization as shown in the above step to ensure that the
random MAC prefixes generated by the JDM instances are in sync. The random MAC prefix forms
part of a MAC address associated with an unlicensed GNF. JDM generates this pseudo-random MAC
prefix when it is booted for the first time and doesn’t generate it again. To check if the random MAC
prefixes are in sync, use the CLI command show server connections or show system random-mac-prefix at
JDM. See also: Assigning MAC Addresses to GNF.

NOTE:

• jmgmt0 stands for the JDM management port. This is different from the Linux host
management port. Both JDM and the Linux host management ports are independently
accessible from the management network.

• You must have done the ssh key exchange as described in the Step 3 before attempting
the Step 4. If you attempt the Step 4 without completing the Step 3, the system displays
an error message as shown in the following example:

Failed to fetch JDM software version from server1. If authentication of peer server is not done
yet, try running request server authenticate-peer-server.

5. Run the following JDM CLI command on each server and ensure that all the interfaces are up.

root@jdm> show server connections

Component Interface Status Comments
Host to JDM port virbr0 up
Physical CB0 port p3p1 up

49

https://www.juniper.net/documentation/us/en/software/junos/node-slicing/topics/topic-map/junos-node-slicing-setup-topic-map.html#id-assigning-mac-addresses-to-gnf

Physical CB1 port p3p2 up
Physical JDM mgmt port em2 up
Physical VNF mgmt port em3 up
JDM-GNF bridge bridge_jdm_vm up
CB0 cb0 up
CB1 cb1 up
JDM mgmt port jmgmt0 up
JDM to HOST port bme1 up
JDM to GNF port bme2 up
JDM to JDM link0* cb0.4002 up
JDM to JDM link1 cb1.4002 up
GNF Mac-Pool Prefix Primary CB OK Prefix: JDM0[0xfe] / JDM1[0xfe]

NOTE: For sample JDM configurations, see "Sample Configuration for Junos Node Slicing" on
page 71 .

If you want to modify the server interfaces configured in the JDM, you need to delete the GNFs (if they
were configured), configure the interfaces as described above, reboot JDM from shell, reconfigure and
activate the GNFs, and commit the changes,

Starting in Junos OS Release 19.2R1, Junos node slicing supports the assignment of a globally unique
MAC address range (supplied by Juniper Networks) for GNFs. .

Configuring MX Series Router to Operate in In-Chassis Mode

NOTE:

• To configure in-chassis Junos node slicing, the MX Series router must have one of the
following types of Routing Engines installed:

• RE-S-X6-128G (used in MX480 and MX960 routers)

• REMX2K-X8-128G (used in MX2010 and MX2020 routers)

• REMX2008-X8-128G (used in MX2008 routers)

In in-chassis model, the base system (BSYS), Juniper Device Manager (JDM), and all guest network
functions (GNFs) run within the Routing Engine of the MX Series router. BSYS and GNFs run on the host

50

as virtual machines (VMs). You need to first reduce the resource footprint of the standalone MX Series
router as follows:

1. Ensure that both the Routing Engines (re0 and re1) in the MX Series router have the required VM
host package (example: junos-vmhost-install-mx-x86-64-19.2R1.tgz) installed. The VM host package should
be of 19.1R1 or a later version.

2. Applying the following configuration and then reboot VM host on both the Routing Engines (re0 and
re1).

user@router# set vmhost resize vjunos compact
user@router# set system commit synchronize
user@router> request vmhost reboot (re0|re1)

When this configuration is applied, and following the reboot, the Routing Engine resource footprint
of the Junos VM on MX Series router shrinks in order to accommodate GNF VMs. A resized Junos
VM, now operating as the base system (BSYS) on the MX Series Routing Engine has the following
resources:

• CPU Cores—1 (Physical)

• DRAM—16GB

• Storage—14GB (/var)

NOTE: All files in the /var/ location, including the log files (/var/log) and core files (/var/crash),
are deleted when you reboot VM host after configuring the set vmhost resize vjunos compact
statement. You must save any files currently in /var/log or /var/crash before proceeding with the
VM host resize configuration if you want to use them for reference.

Installing and Configuring JDM for In-Chassis Model

IN THIS SECTION

Installing JDM RPM Package on MX Series Router (In-Chassis Model) | 52

Configuring JDM (In-Chassis Model) | 53

51

Steps listed in this topic apply only to in-chassis Junos node slicing configuration.

Installing JDM RPM Package on MX Series Router (In-Chassis Model)

Before installing the Juniper Device Manager (JDM) RPM package on an MX Series router, you must
configure the MX Series router to operate in the in-chassis BSYS mode. For more information, see
Configuring MX Series Router to Operate in In-Chassis Mode.

NOTE: The RPM package jns-jdm-vmhost is meant for in-chassis Junos node slicing deployment,
while the RPM package jns-jdm is used for external servers based Junos node slicing deployment.

1. Download the JDM RPM package (JDM for VMHOST) from the Downloads page.

From the Downloads page, select All Products > Junos Node Slicing - Junos Device Manager to
download the package, which is named JDM for VMHOST.

2. Install the JDM RPM package on both Routing Engines (re0 and re1), by using the command shown in
the following example:

root@router> request vmhost jdm add jns-jdm-vmhost-18.3-20180930.0.x86_64.rpm

Starting to validate the Package
Finished validating the Package
Starting to validate the Environment
Finished validating the Environment
Starting to copy the RPM package from Admin Junos to vmhost
Finished Copying the RPM package from Admin Junos to vmhost
Starting to install the JDM RPM package
Preparing... ##
Detailed log of jdm setup saved in /var/log/jns-jdm-setup.log
jns-jdm-vmhost ##
Setup host for jdm...
Done Setup host for jdm
Installing /vm/vm/iapps/jdm/install/juniper/.tmp-jdm-install/juniper_ubuntu_rootfs.tgz...
Configure /vm/vm/iapps/jdm/install/juniper/lxc/jdm/jdm1/rootfs...
Configure /vm/vm/iapps/jdm/install/juniper/lxc/jdm/jdm1/rootfs DONE
Setup Junos cgroups...Done
Done Setup jdm
stopping rsyslogd ... done
starting rsyslogd ... done
Finished installing the JDM RPM package
Installation Successful !
Starting to generate the host public keys at Admin Junos

52

https://www.juniper.net/documentation/us/en/software/junos/node-slicing/topics/topic-map/junos-node-slicing-setup-topic-map.html#id-configuring-mx-series-router-to-operate-in-inchassis-mode
https://support.juniper.net/support/downloads/?p=junos-device-manager

Finished generating the host public keys at Admin Junos
Starting to copy the host public keys from Admin Junos to vmhost
Finished copying the host public keys from Admin Junos to vmhost
Starting to copy the public keys of Admin junos from vmhost to JDM
Finished copying the public keys of Admin junos from vmhost to JDM
Starting to cleanup the temporary file from Vmhost containing host keys of Admin Junos
Finished cleaning the temporary file from Vmhost containing host keys of Admin Junos

3. Run the show vmhost status command to see the vJunos Resource Status on both the Routing Engines.

user@router> show vmhost status re0

bsys-re0:
--

Compute cluster: rainier-re-cc
 Compute Node: rainier-re-cn, Online

vJunos Resource Status: Compact

user@router> show vmhost status re1

bsys-re1:
--

Compute cluster: rainier-re-cc
 Compute Node: rainier-re-cn, Online

vJunos Resource Status: Compact

Configuring JDM (In-Chassis Model)

Use the following steps to configure JDM on both the Routing Engines of an MX Series router:

1. Apply the following command on both the Routing Engines to start JDM:

user@router> request vmhost jdm start

Starting JDM
Starting jdm: Domain jdm defined from /vm/vm/iapps/jdm//install/juniper/lxc/jdm/current/

53

config/jdm.xml

Domain jdm started

Starting in Junos OS 19.3R1, the JDM console does not display the message 'Domain JDM Started'.
However, this message will be added to the system logs when the JDM is started.

NOTE: If hyperthreading is disabled, a warning is displayed when you enter the command
request vmhost jdm start, as shown in the following example:

Warning: Hyperthreading is disabled! Cores: (6) Processors: (6) Expected: (12)

2. Use the command show vmhost jdm status to check if the JDM is running.

user@router> show vmhost jdm status

JDM Information

Package : jns-jdm-vmhost-19.1-B2.x86_64
Status : Running
PID : 3088
Free Space : 62967 (MiB)

3. After a few seconds, log in to JDM.

root@router> request vmhost jdm login

**
* The Juniper Device Manager (JDM) must only be used for orchestrating the *
* Virtual Machines for Junos Node Slicing *
* *
* Host Linux Distro: Wind River Linux *
* JDM Version: jns-jdm-vmhost-19.1-20181003.dev.common.0.x86_64 *
* Free Disk Space on JDM's root-fs ("/"): 125081(MiB) *
**
Last login: Thu Oct 4 15:26:30 2018 from 192.168.1.1

NOTE:

54

• You need to have root user privilege on the BSYS to log in to JDM.

• The in-chassis JDM root account password can be different from Junos root account
password.

• It takes approximately 10 seconds for JDM to start. If you enter the request vmhost jdm login
command before JDM starts, you might get the following message:

ssh_exchange_identification: read: Connection reset by peer

4. Enter the JDM CLI by running the following command:

root@jdm% cli

5. In configuration mode, apply the configurations shown in the following example:

NOTE: The IP addresses shown in the following example are samples. Replace them with the
actual IP addresses in your configuration.

root@jdm# set groups server0 system host-name host-name
root@jdm# set groups server0 interfaces jmgmt0 unit 0 family inet address 192.0.2.1/24
root@jdm# set groups server0 routing-options static route 0.0.0.0/0 next-hop 192.0.2.2
root@jdm# set groups server1 system host-name host-name
root@jdm# set groups server1 interfaces jmgmt0 unit 0 family inet address 198.51.100.1/24
root@jdm# set groups server1 routing-options static route 0.0.0.0/0 next-hop 198.51.100.2

6. In configuration mode, set the root password for the JDM on both the Routing Engines, and commit.

root@jdm# set apply-groups [server0 server1]
root@jdm# set system root-authentication plain-text-password
New password:

root@jdm# commit

NOTE:

55

• The JDM supports root user administration account only.

7. In operation mode, enter the following command on both the Routing Engines to copy the ssh public
key to the peer JDM.

root@jdm> request server authenticate-peer-server

/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that
are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now it is
to install the new keys
root@jdm-server1's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'root@jdm-server1'"
and check to make sure that only the key(s) you wanted were added.

NOTE: You need to enter the root password of the peer JDM when prompted.

8. In the configuration mode, apply the following commands:

root@jdm# set system commit synchronize
root@jdm# commit synchronize

NOTE:

• In in-chassis Junos node slicing, you cannot ping or send traffic between the management
interfaces of the same Routing Engine (for example, from the Routing Engine 0 of GNF1 to
the Routing Engine 0 of GNF2 or from the Routing Engine 0 of GNF1 to JDM).

• In in-chassis mode, you cannot perform an scp operation between the BSYS and the JDM
management interfaces.

56

• You must have done the ssh key exchange as described in the Step 7 before attempting the
Step 8. If you attempt the Step 8 without completing the Step 7, the system displays an error
message as shown in the following example:

Failed to fetch JDM software version from server1. If authentication of peer server is not done yet,
try running request server authenticate-peer-server.

Starting in Junos OS Release 19.2R1, Junos node slicing supports the assignment of a globally unique
MAC address range (supplied by Juniper Networks) for GNFs. .

