Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. in the United States and other countries. All other trademarks, service marks, registered marks, or registered service marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify, transfer, or otherwise revise this publication without notice.

Junos® OS Traffic Sampling, Forwarding, and Monitoring User Guide
Copyright © 2020 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License Agreement (“EULA”) posted at https://support.juniper.net/support/eula/. By downloading, installing or using such software, you agree to the terms and conditions of that EULA.
Table of Contents

About the Documentation | xii
Documentation and Release Notes | xii
Using the Examples in This Manual | xiii
 Merging a Full Example | xiii
 Merging a Snippet | xiv
Documentation Conventions | xiv
Documentation Feedback | xvii
Requesting Technical Support | xvii
 Self-Help Online Tools and Resources | xviii
 Creating a Service Request with JTAC | xviii

Overview

Traffic Sampling, Forwarding, and Monitoring Overview | 20

Collecting Traffic Samples for Network Monitoring

Traffic Sampling Configuration | 22

Minimum Traffic Sampling Configuration | 23

Configuring Traffic Sampling | 24

Disabling Traffic Sampling | 27

Collecting Traffic Sampling Output in a File | 27
 Traffic Sampling Output Format | 28

Directing Traffic Sampling Output to a Server Running the cflowd Application | 30
 Debugging cflowd Flow Aggregation | 32

 Example: Configuring Active Flow Monitoring Using Version 9 | 34

Example: Sampling a Single SONET/SDH Interface | 35

Example: Sampling All Traffic from a Single IP Address | 36
Configuring Forwarding Options for Load Balancing Traffic

Configuring Load Balancing for Ethernet Pseudowires | 75

Configuring Load-Balance Groups | 76

Understanding the Algorithm Used to Load Balance Traffic on MX Series Routers | 77

- MX MPC and T-Series Type 5 FPC Specifics | 79
- Hashing Algorithm Used in Junos 18.3R1 and later | 79
- Hash fields used for GRE traffic sent over IPv4 | 80
- Hash fields used for GRE traffic sent over IPv6 | 82
- Hash fields used for IPv4 | 83
- Hash fields used for IPv6 | 84
- Hash fields used for multiservice | 86
- Hash fields used for MPLS, Junos 18.3 and later | 87
- Hash fields used for MPLS from Junos 14.1 to Junos 18.3 | 88
- List of Junos Updates for Hash Calculation and Load Balancing for MX series routers with MPCs | 89

Understanding Per-Packet Load Balancing | 90

Configuring Per-Packet Load Balancing | 92

- Per-Packet Load Balancing Examples | 94

Understanding Load Balancing for BGP Traffic with Unequal Bandwidth Allocated to the Paths | 95

Understanding the Default BGP Routing Policy on Packet Transport Routers (PTX Series) | 96

Per-Flow and Per-Prefix Load Balancing Overview | 99

Configuring Per-Prefix Load Balancing | 99

Configuring Per-Flow Load Balancing Based on Hash Values | 101

Configuring Load Balancing Based on MAC Addresses | 101

Load Balancing VPLS Non-Unicast Traffic Across Member Links of an Aggregate Interface | 102

Example: Configuring Multicast Load Balancing over Aggregated Ethernet Links | 104
<table>
<thead>
<tr>
<th>disable (Forwarding Options)</th>
<th>161</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>163</td>
</tr>
<tr>
<td>ecmp-local-bias</td>
<td>164</td>
</tr>
<tr>
<td>enhanced-hash-key</td>
<td>165</td>
</tr>
<tr>
<td>export-format</td>
<td>170</td>
</tr>
<tr>
<td>family (Filtering)</td>
<td>171</td>
</tr>
<tr>
<td>family (Monitoring)</td>
<td>173</td>
</tr>
<tr>
<td>family (Port Mirroring)</td>
<td>175</td>
</tr>
<tr>
<td>family (Sampling)</td>
<td>177</td>
</tr>
<tr>
<td>family inet</td>
<td>179</td>
</tr>
<tr>
<td>family mpls</td>
<td>181</td>
</tr>
<tr>
<td>family multiservice</td>
<td>185</td>
</tr>
<tr>
<td>file (Extended DHCP Relay Agent and Helpers Trace Options)</td>
<td>188</td>
</tr>
<tr>
<td>file (Sampling)</td>
<td>189</td>
</tr>
<tr>
<td>file (Trace Options)</td>
<td>190</td>
</tr>
<tr>
<td>filename (Sampling)</td>
<td>191</td>
</tr>
<tr>
<td>files (Sampling and Traceoptions)</td>
<td>192</td>
</tr>
<tr>
<td>filter (IPv4, IPv6, and MPLS)</td>
<td>193</td>
</tr>
<tr>
<td>filter (VPLS)</td>
<td>194</td>
</tr>
<tr>
<td>flood</td>
<td>195</td>
</tr>
<tr>
<td>flow-active-timeout</td>
<td>196</td>
</tr>
<tr>
<td>flow-export-destination</td>
<td>197</td>
</tr>
<tr>
<td>flow-inactive-timeout</td>
<td>198</td>
</tr>
<tr>
<td>flow-server</td>
<td>199</td>
</tr>
<tr>
<td>group (DHCP Spoofing Prevention)</td>
<td>201</td>
</tr>
</tbody>
</table>
maximum-hop-count | 235
maximum-packet-length | 236
minimum-wait-time | 238
mirror-once | 239
monitoring | 240
next-hop (Forwarding Options) | 241
next-hop-group (Forwarding Options) | 242
next-hop-group | 244
no-filter-check | 245
no-listen | 246
output (Accounting) | 247
output (Forwarding Table) | 248
output (Monitoring) | 249
output (Port Mirroring) | 250
output (Sampling) | 252
per-flow | 254
per-prefix | 255
port (cflowd) | 256
port (Packet Forwarding) | 257
port-mirroring | 259
rate (Forwarding Options) | 264
relay-agent-option | 265
route-accounting | 266
rpm-tracking | 267
run-length | 269
sampling (Forwarding Options) | 271
server (DHCP and BOOTP Relay Agent) | 276
server (DNS, Port, and TFTP Service) | 277
server-address (Hosted Services) | 278
server-profile | 279
server-profile (Active Flow Monitoring) | 280
size (Sampling and Traceoptions) | 281
source-checking | 282
stamp | 283
tftp | 284
traceoptions (DNS, Port, and TFTP Packet Forwarding) | 285
traceoptions (Port Mirroring and Traffic Sampling) | 287
transport-type | 288
version | 289
version9 | 290
world-readable (Forwarding Options) | 291

Operational Commands
clear passive-monitoring statistics | 294
clear services flow-collector statistics | 295
request services flow-collector change-destination primary interface | 296
request services flow-collector change-destination secondary interface | 298
request services flow-collector test-file-transfer | 300
show chassis forwarding | 302
show forwarding-options hyper-mode | 304
show forwarding-options load-balance | 306
show forwarding-options port-mirroring | 310
show forwarding-options next-hop-group | 313
show interfaces (Flow Monitoring) | 317
show interfaces (M Series, MX Series, T Series Routers, and PTX Series Management and Internal Ethernet) | 323
show interfaces statistics | 346
show passive-monitoring error | 363
show passive-monitoring flow | 366
show passive-monitoring memory | 369
show passive-monitoring status | 371
show passive-monitoring usage | 373
show route forwarding-table | 375
show route rpm-tracking | 387
show services accounting aggregation | 390
show services accounting aggregation template | 395
show services accounting errors | 397
show services accounting flow | 403
show services accounting flow-detail | 411
show services accounting memory | 417
show services accounting packet-size-distribution | 420
show services accounting status | 422
show services accounting usage | 427
show services flow-collector file interface | 430
show services flow-collector input interface | 433
show services flow-collector interface | 435
This guide provides information about traffic sampling, which allows you to sample IP traffic based on particular input interfaces and various fields in the packet header. You can also use traffic sampling to monitor interfaces, protocols, and addresses.

The guide also offers information about per-flow load balancing, port mirroring, and domain name system (DNS) or Trivial File Transfer Protocol (TFTP) forwarding.

Traffic sampling and forwarding are supported only on routers equipped with an Internet Processor II application-specific integrated circuit (ASIC). To determine whether a routing platform has an Internet Processor II ASIC, use the `show chassis hardware` command.

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product documentation page on the Juniper Networks website at https://www.juniper.net/documentation/.

If the information in the latest release notes differs from the information in the documentation, follow the product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts. These books go beyond the technical documentation to explore the nuances of network architecture, deployment, and administration. The current list can be viewed at https://www.juniper.net/books.
Using the Examples in This Manual

If you want to use the examples in this manual, you can use the `load merge` or the `load merge relative` command. These commands cause the software to merge the incoming configuration into the current candidate configuration. The example does not become active until you commit the candidate configuration.

If the example configuration contains the top level of the hierarchy (or multiple hierarchies), the example is a full example. In this case, use the `load merge` command.

If the example configuration does not start at the top level of the hierarchy, the example is a snippet. In this case, use the `load merge relative` command. These procedures are described in the following sections.

Merging a Full Example

To merge a full example, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration example into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following configuration to a file and name the file `ex-script.conf`. Copy the `ex-script.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   system {
     scripts {
       commit {
         file ex-script.xsl;
       }
     }
   }
   interfaces {
     fxp0 {
       disable;
       unit 0 {
         family inet {
           address 10.0.0.1/24;
         }
       }
     }
   }
   ```

2. Merge the contents of the file into your routing platform configuration by issuing the `load merge` configuration mode command:
Merging a Snippet

To merge a snippet, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration snippet into a text file, save the file with a name, and copy the file to a directory on your routing platform.

For example, copy the following snippet to a file and name the file `ex-script-snippet.conf`. Copy the `ex-script-snippet.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   commit {
   file ex-script-snippet.xsl;
   }
   ```

2. Move to the hierarchy level that is relevant for this snippet by issuing the following configuration mode command:

   ```
   [edit]
   user@host# edit system scripts
   [edit system scripts]
   ```

3. Merge the contents of the file into your routing platform configuration by issuing the `load merge relative` configuration mode command:

   ```
   [edit system scripts]
   user@host# load merge relative /var/tmp/ex-script-snippet.conf
   load complete
   ```

For more information about the `load` command, see CLI Explorer.

Documentation Conventions

Table 1 on page xv defines notice icons used in this guide.
Table 1: Notice Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![i]</td>
<td>Informational note</td>
<td>Indicates important features or instructions.</td>
</tr>
<tr>
<td>![⚠️]</td>
<td>Caution</td>
<td>Indicates a situation that might result in loss of data or hardware damage.</td>
</tr>
<tr>
<td>![⚠️]</td>
<td>Warning</td>
<td>Alerts you to the risk of personal injury or death.</td>
</tr>
<tr>
<td>![⚠️]</td>
<td>Laser warning</td>
<td>Alerts you to the risk of personal injury from a laser.</td>
</tr>
<tr>
<td>![💡]</td>
<td>Tip</td>
<td>Indicates helpful information.</td>
</tr>
<tr>
<td>![💡]</td>
<td>Best practice</td>
<td>Alerts you to a recommended use or implementation.</td>
</tr>
</tbody>
</table>

Table 2 on page xv defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents text that you type.</td>
<td>To enter configuration mode, type the configure command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>user@host> configure</td>
</tr>
<tr>
<td>Fixed-width text like this</td>
<td>Represents output that appears on the terminal screen.</td>
<td>user@host> <code>show chassis alarms</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No alarms currently active</td>
</tr>
<tr>
<td>Italic text like this</td>
<td>• Introduces or emphasizes important new terms.</td>
<td>• A policy term is a named structure that defines match conditions and actions.</td>
</tr>
<tr>
<td></td>
<td>• Identifies guide names.</td>
<td>• Junos OS CLI User Guide</td>
</tr>
<tr>
<td></td>
<td>• Identifies RFC and Internet draft titles.</td>
<td>• RFC 1997, BGP Communities Attribute</td>
</tr>
<tr>
<td>Convention</td>
<td>Description</td>
<td>Examples</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| *Italic text like this* | Represents variables (options for which you substitute a value) in commands or configuration statements. | Configure the machine’s domain name:
[edit]
root@# set system domain-name domain-name |
| **Text like this** | Represents names of configuration statements, commands, files, and directories; configuration hierarchy levels; or labels on routing platform components. | • To configure a stub area, include the stub statement at the [edit protocols ospf area area-id] hierarchy level.
• The console port is labeled CONSOLE. |
| < > (angle brackets) | Encloses optional keywords or variables. | stub <default-metric metric>; | | | |
| | Indicates a choice between the mutually exclusive keywords or variables on either side of the symbol. The set of choices is often enclosed in parentheses for clarity. | broadcast | multicast (string1 | string2 | string3) |
| | Indicates a comment specified on the same line as the configuration statement to which it applies. | rsvp [# Required for dynamic MPLS only |
| | Encloses a variable for which you can substitute one or more values. | community name members [community-ids] |
| Indention and braces () | Identifies a level in the configuration hierarchy. | [edit] routing-options { static {
route default {
nexthop address;
retain;
}
}
} |
| : (semicolon) | Identifies a leaf statement at a configuration hierarchy level. | |

GUI Conventions
Table 2: Text and Syntax Conventions (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents graphical user interface (GUI) items you click or select.</td>
<td>• In the Logical Interfaces box, select All Interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To cancel the configuration, click Cancel.</td>
</tr>
<tr>
<td>> (bold right angle bracket)</td>
<td>Separates levels in a hierarchy of menu selections.</td>
<td>In the configuration editor hierarchy, select Protocols>Ospf.</td>
</tr>
</tbody>
</table>

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation. You can use either of the following methods:

- **Online feedback system**—Click TechLibrary Feedback, on the lower right of any page on the Juniper Networks TechLibrary site, and do one of the following:
 - Click the thumbs-up icon if the information on the page was helpful to you.
 - Click the thumbs-down icon if the information on the page was not helpful to you or if you have suggestions for improvement, and use the pop-up form to provide feedback.

- **E-mail**—Send your comments to techpubs-comments@juniper.net. Include the document or topic name, URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC). If you are a customer with an active Juniper Care or Partner Support Services support contract, or are
covered under warranty, and need post-sales technical support, you can access our tools and resources online or open a case with JTAC.

- **Product warranties**—For product warranty information, visit https://www.juniper.net/support/warranty/.
- **JTAC hours of operation**—The JTAC centers have resources available 24 hours a day, 7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called the Customer Support Center (CSC) that provides you with the following features:

- **Find CSC offerings**: https://www.juniper.net/customers/support/
- **Search for known bugs**: https://prsearch.juniper.net/
- **Find product documentation**: https://www.juniper.net/documentation/
- **Find solutions and answer questions using our Knowledge Base**: https://kb.juniper.net/
- **Download the latest versions of software and review release notes**: https://www.juniper.net/customers/csc/software/
- **Search technical bulletins for relevant hardware and software notifications**: https://kb.juniper.net/InfoCenter/
- **Join and participate in the Juniper Networks Community Forum**: https://www.juniper.net/company/communities/
- **Create a service request online**: https://myjuniper.juniper.net

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool: https://entitlementsearch.juniper.net/entitlementsearch/

Creating a Service Request with JTAC

You can create a service request with JTAC on the Web or by telephone.

- **Visit** https://myjuniper.juniper.net.
- **Call** 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see https://support.juniper.net/support/requesting-support/.
Overview
Traffic Sampling, Forwarding, and Monitoring Overview

Traffic sampling allows you to sample IP traffic based on particular input interfaces and various fields in the packet header. You can also use traffic sampling to monitor any combination of specific logical interfaces, specific protocols on one or more interfaces, a range of addresses on a logical interface, or individual IP addresses. Information about the sampled packets is saved to files on the router's hard disk.

Traffic sampling is not meant to capture all packets received by a router. We do not recommend excessive sampling (a rate greater than 1/1000 packets), because it can increase the load on your processor. If you need to set a higher sampling rate to diagnose a particular problem or type of traffic received, we recommend that you revert to a lower sampling rate after you discover the problem or troublesome traffic. In addition, traffic sampling and forwarding are supported only on routers equipped with an Internet Processor II application-specific integrated circuit (ASIC). To determine whether a routing platform has an Internet Processor II ASIC, use the `show chassis hardware` command.

Junos OS supports both per-packet and per-flow load balancing. In Junos OS Release 9.0 and later, you can configure per-prefix load balancing. This feature enables the router to elect the next hop independent of the route chosen by other routers. The result is a better utilization of available links. Likewise, you can configure Junos OS so that, for the active route, all next-hop addresses for a destination are installed in the forwarding table. This is called per-packet load balancing, which you can use to spread traffic across multiple paths between routers.

With forwarding policies, you can configure per-flow load balancing, port mirroring, and domain name system (DNS) or Trivial File Transfer Protocol (TFTP) forwarding.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.0</td>
<td>In Junos OS Release 9.0 and later, you can configure per-prefix load balancing.</td>
</tr>
</tbody>
</table>
Traffic Sampling Configuration

To configure traffic sampling, include the `sampling` statement at the `[edit forwarding-options]` hierarchy level:

```plaintext
[edit forwarding-options]
sampling {
    disable;
    family (inet | inet6 | mpls) {
        disable;
    } output {
        aggregate-export-interval seconds;
        extension-service service-name;
        file {
            disable;
            filename filename;
            files number;
            size bytes;
            (stamp | no-stamp);
            (world-readable | no-world-readable);
        } flow-active-timeout seconds;
        flow-inactive-timeout seconds;
        flow-server hostname {
            aggregation {
                autonomous-system;
                destination-prefix;
                protocol-port;
                source-destination-prefix {
                    caida-compliant;
                } source-prefix;
            } autonomous-system-type (origin | peer);
            (local-dump | no-local-dump);
            port port-number;
            source-address address;
            version format;
            version9 {
                template template-name;
            } } interface interface-name {
```
Minimum Traffic Sampling Configuration

To configure traffic sampling, you must perform at least the following tasks:

1. Create a firewall filter to apply to the logical interfaces being sampled by including the filter statement at the [edit firewall family family-name] hierarchy level. In the filter then statement, you must specify the action modifier sample and the action accept.

 [edit firewall family family-name]
 filter filter-name {
 term term-name {
 then {
 sample;
 accept;
 }
 }
 }

2. Apply the filter to the interfaces on which you want to sample traffic:
Configuring Traffic Sampling

On routing platforms containing a Monitoring Services PIC or an Adaptive Services PIC, you can configure traffic sampling for traffic passing through the routing platform. In Junos OS Release 8.3 and later, you can also configure traffic sampling of MPLS traffic.

To configure traffic sampling on a logical interface:

1. Include the input statement at the [edit forwarding-options sampling] hierarchy level, for example:

```
[edit forwarding-options sampling]
input {
    max-packets-per-second number;
    maximum-packet-length bytes
    rate number;
    run-length number;
}
```
Junos OS Release 17.2R1, you can export flow records generated by inline flow monitoring to four collectors under a family with the same source IP address. The Packet Forwarding Engine (PFE) can export the flow record, flow record template, option data, and, option data template packet to all configured collectors. You can configure the multiple collectors at the [edit forwarding-options sampling instance instance name] hierarchy level.

NOTE: You cannot change the source IP address for collectors under the same family.

2. Specify the threshold traffic value by using the `max-packets-per-second` statement. The value is the maximum number of packets to be sampled, beyond which the sampling mechanism begins dropping packets. The range is 0 through 65,535. A value of 0 instructs the Packet Forwarding Engine not to sample any packets. The default value is 1000.

NOTE: This statement is not valid for port mirroring.

3. Specify the maximum length of the sampled packet by using the `maximum-packet-length bytes` statement. For `bytes`, specify a value.

NOTE: For MX-Series devices with Modular Port Concentrators (MPCs) and T4000 router with Type 5 FPC, port-mirrored or sampled packets can be truncated (or clipped) to any length in the range of 1 to 255 bytes. Only 1 to 255 are valid values for packet truncation on these devices. For other devices, the range is from 0 to 9216. A maximum-packet-length value of zero represents that truncation is disabled, and the entire packet is mirrored or sampled.

4. Specify the sampling rate by setting the values for `rate` and `run-length` (see Figure 1 on page 26).
The forwarding plane provides support for random sampling that can be configured through the rate or run-length statement. The rate statement sets the ratio of the number of packets to be sampled on an average. For example, if you configure a rate of 10, on average every tenth packet (1 packet out of 10) is sampled.

The run-length statement specifies the number of matching packets to sample following the initial one-packet trigger event. Configuring a run length greater than 0 allows you to sample packets following those already being sampled.

NOTE: The run-length statement is not supported on MX Series routers with Modular Port Concentrators (MPCs) and T4000 router with Type 5 FPC.

You can also send the sampled packets to a specified host using the cflowd version 5 and 8 formats or the version 9 format as defined in RFC 3954. For more information, see “Directing Traffic Sampling Output to a Server Running the cflowd Application” on page 30 and “Collecting Traffic Sampling Output in the Cisco Systems NetFlow Services Export Version 9 Format” on page 33.

Junos OS does not sample packets originating from the router. If you configure a sampling filter and apply it to the output side of an interface, then only the transit packets going through that interface are sampled. Packets that are sent from the Routing Engine to the Packet Forwarding Engine are not sampled.

When you apply a firewall filter to a loopback interface, the filter might block responses from the Monitoring Services PIC. To allow responses from the Monitoring Services PIC to pass through for sampling purposes, configure a term in the firewall filter to include the Monitoring Services PIC's IP address.
NOTE: Targeted broadcast does not work when the targeted broadcast option `forward-and-send-to-re` and the traffic sampling option `sampling` are configured on the same egress interface of an M320 router, a T640 router, or an MX960 router. To overcome this scenario, you must either disable one of the these options or enable the `sampling` option with the targeted broadcast option `forward-only` on the egress interface. For information about targeted broadcast, see Understanding Targeted Broadcast.

RELATED DOCUMENTATION

- Guidelines for Configuring Firewall Filters
- Guidelines for Applying Standard Firewall Filters

Disabling Traffic Sampling

To explicitly disable traffic sampling on the router, include the `disable` statement at the `[edit forwarding-options sampling]` hierarchy level:

```
[edit forwarding-options sampling]
disable;
```

NOTE: The `disable` statement at the `[edit forwarding-options sampling]` hierarchy level disables only Routing Engine-based sampling. To disable PIC-based sampling and inline sampling, include the `disable` statement at the `[edit forwarding-options sampling instance instance-name]` hierarchy level.

Collecting Traffic Sampling Output in a File

You configure traffic sampling results to a file in the `/var/tmp` directory. To collect the sampled packets in a file, include the `file` statement at the `[edit forwarding-options sampling output]` hierarchy level:
To configure the period of time before an active flow is exported, include the `flow-active-timeout` statement at the `[edit forwarding-options sampling output family (inet | inet6 | mpls)]` hierarchy level:

```
[edit forwarding-options sampling family (inet | inet6 | mpls) output]
flow-active-timeout seconds;
```

To configure the period of time before a flow is considered inactive, include the `flow-inactive-timeout` statement at the `[edit forwarding-options sampling output]` hierarchy level:

```
[edit forwarding-options sampling family (inet | inet6 | mpls) output]
flow-inactive-timeout seconds;
```

To configure the interface that sends out monitored information, include the `interface` statement at the `[edit forwarding-options sampling output]` hierarchy level:

```
[edit forwarding-options sampling family (inet | inet6 | mpls) output]
interface interface-name {
  engine-id number;
  engine-type number;
  source-address address;
}
```

NOTE: This feature is not supported with the version 9 template format. You must send traffic flows collected using version 9 to a server. For more information see “Collecting Traffic Sampling Output in the Cisco Systems NetFlow Services Export Version 9 Format” on page 33.

Traffic Sampling Output Format

Traffic sampling output is saved to an ASCII text file. The following is an example of the traffic sampling output that is saved to a file in the `/var/tmp` directory. Each line in the output file contains information for one sampled packet. You can optionally display a timestamp for each line.
The column headers are repeated after each group of 1000 packets.

<table>
<thead>
<tr>
<th>Time</th>
<th>Dest addr</th>
<th>Src addr</th>
<th>Dest port</th>
<th>Src port</th>
<th>Proto</th>
<th>TOS</th>
<th>Pkt len</th>
<th>Intf num</th>
<th>IP addr</th>
<th>TCP flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 7 15:48:50</td>
<td>192.168.9.194</td>
<td>192.168.9.195</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0x0</td>
<td>84</td>
<td>8</td>
<td>0x0</td>
<td>0x0</td>
</tr>
<tr>
<td>Apr 7 15:48:55</td>
<td>192.168.9.194</td>
<td>192.168.9.195</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0x0</td>
<td>84</td>
<td>8</td>
<td>0x0</td>
<td>0x0</td>
</tr>
<tr>
<td>Apr 7 15:48:56</td>
<td>192.168.9.194</td>
<td>192.168.9.195</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0x0</td>
<td>84</td>
<td>8</td>
<td>0x0</td>
<td>0x0</td>
</tr>
<tr>
<td>Apr 7 15:48:57</td>
<td>192.168.9.194</td>
<td>192.168.9.195</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0x0</td>
<td>84</td>
<td>8</td>
<td>0x0</td>
<td>0x0</td>
</tr>
</tbody>
</table>

The output contains the following fields:

- **Time**—Time at which the packet was received (displayed only if you include the `stamp` statement in the configuration)
- **Dest addr**—Destination IP address in the packet
- **Src addr**—Source IP address in the packet
- **Dest port**—Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) port for the destination address
- **Src port**—TCP or UDP port for the source address
- **Proto**—Packet’s protocol type
- **TOS**—Contents of the type-of-service (ToS) field in the IP header
- **Pkt len**—Length of the sampled packet, in bytes
- **Intf num**—Unique number that identifies the sampled logical interface
- **IP frag**—IP fragment number, if applicable
- **TCP flags**—Any TCP flags found in the IP header

To set the timestamp option for the file `my-sample`, enter the following:

```
[edit forwarding-options sampling family (inet | inet6 | mpls) output file]
user@host# set filename my-sample files 5 size 2m world-readable stamp;
```

Whenever you toggle the timestamp option, a new header is included in the file. If you set the `stamp` option, the **Time** field is displayed.
Directing Traffic Sampling Output to a Server Running the cflowd Application

You can collect an aggregate of sampled flows and send the aggregate to a specified host that runs the cflowd application available from the Cooperative Association for Internet Data Analysis (CAIDA) http://www.caida.org. By using cflowd, you can obtain various types of byte and packet counts of flows through a router.

The cflowd application collects the sampled flows over a period of 1 minute. At the end of the minute, the number of samples to be exported are divided over the period of another minute and are exported over the course of the same minute.

Before you can perform flow aggregation, the routing protocol process must export the autonomous system (AS) path and routing information to the sampling process. To do this, include the **route-record** statement:

```plaintext
route-record;
```

You can include this statement at the following hierarchy levels:

- [edit routing-options]
- [edit routing-instances routing-instance-name routing-options]

By default, flow aggregation is disabled. To enable the collection of flow aggregates, include the **flow-server** statement at the [edit forwarding-options sampling output] hierarchy level:

```plaintext
[edit forwarding-options sampling family (inet | inet6 | mpls) output ]
flow-server hostname [ 
  aggregation [ 
    autonomous-system; 
    destination-prefix; 
    protocol-port; 
    source-destination-prefix [ 
      caida-compliant; 
    ]
  ]
]```
In the cflowd statement, specify the name, identifier, and source-address of the host that collects the flow aggregates. You must also include the UDP port number on the host and the version, which gives the format of the exported cflowd aggregates. To specify an IPv4 source address, include the source-address statement. To collect cflowd records in a log file before exporting, include the local-dump statement. To specify the cflowd version number, include the version statement. The cflowd version is either 5 or 8.

You can specify both host (cflowd) sampling and port mirroring in the same configuration. You can perform RE-sampling and port mirroring actions simultaneously. However, you cannot perform PIC-sampling and port mirroring actions simultaneously.

To specify aggregation of specific types of traffic, include the aggregation statement. This conserves memory and bandwidth enabling cflowd to export targeted flows rather than all the aggregated

NOTE: Aggregation is valid only if cflowd version 8 is specified.

To specify a flow type, include the aggregation statement at the [edit forwarding-options sampling output cflowd hostname] hierarchy level:

[edit forwarding-options sampling family (inet | inet6 | mpls) output hostname]
  aggregation [
    source-destination-prefix;
  ]

You specify the aggregation type using one of the following options:

- **autonomous-system**—Aggregate by AS number; may require setting the separate cflowd autonomous-system-type statement to include either origin or peer AS numbers. The origin option specifies to use the origin AS of the packet source address in the Source Autonomous System cflowd field. The peer option specifies to use the peer AS through which the packet passed in the Source Autonomous System cflowd field. By default, cflowd exports the origin AS number.

- **destination-prefix**—Aggregate by destination prefix (only).
• **protocol-port**—Aggregate by protocol and port number; requires setting the separate cflowd port statement.

• **source-destination-prefix**—Aggregate by source and destination prefix. Version 2.1b1 of CAIDA’s cflowd application does not record source and destination mask length values in compliance with CAIDA’s cflowd Configuration Guide, dated August 30, 1999. If you configure the caida-compliant statement, Junos OS complies with Version 2.1b1 of cflowd. If you do not include the caida-compliant statement in the configuration, Junos OS records source and destination mask length values in compliance with the cflowd Configuration Guide.

• **source-prefix**—Aggregate by source prefix (only).

Collection of sampled packets in a local ASCII file is not affected by the cflowd statement.

## Debugging cflowd Flow Aggregation

To collect the cflowd flows in a log file before they are exported, include the local-dump option at the [edit forwarding-options sampling output cflowd hostname] hierarchy level:

```
[edit forwarding-options sampling family (inet | inet6 | mpls) output flow-server hostname]
local-dump;
```

By default, the flows are collected in /var/log/sampled; to change the filename, include the filename statement at the [edit forwarding-options sampling traceoptions] hierarchy level. For more information about changing the filename, see “Collecting Traffic Sampling Output in a File” on page 27.

**NOTE:** Because the local-dump option adds extra overhead, you should use it only while debugging cflowd problems, not during normal operation.

The following is an example of the flow information. The AS number exported is the origin AS number. All flows that belong under a cflowd header are dumped, followed by the header itself:

```
Jun 27 18:35:43 v5 flow entry
Jun 27 18:35:43 Src addr: 10.53.127.1
Jun 27 18:35:43 Dst addr: 10.6.255.15
Jun 27 18:35:43 Nhop addr: 192.168.255.240
Jun 27 18:35:43 Input interface: 5
Jun 27 18:35:43 Output interface: 3
Jun 27 18:35:43 Pkts in flow: 15
Jun 27 18:35:43 Bytes in flow: 600
```

In Junos OS Release 8.3 and later, you can collect a record of sampled flows using the version 9 format as defined in RFC 3954, Cisco Systems NetFlow Services Export Version 9. Version 9 uses templates to collect a set of sampled flows and send the record to a specified host.

You configure the version 9 template used to collect a record of sampled flows at the [edit services monitoring] hierarchy level. For more information, see the Junos OS Services Interfaces Library for Routing Devices and the Monitoring, Sampling, and Collection Services Interfaces User Guide.

To enable the collection of traffic flows using the version 9 format, include the version9 statement at the [edit forwarding-options sampling family family-name output flow-server hostname] hierarchy level:

```
[edit forwarding-options sampling family family-name output flow-server hostname]
version9 {
```
**template-name** is the name of the version 9 template configured at the [edit services monitoring] hierarchy level.

You configure traffic sampling at the [edit forwarding-options sampling input] hierarchy level. In Junos OS Release 8.3 and later, you can configure sampling for MPLS traffic as well as IPv4 traffic. You can define a version 9 flow record template suitable for IPv4 traffic, MPLS traffic, or a combination of the two. In Junos OS Release 9.5 and later, you can sample packets from both the **inet** and **mpls** protocol families at the same time. In Junos OS Release 10.4 and later, you can configure sampling for peer AS billing traffic for the **inet** and **ipv6** protocols only. For more information about how to configure traffic sampling, see "Configuring Traffic Sampling" on page 24.

The following restrictions apply to configuration of the version 9 format:

- You can configure only one host to collect traffic flows using the version 9 format. Configure the host at the [edit forwarding-options sampling family family-name output flow-server hostname] hierarchy level.

- You cannot specify both the version 9 format and cflowd versions 5 and 8 formats in the same configuration. For more information about how to configure flow monitoring using cflowd version 8, see "Directing Traffic Sampling Output to a Server Running the cflowd Application" on page 30.

- Any values for **flow-active-timeout** and **flow-inactive-timeout** that you configure at the [edit forwarding-options sampling output] hierarchy level are overridden by the values configured in the version 9 template.

- Version 9 does not support Routing Engine-based sampling. You cannot configure version 9 to send traffic sampling result to a file in the **/var/tmp** directory.

---

**Example: Configuring Active Flow Monitoring Using Version 9**

In this example, you enable active flow monitoring using version 9. You specify a template **mpls** that you configure at the [edit services monitoring] hierarchy level. You also configure the traffic family **mpls** to sample MPLS packets.

```
[edit forwarding-options]
sampling {
 input {
 rate 1;
 run-length;
 }
```
Example: Sampling a Single SONET/SDH Interface

The following configuration gathers statistical sampling information from a small percentage of all traffic on a single SONET/SDH interface and collects it in a file named `sonet-samples.txt`.

Create the filter:

```plaintext
[edit firewall family inet]
filter {
 sample-sonet {
 then {
 sample;
 accept;
 }
 }
}
```

Apply the filter to the SONET/SDH interface:

```plaintext
[edit interfaces]
so-0/0/1 {
 unit 0 {
 family inet {
 filter {
 input sample-sonet;
 }
 }
 }
}
```
Finally, configure traffic sampling:

```
[edit forwarding-options]
sampling {
 input {
 rate 100;
 run-length 2;
 }
 family inet {
 output {
 file {
 filename sonet-samples.txt;
 files 40;
 size 5m;
 }
 }
 }
}
```

**Example: Sampling All Traffic from a Single IP Address**

The following configuration gathers statistical information about every packet entering the router on a specific Gigabit Ethernet port originating from a single source IP address of 10.45.92.31, and collects it in a file named `samples-10-45-92-31.txt`.

Create the filter:

```
[edit firewall family inet]
filter one-ip {
 term get-ip {
 from {
 source-address 10.45.92.31;
 }
 then {
```
sample;
accept;
}
}
}

Apply the filter to the Gigabit Ethernet interface:

```plaintext
[edit interfaces]
ge-4/1/1 {
 unit 0 {
 family inet {
 filter {
 input one-ip;
 }
 address 10.45.92.254;
 }
 }
}
```

Finally, gather statistics on all the candidate samples; in this case, gather all statistics:

```plaintext
[edit forwarding-options]
sampling {
 input {
 rate 1;
 }
 family inet {
 output {
 file {
 filename samples-215-45-92-31.txt;
 files 100;
 size 100k;
 }
 }
 }
}
```
Example: Sampling All FTP Traffic

The following configuration gathers statistical information about a moderate percentage of packets using FTP in the output path of a specific T3 interface, and collects the information in a file named t3-ftp-traffic.txt.

Create a filter:

```plaintext
[edit firewall family inet]
filter ftp-stats {
 term ftp-usage {
 from {
 destination-port [ftp ftp-data];
 }
 then {
 sample;
 accept;
 }
 }
}
```

Apply the filter to the T3 interface:

```plaintext
[edit interfaces]
t3-7/0/2 {
 unit 0 {
 family inet {
 filter {
 input ftp-stats;
 }
 address 10.35.78.254/32 {
 destination 10.35.78.4;
 }
 }
 }
}
```

Finally, gather statistics on 10 percent of the candidate samples:

```plaintext
[edit forwarding-options]
sampling {
 input {
```
Tracing Traffic-Sampling Operations

Tracing operations track all traffic-sampling operations and record them in a log file in the /var/log directory. By default, this file is named /var/log/sampled. The default file size is 128 KB, and 10 files are created before the first one gets overwritten.

To trace traffic-sampling operations, include the `traceoptions` statement at the [edit forwarding-options sampling] hierarchy level:

```
[edit forwarding-options sampling]
traceoptions {
 file <filename> <files number> <size bytes> <world-readable | no-world-readable>; no-remote-trace;
}
```
CHAPTER

Configuring Traffic Forwarding for Network Monitoring

Configuring Traffic Forwarding and Monitoring | 41
Configuring IPv6 Accounting | 46
Configuring Discard Accounting | 47
Configuring Active Flow Monitoring on PTX Series Packet Transport Routers | 49
Configuring Passive Flow Monitoring | 52
Configuring Port Mirroring | 53
Configuring Next-Hop Groups to Use Multiple Interfaces to Forward Packets Used in Port Mirroring | 58
Defining a Port-Mirroring Firewall Filter | 60
Defining a Next-Hop Group on MX Series Routers for Port Mirroring | 63
Configuring Traffic Forwarding and Monitoring

To configure forwarding options and traffic monitoring, include statements at the [edit forwarding-options] hierarchy level:

```
[edit forwarding-options]
accounting group-name {
 output {
 cflowd [hostnames] {
 aggregation {
 autonomous-system;
 destination-prefix;
 protocol-port;
 source-destination-prefix {
 caida-compliant;
 }
 source-prefix;
 }
 autonomous-system-type (origin | peer);
 port port-number;
 version format;
 }
 flow-active-timeout seconds;
 flow-inactive-timeout seconds;
 interface interface-name {
 engine-id number;
 engine-type number;
 source-address address;
 }
 }
}

enhanced-hash-key {
 family inet {
 gtp-tunnel-endpoint-identifier;
 incoming-interface-index;
 no-destination-port;
 no-source-port;
 type-of-service;
 }
 family inet6 {
 gtp-tunnel-endpoint-identifier;
 incoming-interface-index;
 no-destination-port;
 }
```
no-source-port;
traffic-class;
}
family mpls {
    incoming-interface-index;
    label-1-exp;
    no-payload;
}
family multiservice {
    incoming-interface-index;
    no-payload;
    outer-priority;
}
services-loadbalancing {
    family inet layer-3-services {
        incoming-interface-index;
        source-address;
    }
}

family family-name {
    filter {
        input filter-name;
        output filter-name;
    }
    route-accounting;
}
flood {
    input filter-name;
}
hash-key {
    family inet {
        layer-3;
        layer-4;
    }
    family mpls {
        no-interface-index;
        label-1;
        label-2;
        label-3;
        no-labels;
        no-label-1-exp;
        payload {
            ether-pseudowire;
        }
    }
}
ip {
    layer-3-only;
    port-data {
        source-msb;
        source-lsb;
        destination-msb;
        destination-lsb;
    }
}
}
}
family multiservice }
destination-mac;
label-1;
label-2;
payload {
    ip {
        layer-3-only;
    }
}
source-mac;
}
}
helpers {
    bootp {
        client-response-ttl;
        description text-description;
        interface interface-group {
            client-response-ttl number;
            description text-description;
            maximum-hop-count number;
            minimum-wait-time seconds;
            no-listen;
            server address {
                logical-system logical-system-name <routing-instance [ <default> routing-instance-names ]>;
                routing-instance [ <default> routing-instance-names ];
            }
        }
    }
    maximum-hop-count number;
    minimum-wait-time seconds;
    relay-agent-option;
    server [ addresses ];
}
domain {
description text-description;
server < [ routing-instance routing-instance-names ] >;
interface interface-name {
    description text-description;
    no-listen;
    server < [ routing-instance routing-instance-names ] >;
}

tftp {
    description text-description;
    server < [ routing-instance routing-instance-names ] >;
    interface interface-name {
        description text-description;
        no-listen;
        server < [ routing-instance routing-instance-names ] >;
    }
}
traceoptions {
    file <filename> <files number> <match regular-expression> <size size> <world-readable | no-world readable>;
    flag flag;
    level severity-level;
    no-remote-trace;
}
load-balance {
    indexed-load-balance;
    per-flow {
        hash-seed number;
    }
    per-prefix {
        hash-seed number;
    }
}
monitoring group-name {
    family inet {
        output {
            cflowd hostname {
                port port-number;
            }
            export-format cflowd-version-5;
            flow-active-timeout seconds;
            flow-export-destination {
                cflowd-collector;
            }
        }
    }
}
flow-inactive-timeout seconds;
interface interface-name {
  engine-id number;
  engine-type number;
  input-interface-index number;
  output-interface-index number;
  source-address address;
}
}
}
next-hop-group [ group-names ] {
  interface interface-name {
    next-hop [ addresses ];
  }
}
port-mirroring {
  family (ccc | inet | inet6 | vpls) {
    output {
      interface interface-name {
        next-hop address;
      }
      no-filter-check;
    }
  input {
    maximum-packet-length bytes;
    rate number;
    run-length number;
  }
}
traceoptions {
  file <filename> <files number> <match regular-expression> <size bytes> <world-readable | no-world-readable>;
  no-remote-trace;
}
}
NOTE: When a route pointing to more than one services PIC is available, and with application layer gateways (ALGs) configured, you must always configure the distribution of traffic across PICs based on the source IP address by including the `family inet layer-3-services source-address` statement at the [edit forwarding-options enhanced-hash-key services-loadbalancing] hierarchy level for IPv4 traffic and the `family inet6 layer-3-services source-address` statement at the [edit forwarding-options enhanced-hash-key services-loadbalancing] hierarchy level for IPv6 traffic. With ALGs used to manage a parent-child relationship of sessions, both the parent and the child sessions must be processed by the same type of services PIC.

RELATED DOCUMENTATION

Configuring IPv6 Accounting

IPv6 accounting is disabled by default, but you can enable it by including the `route-accounting` statement at the [edit forwarding-options family inet6] hierarchy level, as shown here:

```
[edit]
forwarding-options {
 family inet6 {
 route-accounting;
 }
}
```

To view the IPv6 statistics for a given physical or logical interface, run the operational command `show interfaces extensive interface | find IPv6`. Note that the output displays packet and byte counts for transit traffic only. Locally generated packets are not included in the metrics.