Assigning MAC Addresses to GNF

Starting in Junos OS Release 19.2R1, Junos node slicing supports the assignment of a globally unique
MAC address range (supplied by Juniper Networks) for GNFs.

To receive the globally unique MAC address range for the GNFs, contact your Juniper Networks
representative and provide your GNF license SSRN (Software Support Reference Number), which will
have been shipped to you electronically upon your purchase of the GNF license. To locate the SSRN in
your GNF license, refer to the Juniper Networks Knowledge Base article KB11364.

For each GNF license, you will then be provided an ‘augmented SSRN’, which includes the globally
unique MAC address range assigned by Juniper Networks for that GNF license. You must then configure
this augmented SSRN at the JDM CLI as follows:

root@jdm# set system vnf-license-supplement vnf-id gnf-id license-supplement-string augmented-ssrn-string
root@jdm# commit

NOTE:

• An augmented SSRN must be used for only one GNF ID. In the JDM, the GNF VMs are
referred to as virtual network functions (VNFs). GNF ID is one of its attributes. Attributes of a
VNF are fully described in the follow-on section Configuring Guest Network Functions.

• By default, the augmented SSRN will be validated. Should you ever need to skip this
validation, you can use the no-validate attribute in the CLI as follows: Example: set system vnf-
license-supplement vnf-id gnf-id license-supplement-string augmented-ssrn-string [no-validate].

57

https://kb.juniper.net/InfoCenter/index?page=content&id=KB11364
https://www.juniper.net/documentation/us/en/software/junos/node-slicing/topics/topic-map/junos-node-slicing-setup-topic-map.html#id-configuring-guest-network-functions

NOTE:

• You can configure the augmented SSRN for a GNF ID only when the GNF is not operational
and has not yet been provisioned as well. You must first configure the augmented SSRN for a
GNF ID before configuring the GNF. If the GNF ID is already provisioned, you must first
delete the GNF for that GNF ID on both the servers (in case of the external server model) or
on both the Routing Engines (in case of the in-chassis Junos node slicing model) before
configuring the augmented SSRN.

• Similarly, you must first delete the GNF for a given GNF ID on both the servers (in case of the
external server model) or on both the Routing Engines (in case of the in-chassis Junos node
slicing model) before deleting the augmented SSRN for the GNF ID.

• You cannot apply an augmented SSRN to a GNF that is based on Junos OS 19.1R1 or older.

• To confirm that the assigned MAC address range for a GNF has been applied, when the GNF
becomes operational, use the Junos CLI command show chassis mac-addresses - the output will
match a substring of the augmented SSRN.

Configuring Guest Network Functions

Configuring a guest network function (GNF) comprises two tasks, one to be performed at the BSYS and
the other at the JDM.

NOTE:

• Before attempting to create a GNF, you must ensure that you have configured commit
synchronization as part of JDM configuration so that the random MAC prefixes generated by
the JDM instances are in sync. To check if the random MAC prefixes are in sync, use the CLI
command show server connections or show system random-mac-prefix at JDM. If the random MAC
prefixes are not in sync, the software raises the following major alarm: Mismatched MAC address
pool between GNF RE0 and GNF RE1. To view the alarm, use the show system alarms command.

• Before attempting to create a GNF, you must ensure that the servers (or Routing Engines in
the case of in-chassis model) have sufficient resources (CPU, memory, storage) for that GNF.

• You need to assign an ID to each GNF. This ID must be the same at the BSYS and the JDM.

58

At the BSYS, specify a GNF by assigning it an ID and a set of line cards by applying the configuration as
shown in the following example:

user@router# set chassis network-slices guest-network-functions gnf 1 fpcs 4

user@router# commit

In the JDM, the GNF VMs are referred to as virtual network functions (VNFs). A VNF has the following
attributes:

• A VNF name.

• A GNF ID. This ID must be the same as the GNF ID used at the BSYS.

• The MX Series platform type.

• A Junos OS image to be used for the GNF, which can be downloaded from the Juniper Downloads
page.

From the Downloads page, select All Products > Junos Node Slicing - Guest Network Function to
download a Junos image for the GNF.

• The VNF server resource template.

At the JDM, to configure a VNF, perform the following steps:

1. Use the JDM shell command scp to retrieve the Junos OS Node Slicing image for GNF and place it in
the JDM local directory /var/jdm-usr/gnf-images (repeat this step to retrieve the GNF configuration
file).

root@jdm:~# scp source-location-of-the-gnf-image /var/jdm-usr/gnf-images
root@jdm:~# scp source-location-of-the-gnf-configuration-file /var/jdm-usr/gnf-config

2. Assign this image to a GNF by using the JDM CLI command as shown in the following example:

root@test-jdm-server0> request virtual-network-functions test-gnf add-image /var/jdm-usr/gnf-images/
junos-install-ns-mx-x86-64-17.4R1.10.tgz all-servers

Server0:
Added image: /vm-primary/test-gnf/test-gnf.img

Server1:
Added image: /vm-primary/test-gnf/test-gnf.img

59

https://support.juniper.net/support/downloads/?p=guest-network-function

3. Configure the VNF by applying the configuration statements as shown in the following example:

root@test-jdm-server0# set virtual-network-functions test-gnf id 1

root@test-jdm-server0# set virtual-network-functions test-gnf chassis-type mx2020

root@test-jdm-server0# set virtual-network-functions test-gnf resource-template 2core-16g

root@test-jdm-server0# set system vnf-license-supplement vnf-id 1 license-supplement-string
RTU00023003204-01-AABBCCDDEE00-1100-01-411C

For in-chassis model, do not configure the platform type (set virtual-network-functions test-gnf chassis-
type mx2020). It will be detected automatically.

Starting in Junos OS Release 19.2R1, Junos node slicing supports the assignment of a globally unique
MAC address range (supplied by Juniper Networks) for GNFs.

To also specify a baseline or initial Junos OS configuration for a GNF, prepare the GNF configuration
file (example: /var/jdm-usr/gnf-config/test-gnf.conf) on both the servers (server0 and server1) for
external server model, and on both the Routing Engines (re0 and re1) for the in-chassis model, and
specify the filename as the parameter in the base-config statement as shown below:

root@test-jdm-server0# set virtual-network-functions test-gnf base-config /var/jdm-usr/gnf-config/test-
gnf.conf

root@test-jdm-server0# commit synchronize

NOTE: Ensure that:

• You use the same GNF ID as the one specified earlier in BSYS.

• The baseline configuration filename (with the path) is the same on both the servers /
Routing Engines.

• The syntax of the baseline file contents is in the Junos OS configuration format.

• The GNF name used here is the same as the one assigned to the Junos OS image for GNF
in the step 2.

4. To verify that the VNF is created, run the following JDM CLI command:

root@test-jdm-server0> show virtual-network-functions test-gnf

5. Log in to the console of the VNF by issuing the following JDM CLI command:

60

root@test-jdm-server0> request virtual-network-functions test-gnf console

NOTE: Remember to log out of the VNF console after your have completed your
configuration tasks. We recommend that you set an idle time-out using the command set
system login idle-timeout minutes. Otherwise, if a user forgets to log out of the VNF console
session, another user can log in without providing the access credentials. For more
information, see system login (Junos Node Slicing).

6. Configure the VNF the same way as you configure an MX Series Routing Engine.

NOTE:

• The CLI prompt for in-chassis model is root@jdm# .

• For sample configurations, see "Sample Configuration for Junos Node Slicing" on page 71 .

• In the case of the external server model, if you had previously brought down any physical x86
CB interfaces or the GNF management interface from Linux shell (by using the command
ifconfig interface-name down), these will automatically be brought up when the GNF is started.

Configuring Abstracted Fabric Interfaces Between a Pair of GNFs

IN THIS SECTION

Class of Service on Abstracted Fabric Interfaces | 63

Creating an abstracted fabric (af) interface between two guest network functions (GNFs) involves
configurations both at the base system (BSYS) and at the GNF. Abstracted fabric interfaces are created
on GNFs based on the BSYS configuration, which is then sent to those GNFs.

NOTE:

• Only one af interface can be configured between a pair of GNFs.

61

• In a Junos node slicing setup where each GNF is assigned with a single FPC, if the Packet
Forwarding Engines of the FPC assigned to the remote GNF becomes unreachable over
fabric, the associated abstracted fabric interface goes down. Examples of errors that could
cause this behavior include pfe fabric reachability errors and cmerror events causing pfe
disable action (use the show chassis fpc errors command for the details). If a GNF has multiple
FPCs assigned to it, the local FPCs that report all peer Packet Forwarding Engines to be down
are removed from determining the abstracted fabric interface state.

To configure af interfaces between a pair of GNFs:

1. At the BSYS, apply the configuration as shown in the following example:

user@router# set chassis network-slices guest-network-functions gnf 2 af4 peer-gnf id 4
user@router# set chassis network-slices guest-network-functions gnf 2 af4 peer-gnf af2
user@router# set chassis network-slices guest-network-functions gnf 4 af2 peer-gnf id 2
user@router# set chassis network-slices guest-network-functions gnf 4 af2 peer-gnf af4

In this example, af2 is the abstracted fabric interface instance 2 and af4 is the abstracted fabric
interface instance 4.

NOTE: The allowed af interface values range from af0 through af9.

The GNF af interface will be visible and up. You can configure an af interface the way you configure
any other interface.

2. At the GNF, apply the configuration as shown in the following example:

user@router-gnf-b# set interfaces af4 unit 0 family inet address 10.10.10.1/24
user@router-gnf-d# set interfaces af2 unit 0 family inet address 10.10.10.2/24

NOTE:

• If you want to apply MPLS family configurations on the af interfaces, you can apply the
command set interfaces af-name unit logical-unit-number family mpls on both the GNFs between
which the af interface is configured.

62

• For sample af configurations, see "Sample Configuration for Junos Node Slicing" on page 71 .

Class of Service on Abstracted Fabric Interfaces

Class of service (CoS) packet classification assigns an incoming packet to an output queue based on the
packet’s forwarding class. See CoS Configuration Guide for more details.

The following sections explain the forwarding class- to-queue mapping, and the behavior aggregate (BA)
classifiers and rewrites supported on the abstracted fabric (af) interfaces.

Forwarding Class-to-Queue Mapping

An af interface is a simulated WAN interface with most capabilities of any other interface except that
the traffic designated to a remote Packet Forwarding Engine will still have to go over the two fabric
queues (Low/High priority ones).

NOTE: Presently, an af interface operates in 2-queue mode only. Hence, all queue-based features
such as scheduling, policing, and shaping are not available on an af interface.

Packets on the af interface inherit the fabric queue that is determined by the fabric priority configured
for the forwarding class to which that packet belongs. For example, see the following forwarding class to
queue map configuration:

[edit]

user@router# show class-of-service forwarding-classes

class Economy queue-num 0 priority low; /* Low fabric priority */
class Stream queue-num 1;
class Business queue-num 2;
class Voice queue-num 3;
class NetControl queue-num 3;
class Business2 queue-num 4;
class Business3 queue-num 5;
class VoiceSig queue-num 6 priority high; /* High fabric priority */
class VoiceRTP queue-num 7;

63

https://www.juniper.net/documentation/en_US/junos12.3/information-products/topic-collections/config-guide-cos/config-guide-cos.pdf

As shown in the preceding example, when a packet gets classified to the forwarding class VoiceSig, the
code in the forwarding path examines the fabric priority of that forwarding class and decides which
fabric queue to choose for this packet. In this case, high-priority fabric queue is chosen.

BA Classifiers and Rewrites

The behavior aggregate (BA) classifier maps a class-of-service (CoS) value to a forwarding class and loss
priority. The forwarding class and loss-priority combination determines the CoS treatment given to the
packet in the router. The following BA classifiers and rewrites are supported:

• Inet-Precedence classifier and rewrite

• DSCP classifier and rewrite

• MPLS EXP classifier and rewrite

You can also apply rewrites for IP packets entering the MPLS tunnel and do a rewrite of both EXP
and IPv4 type of service (ToS) bits. This approach will work as it does on other normal interfaces.

• DSCP v6 classifier and rewrite for IP v6 traffic

NOTE: The following are not supported:

• IEEE 802.1 classification and rewrite

• IEEE 802.1AD (QinQ) classification and rewrite

See CoS Configuration Guide for details on CoS BA classifiers.

Optimizing Fabric Path for Abstracted Fabric Interface

You can optimize the traffic flowing over the abstracted fabric (af) interfaces between two guest
network functions (GNFs), by configuring a fabric path optimization mode. This feature reduces fabric
bandwidth consumption by preventing any additional fabric hop (switching of traffic flows from one
Packet Forwarding Engine to another) before the packets eventually reach the destination Packet
Forwarding Engine. Fabric path optimization, supported on MX2008, MX2010, and MX2020 with
MPC9E and MX2K-MPC11E, prevents only a single additional traffic hop that results from abstracted
fabric interface load balancing.

You can configure one of the following fabric path optimization modes:

64

https://www.juniper.net/documentation/en_US/junos12.3/information-products/topic-collections/config-guide-cos/config-guide-cos.pdf

• monitor—If you configure this mode, the peer GNF monitors the traffic flow and sends information to
the source GNF about the Packet Forwarding Engine to which the traffic is being forwarded currently
and the desired Packet Forwarding Engine that could provide an optimized traffic path. In this mode,
the source GNF does not forward the traffic towards the desired Packet Forwarding Engine.

• optimize—If you configure this mode, the peer GNF monitors the traffic flow and sends information to
the source GNF about the Packet Forwarding Engine to which the traffic is being forwarded currently
and the desired Packet Forwarding Engine that could provide an optimized traffic path. The source
GNF then forwards the traffic towards the desired Packet Forwarding Engine.

To configure a fabric path optimization mode, use the following CLI commands at BSYS.

user@router# set chassis network-slices guest-network-functions gnf id af-name collapsed-forward (monitor
| optimize)
user@router# commit

After configuring fabric path optimization, you can use the command show interfaces af-interface-name in
GNF to view the number of packets that are currently flowing on the optimal / non-optimal path.

SEE ALSO

collapsed-forward

show interfaces (Abstracted Fabric)

SNMP Trap Support: Configuring NMS Server (External Server Model)

The Juniper Device Manager (JDM) supports the following SNMP traps:

• LinkUp and linkDown traps for JDM interfaces.

Standard linkUp/linkDown SNMP traps are generated. A default community string jdm is used.

• LinkUp/linkDown traps for host interfaces.

Standard linkUp/linkDown SNMP traps are generated. A default community string host is used.

• JDM to JDM connectivity loss/regain traps.

JDM to JDM connectivity loss/regain traps are sent using generic syslog traps (jnxSyslogTrap)
through the host management interface.

65

The JDM connectivity down trap JDM_JDM_LINK_DOWN is sent when the JDM is not able to communicate
with the peer JDM on another server over cb0 or cb1 links. See the following example:

{ SNMPv2c C=host { V2Trap(296) R=1299287309
.1.3.6.1.2.1.1.3.0=42761992
.1.3.6.1.6.3.1.1.4.1.0=.1.3.6.1.4.1.2636.4.12.0.1 .1.3.6.1.4.1.2636.3.35.1.1.1.2.1="JDM_JDM_LI
NK_DOWN"
.1.3.6.1.4.1.2636.3.35.1.1.1.3.1=""
.1.3.6.1.4.1.2636.3.35.1.1.1.4.1=5
.1.3.6.1.4.1.2636.3.35.1.1.1.5.1=24
.1.3.6.1.4.1.2636.3.35.1.1.1.6.1=0
.1.3.6.1.4.1.2636.3.35.1.1.1.7.1="jdmmon"
.1.3.6.1.4.1.2636.3.35.1.1.1.8.1="JDM-HOST"
.1.3.6.1.4.1.2636.3.35.1.1.1.9.1="JDM to JDM Connection Lost"
.1.3.6.1.6.3.1.1.4.3.0.0=”” } }

The JDM to JDM Connectivity up trap JDM_JDM_LINK_UP is sent when either the cb0 or cb1 link comes up,
and JDMs on both the servers are able to communicate again. See the following example:

{ SNMPv2c C=host { V2Trap(292) R=998879760
.1.3.6.1.2.1.1.3.0=42762230
.1.3.6.1.6.3.1.1.4.1.0=.1.3.6.1.4.1.2636.4.12.0.1
.1.3.6.1.4.1.2636.3.35.1.1.1.2.1="JDM_JDM_LINK_UP"
.1.3.6.1.4.1.2636.3.35.1.1.1.3.1=""
.1.3.6.1.4.1.2636.3.35.1.1.1.4.1=5
.1.3.6.1.4.1.2636.3.35.1.1.1.5.1=24
.1.3.6.1.4.1.2636.3.35.1.1.1.6.1=0
.1.3.6.1.4.1.2636.3.35.1.1.1.7.1="jdmmon"
.1.3.6.1.4.1.2636.3.35.1.1.1.8.1="JDM-HOST"
.1.3.6.1.4.1.2636.3.35.1.1.1.9.1="JDM to JDM Connection Up"
.1.3.6.1.6.3.1.1.4.3.0.0="" } }

• VM(GNF) up/down—libvirtGuestNotif notifications.

For GNF start/shutdown events, the standard libvirtGuestNotif notifications are generated. For
libvirtMIB notification details, see this web page. Also, see the following example:

HOST [UDP: [127.0.0.1]:53568->[127.0.0.1]]: Trap , DISMAN-EVENT-MIB::sysUpTimeInstance =
Timeticks: (636682) 1:46:06.82,
SNMPv2-MIB::snmpTrapOID.0 = OID: LIBVIRT-MIB::libvirtGuestNotif,

66

https://github.com/libvirt/libvirt-snmp/blob/master/src/LIBVIRT-MIB.txt

LIBVIRT-MIB::libvirtGuestName.0 = STRING: "gnf1",
LIBVIRT-MIB::libvirtGuestUUID.1 = STRING: 7ad4bc2a-16db-d8c0-1f5a-6cb777e17cd8,
LIBVIRT-MIB::libvirtGuestState.2 = INTEGER: running(1),
LIBVIRT-MIB::libvirtGuestRowStatus.3 = INTEGER: active(1)

SNMP traps are sent to the target NMS server. To configure the target NMS server details in the JDM,
see the following example:

[edit]

root@jdm# show snmp | display set
root@jdm# set snmp name name
root@jdm# set snmp description description
root@jdm# set snmp location location
root@jdm# set snmp contact user's email
root@jdm# set snmp trap-group tg-1 targets target ip address1
root@jdm# set snmp trap-group tg-1 targets target ip address2

JDM does not write any configuration to the host snmp configuration file (/etc/snmp/snmpd.conf).
Hence, JDM installation and subsequent configuration do not have any impact on the host SNMP. The
SNMP configuration CLI command in JDM is used only to configure the JDM’s snmpd.conf file which is
present within the container. To generate linkUp/Down trap, you must manually include the
configuration as shown in the following example in the host server’s snmpd.conf file (/etc/snmp/
snmpd.conf):

createUser trapUser
iquerySecName trapUser
rouser trapUser
defaultMonitors yes
notificationEvent linkUpTrap linkUp ifIndex ifAdminStatus ifOperStatus ifDescr
notificationEvent linkDownTrap linkDown ifIndex ifAdminStatus ifOperStatus ifDescr
monitor -r 10 -e linkUpTrap "Generate linkUp" ifOperStatus != 2
monitor -r 10 -e linkDownTrap "Generate linkDown" ifOperStatus == 2
trap2sink <NMS-IP> host

In the above example, replace <NMS-IP> with the IP address of Network Management Station (NMS).

67

Chassis Configuration Hierarchy at BSYS and GNF

In Junos node slicing, the BSYS owns all the physical components of the router, including the line cards
and fabric, while the GNFs maintain forwarding state on their respective line cards. In keeping with this
split responsibility, Junos CLI configuration under the chassis hierarchy (if any), should be applied at the
BSYS or at the GNF as follows:

• Physical-level parameters under the chassis configuration hierarchy should be applied at the BSYS.
For example, the configuration for handling physical errors at an FPC is a physical-level parameter,
and should therefore be applied at the BSYS.

At BSYS Junos CLI:
[edit]
user@router# set chassis fpc fpc slot error major threshold threshold value action alarm

• Logical or feature-level parameters under the chassis configuration hierarchy should be applied at the
GNF associated with the FPC. For example, the configuration for max-queues per line card is a
logical-level parameter, and should therefore be applied at the GNF.

At GNF Junos CLI:
[edit]
user@router# set chassis fpc fpc slot max-queues value

• As exceptions, the following two parameters under the chassis configuration hierarchy should be
applied at both BSYS and GNF:

At both BSYS and GNF CLI:
[edit]
user@router# set chassis network-services network services mode
user@router# set chassis fpc fpc slot flexible-queueing-mode

Configuring Sub Line Cards and Assigning Them to GNFs

For an overview of sub line cards, see "Sub Line Card Overview" on page 16 .

68

NOTE:

• This feature is applicable to the MPC11E line card (model number: MX2K-MPC11E) on the
MX2010 and MX2020 routers used in the external server-based Junos node slicing setup.

• Ensure that each Routing Engine of all GNFs and the BSYS run Junos OS Release 21.2R1 or
later versions.

To slice an MPC11E further into sub line cards (SLCs), you must use the fpc-slice CLI option under the
set chassis network-slices guest-network-functions gnf hierarchy in BSYS.

Before committing the configuration, you must configure all the SLCs supported by the line card and
assign all the required resources such as core, DRAM and the Packet forwarding Engines to the SLCs. An
MPC11E line card supports two SLCs.

GNFs support the following combinations of full line cards and SLCs:

• GNF with MPC11E SLCs

• GNF with MPC11E SLCs and MPC9

• GNF with MPC11E SLCs and MPC11E

• GNF with MPC11E SLCs, MPC9, MPC11E

To configure SLCs and assign them to GNFs, use the following steps:

NOTE:

• You must configure all the following CLI statements at once for all the SLCs (as shown in the
steps below). Any modification to this configuration later causes the entire line card to reboot.

• If you configure any incorrect values (for example, unsupported Packet Forwarding Engine
ranges, CPU cores, or DRAM values), the configuration commit fails with an appropriate
message to indicate the error.

1. Configure SLCs.

root@bsys# set chassis network-slices guest-network-functions gnf 1 fpc-slice 2 slc 1
root@bsys# set chassis network-slices guest-network-functions gnf 2 fpc-slice 2 slc 2

69

NOTE: Do not assign:

• two or more SLCs of the same line card to the same GNF.

• the same SLC of a line card to more than one GNF.