```
show interfaces ge-2/0/9 detail | find IPv6
IPv6 transit statistics:
Input bytes : 8576802312
Output bytes : 8991637500
Input packets: 5787313
Output packets: 5994425
```
Configuring Discard Accounting

On routing platforms containing a Monitoring Services PIC or an Adaptive Services PIC, you can configure accounting for traffic passing through the routing platform.

To configure discard accounting, include the `accounting group group-name` statement at the `[edit forwarding-options]` hierarchy level:

```conf
[edit forwarding-options]
accounting group-name {
 output {
 cflowd [hostnames] {
 aggregation {
 autonomous-system;
 destination-prefix;
 protocol-port;
 source-destination-prefix {
 caida-compliant;
 }
 source-prefix;
 }
 }
 autonomous-system-type (origin | peer);
 port port-number;
 version format;
 }
 flow-active-timeout seconds;
 flow-inactive-timeout seconds;
 interface {
 engine-id number;
 engine-type number;
 source-address address;
 }
}
```
To configure the output flow aggregation, include the `cflowd` statement. For more information about flow aggregation, see "Directing Traffic Sampling Output to a Server Running the cflowd Application" on page 30.

To configure the interval before exporting an active flow, include the `flow-active-timeout` statement. The default value for `flow-active-timeout` is 1800 seconds. To configure the interval before a flow is considered inactive, include the `flow-inactive-timeout` statement. The default value for `flow-inactive-timeout` is 60 seconds. To configure the interface that sends out monitored information, include the `interface` statement. Discard accounting is supported for the Monitoring Services PIC only.

When you apply a firewall filter to a loopback interface, the filter might block responses from the Monitoring Services PIC. To allow responses from the Monitoring Services PIC to pass through for accounting purposes, configure a term in the firewall filter to include the Monitoring Services PIC IP address. For more detailed information about configuring firewall filters, see Guidelines for Configuring Firewall Filters and Guidelines for Applying Standard Firewall Filters.

You can use discard accounting for passive and active flow monitoring.

### RELATED DOCUMENTATION

- *Monitoring, Sampling, and Collection Services Interfaces User Guide*
- *Class of Service User Guide (Routers and EX9200 Switches)*
Configuring Active Flow Monitoring on PTX Series Packet Transport Routers

You can use flow monitoring to help with network administration. Active flow monitoring on PTX Series routers allows you to collect sampled packets, then the router does GRE encapsulation of the packets and sends them to a remote server for flow processing. The GRE encapsulation includes an interface index and GRE key field. The GRE encapsulation removes MPLS tags. You configure one or more port-mirroring instances to define which traffic to sample and configure a server to receive the GRE encapsulated packets. You configure a firewall filter on interfaces where you want to capture flows. You can configure as many as 48 port-mirroring instances.

To configure the router to do GRE encapsulation of sampled packets and send them to a remote server for flow processing:

1. Configure one or more server profiles that specify a host where GRE encapsulated sampled packets are sent, and optionally, a source address to include in the header of each sampled packet.
   a. Specify a name for each server profile and an IP address of the host where sampled packets are sent:

   ```
 [edit services hosted-services]
 user@host# set server-profile server-profile-name server-address ipv4-address
   ```
   
   b. (Optional) For each server profile, specify a source address to include in the header of each sampled packet:

   ```
 [edit services hosted-services server-profile server-profile-name]
 user@host# set client-address ipv4-address
   ```

   **NOTE:** The default client address is 0.0.0.0. You must specify an IPv4 address as the client address. You can also specify the loopback address or management interface address as the client address.

2. Configure one or more port-mirroring instances.
   a. Specify a name for each port-mirroring instance:

   ```
 [edit forwarding-options port-mirroring]
   ```
b. Specify a protocol family for each port-mirroring instance:

```plaintext
[edit forwarding-options port-mirroring instance instance-name]
user@host# set family (inet | inet6)
```

3. To set the ratio of the number of packets to sample, specify a value from 1 through 65,535 for each port-mirroring instance:

```plaintext
[edit forwarding-options port-mirroring instance instance-name input]
user@host# set rate number
```

   NOTE: You must specify a value for the rate statement. The default value is zero, which effectively disables sampling. If, for example, you specify a rate value of 4, every fourth packet (1 packet out of 4) is sampled.

4. (Optional) Specify the number of samples to collect after the initial trigger event for each port-mirroring instance:

```plaintext
[edit forwarding-options port-mirroring instance instance-name input]
user@host# set run-length number
```

   NOTE: The default value is zero. You can specify a number up to 20.

5. To designate a host where sampled traffic is sent, specify the name of server profile configured at the [edit services hosted-services] hierarchy level for each port-mirroring instance:

```plaintext
[edit forwarding-options port-mirroring instance instance-name family (inet | inet6) output]
user@host# set server-profile server-profile-name
```
6. Configure one or more firewall filters.

a. For each firewall filter, specify a protocol family, filter name, and match conditions:

```
[edit firewall]
user@host# set filter family (inet | inet6) filter filter-name term term-name from match-conditions
```

b. For each firewall filter you configure, specify the name of a port-mirroring instance you configured at the [edit forwarding-options] hierarchy level as a nonterminating action so that the traffic that matches that instance is sampled:

```
[edit firewall]
user@host# set then port-mirroring instance instance-name
```

7. Apply each firewall filter to an interface to evaluate incoming traffic:

```
[edit interfaces interface-name unit logical-unit-number]
user@host# set family (inet | inet6) filter input firewall-filter-name
```

NOTE: Active flow monitoring is supported only on incoming traffic. You cannot apply firewall filters to evaluate outgoing traffic.

8. Configure the remote server, where GRE encapsulated packets are sent, to perform flow processing.

RELATED DOCUMENTATION

- Configuring Port Mirroring | 53
- hosted-services | 211
- port-mirroring | 259
- server-profile (Active Flow Monitoring) | 280
- Firewall Filter Nonterminating Actions
Configuring Passive Flow Monitoring

On routing platforms containing the Monitoring Services PIC or the Monitoring Services II PIC, you can configure flow monitoring for traffic passing through the routing platform. This type of monitoring method is passive monitoring.

To configure flow monitoring, include the `monitoring` statement at the `[edit forwarding-options hierarchy level`:

```
[edit forwarding-options]
monitoring group-name {
 family inet {
 output {
 cflowd hostname {
 port port-number;
 }
 export-format cflowd-version-5;
 flow-active-timeout seconds;
 flow-export-destination {
 cflowd-collector;
 }
 flow-inactive-timeout seconds;
 interface interface-name {
 engine-id number;
 engine-type number;
 input-interface-index number;
 output-interface-index number;
 source-address address;
 }
 }
 }
}
```

To configure a passive monitoring group, include the `monitoring` statement and specify a group name. To configure monitoring on a specified address family, include the `family` statement and specify an address family. To specify an interface to monitor incoming traffic, include the `input` statement. To configure the monitoring information that is sent out, include the `output` statement. To configure the output flow aggregation, include the `cflowd` statement. For more information about flow aggregation, see "Directing Traffic Sampling Output to a Server Running the cflowd Application" on page 30. To specify the format of the monitoring information sent out, include the `export-format` statement and specify a version number. To configure the interval before exporting an active flow, include the `flow-active-timeout` statement. The default value for `flow-active-timeout` is 1800 seconds. To enable flow collection, include the `flow-export-destination` statement. To configure the interval before a flow is considered inactive, include
the \texttt{flow-inactive-timeout} statement. The default value for \texttt{flow-inactive-timeout} is 60 seconds. To configure the interface that sends out the monitored information, include the \texttt{interface} statement. Flow monitoring is supported for Monitoring Services PIC interfaces only.

When you apply a firewall filter to a loopback interface, the filter might block responses from the Monitoring Services PIC. To allow responses from the Monitoring Services PIC to pass through for monitoring purposes, configure a term in the firewall filter to include the Monitoring Services PIC’s IP address. For more detailed information about configuring firewall filters, see \textit{Guidelines for Configuring Firewall Filters} and \textit{Guidelines for Applying Standard Firewall Filters}.

**RELATED DOCUMENTATION**

\begin{itemize}
  \item \textit{Monitoring, Sampling, and Collection Services Interfaces User Guide}
  \item \textit{Class of Service User Guide (Routers and EX9200 Switches)}
\end{itemize}

**Configuring Port Mirroring**

\textit{Port mirroring} is the ability of a router to send a copy of an IPv4 or IPv6 packet to an external host address or a packet analyzer for analysis. Port mirroring is different from traffic sampling. In traffic sampling, a sampling key based on the packet header is sent to the Routing Engine. There, the key can be placed in a file, or cflowd packets based on the key can be sent to a cflowd server. In port mirroring, the entire packet is copied and sent out through a next-hop interface.

One application for port mirroring sends a duplicate packet to a virtual tunnel. A next-hop group can then be configured to forward copies of this duplicate packet to several interfaces. For more information about next-hop groups, see "\textit{Configuring Next-Hop Groups to Use Multiple Interfaces to Forward Packets Used in Port Mirroring}" on page 58.

All M Series Multiservice Edge Routers, T Series Core Routers, and MX Series 5G Universal Routing Platforms support port mirroring for IPv4 or IPv6. The M120, M320, and MX Series routers support port mirroring for IPv4 and IPv6 simultaneously.

Port mirroring for VPLS traffic is supported on M7i and M10i routers configured with an Enhanced CFEB (CFEB-E), on M120 routers, on M320 routers configured with an Enhanced III Flexible PIC Concentrators (FPCs), and MX Series routers.

In Junos OS Release 9.3 and later, port mirroring is supported for Layer 2 traffic on MX Series routers. For information about how to configure port mirroring for Layer 2 traffic, see the \textit{Junos OS Layer 2 Switching and Bridging Library}. 
In Junos OS Release 9.6 and later, port mirroring is supported for Layer 2 VPN traffic on M120 routers and M320 routers configured with an Enhanced III FPC. You can also set the maximum length of the mirrored packet. When set, the mirrored packet is truncated to the specified length.

In the MPCs on M Series and MX Series routers, GRE and MPLS header information is not contained in the port-mirrored traffic corresponding to MPLS packets transmitted through IP-GRE tunnels.

**Port Mirroring Configuration Guidelines**

When configuring port mirroring, the following restrictions apply:

- Only transit data is supported.
- You can configure either IPv4 or IPv6 port mirroring but not both on M Series routers, except for the M120 and M320 routers, which support port mirroring for IPv4 and IPv6 simultaneously.
- You can configure port mirroring for IPv4 and IPv6 simultaneously on the M120 and M320 routers and the MX Series routers.
- Port mirroring in the ingress and egress direction is not supported for link services IQ (lsq-) interfaces.
- Ingress filtering of multicast packets is supported on all Dense Port Concentrators (DPCs) in MX Series routers. Egress filtering of multicast packets is supported for interfaces on MPCs in MX Series routers only. Filtering of multicast packets based on destination address is not supported on M Series routers or T Series routers and is not supported for interfaces on I-chip ASIC-based DPCs in MX Series routers.

For Layer 3 port mirroring (**family inet** and **family inet6**), if the traffic being mirrored is multicast (in other words, if the packet's destination IP address is a multicast address), the destination MAC address in the mirrored copy corresponds to this multicast destination IP address and not to the unicast MAC address specified in the [edit forwarding-options port-mirroring family (inet | inet6) output] configuration.

- By default, firewall filters cannot be applied to port-mirroring destination interfaces. To enable port-mirroring destination interfaces to support firewall filters, use the no-filter-check statement to disable filter checking on the interfaces. You can include the no-filter-check statement at the following hierarchy levels:
  - [edit forwarding-options port-mirroring family (inet | inet6 | ccc | vpls) output]
  - [edit forwarding-options port-mirroring instance instance-name family (inet | ccc | vpls) output]
- You must include a firewall filter with both the accept action and the port-mirror action modifier on the inbound interface.
- The interface you configure for port mirroring should not participate in any kind of routing activity.
- The destination address you specify should not have a route to the ultimate traffic destination. For example, if the sampled IPv4 packets have a destination address of 192.68.9.10 and the port-mirrored
traffic is sent to 192.68.20.15 for analysis, the device associated with the latter address should not know a route to 192.68.9.10. Also, it should not send the sampled packets back to the source address.

- On all routers except the MX Series router, you can configure only one port-mirroring interface per router. If you include more than one interface in the port-mirroring statement, the previous one is overwritten. MX Series routers support more than one port-mirroring interface per router.

- You can configure multiple port-mirroring instances on the M120, M320, and MX Series routers.

- You can specify both host (cflowd) sampling and port mirroring in the same configuration. You can perform RE-sampling and port mirroring actions simultaneously. However, you cannot perform PIC-sampling and port mirroring actions simultaneously.

- In typical applications, you send the sampled packets to an analyzer or a workstation for analysis, not to another router. If you must send this traffic over a network, you should use tunnels.

### Configuring Port Mirroring

To configure port mirroring, include the `port-mirroring` statement at the [edit forwarding-options] hierarchy level:

```plaintext
[edit forwarding-options]
port-mirroring {
 family (ccc | inet | inet6 | vpls) {
 output {
 interface interface-name {
 next-hop address;
 }
 no-filter-check;
 }
 input {
 maximum-packet-length bytes;
 rate number;
 run-length number;
 }
 }
}
```

### Configuring the Port-Mirroring Address Family and Interface

To configure port mirroring, include the `port-mirroring` statement. To configure the address family type of traffic to sample, include the `family` statement. To configure the rate of sampling, length of sampling, and the maximum size for the mirrored packet, include the `input` statement. To specify on which interface
to send duplicate packets and the next-hop address to send packets, include the **output** statement. To determine whether there are any filters on the specified interface, include the **no-filter-check** statement.

For information about the **rate** and **run-length** statements, see “Configuring Traffic Sampling” on page 24.

## Configuring Multiple Port-Mirroring Instances

In Junos OS Release 9.5 and later, you can configure multiple port-mirroring instances on the M120, M320, and MX Series routers. On the M120 router, you can associate each instance with a specific Forwarding Engine Board (FEB). You cannot associate a port-mirroring instance with an FEB configured as a backup FEB. On the M320 router, you can associate each instance with a specific Flexible PIC Concentrator (FPC). Associating a port-mirroring instance with an FPC or an FEB enables you to mirror packets to different destinations. Multiple port-mirroring instances are also supported on MX Series routers. For information about configuring multiple port-mirroring instances on MX Series routers, see the *Junos OS Layer 2 Switching and Bridging Library*.

**NOTE:** In MX80 and MX104 routers, port-mirroring instances should always be associated with FPC 0, because associating port-mirroring instances to FPC 1 or FPC 2 can result in inconsistent behavior due to the underlying architecture.

To configure a port-mirroring instance, include the **instance port-mirroring-instance** statement at the [edit forwarding-options port-mirroring] hierarchy level:

```
[edit forwarding-options port-mirroring]
instance port-mirroring-instance-name {
 family (ccc | inet | inet6 | vpls) {
 output {
 interface interface-name {
 next-hop address;
 }
 no-filter-check;
 }
 input {
 maximum-packet-length bytes;
 rate number;
 run-length number;
 }
 }
}
```
Configuring Port-Mirroring Instances

You can configure multiple port-mirroring instances. Specify a unique `port-mirroring-instance-name` for each instance you configure.

Associating a Port-Mirroring Instance on M320 Routers

You can associate a port-mirroring instance with a specific FPC on an M320 router or with a specific FEB on an M120 router. You can associate only one port-mirroring instance with each FPC on an M320 router or with each FEB on an M120 router. On an M120 router, you cannot associate a port-mirroring instance with a FEB configured as a backup FEB.

To associate a port-mirroring instance with an FPC on an M320 router, include the `port-mirror-instance port-mirroring-instance-name` statement at the `[edit chassis fpc slot-number]` hierarchy level:

```
[edit chassis]
fpc slot-number {
 port-mirror-instance port-mirroring-instance-name;
}
```

For `slot-number`, specify the slot number of the FPC you want to associate with the port-mirroring instance. For `port-mirroring-instance-name`, specify the name of a port-mirroring instance you configured at the `[edit forwarding-options port-mirroring]` hierarchy level. For more information about configuring an FPC on an M320 router, see the Junos OS Administration Library.

Associating a Port-Mirroring Instance on M120 Routers

To associate a port-mirroring instance with a FEB on an M120 router, include the `port-mirror-instance port-mirroring-instance-name` statement at the `[edit chassis feb slot-number]` hierarchy level:

```
[edit chassis]
feb slot-number {
 port-mirror-instance port-mirroring-instance-name;
}
```

For `slot-number`, specify the slot number of the FEB you want to associate with the port-mirroring instance. For `port-mirroring-instance-name`, specify the name of a port-mirroring instance you configured at the `[edit forwarding-options port-mirroring]` hierarchy level. For information about configuring FEB redundancy on an M120 router, see the High Availability User Guide. For information about configuring FPC-to-FEB connectivity on an M120 router, see the Junos OS Administration Library.
Configuring MX Series 5G Universal Routing Platforms and M120 Routers to Mirror Traffic Only Once

On MX Series and M120 routers only, you can configure port mirroring so that the router mirrors traffic only once. If you configure port mirroring on both ingress and egress interfaces, the same packet could be mirrored twice. To mirror packets only once and prevent the router from sending duplicate sampled packets to the same mirroring destination, include the `mirror-once` statement at the `[edit forwarding-options port-mirroring]` hierarchy level:

```
[edit forwarding-options port-mirroring]
mirror-once;
```

**NOTE:** The `mirror-once` statement is supported only in the global port-mirroring instance.

Configuring Next-Hop Groups to Use Multiple Interfaces to Forward Packets Used in Port Mirroring

Next-hop groups allow you to include multiple interfaces used to forward duplicate packets used in port mirroring.

To configure a next-hop group, include the `next-hop-group` statement at the `[edit forwarding-options]` hierarchy level:

```
[edit forwarding-options]
next-hop-group [group-names] {
 interface interface-name {
 next-hop [addresses];
 }
}
```

or

```
[edit forwarding-options port-mirroring family inet6 output]
next-hop-group group-name{
 group-type inet6;
 interface interface-name [...
```
You can specify one or more group names. To configure the interface that sends out sampled information, include the `interface` statement and specify an interface. To specify a next-hop address to send sampled information, include the `next-hop` statement and specify an IP address.

Next-hop groups have the following restrictions:

- Starting with release 14.2, next-hop groups are supported for M Series and MX Series routers only.
- Next-hop groups support up to 16 next-hop addresses.
- You can configure up to 30 next-hop groups.
- Each next-hop group must have at least two next-hop addresses.
- When a firewall filter with next-hop-group action is applied on an interface in egress, the redirected copy does not retain any packet headers added while forwarding the packet to that interface. For example, if a filter with action next-hop-group is applied in egress of a GRE interface, the redirected copies received on the next-hop-group member interfaces do not contain a GRE header.

Next-hop groups can be used for port mirroring.

### Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2</td>
<td>Starting with release 14.2, next-hop groups are supported for M Series and MX Series routers only.</td>
</tr>
</tbody>
</table>

### RELATED DOCUMENTATION

- Configuring Port Mirroring | 53
Defining a Port-Mirroring Firewall Filter

Starting with release 14.2, on routers containing an Internet Processor II application-specific integrated circuit (ASIC) or T Series Internet Processor, you can send a copy of an IP version 4 (IPv4) or IP version 6 (IPv6) packet from the router to an external host address or a packet analyzer for analysis. This is known as port mirroring.

Port mirroring is different from traffic sampling. In traffic sampling, a sampling key based on the IPv4 header is sent to the Routing Engine. There, the key can be placed in a file, or cflowd packets based on the key can be sent to a cflowd server. In port mirroring, the entire packet is copied and sent out through a next-hop interface.

You can configure simultaneous use of sampling and port mirroring, and set an independent sampling rate and run-length for port-mirrored packets. However, if a packet is selected for both sampling and port mirroring, only one action can be performed and port mirroring takes precedence. For example, if you configure an interface to sample every packet input to the interface and a filter also selects the packet to be port mirrored to another interface, only the port mirroring would take effect. All other packets not matching the explicit filter port-mirroring criteria continue to be sampled when forwarded to their final destination.

Firewall filters provide a means of protecting your router from excessive traffic transiting the router to a network destination or destined for the Routing Engine. Firewall filters that control local packets can also protect your router from external incidents.

You can configure a firewall filter to do the following:

- Restrict traffic destined for the Routing Engine based on its source, protocol, and application.
- Limit the traffic rate of packets destined for the Routing Engine to protect against flood, or denial-of-service (DoS) attacks.
- Address special circumstances associated with fragmented packets destined for the Routing Engine.
  Because the device evaluates every packet against a firewall filter (including fragments), you must configure the filter to accommodate fragments that do not contain packet header information. Otherwise, the filter discards all but the first fragment of a fragmented packet.

For information about configuring firewall filters in general (including in a Layer 3 environment), see Stateless Firewall Filter Overview and How Standard Firewall Filters Evaluate Packets in the Routing Policies, Firewall Filters, and Traffic Policers User Guide.

To define a firewall filter with a port-mirroring action:

1. Prepare traffic for port mirroring by including the `filter` statement at the `[edit firewall family (inet | inet6)]` hierarchy level.
This filter at the [edit firewall family (inet | inet6)] hierarchy level selects traffic to be port-mirrored:

```
filter filter-name {
 term term-name {
 then {
 port-mirror;
 accept;
 }
 }
}
```

2. Enable configuration of firewall filters.

```
[edit]
user@host# edit firewall family family
```

The value of the family option can be inet or inet6.

3. Enable configuration of a firewall filter filter-name.

```
[edit firewall family family]
user@host# edit filter filter-name
```

4. Enable configuration of a firewall filter term filter-term-name.

```
[edit firewall family family filter filter-name]
user@host# edit term filter-term-name
```

For more information about firewall filter terms, see Guidelines for Configuring Firewall Filters in the Routing Policies, Firewall Filters, and Traffic Policers User Guide.

5. Specify the firewall filter match conditions based on the route source address to mirror a subset of the sampled packets.

For information about configuring firewall filter match conditions, see Firewall Filter Match Conditions Based on Numbers or Text Aliases, Firewall Filter Match Conditions Based on Bit-Field Values, Firewall Filter Match Conditions Based on Address Fields, and Firewall Filter Match Conditions Based on Address Classes in the Routing Policies, Firewall Filters, and Traffic Policers User Guide.
6. Enable configuration of the **action** and **action-modifier** to apply to the matching packets.

```plaintext
[edit firewall family family filter filter-name term filter-term-name]
user@host# edit then
```

7. Specify the actions to be taken on matching packets.

```plaintext
[edit firewall family family filter filter-name term filter-term-name then]
user@host# set action
```

The recommended value for the **action** is **accept**. If you do not specify an action, or if you omit the **then** statement entirely, all packets that match the conditions in the **from** statement are accepted.

8. Specify port-mirror as the **action-modifier**.

When the filter action is **port-mirror**, the packet is copied to a local interface for local or remote monitoring.

```plaintext
[edit firewall family family filter filter-name term filter-term-name then]
user@host# set port-mirror
```

9. Verify the minimum configuration of the firewall filter.

```plaintext
[edit firewall ...]
user@host# top
[edit]
user@host# show firewall

family (inet | inet6) { # Type of packets to mirror
 filter filter-name { # Firewall filter name
 term filter-term-name {
 from [# Do not specify match conditions based on route source address
]
 then {
 port-mirror;
 accept;
 }
 }
 }
}
```

**Release History Table**

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2</td>
<td>Starting with release 14.2, on routers containing an Internet Processor II application-specific integrated circuit (ASIC) or T Series Internet Processor, you can send a copy of an IP version 4 (IPv4) or IP version 6 (IPv6) packet from the router to an external host address or a packet analyzer for analysis.</td>
</tr>
</tbody>
</table>

**RELATED DOCUMENTATION**

- Configuring Port Mirroring on M, T MX, ACX, and PTX Series Routers
- Example: Configuring Multiple Port Mirroring with Next-Hop Groups on M, MX and T Series Routers

**Defining a Next-Hop Group on MX Series Routers for Port Mirroring**

Starting with release 14.2, on routers containing an Internet Processor II application-specific integrated circuit (ASIC) or T Series Internet Processor, you can send a copy of an IP version 4 (IPv4) or IP version 6 (IPv6) packet from the router to an external host address or a packet analyzer for analysis. This is known as **port mirroring**.

Port mirroring is different from traffic sampling. In traffic sampling, a sampling key based on the IPv4 header is sent to the Routing Engine. There, the key can be placed in a file, or cflowd packets based on the key can be sent to a cflowd server. In port mirroring, the entire packet is copied and sent out through a next-hop interface.

You can configure simultaneous use of sampling and port mirroring, and set an independent sampling rate and run-length for port-mirrored packets. However, if a packet is selected for both sampling and port mirroring, only one action can be performed, and port mirroring takes precedence. For example, if you configure an interface to sample every packet input to the interface and a filter also selects the packet to be port mirrored to another interface, only the port mirroring takes effect. All other packets not matching the explicit filter port-mirroring criteria continue to be sampled when forwarded to their final destination.

Next-hop groups allow you to include port mirroring on multiple interfaces.

On MX Series routers, you can mirror tunnel interface input traffic to multiple destinations. To this form of multipacket port mirroring, you specify two or more destinations in a next-hop group, define a firewall...
filter that references the next-hop group as the filter action, and then apply the filter to a logical tunnel interface (lt-) or virtual tunnel interfaces (vt-) on the MX Series router.

To define a next-hop group for a Layer 2 port-mirroring firewall filter action:

1. Enable the configuration of forwarding options.

```
[edit]
user@host set forwarding-options port-mirroring family (inet | inet6) output
```

2. Enable configuration of a next-hop-group for Layer 2 port mirroring.

```
[edit forwarding-options port-mirroring ... family (inet | inet6) output]
user@host# set next-hop-group next-hop-group-name
```

3. Specify the type of addresses to be used in the next-hop group configuration.

```
[edit forwarding-options port-mirroring ... family (inet | inet6) output next-hop-group next-hop-group-name]
user@host# set group-type inet6
```

4. Specify the interfaces of the next-hop route.

```
[edit forwarding-options port-mirroring ... family (inet | inet6) output next-hop-group next-hop-group-name]
user@host# set interface logical-interface-name-1
user@host# set interface logical-interface-name-2
```

or

```
[edit forwarding-options port-mirroring ... family (inet | inet6) output next-hop-group next-hop-group-name]
user@host# set interface interface-name next-hop next-hop-address
```

The MX Series router supports up to 30 next-hop groups. Each next-hop group supports up to 16 next-hop addresses. Each next-hop group must specify at least two addresses. The `next-hop-address` can be an IPv4 or IPv6 address.

5. (Optional) Specify the next-hop subgroup.

```
[edit forwarding-options port-mirroring ... family (inet | inet6) output next-hop-group next-hop-group-name]
user@host# set next-hop-subgroup subgroup-name interface interface-name next-hop next-hop-address
```

6. Verify the configuration of the next-hop group.
[edit forwarding-options port-mirroring ... family (inet | inet6) output next-hop-group next-hop-group-name]
user@host# top
[edit]
user@host# show forwarding-options

... next-hop-group next-hop-group-name {
    group-type inet6;
    interface logical-interface-name-1;
    interface interface-name{
        next-hop next-hop-address;
    }
    next-hop-subgroup subgroup-name{
        interface interface-name{
            next-hop next-hop-address;
        }
    }
}
...
Configuring Forwarding Table Filters to Efficiently Route Traffic

Configuring Forwarding Table Filters | 67
Forwarding Table Filters for Routing Instances on ACX Series Routers | 69
Applying Forwarding Table Filters | 70
Configuring Forwarding Table Filters

Forwarding table filters are defined the same as other firewall filters, but you apply them differently:

- Instead of applying forwarding table filters to interfaces, you apply them to forwarding tables, each of which is associated with a routing instance and a virtual private network (VPN).
- Instead of applying input and output filters by default, you can apply an input forwarding table filter only.

All packets are subjected to the input forwarding table filter that applies to the forwarding table. A forwarding table filter controls which packets the router accepts and then performs a lookup for the forwarding table, thereby controlling which packets the router forwards on the interfaces.

When the router receives a packet, it determines the best route to the ultimate destination by looking in a forwarding table, which is associated with the VPN on which the packet is to be sent. The router then forwards the packet toward its destination through the appropriate interface.

**NOTE:** For transit packets exiting the router through the tunnel, forwarding table filtering is not supported on the interfaces you configure as the output interface for tunnel traffic.

A forwarding table filter allows you to filter data packets based on their components and to perform an action on packets that match the filter; it essentially controls which bearer packets the router accepts and forwards. To configure a forwarding table filter, include the `firewall` statement at the `[edit]` hierarchy level:

```
[edit]
firewall {
 family family-name {
 filter filter-name {
 term term-name {
 from {
 match-conditions;
 }
 then {
 action;
 action-modifiers;
 }
 }
 }
 }
}
```
**family-name** is the family address type: IPv4 (inet), IPv6 (inet6), Layer 2 traffic (bridge), or MPLS (mpls).

**term-name** is a named structure in which match conditions and actions are defined.

**match-conditions** are the criteria against which a bearer packet is compared; for example, the IP address of a source device or a destination device. You can specify multiple criteria in a match condition.

**action** specifies what happens if a packet matches all criteria; for example, the gateway GPRS support node (GGSN) accepting the bearer packet, performing a lookup in the forwarding table, and forwarding the packet to its destination; discarding the packet; and discarding the packet and returning a rejection message.

**action-modifiers** are actions that are taken in addition to the GGSN accepting or discarding a packet when all criteria match; for example, counting the packets and logging a packet.

To create a forwarding table, include the **instance-type** statement with the **forwarding** option at the [edit routing-instances instance-name] hierarchy level:

```
[edit]
 routing-instances instance-name {
 instance-type forwarding;
 }
```

To apply a forwarding table filter to a VPN routing and forwarding (VRF) table, include the **filter** and **input** statements at the [edit routing-instance instance-name forwarding-options family family-name] hierarchy level:

```
[edit routing-instances instance-name]
 instance-type forwarding;
 forwarding-options {
 family family-name {
 filter {
 input filter-name;
 }
 }
 }
```

To apply a forwarding table filter to a forwarding table, include the **filter** and **input** statements at the [edit forwarding-options family family-name] hierarchy level:

```
[edit forwarding-options family family-name]
 filter {
 input filter-name;
 }
```
To apply a forwarding table filter to the default forwarding table inet.0, which is not associated with a specific routing instance, include the `filter` and `input` statements at the `[edit forwarding-options family inet]` hierarchy level:

```
[edit forwarding-options family inet]
filter {
 input filter-name;
}
```

### RELATED DOCUMENTATION

- Guidelines for Configuring Firewall Filters
- Guidelines for Applying Standard Firewall Filters
- Applying Forwarding Table Filters

### Forwarding Table Filters for Routing Instances on ACX Series Routers

Forwarding table filter is a mechanism by which all the packets forwarded by a certain forwarding table are subjected to filtering and if a packet matches the filter condition, the configured action is applied on the packet. You can use the forwarding table filter mechanism to apply a filter on all interfaces associated with a single routing instance with a simple configuration. You can apply a forwarding table filter to a routing instance of type forwarding and also to the default routing instance inet.0. To configure a forwarding table filter, include the `filter filter-name` statement at the `[edit firewall family <inet | inet6>]` hierarchy level.

The following limitations apply to forwarding table filters configured on routing instances:

- You cannot attach the same filter to more than one routing instance.
- You cannot attach the same filter at both the `[edit interfaces interface-name family <inet | inet6> filter input filter-name]` and `[edit routing-instances instance-name forwarding-options family <inet | inet6> filter input filter-name]` hierarchy level.
- You cannot attach a filter that is either interface-specific or a physical interface filter.
- You cannot attach a filter to the egress direction of routing instances.
Applying Forwarding Table Filters

A forwarding table filter allows you to filter data packets based on their components and perform an action on packets that match the filter. You can apply a filter on the ingress or egress packets of a forwarding table. You configure the filter at the [edit firewall family family-name] hierarchy level; for more information, see "Configuring Forwarding Table Filters" on page 67.

To apply a forwarding table filter on ingress packets of a forwarding table, include the filter and input statements at the [edit forwarding-options family family-name] hierarchy level:

```
[edit forwarding-options family family-name]
filter {
 input filter-name;
}
```

You can filter based upon destination-class information by applying a firewall filter on the egress packets of the forwarding table. By applying firewall filters to packets that have been forwarded by a routing table, you can match based on certain parameters that are decided by the route lookup. For example, routes can be classified into specific destination and source classes. Firewall filters used for policing and mirroring are able to match based upon these classes.

To apply a firewall filter on egress packets of a forwarding table, include the filter and output statements at the [edit forwarding-options family family-name] hierarchy level:

```
[edit forwarding-options family family-name]
filter {
 output filter-name;
}
```

NOTE: You cannot have a firewall filter that includes an interface-group match condition if you are also using an egress forwarding table filter. This is because the interface-group match condition uses the logical interface on which the packet was received to match the interface group (or set of interface groups), while the forwarding table filters apply only to local host traffic and transit packets.
To apply a forwarding table filter to a flood table, include the flood and input statements at the [edit forwarding-options family family-name] hierarchy level as shown below. The flood statement is valid for the vpls protocol family only.