2. Assign Packet Forwarding Engines to the SLCs. You must allocate all the Packet Forwarding Engines
on the line card to the SLCs as shown in the following example:

root@bsys# set chassis network-slices guest-network-functions gnf 1 fpc-slice fpc 2 slc 1 pfe-id-list
[0-3]
root@bsys# set chassis network-slices guest-network-functions gnf 2 fpc-slice fpc 2 slc 2 pfe-id-list
[4-7]

NOTE: The configuration supports only the following Packet Forwarding Engine ranges:

• 0-3 for one SLC, and 4-7 for the other SLC (symmetric profile)

• 0-1 for one SLC, and 2-7 for the other SLC (asymmetric profile)

• 0-5 for one SLC and 6-7 for the other SLC (asymmetric profile)

3. Assign CPU cores to the SLCs as shown in the following example:

root@bsys# set chassis network-slices guest-network-functions gnf 1 fpc-slice fpc 2 slc 1 cores 4
root@bsys# set chassis network-slices guest-network-functions gnf 2 fpc-slice fpc 2 slc 2 cores 4

NOTE: 4 is the only value of CPU cores supported. You must configure the value 4 for each of
the two SLCs.

4. Assign DRAMs to the SLCs as shown in the following example:

root@bsys# set chassis network-slices guest-network-functions gnf 1 fpc-slice fpc 2 slc 1 dram 13
root@bsys# set chassis network-slices guest-network-functions gnf 2 fpc-slice fpc 2 slc 2 dram 13

You must allocate a total DRAM of 26 GB for both the SLCs together. Only the following
combinations of DRAM allocation are supported:

70

SLC1 DRAM (GB) SLC2 DRAM (GB) Sub Total (GB) BLC/Linux Host DRAM (GB) Total (GB)

13 13 26 6 32

9/17 17/9 26 6 32

NOTE: You cannot allocate resources to the BLC; they are automatically assigned by Junos
OS.

5. Commit the changes.

root@bsys# commit

SEE ALSO

Managing Sub Line Cards | 107

Sample Configuration for Junos Node Slicing

IN THIS SECTION

Sample JDM Configuration (External Server Model) | 72

Sample JDM Configuration (In-Chassis Model) | 74

Sample BSYS Configuration with Abstracted Fabric Interface | 75

Sample Abstracted Fabric Configuration at GNF with Class of Service | 76

Sample Output for Abstracted Fabric Interface State at a GNF | 79

This section provides sample configurations for Junos node slicing.

71

Sample JDM Configuration (External Server Model)

root@test-jdm-server0> show configuration
 groups {
 server0 {
 system {
 host-name test-jdm-server0;
 }
 server {
 interfaces {
 cb0 p3p1;
 cb1 p3p2;
 jdm-management em2;
 vnf-management em3;
 }
 }
 interfaces {
 jmgmt0 {
 unit 0 {
 family inet {
 address 10.216.105.112/21;
 }
 }
 }
 }
 routing-options {
 static {
 route {
 0.0.0.0/0 next-hop 10.216.111.254;
 }
 }
 }
 }
 server1 {
 system {
 host-name test-jdm-server1;
 }
 server {
 interfaces {
 cb0 p3p1;
 cb1 p3p2;
 jdm-management em2;

72

 vnf-management em3;
 }
 }
 interfaces {
 jmgmt0 {
 unit 0 {
 family inet {
 address 10.216.105.113/21;

 }
 }
 }
 routing-options {
 static {
 route {
 0.0.0.0/0 next-hop 10.216.111.254;
 }
 }
 }
 }
 }
}
apply-groups [server0 server1];
system {
 root-authentication {
 encrypted-password "..."; ## SECRET-DATA
 }
 services {
 ssh;
 netconf {
 ssh;
 rfc-compliant;
 }
 }
}
virtual-network-functions {
 test-gnf {
 id 1;
 chassis-type mx2020;
 resource-template 2core-16g;
 base-config /var/jdm-usr/gnf-config/test-gnf.conf;

73

 }
}

Sample JDM Configuration (In-Chassis Model)

root@test-jdm-server0> show configuration
 groups {
 server0 {
 system {
 host-name test-jdm-server0;
 }
 interfaces {
 jmgmt0 {
 unit 0 {
 family inet {
 address 10.216.105.112/21;
 }
 }
 }
 }
 routing-options {
 static {
 route {
 0.0.0.0/0 next-hop 10.216.111.254;
 }
 }
 }
 }
 server1 {
 system {
 host-name test-jdm-server1;
 }
 interfaces {
 jmgmt0 {
 unit 0 {
 family inet {
 address 10.216.105.113/21;

 }
 }
 }

74

 routing-options {
 static {
 route {
 0.0.0.0/0 next-hop 10.216.111.254;
 }
 }
 }
 }
 }
}
apply-groups [server0 server1];
system {
 root-authentication {
 encrypted-password "..."; ## SECRET-DATA
 }
 services {
 ssh;
 netconf {
 ssh;
 rfc-compliant;
 }
 }
}
virtual-network-functions {
 test-gnf {
 id 1;
 resource-template 2core-16g;
 base-config /var/jdm-usr/gnf-config/test-gnf.conf;
 }
}

Sample BSYS Configuration with Abstracted Fabric Interface

user@router> show configuration chassis
 network-slices {
 guest-network-functions {
 gnf 1 {
 af2 {
 peer-gnf id 2 af1;
 }
 af4 {

75

 peer-gnf id 4 af1;
 }
 description gnf-a;
 fpcs [0 19];
 }
 gnf 2 {
 af1 {
 peer-gnf id 1 af2;
 }
 af4 {
 peer-gnf id 4 af2;
 }
 description gnf-b;
 fpcs [1 6];
 }
 gnf 4 {
 af1 {
 peer-gnf id 1 af4;
 }
 af2 {
 peer-gnf id 2 af4;
 }
 description gnf-d;
 fpcs [3 4];
 }
 }
}

Sample Abstracted Fabric Configuration at GNF with Class of Service

Assume that there is an abstracted fabric (af) interface between GNF1 and GNF2. The following sample
configuration illustrates how to apply rewrites on the af interface at GNF1 and apply classifiers on the af
interface on GNF2, in a scenario where traffic comes from GNF1 to GNF2:

GNF1 Configuration

interfaces {
 xe-4/0/0 {
 unit 0 {
 family inet {
 address 22.1.2.2/24;

76

 }
 }
 }
 af2 {
 unit 0 {
 family inet {
 address 32.1.2.1/24;
 }
 }
 }
}
class-of-service {
 classifiers {
 dscp testdscp {
 forwarding-class assured-forwarding {
 loss-priority low code-points [001001 000000];
 }
 }
 }
 interfaces {
 xe-4/0/0 {
 unit 0 {
 classifiers {
 dscp testdscp;
 }
 }
 classifiers {
 dscp testdscp;
 }
 }
 af1 {
 unit 0 {
 rewrite-rules {
 dscp testdscp; /*Rewrite rule applied on egress AF interface on GNF1.*/
 }
 }
 }
 }
 rewrite-rules {
 dscp testdscp {
 forwarding-class assured-forwarding {
 loss-priority low code-point 001001;
 }

77

 }
 }
}

GNF2 Configuration

interfaces {
 xe-3/0/0:0 {
 unit 0 {
 family inet {
 address 42.1.2.1/24;
 }
 }
 }
 af1 {
 unit 0 {
 family inet {
 address 32.1.2.2/24;
 }
 }
 }
}
class-of-service {
 classifiers {
 dscp testdscp {
 forwarding-class network-control {
 loss-priority low code-points 001001;
 }
 }
 }
 interfaces {
 af1 {
 unit 0 {
 classifiers {
 dscp testdscp; /*Classifier applied on AF at ingress of GNF2*/
 }
 }
 }
 }
}

78

Sample Output for Abstracted Fabric Interface State at a GNF

user@router-gnf-b> show interfaces af9
Physical interface: af9, Enabled, Physical link is Up
 Interface index: 209, SNMP ifIndex: 527
 Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Speed: 370000mbps
 Device flags : Present Running
 Interface flags: Internal: 0x4000
 Link type : Full-Duplex
 Link flags : None
 Current address: 00:90:69:2b:00:4c, Hardware address: 00:90:69:2b:00:4c
 Last flapped : 2018-09-12 01:44:01 PDT (00:01:02 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)
 Bandwidth : 370 Gbps
 Peer GNF id : 9
 Peer GNF Forwarding element(FE) view :
 FPC slot:FE num FE Bandwidth(Gbps) Status Transmit Packets Transmit Bytes
 6:0 130 Up 0 0
 12:0 120 Up 0 0
 12:1 120 Up 0 0

 Residual Transmit Statistics :
 Packets : 0 Bytes : 0

 Fabric Queue Statistics :
 FPC slot:FE num High priority(pkts) Low priority(pkts)
 6:0 0 0
 12:0 0 0
 12:1 0 0
 FPC slot:FE num High priority(bytes) Low priority(bytes)
 6:0 0 0
 12:0 0 0
 12:1 0 0
 Residual Queue Statistics :
 High priority(pkts) Low priority(pkts)
 0 0
 High priority(bytes) Low priority(bytes)
 0 0

 Logical interface af9.0 (Index 332) (SNMP ifIndex 528)
 Flags: Up SNMP-Traps 0x4004000 Encapsulation: ENET2

79

 Input packets : 0
 Output packets: 13
 Protocol inet, MTU: 1500

Sample Configuration for Sub Line Cards

IN THIS SECTION

Sample Configuration for Symmetric Sub Line Card Profile | 80

Sample Configuration for Asymmetric Sub Line Card Profile | 81

This section provides sample configurations for sub line cards (SLCs).

Sample Configuration for Symmetric Sub Line Card Profile

In the symmetric profile, only one combination of resources is possible.

The following is a sample configuration to slice the FPC 1 (MPC11E) in symmetric sub line card profile:

set chassis network-slices guest-network-functions gnf 1 fpc-slice fpc 1 slc 1 pfe-id-list 0-3
set chassis network-slices guest-network-functions gnf 1 fpc-slice fpc 1 slc 1 cores 4
set chassis network-slices guest-network-functions gnf 1 fpc-slice fpc 1 slc 1 dram 13
set chassis network-slices guest-network-functions gnf 2 fpc-slice fpc 1 slc 2 pfe-id-list 4-7
set chassis network-slices guest-network-functions gnf 2 fpc-slice fpc 1 slc 2 cores 4
set chassis network-slices guest-network-functions gnf 2 fpc-slice fpc 1 slc 2 dram 13

This configuration would appear as shown below:

root@bsys> show chassis network-slices guest-network-functions
 gnf 1{
 fpc-slice {
 fpc 1{
 slc 1{
 pfe-id-list 0-3;
 cores 4;

80

 dram 13;
 }
 }
 }
}
gnf 2{
 fpc-slice {
 fpc 1{
 slc 2{
 pfe-id-list 4-7;
 cores 4;
 dram 13;
 }
 }
 }
}

Sample Configuration for Asymmetric Sub Line Card Profile

In the asymmetric profile, two configurations are possible, depending on how the PFEs or Packet
Forwarding Engines [0-7] are split between the two SLCs. In one example configuration, the first two
Packet Forwarding Engines [0-1] are assigned to one SLC, and the remaining Packet Forwarding Engines
[2-7] to the other SLC. In the other example configuration, the last two Packet Forwarding Engines [6-7]
are assigned to one SLC, and the remaining Packet Forwarding Engines [0-5] to the other SLC.

The sample configuration below is an example of [0-1 2-7] split.

In the example below, the CPU core and DRAM assignments for the SLCs match one of the columns
under the ‘Asymmetric Profile’ resource combination as shown in the table SLC Profiles Supported by
MPC11E on the "Sub Line Card Overview" on page 16 page.

set chassis network-slices guest-network-functions gnf 1 fpc-slice fpc 1 slc 1 pfe-id-list 0-1
set chassis network-slices guest-network-functions gnf 1 fpc-slice fpc 1 slc 1 cores 4
set chassis network-slices guest-network-functions gnf 1 fpc-slice fpc 1 slc 1 dram 17
set chassis network-slices guest-network-functions gnf 2 fpc-slice fpc 1 slc 2 pfe-id-list 2-7
set chassis network-slices guest-network-functions gnf 2 fpc-slice fpc 1 slc 2 cores 4
set chassis network-slices guest-network-functions gnf 2 fpc-slice fpc 1 slc 2 dram 9

81

This configuration would appear as below:

root@bsys> show chassis network-slices guest-network-functions
 gnf 1{
 fpc-slice {
 fpc 1{
 slc 1{
 pfe-id-list 0-1;
 cores 4;
 dram 17;
 }
 }
 }
}
gnf 2{
 fpc-slice {
 fpc 1{
 slc 2{
 pfe-id-list 2-7;
 cores 4;
 dram 9;
 }
 }
 }
}

RELATED DOCUMENTATION

Minimum Hardware and Software Requirements for Junos Node Slicing | 23

Connecting the Servers and the Router | 29

Components of Junos Node Slicing | 4

82

3
CHAPTER

Upgrading and Managing Junos Node
Slicing

Junos Node Slicing Upgrade | 84

Managing Junos Node Slicing | 104

Junos Node Slicing Upgrade

IN THIS SECTION

Upgrading Junos Node Slicing | 84

Downgrading JDM for External Server Model | 90

Downgrading JDM for In-Chassis Model | 93

Unified ISSU Support | 95

Managing Multiversion Software Interoperability | 95

Restarting External Servers | 98

Updating Host OS on the External Servers | 100

Applying Security Updates to Host OS | 100

Applying Security Patches for Ubuntu Container | 103

Junos node slicing upgrade involves upgrading Juniper Device Manager (JDM), guest network functions
(GNFs), and the base system (BSYS).

Upgrading Junos Node Slicing

IN THIS SECTION

Upgrading JDM for External Server Model | 85

Upgrading JDM to Support Podman-based Deployment (23.2R1) | 86

Upgrading JDM for In-Chassis Model | 87

Upgrading GNF and BSYS | 88

Upgrading JDM to Support WRL 9 based VM Host - In-Chassis Model | 89

Junos node slicing comprises three types of software components:

84

• Juniper Device Manager (JDM) package

• Junos OS image for guest network function (GNFs)

• Junos OS package for base system (BSYS)

You can upgrade each of these components independently, as long as they are within the allowed range
of software versions (see "Multiversion Software Interoperability Overview" on page 19 for more
details). You can also upgrade all of them together.

NOTE:

• Before starting the upgrade process, save the JDM, GNF VM, and BSYS configurations for
reference.

• If you want to run BIOS upgrade on a line card, you must ensure that the router is in
standalone mode, by disabling the Junos node slicing configuration.

Upgrading JDM for External Server Model

1. Upgrade the JDM by performing the following tasks on both the servers:

a. Copy the new JDM package (RPM or Ubuntu) to a directory on the host (for example, /var/tmp).

b. Stop the JDM by using the following command:

root@Linux server0# jdm stop
Stopping JDM

c. Issue the upgrade command to upgrade the JDM package:

If you are upgrading the JDM RHEL package, use the following command:

root@Linux server0# rpm -U package_name.rpm --force

If you are upgrading the JDM Ubuntu package, use the following command:

root@Linux server0# dpkg -i package.deb

85

NOTE:

• A JDM upgrade does not affect any of the running GNFs.

• Before upgrading JDM, ensure that both JDM deployments are in sync. This means:

• Junos running on a given GNF should support the same SMBIOS version across
both the servers.

• Before upgrade, ensure that all GNFs exist on both the servers.

• After upgrading both the JDM servers, you must run commit synchronize before
configuring any new GNF. If you do not run commit synchronize and create new GNFs on
server1, you will not be able to do commit synchronize later from server0 to server1.

• You must upgrade both the JDMs.

See also:

• "Installing JDM RPM Package on x86 Servers Running RHEL (External Server Model)" on page
41

• "Installing JDM Ubuntu Package on x86 Servers Running Ubuntu 20.04 (External Server
Model)" on page 42

Upgrading JDM to Support Podman-based Deployment (23.2R1)

Starting in Junos OS Release 23.2R1, the external server-based Junos node slicing supports deployment
of Juniper Device Manager (JDM) using the Pod Manager tool (podman). Only the servers running Red
Hat® Enterprise Linux® (RHEL) 9 or later versions support podman.

In Junos releases prior to 23.2R1, the external server-based Junos node slicing supported RHEL 7.3,
which provided libvirt’s lxc driver (libvirt-lxc) to deploy JDMs.

NOTE: If you need to back up your JDM configuration during the JDM upgrade, you must first
install the Junos version 23.1R1 or later in your device. Because, the commands to back up and
restore the JDM configurations (request system save state path and request system restore state path)
are available only in Junos version 23.1R1 or later.

To upgrade your libvirt-lxc-based JDM to a podman-based version, follow the steps below on both the
servers:

86

1. Check if the random MAC prefixes generated by the JDM on both the servers are the same.

user@jdm> show system random-mac-prefix all-servers

2. Back up your JDM configuration to /host/tmp/ folder.

user@jdm> request system save state path /host/tmp/jdm-backup.tgz
Backup Done at:[/host/tmp/jdm-backup.tgz]

This step backs up the JDM configuration and the random-mac-prefix value. The MAC prefix forms
part of MAC addresses associated with unlicensed guest network function (GNF).

3. Uninstall the JDM on each server. For more information, see "Managing Junos Node Slicing" on page
104 .

4. Upgrade the host OS to RHEL 9.

5. Install the podman-based JDM. This is a regular installation process. To install JDM, use the steps
provided in "Installing JDM RPM Package on x86 Servers Running RHEL (External Server Model)" on
page 41 .

6. Restore the JDM backup.

user@jdm> request system restore state path /host/tmp/jdm-backup.tgz
Backup Restored from:[/host/tmp/jdm-backup.tgz]

7. After performing the above steps on both the servers, verify if the random MAC prefixes generated
by the JDM on both the servers are the same.

user@jdm> show system random-mac-prefix all-servers

NOTE: You cannot back up the GNFs before upgrading JDM from a libvirt-lxc-based version to a
podman-based version. You need to configure the GNFs afresh after upgrading JDM.

Upgrading JDM for In-Chassis Model

1. Upgrade the JDM by performing the following tasks on the BSYS instance of both the routing
engines:

87

a. Copy the new JDM RPM package to a directory (for example, /var/tmp).

b. Stop the JDM by running the following command:

root@router> request vmhost jdm stop

c. Install the JDM RPM package for in-chassis Junos node slicing, by using the command shown in
the following example:

root@router> request vmhost jdm add jns-jdm-vmhost-18.3-20180930.0.x86_64.rpm

NOTE: A JDM upgrade does not affect any of the running GNFs.

NOTE: In order to upgrade JDM for in-chassis model, you need not uninstall the existing JDM
software. Uninstalling the existing JDM might impact the guest network functions (GNFs).

Upgrading GNF and BSYS

The GNF and BSYS packages can be upgraded in the same way as you would upgrade Junos OS on a
standalone MX Series router.

Ensure that all GNFs are online when you perform an upgrade. This is because both GNF and BSYS
upgrade processes trigger multiversion checks (covered later in this guide), and all GNFs are required to
be online during the multiversion check phase, failing which the upgrade will be terminated. In case a
GNF remains shut down, you must deactivate its configuration from BSYS CLI, which will result in
skipping multiversion checks for that particular GNF.

NOTE: A force option is also available, through which you can overwrite an existing GNF image
with a new one by using the JDM CLI command request virtual-network-functions vnf-name add-image
new-image-name force. This can be useful in a rare situation where the GNF image does not boot.
You can also use the force option to perform a cleanup if, for example, you abruptly terminated
an earlier add-image that was in progress, by pressing Ctrl-C (example: request virtual-network-
functions vnf-name delete-image image-name force).

88

Upgrading JDM to Support WRL 9 based VM Host - In-Chassis Model

If the Routing Engine is to run Junos OS 19.3R1 or later, you must upgrade JDM to 19.3R1 or later.

NOTE: Junos OS versions released prior to 19.3R1 use WRL6 version of the VM Host software.
Junos OS 19.3R1 brings in WRL9 version of the VM Host software. To check the VM Host
version, on the BSYS VM, use the Junos CLI command show vmhost version.

Use the following steps to upgrade the JDM.

1. At each of the GNFs, assign primary role to the backup GNFs running on Routing Engine1 (re1).

root@router> request chassis routing-engine master switch no-confirm

2. On re0, first stop the GNFs from the JDM, and then stop the JDM itself from BSYS.

root@jdm> request virtual-network-functions stop gnf-name
root@router> request vmhost jdm stop

3. Ensure that re0 VM Host version is Junos OS 19.3R1 or later. To check the VM Host version, use the
Junos CLI command show vmhost version.

You can use the following Junos CLIs to upgrade VM Host software:

root@router> request vmhost software add package-name
root@router> request vmhost reboot

For more information, see Installing, Upgrading, Backing Up, and Recovery of VM Host.

4. When re0 is back up after the reboot, copy the new JDM RPM package (19.3R1 or later) to a
directory (for example, /var/tmp).

5. Install the new JDM RPM package on re0 and then start the JDM.

root@router> request vmhost jdm add package-name
root@router> request vmhost jdm start

The GNFs on re0 automatically start after this step.

89

https://www.juniper.net/documentation/en_US/junos/topics/concept/installation_upgrade.html

6. Repeat the steps 1 to 5 on Routing Engine 1 (r1).

7. Run the request server authenticate-peer-server command at the JDM on both the Routing Engines.

user@jdm> request server authenticate-peer-server

8. Configure set system commit synchronize and then apply commit on re0 JDM.

user@jdm# set system commit synchronize
user@jdm# commit synchronize

NOTE: The JDM software version 19.3R1 is capable of running on Junos OS version 19.3R1 as
well as on Junos OS versions prior to 19.3R1.

SEE ALSO

Installing and Configuring JDM for In-Chassis Model | 51

Downgrading JDM for External Server Model

NOTE: You cannot downgrade Juniper Device Manager (JDM) installed in a single-server based
Junos node slicing setup.

Use the following steps to downgrade JDM:

1. Assign primary role to the backup GNFs running on server1.

user@gnf> request chassis routing-engine master acquire no-confirm
Resolving mastership...
Complete. The local routing engine becomes the master.

user@gnf# commit synchronize

re1:

90

configuration check succeeds
re0:
commit complete
re1:
commit complete

2. On server0, stop all the GNFs and delete the commit synchronize configuration.

user@jdm> request virtual-network-functions test-gnf stop
test-gnf stopped
user@jdm# delete system commit synchronize
user@jdm# commit

server0:
 configuration check succeeds
server1:
 commit complete
server0:
 commit complete

3. On server0, stop and uninstall JDM.

[user@server0 ~]# jdm stop
Stopping JDM
[user@server0 ~]# rpm -e jns-jdm

Detailed log of jdm setup saved in /var/log/jns-jdm-setup.log
Cleanup jdm from host...
Cleaning up jdm rootfs and bridges..
Domain jdm has been undefined

Done Cleanup jdm from host

NOTE: If you are using Ubuntu, use the command dpkg --purge jns-jdm to uninstall JDM.