```
[edit forwarding-options family vpls]
 flood {
 input filter-name;
 }
```

On the MX Series router only, to apply a forwarding table filter for a virtual switch, include the filter and input statements at the [edit routing-instances routing-instance-name bridge-domains bridge-domain-name forwarding-options] hierarchy level:

```
[edit routing-instances routing-instance-name bridge-domains bridge-domain-name forwarding-options]
 filter {
 input filter-name;
 }
```

For more information about how to configure a virtual switch, see the Junos OS Layer 2 Switching and Bridging Library.

On MX Series 3D Universal Edge Routers, you can apply a forwarding table filter by using the source-checking statement at the [edit forwarding-options family inet6] hierarchy level:

```
[edit forwarding-options family inet6]
 family inet6 {
 source-checking;
 }
```

This discards IPv6 packets when the source address type is unspecified, loopback, multicast or link-local.

RFC 4291, IP Version 6 Addressing Architecture, refers to four address types that require special treatment when they are used as source addresses. The four address types are:

- Unspecified
- Loopack
- Multicast
- Link-Local Unicast

The loopback and multicast addresses must never be used as a source address in IPv6 packets. The unspecified and link-local addresses can be used as source addresses but routers must never forward packets that have these addresses as source addresses. Typically, packets that contain unspecified or
link-local addresses as source addresses are delivered to the local host. If the destination is not the local host, then the packet must not be forwarded. Configuring this statement filters or discards IPv6 packets of these four address types.

NOTE: For T Series routers other than T4000, a packet forwarded by the forwarding table reaches the egress forwarding table filter irrespective of whether the packet is actually forwarded by the forwarding table or not. The packet reaches the egress filter even if the route points to reject or discard next hops.

On T4000 Type 5 Flexible PIC Concentrator (FPC), the packet reaches the egress filter only if it is forwarded by the forwarding table.

NOTE: The egress forwarding table filter is applied on the ingress interface of the FPC. If different packets to the same destination arrive on different FPCs, they might encounter different policers.

NOTE: In versions 14.2 and prior, the egress forwarding table filter is not supported for the J Series Service Routers.

NOTE: In Junos OS Release 8.4 and later, you can no longer configure this output statement for VPLS. You can continue to configure ingress forwarding table filters with the input statement at the \[edit forwarding-options family vpls filter\] hierarchy level.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2</td>
<td>In versions 14.2 and prior, the egress forwarding table filter is not supported for the J Series Service Routers.</td>
</tr>
<tr>
<td>8.4</td>
<td>In Junos OS Release 8.4 and later, you can no longer configure this output statement for VPLS.</td>
</tr>
</tbody>
</table>
CHAPTER 5

Configuring Forwarding Options for Load Balancing Traffic

Configuring Load Balancing for Ethernet Pseudowires | 75
Configuring Load-Balance Groups | 76
Understanding the Algorithm Used to Load Balance Traffic on MX Series Routers | 77
Understanding Per-Packet Load Balancing | 90
Configuring Per-Packet Load Balancing | 92
Understanding Load Balancing for BGP Traffic with Unequal Bandwidth Allocated to the Paths | 95
Understanding the Default BGP Routing Policy on Packet Transport Routers (PTX Series) | 96
Per-Flow and Per-Prefix Load Balancing Overview | 99
Configuring Per-Prefix Load Balancing | 99
Configuring Per-Flow Load Balancing Based on Hash Values | 101
Configuring Load Balancing Based on MAC Addresses | 101
Load Balancing VPLS Non-Unicast Traffic Across Member Links of an Aggregate Interface | 102
Configuring Load Balancing for Ethernet Pseudowires

You can configure load balancing for IPv4 traffic over Layer 2 Ethernet pseudowires. You can also configure load balancing for Ethernet pseudowires based on IP information. The option to include IP information in the hash key provides support for Ethernet circuit cross-connect (CCC) connections.

NOTE: This feature is supported only on M120, M320, MX Series, and T Series routers.

To configure load balancing for IPv4 traffic over Layer 2 Ethernet pseudowires, include the `ether-pseudowire` statement at the `[edit forwarding-options hash-key family mpls payload]` hierarchy level:

```
[edit forwarding-options]
hash-key {
 family mpls {
 (label-1 | no-labels);
 payload {
 ether-pseudowire;
 }
 }
}
```

NOTE: You must also configure either the `label-1` or the `no-labels` statement at the `[edit forwarding-options hash-key family mpls]` hierarchy level.

You can also configure load balancing for Ethernet pseudowires based on IP information. This functionality provides support for load balancing for Ethernet cross-circuit connect (CCC) connections. To include IP information in the hash key, include the `ip` statement at the `[edit forwarding-options hash-key family mpls payload]` hierarchy level:

```
[edit forwarding-options]
hash-key {
 family mpls {
 (label-1 | no-labels);
 payload {
 ip;
 }
 }
}
```
You can configure load balancing for IPv4 traffic over Ethernet pseudowires to include only Layer 3 IP information in the hash key. To include only Layer 3 IP information, include the layer-3-only option at the [edit forwarding-options family mpls hash-key payload ip] hierarchy level:

```
[edit forwarding-options]
hash-key {
 family mpls {
 (label-1 | no-labels);
 payload {
 ip {
 layer-3-only;
 }
 }
 }
}
```

NOTE: You must also configure either the label-1 or no-labels statement at the [edit forwarding-options hash-key family mpls] hierarchy level.

### Configuring Load-Balance Groups

In addition to including policers in firewall filters, you can configure a load-balance group that is not part of a firewall filter configuration. A load-balance group contains interfaces that all use the same next-hop group characteristic to load-balance the traffic.

To configure a load-balance group, include the load-balance-group statement at the [edit firewall] hierarchy level:

```
[edit firewall]
```
Next-hop groups allow you to include multiple interfaces used to forward duplicate packets used in port mirroring. For more information about next-hop groups, see “Configuring Next-Hop Groups to Use Multiple Interfaces to Forward Packets Used in Port Mirroring” on page 58.

Understanding the Algorithm Used to Load Balance Traffic on MX Series Routers

IN THIS SECTION

- MX MPC and T-Series Type 5 FPC Specifics | 79
- Hashing Algorithm Used in Junos 18.3R1 and later | 79
- Hash fields used for GRE traffic sent over IPv4 | 80
- Hash fields used for GRE traffic sent over IPv6 | 82
- Hash fields used for IPv4 | 83
- Hash fields used for IPv6 | 84
- Hash fields used for multiservice | 86
- Hash fields used for MPLS, Junos 18.3 and later | 87
- Hash fields used for MPLS from Junos 14.1 to Junos 18.3 | 88
- List of Junos Updates for Hash Calculation and Load Balancing for MX series routers with MPCs | 89
When a packet is received on the ingress interface of a device, the packet forwarding engine (PFE) performs a look up to identify the forwarding next hop. If there are multiple equal-cost paths (ECMPs) to the same next-hop destination, the ingress PFE can be configured to distribute the flow between the next hops. Likewise, distribution of traffic may be required between the member links of an aggregated interface such as aggregated Ethernet. The selection of the actual forwarding next-hop is based on the hash computation result over select packet header fields and several internal fields such as `interface index`. You can configure some of the fields that are used by the hashing algorithm.

- For MX series routers with Modular Port Concentrators (MPCs) and Type 5 FPCs, configure the hash for the supported traffic types at the `forwarding-options enhanced-hash-key` hierarchy level. Details on which fields are included by default for which traffic family can be found below.

  In Junos OS Release 18.3R1, the default method for calculating the enhanced-hash was changed to provide improved entropy for IP tunnels, IPv6 flows and PPPoE payloads transmitted as family multiservice. These defaults can be disabled by setting their respective no-commands.

- For MX series routers with DPCs, configure the hash for the supported traffic types at the `forwarding-options hash-key` hierarchy level.

Junos supports different types of load balancing.

- **Per-prefix load balancing** – Each prefix is mapped to only one forwarding next-hop.

- **Per-packet load balancing** – All next-hop addresses for a destination in the active route are installed in the forwarding table (the term per-packet load balancing in Junos is equivalent to what other vendors may call per-flow load balancing). See “Configuring Per-Packet Load Balancing” on page 92 for more information.

- **Random packet load balancing** – Next-hops are picked randomly for each packet. This method is available on MX routers with MPC line cards for Aggregated Ethernet interfaces and ECMP paths. To configure per-packet random spray load balancing, include the `per-packet` statement at the `[edit interfaces aex aggregated-ether-options load-balance]` hierarchy level. See Example: Configuring Aggregated Ethernet Load Balancing for more information.

- **Per-Packet Random Spray Load Balancing** – When the adaptive load-balancing option fails, per-packet random spray load balancing serves as a last resort. It ensures that the members of ECMP are equally loaded without taking bandwidth into consideration. Per packet causes packet reordering and hence is recommended only if the applications absorb reordering. Per-packet random spray eliminates traffic imbalance that occurs as a result of software errors, except for packet hash.

  Starting in Junos OS Release 20.2R1, you can configure per packet random load balancing on MX240, MX480, and MX960 routers with MPC10E (MPC10E-15C-MRATE and MPC10E-10C-MRATE) line card and MX2010 and MX2020 routers with MX2K-MPC11E line card.

Several additional configuration options are also available:

- **Per-slot hash function configuration** – This method is based on a unique, load-balance hash value for each PIC slot and is only valid for M120, M320, and MX Series routers with DPCE and MS-DPC line cards.
• Symmetrical load balancing – This method provides symmetrical load balancing on an 802.3ad LAG. The hash used for symmetrical load balancing is set at the interface level of the hierarchy. It ensures that a given flow of duplex traffic traverses the same devices in both directions, and is available on MX Series routers.

MX MPC and T-Series Type 5 FPC Specifics

The hash computation algorithm on MX MPC and T Series Type 5 FPCs produces identical results for packets with swapped layer 3 addresses or layer 4 transport ports. For example, the hash computation result for a packet with source address 192.0.2.1 and destination address 203.0.113.1 is identical to the hash computation result for a packet with source address 203.0.113.1 and destination address 192.0.2.1.

To avoid possible packet re-ordering, layer 4 transport protocol ports are never used in hash computation for fragmented IPv4 packets. This is true for the first fragment of the flow, identified by the more fragment bit in a header, and all subsequent fragments, identified by non-zero fragment offset. The first fragment and subsequent fragments are always forwarded over same next-hop.

Hashing Algorithm Used in Junos 18.3R1 and later

In most cases, including layer 3 and layer 4 field information in the hash calculation produces results that are good enough for equitable distribution for traffic. However, in cases such as IP-in-IP or GRE tunneling, layer 3 and layer 4 field information alone may not be enough to produce a hash with sufficient entropy for load balancing. For example, in a deployment where MX series routers transit GRE flows, the GRE encapsulation tunnels typically occur as a single flow with the same source and destination, and same GRE key. Fat flows can also markedly increase the imbalance in link utilization, as traffic volume over the tunnels increases. Another example is when MX PE routers are being used as VPLS PE devices in a subscriber edge deployment where the routers back-haul broadband subscriber traffic from the access devices to a central broadband network gateway (BNG). In such a case, only the subscriber MAC addresses and the BNG router MAC addresses are available for hashing. But with few BNG MACs and relatively few subscriber MACs, the typical layer 3 and layer 4 fields are not sufficient to create a hash for optimal load balancing.

Therefore, for MX series routers with Trio MPCs and running Junos OS Release 18.3R1 or later, the default enhanced-hash-key calculation has changed. A summary of the changes is listed here:

• For GRE packets, if the outer IP packet is not a fragmented packet (first fragment or any subsequent fragment), and the inner packet is IPv4 or IPv6, then the source and destination addresses from the inner packet are used in the hash computation in addition to the outer source and destination addresses. Layer 4 ports of the inner packet are also included if the protocol of the inner IP packet is TCP or UDP, and the inner IP packet is not a fragment (first fragment or any subsequent fragment). Likewise, if the outer
IP packet is not a fragment packet, and the inner packet is MPLS, then the top inner label is included in the hash computation.

- For PPPoE packets, if the inner packet is IPv4 or IPv6, then the source and destination addresses from the inner packet are included. Layer 4 ports are included if the protocol of the inner IP packet is TCP or UDP, and the inner IP packet is not a fragment. Inclusion of the PPPoE inner packet fields can be disabled by configuring the `no-payload` option at the `forwarding-options enhanced-hash-key family multiservice` hierarchy level.

- For IPv6, the IPv6 header flow label field is included in the hash computation. RFC 6437 describes the 20-bit flow label field in the IPv6 header. Set the `no-flow-label` option at the `forwarding-options enhanced-hash-key family inet6` hierarchy to disable the new default.

---

**Hash fields used for GRE traffic sent over IPv4**

The lists show the fields used in the hash calculation, for non-fragmented packets, in Junos 18.3R1 and later. By default, the field is used in the hash calculation unless otherwise noted. Also where noted, the IP and port fields used in the hash is symmetric, that is, swapping the fields does not change the hash result.

- **IPv4, GRE**
  - GRE Key
  - Source and destination address; symmetric
  - Protocol
  - DSCP (disabled)
  - Incoming Interface Index (disabled)

- **IPv4 in IPv4, GRE**
  - Payload (inner IPv4: source and destination ports, IP addresses); symmetric
  - GRE Key
    - GRE Protocol = IPv4
  - Source and destination address; symmetric
  - Protocol
  - DSCP (disabled)
  - Incoming Interface Index (disabled)

- **IPv6 in IPv4, GRE**
• Payload (inner IPv6: source and destination ports, IP addresses); symmetric
• GRE Key
  GRE Protocol = IPv6
• Source and destination address; symmetric
• Protocol
• DSCP (disabled)
• Incoming Interface Index (disabled)

• MPLS in IPv4, GRE
  • Payload (inner MPLS: top label)
  • GRE Key
    GRE Protocol = MPLS
  • Source and destination address; symmetric
  • Protocol
  • DSCP (disabled)
  • Incoming Interface Index (disabled)

• IPv4, L2TPv2 used in Junos 17.2 and later
  Inclusion of the L2TPv2 tunnel ID and session ID can be enabled by configuring the forwarding-options enhanced-hash-key family inet l2tp-tunnel-session-identifier option. Note that Juniper does not recommend enabling this option by default. This is because L2TP session identification is based on the destination UDP port match (1701), and this port may not be exclusively used for L2TP transport so the extraction of the tunnel and session ID fields from the packet may not always be accurate.
  • Session ID
  • Tunnel ID
  • Source and destination port
  • Source and destination address; symmetric
  • Protocol (UDP)
• DSCP (disabled)
• Incoming Interface Index (disabled)

Hash fields used for GRE traffic sent over IPv6

The list shows the fields used in the hash calculation for non-fragmented packets. By default, the field is used in the hash calculation unless otherwise noted. Also where noted, the IP and port fields used in the hash is symmetric, that is, swapping the fields does not change the hash result.

• IPv6, GRE
  • GRE Key
  • Source and destination address; symmetric
  • Next header
  • Flow label (Junos 18.3 and later)
  • Traffic class (disabled)
  • Incoming Interface Index (disabled)

• IPv4 in IPv6, GRE (Junos 18.3 and later)
  • Payload (inner IPv4: source and destination ports, IP addresses); symmetric
  • GRE Key
    GRE Protocol = IPv4
  • Source and destination address; symmetric
  • Next header
  • Flow label (Junos 18.3 and later)
  • Traffic class (disabled)
  • Incoming Interface Index (disabled)

• IPv6 in IPv6, GRE (Junos 18.3 and later)
  • Payload (inner IPv6: source and destination ports, IP addresses); symmetric
  • GRE Key
    GRE Protocol = IPv6
  • Source and destination address; symmetric
  • Next header
- Flow label (Junos 18.3 and later)
- Traffic class (disabled)
- Incoming Interface Index (disabled)

**MPLS in IPv6, GRE (Junos 18.3 and later)**
- Payload (inner MPLS: top labels); symmetric
- GRE Key
  
  GRE Protocol = MPLS
- Source and destination address; symmetric
- Next header
- Flow label
- Traffic class (disabled)
- Incoming Interface Index (disabled)

### Hash fields used for IPv4

The list shows the fields used in the hash calculation for non-fragmented packets, except where noted. By default, the field is used in the hash calculation unless otherwise noted. Also where noted, the IP and port fields hash is symmetric, that is, swapping the fields does not change the hash result.

- **IPv4, not TCP or UDP, or fragmented packets**
  - Source and destination address; symmetric
  - Protocol
  - DSCP (disabled)
  - Incoming Interface Index (disabled)

- **IPv4, TCP and UDP, non fragmented packets**
  - Source and destination port; symmetric
  - Source and destination address; symmetric
  - Protocol
  - DSCP (disabled)
  - Incoming Interface Index (disabled)

- **IPv4, PPTP**
16 least significant bits of the GRE Key
Source and destination address; symmetric
Protocol
DSCP (disabled)
Incoming Interface Index (disabled)

**IPv4, GTP, UDP traffic to destination port 2152**

Inclusion of GPRS tunneling protocol (GTP) tunnel endpoint identifier (TEID) can be enabled at the `forwarding-options enhanced-hash-key family inet gtp-tunnel-endpoint-identifier` option. Note that Juniper does not recommend enabling this option by default. This is because GTP session identification is based on the destination UDP port match (2152), and this port may not be exclusively used for GTP transport, so the extraction of TEID field from the packet may not always be accurate.

GTP TEID (disabled)
Source and destination port
Source and destination address; symmetric
Protocol
DSCP (disabled)
Incoming Interface Index (disabled)

---

**Hash fields used for IPv6**

The list shows the fields used in the hash calculation for non-fragmented packets, except where noted. By default, the field is used in the hash calculation unless otherwise noted. Also where noted, the IP and port fields hash is symmetric, that is, swapping the fields does not change the hash result.

**IPv6, non TCP and UDP packet, or TCP and UDP packet fragmented by the originator**

Source and destination address; symmetric
Next header
Flow label (Junos 18.3 and later)
Traffic class (disabled)
Incoming Interface Index (disabled)

**IPv6, non fragmentated TCP and UDP packet**
- Source and destination port; symmetric
- Source and destination address; symmetric
- Next header
- Flow label (Junos 18.3 and later)
- Traffic class (disabled)
- Incoming Interface Index (disabled)

- **IPv6, PPTP**
  - 16 least significant bits of the GRE Key
  - Source and destination address; symmetric
  - Next header
  - Flow label (Junos 18.3 and later)
  - Traffic class (disabled)
  - Incoming Interface Index (disabled)

- **IPv6, GTP**

  Inclusion of GPRS tunneling protocol (GTP) tunnel endpoint identifier (TEID) can be enabled at the `forwarding-options enhanced-hash-key family inet gtp-tunnel-endpoint-identifier` hierarchy level. Note that Juniper does not recommend enabling this option by default. This is because GTP session identification is based on the destination UDP port match (2152), and this port may not be exclusively used for GTP transport, so the extraction of TEID field from the packet may not always be accurate.

  - GTP TEID (disabled by default; enable at the `forwarding-options enhanced-hash-key family inet gtp-tunnel-endpoint-identifier` hierarchy level.)
  - Source and destination port
  - Source and destination address; symmetric
  - Next header
  - Flow label (Junos 18.3 and later)
  - Traffic class (disabled)
  - Incoming Interface Index (disabled)
Hash fields used for multiservice

Family multiservice hash configuration applies to packets entering into the router as family ccc, vpls, or bridge. The list shows the fields used in the hash calculation for non-fragmented packets. By default, the field is used in the hash calculation unless otherwise noted. Also where noted, the IP and port fields used in the hash is symmetric, that is, swapping the fields does not change the hash result.

- **Ethernet, non-IP or non-MPLS**
  - If configured, payload information is extracted from untagged packets or packets with up to two VLAN tags.
  - Outer 802.1p (disabled)
  - Source and destination MAC; symmetric
  - Incoming Interface Index (disabled)

- **Ethernet, IPv4**
  - Payload (inner IPv4: source and destination ports, IP addresses); symmetric
  - Outer 802.1p (disabled)
  - Source and destination MAC; symmetric
  - Incoming Interface Index (disabled)

- **Ethernet, IPv6**
  - Payload (inner IPv6: source and destination ports, IP addresses); symmetric
  - Outer 802.1p (disabled)
  - Source and destination MAC; symmetric
  - Incoming Interface Index (disabled)

- **Ethernet, MPLS**
  - Payload (inner MPLS: top labels plus inner IPv4 and IPv6 fields); symmetric. See Hash fields used for MPLS, Junos 18.3 and later, below, for related information.
  - Outer 802.1p (disabled)
  - Source and destination MAC; symmetric
  - Incoming Interface Index (disabled)

- **IPv4 in PPPoE (data packet)**
  - Payload (inner IPv4: source and destination ports, IP addresses); symmetric
  - PPP protocol IPv4 version 0x1, type 0x1
• Outer 802.1p (disabled)
• Source and destination MAC; symmetric
• Incoming Interface Index (disabled)

• **IPv6 in PPPoE (data packet)**
  • Payload (inner IPv6: source and destination ports, IP addresses); symmetric
  • PPP protocol IPv6 version 0x1, type 0x1
  • Outer 802.1p (disabled)
  • Source and destination MAC; symmetric
  • Incoming Interface Index (disabled)

---

**Hash fields used for MPLS, Junos 18.3 and later**

The list shows the fields used in the hash calculation for non-fragmented packets. By default, the field is used in the hash calculation unless otherwise noted. Also where noted, the IP and port fields used in the hash is symmetric, that is, swapping the fields does not change the hash result.

• **MPLS, Encapsulated IPv4 or IPv6**
  • Payload (inner IPv4: source and destination ports, IP addresses); symmetric
  • Payload (inner IPv6: source and destination ports, IP addresses, next header); symmetric
  • Label 1..16 (20 bits)
    • Outer Label EXP (disabled)
  • Incoming Interface Index (disabled)

• **MPLS, IPv4 or IPv6 in Ethernet pseudo-wire**
  • Payload (IPv4/IPv6 in Ethernet pseudo-wire)
  • Label 2..16 (20 bits)
    • Outer Label EXP (disabled)
  • Label 1 (20 bits)
  • Incoming Interface Index (disabled)

• **MPLS, entropy label**
  
  When an entropy label is detected, the payload field is not processed, and the indicator is not included into hash computation
Hash fields used for MPLS from Junos 14.1 to Junos 18.3

The list shows the fields used in the hash calculation for non-fragmented packets. By default, the field is used in the hash calculation unless otherwise noted. Also where noted, the IP and port fields used in the hash is symmetric, that is, swapping the fields does not change the hash result.

- **MPLS, Encapsulated IPv4 or IPv6**
  - Payload (inner IPv4: source and destination ports, IP addresses); symmetric
  - Payload (inner IPv6: source and destination ports, IP addresses, next header); symmetric
  - Label 2.8 (20 bits)
    - Outer Label EXP (disabled)
    - Label 1 (20 bits)
  - Incoming Interface Index (disabled)

- **MPLS, IPv4 or IPv6 in Ethernet pseudo-wire**
  - Payload (IPv4/IPv6 in Ethernet pseudo-wire)
  - Label 2.8 (20 bits)
    - Outer Label EXP (disabled)
    - Label 1 (20 bits)
  - Incoming Interface Index (disabled)

- **MPLS, entropy label**
  
  When an entropy label is detected, the payload field is not processed, and the indicator is not included into hash computation
  - Label 2.8 (20 bits)
    - Outer Label EXP (disabled)
    - Label 1 (20 bits)
## List of Junos Updates for Hash Calculation and Load Balancing for MX series routers with MPCs

### Table 3: List of updates for MX series routers

<table>
<thead>
<tr>
<th>Junos Release</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3R1</td>
<td>Includes IPv6 flow label, inner GRE header, and inner PPPoE in default hash computation. Increases MPLS label stack depth to 16 labels.</td>
</tr>
<tr>
<td>17.2R1</td>
<td>Load balancing for L2TP encapsulated IPv4 and IPv6 packets.</td>
</tr>
<tr>
<td>16.1R1</td>
<td>Includes EoMPLS payload hash with control word. Introduces source-only and destination-only based hashing.</td>
</tr>
<tr>
<td>15.1R1</td>
<td>Provides targeted distribution of static interfaces across AE member links. Includes source, destination, and MAC of MPLS encapsulated PPPoE payload in the default hash computation.</td>
</tr>
<tr>
<td>14.2R3</td>
<td>Increases scaling of LAG and MC-LAG.</td>
</tr>
<tr>
<td>14.2R2</td>
<td>Provides aggregate Ethernet bundle with 10G, 40G and 100G links.</td>
</tr>
<tr>
<td>14.1R1</td>
<td>Decouples aeX interface creation from <code>agg eth dev</code>. Increases aggregate Ethernet interface name space. Provides adaptive load balancing for ECMP next hops.</td>
</tr>
<tr>
<td>13.3R1</td>
<td>Includes enhancements for adaptive, per-packet-random, and periodic-rebalance load balancing.</td>
</tr>
<tr>
<td>11.4R1</td>
<td>Provides load sharing across ECMP next hops.</td>
</tr>
</tbody>
</table>
Understanding Per-Packet Load Balancing

By default, when there are multiple equal-cost paths to the same destination for the active route, Junos OS uses a hash algorithm to choose one of the next-hop addresses to install in the forwarding table. Whenever the set of next hops for a destination changes in any way, the next-hop address is re-chosen using the hash algorithm. Starting in Junos OS Release 18.3R1, for MX series routers, the default behavior for IPv6, GRE, and PPPoE packet hash computation was modified to include the flow-label field for improved load-balancing in certain cases (you can use the `no-payload` option to revert to the previous method for hash computation). See "Understanding the Algorithm Used to Load Balance Traffic on MX Series Routers" on page 77 for details.

You can configure Junos OS so that, for the active route, all next-hop addresses for a destination are installed in the forwarding table. This feature is called *per-packet load balancing*. The naming may be counter-intuitive. However, Junos *per-packet* load balancing is functionally equivalent to what other vendors may term *per-flow* load balancing. You can use load balancing to spread traffic across multiple paths between routers.

Figure 2 on page 90 shows a simple load balancing scenario. Device R1 is in AS 64500 and is connected to both Device R2 and Device R3, which are in AS 64501. Device R1 can be configured to load balance traffic across the two links.

Figure 2: Simple Load Balancing Scenario

Starting in Junos OS 13.3R3, for MX Series 5G Universal Routing Platforms with modular port concentrators (MPCs) only, you can configure consistent load balancing, which prevents the reordering of all flows to active paths in an equal-cost multipath (ECMP) group when one or more next-hop paths fail. Only flows for paths that are inactive are redirected to another active next-hop path. Flows mapped to servers that remain active are maintained. This feature applies only to external BGP peers.
Starting in Junos OS Release 19.1R1, on QFX10000 switches, you can configure load balancing of IPv4 or IPv6 packets by using GPRS Tunneling Protocol-tunnel endpoint identifier (GTP-TEID) field hash calculations. The GTP-TEID hashing is added to the Layer 2 and Layer 3 field hashing that you have already configured. To enable this feature on QFX10000 switches, configure the `gtp-tunnel-endpoint-identifier` statement at the `[edit forwarding-options enhanced-hash-key family inet]` or the `[edit forwarding-options enhanced-hash-key family inet6]` hierarchy Level. GTP versions 1 and 2 are supported; they support only user data. You must use UDP port number 2152 for both GTP versions.

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>19.1R1</strong></td>
<td>Starting in Junos OS Release 19.1R1, on QFX10000 switches, you can configure load balancing of IPv4 or IPv6 packets by using GPRS Tunneling Protocol-tunnel endpoint identifier (GTP-TEID) field hash calculations.</td>
</tr>
<tr>
<td><strong>18.3R1</strong></td>
<td>Starting in Junos OS Release 18.3R1, for MX series routers, the default behavior for IPv6, GRE, and PPPoE packet hash computation was modified to include the flow-label field for improved load-balancing in certain cases (you can use the <code>no-payload</code> option to revert to the previous method for hash computation).</td>
</tr>
<tr>
<td><strong>13.3R3</strong></td>
<td>Starting in Junos OS 13.3R3, for MX Series 5G Universal Routing Platforms with modular port concentrators (MPCs) only, you can configure consistent load balancing, which prevents the reordering of all flows to active paths in an equal-cost multipath (ECMP) group when one or more next-hop paths fail.</td>
</tr>
</tbody>
</table>

**RELATED DOCUMENTATION**

- *Example: Load Balancing BGP Traffic*
  - Configuring Per-Packet Load Balancing | 92
- *Configuring Load Balancing Based on MPLS Labels*
  - Configuring Load Balancing for Ethernet Pseudowires | 75
  - Configuring Load Balancing Based on MAC Addresses | 101
  - Configuring VPLS Load Balancing Based on IP and MPLS Information
  - Configuring VPLS Load Balancing on MX Series 5G Universal Routing Platforms
  - Configuring Consistent Load Balancing for ECMP Groups
Configuring Per-Packet Load Balancing

To configure per-packet load balancing, include the `load-balance per-packet` statement either as an option of the `route-filter` statement at the `[edit policy-options policy-statement policy-name term term-name from]` hierarchy level:

```
[edit policy-options policy-statement policy-name term term-name from]
route-filter destination-prefix match-type {
 load-balance per-packet;
}
```

or at the `[edit policy-options policy-statement policy-name term term-name then]` hierarchy level:

```
[edit policy-options policy-statement policy-name term term-name then]
load-balance per-packet;
```

To complete the configuration you must apply the routing policy to routes exported from the routing table to the forwarding table, by including the policy name in the list specified by the `export` statement:

```
export [policy-names];
```

You can include this statement at the following hierarchy levels:

- `[edit routing-options forwarding-table]`
- `[edit logical-systems logical-system-name routing-options forwarding-table]`

To enable per-flow load balancing, you must set the `load-balance per-packet` action in the routing policy configuration. The naming may be counter-intuitive. However, Junos `per-packet` load balancing is functionally equivalent to what other vendors may term `per-flow` load balancing.

By default, Junos ignores port data when determining flows. To include port data in the flow determination, include the `family inet` statement at the `[edit forwarding-options hash-key]` hierarchy level:

```
[edit forwarding-options hash-key]
family inet {
 layer-3;
 layer-4;
}
```
If you include both the layer 3 and layer 4 statements, the device uses the following Layer 3 and Layer 4 information to load-balance:

- Source IP address
- Destination IP address
- Protocol
- Source port number
- Destination port number
- Incoming interface index
- IP type of service

When all of the layer 3 and layer 4 parameters are identical, the device sends packets in the flow through the same interface, which in turn helps prevent out of order delivery for TCP and UDP flows.

Internet Control Message Protocol (ICMP) packets are handled differently because the field location offset is the checksum field, which makes each ping packet a separate “flow.” There are other protocols that can be encapsulated in IP that may have a varying value in the 32-bit offset. This may also be problematic because these protocols are seen as a separate flow.

With M Series (with the exception of the M120 router) and T Series routers, the first fragment is mapped to the same load-balanced destination as the unfragmented packets. The other fragments can be mapped to other load-balanced destinations.

For the M120 router only, all fragments are mapped to the same load-balanced destination. This destination is not necessarily the same as that for unfragmented packets.

By default, or if you include only the layer 3 statement, the router uses the incoming interface index as well as the following Layer 3 information in the packet header to load balance traffic:

- Source IP address
- Destination IP address
- Protocol

By default, IP version 6 (IPv6) packets are automatically load-balanced based on the following Layer 3 and Layer 4 information:

- Source IP address
- Destination IP address
- Protocol
- Source port number
- Destination port number
- Incoming interface index
- Traffic class

## Per-Packet Load Balancing Examples

Perform per-packet load balancing for all routes:

```plaintext
[edit]
policy-options {
 policy-statement load-balancing-policy {
 then {
 load-balance per-packet;
 }
 }
}
}
routing-options {
 forwarding-table {
 export load-balancing-policy;
 }
}
}
```

Perform per-packet load balancing only for a limited set of routes:

```plaintext
[edit]
policy-options {
 policy-statement load-balancing-policy {
 from {
 route-filter 192.168.10/24 orlonger;
 route-filter 10.114/16 orlonger;
 }
 then {
 load-balance per-packet;
 }
 }
}
}
routing-options {
 forwarding-table {
 export load-balancing-policy;
 }
}
```
To configure per-packet random spray load balancing, include the `load-balance random` statement at the

```
[edit policy-options policy-statement policy-name term term-name then]
load-balance random;
```

To complete the configuration you must apply the routing policy to routes exported from the routing table
to the forwarding table, by including the policy name in the list specified by the `export` statement at the

```
[edit routing-options forwarding-table]
export [policy-names];
```

**RELATED DOCUMENTATION**

- Understanding Per-Packet Load Balancing | 90

**Understanding Load Balancing for BGP Traffic with Unequal Bandwidth Allocated to the Paths**

The multipath option removes the tiebreakers from the active route decision process, thereby allowing
otherwise equal cost BGP routes learned from multiple sources to be installed into the forwarding table. However, when the available paths are not equal cost, you may wish to load balance the traffic asymmetrically.

Once multiple next hops are installed in the forwarding table, a specific forwarding next hop is selected
by the Junos OS per-prefix load-balancing algorithm. This process hashes against a packet's source and
destination addresses to deterministically map the prefix pairing onto one of the available next hops.
Per-prefix mapping works best when the hash function is presented with a large number of prefixes, such
as might occur on an Internet peering exchange, and it serves to prevent packet reordering among pairs of communicating nodes.

An enterprise network normally wants to alter the default behavior to evoke a *per-packet* load-balancing
algorithm. Per-packet is emphasized here because its use is a misnomer that stems from the historic
behavior of the original Internet Processor ASIC. In reality, current Juniper Networks routers support
per-prefix (default) and per-flow load balancing. The latter involves hashing against various Layer 3 and
Layer 4 headers, including portions of the source address, destination address, transport protocol, incoming
interface, and application ports. The effect is that now individual flows are hashed to a specific next hop,
resulting in a more even distribution across available next hops, especially when routing between fewer source and destination pairs.

With per-packet load balancing, packets comprising a communication stream between two endpoints might be resequenced, but packets within individual flows maintain correct sequencing. Whether you opt for per-prefix or per-packet load balancing, asymmetry of access links can present a technical challenge. Either way, the prefixes or flows that are mapped to, for example, a T1 link will exhibit degraded performance when compared to those flows that map to, for example, a Fast Ethernet access link. Worse yet, with heavy traffic loads, any attempt at equal load balancing is likely to result in total saturation of the T1 link and session disruption stemming from packet loss.

Fortunately, the Juniper Networks BGP implementation supports the notion of a bandwidth community. This extended community encodes the bandwidth of a given next hop, and when combined with multipath, the load-balancing algorithm distributes flows across the set of next hops proportional to their relative bandwidths. Put another way, if you have a 10-Mbps and a 1-Mbps next hop, on average nine flows will map to the high-speed next hop for every one that uses the low speed.

Use of BGP bandwidth community is supported only with per-packet load balancing.

The configuration task has two parts:

- Configure the external BGP (EBGP) peering sessions, enable multipath, and define an import policy to tag routes with a bandwidth community that reflects link speed.
- Enable per-packet (really per-flow) load balancing for optimal distribution of traffic.

RELATED DOCUMENTATION

- Understanding Per-Packet Load Balancing | 90

Understanding the Default BGP Routing Policy on Packet Transport Routers (PTX Series)

On PTX Series Packet Transport Routers, the default BGP routing policy differs from that of other Junos OS routing devices.

The PTX Series routers are MPLS transit platforms that do IP forwarding, typically using interior gateway protocol (IGP) routes. The PTX Series Packet Forwarding Engine can accommodate a relatively small number of variable-length prefixes.
NOTE: A PTX Series router can support full BGP routes in the control plane so that it can be used as a route reflector (RR). It can do exact-length lookup multicast forwarding and can build the multicast forwarding plane for use by the unicast control plane (for example, to perform a reverse-path forwarding lookup for multicast).

Given the PFE limitation, the default routing policy for PTX Series routers is for BGP routes not to be installed in the forwarding table. You can override the default routing policy and select certain BGP routes to install in the forwarding table.

The default behavior for load balancing and BGP routes on PTX Series routers is as follows. It has the following desirable characteristics:

- Allows you to override the default behavior without needing to alter the default policy directly
- Reduces the chance of accidental changes that nullify the defaults
- Sets no flow-control actions, such as accept and reject

The default routing policy on the PTX Series routers is as follows:

```bash
user@host# show policy-options | display inheritance defaults no-comments
policy-options {
 policy-statement junos-pxtx-series-default {
 term t1 {
 from {
 protocol bgp;
 rib inet.0;
 }
 then no-install-to-fib;
 }
 term t2 {
 from {
 protocol bgp;
 rib inet6.0;
 }
 then no-install-to-fib;
 }
 term t3 {
 then load-balance per-packet;
 }
 }
 routing-options {
```

```bash
```
As shown here, the `junos-ptx-series-default` policy is defined in `[edit policy-options]`. The policy is applied in `[edit routing-options forwarding-table]`, using the `default-export` statement. You can view these default configurations by using the | display inheritance flag.

Also, you can use the `show policy` command to view the default policy.

```
user@host> show policy junos-ptx-series-default
```

```
Policy junos-ptx-series-default:
 Term t1:
 from proto BGP
 inet.0
 then install-to-fib no
 Term t2:
 from proto BGP
 inet6.0
 then install-to-fib no
 Term t3:
 then load-balance per-packet
```

**CAUTION:** We strongly recommend that you do not alter the `junos-ptx-series-default` routing policy directly.

Junos OS chains the `junos-ptx-series-default` policy and any user-configured export policy. Because the `junos-ptx-series-default` policy does not use flow-control actions, any export policy that you configure is executed (by way of the implicit next-policy action) for every route. Thus you can override any actions set by the `junos-ptx-series-default` policy. If you do not configure an export policy, the actions set by `junos-ptx-series-default` policy are the only actions.

You can use the policy action `install-to-fib` to override the `no-install-to-fib` action.

Similarly, you can set the `load-balance per-prefix` action to override the `load-balance per-packet` action.
Per-Flow and Per-Prefix Load Balancing Overview

By default, when there are multiple equal-cost paths to the same destination, Junos OS chooses one of the next-hop addresses at random.

On all M Series Multiservice Edge Routers, MX Series 5G Universal Routing Platforms, and T Series Core Routers, you have the additional option of configuring per-prefix load balancing based on a specified hash value that enables the router to elect a next hop independently of the route chosen by other routers.

On the M120, M320, and MX Series routers only, you have the additional option of enabling per-flow load balancing based on a unique, load-balance hash value for each Packet Forwarding Engine slot.

Configuring Per-Prefix Load Balancing

By default, Junos OS uses a hashing method based only on the destination address to elect a forwarding next hop when multiple equal-cost paths are available. As a result, when multiple routers or switches share the same set of forwarding next hops for a given destination, they can elect the same forwarding next hop.

You can enable router-specific or switch-specific load balancing by including a per-prefix hash value. However, this method applies only to indirect next hops. In other words, when we have a route with a protocol next hop that is not directly connected, it can be resolved over a set of equal-cost forwarding next hops. Only in this case, we use the hashing algorithm to elect a forwarding next hop. An example of this is routes learned from an IBGP neighbor. The protocol next hop for those routes might not be directly reachable and would be resolved through some IGP or static routes. The result could be a set of equal-cost forwarding next hops to reach that protocol next hop. Per-prefix load balancing thus leads to better utilization of the available links.
To configure per-prefix load balancing, include the `load-balance` statement at the `[edit forwarding-options]` hierarchy level:

```
[edit forwarding-options]
load-balance {
 indexed-load-balance;
 per-prefix {
 hash-seed number;
 }
}
```

To enable per-prefix load balancing, you must include the `hash-seed number` statement. The range that you can configure is 0 (the default) through 65,535. If no hash seed is configured, the elected forwarding next hop is the same as in previous releases.

If you notice an issue with the load-balance distribution, try including the `indexed-load-balance` statement at the `[edit forwarding-options load-balance]` hierarchy level. This statement causes the creation of a nexthop structure that is both a function of the hash, and a function of the low-order bits of the IP address.

For MPC line cards in MX routers, `indexed-load-balance` has been superseded by an internal hash-rotation mechanism to reduce polarization.