4. On server0, install the target version of JDM.

[user@server0]# rpm -ivh jns-jdm-18.3-20181207.0.x86_64.rpm

91

Preparing... ################################# [100%]
Detailed log of jdm setup saved in /var/log/jns-jdm-setup.log

 Updating / installing...
 1:jns-jdm-18.3-20181207.0 ################################# [100%]
Setup host for jdm...
Launch libvirtd in listening mode
Done Setup host for jdm
Installing /juniper/.tmp-jdm-install/juniper_ubuntu_rootfs.tgz...
Configure /juniper/lxc/jdm/jdm1/rootfs...
Configure /juniper/lxc/jdm/jdm1/rootfs DONE
Created symlink from /etc/systemd/system/multi-user.target.wants/jdm.service to /usr/lib/
systemd/system/jdm.service.
Done Setup jdm
Redirecting to /bin/systemctl restart rsyslog.service

5. Configure JDM with root authentication or interfaces, and routing-options.

6. On server0 JDM, add a GNF image version that is compatible with the JDM version.

user@jdm> request virtual-network-functions add-image /var/tmp/junos-install-ns-mx-x86-64-18.3-R1.tgz
gnf
Added Image

In case the GNF version is incompatible with the JDM version, the following error message is
shown:

user@jdm> request virtual-network-functions test add-image /var/jdm-usr/gnf-images/junos-
install-ns-mx-x86-64-19.1-20181212_dev_common.0.tgz
 SMBIOS version of GNF(v2) is incompatible with JDM(v1)

7. Wait till the GNF comes up on server0 JDM.

8. Perform a commit synchronize from the primary Routing Engine (which is the GNF running on
server1).

user@gnf# commit synchronize

9. Assign primary role to the GNF which is running on server0 JDM.

10. On Server 1, repeat the steps 2 through 5.

92

11. Run the request server authenticate-peer-server command on both the servers.

user@jdm> request server authenticate-peer-server

12. Apply show server connections all-servers and ensure that no issues are seen.

13. Configure set system commit synchronize and then apply commit on server0 JDM.

user@jdm# set system commit synchronize
user@jdm# commit synchronize

14. Use the command show virtual-network-functions all-servers to see if the GNFs are coming up.

Downgrading JDM for In-Chassis Model

NOTE: You cannot downgrade Juniper Device Manager (JDM) installed in a single Routing
Engine-based Junos node slicing setup.

Use the following steps to downgrade JDM:

1. Assign primary role to the backup GNFs running on Routing Engine 1 (re1).

user@gnf> request chassis routing-engine master switch no-confirm

2. On re0, stop all the GNFs and delete the commit synchronize configuration.

user@jdm> request virtual-network-functions stop server0 gnf
user@jdm# delete system commit synchronize
user@jdm# commit

3. On re0, uninstall JDM (on BSYS primary).

user@bsys> request vmhost jdm delete

93

4. On re0, install the target version (example: 18.3R1) of JDM.

user@bsys> request vmhost jdm add /var/tmp/jns-jdm-vmhost-18.3-R1.3.x86_64.rpm

5. On re0, deploy the same version of GNF which is running on server1.

user@jdm> request virtual-network-functions add-image /var/tmp/junos-install-ns-mx-
x86-64-19.1-20181115.1.tgz gnf

In case the GNF version is incompatible with the JDM version, the following error message is shown:

user@jdm> request virtual-network-functions test add-image /var/jdm-usr/gnf-images/junos-
install-ns-mx-x86-64-19.1-20181212_dev_common.0.tgz
 SMBIOS version of GNF(v2) is incompatible with JDM(v1)

You can use the following command to check the GNF version.

user@gnf1> show version

Hostname: gnf1
 Model: mx960
 Junos: 19.1-20181115.1

6. On re1, repeat the steps 1 through 5.

7. Run the request server authenticate-peer-server command on both the Routing Engines.

user@jdm> request server authenticate-peer-server

8. Perform a commit synchronize from the primary Routing Engine (which is the GNF running on
server1).

user@gnf# commit synchronize

9. Configure set system commit synchronize and then apply commit on re0 JDM.

user@jdm# set system commit synchronize
user@jdm# commit synchronize

94

Now, JDM is up with Junos OS version 18.3R1.

Unified ISSU Support

Junos node slicing also supports unified in-service software upgrade (ISSU), enabling you to upgrade
between two different Junos OS versions with no disruption on the control plane and with minimal
disruption of traffic. You can perform unified ISSU on BSYS and GNFs separately. Also, you can run
unified ISSU on each GNF independently�without affecting other GNFs. See also Understanding the
Unified ISSU Process.

NOTE:

• The multiversion software support restrictions (such as version deviation limits) are applicable
to unified ISSU upgrade as well.

• Starting in Junos OS Release 21.4R1, the MPC11E with SLCs (sub line cards) supports ISSU in
zero packet loss mode. If you are running an earlier Junos OS version, do not attempt to
perform ISSU on a Junos node slicing setup that has SLCs.

Managing Multiversion Software Interoperability

IN THIS SECTION

Viewing Software Incompatibility Alarms | 98

Viewing Incompatibilities Between Software Versions | 98

Junos node slicing supports multiversion software interoperability. However, if there are any
incompatibilities between software versions, alert messages appear during the software upgrade process
or when a GNF or a FRU comes online. When minor incompatibilities occur, you can choose to accept
them and proceed. In case of a major incompatibility, you need to either terminate the process or use
the force option to accept the incompatibility and proceed.

95

https://www.juniper.net/documentation/en_US/junos/topics/concept/understanding-issu-process.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/understanding-issu-process.html

NOTE: In case of vmhost software upgrade, the force option is not available. Therefore, if a GNF
is offline or is incompatible with the software being installed, and is causing multiversion checks
to terminate, you need to deactivate that GNF during the software upgrade and then reactivate
it once the upgrade is over.

The following are sample messages that appear if incompatibilities are detected during software
upgrade:

Sample alert message indicating a minor incompatibility:

user@router> request system software add /var/tmp/junos-install-mx-x86-64-17.4-20170703_dev_common.0.tgz
Starting Multiversion compatibility checks for package /var/tmp/junos-install-mx-
x86-64-17.4-20170703_dev_common.0.tgz
Starting compatibility checks...
--
System Anomalies:
--
Ano-ID ACTION MESSAGE
--
 100 WARN <sample system incompatibility 1>
Accept incompatibility? [yes,no] (no) yes

 103 WARN <sample system incompatibility 2>
Accept incompatibility? [yes,no] (no) yes

--
CFG Anomalies for: set snmp interface
--
FRU-ID Ano-ID ACTION MESSAGE
--
NONE 102 WARN <sample config incompatibility 1>
Accept incompatibility? [yes,no] (no) yes

NONE 105 WARN <sample config incompatibility 2>
Accept incompatibility? [yes,no] (no) yes

--
FRU Anomalies:
--

96

FRU-ID Ano-ID ACTION MESSAGE
--
0xaa0b 100 WARN <sample FRU incompatibility 1>
Accept incompatibility? [yes,no] (no) yes

0xbb0b 101 WARN <sample FRU incompatibility 2>
Accept incompatibility? [yes,no] (no) yes

Compatibility Checks done... OK
NOTICE: Validating configuration against junos-install-mx-x86-64-17.4-20170703_dev_common.0.tgz.
NOTICE: Use the 'no-validate' option to skip this if desired.
Verified junos-install-mx-x86-64-17.4-20170703_dev_common.0 signed by PackageDevelopmentEc_2017
method ECDSA256+SHA256

Sample alert message indicating a major incompatibility:

user@router> request system software add /var/tmp/junos-install-mx-x86-64-17.4I20170713_0718.tgz
Starting Multiversion compatibility checks for package /var/tmp/junos-install-mx-
x86-64-17.4I20170713_0718.tgz
Starting compatibility checks...
--
System Anomalies:
--
Ano-ID ACTION MESSAGE
--
1677721600 ABORT <sample system incompatibility 1>
error: Junos-Node-Slicing multi-version checks returned abort for package /var/tmp/junos-install-
mx-x86-64-17.4I20170713_0718.tgz

Sample output showing how to use the 'force' option to proceed with an upgrade:

user@router> request system software add /var/tmp/junos-install-mx-x86-64-17.4I20170713_0718.tgz force

NOTICE: Validating configuration against junos-install-mx-x86-64-17.4I20170713_0718.tgz.
NOTICE: Use the 'no-validate' option to skip this if desired.
Verified junos-install-mx-x86-64-17.4I20170713_0718 signed by PackageDevelopmentEc_2017 method
ECDSA256+SHA256
Verified manifest signed by PackageDevelopmentEc_2017 method ECDSA256+SHA256
Checking PIC combinations
Adding junos-x86-64-17.4I20170713_0718...

97

Viewing Software Incompatibility Alarms

After a software update of a GNF or BSYS, if software incompatibilities between the GNF and the BSYS
exist, they will be raised as a chassis alarm. You can view the incompatibility alarm information by using
the show chassis alarms command. You can further view the details of the incompatibilities by using the
show system anomalies command. For more details, see "Viewing Incompatibilities Between Software
Versions" on page 98 .

The alarms appear only on GNFs even if the upgrade is performed on the BSYS. The following types of
alarm can occur:

• System Incompatibility with BSYS—This is a major alarm. It appears when any incompatibilities
between BSYS and GNF software versions cause the GNF to go offline.

• Feature Incompatibility with BSYS—This is a minor alarm. It indicates a minor incompatibility between
BSYS and GNF software versions. This does not cause the GNF to go offline.

Viewing Incompatibilities Between Software Versions

To view software incompatibilities from the BSYS, use the CLI as shown in the following example:

user@router> show system anomalies gnf-id 4 system

To view software incompatibilities from a GNF, use the CLI as shown in the following example:

user@router> show system anomalies system

NOTE:

• As shown in the CLI, remember to specify the GNF ID while viewing the incompatibilities
from BSYS.

• The preceding examples show system-level incompatibilities. Use the fru or config options to
view FRU or feature-level incompatibilities.

Restarting External Servers

Server maintenance activities such as hardware or host OS upgrade and fault isolation might require you
to restart the external servers used in Junos node slicing. Use the following procedure to restart the
servers:

98

1. Stop all the GNFs.

If you are restarting both the servers, choose the all-servers option while stopping each GNF as
shown in the following example:

root@server1> request virtual-network-functions gnf_name stop all-servers
gnf_name stopped

If you are restarting a particular server, stop the GNFs on that server by specifying the server-id as
shown in the following example:

root@server1> request virtual-network-functions gnf_name stop server0
gnf_name stopped

2. Verify that the GNFs have been stopped.

root@server1> show virtual-network-functions

ID Name State Liveness
--
1 mgb-gnf-b Shutdown down

NOTE: If you want to view the status of GNFs on both the servers, choose the all-servers
option. Example: show virtual-network-functions all-servers).

3. From the Linux host shell, stop the JDM by using the following command:

[root@HostLinux ~]# jdm stop
Stopping JDM

4. From the Linux host shell, verify that the JDM status shows as stopped.

[root@HostLinux ~]# jdm status
JDM is stopped

99

5. After rebooting, verify that the JDM status now shows as running.

[root@HostLinux ~]# jdm status
JDM (pid 2828) is running as server1

After a server reboot, the JDM and the configured GNFs will automatically start running.

If you are replacing the servers, ensure that the operating server pair continues to have similar or
identical hardware configuration. If the server pair were to become temporarily dissimilar during the
replacement (this could be the case when replacing the servers sequentially), it is recommended that you
disable GRES and NSR for this period, and re-enable them only when both the servers are similar once
again.

Updating Host OS on the External Servers

Before updating the host OS on an external server, you must first stop the GNFs and JDM on that server
as described in "Restarting External Servers" on page 98 .

Following the host OS update, if you are using Intel X710 NICs, ensure that the version of the X710 NIC
driver in use continues to be the latest version as described in "Updating Intel X710 NIC Driver for x86
Servers" on page 36 .