```
CAUTION: Including the `indexed-load-balance` statement causes an increase in memory usage on the device.
```

**RELATED DOCUMENTATION**

- Understanding the Algorithm Used to Load Balance Traffic on MX Series Routers | 77
- enhanced-hash-key | 165
Configuring Per-Flow Load Balancing Based on Hash Values

By default, Junos OS uses a hashing method based only on the destination address to elect a forwarding next hop when multiple equal-cost paths are available. All Packet Forwarding Engine slots are assigned the same hash value by default.

You can enable router-specific or switch-specific load balancing by configuring the router or switch to assign a unique, load-balance hash value for each Packet Forwarding Engine slot.

NOTE: This feature is supported only on M120, M320, and MX Series routers.

To configure per-flow load balancing, include the `load-balance` statement at the `[edit forwarding-options]` hierarchy level:

```
[edit forwarding-options]
load-balance {
 indexed-load-balance;
 per-flow {
 hash-seed;
 }
}
```

To enable per-flow load balancing, you must include the `hash-seed` statement. Junos OS automatically chooses a value for the hashing algorithm. You cannot configure a specific value for the `hash-seed` statement when you enable per-flow load balancing.

Configuring Load Balancing Based on MAC Addresses

The hash key mechanism for load-balancing uses Layer 2 media access control (MAC) information such as frame source and destination address. To load-balance traffic based on Layer 2 MAC information, include the `family multiservice` statement at the `[edit forwarding-options hash-key]` hierarchy level:

```
family multiservice {
 destination-mac;
 source-mac;
}
```
To include the destination-address MAC information in the hash key, include the `destination-mac` option. To include the source-address MAC information in the hash key, include the `source-mac` option.

**NOTE:** Any packets that have the same source and destination address will be sent over the same path.

**NOTE:** You can configure per-packet load balancing to optimize VPLS traffic flows across multiple paths.

**NOTE:** Aggregated Ethernet member links will now use the physical MAC address as the source MAC address in 802.3ah OAM packets.

**NOTE:** ACX Series routers do not support VPLS.

---

### Load Balancing VPLS Non-Unicast Traffic Across Member Links of an Aggregate Interface

By default, VPLS non-unicast (or BUM — broadcast, unknown, and multicast) traffic sent across aggregate Ethernet interfaces is sent across only one member link of the aggregate interface. Starting with Junos OS Release 14.1, you can configure each VPLS instance to load balance BUM traffic across all members of an aggregate interface. This is referred to as BUM hashing.

To enable BUM hashing for an VPLS instance, add `bum-hashing` to the routing instance at the `[edit routing-instances instance-name protocols vpls]` hierarchy level. For example:

```plaintext
[edit routing-instances]
instance-name {
 ...
 protocols {
 vpls {
 bum-hashing;
 }
 }
 ...
}
```
WARNING: Enabling or disabling BUM hashing on a VPLS routing instance causes the routing instance to be destroyed and re-created when the configuration change is committed.

You can also specify which forwarding class to use for forwarding BUM traffic. When CoS-based forwarding (CBF) is configured on a VPLS PE router, BUM traffic uses the default forwarding class to select the label-switched path (LSP). Starting with Junos OS Release 14.1, you can associate an LSP with the default forwarding class.

To associate an LSP with the default forwarding class, add the forwarding-class-default statement at the [edit class-of-service forwarding-policy next-hop-map next-hop-map-name] hierarchy level. For example:

```
[edit class-of-service forwarding-policy next-hop-map next-hop-map-name]
forwarding-class-default {
 lsp-next-hop value;
}
```

### Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Starting with Junos OS Release 14.1, you can configure each VPLS instance to load balance BUM traffic across all members of an aggregate interface.</td>
</tr>
<tr>
<td>14.1</td>
<td>Starting with Junos OS Release 14.1, you can associate an LSP with the default forwarding class.</td>
</tr>
</tbody>
</table>

### RELATED DOCUMENTATION

- bum-hashing | 154
- Example: Configuring Multicast Load Balancing over Aggregated Ethernet Links | 104
Example: Configuring Multicast Load Balancing over Aggregated Ethernet Links

This example shows how to configure point-to-multipoint LSPs to load balance across aggregated Ethernet links. The load balancing applies to all traffic types, including multicast. Feature parity for multicast load balancing of point-to-multipoint LSPs over aggregated Ethernet child links on the MX Series routers with MPCs or MICs is supported in Junos OS Releases 11.1R2, 11.2R2, and 11.4.

NOTE: VPLS multicast load balancing requires Junos OS Release 14.1 or later.

Requirements

Before you begin:

1. Configure the router interfaces.
2. Configure an interior gateway protocol or static routing. See the Junos OS Routing Protocols Library.

Overview

This example shows a sample topology and configuration to perform the following tasks:

- Load balancing VPLS multicast traffic over link aggregation
- Load balancing point-to-multipoint multicast traffic over link aggregation
- Re-load balancing after a change in the next-hop topology

Next-hop topology changes might include but are not limited to:
- Layer 2 membership change in the link aggregation
- Indirect next-hop change
- Composite next-hop change

Load balancing is hash-based, so the higher the number of flows, the better. As is the case with unicast, you can also configure the hash key to be based on Layer 3 and Layer 4 information to achieve a better load-balancing result. There are a few exceptions that are specific to multicast traffic, which might lead to uneven load balancing—for example, when the outgoing interface list includes multiple aggregated interfaces with an unequal number of child links.

**NOTE:** For Draft Rosen multicast VPNs (MVPNs), load balancing over aggregated Ethernet interfaces is uneven when the LAGs are all core interfaces. In the case of Next-Generation MBGP MVPNs, multicast traffic is sent over point-to-multipoint and RSVP, and the hash is computed up to the IP headers. In the Draft Rosen case, multicast traffic is tunneled over GRE tunnels, and the hash is used only on GRE tunnel headers. This is why load balancing is not even for Draft Rosen when the LAGs are all core interfaces.

Figure 3 on page 105 shows the topology for this example. The example includes the configuration for Devices PE1 and PE2.

**Figure 3: Multicast Load Balancing over Aggregated Ethernet Links**

**Configuration**

**CLI Quick Configuration**
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device PE1

```
[edit]
 set forwarding-options hash-key family multiservice source-mac
 set forwarding-options hash-key family multiservice destination-mac
 set forwarding-options hash-key family multiservice payload ip layer-3
 set interfaces ge-0/0/6 gigether-options 802.3ad ae0
 set interfaces ge-0/1/6 gigether-options 802.3ad ae0
 set interfaces ge-0/2/2 encapsulation ethernet-vpls
 set interfaces ge-0/2/2 unit 0 family vpls
 set interfaces ge-0/2/3 gigether-options 802.3ad ae0
 set interfaces ge-0/2/6 gigether-options 802.3ad ae0
 set interfaces ge-0/3/0 gigether-options 802.3ad ae0
 set interfaces ge-0/3/1 gigether-options 802.3ad ae0
 set interfaces ge-0/3/6 gigether-options 802.3ad ae0
 set interfaces ge-1/0/6 gigether-options 802.3ad ae0
 set interfaces ae0 unit 0 family inet address 13.1.1.2/30
 set interfaces ae0 unit 0 family inet address 11.11.11.1/30
 set interfaces ae0 unit 0 family iso
 set interfaces ae0 unit 0 family mpls
 set policy-options policy-statement exp-to-fwd term a from community grn-com
 set policy-options policy-statement exp-to-fwd term a then install-nexthop lsp PE1-to-PE2
 set policy-options policy-statement exp-to-fwd term a then accept
 set policy-options community grn-com members target:65000:1
 set protocols rsvp interface all
 set protocols rsvp interface fxp0.0 disable
 set protocols mpls label-switched-path PE1-to-PE2 to 10.255.19.77
 set protocols mpls label-switched-path PE1-to-PE3 to 10.255.19.79
 set protocols mpls interface all
 set protocols mpls interface fxp0.0 disable
 set protocols bgp group int type internal
 set protocols bgp group int local-address 10.255.71.214
 set protocols bgp group int family inet any
 set protocols bgp group int family l2vpn signaling
 set protocols bgp group int neighbor 10.255.19.77
 set protocols bgp group int neighbor 10.255.19.79
 set protocols ospf traffic-engineering
 set protocols ospf area 0.0.0.0 interface all
 set protocols ospf area 0.0.0.0 interface fxp0.0 disable
```
set routing-instances vpls instance-type vpls
set routing-instances vpls interface ge-0/2/0.0
set routing-instances vpls route-distinguisher 65000:1
set routing-instances vpls vrf-target target:65000:1
set routing-instances vpls protocols vpls site-range 3
set routing-instances vpls protocols vpls no-tunnel-services
set routing-instances vpls protocols vpls site asia site-identifier 1
set routing-instances vpls protocols vpls site asia interface ge-0/2/2.0
set routing-instances vpls protocols vpls vpls-id 100
set routing-instances vpls protocols vpls bum-hashing

Device PE2

set interfaces ge-0/0/7 gigether-options 802.3ad ae0
set interfaces ge-0/1/7 gigether-options 802.3ad ae0
set interfaces ge-0/2/3 gigether-options 802.3ad ae0
set interfaces ge-0/2/7 gigether-options 802.3ad ae0
set interfaces ge-2/0/0 gigether-options 802.3ad ae1
set interfaces ge-2/0/1 gigether-options 802.3ad ae1
set interfaces ge-2/0/2 gigether-options 802.3ad ae1
set interfaces ge-2/0/4 encapsulation ethernet-vpls
set interfaces ge-2/0/4 unit 0 family vpls
set interfaces ge-2/0/7 gigether-options 802.3ad ae0
set interfaces ge-2/0/9 unit 0 family inet address 1.1.1.1/30
set interfaces ge-2/0/9 unit 0 family mpls
set interfaces ge-2/1/7 gigether-options 802.3ad ae0
set interfaces ge-2/2/7 gigether-options 802.3ad ae0
set interfaces ge-2/3/7 gigether-options 802.3ad ae0
set interfaces ae0 unit 0 family inet address 11.11.11.2/30
set interfaces ae0 unit 0 family iso
set interfaces ae0 unit 0 family mpls
set interfaces ae1 unit 0 family inet address 10.1.1.1/30
set interfaces ae1 unit 0 family mpls
set protocols rsvp interface all
set protocols rsvp interface fxp0.0 disable
set protocols mpls label-switched-path PE2-to-PE3 from 10.255.19.77
set protocols mpls label-switched-path PE2-to-PE3 to 10.255.19.79
set protocols mpls label-switched-path PE2-to-PE1 to 10.255.71.214
set protocols mpls interface all
set protocols mpls interface fxp0.0 disable
set protocols bgp group int type internal
set protocols bgp group int local-address 10.255.19.77
set protocols bgp group int family inet any
set protocols bgp group int family l2vpn signaling
set protocols bgp group int neighbor 10.255.71.214
set protocols bgp group int neighbor 10.255.19.79
set protocols ospf traffic-engineering
set protocols ospf area 0.0.0.0 interface lo0.0
set protocols ospf area 0.0.0.0 interface ge-2/0/0.0
set protocols ospf area 0.0.0.0 interface ge-2/0/1.0
set protocols ospf area 0.0.0.0 interface ge-2/0/2.0
set protocols ospf area 0.0.0.0 interface ae0.0
set protocols ospf area 0.0.0.0 interface ae1.0
set protocols ospf area 0.0.0.0 interface all
set protocols ospf area 0.0.0.0 interface fxp0.0 disable
set protocols ldp interface all
set protocols ldp interface fxp0.0 disable
set routing-instances vpls instance-type vpls
set routing-instances vpls interface ge-2/0/4.0
set routing-instances vpls route-distinguisher 65000:1
set routing-instances vpls vrf-target target:65000:1
set routing-instances vpls protocols vpls site-range 3
set routing-instances vpls protocols vpls no-tunnel-services
set routing-instances vpls protocols vpls site 2 site-identifier 2
set routing-instances vpls protocols vpls site 2 interface ge-2/0/4.0
set routing-instances vpls protocols vpls vpls-id 100
set routing-instances vpls protocols vpls bum-hashing

**Step-by-Step Procedure**

To configure Device PE1:

1. Configure Device PE1 interfaces.

```bash
[edit interfaces]
user@PE1# set ge-0/0/6 gigether-options 802.3ad ae0
user@PE1# set ge-0/1/6 gigether-options 802.3ad ae0
user@PE1# set ge-0/2/2 encapsulation ethernet-vpls
user@PE1# set ge-0/2/2 unit 0 family vpls
user@PE1# set ge-0/2/3 gigether-options 802.3ad ae0
user@PE1# set ge-0/2/6 gigether-options 802.3ad ae0
user@PE1# set ge-0/3/0 gigether-options 802.3ad ae0
```
2. On Device PE1, configure the packet header data to be used for per-flow load balancing.

```
[edit forwarding-options hash-key family multiservice]
user@PE1# set source-mac
user@PE1# set destination-mac
user@PE1# set payload ip layer-3
```

3. Configure the routing policy on Device PE1.

```
[edit policy-options]
user@PE1# set policy-statement exp-to-fwd term a from community grn-com
user@PE1# set policy-statement exp-to-fwd term a then install-nexthop lsp PE1-to-PE2
user@PE1# set policy-statement exp-to-fwd term a then accept
user@PE1# set policy-options community grn-com members target:65000:1
```

4. Configure Device PE1 routing protocols and MPLS.

```
[edit protocols]
user@PE1# set rsvp interface all
user@PE1# set rsvp interface fxp0.0 disable
user@PE1# set mpls label-switched-path PE1-to-PE2 to 10.255.19.77
user@PE1# set mpls label-switched-path PE1-to-PE3 to 10.255.19.79
user@PE1# set mpls interface all
user@PE1# set mpls interface fxp0.0 disable
user@PE1# set bgp group int type internal
user@PE1# set bgp group int local-address 10.255.71.214
user@PE1# set bgp group int family inet any
user@PE1# set bgp group int family l2vpn signaling
user@PE1# set bgp group int neighbor 10.255.19.77
user@PE1# set bgp group int neighbor 10.255.19.79
user@PE1# set ospf traffic-engineering
user@PE1# set ospf area 0.0.0.0 interface all
```
5. Configure VPLS on Device PE1.

[edit routing-instances vpls]
user@PE1# set instance-type vpls
user@PE1# set interface ge-0/2/2.0
user@PE1# set route-distinguisher 65000:1
user@PE1# set vrf-target target:65000:1
user@PE1# set protocols vpls site-range 3
user@PE1# set protocols vpls no-tunnel-services
user@PE1# set protocols vpls site asia site-identifier 1
user@PE1# set protocols vpls site asia interface ge-0/2/2.0
user@PE1# set protocols vpls vpls-id 100
user@PE1# set protocols vpls bum-hashing

Step-by-Step Procedure
To configure Device PE2:

1. Configure Device PE2 interfaces.

[edit interfaces]
user@PE2# set ge-0/0/7 gigether-options 802.3 ad ae0
user@PE2# set ge-0/1/7 gigether-options 802.3 ad ae0
user@PE2# set ge-0/2/3 gigether-options 802.3 ad ae0
user@PE2# set ge-0/2/7 gigether-options 802.3 ad ae0
user@PE2# set ge-2/0/0/gigether-options 802.3 ad ae1
user@PE2# set ge-2/0/1 gigether-options 802.3 ad ae1
user@PE2# set ge-2/0/2 gigether-options 802.3 ad ae1
user@PE2# set ge-2/0/4 encapsulation ethernet-vpls
user@PE2# set ge-2/0/4 unit 0 family vpls
user@PE2# set ge-2/0/7 gigether-options 802.3 ad ae0
user@PE2# set ge-2/0/9 unit 0 family inet address 1.1.1.1/30
user@PE2# set ge-2/0/9 unit 0 family mpls
user@PE2# set ge-2/1/7 gigether-options 802.3 ad ae0
user@PE2# set ge-2/2/7 gigether-options 802.3 ad ae0
user@PE2# set ge-2/3/7 gigether-options 802.3 ad ae0
user@PE2# set ae0 unit 0 family inet address 11.11.11.1/30
user@PE2# set ae0 unit 0 family iso
user@PE2# set ae0 unit 0 family mpls
user@PE2# set ae1 unit 0 family inet address 10.1.1.1/30
user@PE2# set ae1 unit 0 family mpls
2. Configure Device PE2 routing protocols and MPLS.

```
[edit protocols]
user@PE2# set rsvp interface all
user@PE2# set rsvp interface fxp0.0 disable
user@PE2# set mpls label-switched-path PE2-to-PE3 from 10.255.19.77
user@PE2# set mpls label-switched-path PE2-to-PE3 to 10.255.19.79
user@PE2# set mpls label-switched-path PE2-to-PE1 to 10.255.71.214
user@PE2# set mpls interface all
user@PE2# set mpls interface fxp0.0 disable
user@PE2# set bgp group int type internal
user@PE2# set bgp group int local-address 10.255.19.77
user@PE2# set bgp group int family inet any
user@PE2# set bgp group int family l2vpn signaling
user@PE2# set bgp group int neighbor 10.255.71.214
user@PE2# set bgp group int neighbor 10.255.19.79
user@PE2# set ospf traffic-engineering
user@PE2# set ospf area 0.0.0.0 interface lo0.0
user@PE2# set ospf area 0.0.0.0 interface ge-2/0/0.0
user@PE2# set ospf area 0.0.0.0 interface ge-2/0/1.0
user@PE2# set ospf area 0.0.0.0 interface ge-2/0/2.0
user@PE2# set ospf area 0.0.0.0 interface ae0.0
user@PE2# set ospf area 0.0.0.0 interface ae1.0
user@PE2# set ospf area 0.0.0.0 interface all
user@PE2# set ospf area 0.0.0.0 interface fxp0.0 disable
user@PE2# set ldp interface all
user@PE2# set ldp interface fxp0.0 disable
```

3. Configure VPLS on Device PE2.

```
[edit routing-instances vpls]
user@PE2# set instance-type vpls
user@PE2# set interface ge-2/0/4.0
user@PE2# set route-distinguisher 65000:1
user@PE2# set vrf-target target:65000:1
user@PE2# set protocols vpls site-range 3
user@PE2# set protocols vpls no-tunnel-services
user@PE2# set protocols vpls site 2 site-identifier 2
user@PE2# set protocols vpls site 2 interface ge-2/0/4.0
user@PE2# set protocols vpls vpls-id 100
user@PE2# set protocols vpls bum-hashing
```
Results

From configuration mode, confirm your configuration by issuing the *show forwarding-options, show interfaces, show protocols, show policy-options, and show routing-options* commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Device PE1

```plaintext
user@PE1# show forwarding-options
hash-key {
 family multiservice {
 source-mac;
 destination-mac;
 payload {
 ip {
 layer-3;
 }
 }
 }
}

user@PE1# show interfaces
ge-0/0/6 {
 gigether-options {
 802.3ad ae0;
 }
}
ge-0/1/6 {
 gigether-options {
 802.3ad ae0;
 }
}
ge-0/2/2 {
 encapsulation ethernet-vpls;
 unit 0 {
 family vpls;
 }
}
ge-0/2/3 {
 gigether-options {
 802.3ad ae0;
 }
}
```
ge-0/2/6 {
    gigether-options {
        802.3ad ae0;
    }
}

gi-0/3/0 {
    gigether-options {
        802.3ad ae0;
    }
}

gi-0/3/1 {
    gigether-options {
        802.3ad ae0;
    }
}

gi-0/3/6 {
    gigether-options {
        802.3ad ae0;
    }
}

gi-1/0/6 {
    gigether-options {
        802.3ad ae0;
    }
}

gi-1/2/6 {
    unit 0 {
        family inet {
            address 13.1.1.2/30;
        }
    }
}

ae0 {
    unit 0 {
        family inet {
            address 11.11.11.1/30;
        }
        family iso;
        family mpls;
    }
}
user@PE1# show protocols
mpls {
    interface all;
    interface fxp0.0 {
        disable;
    }
    label-switched-path PE1-to-PE2 {
        to 10.255.19.77;
    }
    label-switched-path PE1-to-PE3 {
        to 10.255.19.79;
    }
}

rsvp {
    interface all;
    interface fxp0.0 {
        disable;
    }
}

bgp {
    group int {
        type internal;
        local-address 10.255.71.214;
        family inet {
            any;
        }
        family l2vpn {
            signaling;
        }
        neighbor 10.255.19.77;
        neighbor 10.255.19.79;
    }
}

ospf {
    traffic-engineering;
    area 0.0.0.0 {
        interface all;
        interface fxp0.0 {
            disable;
        }
    }
}

user@PE1# show policy-options
policy-statement exp-to-fwd {
  term a {
    from community grn-com;
    then {
      install-nexthop lsp PE1-to-PE2;
      accept;
    }
  }
  }
}
community grn-com members target:65000:1;

user@PE1# show routing-instances
vpls {
  instance-type vpls;
  interface ge-0/2/2.0;
  route-distinguisher 65000:1;
  vrf-target target:65000:1;
  protocols {
    vpls {
      site-range 3;
      no-tunnel-services;
      site asia {
        site-identifier 1;
        interface ge-0/2/2.0;
      }
      vpls-id 100;
      bum-hashing;
    }
  }
}

Device PE2

user@PE2# show interfaces
ge-0/0/7 {
  gigether-options {
    802.3ad ae0;
  }
}
ge-0/1/7 {
  gigether-options {

802.3ad ae0;
}
}
ge-0/2/3 {
    gigether-options {
        802.3ad ae0;
    }
}
ge-0/2/7 {
    gigether-options {
        802.3ad ae0;
    }
}
ge-2/0/0 {
    gigether-options {
        802.3ad ae1;
    }
}
ge-2/0/1 {
    gigether-options {
        802.3ad ae1;
    }
}
ge-2/0/2 {
    gigether-options {
        802.3ad ae1;
    }
}
ge-2/0/4 {
    encapsulation ethernet-vpls;
    unit 0 {
        family vpls;
    }
}
ge-2/0/7 {
    gigether-options {
        802.3ad ae0;
    }
}
ge-2/0/9 {
    unit 0 {
        family inet {

address 1.1.1.1/30;
)
family mpls;
)
)
ge-2/1/7 {
gigether-options {
  802.3ad ae0;
}
}
ge-2/2/7 {
gigether-options {
  802.3ad ae0;
}
}
ge-2/3/7 {
gigether-options {
  802.3ad ae0;
}
}
)
ea0 {
  unit 0 {
    family inet {
      address 11.11.11.2/30;
    }
    family iso;
    family mpls;
  }
}
)
ea1 {
  unit 0 {
    family inet {
      address 10.1.1.1/30;
    }
    family mpls;
  }
}
}

user@PE2# show protocols
rsvp {
  interface all;
}
interface fxp0.0 {
    disable;
}
}
}

mpls {
    label-switched-path PE2-to-PE3 {
        from 10.255.19.77;
        to 10.255.19.79;
    }
    label-switched-path PE2-to-PE1 {
        to 10.255.71.214;
    }
    interface all;
    interface fxp0.0 {
        disable;
    }
}
}

bgp {
    group int {
        type internal;
        local-address 10.255.19.77;
        family inet {
            any;
        }
        family l2vpn {
            signaling;
        }
        neighbor 10.255.71.214;
        neighbor 10.255.19.79;
    }
}
}

ospf {
    traffic-engineering;
    area 0.0.0.0 {
        interface lo0.0;
        interface ge-2/0/0.0;
        interface ge-2/0/1.0;
        interface ge-2/0/2.0;
        interface ae0.0;
        interface ae1.0;
        interface all;
        interface fxp0.0 {
            disable;
        }
    }
}
Verification

You can monitor the operation of the routing instance by running the `show interfaces ae1.0 extensive` and `monitor interface traffic` commands.

For troubleshooting, you can configure tracing operations for all of the protocols.

RELATED DOCUMENTATION

* Configuring Point-to-Multipoint LSPs for an MBGP MVPN*
Understanding Wildcards to Configure Selective Point-to-Multipoint LSPs for an MBGP MVPN

show interfaces (Aggregated Ethernet)

Load Balancing VPLS Non-Unicast Traffic Across Member Links of an Aggregate Interface
CHAPTER

Configuring Other Forwarding Options

Configuring Routers, Switches, and Interfaces as DHCP and BOOPT Relay Agents | 122

Configuring DNS and TFTP Packet Forwarding | 126

Configuring Port-based LAN Broadcast Packet Forwarding | 130

Preventing DHCP Spoofing on MX Series 5G Universal Routing Platforms | 132

Understanding the Hyper Mode Feature on Enhanced MPCs for MX Series Routers and EX9200 Switches | 134

Configuring Hyper Mode on Enhanced MPCs to Speed Up Packet Processing | 137

Unsupported Features and CLI Commands When Hyper Mode Is Enabled | 139
Configuring Routers, Switches, and Interfaces as DHCP and BOOTP Relay Agents

You can configure the router, switch, or interface to act as a Dynamic Host Configuration Protocol (DHCP) and Bootstrap Protocol (BOOTP) relay agent. This means that a locally attached host can issue a DHCP or BOOTP request as a broadcast message. If the router, switch, or interface sees this broadcast message, it relays the message to a specified DHCP or BOOTP server.

You should configure the router, switch, or interface to be a DHCP and BOOTP relay agent if you have locally attached hosts and a distant DHCP or BOOTP server. For MX Series routers connected via IRB, see the note below to prevent BOOTP reply packets from being dropped.

To configure the router or switch to act as a DHCP and BOOTP relay agent, include the `bootp` statement at the [edit forwarding-options helpers] hierarchy level:

```
[edit forwarding-options helpers]
bootp {
 client-response-ttl number;
 description text-description;
 interface (interface-name | interface-group) {
 client-response-ttl number;
 description text-description;
 maximum-hop-count number;
 minimum-wait-time seconds;
 no-listen;
 server address {
 logical-system logical-system-name <routing-instance [<default> routing-instance-names]>;
 routing-instance [<default> routing-instance-names];
 }
 }
 maximum-hop-count number;
 minimum-wait-time seconds;
 relay-agent-option;
 server server-identifier {
 <logical-system logical-system-name>
 <routing-instance [routing-instance-names]>;
 }
}
```

To set the description of the BOOTP service, DHCP service, or interface, include the `description` statement.

To set a logical interface or a group of logical interfaces with a specific DHCP relay or BOOTP configuration, include the `interface` statement.
To set the routing instance of the server to forward, include the `routing-instance` statement. You can include as many routing instances as necessary in the same statement.

To stop packets from being forwarded on a logical interface, a group of logical interfaces, or the router or switch, include the `no-listen` statement.

To set the maximum allowed number in the hops field of the BOOTP header, include the `maximum-hop-count` statement. Headers that have a larger number in the hops field are not forwarded. If you omit the `maximum-hop-count` statement, the default value is four hops.

To set the minimum allowed number of seconds in the `secs` field of the BOOTP header, include the `minimum-wait-time` statement. Headers that have a smaller number in the `secs` field are not forwarded. The default value for the minimum wait time is zero (0).

To set the IP address that specify the DHCP or BOOTP server for the router, switch, or interface, include the `server` statement. You can include multiple `server` statements.

To set an IP time-to-live (TTL) value for DHCP response packets sent to a DHCP client, include the `client-response-ttl` statement.

To use the DHCP relay agent option in relayed BOOTP/DHCP messages, include the `relay-agent-option` statement. This option is primarily useful for enabling DHCP forwarding between different VRF routing instances. This option is documented in RFC 3046, *DHCP Relay Agent Information Option*.

You can also configure an individual logical interface to be a DHCP and BOOTP relay agent if you have locally attached hosts and a remote DHCP or BOOTP server connected to one of the router's or switch's interfaces. For more information, see the *Junos OS Administration Library*.

The following example demonstrates a BOOTP relay agent configuration.

```sh
user@host# show forwarding-options
helpers {
 bootp {
 description "dhcp relay agent global parameters";
 server 192.168.55.44;
 server 172.16.0.3 routing-instance c3;
 maximum-hop-count 10;
 minimum-wait-time 8;
 interface {
 fe-1/3/0 {
 description "use this info for this interface";
 server 10.10.10.10;
 server 192.168.14.14;
 maximum-hop-count 11;
 minimum-wait-time 3;
 }
 }
 }
}
```
fe-1/3/1 {
    no-listen; ###ignore DHCPDISCOVER messages on this interface
}
all {
    description "globals apply to all other interfaces";
}
}
BEST PRACTICE:

To use **bootp helper** on a MX Series router (MX80, MX240, MX480 and MX960) connected via IRB, you may need to take steps to ensure that DHCP discover packets (the bootp reply) are sent to clients and received as expected. Otherwise, **bootp** replies may be dropped because the DHCP client is clearing the broadcast bit in the discover packet, or because the DHCP server is stripping **option-82** flags from the **offer**.

This happens when the IRB interface is a layer 3 (logical) interface associated with a bridge domain that has multiple layer 2 (physical) interfaces associated with it. In such cases, if the **offer** from the DHCP server is unicast and doesn't include an ingress interface identifying the physical interface on which the **discovery** packet was received, the MX router won't be able to determine an interface for sending out **offers**.

1. Enable **broadcast** on the IRB interface to flood **discovery** frames from all physical interfaces in the bridge domain. For example,

   ```
 user@host# edit forwarding-options helpers bootp interface irb.o
 broadcast;
 server 202.67.4.1;
 }
   ```

   or,

2. Enable **relay-agent-option** on the bootp helper. For example,

   ```
 user@host# edit forwarding-options helpers bootp
 relay-agent-option;
 server 202.67.4.1;
 }
   ```

3. Configure the IRB interface connected to the DHCP server so it echoes **option-82** flags back to the router. This will ensure that the **option-82** string, which identifies the interface used by the router, is preserved.
Configuring DNS and TFTP Packet Forwarding

You can configure the router or switch to support Domain Name System (DNS) and Trivial File Transfer Protocol (TFTP) packet forwarding for IPv4 traffic, which allows clients to send DNS or TFTP requests to the router or switch. The responding DNS or TFTP server recognizes the client address and sends a response directly to that address. By default, the router or switch ignores DNS and TFTP request packets.

To enable DNS or TFTP packet forwarding, include the `helpers` statement at the `[edit forwarding-options]` hierarchy level:

```
[edit forwarding-options]
helpers {
 domain {
 description text-description;
 interface interface-name {
 description text-description;
 no-listen;
 server [addresses {
 logical-system logical-system-name;
 routing-instance instance-name;
 }
]
 }
 }
 tftp {
 description text-description;
 interface interface-name {
 description text-description;
 no-listen;
 server address;
 server logical-system name < [routing-instance routing-instance-names] >;
 server < [routing-instance routing-instance-names] >;
 }
 }
}
```
To set domain packet forwarding, include the `domain` statement.

To set the description of the DNS or TFTP service, include the `description` statement.

To set TFTP packet forwarding, include the `tftp` statement.

To set a DNS or TFTP server (with an IPv4 address), include the `server` statement. Use one address for either a global configuration or for each interface.

To set the routing instance of the server to forward, include the `routing-instance` statement. You can include as many routing instances as necessary in the same statement.

To disable recognition of DNS or TFTP requests on one or more interfaces, include the `no-listen` statement. If you do not specify at least one interface with this statement, the forwarding service is global to all interfaces on the router or switch.

The following sections discuss the following:

---

**Tracing BOOTP, DNS, and TFTP Forwarding Operations**

---

### IN THIS SECTION

- Configuring the Log Filename | 128
- Configuring the Number and Size of Log Files | 128
- Configuring Access to the Log File | 129
- Configuring a Regular Expression for Lines to Be Logged | 129

---

BOOTP, DNS, and TFTP forwarding tracing operations track all BOOTP, DNS, and TFTP operations and record them in a log file. The logged error descriptions provide detailed information to help you solve problems faster.

By default, nothing is traced. If you include the `traceoptions` statement at the `[edit forwarding-options helpers]` hierarchy level, the default tracing behavior is the following:

- Important events are logged in a file called `fud` located in the `/var/log` directory.
- When the file `fud` reaches 128 kilobytes (KB), it is renamed `fud.0`, then `fud.1`, and so on, until there are 3 trace files. Then the oldest trace file (`fud.2`) is overwritten. (For more information about how log files are created, see the System Log Explorer.)
- Log files can be accessed only by the user who configures the tracing operation.
You cannot change the directory (/var/log) in which trace files are located. However, you can customize the other trace file settings by including the following statements at the [edit forwarding-options helpers] hierarchy level:

```
[edit forwarding-options helpers]
traceoptions {
 file filename <files number> <match regular-expression> <size size> <world-readable | no-world-readable>;
 flag {
 address;
 all;
 config;
 domain;
 ifdb;
 io;
 main;
 port;
 rtsock;
 tftp;
 trace;
 ui;
 util;
 }
 level severity-level;
 no-remote-trace;
}
```

These statements are described in the following sections:

**Configuring the Log Filename**

By default, the name of the file that records trace output is `fud`. You can specify a different name by including the `file filename` statement at the [edit forwarding-options helpers traceoptions] hierarchy level:

```
[edit forwarding-options helpers]
file filename;
```

**Configuring the Number and Size of Log Files**

By default, when the trace file reaches 128 kilobytes (KB) in size, it is renamed `filename.0`, then `filename.1`, and so on, until there are three trace files. Then the oldest trace file (`filename.2`) is overwritten.

You can configure the limits on the number and size of trace files by including the following statements at the [edit forwarding-options helpers traceoptions] hierarchy level:
For example, set the maximum file size to 2 MB, and the maximum number of files to 20. When the file that receives the output of the tracing operation (filename) reaches 2 MB, filename is renamed filename.0, and a new file called filename is created. When the new filename reaches 2 MB, filename.0 is renamed filename.1 and filename is renamed filename.0. This process repeats until there are 20 trace files. Then the oldest file (filename.19) is overwritten by the newest file (filename.0).

The number of files can be from 2 through 1000 files. The file size of each file can be from 10 KB through 1 gigabyte (GB).

Configuring Access to the Log File

By default, log files can be accessed only by the user who configures the tracing operation.

To specify that any user can read all log files, include the world-readable option with the file statement at the [edit forwarding-options helpers traceoptions] hierarchy level:

```
[edit forwarding-options helpers traceoptions]
file world-readable;
```

To explicitly set the default behavior, include the no-world-readable option with the file statement at the [edit forwarding-options helpers traceoptions] hierarchy level:

```
[edit forwarding-options helpers traceoptions]
file no-world-readable;
```

Configuring a Regular Expression for Lines to Be Logged

By default, the trace operation output includes all lines relevant to the logged events.

You can refine the output by including the match option with the file statement at the [edit forwarding-options helpers traceoptions] hierarchy level and specifying a regular expression (regex) to be matched:

```
[edit forwarding-options helpers traceoptions]
file filename match regular-expression;
```
Example: Configuring DNS Packet Forwarding

Enable DNS packet request forwarding to all interfaces on a router except t1-1/1/2 and t1-1/1/3:

```
[edit forwarding-options helpers]
dns {
 server 10.10.10.30;
 interface {
 t1-1/1/2 {
 no-listen;
 server 10.10.10.9;
 }
 t1-1/1/3 {
 no-listen;
 server 10.10.10.4;
 }
 }
}
```

Configuring Port-based LAN Broadcast Packet Forwarding

You can enable a router or switch to forward LAN broadcast traffic on custom UDP ports to specified servers by configuring port helpers with the [edit forwarding-options helpers] port configuration statement. Port helpers are also referred to as port forwarding or UDP broadcast packet forwarding services. When you configure a port helper, the router or switch listens for incoming UDP traffic for the configured port with destination Layer 2 MAC and Layer 3 IP broadcast addresses, and forwards the packets as unicast traffic to a configured server.

Port helpers forward the traffic for configured ports transparently, without considering the application layer protocols in the packets being forwarded. However, you cannot configure a port helper to forward traffic for standard ports used by services such as BOOTP, DNS and TFTP. These services have their own explicit packet forwarding helper configuration options (see helpers and "Configuring DNS and TFTP Packet Forwarding" on page 126).

You can configure port helpers to listen for and forward broadcast traffic for a configured port using any of the following scopes:

- Global scope—Forward incoming broadcast traffic on the port to a configured destination server IP address.
Configure a global port helper using only the `server` configuration option, without specifying a particular interface. The port helper listens for incoming traffic on any interfaces to forward to the configured server. For example:

```
set forwarding-options helpers port 1300 server 10.20.30.40
```

- **VLAN-specific scope**—Forward incoming broadcast traffic on the port from a configured VLAN to a configured destination server IP address.

Configure a VLAN-specific port helper using the `interface` statement with an IRB interface name for a VLAN, and the `server` statement. The port helper listens for incoming traffic from interfaces in the VLAN to forward to the configured server. For example:

```
set forwarding-options helpers port 1064 interface irb.100 server 192.0.2.50
```

- **Interface-specific scope**—Forward incoming broadcast traffic on the port from a configured Layer 3 interface to a configured destination server IP address.

Configure an interface-specific port helper using the `interface` statement with a Layer 3 interface name, and the `server` statement. The port helper listens for incoming traffic only from the configured interface to forward to the configured server. For example:

```
set forwarding-options helpers port 1064 interface ge-0/0/3 server 192.0.2.50
```

For any scope, optionally use the `description` statement to label or describe the configured forwarding service.

In releases prior to Junos OS Release 17.2, you can configure only one destination server for a given port number. Starting in Junos OS Release 17.2R1, you can configure forwarding traffic to multiple servers for a given port in any port helper scope. To configure forwarding the traffic on a specified port to multiple destination servers, include multiple configuration items for the port and each server (or interface and server). For example, in the global scope:

```
set forwarding-options helpers port 1300 server 10.20.30.4
set forwarding-options helpers port 1300 server 10.20.30.5
set forwarding-options helpers port 1300 server 10.20.30.6
```

To temporarily disable listening on a configured port from a configured interface, include the `no-listen` option with the configured item, as follows:

```
set forwarding-options helpers port port-number interface interface-name server address no-listen
```

To remove a configured port helper service from a router or switch, delete the configured `port` number item, as follows:
If multiple servers are configured for a particular port, to remove any or all such forwarding services, you must delete each configured port and server item individually. For example:

```
delete forwarding-options helpers port <port-number>
```

```
delete forwarding-options helpers port 1300 server 10.20.30.4
delete forwarding-options helpers port 1300 server 10.20.30.5
delete forwarding-options helpers port 1300 server 10.20.30.6
```

### Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2R1</td>
<td>Starting in Junos OS Release 17.2R1, you can configure forwarding traffic to multiple servers for a given port in any port helper scope.</td>
</tr>
</tbody>
</table>

### RELATED DOCUMENTATION

- `port (Packet Forwarding)` | 257
- `server (DNS, Port, and TFTP Service)` | 277
- `interface (DNS, Port, and TFTP Packet Forwarding or Relay Agent)` | 222

### Preventing DHCP Spoofing on MX Series 5G Universal Routing Platforms

A problem that sometimes occurs with DHCP is **DHCP spoofing**, in which an untrusted client floods a network with DHCP messages. Often these attacks utilize source IP address spoofing to conceal the true source of the attack.

DHCP snooping helps prevent DHCP spoofing by copying DHCP messages to the control plane and using the information in the packets to create anti-spoofing filters. The anti-spoofing filters bind a client’s MAC address to its DHCP-assigned IP address and use this information to filter spoofed DHCP messages. In a typical topology, a carrier edge router (in this function also referred to as the broadband services router [BSR]) connects the DHCP server and the MX Series router (or broadband services aggregator [BSA]) performing the snooping. The MX Series router connects to the client and the BSR.
DHCP snooping works as follows in the network topology mentioned above:

1. The client sends a DHCP discover message to obtain an IP address from the DHCP server.
2. The BSA intercepts the message and might add option 82 information specifying the slot, port, VPI/VCI, and so on.
3. The BSA then sends the DHCP discover message to the BSR, which converts it to a unicast packet and sends it to the DHCP server.
4. The DHCP server looks up the client’s MAC address and option 82 information in its database. A valid client is assigned an IP address, which is returned to the client using a DHCP offer message. Both the BSR and BSA send this message upstream to the client.
5. The client examines the DHCP offer, and if it is acceptable, issues a DHCP request message that is sent to the DHCP server through the BSA and BSR.
6. The DHCP server confirms that the IP address is still available. If it is, the DHCP server updates its local tables and sends a DHCP ACK message to the client.
7. The BSR receives the DHCP ACK message and passes the message to the BSA.
8. The BSA creates an anti-spoofing filter by binding the IP address in the ACK message to the MAC address of the client. After this point, any DHCP messages from this IP address that are not bound to the client's MAC address are dropped.
9. The BSA sends the ACK message to the client so that the process of assigning a IP address can be completed.

You configure DHCP snooping by including within a DHCP group the appropriate interfaces of the BSA:

```plaintext
[edit routing-instances routing-instance-name bridge-domains bridge-domain-name forwarding-options dhcp-relay group group-name]
interface interface-name;
```

In a VPLS environment, DHCP requests are forwarded over pseudowires. You can configure DHCP snooping over VPLS at the `[edit routing-instances routing-instance-name]` hierarchy level.

DHCP snooping works on a per learning bridge basis in bridge domains. Each learning domain must have an upstream interface configured. This interface acts as the flood port for DHCP requests coming from the client side. DHCP requests are be forwarded across learning domains in a bridge domain. You can configure DHCP snooping on bridge domains at the `[edit routing-instances routing-instance-name bridge-domains bridge-domain-name]` hierarchy level.

**RELATED DOCUMENTATION**

- Preventing DHCP Spoofing
Starting with Junos OS Release 15.1, enhanced MPCs can be configured to support increased packet processing rates. Enhanced MPCs include these models: MPC3E, MPC4E, MPC5E, MPC6E, MPC7E-MRATE, MPC7E-10G, MX2K-MPC8E, and MX2K-MPC9E.

Starting with Junos OS Release 18.2R1, MPC JNP10K-LC2101 can be configured to support increased packet processing rates. A higher rate of processing of data packets results in the optimization of the lifetime of a data packet. Optimization of the data packet lifetime enables the network device (a router or a switch) to provide better performance and throughput.

To enable the device to support increased packet processing rates, you must configure the hyper mode feature. After configuring the hyper mode feature, you must reboot the device for the changes to take effect.

When you configure the hyper mode feature on the device, the configured mode changes from normal mode to hyper mode. However, because the configuration does not take effect until you reboot the device the current mode of the device remains as normal mode. The current mode changes from normal mode to hyper mode after you reboot the device. If the hyper mode feature is not configured, the device processes data packets in normal mode.

NOTE: You can enable the hyper mode feature only if the network-service mode on the device is configured as either enhanced-ip or enhanced-ethernet.

Table 4 on page 134 displays the values of the current and configured mode based on the hyper mode configuration and system reboot.

<table>
<thead>
<tr>
<th>Action</th>
<th>Current Mode</th>
<th>Configured Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyper mode is configured but the device is not rebooted.</td>
<td>Normal mode</td>
<td>Hyper mode</td>
</tr>
<tr>
<td>Hyper mode is configured and device is rebooted.</td>
<td>Hyper mode</td>
<td>Hyper mode</td>
</tr>
<tr>
<td>Hyper mode configuration is removed and device is not rebooted.</td>
<td>Hyper mode</td>
<td>Normal mode</td>
</tr>
<tr>
<td>Hyper mode configuration is removed and device is rebooted.</td>
<td>Normal mode</td>
<td>Normal mode</td>
</tr>
</tbody>
</table>
Starting in Junos OS Release 19.2R1, MPC10E-10C and MPC10E-15C line cards support the following features in hyper-mode:

- Configuring ICMP redirect and generating ICMP redirect messages.
- Padding VLAN packets to a minimum frame size of 68 bytes, by using the command `set interfaces interface-name gigether-options pad-to-minimum-frame-size`.
- Collecting interface family statistics for IPv4 and IPv6, by using the command `show interfaces statistics detail interface-name`.

When you configure hyper mode, the following features are not supported:

- Creation of Virtual Chassis
- Forwarding class accounting (enhanced mode)
- Interoperability with legacy DPCs, including MS-DPCs. The MPC in hyper mode accepts and transmits data packets only from other existing MPCs.
- Interoperability with non-Ethernet MICs and non-Ethernet Interfaces such as channelized interfaces, multilink interfaces, and SONET interfaces.
- Junos Fusion
- Junos Node Slicing
- Padding of Ethernet frames with VLAN.
- Precision Time Protocol
- Provider Backbone Bridging (PBB) and Ethernet VPN (EVPN)
- Sending Internet Control Message Protocol (ICMP) redirect messages. ICMP redirects are disabled by default and cannot be re-enabled in hyper mode.
- Termination or tunneling of all subscriber-based services.

After you configure the hyper mode feature and reboot the device, existing MPCs that do not support the hyper mode feature, such as MPC1, MPC2, and MPC3, power on in normal mode. Also, when you have installed MICs and PICs on MPCs that are in normal mode when the hyper mode feature is enabled, those MICs and PICs do not power on. Following is a list of the MICs and PICs that do not power on:

- Channelized E1/T1 Circuit Emulation MIC
- Channelized E1/T1 Circuit Emulation MIC (H)
- Channelized OC3/STM1 (Multi-Rate) Circuit Emulation MIC with SFP
- Channelized OC3/STM1 (Multi-Rate) Circuit Emulation MIC with SFP (H)
- Channelized SONET/SDH OC3/STM1 (Multi-Rate) MICs with SFP
- DS3/E3 MIC
- SONET/SDH OC3/STM1 (Multi-Rate) MICs with SFP
- SONET/SDH OC192/STM64 MIC with XFP
- Channelized OC48/STM16 Enhanced IQ (IQE) PIC with SFP

### Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.2R1</td>
<td>Starting with Junos OS Release 18.2R1, MPC JNP10K-LC2101 can be configured to support increased packet processing rates.</td>
</tr>
<tr>
<td>15.1</td>
<td>Starting with Junos OS Release 15.1, enhanced MPCs can be configured to support increased packet processing rates.</td>
</tr>
</tbody>
</table>

### RELATED DOCUMENTATION

- Configuring Hyper Mode on Enhanced MPCs to Speed Up Packet Processing | 137
- Unsupported Features and CLI Commands When Hyper Mode Is Enabled | 139
- show forwarding-options hyper-mode | 304
- hyper-mode (forwarding-options) | 212
Configuring Hyper Mode on Enhanced MPCs to Speed Up Packet Processing

Starting with Junos OS Release 15.1, enhanced MPCs can be configured to support increased packet processing rates. Enhanced MPCs include these models: MPC3E, MPC4E, MPC5E, MPC6E, MPC7E-MRATE, MPC7E-10G, MX2K-MPC8E, and MX2K-MPC9E.

Starting with Junos OS Release 18.2R1, JNP10K-LC2101 MPC can be configured to support increased packet processing rates. A higher rate of processing of data packets results in the optimization of the lifetime of a data packet. Optimization of the data packet lifetime enables the network device (a router or a switch) to provide better performance and throughput.

To configure the device to support increased packet processing rates, you must configure the hyper mode feature. After configuring the hyper mode feature, you must reboot the device for the changes to take effect. If the hyper mode feature is not configured, the device processes data packets in normal mode.

NOTE: You can enable the hyper mode feature only if the network-service mode on the device is configured as either enhanced-ip or enhanced-ethernet.

To configure hyper mode on enhanced MPCs to speed up packet processing:

1. Configure hyper mode by including the forwarding-options hyper-mode statement at the [edit] hierarchy level.

   [edit]
   user@host# set forwarding-options hyper-mode

2. After configuring hyper mode, commit the configuration.

   [edit]
   user@host# commit
NOTE: After configuring hyper mode and committing the configuration, the configured mode changes to hyper-mode but the current mode remains as normal mode. The device displays the following warning message after you commit the configuration:

```
[edit forwarding-options]
'hyper-mode'
WARNING: forwarding-options hyper-mode configuration changed. A system reboot is mandatory. Please reboot the system NOW. Continuing without a reboot might result in unexpected system behavior. commit complete
```

3. Reboot the device for the configuration to take effect.

```
user@host> request system reboot
```

### Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.2R1</td>
<td>Starting with Junos OS Release 18.2R1, JNP10K-LC2101 MPC can be configured to support increased packet processing rates.</td>
</tr>
<tr>
<td>15.1</td>
<td>Starting with Junos OS Release 15.1, enhanced MPCs can be configured to support increased packet processing rates.</td>
</tr>
</tbody>
</table>

### RELATED DOCUMENTATION

- Understanding the Hyper Mode Feature on Enhanced MPCs for MX Series Routers and EX9200 Switches  | 134
- Unsupported Features and CLI Commands When Hyper Mode Is Enabled  | 139
- show forwarding-options hyper-mode  | 304
- hyper-mode (forwarding-options)  | 212
Unsupported Features and CLI Commands When Hyper Mode Is Enabled

Table 5 on page 139 lists the features and corresponding CLI commands that are not supported when the hyper mode feature is enabled. Also, the table lists the error messages displayed when you use the unsupported commands.

Table 5: Unsupported Features and CLI Commands When Hyper Mode Is Enabled

<table>
<thead>
<tr>
<th>Features</th>
<th>Commands</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Chassis</td>
<td>set virtual-chassis preprovisioned</td>
<td>To configure virtual-chassis, 'forwarding-options hyper-mode' should not be configured</td>
</tr>
<tr>
<td></td>
<td>set virtual-chassis member member-id role role serial-number ser_num</td>
<td></td>
</tr>
<tr>
<td></td>
<td>set virtual-chassis no-split-detection</td>
<td></td>
</tr>
<tr>
<td>ICMP Redirect</td>
<td>set system no-directs</td>
<td>To configure system no-directs, 'forwarding-options hyper-mode' should not be configured</td>
</tr>
<tr>
<td></td>
<td>set system no-directs-ipv6</td>
<td>To configure system no-directs-ipv6, 'forwarding-options hyper-mode' should not be configured</td>
</tr>
<tr>
<td></td>
<td>set interface interface-name unit unit family inet no-directs</td>
<td>To configure family inet no-directs, 'forwarding-options hyper-mode' should not be configured</td>
</tr>
<tr>
<td></td>
<td>set interface interface-name unit unit family inet6 no-directs</td>
<td>To configure family inet6 no-directs, 'forwarding-options hyper-mode' should not be configured</td>
</tr>
<tr>
<td>VLAN Ethernet Padding</td>
<td>set interfaces interface-name gigether-options pad-to-minimum-frame-size</td>
<td>To configure gigether-options pad-to-minimum-frame-size, 'forwarding-options hyper-mode' should not be configured</td>
</tr>
<tr>
<td></td>
<td>set interfaces interface-name aggregate-ether-options pad-to-minimum-frame-size</td>
<td>To configure aggregate-ether-options pad-to-minimum-frame-size, 'forwarding-options hyper-mode' should not be configured</td>
</tr>
<tr>
<td>Features</td>
<td>Commands</td>
<td>Error Message</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>PPPoE</td>
<td>set interface <em>interface-name</em> unit <em>unit</em> encapsulation ppp-over-ether</td>
<td>Can't configure protocol family with encapsulation ppp-over-ether or hyper-mode should not be configured</td>
</tr>
<tr>
<td></td>
<td>set interface <em>interface-name</em> unit <em>family</em> pppoe</td>
<td>To configure family pppoe, 'forwarding-options hyper-mode' should not be configured</td>
</tr>
<tr>
<td></td>
<td>set protocols pppoe service-name-tables <em>table-name</em></td>
<td>To configure pppoe, 'forwarding-options hyper-mode' should not be configured</td>
</tr>
<tr>
<td></td>
<td>set dynamic-profiles <em>profile-name</em> interfaces <em>interface-name</em> unit <em>unit</em> pppoe</td>
<td>To configure family pppoe, 'forwarding-options hyper-mode' should not be configured</td>
</tr>
<tr>
<td></td>
<td>set dynamic-profiles <em>profile-name</em> interfaces demux0 unit <em>unit</em> pppoe</td>
<td>To configure family pppoe, 'forwarding-options hyper-mode' should not be configured</td>
</tr>
<tr>
<td></td>
<td>set access tunnel-profile <em>profile-name</em> tunnel <em>tunnel-id</em> tunnel-type l2tp</td>
<td>To configure l2tp, 'forwarding-options hyper-mode' should not be configured</td>
</tr>
<tr>
<td></td>
<td>set services l2tp</td>
<td>To configure services l2tp, 'forwarding-options hyper-mode' should not be configured</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For more information and CLIs, see CoS-Based Interface Counters for IPv4 or IPv6 Aggregate on Layer 2 and forwarding-class-accounting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For CLIs, see Setting Up Junos Node Slicing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For CLIs, see Junos Fusion Provider Edge User Guide and Junos Fusion Enterprise User Guide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For CLIs, see EVPN User Guide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For more information, see Configuring Precision Time Protocol.</td>
</tr>
<tr>
<td>Forwarding class accounting</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>(enhanced mode)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Junos Node Slicing</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Junos Fusion</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Provider Backbone Bridging (PBB)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>and Ethernet VPN (EVPN)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Precision Time Protocol</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
## RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Hyper Mode on Enhanced MPCs to Speed Up Packet Processing</td>
<td>137</td>
</tr>
<tr>
<td>Understanding the Hyper Mode Feature on Enhanced MPCs for MX Series Routers and EX9200 Switches</td>
<td>134</td>
</tr>
<tr>
<td>show forwarding-options hyper-mode</td>
<td>304</td>
</tr>
<tr>
<td>hyper-mode (forwarding-options)</td>
<td>212</td>
</tr>
</tbody>
</table>
Configuration Statements

accounting | 147
aggregation | 149
autonomous-system-type | 151
bootp | 152
bum-hashing | 154
cflowd (Discard Accounting) | 155
cflowd (Flow Monitoring) | 156
client-address | 157
client-response-ttl | 158
description (Forwarding Options) | 159
dhcp-relay (DHCP Spoofing Prevention) | 160
disable (Forwarding Options) | 161
domain | 163
ecmp-local-bias | 164
enhanced-hash-key | 165
input (Port Mirroring)  | 215
input (Sampling)  | 216
instance  | 217
interface (Accounting or Sampling)  | 219
interface (BOOTP)  | 220
interface (DHCP Spoofing Prevention)  | 221
interface (DNS, Port, and TFTP Packet Forwarding or Relay Agent)  | 222
interface (Monitoring)  | 224
interface (Next-Hop Group)  | 225
interface (Port Mirroring)  | 226
l2tp-tunnel-session-identifier  | 227
link-layer-broadcast-inet-check  | 228
load-balance (Forwarding Options)  | 229
load-balance-group  | 231
local-bias  | 232
local-dump  | 233
max-packets-per-second  | 234
maximum-hop-count  | 235
maximum-packet-length  | 236
minimum-wait-time  | 238
mirror-once  | 239
monitoring  | 240
next-hop (Forwarding Options)  | 241
next-hop-group (Forwarding Options)  | 242
next-hop-group  | 244
no-filter-check  | 245
no-listen  | 246
output (Accounting)  | 247
output (Forwarding Table)  | 248
output (Monitoring) | 249
output (Port Mirroring) | 250
output (Sampling) | 252
per-flow | 254
per-prefix | 255
port (cflowd) | 256
port (Packet Forwarding) | 257
port-mirroring | 259
rate (Forwarding Options) | 264
relay-agent-option | 265
route-accounting | 266
rpm-tracking | 267
run-length | 269
sampling (Forwarding Options) | 271
server (DHCP and BOOTP Relay Agent) | 276
server (DNS, Port, and TFTP Service) | 277
server-address (Hosted Services) | 278
server-profile | 279
server-profile (Active Flow Monitoring) | 280
size (Sampling and Traceoptions) | 281
source-checking | 282
stamp | 283
tftp | 284
traceoptions (DNS, Port, and TFTP Packet Forwarding) | 285
traceoptions (Port Mirroring and Traffic Sampling) | 287
transport-type | 288
version | 289
version9 | 290
world-readable (Forwarding Options) | 291
accounting

Syntax

accounting group-name {
    output {
        aggregate-export-interval seconds;
        cflowd [ hostnames ] {
            aggregation {
                autonomous-system;
                destination-prefix;
                protocol-port;
                source-destination-prefix {
                    caida-compliant;
                }
                source-prefix;
            }
            autonomous-system-type (origin | peer);
            port port-number;
            version format;
        }
        flow-active-timeout seconds;
        flow-inactive-timeout seconds;
        interface interface-name {
            engine-id number;
            engine-type number;
            source-address address;
        }
    }
}

Hierarchy Level

[edit forwarding-options]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Specify discard accounting instance name and options.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Discard Accounting | 47
aggregation

Syntax

aggregation { autonomous-system; destination-prefix; protocol-port; source-destination-prefix { caida-compliant; } source-prefix; }

Hierarchy Level

[edit forwarding-options accounting output hostname],
[edit forwarding-options sampling family (inet | inet6 | mpls) output flow-server hostname]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For cflowd version 8 only, specify the type of data to be aggregated; cflowd records and sends only those flows that match the specified criteria.

Options
autonomous-system—Aggregate by autonomous system (AS) number.

caida-compliant—Record source and destination mask length values in compliance with the Version 2.1b1 release of the cflowd application from the Cooperative Association for Internet Data Analysis (CAIDA). If this statement is not configured, Junos OS records source and destination mask length values in compliance with the cflowd Configuration Guide, dated August 30, 1999.
destination-prefix—Aggregate by destination prefix.

protocol-port—Aggregate by protocol and port number.

source-destination-prefix—Aggregate by source and destination prefix.

source-prefix—Aggregate by source prefix.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Directing Traffic Sampling Output to a Server Running the cflowd Application | 30 |
autonomous-system-type

Syntax

autonomous-system-type (origin | peer);

Hierarchy Level

[edit forwarding-options accounting output cflowd hostname],
[edit forwarding-options sampling family (inet | inet6 | mpls) output flow-server hostname]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Specify the type of AS numbers that cflowd exports.

Default

origin

Options

origin—Export origin AS numbers of the packet source address in the Source Autonomous System cflowd field.

peer—Export peer AS numbers through which the packet passed in the Source Autonomous System cflowd field.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Directing Traffic Sampling Output to a Server Running the cflowd Application | 30 |
bootp

Syntax

bootp {
    client-response-ttl number;
    description text-description;
    interface (interface-name | interface-group) {
        client-response-ttl number;
        description text-description;
        maximum-hop-count number;
        minimum-wait-time seconds;
        no-listen;
        server address {
            logical-system logical-system-name <routing-instance [ <default> routing-instance-names ]>;
            routing-instance [ <default> routing-instance-names ];
        }
    }
    maximum-hop-count number;
    minimum-wait-time seconds;
    relay-agent-option;
    server address {
        <logical-system logical-system-name> <routing-instance
        [ routing-instance-names ]>;
    }
}

Hierarchy Level

[edit forwarding-options helpers]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for QFX Series switches.

Description

Configures a router, switch, or interface to act as a Dynamic Host Configuration Protocol (DHCP) or bootstrap protocol (BOOTP) relay agent. For MX Series (MX80, MX240, MX480 and MX960) routers connected via IRB, see "Configuring Routers, Switches, and Interfaces as DHCP and BOOTP Relay Agents" on page 122 for information on how to prevent BOOTP reply packets from being dropped.

DHCP relaying is disabled.
**Options**
The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Configuring Routers, Switches, and Interfaces as DHCP and BOOTP Relay Agents | 122
bum-hashing

Syntax

```
bum-hashing;
```

Hierarchy Level

```
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols vpls],
[edit routing-instances routing-instance-name protocols vpls]
```

Release Information


Description

Load balance VPLS BUM (broadcast, unknown, and multicast) traffic across all members of an aggregate interface for the routing instance.

**NOTE:** On MX Series routers, the bum-hashing configuration is not required when the router is operating in `enhanced-ip` or `enhanced-ethernet` modes. If set, the configuration is ignored.

Required Privilege Level

- **routing**—To view this statement in the configuration.
- **routing-control**—To add this statement to the configuration.

RELATED DOCUMENTATION

- Load Balancing VPLS Non-Unicast Traffic Across Member Links of an Aggregate Interface  | 102
- Example: Configuring Multicast Load Balancing over Aggregated Ethernet Links  | 104
cflowd (Discard Accounting)

Syntax

cflowd hostname 
   aggregation 
      autonomous-system; 
      destination-prefix; 
      protocol-port; 
      source-destination-prefix { 
         caida-compliant; 
      } 
      source-prefix; 
   } 
   autonomous-system-type (origin | peer); 
   port port-number; 
   version format; 
}

Hierarchy Level

[edit forwarding-options accounting group-name output]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Collect an aggregate of sampled flows and send the aggregate to a specified host system that runs the collection utility cfdcollect.

You can configure up to one version 5 and one version 8 flow format at the [edit forwarding-options accounting group-name output] hierarchy level.

Options
hostname—The IP address or identifier of the host system (the workstation running the cflowd utility).

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
**cflowd (Flow Monitoring)**

**Syntax**

```plaintext
cflowd hostname {
 port port-number;
}
```

**Hierarchy Level**

```
[edit forwarding-options monitoring group-name family inet output]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Collect an aggregate of sampled flows and send the aggregate to a specified host system that runs the collection utility cfdcollect.

You can configure up to eight version 5 flow formats at the `[edit forwarding-options monitoring group-name family inet output]` hierarchy level. Version 8 flow formats are not supported for flow-monitoring applications.

**Options**

- **hostname**—The IP address or identifier of the host system (the workstation running the cflowd utility).

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.
client-address

Syntax

```plaintext
client-address ipv4-address;
```

Hierarchy Level

```
[edit services hosted-services server-profile server-profile-name]
```

Release Information

Statement introduced in Junos OS Release 13.2.

Description

Configure the source address to include in the header of each sampled packet. You must specify an IPv4 address. You can also specify the loopback address or the management interface address as the client address.

Options

- `ipv4-address`—IPv4 address of the client.

Default: 0.0.0.0

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Active Flow Monitoring on PTX Series Packet Transport Routers  | 49
client-response-ttl

Syntax

```plaintext
client-response-ttl number;
```

Hierarchy Level

```plaintext
[edit forwarding-options helpers bootp],
[edit forwarding-options helpers bootp interface (interface-name | interface-group)]
```

Release Information

Statement introduced in Junos OS Release 8.1.
Statement introduced in Junos OS Release 11.3 for QFX Series switches.

Description

Set the IP time-to-live (TTL) value in BOOTP response messages sent to a BOOTP client. If you do not include the `client-response-ttl` statement, the default is to leave the TTL field unchanged.

Options

- `number`—IP time-to-live (TTL) value.

Range: 1 through 255

Default: Leave the TTL field in the BOOTP response message unchanged.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Routers, Switches, and Interfaces as DHCP and BOOTP Relay Agents | 122
description (Forwarding Options)

Syntax

description text-description;

Hierarchy Level

[edit forwarding-options helpers bootp],
[edit forwarding-options helpers bootp interface (interface-name | interface-group)],
[edit forwarding-options helpers domain],
[edit forwarding-options helpers domain interface interface-name],
[edit forwarding-options helpers port port-number],
[edit forwarding-options helpers port port-number interface interface-name],
[edit forwarding-options helpers tftp],
[edit forwarding-options helpers tftp interface interface-name]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for QFX Series switches.

Description

Describe a BOOTP, DHCP, Domain Name System (DNS), Trivial File Transfer Protocol (TFTP), or port-based LAN broadcast packet forwarding service, or an interface that is configured for the service.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring DNS and TFTP Packet Forwarding  | 126
- Configuring Port-based LAN Broadcast Packet Forwarding  | 130
- Configuring Routers, Switches, and Interfaces as DHCP and BOOTP Relay Agents  | 122
dhcp-relay (DHCP Spoofing Prevention)

Syntax

dhcp-relay {
    group group-name {
        interface interface-name;
    }
}

Hierarchy Level

[edit routing-instances routing-instance-name bridge-domains bridge-domain-name forwarding-options],
[edit routing-instances routing-instance-name forwarding-options]

Release Information
Statement introduced in Junos OS Release 9.4 (MX Series routers only).

Description
Configure Dynamic Host Configuration Protocol (DHCP) snooping on the router. When acting as a snooping agent, the MX Series router typically is located between the client and the DHCP relay agent. It creates filters by "snooping" DHCP messages and binding DHCP-issued IP addresses to the MAC address of the client. These filters help prevent DHCP spoofing.

Configure DHCP snooping by including the appropriate interfaces in the DHCP relay configuration.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Preventing DHCP Spoofing on MX Series 5G Universal Routing Platforms | 132 |
disable (Forwarding Options)

Syntax

disable;

Hierarchy Level

[edit forwarding-options port-mirror],
[edit forwarding-options port-mirror instance instance-name],
[edit forwarding-options sampling],
[edit forwarding-options sampling instance instance-name],
[edit forwarding-options sampling family (inet | inet6 | mpls | vpls)],
[edit forwarding-options sampling family (inet | inet6 | mpls | vpls) output file]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement added to port-mirror hierarchy in Junos OS Release 9.6.

NOTE: Beginning in Junos OS Release 15.1F5 and later 15.1 releases and Junos OS Release 16.1 and later, the disable option has been deprecated at the forwarding-options sampling instance instance-name family (inet | inet6 | mpls) hierarchy level on PTX3000 Series routers. When configured, the option does not take effect, so packets continue to be sampled. Instead of the disable option, use the deactivate forwarding-options sampling instance instance-name family (inet | inet6 | mpls) command to prevent sampling.

Description
Disable traffic accounting, port mirroring, or sampling.

NOTE: The disable statement at the [edit forwarding-options sampling] hierarchy level disables only Routing Engine-based sampling. To disable PIC-based sampling and inline sampling, include the disable statement at the [edit forwarding-options sampling instance instance-name] hierarchy level.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
RELATED DOCUMENTATION

Disabling Traffic Sampling | 27
Configuring Traffic Sampling on MX, M and T Series Routers
Configuring Port Mirroring on M, T MX, ACX, and PTX Series Routers
domain

Syntax

domain {
    description text-description;
    interface interface-name {
        broadcast;
        description text-description;
        no-listen;
        server address <logical-system logical-system-name> <routing-instance routing-instance-name>;
    }
    server address <logical-system logical-system-name> <routing-instance routing-instance-name>;
}

Hierarchy Level

[edit forwarding-options helpers]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description
Enable DNS request packet forwarding.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring DNS and TFTP Packet Forwarding | 126 |
**ecmp-local-bias**

**Syntax**

```
ecmp-local-bias;
```

**Hierarchy Level**

```
[edit forwarding-options load-balance]
```

**Release Information**

Statement introduced in Junos OS Release 19.2R1.

**Description**

By default, equal cost multi-path (ECMP) traffic flows are distributed more-or-less equally between forwarding next-hops. Enable **ecmp-local-bias** to have ECMP traffic prefer local forwarding next-hops (that is, local to the packet forwarding engine (PFE) that is performing the packet look up) over remote ones, and to distribute the flows among local members. Local bias percentages cannot be assigned. Note that **ecmp-local-bias** is not intended to be used in conjunction with any other load balancing schemes.

This feature applies chassis-wide. It supports BGP prefixes that are directly reachable with IPv4 MPLS ECMP next-hops on Gigabit Ethernet (ge-) and 10-Gigabit Ethernet (xe-) interfaces. Multicast traffic is not affected.

Use **ecmp-local-bias** when you need to direct ECMP traffic towards local links, for example, to ensure that the overall load on the fabric is reduced.

**Default**

Not enabled

**Required Privilege Level**

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Configuring Per-Prefix Load Balancing | 99
**enhanced-hash-key**

**Syntax**

```plaintext
enhanced-hash-key {
 family any {
 incoming-interface-index;
 no-tunnel-payload;
 }
 family inet {
 gtp-tunnel-endpoint-identifier;
 l2tp-tunnel-session-identifier;
 incoming-interface-index;
 no-destination-port;
 no-source-port;
 type-of-service;
 }
 family inet6 {
 gtp-tunnel-endpoint-identifier;
 incoming-interface-index;
 no-destination-port;
 no-source-port;
 traffic-class;
 }
 family mpls {
 ether-pseudowire {
 zero-control-word;
 }
 incoming-interface-index;
 label-1-exp;
 no-ether-pseudowire;
 no-labels;
 no-payload;
 }
 family multiservice {
 incoming-interface-index;
 no-mac-addresses;
 no-payload;
 outer-priority;
 }
 services-loadbalancing {
 family inet {
 layer-3-services {
 destination-address;
 }
 }
 }
}
```
incoming-interface-index;
source-address;
}
}
family inet6 {
  layer-3-services {
    destination-address;
    incoming-interface-index;
    source-address;
    src-prefix-len;
  }
  }
}
symmetric;
}

Hierarchy Level

[edit forwarding-options],
[edit logical-systems logical-system-name routing-instances instance-name forwarding-options],
[edit routing-instances instance-name forwarding-options]

Release Information
Statement introduced in Junos OS Release 10.1.
services-loadbalancing statement introduced in Junos OS Release 11.2.
gtp-tunnel-endpoint-identifier statement introduced in Junos OS Release 13.2
erether-pseudowire statement introduced in Junos OS Release 16.1 for the M Series, MX Series, and PTX Series.
l2tp-tunnel-session-identifier statement introduced in Junos OS Release 17.2
Starting in Junos OS Release 18.3R1, the default behavior for IPv6, GRE, and PPPoE packet hash computation is to include the flow-label field for improved load-balancing in certain cases. Use the no-payload option to revert to the previous method for hash computation.
Description
Computed hash is used in selecting an ECMP path and load balancing. Starting in Junos OS Release 18.3R1, the `flow-label field` is included by default in the hash computation for IPv6, GRE, and PPPoE packets. This can be beneficial, for example, when you have MX routers operating as designated router (DR) or rendezvous point (RP) and want to load balance traffic on the basis of a single Layer 3 or Layer 4 flow. You can revert to the previous method of hash computation by setting the `no-flow-label` option.

- For GRE packets, if the outer IP packet is non-option packet and the inner packet is IPv4 or IPv6, then the source and destination IP addresses from inner packet will be included in hash computation.

  The Layer 4 ports will also be included in hash computation if the protocol of the inner IP packet is TCP or UDP, and if the inner IP packet is not an options packet.

  If outer IP packet is a non-options packet, and the inner packet is MPLS, then the top inner label is included in hash computation.

- For PPPoE packet, if the inner packet is IPv4 or IPv6, then source and destination IP addresses from inner packet will be included in hash computation.

  The Layer 4 ports are included in the hash computation if the protocol of inner IP packet is TCP or UDP, and the inner IP packet is a non-options packet.

For MX Series routers with MPCs, T4000 routers with Type 5 FPCs, EX9200 switches, and PTX10008 routers, select data used in the hash key for enhanced IP forwarding engines.

By default, MPCs use the following parameters for hashing:

- Source IP address
- Destination IP address
- Layer 3 protocol
- Source port
- Destination port
- Generic routing encapsulation (GRE) for GRE packets only.

You can modify the default hashing mechanism on MPCs and Type 5 FPCs by configuring statements at the `[edit forwarding-options enhanced-hash-key]` hierarchy level.

Default
Not enabled.
Options

services-loadbalancing—Distributes traffic across PICs based on source IP address when a route pointing to more than one services PICs is installed.

symmetric—Enable symmetric load balancing across aggregated Ethernet interfaces. This option is needed on Trio-based MPCs only.

Data selections for services-loadbalancing:

- *inet*—IPv4 addressing protocol.
- *inet6*—IPv6 addressing protocol.
- *layer-3-services*—Include layer 3 IP data in the hash key.
- *incoming-interface-index*—Include incoming interface index in the hash key.
- *source-address*—Include source-address in the hash key.
- *destination-address*—Include destination-address in the hash key.
- *src-prefix-len*—Include the source prefix length in the hash key.

Data selections for family *any* (PTX10008 only):

- *incoming-interface-index*—Include incoming interface index in the hash key.
- *no-tunnel-payload*—Omit the tunnel payload data from the hash key.

Data selections for family *inet*:

- *gtp-tunnel-endpoint-identifier*—Include the tunnel endpoint identifier (TEID) field in the hash key for GPRS tunneling protocol (GTP) traffic.

**NOTE:** This option is supported only on MX Series routers with MPCs and on the MX80 router.

- *incoming-interface-index*—Include incoming interface index in the hash key.
- *no-destination-port*—Omit IP destination port in the hash key.
- *no-source-port*—Omit IP source port in the hash key.
- *type-of-service*—Include type-of-service (TOS) byte in the hash key.

Data selections for family *inet6*:

- *gtp-tunnel-endpoint-identifier*—Include the tunnel endpoint identifier (TEID) field in the hash key for GPRS tunneling protocol (GTP) traffic.
NOTE: This option is supported only on MX Series routers with MPCs and on the MX80 router.

- **incoming-interface-index**—Include the incoming interface index in the hash key.
- **no-destination-port**—Omit the IP destination port in the hash key.
- **no-source-port**—Omit the IP source port in the hash key.
- **traffic-class**—Include the traffic class byte in the hash key.

Data selections for family **mpls**:

- **ether-pseudowire**—Load-balance IP over Ethernet pseudowire. Presence of zero-control-word in the payload indicates an Ethernet frame.
- **incoming-interface-index**—Include the incoming interface index in the hash key.
- **label-1-exp**—The EXP bit of the first label is used in the hash calculation.
- **no-ether-pseudowire**—Omit the Ethernet pseudowire payload data from the hash key (MX Series routers with MPCs only).
- **no-labels**—Omit MPLS labels from the hash key (PTX10008 only).
- **no-payload**—Omit the MPLS payload data from the hash key.

Data selections for family **multiservice**:

- **incoming-interface-index**—Include the incoming interface index in the hash key.
- **no-mac-addresses**—Omit source and destination MAC addresses from the hash key.
- **no-payload**—Omit the payload data from the hash key.
- **outer-priority**—Include the outer 802.1 priority bits in the hash key.

**Required Privilege Level**

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Understanding the Algorithm Used to Load Balance Traffic on MX Series Routers | 77
- Configuring Symmetrical Load Balancing on an 802.3ad Link Aggregation Group on MX Series Routers
**export-format**

**Syntax**

```plaintext
export-format cflowd-version-5;
```

**Hierarchy Level**

```plaintext
[edit forwarding-options monitoring group-name family inet output]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Flow monitoring export format.

**Options**

- `cflowd-version-5`—cflowd version 5.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration

**RELATED DOCUMENTATION**

- Configuring Passive Flow Monitoring | 52
family (Filtering)

Syntax

```
family family-name {
 filter {
 input input-filter-name;
 output output-filter-name;
 }
 flood {
 input filter-name;
 }
 route-accounting;
 source-checking;
}
```

Hierarchy Level

```
[edit forwarding-options]
```

Release Information

Statement introduced before Junos OS Release 7.4.
route-accounting option introduced in Junos OS Release 8.3; supported only with IPv6.
source-checking option introduced in Junos OS Release 12.3 on MX Series 5G Universal Routing Platforms; supported only with IPv6.

Description

Specify address family for filters.

Options

family-name—Address family. Specify inet for IP version 4 (IPv4), inet6 for IP version 6 (IPv6), mpls for MPLS, or vpls for virtual private LAN service (VPLS).

NOTE: In Junos OS Release 8.4 and later, the output statement is not valid at the [edit forwarding-options family vpls filter] hierarchy level.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
RELATED DOCUMENTATION

| Applying Forwarding Table Filters | 70 |
family (Monitoring)

Syntax

family inet {
  output {
    cflowd hostname {
      port port-number;
    }
    export-format cflowd-version-5;
    flow-active-timeout seconds;
    flow-export-destination {
      (cflowd-collector | collector-pic);
    }
    flow-inactive-timeout seconds;
    interface interface-name {
      engine-id number;
      engine-type number;
      input-interface-index number;
      output-interface-index number;
      source-address address;
    }
  }
}

Hierarchy Level

[edit forwarding-options monitoring group-name]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Configure flow monitoring for an address family. Only the IPv4 protocol is supported.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
family (Port Mirroring)

Syntax

family (ccc | inet | inet6 | vpls) {
  output {
    interface interface-name {
      next-hop address;
    }
    next-hop-group group-name{
      group-type inet6;
      interface interface-name {
        next-hop ipv6-address;
      }
      next-hop-subgroup group-name{
        interface interface-name {
          next-hop ipv6-address;
        }
      }
    }
    no-filter-check;
    server-profile server-profile-name;
  }
}

Hierarchy Level

[edit forwarding-options port-mirroring],
[edit forwarding-options port-mirroring instance instance-name]

Release Information

Statement introduced before Junos OS Release 7.4.

vpls and ccc options introduced in Junos OS Release 9.3 for MX Series routers only.
vpls support extended to M7i, M10i, M120, and M320 routers in Junos OS Release 9.5.
ccc option introduced in Junos OS Release 9.6 for M120 and M320 routers only.
Statement introduced in Junos OS Release 12.1 for PTX Series Packet Transport Switches.
ccc option introduced in Junos OS Release 12.3R2 for EX Series switches.
next-hop-group option for family inet6 introduced in Junos OS Release 14.2 for MX Series routers only.

Description

Configure the address type family to sample for port mirroring.

Options
ccc—Sample Layer 2 VPN traffic.

inet—Sample IPv4 traffic.

inet6—Sample IPv6 traffic.

vpls—Sample VPLS traffic.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Port Mirroring | 53
Configuring Active Flow Monitoring on PTX Series Packet Transport Routers | 49
family (Sampling)

Syntax

family (inet | inet6 | mpls) {
    disable;
    output {
        aggregate-export-interval seconds;
        extension-service service-name;
        file {
            disable;
            filename filename;
            files number;
            size bytes;
            (stamp | no-stamp);
            (world-readable | no-world-readable);
        }
        flow-active-timeout seconds;
        flow-inactive-timeout seconds;
        flow-server hostname {
            aggregation {
                autonomous-system;
                destination-prefix;
                protocol-port;
                source-destination-prefix {
                    caida-compliant;
                }
                source-prefix;
            }
            autonomous-system-type (origin | peer);
            (local-dump | no-local-dump);
            port port-number;
            source-address address;
            version format;
            version9 {
                template template-name;
            }
        }
    }
    interface interface-name {
        engine-id number;
        engine-type number;
        source-address address;
    }
}
Hierarchy Level

[edit forwarding-options sampling]

Release Information
Statement introduced before Junos OS Release 7.4.
mpls option introduced in Junos OS Release 8.3.

Description
Configure the protocol family to be sampled.

Options
inet—IP version 4 (IPv4)
inet6—IP version 6 (IPv6)
mpls—MPLS

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring Traffic Sampling | 24 |
family inet

Syntax

family inet {
    layer-3;
    layer-4;
    session-id;
    symmetric-hash {
        complement;
    }
}

Hierarchy Level

[edit forwarding-options hash-key]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Configure layer information for the load-balancing specification. Only the IPv4 protocol is supported.

Options
family inet—Incorporate port data into the hash key for flow determination. By default, port data is ignored when determining flows.

• layer-3—Incorporate Layer 3 (IP) data into the hash key. You must include the layer-3 statement. If you omit the layer-3 statement, the management process removes the hash-key statement from the configuration and the router behaves as if you specified layer-3.

    By default, or if you specify only the layer-3 statement, the router uses the following Layer 3 information in the packet header for per-flow load balancing:

    • Source IP address
    • Destination IP address
    • Protocol
    • Incoming interface index

• layer-4—Incorporate Layer 4 Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) data into the hash key.

    If you include the layer-4 statement, the router uses the following Layer 4 information to load-balance:
- Source port number
- Destination port number
- IP type of service

- **session-id**—Include the session ID in the hash key.
- **symmetric-hash**—Create the symmetric hash key with source and destination ports.
  - **complement**—Create the complement of the symmetric hash key.

**Required Privilege Level**
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**
- Configuring Per-Packet Load Balancing | 92
family mpls

Syntax

family mpls {
  all-labels;
  label-1;
  label-2;
  label-3;
  no-labels;
  no-label-1-exp;
  payload {
    ether-pseudowire {
      zero-control-word;
    }
    ip {
      disable;
      layer-3-only;
      port-data {
        source-msb;
        source-lsb;
        destination-msb;
        destination-lsb;
      }
    }
  }
}

Hierarchy Level

[edit forwarding-options hash-key]

Release Information
Statement introduced before Junos OS Release 7.4.
no-label-1-exp option introduced in Junos OS Release 8.0.
label-3 and no-labels options introduced in Junos OS Release 8.1.
ether-pseudowire statement introduced in Junos OS Release 9.1 (M320 and T Series routers only); support extended to M120 and MX Series routers in Junos OS Release 9.4.
all-labels and payload ip disable options introduced in Junos OS Release 12.1X48R2. (PTX Series Packet Transport Routers only).
zero-control-word option introduced in Junos OS Release 16.1 for the M Series, MX Series, and PTX Series.
Description

For aggregated Ethernet and SONET/SDH interfaces only, configure load balancing based on MPLS labels and payload. Only the IPv4 protocol is supported.
Options

**family mpls**—(Aggregated Ethernet interfaces, aggregated SONET/SDH interfaces, and multiple equal-cost MPLS next hops only) Incorporate MPLS label and payload information into the hash key for per-flow load balancing. Only the IPv4 protocol is supported.

- **all-labels**—(PTX Series Packet Transport Routers only) Up to eight MPLS labels are included in the hash key to identify the uniqueness of a flow in the Packet Forwarding Engine. This is the default setting.

- **label-1**—(M120, M320, MX Series, and T Series routers only) Include the first MPLS label into the hash key. This is used for a one-label packet for per-flow load balancing IPv4 VPLS traffic based on IP information and MPLS labels.

- **label-2**—(M120, M320, MX Series, and T Series routers only) Include the second MPLS label into the hash key. This is used for a two-label packet for per-flow load balancing IPv4 VPLS traffic based on IP information and MPLS labels. To use the second MPLS label in the hash key, include both the **label-1** and **label-2** statements at the [edit forwarding-options hash-key family mpls] hierarchy level. By default, the router provides hashing on the first and second labels. If both labels are specified, the entire first label and the first 16 bits of the second label are hashed.

- **label-3**—(M120, M320, MX Series, and T Series routers only) Include the third MPLS label into the hash key. To use the third MPLS label, include the **label-1**, **label-2**, and **label-3** statements at the [edit forwarding-options hash-key family mpls] hierarchy level.

- **no-labels**—Include no MPLS labels into the hash key.

- **no-label-1-exp**—(M120, M320, MX Series, and T Series routers only) The EXP bit of the first label is not used in the hash calculation to avoid reordering complications.

- **payload**—Incorporate bits from the IP payload into the hash key for per-flow load balancing Layer 2 information based on MPLS labels.
  - **disable**—(PTX Series Packet Transport Routers only) Exclude IP payload from the hash key.
  - **ether-pseudowire**—(M120, M320, MX Series, and T Series routers only) Load-balance IPv4 traffic over Layer 2 Ethernet pseudowires.
  - **zero-control-word**—(M Series, MX Series, and PTX Series) Precedes Ethernet packet to indicate the start of an Ethernet frame in an MPLS ether-pseudowire payload.

- **ip**—Include the IP address of the IPv4 or IPv6 payload into the hash key for per-flow load balancing Layer 2 information based on MPLS labels. For the PTX Series Packet Transport Routers, this is the default setting with both Layer 3 and Layer 4 IP information included in the hash key.
  - **disable**—(PTX Series Packet Transport Routers only) Exclude IP payload from the hash key.
  - **layer-3-only**—Include only Layer 3 IP information from the IP payload data into the hash key for per-flow load balancing Layer 2 information based on MPLS labels.

- **port-data**—(M120, M320, MX Series, and T Series routers only) Include the source and destination port field information into the hash key. By default, the most significant byte and least significant byte of the source and destination port fields are hashed. To select specific bytes to be hashed,
include one or more of the source-msb, source-lsb, destination-msb, and destination-lsb options at the [edit forwarding-options hash-key family mpls payload ip port-data] hierarchy level. To prevent all four bytes from being hashed, include the layer-3-only statement at the [edit forwarding-options hash-key family mpls payload ip] hierarchy level.

- **destination-lsb**—Include the least-significant byte of the destination port.
- **destination-msb**—Include the most-significant byte of the destination port.
- **source-lsb**—Include the least-significant byte of the source port.
- **source-msb**—Include the most-significant byte of the source port.

**Required Privilege Level**

interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

**RELATED DOCUMENTATION**

- Configuring Load Balancing Based on MPLS Labels
- Configuring Load Balancing for Ethernet Pseudowires | 75
family multiservice

Syntax

family multiservice {
  destination-mac;
  label-1;
  label-2;
  payload {
    ip {
      layer-3 {
        (source-ip-only | destination-ip-only);
      }
      layer-3-only;
      layer-4;
    }
    source-mac;
    symmetric-hash {
      complement;
    }
  }
}

Hierarchy Level

[edit forwarding-options hash-key]

Release Information
Statement introduced in Junos OS Release 8.0.
ip, label-1, label-2, layer-3-only, and payload options introduced in Junos OS Release 9.4.
layer-3, layer-4, source-ip-only, and destination-ip-only options introduced in Junos OS Release 9.5.
symmetric-hash and complement options introduced in Junos OS Release 9.6.

Description
Configure load balancing based on Layer 2 media access control information. On MX Series routers, configure VPLS load balancing. On M120 and M320 routers only, configure VPLS load balancing based on MPLS labels and IP information. For IPv4 traffic, only the IP source and destination addresses are included in the hash key. For MPLS and IPv4 traffic, one or two MPLS labels and IPv4 source and destination addresses are included. For MPLS Ethernet pseudowires, only one or two MPLS labels are included in the hash key.

Options
You can configure one or more options to load-balance using the packet information that you specify.
**destination-mac**—Include the destination-address MAC information in the hash key for Layer 2 load balancing.

**label-1** (M120 and M320 routers only)—Include the first MPLS label in the hash key. Used for including a one-label packet for per-flow load balancing of IPv4 VPLS traffic based on IP information and MPLS labels.

**label-2** (M120 and M320 routers only)—Include the second MPLS label in the hash key. If both **label-1** and **label-2** are specified, the entire first label and the first 16 bits of the second label are hashed.

**payload** (MX Series, M120, and M320 routers only)—Include the packet’s IP payload in the hash key.

- **ip** (MX Series, M120, and M320 routers only)—Include the IP address of the IPv4 or IPv6 payload in the hash key.
  - **layer-3** (MX Series routers only)—Use this to include Layer 3 information from the packet’s IP payload in the hash key.
  - **destination-ip-only** (MX Series routers only)—Use this to include only the destination IP address in the payload in the hash key.
  - **source-ip-only** (MX Series routers only)—Use this to include only the source IP address in the payload in the hash key.

  **NOTE:** You can include either the **source-ip-only** or the **destination-ip-only** statement, not both. They are mutually exclusive.

- **layer-3-only** (M120, and M320 routers only)—Include only the Layer 3 information from the packet’s IP payload in the hash key.

- **layer-4** (MX Series routers only)—Include Layer 4 information from the packet’s IP payload in the hash key.

  **NOTE:** On MX Series routers only, you can configure either Layer 3 or Layer 4 load balancing, or both at the same time.

  **NOTE:** On I chip platforms, an unknown Layer 4 header is excluded from load-balance hashing to avoid undesired packet reordering.

**source-mac**—Include the source-address MAC information in the hash key.

**symmetric-hash** (MX Series routers only)—Configure the symmetric hash or symmetric hash complement for configuring symmetrical load balancing on an 802.3ad Link Aggregation Group.
• complement —Include the complement of the symmetric hash in the hash key.

**Required Privilege Level**
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Configuring Load Balancing Based on MAC Addresses | 101
- Configuring VPLS Load Balancing Based on IP and MPLS Information
- Configuring VPLS Load Balancing on MX Series 5G Universal Routing Platforms
- Configuring VPLS Load Balancing
file (Extended DHCP Relay Agent and Helpers Trace Options)

Syntax

```
file filename <files number> <match regular-expression> <size bytes> <world-readable | no-world-readable>:
```

Hierarchy Level

```
[edit forwarding-options dhcp-relay traceoptions],
[edit forwarding-options helpers traceoptions]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure information about the DNS and TFTP packet-forwarding files that contain trace logging information.