Applying Security Updates to Host OS

IN THIS SECTION

Steps to Apply Host OS Security Updates | 101

The host OS requires security updates from time to time. This section highlights the steps involved in
applying Security Updates to the host OS using Red Hat (RHEL) OS.

Junos node slicing supports RHEL 9.

Before doing any updates to the host OS, ensure that Red Hat Subscription Manager is set to version 9
and that Red Hat Subscription Service includes Extended Update Support (EUS).

100

You can use the command subscription-manager release --show to confirm that the release is set to 9. If it is
not, you can use the command subscription-manager release --set=9 to set the release to 9.

NOTE: You must ensure that the Red Hat Subscription Manager is set to version 9.

Red Hat's extended update support allows for patches and security updates to be applied within the
specified release. Allowed use of RHEL's Extended Update support is a function of the RHEL support
contract and beyond the scope of this section. You can check to see if your RHEL subscription includes
Extended Update Support (EUS), by using the command subscription-manager repos --list | grep rhel-7-
server-eus-rpms. EUS support is not enabled by default. EUS can be enabled, by using the command
subscription-manager repos --enable rhel-7-server-eus-rpms.

Steps to Apply Host OS Security Updates

Applying security updates to host OS will likely require you to reboot the external x86 servers. See the
Updating Host OS on the External Servers topic.

It is also possible that a host OS security update will bring in a new kernel version. Updating the host OS
kernel could also overwrite the Intel i40e driver to bring in a version of it that does not meet the i40e
driver minimum version requirements. If so, you must update the i40e driver to meet the minimum
requirements. For more details, see Updating Intel X710 NIC Driver for x86 Servers.

Before rebooting the external x86 servers, you must stop all GNF VMs and JDM on that server. Since
we have two external x86 servers, the host OS Security Updates can be done without disrupting GNF
forwarding, by updating one server at a time. A GRES/NSR Primary Routing Engine switch-over is
required to move the Primary Routing Engine away from the affected server.

We start with the default behavior of Routing Engine 1 (re1) as the Backup Routing Engine for each GNF
where re1 for each GNF is running on the external x86 server1.

1. Back up all configurations.

2. Gather view of host OS kernel and package versions on the external x86 servers before the host OS
security update. Also confirm i40e driver and Intel X710 firmware meet minimum requirements
(version: 2.4.10 and version: 18.5.17).

user@server# cat /etc/redhat-release
user@server# uname -r
user@server# uname -a
user@server# rpm -q kernel
user@server# ethtool -i p3p1

101

https://www.juniper.net/documentation/us/en/software/junos/node-slicing/topics/topic-map/junos-node-slicing-upgrade-topic-map.html#id-updating-host-os-on-the-external-servers
https://www.juniper.net/documentation/us/en/software/junos/node-slicing/topics/topic-map/junos-node-slicing-prepare-for-setup-topic-map.html#id-updating-intel-x710-nic-driver-for-x86-servers

3. Ensure that RedHat Subscription Manager is set to RHEL 9 and the EUS Repository is enabled.

[user@server ~]# subscription-manager version
[user@server ~]# subscription-manager repos --list | grep rhel-7-server-eus-rpms

4. Ensure all GNFs are using Primary RE on server0. The backup Routing Engine is re1 on server1. First
perform host OS security updates on the server that contains the backup Routing Engines.

user@router> show chassis routing-engine

Run this command on all the GNFs to confirm that all the GNFs have their primary Routing Engine on
server0.

5. Stop all GNF VMs in JDM cli via request stop on server1 only. server1 contains the backup Routing
Engines for all the GNFs. Do not use the all-servers option. Example:

user@jdm> request virtual-network-functions gnf-a stop server 1
user@jdm> request virtual-network-functions gnf-b stop server 1

6. Stop JDM on the affected server from the host OS.

user@server# jdm status
user@server# jdm stop

7. Do the yum security update and reboot the server.

user@server# yum -y update -security
root@server# shutdown -r now

8. Reload or compile the i40e Driver. See the Intel support page for instructions on updating the driver.

At this point, the host OS security update to server1 is done. Note that the GNF VMs start up on
server reboot.

9. After the security updates are completed, the server rebooted and the GNFs are back up, repeat on
the other server.

102

https://downloadcenter.intel.com/download/24411/Intel-Network-Adapter-Driver-for-PCIe-Intel-40-Gigabit-Ethernet-Network-Connections-Under-Linux-?product=82947

Applying Security Patches for Ubuntu Container

The Ubuntu container, which Juniper Device Manager (JDM) is based on, needs to have security patches
applied from time to time.

NOTE: JDM must be able to reach the internet and must have name-server configured. Apply the
following JDM CLI configuration statement to specify the name-server:
root@jdm# set system name-server address

Use the following steps to apply security updates to the Ubuntu container components of JDM:

1. If you are using the external server model, from host OS, use the JDM console to enter JDM as root.

root@server# jdm console

Or, from the JDM CLI, enter JDM shell by using the command:

root@jdm> start shell user root

If you are using the in-chassis Junos node slicing, use the following command on the BSYS VM to
enter JDM:

root@router> request vmhost jdm login

2. From the JDM shell, use the command apt-get update to download information about new packages or
the latest versions of the currently installed packages.

jdm-srv1:~# sudo apt-get update

3. From the JDM shell, use the command apt-get upgrade.

jdm-srv1:~# sudo apt-get upgrade

You are shown a list of upgrades, and prompted to continue. Answer Y for yes and press Enter.

4. From the JDM shell, use the command apt-get dist-upgrade to perform the upgrade.

jdm-srv1:~# sudo apt-get dist-upgrade

Answer Y when prompted to continue, and wait for the upgrades to finish.

5. If you are using the external server model, from the host OS, restart the JDM.

user@server# sudo jdm restart

If you are using the in-chassis Junos node slicing, use the following commands on the BSYS VM to
restart the JDM:

root@router> request vmhost jdm stop

root@router> request vmhost jdm start

103

RELATED DOCUMENTATION

Junos Node Slicing Overview | 2

Multiversion Software Interoperability Overview | 19

Managing Junos Node Slicing

IN THIS SECTION

Deleting Guest Network Functions | 104

Disabling Junos Node Slicing | 105

Managing Sub Line Cards | 107

Deleting Guest Network Functions

This procedure involves shutting down a GNF and then deleting it. In JDM, GNF VMs are called VNFs.
Use the following steps to delete a VNF:

1. Shut down a VNF by using the JDM CLI command request virtual-network-functions gnf-name stop all-
servers. For example:

root@test-jdm-server0> request virtual-network-functions test-gnf stop all-servers

server0:
--
test-gnf stopped

server1:
--
test-gnf stopped

2. Delete the VNF configuration by applying the JDM CLI configuration statement delete virtual-network-
functions gnf-name. See the following example:

root@test-jdm-server0# delete virtual-network-functions test-gnf

104

root@test-jdm-server0# commit synchronize

3. Delete the VNF image repository by using the JDM CLI command request virtual-network-functions gnf-
name delete-image all-servers. For example:

root@test-jdm-server0> request virtual-network-functions test-gnf delete-image all-servers

server0:
--
Deleted the image repository
server1:
--
Deleted the image repository

NOTE:

• To delete a VNF completely, you must perform all the three steps.

• If you want to delete a VNF management interface, you must stop and delete the VNF
first.

Disabling Junos Node Slicing

To disable Junos node slicing, you must uninstall the following packages:

• JDM package

• Junos OS image for GNFs

NOTE: Save the JDM configuration if you want to use it for reference.

Use the following steps to disable Junos node slicing (external server model):

1. Delete the GNFs first by performing all the steps described in the section "Deleting Guest Network
Functions" on page 104 .

2. Stop the JDM on each server by running the following command at the host Linux shell:

root@Linux server0# jdm stop

105

Stopping jdm: Domain jdm destroyed

3. Uninstall the JDM on each server by running the following command at the host Linux shell.

For the servers running RHEL, run the following command:

root@Linux server0# rpm -e jns-jdm

For the servers running Ubuntu, run the following command:

root@Linux server0# dpkg --remove jns-jdm

4. To revert the MX Series router from BSYS mode to standalone mode, apply the following
configuration statements on the MX Series router:

root@router# delete chassis network-slices guest-network-functions
root@router# commit

The router now operates in standalone mode.

To disable in-chassis Junos node slicing, you must:

• Shut down and delete all GNFs. Also, delete the Junos OS image associated with the GNF.

• Shut down JDM and then delete the JDM software package.

• Delete the in-chassis BSYS mode configuration (set vmhost resize vjunos).

• Reboot the Routing Engine.

Use the following steps to disable in-chassis Junos node slicing:

1. Delete the GNFs first by performing all the steps described in the section "Deleting Guest Network
Functions" on page 104 .

2. Stop the JDM on each Routing Engine by running the following command:

root@router> request vmhost jdm stop

3. Uninstall the JDM on each Routing Engine by running the following command.

root@router> request vmhost jdm delete

106

4. To revert the MX Series router from BSYS mode to standalone mode, apply the following
configuration statements on the MX Series router:

root@router# delete vmhost resize vjunos
root@router# commit

5. Reboot VM host.

user@router> request vm host reboot (re0|re1)

The router now operates in standalone mode.

NOTE: All files in the /var/ location, including the log files (/var/log) and core files (/var/
crash), are deleted when you reboot VM host after deleting the vmhost resize vjunos compact
configuration. You must save any files currently in /var/log or /var/crash before deleting the
vmhost resize vjunos compact configuration if you want to use them for reference.

Managing Sub Line Cards

IN THIS SECTION

Operational Commands on BSYS for Line Card Slices | 108

Operational Commands on GNF for Line Card Slices | 111

For an overview of sub-linecards, see "Sub Line Card Overview" on page 16 .

For configuring sub-linecards, please refer to "Configuring Sub Line Cards and Assigning Them to GNFs"
on page 68 .

To manage the sub line cards, you can use the same CLI operational commands that are used to manage
full line cards.

You can operate on SLCs from both BSYS as well as their associated GNFs.

From the BSYS, you can see the status of all SLCs on all FPCs, and take actions on any SLC.

107

From a GNF, you can see the status of, and take actions on, only those SLCs that are assigned to that
GNF.

When you run a show command at the BSYS for a sliced line card, the output shows values from BLC
and all SLCs of that line card. The annotation fpc-slot:slc-id is used to indicate that an output field is
from a sub line card. When the same show command is run at a GNF for that line card, the output shows
the value only from the specific slice that has been assigned to that GNF.

When you need to take action on an SLC from the BSYS, you must use the new keyword slc, together
with an SLC ID, to indicate the specific SLC of a specific FPC. When you need to take action on the SLC
from its associated GNF, you only need to specify the FPC slot (the SLC ID is implicit).

Operational Commands on BSYS for Line Card Slices

The following are the sample command outputs on the BSYS, where FPC 1 has been sliced.

To view the status of a sliced line card at the BSYS, use the CLI command show chassis fpc, as shown
below. The slot entries 1:1 and 1:2 indicate the outputs from SLC1 and SLC2 respectively. The slot entry
‘1’ indicates the output of the BLC.