Options

- `filename`—Name of the file containing the trace information.

Default: `/var/log/sampled`

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Tracing BOOTP, DNS, and TFTP Forwarding Operations | 127
file (Sampling)

Syntax

file filename filename <disable> <files number> <stamp | no-stamp> <size bytes> <world-readable | no-world-readable>;

Hierarchy Level

[edit forwarding-options sampling family family-name output]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Collect the traffic samples in a file.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Collecting Traffic Sampling Output in a File | 27
file (Trace Options)

Syntax

```
file filename <files number> <size bytes> <world-readable | no-world-readable>;
```

Hierarchy Level

```
[edit forwarding-options port-mirroring traceoptions],
[edit forwarding-options sampling traceoptions]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure information about the files that contain trace logging information.

Options

- **filename**—The name of the file containing the trace information.

  Default: /var/log/sampled

  The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- [Tracing Traffic-Sampling Operations | 39](#)
filename (Sampling)

Syntax

filename filename;

Hierarchy Level

[edit forwarding-options sampling family family-name output file]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure the name of the output file.

Options

filename—Name of the file in which to place the traffic samples. All files are placed in the directory /var/tmp.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Collecting Traffic Sampling Output in a File | 27 |
files (Sampling and Trace options)

Syntax

```
files number;
```

Hierarchy Level

```
[edit forwarding-options helpertraceoptions file],
[edit forwarding-options port-mirroring traceoptions file],
[edit forwarding-options sampling family family-name output file],
[edit forwarding-options sampling traceoptions file]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport Routers.

Description

Configure the total number of files to be saved with samples or trace data.

Options

- **number**—Maximum number of traffic sampling or trace log files. When a file named `sampling-file` reaches its maximum size, it is renamed `sampling-file.0`, then `sampling-file.1`, and so on, until the maximum number of traffic sampling files is reached. Then the oldest sampling file is overwritten.

Range: 1 through 100 files

Default: 5 files for sampling output; 10 files for trace log information

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Collecting Traffic Sampling Output in a File | 27
- Tracing Traffic-Sampling Operations | 39
filter (IPv4, IPv6, and MPLS)

Syntax

```
filter {
 input input-filter-name;
 output output-filter-name;
}
```

Hierarchy Level

```
[edit forwarding-options family {inet | inet6 | mpls}]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Apply a forwarding table filter to a forwarding table.

Options

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Applying Forwarding Table Filters | 70 |
filter (VPLS)

Syntax

```
filter input filter-name;
```

Hierarchy Level

```
[edit forwarding-options family vpls],
[edit logical-systems logical-system-name forwarding-options family vpls],
[edit logical-systems logical-system-name routing-instances instance-name forwarding-options family vpls],
[edit routing-instances instance-name forwarding-options family vpls]
```

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Apply a forwarding table filter for VPLS.

Options
The other statement is explained separately.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Applying Forwarding Table Filters | 70
flood

**Syntax**

```xml
flood {
 input filter-name;
}
```

**Hierarchy Level**

```xml
[edit forwarding-options family vpls],
[edit routing-instances instance-name forwarding-options family vpls]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Apply a forwarding table filter to a flood table.

**Options**

- **input filter-name**—Name of the forwarding table filter.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Applying Forwarding Table Filters | 70
- Layer 2 Port Mirroring Firewall Filters
flow-active-timeout

Syntax

flow-active-timeout seconds;

Hierarchy Level

[edit forwarding-options accounting group-name output],
[edit forwarding-options monitoring group-name family inet output],
[edit forwarding-options sampling family family-name output]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description

Configure the time that elapses before another active flow is exported.

Options

seconds—Timeout, in seconds.

Range: 60 through 1800

Default: 1800

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Configuring Discard Accounting</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Passive Flow Monitoring</td>
<td>52</td>
</tr>
<tr>
<td>Collecting Traffic Sampling Output in a File</td>
<td>27</td>
</tr>
</tbody>
</table>
flow-export-destination

Syntax

```
flow-export-destination {
 (cflowd-collector | collector-pic);
}
```

Hierarchy Level

```
[edit forwarding-options monitoring group-name family inet output]
```

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Configure flow collection.

Options
cflowd-collector—cflowd collector.

collector-pic—Collector PIC.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring Passive Flow Monitoring | 52 |
flow-inactive-timeout

Syntax

flow-inactive-timeout seconds;

Hierarchy Level

[edit forwarding-options accounting group-name output],
[edit forwarding-options monitoring group-name family inet output],
[edit forwarding-options sampling family family-name output]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description
Configure the time that elapses before a flow is considered inactive.

Options
seconds—Timeout, in seconds.

Range: 15 through 1800
Default: 60

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Configuring Discard Accounting</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Passive Flow Monitoring</td>
<td>52</td>
</tr>
<tr>
<td>Collecting Traffic Sampling Output in a File</td>
<td>27</td>
</tr>
</tbody>
</table>
flow-server

Syntax

```
flow-server hostname {
 aggregation {
 autonomous-system;
 destination-prefix;
 protocol-port;
 routing-instance instance-name;
 source-destination-prefix {
 caida-compliant;
 }
 source-prefix;
 }
 autonomous-system-type (origin | peer);
 (local-dump | no-local-dump);
 port port-number;
 source-address address;
 version format;
 version9 {
 template template-name;
 }
 version-ipfix {
 template template-name;
 }
}
```

Hierarchy Level

```
[edit forwarding-options sampling family family-name output]
```

Release Information

Statement introduced before Junos OS Release 7.4.

```
version9 statement introduced in Junos OS Release 8.3.
```

Statement introduced in Junos OS Release 17.2R1 for QFX10002 switches.

Statement introduced in Junos OS Release 17.4R1 for QFX10008 and QFX10016 switches.

Description

Collect an aggregate of sampled flows and send the aggregate to a specified host system that runs the collection utility `cfdcollect`. Specify a host system to collect sampled flows using the version 9 format.
You can configure up to one version 5 and one version 8 flow format at the [edit forwarding-options sampling output flow-server hostname] hierarchy level. For the same configuration, you can specify only either version 9 flow record formats or formats using versions 5 and 8, not both types of formats.

**Options**

- **hostname**—The IP address or identifier of the host system (the workstation either running the cflowd utility or collecting traffic flows using version 9).

You can configure only one host system for version 9.

On QFX10002 switches, only IPv4 host systems are supported.

The remaining statements are explained separately.

**Required Privilege Level**

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

**RELATED DOCUMENTATION**

| Directing Traffic Sampling Output to a Server Running the cflowd Application | 30 |
group (DHCP Spoofing Prevention)

Syntax

```
group group-name {
 interface interface-name;
}
```

Hierarchy Level

```
[edit routing-instances routing-instance-name bridge-domains bridge-domain-name forwarding-options dhcp-relay],
[edit routing-instances routing-instance-name forwarding-options dhcp-relay]
```

Release Information

Statement introduced in Junos OS Release 9.4 (MX Series routers only).

Description

Configure Dynamic Host Configuration Protocol (DHCP) snooping on the router. When acting as a snooping agent, the MX Series router typically is located between the client and the DHCP relay agent. It creates filters by "snooping" DHCP messages and binding DHCP-issued IP addresses with the MAC address of the client. These filters help prevent DHCP spoofing.

Configure DHCP snooping by including the appropriate interfaces under the group statement.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Preventing DHCP Spoofing on MX Series 5G Universal Routing Platforms | 132 |
gtp-tunnel-endpoint-identifier

Syntax

gtp-tunnel-endpoint-identifier;

Hierarchy Level

[edit forwarding-options hash-key family inet layer-4],

[edit forwarding-options hash-key family inet6 layer-4]

Hierarchy Level (QFX5000 line of switches)

[edit forwarding-options enhanced-hash-key family inet]

Hierarchy Level (QFX10000 line of switches)

[edit forwarding-options enhanced-hash-key family inet],

[edit forwarding-options enhanced-hash-key family inet6]

Release Information
Statement introduced in Junos OS Release 15.1F3 and 16.1R2 for PTX5000 routers with third-generation FPCs.
Statement introduced in Junos OS Release 15.1F6 and 16.1R2 for PTX3000 routers with third-generation FPCs.
Statement introduced in Junos OS Release 17.3R3 for the QFX5000 line of switches.
Statement introduced in Junos OS Release 19.1R1 for the QFX10000 line of switches.

Description
When you configure gtp-tunnel-endpoint-identifier, the hash calculation of IPv4 or IPv6 packets are included in the GPRS tunneling protocol–tunnel endpoint ID (GTP-TEID) field hash calculations.

NOTE: The gtp-tunnel-endpoint-identifier configuration statement is supported on PTX Series routers only when network services is set to enhanced-mode. For more information, see enhanced-mode.
On the QFX5000 and QFX10000 lines of switches, if the `gtp-tunnel-endpoint-identifier` statement is configured, the default Layer 4 port 2152 (and 2123 as well on QFX5000) is set to use along with the default first byte 0x32.

(On the QFX5000 line of switches only) In most cases, configuring the `gtp-tunnel-endpoint-identifier` statement on QFX5000 switches is sufficient for enabling GTP hashing. After you have enabled GTP hashing, if GTP hashing does not work, we recommend that you capture the packets using relevant tools and identify the offset value. As per standards, 0x32 is the default header offset value. But, due to some special patterns in the header, offset may vary to say 0x30, 0x28, and so on. In these cases, use the `gtp-header-offset` statement to set a proper offset value. Once the header offset value is resolved, run the `gtp-tunnel-endpoint-identifier` command for enabling GTP hashing successfully. Refer to `gtp-header-offset` for more details.

**Required Privilege Level**

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

<table>
<thead>
<tr>
<th>hash-key</th>
<th>204</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding Per-Packet Load Balancing</td>
<td>90</td>
</tr>
<tr>
<td>Configuring Per-Packet Load Balancing</td>
<td>92</td>
</tr>
<tr>
<td><code>gtp-header-offset</code></td>
<td></td>
</tr>
</tbody>
</table>
hash-key (Forwarding Options)

Syntax

hash-key {
    family inet {
        layer-3;
        layer-4;
        session-id;
        symmetric-hash {
            complement;
        }
    }
    family mpls {
        all-labels;
        bottom-label-1;
        bottom-label-2;
        bottom-label-3;
        label-1;
        label-2;
        label-3;
        no-labels;
        no-label-1-exp;
        payload {
            ether-pseudowire {
                zero-control-word;
            }
            ip {
                disable;
                layer-3-only;
                port-data {
                    destination-lsb;
                    destination-msb;
                    source-lsb;
                    source-msb;
                }
            }
        }
    }
    family multiservice {
        destination-mac;
        label-1;
        label-2;
        payload {
            ether-pseudowire {
                zero-control-word;
            }
            ip {
                disable;
                layer-3-only;
                port-data {
                    destination-lsb;
                    destination-msb;
                    source-lsb;
                    source-msb;
                }
            }
        }
    }
}
Hierarchy Level

[edit forwarding-options]

Release Information
Statement introduced before Junos OS Release 7.4.
family multiservice and no-label-1-exp options introduced in Junos OS Release 8.0.
lABEL-3 and no-labels options introduced in Junos OS Release 8.1.
ether-pseudowire statement introduced in Junos OS Release 9.1 (M320 and T Series routers only); support extended to M120 and MX Series routers in Junos OS Release 9.4.
ip, label-1, label-2, layer-3-only, and payload options for the family multiservice statement introduced in Junos OS Release 9.4 (M120 and M320 routers only). For MX Series routers, only the ip and payload statements apply.
layer-3, source-ip-only, destination-ip-only, and layer-4 statements introduced for the family multiservice statement in Junos OS Release 9.5. (MX Series routers only).
all-labels and payload ip disable statements introduced for the family mpls statement in Junos OS Release 12.1X48R2 PTX Series Packet Transport Routers only.
bottom-label statement introduced for the family mpls statement in Junos OS Release 14.1 for MX Series routers with DPCs (excluding M7i, M10i, and M120.)
zero-control-word option for the ether-pseudowire statement introduced in Junos OS Release 16.1 for the M Series, MX Series, and PTX Series.
Description
Select which packet header data to use for per-flow load balancing.

The options are explained separately.

NOTE: To modify the default hashing mechanism on Modular Port Concentrators (MPCs) and Type 5 FPCs, you need to configure the statements at the [edit forwarding-options enhanced-hash-key] hierarchy level. Statements at the [edit forwarding-options hash-key] hierarchy level do not support MPCs and Type 5 FPCs.

NOTE: The following statements are not supported on T Series routers:

- The symmetric-hash and the session-id statements at the [edit forwarding-options hash-key family inet] hierarchy level and all statements at the [edit forwarding-options hash-key family multiservice] hierarchy level.
- The label-1 and label-2 statements, and the IP configuration at the [edit forwarding-options hash-key family multiservice] hierarchy level.

NOTE: The following statements are not supported on Q Series switches:

- The symmetric-hash and the session-id statements at the [edit forwarding-options hash-key family inet] hierarchy level.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Per-Packet Load Balancing | 92
Configuring Load Balancing Based on MPLS Labels
Configuring Load Balancing Based on MAC Addresses | 101
helpers

Syntax

```scheme
helpers {
 bootp {
 client-response-ttl number;
 description text-description;
 interface interface-group {
 client-response-ttl number;
 description text-description;
 maximum-hop-count number;
 minimum-wait-time seconds;
 no-listen;
 server address {
 logical-system logical-system-name <routing-instance [<default> routing-instance-names]>;
 routing-instance [<default> routing-instance-names];
 }
 }
 maximum-hop-count number;
 minimum-wait-time seconds;
 relay-agent-option;
 server address {
 logical-system logical-system-name <routing-instance [<default> routing-instance-names]>;
 routing-instance [<default> routing-instance-names];
 }
 }
 domain {
 description text-description;
 interface interface-name {
 broadcast;
 description text-description;
 no-listen;
 server address <logical-system logical-system-name> <routing-instance routing-instance-name>;
 }
 server address <logical-system logical-system-name> <routing-instance routing-instance-name>;
 }
 port (Packet Forwarding) port-number {
 description text-description;
 interface interface-name {
 broadcast;
 description text-description;
 no-listen;
 server address <logical-system logical-system-name> <routing-instance routing-instance-name>;
 }
 }
}
```
server address <logical-system logical-system-name> <routing-instance routing-instance-name>

}  

}  

}  

}  

}  

}  

}  

}  

]  

Hierarchy Level

[edit forwarding-options]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Description
Enable TFTP or DNS request packet forwarding, or configure the router, switch, or interface to act as a DHCP/BOOTP relay agent. Use only one server address per interface or global configuration.

You can also use the helpers port statement to enable forwarding LAN broadcast traffic on custom UDP ports to particular servers as unicast traffic. Configure the UDP port number and optionally an interface on which to listen for broadcast traffic, and the destination server address to receive that traffic, as shown in either of the following sample configurations:

```
user@host# show forwarding-options
helpers {
 port 1200 {
 server 10.20.30.40;
 }
}
```

```
user@host# show forwarding-options
helpers {
 port 3000 {
 interface {
 fe-0/0/1.0 {
 server 192.0.2.2;
 }
 }
 }
 port 3001 {
 interface {
 fe-0/0/0.0 {
 server 192.0.2.2;
 }
 }
 }
}
```

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
hosted-service-identifier

Syntax

```
hosted-service-identifier identifier;
```

Hierarchy Level

```
[edit services hosted-services server-profile server-profile-name]
```

Release Information
Statement introduced in Junos OS Release 13.2.

Description
Configure the identifier for the service performed on the remote server.

Options

- `identifier`—Identifier for the service performed on the remote server.

Range: 1 through 63

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Active Flow Monitoring on PTX Series Packet Transport Routers | 49
hosted-services

Syntax

```text
hosted-services {
 server-profile server-profile-name {
 client-address ipv4-address;
 server-address ipv4-address;
 }
}
```

Hierarchy Level

```text
[edit services]
```

Release Information

Statement introduced in Junos OS Release 13.2.

Description

Configure services performed on the remote server.

Options

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Active Flow Monitoring on PTX Series Packet Transport Routers | 49
**hyper-mode (forwarding-options)**

**Syntax**

```plaintext
hyper-mode
```

**Hierarchy Level**

```plaintext
[edit forwarding-options]
```

**Release Information**

Statement introduced in Junos OS Release 13.3R4 for MX Series routers.
Statement introduced in Junos OS Release 18.2R1 for EX Series switches.

**Description**

Configure the hyper mode feature to increase the rate at which a data packet is processed. This configuration results in the optimization of the lifetime of a data packet, which further enables the network device (a router or a switch) to provide better performance and throughput. This feature is supported on enhanced MPCs such as MPC3E, MPC4E, MPC5E, and MPC6E.

**NOTE:** The hyper mode feature is configured at the global level and requires a system reboot. You can enable the feature only if the network-service mode on the device is configured as either `enhanced-ip` or `enhanced-ethernet`.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Configuring Hyper Mode on Enhanced MPCs to Speed Up Packet Processing | 137
- Understanding the Hyper Mode Feature on Enhanced MPCs for MX Series Routers and EX9200 Switches | 134
- `show forwarding-options hyper-mode` | 304
indexed-load-balance

Syntax

indexed-load-balance;

Hierarchy Level

[edit forwarding-options load-balance],
[edit logical-systems logical-system-name forwarding-options load-balance],
[edit logical-systems logical-system-name routing-instances routing-instance-name forwarding-options load-balance],
[edit routing-instances routing-instance-name forwarding-options load-balance]

Release Information

Statement introduced before Junos OS Release 7.4.
Starting with Junos OS Release 12.1, the indexed-next-hop statement has been renamed as the indexed-load-balance statement.

Description

The indexed-load-balance statement causes the creation of a nexthop structure that is both a function of the hash, and a function of the low-order bits of the IP address. Include this statement if you notice issues with load-balance distribution for IPv4 or IPv6 traffic to improve load-balance distribution for unicast and aggregated next hops.

For MPC line cards in MX routers, indexed-load-balance has been superseded by an internal hash-rotation mechanism to reduce polarization.

CAUTION: Including the indexed-load-balance statement causes an increase in memory usage on the device.

Default

Disabled

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION
**input (Forwarding Table)**

**Syntax**

```
input filter-name;
```

**Hierarchy Level**

- `[edit forwarding-options family (inet | inet6 | mpls | vpls) filter],
- `[edit routing-instances routing-instance-name forwarding-options family (inet | inet6 | mpls | vpls) filter]`

**Release Information**

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 15.1X53-D10 for QFX10000 switches.

**Description**

Apply a forwarding table filter to ingress traffic of the forwarding table.

**Options**

`filter-name`—Name of the applied filter.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Applying Forwarding Table Filters
input (Port Mirroring)

Syntax

```
input {
 maximum-packet-length bytes;
 rate number;
 run-length number;
}
```

Hierarchy Level

```
[edit forwarding-options port-mirroring],
[edit forwarding-options port-mirroring instance instance-name]
```

Release Information
Statement introduced before Junos OS Release 7.4.
**maximum-packet-length** option introduced in Junos OS Release 9.6 for M120 and M320 routers only.
Statement introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport Routers.

Description
Configure input packet properties for port mirroring.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring Port Mirroring | 53 |
input (Sampling)

Syntax

```
input {
 max-packets-per-second number;
 maximum-packet-length bytes;
}
```

Hierarchy Level

```
[edit forwarding-options sampling]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Support for sampling of MPLS traffic introduced in Junos OS Release 8.3.

Description

Configure traffic sampling on a logical interface.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
instance

Syntax

```
instance {
 instance-name {
 input {
 maximum-packet-length bytes;
 rate number;
 run-length number;
 }
 family (ccc|inet|inet6|mpls|vpls) {
 output {
 interface interface-name {
 next-hop address;
 }
 no-filter-check;
 server-profile server-profile-name;
 }
 }
 }
}
```

Hierarchy Level

```
[edit forwarding-options port-mirroring],
[edit routing-instances routing-instance-name forwarding-options port-mirroring]
```

Release Information

Statement introduced in Junos OS Release 9.3 (MX Series routers only).
Support extended to M120 and M320 routers in Junos OS Release 9.5.
maximum-packet-length and ccc options introduced in Junos OS Release 9.6 for M120 and M320 routers only.
server-profile option introduced in Junos OS Release 13.2 for PTX Series Packet Transport Routers only.

Description

Configure a port-mirroring instance.

Options

**port-mirroring-instance-name**—Name of the port-mirroring instance.

The remaining statements are explained separately. See CLI Explorer.
**Required Privilege Level**

*interface*—To view this statement in the configuration.

*interface-control-level*—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Configuring Port Mirroring | 53
- Configuring Active Flow Monitoring on PTX Series Packet Transport Routers | 49
interface (Accounting or Sampling)

Syntax

```plaintext
interface interface-name {
 engine-id number;
 engine-type number;
 source-address address;
}
```

Hierarchy Level

```
[edit forwarding-options accounting group-name output],
[edit forwarding-options sampling family family-name output]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description

Specify the output interface for sending copies of packets elsewhere to be analyzed.

Options

- **engine-id number**—Identity of the accounting interface.
- **engine-type number**—Type of this accounting interface.
- **interface-name**—Name of the accounting interface.
- **source-address address**—Address used for generating packets.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Discard Accounting | 47
- Collecting Traffic Sampling Output in a File | 27
interface (BOOTP)

Syntax

interface (interface-name | interface-group) {
  apply-secondary-as-giaddr;
  broadcast;
  client-response-ttl number;
  description text-description;
  maximum-hop-count number;
  minimum-wait-time seconds;
  no-listen;
  server address {
    logical-system logical-system-name <routing-instance [ <default> routing-instance-names ]>;
    routing-instance [ <default> routing-instance-names ];
  }
}

Hierarchy Level

[edit forwarding-options helpers bootp]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for QFX Series switches.

Description
Specify the interface for a DHCP and BOOTP relay agent.

Options

interface-group—Set a logical interface or group of logical interfaces with a specific DHCP relay configuration.

apply-secondary-as-giaddr—Enable DHCP relay to use secondary gateway IP on this interface.

broadcast—If the layer 2 interface is unknown, then broadcast.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
interface (DHCP Spoofing Prevention)

**Syntax**

```
interface interface-name;
```

**Hierarchy Level**

```
[edit routing-instances routing-instance-name bridge-domains bridge-domain-name forwarding-options dhcp-relay group group-name],
[edit routing-instances routing-instance-name forwarding-options dhcp-relay group group-name]
```

**Release Information**

Statement introduced in Junos OS Release 9.4 (MX Series routers only).

**Description**

Configure Dynamic Host Configuration Protocol (DHCP) snooping on the router. When acting as a snooping agent, the MX Series router typically is located between the client and the DHCP relay agent. It creates filters by "snooping" DHCP messages and binding DHCP-issued IP addresses with the MAC address of the client. These filters help prevent DHCP spoofing.

DHCP snooping is configured by including the appropriate interfaces.

**Required Privilege Level**

`interface`—To view this statement in the configuration.
`interface-control`—To add this statement to the configuration.
interface (DNS, Port, and TFTP Packet Forwarding or Relay Agent)

Syntax

```bash
interface interface-name {
 broadcast;
 description text-description;
 no-listen;
 server address <logical-system logical-system-name> <routing-instance routing-instance-name>;
}
```

Hierarchy Level

```bash
[edit forwarding-options helpers domain],
[edit forwarding-options helpers port port-number],
[edit forwarding-options helpers tftp]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced for port helpers in Junos OS Release 17.2R1 for EX4300 switches.
Support for multiple server instances for a given port introduced in Junos OS Release 17.2 for MX Series routers.
Support for multiple server instances for a given port introduced in Junos OS Release 17.3R1 for EX9200 switches.

Description

Specify the interface for monitoring and forwarding DNS or TFTP requests, or for forwarding LAN broadcast traffic on a custom UDP port to a particular server as unicast traffic.

When configuring port helpers, in releases prior to Junos OS Release 17.2, only one server can be specified for a given port. For Junos OS Release 17.2 and later, multiple servers can be specified for a given port at the global or interface-specific level. In this case, the same packet, with the originator IP address and port requests, is forwarded to the different configured servers; the payload of the UDP packet is not modified.

Options

- `interface-name`—Name of the interface.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring DNS and TFTP Packet Forwarding | 126
- Configuring Port-based LAN Broadcast Packet Forwarding | 130
interface (Monitoring)

Syntax

interface interface-name {
    engine-id number;
    engine-type number;
    input-interface-index number;
    output-interface-index number;
    source-address address;
}

Hierarchy Level

[edit forwarding-options monitoring group-name inet output]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Specify the output interface for monitored traffic.

Options

interface-name—Name of the interface.

engine-id number—Identity of the monitoring interface.

engine-type number—Type of the monitoring interface.

input-interface-index number—Input interface index for records from the interface.

output-interface-index number—Output interface index for records from the interface.

source-address address—Address used for generating packets.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring Passive Flow Monitoring | 52 |
interface (Next-Hop Group)

Syntax

interface interface-name {
    next-hop address;
}

Hierarchy Level

[edit forwarding-options next-hop-group group-name]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Specify the output interface for sending copies of packets elsewhere to be analyzed.

The commit operation fails when a next-hop group has only one interface configured. It is implicitly assumed that a subgroup is up only if more than one interface in the subgroup is up.

Options

interface-name—Name of the interface.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Next-Hop Groups to Use Multiple Interfaces to Forward Packets Used in Port Mirroring | 58
interface (Port Mirroring)

Syntax

interface interface-name {
    next-hop address;
}

Hierarchy Level

[edit forwarding-options port-mirroring output],
[edit forwarding-options port-mirroring family (inet | inet6) output]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Specify the output interface for sending copies of packets elsewhere to be analyzed.

Options

interface-name—Name of the interface.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring Port Mirroring | 53 |
l2tp-tunnel-session-identifier

Syntax

l2tp-tunnel-session-identifier

Hierarchy Level

[edit forwarding-options hash-key family inet

Release Information

Statement introduced in Junos OS Release 17.2 for MX Series routers with the Trinity MPCs.

Description

For better distribution in load balancing for L2TP tunneled traffic, enable l2tp-tunnel-session-identifier to have the hash calculation of IPv4 packets include L2TP header parameters (tunnel ID and session ID). With this option enabled, Junos OS generates different hashes for packets from different tunnels. It will also generate different hashes for packets that belong to the same tunnel, but different sessions. L2TP control traffic is not load balanced based on tunnel ID and session ID.

When the l2tp-tunnel-session-identifier option is not enabled, the same hash value is computed for L2TP tunneled traffic using the outer IP header, regardless of tunnel (for tunnels created between the same end points).

To help diagnosis load balancing issues, you can run the request pfe execute command "show jnh lb" target target command from the Junos OS command line.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>hash-key</th>
<th>204</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding Per-Packet Load Balancing</td>
<td>90</td>
</tr>
<tr>
<td>Configuring Per-Packet Load Balancing</td>
<td>92</td>
</tr>
</tbody>
</table>
link-layer-broadcast-inet-check

Syntax

```
link-layer-broadcast-inet-check;
```

Hierarchy Level

```
[edit forwarding-options]
```

Release Information
Statement introduced in Junos OS Release 14.2.

Description
Enable destination MAC and IP address check to prevent the Router from forwarding IPV4 packets, which have link layer destination address set to broadcast or multicast, unless it is directed to an IPV4 multicast address.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
load-balance (Forwarding Options)

Syntax

```plaintext
load-balance {
 indexed-load-balance;
 per-flow {
 hash-seed;
 }
 per-prefix {
 hash-seed number;
 }
}
```

Hierarchy Level

```
[edit forwarding-options],
[edit logical-systems logical-system-name forwarding-options],
[edit logical-systems logical-system-name routing-instances routing-instance-name forwarding-options],
[edit routing-instances routing-instance-name forwarding-options]
```

Release Information

Statement introduced in Junos OS Release 9.0.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for per-flow load balancing introduced in Junos OS Release 9.3.

Description

Enable per-prefix or per-flow load balancing so that the router or switch elects a next hop independently of the route selected by other routers or switches.

For the active route, when there are multiple equal-cost paths to the same destination, by default, Junos OS chooses in a random fashion one of the next-hop addresses to install into the forwarding table. Whenever the set of next hops for a destination changes in any way, the next-hop address is chosen again, also in a random fashion.

You can configure Junos OS so that, for the active route, all next-hop addresses for a destination are installed in the forwarding table. This is called per-packet load balancing. You can use load balancing to spread traffic across multiple paths between routing devices. The behavior of the per-packet load-balancing function varies according to the version of the Internet Processor ASIC in the routing device.

On routing devices with an Internet Processor I ASIC, when per-packet load balancing is configured, traffic between routing devices with multiple paths is spread in a random fashion across the available interfaces. The forwarding table balances the traffic headed to a destination, transmitting packets in round-robin...
fashion among the multiple next hops (up to a maximum of eight equal-cost load-balanced paths). The traffic is load-balanced on a per-packet basis.

Per-packet load distribution uses a hashing algorithm that distributes packets over equal-cost links. The algorithm is designed to distribute packets to prevent any single link from being saturated. However, per-packet load balancing offers no guarantee of equal distribution of traffic over equal-cost links, nor does it guarantee that increasing the number of Internet flows creates a better hash distribution.

On routing devices with the Internet Processor II ASIC and T Series Internet Processor II ASIC, when per-packet load balancing is configured, traffic between routing devices with multiple paths is divided into individual traffic flows (up to a maximum of 16 equal-cost load-balanced paths). On some platforms, you can increase the number of paths by using the `chassis maximum-ecmp` statement. With this statement, you can change the maximum number of equal-cost load-balanced paths to 32 or 64. Packets for each individual flow are kept on a single interface. To recognize individual flows in the transit traffic, the routing device examines each of the following:

- Source IP address
- Destination IP address
- Protocol
- Source port number
- Destination port number
- Source interface index
- Type of service (ToS)

The routing device recognizes packets in which all of these parameters are identical, and it ensures that these packets are sent out through the same interface. This prevents problems that might otherwise occur with packets arriving at their destination out of their original sequence.

Load balancing is not supported on management and internal Ethernet (fxo) interfaces because this type of interface cannot handle the routing process. On fxp interfaces, you cannot configure multiple next hops and enable load balancing.

**Options**

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**

routing—To view this statement in the configuration.

routing-control—To add this statement to the configuration.
load-balance-group

Syntax

```plaintext
load-balance-group group-name {
 next-hop-group [group-names];
}
```

Hierarchy Level

[edit firewall]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Configure a load-balance group.

Options
`group-name`—Name of load-balance group.
`group-names`—Name of next-hop groups to include in the load-balance group set.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

local-bias

Syntax

local-bias percent bias;

Hierarchy Level

[edit interfaces rltx logical-tunnel-options load-balance]

Release Information
Statement introduced in Junos OS Release 19.2R1.

Description
Next hop addresses may be local or remote, and absent any other load balancing scheme (except adaptive load balancing), traffic can be expected to be more-or-less evenly distributed among the available next-hop addresses whether they are local or remote. You can skew distribution to favor local addresses, however, by setting a value for local bias (local relative to the packet forwarding engine (PFE) performing the packet look up).

For example, a value of 100 would exclude remote next-hop addresses from the traffic distribution by forcing 100% of next-hop traffic flows to use local addresses. A value of 50, on the other hand, would skew 50% of the flows that would otherwise use remote links so they use local links instead. That is, for a value set to 50, given four next-hop links, two of which are local and two of which are remote, each of the remote links could be expected to get one eighth of the flows \((25% / 2) = 12.5\%\). Likewise, each of the local links could also be expected to receive about a third of the flows \((25% + 12.5\%) = 37.5\%\).

In contrast, with no value set for local bias, each of the four links would be expected to receive 25% of the total flows.

Required Privilege Level
interface - To view statement in the configuration.
interface-control - To add this statement to the configuration.
local-dump

Syntax

(local-dump | no-local-dump);

Hierarchy Level

[edit forwarding-options sampling family (inet | inet6 | mpls) output flow-server hostname]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Enable collection of cflowd records in a log file.

Options
no-local-dump—Do not dump cflowd records to a log file before exporting.
local-dump—Dump cflowd records to a log file before exporting.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Debugging cflowd Flow Aggregation | 32 |
max-packets-per-second

Syntax

max-packets-per-second number;

Hierarchy Level

[edit forwarding-options sampling input]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Specify that the traffic threshold that must be exceeded before packets are dropped. A value of 0 instructs the Packet Forwarding Engine not to sample any traffic.

Options
number—Maximum number of packets per second.

Range: 0 through 65,535
Default: 1000

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

maximum-hop-count

Syntax

maximum-hop-count number;

Hierarchy Level

[edit forwarding-options helpers bootp],
[edit forwarding-options helpers bootp interface (interface-name | interface-group)]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for QFX Series switches.

Description
Set the maximum allowed number of hops. This value is compared against the hops field in the BOOTP request message. BOOTP request messages that have a number in the hops field that exceeds maximum-hop-count are not forwarded. If you omit the maximum-hop-count statement, the default value is four hops.

Options

number—Maximum number of hops for BOOTP request messages.

Range: 1 through 16
Default: 4

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring Routers, Switches, and Interfaces as DHCP and BOOTP Relay Agents | 122 |
maximum-packet-length

Syntax

maximum-packet-length bytes;

Hierarchy Level

[edit forwarding-options analyzer analyzer-name input],
[edit forwarding-options port-mirroring input],
[edit forwarding-options port-mirroring instance instance-name input],
[edit forwarding-options sampling input],
[edit forwarding-options sampling instance instance-name input]

Release Information

Statement introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport routers. For PTX Series routers with third-generation FPCs installed, maximum-packet-length is not supported at the [edit forwarding-options sampling input] and [edit forwarding-options sampling instance instance-name input] hierarchy levels.
For MX Series routers except the MX 80, support at the [edit forwarding-options analyzer analyzer-name input] hierarchy level was introduced in Junos OS Release 14.1
Statement introduced in Junos OS Release 17.4R1 for QFX10008 and QFX10016 switches.

Description

Set the maximum packet length to be used for port mirroring or traffic sampling. Packets longer than the maximum are truncated. This statement cannot be used with inline flow monitoring ([edit forwarding-options sampling instance instance-name family (inet | inet6) output inline-jflow])

NOTE: For MX Series routers with Modular Port Interface Concentrators (MPCs), when maximum-packet-length (clip length) is configured for port-mirrored packets and the mirror-destination interface is a next-hop-group, the clip length is effective only for the first member interface of the next-hop-group. The mirrored packet copy sent to the rest of the interfaces is not clipped.

In addition, native analyzer sessions (that is, the [edit forwarding-options analyzer analyzer-name input] hierarchy level for MX Series routers) can be configured without specifying input parameters. As such, these instances use the following input values by default: rate = 1, and maximum-packet-length = 0.
Options

`bytes`—Maximum length (in bytes) of the mirrored packet or the sampled packet.

Set the maximum-packet-length value to zero to disable truncation; that is, to mirror or sample the entire packet. Otherwise, Juniper recommends that you configure the packet length to be equal to, or greater than, the IP header length. For IPv4, set the maximum length to at least 20, and for IPv6, set the maximum length to at least 40.

**Range:** 0 through 9216. For MX Series routers with MPCs, and for EX9200 switches, the range is 1 through 255 bytes.

**Default:** 0

**Required Privilege Level**

interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

**RELATED DOCUMENTATION**

- [Configuring Port Mirroring](#) 53
- [Configuring Traffic Sampling on MX, M and T Series Routers](#)
minimum-wait-time

Syntax

minimum-wait-time seconds;

Hierarchy Level

[edit forwarding-options helpers bootp],
[edit forwarding-options helpers bootp interface (interface-name | interface-group)]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for QFX Series switches.

Description

To set the minimum allowed number of seconds in the secs field of the BOOTP message, include the minimum-wait-time statement. This setting configures a minimum number of seconds since the client sent its first BOOTP request. BOOTP messages that have a smaller number in the secs field than the allowed minimum are not forwarded. The default value for the minimum wait time is zero (0).

The default value for the minimum wait time is zero (0) seconds. If the minimum wait time is 0 and the secs field in the BOOTP request message is 0, the device forwards the packet.

Options

seconds—Minimum wait time the BOOTP client has waited before packets are forwarded.

  Range: 0 to 30,000
  Default: 0

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring Routers, Switches, and Interfaces as DHCP and BOOTP Relay Agents | 122 |
mirror-once

Syntax

mirror-once;

Hierarchy Level

[edit forwarding-options port-mirroring]

Release Information

Statement introduced in Junos OS Release 9.3 (MX Series routers only).
Support extended to M120 routers in Junos OS Release 9.5.
Statement introduced in Junos OS Release 12.1X48 for PTX Packet Transport Routers.

Description

Configure the router to mirror packets only once. This feature is useful if you configure port mirroring on both ingress and egress interfaces, which could result in the same packet being mirrored twice.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Port Mirroring | 53
monitoring

Syntax

monitoring group-name {  
  family inet {  
    output {  
      cflowd hostname {  
        port port-number;  
      }  
      export-format cflowd-version-5;  
      flow-active-timeout seconds;  
      flow-export-destination {  
        (cflowd-collector | collector-pic);  
      }  
      flow-inactive-timeout seconds;  
      interface interface-name {  
        engine-id number;  
        engine-type number;  
        input-interface-index number;  
        output-interface-index number;  
        source-address address;  
      }  
    }  
  }  
}

Hierarchy Level

[edit forwarding-options]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Specify flow monitoring instance name and properties.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
**next-hop (Forwarding Options)**

**Syntax**

```
next-hop address;
```

**Hierarchy Level**

```
[edit forwarding-options port-mirroring family (inet | inet6 | ccc | vpls) output interface interface-name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport Routers.