The status of each SLC of a Line card is displayed using the fpc-slot-id:slc-id nomenclature as below
along with the GNF assignment details:

user@bsys> show chassis fpc 1

 Temp CPU Utilization (%) CPU Utilization (%) Memory Utilization (%)
Slot State (C) Total Interrupt 1min 5min 15min DRAM (MB) Heap
Buffer GNF
 1 Online 58 1 0 1 1 1 5120 36 0
1:1 Online 11 0 10 10 10 17408 14
0 1
1:2 Online 21 0 19 19 19 9216 30
0 2

To examine the operational values of the line card resources of a sliced line card, use the CLI command
show chassis fpc pic-status. These operational values match the configured values of the line card
resources.

user@bsys> show chassis fpc pic-status 1

Slot 1 Online MPC11E 3D MRATE-40xQSFPP
 SLC 1 Online FPC1 PFE0-1 4core-17gb GNF 1

108

 PIC 0 Online MRATE-5xQSFPP
 PIC 1 Online MRATE-5xQSFPP
 SLC 2 Online FPC1 PFE2-7 4core-9gb GNF 2
 PIC 2 Online MRATE-5xQSFPP
 PIC 3 Online MRATE-5xQSFPP
 PIC 4 Online MRATE-5xQSFPP
 PIC 5 Online MRATE-5xQSFPP
 PIC 6 Online MRATE-5xQSFPP
 PIC 7 Online MRATE-5xQSFPP

To view the software version, uptime and the individual Packet Forwarding Engine assignments of the
SLCs, use the CLI command show chassis fpc slot detail, as shown below.

user@bsys> show chassis fpc 1 detail

Slot 1 information:
 State Online
 Temperature 58 degrees C / 136 degrees F
 Total CPU DRAM 5120 MB
 Total HBM 65536 MB
 Start time 2021-01-06 09:47:31 PST
 Uptime 20 hours, 57 minutes, 58 seconds
 Max power consumption 1980 Watts
 Operating Bandwidth 4000 G
SLC 1 information:
 State Online
 Total CPU cores 4
 Total CPU DRAM 17408 MB
 Total HBM 65536 MB
 Start time 2021-01-06 09:48:48 PST
 Uptime 20 hours, 56 minutes, 41 seconds
 Version JUNOS 21.1-202012301103.0-EVO <--snip-->
SLC 2 information:
 State Online
 Total CPU cores 4
 Total CPU DRAM 9216 MB
 Total HBM 65536 MB
 Start time 2021-01-06 09:50:22 PST
 Uptime 20 hours, 55 minutes, 7 seconds
 Version JUNOS 21.1-202012301103.0-EVO <--snip-->

PFE Information:

109

 PFE Power ON/OFF Bandwidth SLC
 0 ON 500G 1
 1 ON 500G 1
 2 ON 500G 2
 3 ON 500G 2
 4 ON 500G 2
 5 ON 500G 2
 6 ON 500G 2
 7 ON 500G 2

To view the node-level assignments of line cards and sub line cards to different GNFs, use the CLI
command show chassis network-slices fpcs at the BSYS, as shown below. In this example, GNF 1 has 2 line
card slices, SLC1 of FPC1 and SLC1 of FPC9, and no full line cards. GNF 2 here has one full line card,
FPC6, and 2 line card slices, SLC2 of FPC1 and SLC2 of FPC9.

user@bsys> show chassis network-slices fpcs

guest-network-functions:
GNF FPCs
 1 1:1 9:1
 2 6 1:2 9:2

You can take a sub line card offline, bring it online or restart it in the same way as you would with full
line cards. You must use the additional keyword slc and an SLC ID to indicate the specific SLC. For
example, to restart SLC1 of FPC1, use the CLI command request chassis fpc slot 1 slc 1.

user@bsys> request chassis fpc slot 1 slc 1 ?

Possible completions:
 offline Take FPC offline
 online Bring FPC online
 restart Restart FPC

On the BSYS, when you take a sliced FPC offline, and do not specify any SLC, the command is applied to
all SLCs of that FPC, that is, all the SLCs will first be taken offline, followed by the FPC itself. Similarly,
when you bring a sliced FPC online, the FPC will be first brought online, followed by all the SLCs.

110

Operational Commands on GNF for Line Card Slices

The operational commands used on a GNF are identical to those that are used on full line cards. When
you specify an fpc-slot, which has a sliced FPC, the command implicitly operates only on the specific SLC
of that FPC that has been assigned to that GNF, that is, the SLC ID is implied.

In the example below, the CLI command show chassis fpc 1 is entered on GNF A; so, it shows the status of
only one SLC, SLC1, since that is the SLC of FPC1 associated with GNF A. It also shows the BLC status
of that FPC. Note that this output does not show the status of SLC2 of FPC1, since SLC2 is associated
with a different GNF (GNF B).

user@gnf-a> show chassis fpc 1

bsys-re0:
--
 Temp CPU Utilization (%) CPU Utilization (%) Memory Utilization (%)
Slot State (C) Total Interrupt 1min 5min 15min DRAM (MB) Heap
Buffer GNF
 1 Online 58 1 0 1 1 1 5120 36 0
1:1 Online 12 0 11 11 11 17408 14
0 1

In the example below, the same CLI command show chassis fpc 1 is entered on GNF B; so, it shows only
SLC2, which is the SLC of FPC1 associated with GNF B. It also shows the BLC status of that FPC. Note
that this output does not show the status of SLC1 of FPC1, since SLC1 is associated with a different
GNF (GNF A).

user@gnf-b> show chassis fpc 1

bsys-re0:
--
 Temp CPU Utilization (%) CPU Utilization (%) Memory Utilization (%)
Slot State (C) Total Interrupt 1min 5min 15min DRAM (MB) Heap
Buffer GNF
 1 Online 58 1 0 1 1 1 5120 36 0
1:2 Online 20 0 19 19 19 9216 30
0 2

111

As another example, the following is the output of the CLI command show chassis fpc 5 detail from GNF
A. Note that it shows only SLC1 information.

user@gnf-a> show chassis fpc 5 detail
bsys-re0:
--
Slot 1 information:
 State Online
 Temperature 58 degrees C / 136 degrees F
 Total CPU DRAM 5120 MB
 Total HBM 65536 MB
 Start time 2021-01-06 09:47:31 PST
 Uptime 21 hours, 40 minutes, 31 seconds
 Max power consumption 1980 Watts
 Operating Bandwidth 4000 G
SLC 1 information:
 State Online
 Total CPU cores 4
 Total CPU DRAM 17408 MB
 Total HBM 65536 MB
 Start time 2021-01-06 09:48:48 PST
 Uptime 21 hours, 39 minutes, 14 seconds
 Version JUNOS 21.1-202012301103.0-EVO <snip>

PFE Information:

 PFE Power ON/OFF Bandwidth SLC
 0 ON 500G 1
 1 ON 500G 1

To take offline, bring online or restart an SLC from its associated GNF, specify only its FPC slot, as shown
in the following example (the SLC ID is implied).

user@gnf-a> request chassis fpc slot 1 ?

Possible completions:
 offline Take FPC offline
 online Bring FPC online
 restart Restart FPC

112

For a sample sub linecard configuration, please refer to "Sample Configuration for Sub Line Cards" on
page 80 .

RELATED DOCUMENTATION

Junos Node Slicing Overview | 2

Components of Junos Node Slicing | 4

Sample Configuration for Junos Node Slicing | 71

113

4
CHAPTER

Configuration Statements and
Operational Commands

Generic Guidelines for Using JDM Server Commands | 115

Junos CLI Reference Overview | 115

Generic Guidelines for Using JDM Server Commands

The following are general guidelines on how to use the JDM server commands:

• Append all-servers to an operational command to take action on both the servers. Example: request
virtual-network-functions gnf1 restart all-servers.

• Append server0 or server1 to an operational command to take action on server0 or server1. Example:
request virtual-network-functions gnf1 restart server0.

By default, the operational commands work only on the local JDM.

• Use the commit synchronize command to ensure that the configuration committed on one server is
synchronized with the other server. The synchronization is bidirectional. A JDM configuration change
at either of the servers is synchronized with the other server. When a virtual machine (VM) is
instantiated, the GNF-re0 VM instance starts on server0 and the GNF-re1 VM instance starts on
server1.

NOTE: If you do not use the commit synchronize command, you must configure and manage the
VMs on both the servers manually.

RELATED DOCUMENTATION

show virtual-network-functions

request virtual-network-functions

request server authenticate-peer-server

Junos CLI Reference Overview

We've consolidated all Junos CLI commands and configuration statements in one place. Learn about the
syntax and options that make up the statements and commands and understand the contexts in which
you’ll use these CLI elements in your network configurations and operations.

• Junos CLI Reference

Click the links to access Junos OS and Junos OS Evolved configuration statement and command
summary topics.

115

https://www.juniper.net/documentation/us/en/software/junos/cli-reference/index.html

• Configuration Statements

• Operational Commands

116

https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/topic-map/configuration-statements.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/topic-map/operational-commands.html

	Table of Contents
	About This Guide
	Junos Node Slicing Overview
	Understanding Junos Node Slicing
	Junos Node Slicing Overview
	Components of Junos Node Slicing
	Abstracted Fabric Interface
	Optimizing Fabric Path for Abstracted Fabric Interface
	Choosing Between External Server Model and In-Chassis Model
	Primary-role Behavior of BSYS and GNF
	Junos Node Slicing Administrator Roles
	Sub Line Card Overview
	Multiversion Software Interoperability Overview
	Next Gen Services on Junos node slicing
	Comparing Junos Node Slicing with Logical Systems
	Licensing for Junos Node Slicing

	Setting Up Junos Node Slicing
	Minimum Hardware and Software Requirements for Junos Node Slicing
	Preparing for Junos Node Slicing Setup
	Connecting the Servers and the Router
	x86 Server CPU BIOS Settings
	x86 Server Linux GRUB Configuration
	Updating Intel X710 NIC Driver for x86 Servers
	Installing Additional Packages for JDM
	Completing the Connection Between the Servers and the Router

	Setting Up Junos Node Slicing
	Configuring an MX Series Router to Operate in BSYS Mode (External Server Model)
	Installing JDM RPM Package on x86 Servers Running RHEL (External Server Model)
	Installing JDM Ubuntu Package on x86 Servers Running Ubuntu 20.04 (External Server Model)
	Configuring JDM on the x86 Servers (External Server Model)
	Configuring Non-Root Users in JDM (Junos Node Slicing)
	Configuring JDM interfaces (External Server Model)
	Configuring MX Series Router to Operate in In-Chassis Mode
	Installing and Configuring JDM for In-Chassis Model
	Installing JDM RPM Package on MX Series Router (In-Chassis Model)
	Configuring JDM (In-Chassis Model)

	Assigning MAC Addresses to GNF
	Configuring Guest Network Functions
	Configuring Abstracted Fabric Interfaces Between a Pair of GNFs
	Optimizing Fabric Path for Abstracted Fabric Interface
	SNMP Trap Support: Configuring NMS Server (External Server Model)
	Chassis Configuration Hierarchy at BSYS and GNF
	Configuring Sub Line Cards and Assigning Them to GNFs
	Sample Configuration for Junos Node Slicing
	Sample Configuration for Sub Line Cards

	Upgrading and Managing Junos Node Slicing
	Junos Node Slicing Upgrade
	Upgrading Junos Node Slicing
	Downgrading JDM for External Server Model
	Downgrading JDM for In-Chassis Model
	Unified ISSU Support
	Managing Multiversion Software Interoperability
	Viewing Software Incompatibility Alarms
	Viewing Incompatibilities Between Software Versions

	Restarting External Servers
	Updating Host OS on the External Servers
	Applying Security Updates to Host OS
	Applying Security Patches for Ubuntu Container

	Managing Junos Node Slicing
	Deleting Guest Network Functions
	Disabling Junos Node Slicing
	Managing Sub Line Cards

	Configuration Statements and Operational Commands
	Generic Guidelines for Using JDM Server Commands
	Junos CLI Reference Overview