**Description**

Specify the next-hop address for sending copies of packets to an analyzer.

**NOTE:** You need not configure the option for QFX5220-128C and QFX5220-32CD routers.

**Options**

- `address`—IP address of the next-hop router.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.
next-hop-group (Forwarding Options)

Syntax

```
next-hop-group group-name {
 interface interface-name {
 next-hop address;
 }
 next-hop-subgroup subgroup-name {
 interface interface-name {
 next-hop address;
 }
 }
}
```

Hierarchy Level

```
[edit forwarding-options]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Specify the next-hop address for sending copies of packets to an analyzer.

The commit operation fails when a next-hop group has only one interface configured. It is implicitly assumed that a subgroup is up only if more than one interface in the subgroup is up.

NOTE: In Junos OS releases earlier through Release 14.2, the `next-hop-group` statement is present in the `forwarding-options` stanza for a routing instance, but the `next-hop-group` statement is not allowed in a routing instance. In other words, in a routing instance, `[edit routing-instances routing-instance-name forwarding-options next-hop-group]` is not supported. You will get an error message if you try to commit this type of configuration. Starting in Junos OS Release 14.2, the `next-hop-group` statement is not present in `[edit routing-instances routing-instance-name forwarding-options]`.

Options

- `addresses`—IP address of the next-hop router. Each next-hop group supports up to 16 next-hop addresses. Up to 30 next-hop groups are supported. Each next-hop group must have at least two next-hop addresses.
**group-names**—Name of next-hop group. Up to 30 next-hop groups are supported for the router. Each next-hop group must have at least two next-hop addresses.

**interface-name**—Interface used to reach the next-hop destination.

**Required Privilege Level**
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**
- Configuring Next-Hop Groups to Use Multiple Interfaces to Forward Packets Used in Port Mirroring
next-hop-group

Syntax

```
next-hop-group group-name{
 group-type inet6;
 interface interface-name {
 next-hop ipv6-address;
 }
 next-hop-subgroup group-name{
 interface interface-name {
 next-hop ipv6-address;
 }
 }
}
```

Hierarchy Level

```
[edit forwarding-options port-mirroring family inet6 output]
```

Release Information

Description
Specify the next-hop group through which to send port-mirror traffic to an analyzer. This configuration enables multipacket port mirroring on MX Series routers with or without the use of a Tunnel PIC. It is implicitly assumed that a subgroup is up only if more than one interface in the subgroup is up.

Options

- **group-name**—Name of the next-hop group. Up to 30 next-hop groups are supported for the router. Each next-hop group must have at least two next-hop addresses.

- **interface-name**—Name of the interface used to reach the next-hop destination.

- **ipv6-address**—IPv6 address of the next-hop router. Each next-hop group supports up to 16 next-hop addresses. Each next-hop subgroup can have up to 16 next-hop groups.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
no-filter-check

Syntax

```bash
no-filter-check;
```

Hierarchy Level

```bash
[edit forwarding-options port-mirroring output],
[edit forwarding-options port-mirroring family (inet | inet6 | ccc | vpls) output]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport Routers.

Description

Disable filter checking on the port-mirroring interface.

This statement is required when you send port-mirrored traffic to a Tunnel Services PIC that has a filter applied to it.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Port Mirroring | 53
no-listen

Syntax

no-listen;

Hierarchy Level

[edit forwarding-options helpers bootp interface (interface-name | interface-group)],
[edit forwarding-options helpers domain interface interface-name],
[edit forwarding-options helpers port port-number interface interface-name],
[edit forwarding-options helpers tftp interface interface-name]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for QFX Series switches.

Description
Disable recognition of DNS requests or stop packets from being forwarded on a logical interface, a group of logical interfaces, a router, or a switch.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring DNS and TFTP Packet Forwarding | 126
- Configuring Port-based LAN Broadcast Packet Forwarding | 130
- Configuring Routers, Switches, and Interfaces as DHCP and BOOTP Relay Agents | 122
output (Accounting)

Syntax

```plaintext
output {
 cflowd [hostnames] {
 aggregation {
 autonomous-system;
 destination-prefix;
 protocol-port;
 source-destination-prefix {
 caida-compliant;
 }
 source-prefix;
 }
 autonomous-system-type (origin | peer);
 port port-number;
 version format;
 }
 flow-active-timeout seconds;
 flow-inactive-timeout seconds;
 interface interface-name {
 engine-id number;
 engine-type number;
 source-address address;
 }
}
```

Hierarchy Level

```
[edit forwarding-options accounting group-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure cflowd, output interfaces, and flow properties.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
output (Forwarding Table)

Syntax

```plaintext
output filter-name;
```

Hierarchy Level

```plaintext
[edit forwarding-options family (inet | inet6 | mpls) filter],
[edit routing-instances routing-instance-name forwarding-options family (inet | inet6 | mpls) filter]
```

Release Information
Statement introduced in Junos OS Release 7.5.
Statement introduced in Junos OS Release 15.1X53-D10 for QFX10000 switches.

Description
Configure filtering on the egress traffic of the forwarding table.

Options

- `filter-name`—Name of the applied filter.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.
output (Monitoring)

Syntax

```
output {
 cflowd hostname {
 port port-number;
 }
 export-format cflowd-version-5;
 flow-active-timeout seconds;
 flow-export-destination {
 (cflowd-collector | collector-pic);
 }
 flow-inactive-timeout seconds;
 interface interface-name {
 engine-id number;
 engine-type number;
 input-interface-index number;
 output-interface-index number;
 source-address address;
 }
}
```

Hierarchy Level

```
[edit forwarding-options monitoring group-name family inet]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure cflowd, output interfaces, and flow properties.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Passive Flow Monitoring  |  52
output (Port Mirroring)

Syntax

```plaintext
output {
 interface interface-name {
 next-hop address;
 }

 next-hop-group group-name{
 group-type inet6;
 interface interface-name {
 next-hop ipv6-address;
 }
 }

 next-hop-subgroup group-name{
 interface interface-name {
 next-hop ipv6-address;
 }
 }

 no-filter-check;

 server-profile server-profile-name;
}
```

Hierarchy Level

- `[edit forwarding-options port-mirroring family (ccc | inet | inet6 | mpls | vpls)]`
- `[edit forwarding-options port-mirroring instance instance-name family (ccc | inet | inet6 | mpls | vpls)]`

Release Information

Statement introduced before Junos OS Release 7.4.

- `vpls` option introduced in Junos OS Release 9.3 for MX Series routers only; support extended to M7i, M10i, M120, and M320 routers in Junos OS Release 9.5.
- `ccc` option introduced in Junos OS Release 9.6 for M120 and M320 routers only.
- `server-profile` option introduced in Junos OS Release 13.2 for PTX Series Packet Transport Routers only.
- `next-hop-group` option introduced for `family inet6` in Junos OS Release 14.2 for MX Series routers only.

Description

Configure the port mirroring destination properties.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

`interface`—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Port Mirroring | 53
- Configuring Active Flow Monitoring on PTX Series Packet Transport Routers | 49
output (Sampling)

Syntax

```
output {
 aggregate-export-interval seconds;
 flow-server hostname {
 aggregation {
 autonomous-system;
 destination-prefix;
 protocol-port;
 source-destination-prefix {
 caida-compliant;
 }
 source-prefix;
 }
 autonomous-system-type (origin | peer);
 (local-dump | no-local-dump);
 port port-number;
 source-address address;
 version format;
 version9 {
 template template-name;
 }
 }
 extension-service service-name;
 file filename filename <disable> <files number> <stamp | no-stamp> <size bytes> <world-readable | no-world-readable>;
 flow-active-timeout seconds;
 flow-inactive-timeout seconds;
 flow-server host-name {
 aggregation;
 autonomous-system-type (origin | peer);
 (local-dump | no-local-dump);
 port number;
 source-address address;
 version (5 | 8);
 version9;
 }
 interface interface-name {
 engine-id number;
 engine-type number;
 source-address address;
 }
```
Hierarchy Level

```
[edit forwarding-options sampling family {inet | inet6 | mpls}]
```

**Release Information**
Statement introduced before Junos OS Release 7.4.
`version9` statement introduced in Junos OS Release 8.3.

**Description**
Configure cflowd, output files and interfaces, and flow properties. Enable the collection of traffic flows using the version 9 format.

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

| Collecting Traffic Sampling Output in a File | 27 |
per-flow

Syntax

per-flow {
    hash-seed;
}

Hierarchy Level

[edit forwarding-options load-balance],
[edit logical-systems logical-system-name forwarding-options load-balance],
[edit logical-systems logical-system-name routing-instances routing-instance-name forwarding-options load-balance],
[edit routing-instances routing-instance-name forwarding-options load-balance]

Release Information
Statement introduced in Junos OS Release 9.3 (M120, M320, and MX Series routers only).

Description
Enable per-flow load balancing based on hash values.

Options
hash-seed—Configure the hash value. Junos OS automatically chooses a value for the hashing algorithm used. You cannot configure a specific hash value for per-flow load balancing.

Required Privilege Level
routing—To view this statement in the configuration.
routeing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring Per-Flow Load Balancing Based on Hash Values | 101 |
| load-balance (Forwarding Options) | 229 |
per-prefix

Syntax

```plaintext
per-prefix {
 hash-seed number;
}
```

Hierarchy Level

- [edit forwarding-options load-balance]
- [edit logical-systems logical-system-name forwarding-options load-balance]
- [edit logical-systems logical-system-name routing-instances routing-instance-name forwarding-options load-balance]
- [edit routing-instances routing-instance-name forwarding-options load-balance]

Release Information

Statement introduced in Junos OS Release 9.0.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description

Configure the hash parameter for per-prefix load balancing.

Options

- `hash-seed`—Per-prefix load-balancing hash function.

  - `number`—Hash value.

Range: 0 through 65,534

Default: 0

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Per-Prefix Load Balancing | 99
- load-balance (Forwarding Options) | 229
port (cflowd)

Syntax

```
port port-number;
```

Hierarchy Level

```
[edit forwarding-options accounting group-name output cflowd hostname],
[edit forwarding-options monitoring group-name family inet output flow-server hostname],
[edit forwarding-options sampling family (inet | inet6 | mpls) output flow-server hostname]
```

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Specify the UDP port number on the cflowd host system.

Options

- `port-number`—Any valid UDP port number on the host system.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Directing Traffic Sampling Output to a Server Running the cflowd Application | 30 |
port (Packet Forwarding)

Syntax

```
port port-number {
 description text-description;
 interface interface-name {
 broadcast;
 description text-description;
 no-listen;
 server address <logical-system logical-system-name> <routing-instance routing-instance-name>;
 }
 server address <logical-system logical-system-name> <routing-instance routing-instance-name>;
}
```

Hierarchy Level

[edit forwarding-options helpers]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 17.2R1 for EX4300 switches.
Support for multiple server instances for a given port introduced in Junos OS Release 17.2 for MX Series routers.
Support for multiple servers on a given port introduced in Junos OS Release 17.3R1 for EX9200 switches.

Description

Configure a port helper on the router or switch, which listens for LAN broadcast traffic on a custom UDP port number and forwards traffic to particular destination servers as unicast traffic.

To set up a port helper, configure the UDP port number and optionally an interface on which to listen for broadcast traffic, and the destination server address to receive that traffic, as shown in either of the following sample configurations:

```
user@host# show forwarding-options
helpers {
 port 1200 {
 server 10.20.30.40;
 }
}
```
user@host# show forwarding-options
helpers {
  port 3000 {
    interface {
      fe-0/0/1.0 {
        server 192.0.2.2;
      }
    }
  }
  port 3001 {
    interface {
      fe-0/0/0.0 {
        server 192.0.2.2;
      }
    }
  }
}

Starting in Junos OS Release 17.2R1, you can configure forwarding traffic to multiple destination servers for a given port number by specifying multiple port configuration statements with the same port number and different server addresses.

You cannot configure port helpers for standard ports used by services such as BOOTP, DNS and TFTP; instead, use the `helpers` configuration statements specifically for forwarding packets for those protocols.

The remaining statements are explained separately. See CLI Explorer.

**Options**

- `port-number`—UDP port number for listening.
  
  **Range:** 1 through 65535

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Configuring DNS and TFTP Packet Forwarding | 126
- Configuring Port-based LAN Broadcast Packet Forwarding | 130
- Configuring Routers, Switches, and Interfaces as DHCP and BOOTP Relay Agents | 122
port-mirroring

List of Syntax
Syntax: MX Series and PTX Series Routers, M120 and M320 on page 259
Syntax: QFX Series Switches, EX4600 and NFX Series Devices on page 261
Syntax: OCX1100 on page 262

Syntax: MX Series and PTX Series Routers, M120 and M320

```plaintext
port-mirroring {
 input {
 maximum-packet-length bytes;
 rate number;
 run-length number;
 }
 family (ccc | inet | inet6 | vpls) {
 output {
 interface interface-name {
 next-hop address;
 }
 next-hop-group group-name{
 group-type inet6;
 interface interface-name {
 next-hop ipv6-address;
 }
 }
 next-hop-subgroup group-name{
 interface interface-name {
 next-hop ipv6-address;
 }
 }
 no-filter-check;
 }
 }
 instance {
 instance-name {
 input {
 maximum-packet-length bytes;
 rate number;
 run-length number;
 }
 family (ccc | inet | inet6 | vpls) {
 output {
 interface interface-name {
```

---

259
next-hop address;

no-filter-check;

server-profile server-profile-name;

mirror-once;

traceoptions {
    file filename <files number> <size bytes> <world-readable | no-world-readable>:
}
Syntax: QFX Series Switches, EX4600 and NFX Series Devices

```plaintext
port-mirroring {
 family {
 ethernet-switching {
 output {
 interface interface-name {
 }
 no-filter-check;
 }
 vlan vlan-name {
 no-tag;
 }
 }
 inet {
 output {
 ip-address address {
 }
 routing-instance instance-name {
 ip-address address {
 }
 }
 }
 }
 }
}
instance instance-name {
 family {
 ethernet-switching {
 output {
 interface interface-name {
 }
 no-filter-check;
 }
 vlan vlan-name {
 no-tag;
 }
 }
 inet {
 output {
 ip-address address {
 }
 routing-instance instance-name {
 ip-address address {
 }
 }
 }
 }
 }
}
```
Syntax: OCX1100

```conf
port-mirroring {
 family {
 inet {
 output {
 ip-address address {
 }
 }
 routing-instance instance-name {
 ip-address address {
 }
 }
 }
 }
}
instance instance-name {
 family {
 inet {
 output {
 ip-address address {
 }
 }
 routing-instance instance-name {
 ip-address address {
 }
 }
 }
 }
}
```

Hierarchy Level

```
[edit forwarding-options]
```
**Release Information**

Statement introduced before Junos OS Release 7.4 for MX Series and PTX Series routers, M120 and M320.

- **family vpls** statement introduced in Junos OS Release 9.3 (MX Series routers only); support extended to M7i, M10, M120, and M320 routers in Junos OS Release 9.5.

- **instance port-mirroring-instance-name** statement introduced in Junos OS Release 9.3 (MX Series routers only); support extended to M120 and M320 routers in Junos OS Release 9.5.

- **mirror-once** statement introduced in Junos OS Release 9.3 (MX Series routers only); support extended to M120 routers in Junos OS Release 9.5.

- **family ccc** statement introduced in Junos OS Release 9.6 (M120 and M320 routers only).

Statement introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport Routers.

- **family inet6** and **next-hop-group** statements introduced in Junos OS Release 14.2 (MX Series routers only).

Statement introduced in Junos OS Release 13.2 for the QFX Series.

Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

**Description**

Create a port-mirroring configuration. Specify the address family, rate, run length, interface, and next-hop address for sending copies of packets to an analyzer.

The remaining statements are explained separately. See [CLI Explorer](#).

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.
- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- [Configuring Port Mirroring](#) | 53
- [Configuring Port Mirroring](#)
- [Configuring Port Mirroring](#)
- [Confi]guring Active Flow Monitoring on PTX Series Packet Transport Routers | 49
- [Understanding Port Mirroring and Analyzers](#)
- [Understanding Port Mirroring](#)
- [Examples: Configuring Port Mirroring for Local Analysis](#)
- [Example: Mirroring Employee Web Traffic with a Firewall Filter](#)
- [Example: Mirroring Employee Web Traffic with a Firewall Filter](#)
rate (Forwarding Options)

Syntax

rate number;

Hierarchy Level

[edit forwarding-options analyzer analyzer-name input],
[edit forwarding-options port-mirroring family (inet | inet6) input],
[edit forwarding-options port-mirroring input],
[edit forwarding-options sampling input],
[edit forwarding-options sampling instance instance-name input]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport routers.
Statement introduced in Junos OS Release 17.2R1 for QFX10002 switches.
Statement introduced in Junos OS Release 17.4R1 for QFX10008 and QFX10016 switches.

Description

Set the ratio of the number of packets to be sampled. For example, if you specify a rate of 10, every tenth packet (1 packet out of 10) is sampled.

Native analyzer sessions (that is, the [edit forwarding-options analyzer analyzer-name input] hierarchy level for MX Series routers) can be configured without specifying input parameters, which means that the instance uses default input values: rate = 1 and maximum-packet-length = 0.

NOTE: The recommended sampling rate for the MX150 is 1000 or greater. If you configure less than 1000, a warning is issued.

Options

number—Denominator of the ratio.

Range: 1 through 16000000(16M)

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
relay-agent-option

Syntax

```
relay-agent-option;
```

Hierarchy Level
```
[edit forwarding-options helpers bootp],
[edit logical-systems routing-instances instance-name forwarding-options helpers bootp],
[edit routing-instances instance-name forwarding-options helpers bootp]
```

Release Information
Statement introduced in Junos OS Release 8.0.

Description
Enable the DHCP relay agent information option which allows DHCP to forward information from clients on different VRF routing instances. The functionality is described in RFC 3046, *DHCP Relay Agent Information Option*. For the Junos OS implementation, the DHCP option number is 82, and the suboption ID is 1. The suboption length is the length required to contain an interface name in addition to the terminating null character. The overall option length is the suboption length plus 2 bytes (for the option header). The DHCP relay agent information option is only present on packets sent between the relay and the DHCP server.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
route-accounting

Syntax

route-accounting;

Hierarchy Level

[edit forwarding-options family inet6]

Release Information

Statement introduced in Junos OS Release 8.3.

Description

Configure the routing platform to track IPv6 traffic passing through the router. In other words, this setting must be enabled, prior to the route being created, in order to view the IPv6 transit statistics gathered for a particular route. These statistics can be viewed by running the `show interfaces statistics interface-name detail` command, or similar.

NOTE:

- Enabling this option soon after disabling it on a third-generation FPCs (FPC3-PTX-U2 and FPC3-PTX-U3 on PTX5000 and FPC3-SFF-PTX-U0 and FPC3-SFF-PTX-U1 on PTX3000), PTX1000, and PTX10008, restarts the accounting from zero and does not retain the statistics that was previously accounted.

- On third-generation FPCs in PTX series, egress accounting for IPV6 traffic is not performed for cases where MPLS packets arrives on TCC interface and egress out of the router as IPV6 packets.

Default

Disabled

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring IPv6 Accounting | 46 |
rpm-tracking

Syntax

```
rpm-tracking {
 route name {
 metric metric;
 next-hop next-hop;
 rpm-probe name {
 rpm-test rpm-test;
 }
 }
}
```

Hierarchy Level

```
[edit routing-instances name routing-options],
[edit routing-options]
```

Release Information

Support introduced in Junos OS Release 18.4 R1.
Support for multiple next hops added in Junos OS Release 19.1 R1.

Description

RPM static route tracking routes are coupled with a given RPM test instance. Routes can be installed or removed according to the results of the given RPM test. When installed, routes are automatically given a preference of 1, and so are preferred over static routes that may already exist with the same prefix.

If the RPM test result is "success," then all the RPM-tracked routes that match the probe owner and test name of the successful test are added to the routing table. If the test result is "failure," then all the RPM-tracked routes that match the probe owner and test name of the failed test are removed, if present, from the routing table.

RPM route tracking supports both IPv4 and IPv6 routes. RPM-tracked routes are configured individually; wildcards, ranges, and regular expressions are not supported.

Options

- **route**—(Required) Must be a IPv4 or IPv6 destination prefix.

- **next-hop**—(Required) Must be a IPv4 or IPv6 address. You can configure up to 16 multiple paths (next-hops) for any given RPM static route (RPM static routes with multiple next-hops can also be configured inside a routing instance).

- **metric**—(Optional) The route with the lowest metric is active in routing table.
Default: 1
Range: 1 through 16.

**rpm-probe** — (Required) Must be a valid RPM probe owner from `services rpm`.

**rpm-test** — (Required) Must be a valid RPM test name from `services rpm`.

**Required Privilege Level**
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

*Configuring RPM Probes on M, MX and T Series Routers and EX Series Switches*
run-length

Syntax

run-length number;

Hierarchy Level

[edit forwarding-options port-mirroring input],
[edit forwarding-options port-mirroring instance port-mirroring-instance-name input],
[edit forwarding-options port-mirroring family (inet|inet6) input],
[edit forwarding-options sampling input],
[edit forwarding-options sampling instance instance-name input]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport routers.
Statement introduced in Junos OS Release 17.2R1 for QFX10002 switches.
Statement introduced in Junos OS Release 17.4R1 for QFX10008 and QFX10016 switches.

Description

Set the number of samples following the initial trigger event. The configuration enables you to sample packets following those already being sampled.

NOTE: The run-length statement is not supported when you configure inline flow monitoring (by including the inline-jflow statement at the [edit forwarding-options sampling instance instance-name family (inet | inet6) output] hierarchy level).

Options

number—Number of samples.

Range: 0 through 20
Default: 0

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
<table>
<thead>
<tr>
<th>Applying Forwarding Table Filters</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Port Mirroring on M, T MX, ACX, and PTX Series Routers</td>
<td></td>
</tr>
<tr>
<td>Configuring Traffic Sampling on MX, M and T Series Routers</td>
<td></td>
</tr>
</tbody>
</table>
sampling (Forwarding Options)

Syntax

```
sampling {
 disable;
 family (inet | inet6 | mpls | vpls) {
 disable;
 output {
 aggregate-export-interval seconds;
 extension-service service-name;
 file {
 disable;
 filename filename;
 files number;
 size bytes;
 (stamp | no-stamp);
 (world-readable | no-world-readable);
 }
 flow-active-timeout seconds;
 flow-inactive-timeout seconds;
 flow-server hostname {
 aggregation {
 autonomous-system;
 destination-prefix;
 protocol-port;
 source-destination-prefix {
 caida-compliant;
 }
 source-prefix;
 }
 autonomous-system-type (origin | peer);
 (local-dump | no-local-dump);
 port port-number;
 source-address address;
 version format;
 version9 {
 template template-name;
 }
 }
 }
 }
 interface interface-name {
 engine-id number;
 engine-type number;
 source-address address;
 }
}
```
\}
\}
\}

input {
  max-packets-per-second number;
  maximum-packet-length bytes;
  rate number;
  run-length number;
}\}
instance instance-name {
    disable;
    family (bridge | inet | inet6 | mpls | vpls) {
        disable;
        output {
            aggregate-export-interval seconds;
            extension-service service-name;
            flow-server hostname {
                aggregation {
                    autonomous-system;
                    destination-prefix;
                    protocol-port;
                    source-destination-prefix {
                        caida-compliant;
                    }
                    source-prefix;
                }
                autonomous-system-type (origin | peer);
                dscp dscp-value;
                forwarding-class class-name;
                (local-dump | no-local-dump);
                port port-number;
                source-address address;
                version format;
                version9 {
                    template template-name;
                }
                version-ipfix {
                    template template-name;
                }
            }
            inline-jflow {
                source-address address;
                flow-export-rate rate;
            }
            interface interface-name {
                engine-id number;
                engine-type number;
                source-address address;
            }
        }
    }
    input {
        max-packets-per-second number;
    }
}
maximum-packet-length bytes;
rate number;
run-length number;
}
}
pre-rewrite-tos;
sample-once;
traceoptions {
  no-remote-trace;
  file filename <files number> <size bytes> <match expression> <world-readable | no-world-readable>;
}
}

Hierarchy Level

[edit forwarding-options]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.
Statement introduced in Junos OS Release 16.1X65 for PTX1000 routers.
Statement introduced in Junos OS Release 17.2R1 for QFX10002 switches.
Statement introduced in Junos OS Release 17.4R1 for QFX10008 and QFX10016 switches.

Description
Configure traffic sampling.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
### RELATED DOCUMENTATION

- **Configuring Traffic Sampling on MX, M and T Series Routers**
- **Applying Forwarding Table Filters** | 70
- **Collecting Traffic Sampling Output in the Cisco Systems NetFlow Services Export Version 9 Format** | 33
- **Directing Traffic Sampling Output to a Server Running the cflowd Application** | 30
- **Configuring Port Mirroring** | 53
- **Tracing Traffic-Sampling Operations** | 39

**Configuring Inline Active Flow Monitoring Using Routers, Switches or NFX250**
server (DHCP and BOOTP Relay Agent)

Syntax

```
server address {
 logical-system logical-system-name <routing-instance [<default> routing-instance-names]>;
 routing-instance [<default> routing-instance-names];
}
```

Hierarchy Level

```
[edit forwarding-options helpers bootp],
[edit forwarding-options helpers bootp interface (interface-name | interface-group)]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for QFX Series switches.

Description

Configure the router or switch to act as a DHCP and BOOTP relay agent. The device forwards all broadcast requests within the configured subnet to all configured servers in parallel. To support clients on different VRFs, see the `relay-agent-option` statement.

Options

- `address`—One or more addresses of the server.
- `logical-system logical-system-name`—(Optional) Logical system of the server.
- `routing-instance routing-instance-names`—(Optional) Routing instance name that belong to the DHCP or BOOTP relay agent.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Routers, Switches, and Interfaces as DHCP and BOOTP Relay Agents | 122
- relay-agent-option | 265
server (DNS, Port, and TFTP Service)

Syntax

```
server address <logical-system logical-system-name> <routing-instance routing-instance-name>;
```

Hierarchy Level

```
[edit forwarding-options helpers domain],
[edit forwarding-options helpers domain interface interface-name],
[edit forwarding-options helpers port port-number],
[edit forwarding-options helpers port port-number interface interface-name],
[edit forwarding-options helpers tftp],
[edit forwarding-options helpers tftp interface interface-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced for port helpers in Junos OS Release 17.2R1 for EX4300 switches.
Support for multiple server instances for a given port introduced in Junos OS Release 17.2 for MX Series routers.
Support for multiple server instances for a given port introduced in Junos OS Release 17.3R1 for EX9200 switches.

Description

Specify the DNS or TFTP server for forwarding DNS or TFTP requests, or specify a destination server address for forwarding LAN broadcast packets as unicast traffic for a custom-configured UDP port.

When configuring port helpers, in releases prior to Junos OS Release 17.2, only one server can be specified for a given port. For Junos OS Release 17.2 and later, multiple servers can be specified for a given port at the global or interface-specific level. When multiple servers are specified, the same packet, with the originator IP address and port requests, is forwarded to the different configured servers; the payload of the UDP packet is not modified.

Options

- `address`—IP address of the server.
- `logical-system logical-system-name`—(Optional) Logical system name of the server.
- `routing-instance [routing-instance-names]`—(Optional) Set the routing instance name or names that belong to the DNS server or TFTP server.

Required Privilege Level
server-address (Hosted Services)

Syntax

```
server-address ipv4-address;
```

Hierarchy Level

```
[edit services hosted-services server-profile server-profile-name]
```

Release Information

Statement introduced in Junos OS Release 13.2.

Description

Configure the server address where sampled packets are sent.

Options

- `ipv4-address`—IPv4 address of the server.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring DNS and TFTP Packet Forwarding | 126
- Configuring Port-based LAN Broadcast Packet Forwarding | 130
- Configuring Active Flow Monitoring on PTX Series Packet Transport Routers | 49
server-profile

Syntax

```
server-profile server-profile-name {
 client-address ipv4-address;
 server-address ipv4-address;
}
```

Hierarchy Level

```
[edit services hosted-services]
```

Release Information
Statement introduced in Junos OS Release 13.2.

Description
Configure the server profile.

Options
`server-profile-name`—Name to apply to this server profile.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
`interface`—To view this statement in the configuration.
`interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring Active Flow Monitoring on PTX Series Packet Transport Routers | 49 |
server-profile (Active Flow Monitoring)

Syntax

```
server-profile server-profile-name;
```

Hierarchy Level

```
[edit forwarding-options port-mirroring instance instance-name family (inet | inet6 | mpls) output]
```

Description
Specify the name of a server profile. This profile specifies a host where sampled traffic is sent.

Options

- `server-profile-name`—Specify the name of a server profile configured at the [edit services hosted-services server-profile server-profile-name] hierarchy level.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- hosted-services | 211
- Configuring Active Flow Monitoring on PTX Series Packet Transport Routers | 49
size (Sampling and Trace options)

Syntax

```plaintext
size bytes;
```

Hierarchy Level

```plaintext
[edit forwarding-options helper trace options file],
[edit forwarding-options port-mirroring trace options file],
[edit forwarding-options sampling family family-name output file],
[edit forwarding-options sampling trace options file]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport Routers.

Description

Specify the maximum size of each file containing sample or log data. The file size is limited by the number of files to be created and the available hard disk space.

When a traffic sampling file named `sampling-file` reaches the maximum size, it is renamed `sampling-file.0`. When the `sampling-file` file again reaches its maximum size, `sampling-file.0` is renamed `sampling-file.1` and `sampling-file` is renamed `sampling-file.0`. This renaming scheme continues until the maximum number of traffic sampling files is reached. Then the oldest traffic sampling file is overwritten.

Options

`bytes`—Maximum size of each traffic sampling file or trace log file, in kilobytes (KB), megabytes (MB), or gigabytes (GB).

Syntax: \texttt{xk} to specify KB, \texttt{xm} to specify MB, or \texttt{xg} to specify GB

Range: 10 KB through the maximum file size supported on your router

Default: 1 MB for sampling data; 128 KB for log information

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Collecting Traffic Sampling Output in a File | 27
- Tracing Traffic-Sampling Operations | 39
**source-checking**

**Syntax**

```
source-checking;
```

**Hierarchy Level**

```
[edit forwarding-options family inet6]
```

**Release Information**

Statement introduced in Junos OS Release 12.3.

**Description**

(MX Series 5G Universal Routing Platforms Only) Discard IPv6 packets when the source address type is unspecified, loopback, multicast or link-local

RFC 4291, *IP Version 6 Addressing Architecture*, refers to four address types that require special treatment when they are used as source addresses. The four address types are:

- Unspecified
- Loopack
- Multicast
- Link-Local Unicast

The loopback and multicast addresses must never be used as a source address in IPv6 packets. The unspecified and link-local addresses can be used as source addresses but routers must never forward packets that have these addresses as source addresses. Typically, packets that contain unspecified or link-local addresses as source addresses are delivered to the local host. If the destination is not the local host, then the packet must not be forwarded. Configuring this statement filters or discards IPv6 packets of these four address types.

**Required Privilege Level**

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Applying Forwarding Table Filters | 70
**stamp**

**Syntax**

```plaintext
(stamp | no-stamp);
```

**Hierarchy Level**

```plaintext
[edit forwarding-options sampling family family-name output file]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Include a timestamp with each line in the output file.

**Default**

`no-stamp`

**Options**

- `no-stamp`—Do not include timestamps.
- `stamp`—Include a timestamp with each line of packet sampling information.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Collecting Traffic Sampling Output in a File | 27
tftp

Syntax

```
tftp {
 description text-description;
 interface interface-name {
 broadcast;
 description text-description;
 no-listen;
 server address <logical-system logical-system-name> <routing-instance routing-instance-name>;
 }
 server address <logical-system logical-system-name> <routing-instance routing-instance-name>;
}
```

Hierarchy Level

```
[edit forwarding-options helpers]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description

Enable TFTP request packet forwarding.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring DNS and TFTP Packet Forwarding | 126 |
traceoptions (DNS, Port, and TFTP Packet Forwarding)

Syntax

```
traceoptions {
 file filename <files number> <match regular-expression> <size bytes> <world-readable | no-world-readable>;
 flag flag;
 level level;
 <no-remote-trace>;
}
```

Hierarchy Level

```
[edit forwarding-options helpers]
```

Release Information
Statement introduced before Junos OS Release 7.4.
Statement standardized and match option introduced in Junos OS Release 8.0.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description
Configure tracing operations for BOOTP, DNS, TFTP, or custom UDP port packet forwarding.

Default
If you do not include this statement, no tracing operations are performed.

Options

- **file filename**—Name of the file to receive the output of the tracing operation. Enclose the name in quotation marks (" "). All files are placed in a file named fud in the directory /var/log. If you include the file statement, you must specify a filename.

- **files number**—(Optional) Maximum number of trace files. When a trace file named trace-file reaches its maximum size, it is renamed trace-file.0, then trace-file.1, and so on, until the maximum number of trace files is reached. Then the oldest trace file is overwritten.

  If you specify a maximum number of files, you also must specify a maximum file size with the size option and a filename.

  Range: 2 through 1000

  Default: 3 files

- **flag flag**—Tracing operation to perform. To specify more than one tracing operation, include multiple flag statements. You can include the following flags:
• **address**—Trace address management events
• **all**—Trace all events
• **bootp**—Trace BOOTP or DHCP services events
• **config**—Trace configuration events
• **domain**—Trace DNS service events
• **ifdb**—Trace interface database operations
• **io**—Trace I/O operations
• **main**—Trace main loop events
• **port**—Trace arbitrary protocol events
• **rtsock**—Trace routing socket operations
• **tftp**—Trace TFTP service events
• **trace**—Trace tracing operations
• **ui**—Trace user interface operations
• **util**—Trace miscellaneous utility operations

**match regular-expression**—(Optional) Refine the output to include lines that contain the regular expression.

**no-remote-trace**—(Optional) Disable remote tracing globally or for a specific tracing operation.

**no-world-readable**—(Optional) Restrict file access to the owner.

**size size**—(Optional) Maximum size of each trace file, in kilobytes (KB), megabytes (MB), or gigabytes (GB). When a trace file named `trace-file` reaches this size, it is renamed `trace-file.0`. When the `trace-file` file again reaches its maximum size, `trace-file.0` is renamed `trace-file.1` and `trace-file` is renamed `trace-file.0`. This renaming scheme continues until the maximum number of trace files is reached. Then the oldest trace file is overwritten.

If you specify a maximum file size, you also must specify a maximum number of trace files with the `files` option and filename.

**Syntax:** `xk` to specify KB, `xm` to specify MB, or `xg` to specify GB

**Range:** 0 bytes through 4,294,967,295 KB

**Default:** 128 KB

**world-readable**—(Optional) Enable unrestricted file access.

**Required Privilege Level**

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.
traceoptions (Port Mirroring and Traffic Sampling)

Syntax

```
traceoptions {
 file filename <files number> <size bytes> <world-readable | no-world-readable>;
}
```

Hierarchy Level

```
[edit forwarding-options port-mirroring],
[edit forwarding-options sampling]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure traffic sampling tracing operations.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
transport-type

Syntax

transport-type type;

Hierarchy Level

[edit services hosted-services server-profile server-profile-name]

Release Information
Statement introduced in Junos OS Release 13.2.

Description
Configure the transport type.

Options

type—Transport type.

Range: GRE, TCP, or UDP

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Active Flow Monitoring on PTX Series Packet Transport Routers | 49
**version**

**Syntax**

```plaintext
version format;
```

**Hierarchy Level**

```plaintext
[edit forwarding-options accounting group-name output cflowd hostname],
[edit forwarding-options sampling family (inet | inet6 | mpls) output flow-server hostname]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Specify the version format of the aggregated flows exported to a cflowd server.

**Options**

- `format`—Export format of the flows.

**Values:** 5 or 8

**Default:** 5

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Directing Traffic Sampling Output to a Server Running the cflowd Application | 30
version9

Syntax

```
version9 {
 template template-name;
}
```

Hierarchy Level

```
[edit forwarding-options sampling family family-name output flow-server hostname]
```

Release Information

Statement introduced in Junos OS Release 8.3.

Description

Enable active flow monitoring using the version 9 template format to collect traffic flows.

Options

- **template template-name**—Name of a version 9 record flow format template configured at the [edit services monitoring] hierarchy level.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-level—To add this statement to the configuration.

RELATED DOCUMENTATION

- Monitoring, Sampling, and Collection Services Interfaces User Guide
- Junos OS Services Interfaces Library for Routing Devices
world-readable (Forwarding Options)

Syntax

(world-readable | no-world-readable);

Hierarchy Level

[edit forwarding-options helpers traceoptions file],
[edit forwarding-options port-mirroring traceoptions file],
[edit forwarding-options sampling family family-name output file],
[edit forwarding-options sampling traceoptions file]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport Routers.

Description
Enable unrestricted file access.

Default
no-world-readable

Options
no-world-readable—Restrict file access to the owner.
world-readable—Enable unrestricted file access.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Collecting Traffic Sampling Output in a File | 27
- Tracing Traffic-Sampling Operations | 39
Operational Commands

- clear passive-monitoring statistics | 294
- clear services flow-collector statistics | 295
- request services flow-collector change-destination primary interface | 296
- request services flow-collector change-destination secondary interface | 298
- request services flow-collector test-file-transfer | 300
- show chassis forwarding | 302
- show forwarding-options hyper-mode | 304
- show forwarding-options load-balance | 306
- show forwarding-options port-mirroring | 310
- show forwarding-options next-hop-group | 313
- show interfaces (Flow Monitoring) | 317
- show interfaces (M Series, MX Series, T Series Routers, and PTX Series Management and Internal Ethernet) | 323
- show interfaces statistics | 346
- show passive-monitoring error | 363
show passive-monitoring flow | 366
show passive-monitoring memory | 369
show passive-monitoring status | 371
show passive-monitoring usage | 373
show route forwarding-table | 375
show route rpm-tracking | 387
show services accounting aggregation | 390
show services accounting aggregation template | 395
show services accounting errors | 397
show services accounting flow | 403
show services accounting flow-detail | 411
show services accounting memory | 417
show services accounting packet-size-distribution | 420
show services accounting status | 422
show services accounting usage | 427
show services flow-collector file interface | 430
show services flow-collector input interface | 433
show services flow-collector interface | 435
clear passive-monitoring statistics

Syntax

clear passive-monitoring statistics (all | interface interface-name)

Release Information
Command introduced in Junos OS Release 7.6.

Description
(M40e, M160, and M320 Series routers and T Series routers only) Clear statistics for one passive monitoring interface or for all passive monitoring interfaces.

Options
all—Clear statistics for all configured passive monitoring interfaces.

interface interface-name—Clear statistics for the specified passive monitoring interface (mo-fpc/pic/port).

Required Privilege Level
network

List of Sample Output
clear passive-monitoring statistics on page 294

Output Fields
When you enter this command, you are not provided feedback on the status of your request.

Sample Output
clear passive-monitoring statistics

user@host> clear passive-monitoring statistics interface mo-5/0/0
clear services flow-collector statistics

Syntax

clear services flow-collector statistics (all | interface interface-name)

Release Information
Command introduced before Junos OS Release 7.4.

Description
(M40e, M160, and M320 Series routers and T Series routers only) Clear statistics for one flow collector interface or for all flow collector interfaces.

Options
all—Clear statistics for all configured flow collector interfaces.

interface interface-name—Clear statistics for the specified flow collector interface (cp-fpc/pic/port).

Required Privilege Level
network

List of Sample Output
clear services flow-collector statistics on page 295

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

clear services flow-collector statistics
user@host> clear services flow-collector statistics interface cp-5/0/0

Flow collector interface: cp-5/0/0
Interface state: Collecting flows
Statistics cleared successfully
request services flow-collector change-destination primary interface

Syntax

request services flow-collector change-destination primary interface cp-fpc/pic/port
<clear-files>
<clear-logs>
<immediately | gracefully>

Release Information
Command introduced before Junos OS Release 7.4.

Description
(M40e, M160, and M320 Series routers and T Series routers only) Switch to the primary File Transfer Protocol (FTP) server that is configured as a flow collector.

Options
none—Switch to the primary FTP server.

cp-fpc/pic/port—Use the specified flow collector interface name for the primary destination.

clear-files—(Optional) Request clearing of existing data files in the FTP wait queue when the switch takes place.

clear-logs—(Optional) Request clearing of existing logs when the switch takes place.

immediately | gracefully—(Optional) Specify whether you want the switch to take place immediately, or to affect only newly created files.

Required Privilege Level
maintenance

List of Sample Output
request services flow-collector change-destination primary interface on page 297

Output Fields
When you enter this command, you are provided feedback on the status of your request.
Sample Output

```
request services flow-collector change-destination primary interface

user@host> request services flow-collector change-destination primary interface cp-6/0/0

Flow collector interface: cp-6/0/0
Interface state: Collecting flows
Destination change successful
```
request services flow-collector change-destination secondary interface

Syntax

request services flow-collector change-destination secondary interface cp-fpc/pic/port
<clear-files>
<clear-logs>
<immediately | gracefully>

Release Information
Command introduced before Junos OS Release 7.4.

Description
(M40e, M160, and M320 Series routers and T Series routers only) Switch to the secondary File Transfer Protocol (FTP) server that is configured as a flow collector.

Options
none—Switch to the secondary FTP server.

cp-fpc/pic/port—Use the specified flow collector interface name (cp-fpc/pic/port) for the secondary destination.

clear-files—(Optional) Request clearing of existing data files in the FTP wait queue when the switch takes place.

clear-logs—(Optional) Request clearing of existing logs when the switch takes place.

immediately | gracefully—(Optional) Specify whether you want the switch to take place immediately, or to affect only newly created files.

Required Privilege Level
maintenance

List of Sample Output
request services flow-collector change-destination secondary interface on page 299

Output Fields
When you enter this command, you are provided feedback on the status of your request.
Sample Output

```
request services flow-collector change-destination secondary interface
user@host> request services flow-collector change-destination secondary interface cp-6/0/0

Flow collector interface: cp-6/0/0
Interface state: Collecting flows
Destination change successful
```
request services flow-collector test-file-transfer

Syntax

```
request services flow-collector test-file-transfer filename interface (all | cp-fpc/pic/port) (channel-zero | channel-one) (primary | secondary)
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

(M40e, M160, and M320 Series routers, PTX Series, and T Series routers only) Transfer a test file to the primary or secondary File Transfer Protocol (FTP) server that is configured as a flow collector. This command verifies that the output side of the flow collector interface is operating properly.

Options

- **filename**—Name of the test file to transfer.
- **interface (all | cp-fpc/pic/port)**—Transfer a test file of flows from all configured flow collector interfaces or from only the specified interface.
- **channel-zero | channel-one**—Transfer a file from export channel 0 (unit 0) or channel 1 (unit 1) of the PIC.
- **primary | secondary**—Transfer a file to the primary or secondary server configured as a flow collector.

Required Privilege Level

network

List of Sample Output

```
request services flow-collector test-file-transfer interface channel-one primary on page 300
```

Output Fields

When you enter this command, you are provided feedback on the status of your request.

Sample Output

```
request services flow-collector test-file-transfer interface channel-one primary

user@host> request services flow-collector test-file-transfer test_file interface cp-7/1/0 channel-one primary
```
Flow collector interface: cp-7/1/0
Interface state: Collecting flows
Response: Test file transfer successfully scheduled
show chassis forwarding

Syntax

show chassis forwarding

Release Information
Current—Command introduced before Junos OS Release 7.4.
Now—Command introduced in Junos OS Release 7.4. Support for Branch SRX Series added in Junos OS Release 10.1

Description
Display status of the forwarding process (fwdd). This command is supported on Branch SRX Series Services Gateways.

Options
This command has no options.

Required Privilege Level
view

List of Sample Output
show chassis forwarding on page 303

Output Fields
Table 6 on page 303 lists the output fields for the show chassis forwarding command. Output fields are listed in the approximate order in which they appear.
Table 6: show chassis forwarding Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWWD status</td>
<td>Forwarding status:</td>
</tr>
<tr>
<td></td>
<td>• <strong>State:</strong></td>
</tr>
<tr>
<td></td>
<td>• <strong>Online</strong>—FWDD is operational and running.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Offline</strong>—FWDD is not running.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Microkernel CPU utilization</strong>—Percentage of microkernel CPU being used by the forwarding process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Real-time threads CPU utilization</strong>—Percentage of CPU being used by the forwarding process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Heap utilization</strong>—Percentage of heap space (dynamic memory) being used by the forwarding process. If this number exceeds 80 percent, there may be a software problem (memory leak).</td>
</tr>
<tr>
<td></td>
<td>• <strong>Buffer utilization</strong>—Percentage of buffer space being used by the forwarding process for buffering internal messages.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Uptime</strong>—How long the forwarding process has been up and running.</td>
</tr>
</tbody>
</table>

**Sample Output**

`show chassis forwarding`

```bash
user@host> show chassis forwarding
```

**FWWD status:**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Online</td>
</tr>
<tr>
<td>Microkernel CPU utilization</td>
<td>10 percent</td>
</tr>
<tr>
<td>Real-time threads CPU utilization</td>
<td>4 percent</td>
</tr>
<tr>
<td>Heap utilization</td>
<td>26 percent</td>
</tr>
<tr>
<td>Buffer utilization</td>
<td>0 percent</td>
</tr>
<tr>
<td>Uptime</td>
<td>1 day, 1 hour, 30 minutes, 11 seconds</td>
</tr>
</tbody>
</table>
show forwarding-options hyper-mode

Syntax

```
show forwarding-options hyper-mode
```

Release Information

Command introduced in Junos OS Release 13.3R4 for MX Series routers.
Command introduced in Junos OS Release 18.2R1 for EX Series switches.

Description

Display information about the hyper mode feature. After you configure the hyper mode feature, you must reboot the system for the network device (a router or a switch) to reflect the change. For instance, if you have configured hyper mode but not rebooted the system, the Current mode field displays normal while the Configured mode field displays hyper mode.

**NOTE:** Since hyper mode is a chassis-specific feature, the `show forwarding-options hyper-mode` command on a guest network function (GNF) displays the hyper-mode status of the chassis (BSYS), not of the GNF. To know more about GNFs, see Components of Junos Node Slicing.

Required Privilege Level

view

Related Documentation

- Configuring Hyper Mode on Enhanced MPCs to Speed Up Packet Processing | 137
- Understanding the Hyper Mode Feature on Enhanced MPCs for MX Series Routers and EX9200 Switches | 134
- hyper-mode (forwarding-options) | 212

List of Sample Output

show forwarding-options hyper-mode on page 305

Output Fields

Table 7 on page 305 lists the output fields for the `show forwarding-options hyper-mode` command. Output fields are listed in the order in which they appear.
Table 7: show forwarding-options hyper-mode Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current mode</td>
<td>Displays the current mode, either normal or hyper mode.</td>
</tr>
<tr>
<td>Configured mode</td>
<td>Displays the configured mode, either normal or hyper mode.</td>
</tr>
</tbody>
</table>

Sample Output

`show forwarding-options hyper-mode`

```
user@host> show forwarding-options hyper-mode

Current mode: hyper mode
Configured mode: hyper mode
```
show forwarding-options load-balance

Syntax

```
show forwarding-options load-balance
```

Release Information

Command introduced in Junos OS Release 17.1R1 for MX Series routers and T4000 routers.

Description

Displays the load-balancing hash result. You can view this information for one, two, or three levels of load balancing. This command can be used in two ways to get different load-balancing information based on the parameters:

- To get the load-balancing decision result for routed IPv4, IPv6, and other L3 traffic, use the following:

  ```
 show forwarding-options load-balance ingress-interface <interface-name> family <family-type>
 source-address <src-IP> destination-address <dest-IP> transport-protocol <transport-protocol>
 source-port <src-port> destination-port <dest-port> tos <TOS>
  ```

  You can use this command when all the packet header details are available.

- To get the load-balancing decision result for raw packet dump files, use the following:

  ```
 show forwarding-options load-balance ingress-interface <interface-name> family <family-type>
 packet-dump <pkt-dump>
  ```

  You can use this command when the packets in the traffic are complex to be described by the 5-tuple.

NOTE:

- This feature is not supported for multicast flows and L2 packets.
- The maximum size of the raw packets entered on the CLI is 256 KB.
- When injecting raw packets, ensure 24 bytes of trailing space, which is accounted for in the packet header length. This space will be used for inserting metadata to the injected probe packet.

Options

- `interface-name`—Ingress logical interface.
- `family-type`—Layer 3 family “inet/inet6”.
- `src-IP`—Source IP address.
- `dest-IP`—Destination IP address.
transport-protocol—Transport layer protocol "tcp/udp".

src-port—Source port (0 – 65535).

dest-port—Destination port (0 – 65535).

TOS—Type of service field (0 – 255).

pkt-dump—Raw packet dump in hexadecimal without '0x'. The hexadecimal code of packet information must start from the L3 header (IPv4/IPv6) to the end of the packet. It should be less than 256,000 characters in length.

Required Privilege Level
view

RELATED DOCUMENTATION

| show forwarding-options analyzer |
| show forwarding-options port-mirroring | 310 |
| show forwarding-options hyper-mode | 304 |

List of Sample Output

AE Egress-IPv6 Egress on page 308
MPLS Egress IPv4 on page 308
Packet hash:IPv4 (MPLS egress) on page 308
Packet hash:IPv6 (MPLS egress) on page 309

Output Fields

Table 7 on page 305 lists the output fields for the show forwarding-options load-balance command. Output fields are listed in the order in which they appear.

Table 8: show forwarding-options hyper-mode Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgoing logical aggregate interface</td>
<td>Egress aggregated Ethernet interface for current parameters</td>
</tr>
<tr>
<td>Outgoing member physical interface</td>
<td>Egress physical interface for current parameters</td>
</tr>
<tr>
<td>Outgoing next hop address</td>
<td>Egress next hop chosen for current parameters</td>
</tr>
<tr>
<td>Outgoing next hop id</td>
<td>Egress next-hop ID chosen for current parameters</td>
</tr>
</tbody>
</table>
### Sample Output

**AE Egress-IPv6 Egress**

```
user@host> show forwarding-options load-balance family inet6 ingress-interface xe-5/0/3 transport-protocol tcp source-address 2201::2 destination-address 2202::2 source-port 1617 destination-port 1640 tos 224
```

```
================ fpc5 =================
Outgoing logical aggregate interface: ae0.0
Outgoing member physical interface : xe-4/2/1
Outgoing next hop address : fe80::2e21:72ff:fe71:1d
Outgoing next hop id : 700
```

### Sample Output

**MPLS Egress IPv4**

```
user@host> show forwarding-options load-balance ingress-interface xe-5/0/3 family inet source-address 102.1.1.2 destination-address 202.1.1.2 tos 4 transport-protocol udp source-port 1431 destination-port 6531
```

```
================ fpc5 =================
Outgoing logical interface : xe-5/0/2.0
Outgoing next hop address : 40.40.40.2
Outgoing next hop id : 747
```

### Sample Output

**Packet hash:IPv4 (MPLS egress)**

```
user@host> show forwarding-options load-balance ingress-interface xe-5/0/3 family inet packet-dump 480d44d1fde8x00024000b7f803b4b9f0f6c497630001011201d17044d11b15y22y25557292a2b6c03
```

```
================ fpc5 =================
Outgoing logical interface : xe-4/1/1.0
```
Outgoing next hop address : -
Outgoing next hop id : 708

Note that for the MPLS egress, the outgoing next-hop address will not be displayed.

### Sample Output

**Packet hash:IPv6 (MPLS egress)**

```
user@host> show forwarding-options load-balance ingress-interface xe-5/0/3 family inet6 packet-dump
```

```
6c0000000026113d210100000000000000000000000000022201000000000000000000000000000206b6078000265a60b9b7c07aa5bafa43497869600000000210111213361b3e6300021a1bd63a
```

```
================ fpc5 =================
```

```
Outgoing logical interface : xe-4/1/2.0
Outgoing next hop address : -
Outgoing next hop id : 705
```
show forwarding-options port-mirroring

Syntax

```
show forwarding-options port-mirroring
<terse | detail>
<instance-name>
```

Release Information
Command introduced in Junos OS Release 12.3R2 for EX Series switches.

Description
Display current state of port-mirroring instances.

Options
terse | detail—(Optional) Display the specified level of output.

instance-name—(Optional) Display a single port-mirroring instance.

Required Privilege Level
view

RELATED DOCUMENTATION

List of Sample Output
show forwarding-options port-mirroring terse on page 311
show forwarding-options port-mirroring detail on page 311

Output Fields
Table 9 on page 310 lists the output fields for the show forwarding-options port-mirroring command. Output fields are listed in the approximate order in which they appear.

Table 9: show forwarding-options port-mirroring Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance Name</td>
<td>Name of port-mirroring instance.</td>
<td>All levels</td>
</tr>
<tr>
<td>Instance Id</td>
<td>Instance identification number.</td>
<td>All levels</td>
</tr>
<tr>
<td>State</td>
<td>Instance state, either up or down.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 9: show forwarding-options port-mirroring Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Input parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate</td>
<td>Rate (ratio of packets sampled).</td>
<td>detail</td>
</tr>
<tr>
<td>Run-length</td>
<td>Run length (number of consecutive packets sampled).</td>
<td>detail</td>
</tr>
<tr>
<td>Maximum-packet-length</td>
<td>Maximum packet length.</td>
<td>detail</td>
</tr>
<tr>
<td><strong>Output parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td>Protocol family.</td>
<td>detail</td>
</tr>
<tr>
<td>State</td>
<td>Instance state, either up or down.</td>
<td>detail</td>
</tr>
<tr>
<td>Destination</td>
<td>Destination (next-hop group name).</td>
<td>detail</td>
</tr>
<tr>
<td>Next-hop</td>
<td>IP address of the next hop to the destination.</td>
<td>detail</td>
</tr>
</tbody>
</table>

Sample Output

**show forwarding-options port-mirroring terse**

```
user@host> show forwarding-options port-mirroring terse

<table>
<thead>
<tr>
<th>Instance Name</th>
<th>Instance Id</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>&global_instance</td>
<td>1</td>
<td>up</td>
</tr>
<tr>
<td>inst1</td>
<td>2</td>
<td>up</td>
</tr>
</tbody>
</table>
```

**show forwarding-options port-mirroring detail**

```
user@host> show forwarding-options port-mirroring detail

Instance Name: pm1
Instance Id: 2
Input parameters:
 Rate : 2
 Run-length : 0
 Maximum-packet-length : 0
```
<table>
<thead>
<tr>
<th>Family</th>
<th>State</th>
<th>Destination</th>
<th>Next-hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>inet</td>
<td>up</td>
<td>ge-0/0/0.0</td>
<td>10.1.1.2</td>
</tr>
<tr>
<td>inet6</td>
<td>up</td>
<td>ge-0/0/0.0</td>
<td>2001:db8::2</td>
</tr>
<tr>
<td>any</td>
<td>up</td>
<td>ge-0/0/1.0</td>
<td>NA</td>
</tr>
</tbody>
</table>
show forwarding-options next-hop-group

Syntax

```
show forwarding-options next-hop-group
<terse | brief | detail>
<group-name>
```

Release Information
Command introduced in Junos OS Release 12.3R2 for EX Series switches.
Support for IPv6 introduced in Junos OS Release 14.2 for the MX Series routers.

Description
Display current state of next-hop groups.

Options

* `terse | brief | detail`—(Optional) Display the specified level of output.

* `group-name`—(Optional) Display a single next-hop group.

Required Privilege Level
view

RELATED DOCUMENTATION

| show forwarding-options port-mirroring | 310 |

List of Sample Output

* show forwarding-options next-hop-group terse on page 314
* show forwarding-options next-hop-group brief on page 315
* show forwarding-options next-hop-group detail on page 315

Output Fields

Table 10 on page 313 lists the output fields for the `show forwarding-options next-hop-group` command. Output fields are listed in the approximate order in which they appear.

Table 10: show forwarding-options next-hop-group Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next-hop-group</td>
<td>Name of next-hop group.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 10: show forwarding-options next-hop-group Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Next-hop group type, such as inet, inet6 or layer-2.</td>
<td>All levels</td>
</tr>
<tr>
<td>State</td>
<td>Next-hop group state, either up or down.</td>
<td>All levels</td>
</tr>
<tr>
<td>Members Interfaces</td>
<td>Names of interfaces to which next-hop group members belong.</td>
<td>brief detail</td>
</tr>
<tr>
<td>Member Subgroup</td>
<td>Names of subgroups to which next-hop group members belong.</td>
<td>brief detail</td>
</tr>
<tr>
<td>Number of members configured</td>
<td>Number of next-hop group members configured.</td>
<td>detail</td>
</tr>
<tr>
<td>Number of members that are up</td>
<td>Number of next-hop group members that are up.</td>
<td>detail</td>
</tr>
<tr>
<td>Number of subgroups configured</td>
<td>Number of subgroups configured.</td>
<td>detail</td>
</tr>
<tr>
<td>Number of subgroups that are up</td>
<td>Number of subgroups that are up.</td>
<td>detail</td>
</tr>
</tbody>
</table>

Sample Output

show forwarding-options next-hop-group terse

```bash
user@host> show forwarding-options next-hop-group terse

<table>
<thead>
<tr>
<th>Next-hop-group</th>
<th>Type</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>nhg</td>
<td>inet</td>
<td>up</td>
</tr>
<tr>
<td>nhg6</td>
<td>inet6</td>
<td>up</td>
</tr>
<tr>
<td>vpls_nhg_2</td>
<td>layer-2</td>
<td>down</td>
</tr>
</tbody>
</table>
```
show forwarding-options next-hop-group brief

user@host> show forwarding-options next-hop-group brief

Next-hop-group: nhg
  Type: inet
  State: up
  Members Interfaces:
    ge-0/2/8.0     next-hop  192.0.2.10
    ge-5/1/8.0     next-hop  198.51.100.10
    ge-5/1/9.0     next-hop  203.0.113.10

Next-hop-group: nhg6
  Type: inet6
  State: up
  Members Interfaces:
    ge-5/1/5.0     next-hop  2001:db8::1:10
    ge-5/1/6.0     next-hop  2001:db8::20:10
  Member Subgroup:
    nhsg6
      Members Interfaces:
        ge-5/0/4.0     next-hop  2001:db8::3:1
        ge-5/1/4.0     next-hop  2001:db8::4:1

Next-hop-group: vpls_nhg_2
  Type: layer-2
  State: down

show forwarding-options next-hop-group detail

user@host> show forwarding-options next-hop-group detail

Next-hop-group: nhg
  Type: inet
  State: up
  Number of members configured : 3
  Number of members that are up : 3
  Number of subgroups configured : 0
  Number of subgroups that are up : 0
  Members Interfaces:
    ge-0/2/8.0     next-hop  192.0.2.10     up
    ge-5/1/8.0     next-hop  203.0.113.10    up
    ge-5/1/9.0     next-hop  198.51.100.10.10 up

Next-hop-group: nhg6
Type: inet6
State: up
Number of members configured : 2
Number of members that are up : 2
Number of subgroups configured : 1
Number of subgroups that are up : 1

<table>
<thead>
<tr>
<th>Members Interfaces:</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-5/1/5.0</td>
<td>next-hop 2001:db8::1:10 up</td>
</tr>
<tr>
<td>ge-5/1/6.0</td>
<td>next-hop 2001:db8::20:10 up</td>
</tr>
</tbody>
</table>

Member Subgroup: nhsg6 up
Number of members configured : 2
Number of members that are up : 2

<table>
<thead>
<tr>
<th>Members Interfaces:</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-5/0/4.0</td>
<td>next-hop 2001:db8::3:1 up</td>
</tr>
<tr>
<td>ge-5/1/4.0</td>
<td>next-hop 2001:db8::4:1 up</td>
</tr>
</tbody>
</table>

Next-hop-group: vpls_nhg_2
Number of members configured : 2
Number of members that are up : 0
Number of subgroups configured : 0
Number of subgroups that are up : 0
Type: layer-2 State: down

<table>
<thead>
<tr>
<th>Members Interfaces:</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-2/2/1.100</td>
<td>down</td>
</tr>
<tr>
<td>ge-2/3/9.0</td>
<td>down</td>
</tr>
</tbody>
</table>
show interfaces (Flow Monitoring)

Syntax

```
show interfaces mo-fpc/pic/port:channel
<brief | detail | extensive | terse>
<descriptions>
<media>
<snmp-index snmp-index>
<statistics>
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

(M Series and T Series routers only) Display status information about the specified flow monitoring interface.

Options

- `brief | detail | extensive | terse`—(Optional) Display the specified level of output.
- `descriptions`—(Optional) Display interface description strings.
- `media`—(Optional) Display media-specific information about network interfaces.
- `snmp-index snmp-index`—(Optional) Display information for the specified SNMP index of the interface.

Required Privilege Level

`view`

List of Sample Output

**show interfaces extensive (Flow Monitoring) on page 321**

Output Fields

Table 11 on page 317 lists the output fields for the `show interfaces` (Flow Monitoring) command. Output fields are listed in the approximate order in which they appear.

Table 11: show interfaces Output Fields (Flow Monitoring)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Interface</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 11: show interfaces Output Fields (Flow Monitoring)  

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link</td>
<td>Status of the link: up or down.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface. Possible values are described in the &quot;Enabled Field&quot; section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface index</td>
<td>Physical interface index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Description</td>
<td>Description and name of the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Type</td>
<td>Type of interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation type used on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum Transmit Unit (MTU). Size of the largest packet to be transmitted.</td>
<td>All levels</td>
</tr>
<tr>
<td>Clocking</td>
<td>Reference clock source of the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Speed</td>
<td>Network speed on the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Device flags</td>
<td>Information about the physical device. Possible values are described in the &quot;Device Flags&quot; section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface flags</td>
<td>Information about the interface. Possible values are described in the &quot;Interface Flags&quot; section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link type</td>
<td>Data transmission type.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link flags</td>
<td>Information about the link. Possible values are described in the &quot;Link Flags&quot; section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Physical info</td>
<td>Information about the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Hold-times</td>
<td>Current interface hold-time up and hold-time down. Value is in milliseconds.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 11: show interfaces Output Fields (Flow Monitoring) (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current address</td>
<td>Configured MAC address.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Hardware address</td>
<td>Media access control (MAC) address of the interface.</td>
<td>none</td>
</tr>
<tr>
<td>Alternate link address</td>
<td>Backup link address.</td>
<td>none</td>
</tr>
<tr>
<td>Last flapped</td>
<td>Date, time, and how long ago the interface went from down to up. The format is Last flapped: <code>year-month-day hour:minute:second timezone (hour:minute:second ago)</code>. For example, Last flapped: 2002-04-26 10:52:40 PDT (04:33:20 ago)</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Statistics last cleared</td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the physical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Input bytes, Output bytes—Number of bytes received and transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets, Output packets—Number of packets received and transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td>Input errors</td>
<td>• Errors—Input errors on the interface.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Drops—Number of packets dropped by the output queue of the I/O Manager ASIC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Framing errors—Number of packets received with an invalid frame checksum (FCS).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Runts—Frames received smaller than the runt threshold.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Giants—Frames received larger than the giant threshold.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Policed Discards—Frames that the incoming packet match code discarded because the frames did not recognize them or were not of interest. Usually, this field reports protocols that Junos does not support.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resource errors—Sum of transmit drops.</td>
<td></td>
</tr>
</tbody>
</table>
Table 11: show interfaces Output Fields (Flow Monitoring)  (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output errors</td>
<td>• <strong>Carrier transitions</strong>—Number of times the interface has gone from <strong>down</strong> to <strong>up</strong>. This number does not normally increment quickly, increasing only when the cable is unplugged, the far-end system is powered down and then up, or another problem occurs. If the number of carrier transitions increments quickly, possibly once every 10 seconds, the cable, the remote system, or the interface is malfunctioning. &lt;br&gt;• <strong>Errors</strong>—Sum of outgoing frame aborts and FCS errors. &lt;br&gt;• <strong>Drops</strong>—Number of packets dropped by the output queue of the I/O Manager ASIC. If the interface is saturated, this number increments once for every packet dropped by the ASIC Red mechanism. &lt;br&gt;• <strong>Resource errors</strong>—Sum of transmit drops.</td>
<td>extensive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logical Interface</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical interface</td>
<td>Name of the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Index</td>
<td>Logical interface index number, which reflects its initialization sequence.</td>
<td><strong>detail extensive</strong> none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>Logical interface SNMP interface index number.</td>
<td><strong>detail extensive</strong> none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td><strong>detail extensive</strong></td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the logical interface; values are described in the &quot;Logical Interface Flags&quot; section under <strong>Common Output Fields Description</strong>.</td>
<td>All levels</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Encapsulation on the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Total number of bytes and packets received and transmitted on the logical interface. These statistics are the sum of the local and transit statistics. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second) for this counter to stabilize. &lt;br&gt;• <strong>Input bytes</strong>, <strong>Output bytes</strong>—Number of bytes received and transmitted on the interface. &lt;br&gt;• <strong>Input packets</strong>, <strong>Output packets</strong>—Number of packets received and transmitted on the interface.</td>
<td><strong>detail extensive</strong></td>
</tr>
<tr>
<td>Local statistics</td>
<td>Statistics for traffic received from and transmitted to the Routing Engine. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second) for this counter to stabilize.</td>
<td><strong>detail extensive</strong></td>
</tr>
</tbody>
</table>
### Table 11: show interfaces Output Fields (Flow Monitoring) (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit statistics</td>
<td>Statistics for traffic transiting the router. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes awhile (generally, less than 1 second) for this counter to stabilize.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol family configured on the logical interface (such as iso or inet6).</td>
<td>detail extensive</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the logical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Route table</td>
<td>Route table in which this address exists; for example, Route table:0 refers to inet.0.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the protocol family flags. Possible values are described in the &quot;Family Flags&quot; section under Common Output Fields Description.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>

### Sample Output

**show interfaces extensive (Flow Monitoring)**

```
user@host> show interfaces mo-4/0/0 extensive

Physical interface: mo-4/0/0, Enabled, Physical link is Up
 Interface index: 144, SNMP ifIndex: 42, Generation: 28
 Description: monitor pic 2
 Type: Adaptive-Services, Link-level type: Adaptive-Services, MTU: Unlimited,
 Clocking: Unspecified, Speed: 800mbps
 Device flags : Present Running
 Interface flags: Point-To-Point SNMP-Traps 16384
 Link type : Full-Duplex
 Link flags : None
 Physical info : Unspecified
 Hold-times : Up 0 ms, Down 0 ms
 Current address: Unspecified, Hardware address: Unspecified
 Alternate link address: Unspecified
 Last flapped : 2005-05-24 16:43:12 PDT (00:17:46 ago)
 Statistics last cleared: Never
 Traffic statistics:
```
<table>
<thead>
<tr>
<th>Category</th>
<th>Input</th>
<th>Output</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes</td>
<td>756824218</td>
<td>872916185</td>
<td>8328536 bps</td>
</tr>
<tr>
<td>packets</td>
<td>508452</td>
<td>15577196</td>
<td>697 pps</td>
</tr>
<tr>
<td>errors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input errors</td>
<td>Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0, Policed discards: 0, Resource errors: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output errors</td>
<td>Carrier transitions: 2, Errors: 0, Drops: 0, MTU errors: 0, Resource errors: 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Logical interface mo-4/0/0.0 (Index 83) (SNMP ifIndex 43) (Generation 26)**

**Flags:** Point-To-Point SNMP-Traps Encapsulation: Adaptive-Services

**Traffic statistics:**

<table>
<thead>
<tr>
<th>Category</th>
<th>Input</th>
<th>Output</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes</td>
<td>756781796</td>
<td>872255328</td>
<td>8328536 bps</td>
</tr>
<tr>
<td>packets</td>
<td>507233</td>
<td>15575988</td>
<td>697 pps</td>
</tr>
</tbody>
</table>

**Local statistics:**

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input bytes</td>
<td>0</td>
</tr>
<tr>
<td>Output bytes</td>
<td>0</td>
</tr>
<tr>
<td>Input packets</td>
<td>0</td>
</tr>
<tr>
<td>Output packets</td>
<td>0</td>
</tr>
</tbody>
</table>

**Transit statistics:**

<table>
<thead>
<tr>
<th>Category</th>
<th>Input</th>
<th>Output</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes</td>
<td>756781796</td>
<td>872255328</td>
<td>8328536 bps</td>
</tr>
<tr>
<td>packets</td>
<td>507233</td>
<td>15575988</td>
<td>697 pps</td>
</tr>
</tbody>
</table>

**Protocol inet, MTU:** Unlimited, Generation: 38, Route table: 0

**Flags:** None

**Logical interface mo-4/0/0.16383 (Index 84) (SNMP ifIndex 58) (Generation 27)**

...
show interfaces (M Series, MX Series, T Series Routers, and PTX Series Management and Internal Ethernet)

List of Syntax
Syntax (M Series, MX Series, T Series, and PTX Series Routers Management Ethernet Interface) on page 323
Syntax (M Series, MX Series, T Series, and PTX Series Routers Internal Ethernet Interface) on page 323

Syntax (M Series, MX Series, T Series, and PTX Series Routers Management Ethernet Interface)

```
show interfaces em0 | fxp0 | mgmtre0
 <brief | detail | extensive | terse>
 <descriptions>
 <media>
 <snmp-index snmp-index>
 <statistics>
```

Syntax (M Series, MX Series, T Series, and PTX Series Routers Internal Ethernet Interface)

```
show interfaces bcm0 | em0 | em1 | fxp1 | fxp2 | ixgbe0 | ixgbe1
 <brief | detail | extensive | terse>
 <descriptions>
 <media>
 <snmp-index snmp-index>
 <statistics>
```

Release Information
Command introduced before Junos OS Release 7.4.

Description
(M Series, T Series, TX Matrix Plus, and PTX Series devices only) Display status information about the management Ethernet and internal Ethernet interfaces.

Options
em0 | fxp0 | mgmtre0—(M Series, MX Series, T Series, and PTX Series) Display standard information about the management Ethernet interface. For supported Ethernet interface by chassis and Routing Engine, see Supported Routing Engines by Router.

bcm0 | em0 | em1 | fxp1 | fxp2 | ixgbe0 | ixgbe1—(M Series, MX Series, T Series, and PTX Series) Display standard information about the internal Ethernet interfaces. See Supported Routing Engines by Router for the internal Ethernet interface names for each Routing Engine by hardware platform.
NOTE: On Junos OS Evolved, the ixgbe0 and ixgbe1 internal interfaces are deprecated.

brief | detail | extensive | terse—(Optional) Display the specified level of output.

descriptions—(Optional) Display interface description strings.

media—(Optional) Display media-specific information.

snmp-index—(Optional) Display information for the specified SNMP index of the interface.

statistics—(Optional) Display static interface statistics.

Required Privilege Level

view

List of Sample Output

show interfaces brief (Management Ethernet) on page 328
show interfaces (Management Ethernet) on page 328
show interfaces (Management Ethernet [TX Matrix Plus Router]) on page 329
show interfaces (Management Ethernet [PTX Series Packet Transport Routers]) on page 329
show interfaces detail (Management Ethernet) on page 330
show interfaces detail (Management Ethernet [TX Matrix Plus Router]) on page 331
show interfaces detail (Management Ethernet [PTX Packet Transport Routers]) on page 332
show interfaces extensive (Management Ethernet) on page 333
show interfaces extensive (Management Ethernet [TX Matrix Plus Router]) on page 334
show interfaces extensive (Management Ethernet [PTX Series Packet Transport Routers]) on page 335
show interfaces mgmtre0 (Management Ethernet [PTX5000 Router]) on page 336
show interfaces brief (Management Ethernet) on page 337
show interfaces brief (Management Ethernet [TX Matrix Plus Router]) on page 337
show interfaces brief (Management Ethernet [PTX Series Packet Transport Routers]) on page 337
show interfaces (Internal Ethernet) on page 338
show interfaces (Internal Ethernet [TX Matrix Plus Router]) on page 339
show interfaces detail (Internal Ethernet) on page 339
show interfaces detail (Internal Ethernet [TX Matrix Plus Router]) on page 340
show interfaces extensive (internal Ethernet) on page 342
show interfaces extensive (internal Ethernet [TX Matrix Plus Router]) on page 343

Output Fields

Table 12 on page 325 lists the output fields for the show interfaces (management) command on the M Series routers, T Series routers, TX Matrix Plus routers, and PTX Series. Output fields are listed in the approximate order in which they appear.
### Table 12: show interfaces Output Fields for M Series, MX Series, T Series, and PTX Series Routers

Management Ethernet Interface

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Physical Interface</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface. Possible values are described in the &quot;Enabled Field&quot; section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface index</td>
<td>Physical interface index number, which reflects its initialization sequence.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Type</td>
<td>Type of interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation type used on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit (MTU)—Size of the largest packet to be transmitted.</td>
<td>All levels</td>
</tr>
<tr>
<td>Clocking</td>
<td>Reference clock source of the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Speed</td>
<td>Network speed on the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Device flags</td>
<td>Information about the physical device. Possible values are described in the &quot;Device Flags&quot; section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface flags</td>
<td>Information about the interface. Possible values are described in the &quot;Interface Flags&quot; section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link type</td>
<td>Data transmission type.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Link flags</td>
<td>Information about the link. Possible values are described in the &quot;Link Flags&quot; section under Common Output Fields Description.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Physical info</td>
<td>Information about the physical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Hold-times</td>
<td>Current interface hold-time up and hold-time down. Value is in milliseconds.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
### Table 12: show interfaces Output Fields for M Series, MX Series, T Series, and PTX Series Routers

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current address</td>
<td>Configured MAC address.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Hardware address</td>
<td>Media access control (MAC) address of the interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Alternate link address</td>
<td>Backup link address.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Last flapped</td>
<td>Date, time, and how long ago the interface went from down to up. The format is <em>Last flapped: year-month-day hour:minute:second timezone (hour:minute:second ago)</em>. For example, <em>Last flapped: 2002-04-26 10:52:40 PDT (04:33:20 ago)</em>.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Input packets</td>
<td>Number of packets received on the physical interface.</td>
<td>None specified</td>
</tr>
<tr>
<td>Output packets</td>
<td>Number of packets transmitted on the physical interface.</td>
<td>None specified</td>
</tr>
<tr>
<td>Statistics last cleared</td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the logical and physical interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Input bytes, Output bytes</strong>—Number of bytes received and transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Input packets, Output packets</strong>—Number of packets received and transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td>Input errors</td>
<td>• <strong>Errors</strong>—Input errors on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Drops</strong>—Number of packets dropped by the output queue of the I/O Manager ASIC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Framing errors</strong>—Number of packets received with an invalid frame checksum (FCS).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Runts</strong>—Frames received smaller than the runt threshold.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Giants</strong>—Frames received larger than the giant threshold.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Policed Discards</strong>—Frames that the incoming packet match code discarded because they were not recognized or were not of interest. Usually, this field reports protocols that Junos does not support.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Resource errors</strong>—Sum of transmit drops.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
Table 12: show interfaces Output Fields for M Series, MX Series, T Series, and PTX Series Routers

Management Ethernet Interface (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
</table>
| **Output errors** | *Carrier transitions*—Number of times the interface has gone from down to up. This number does not normally increment quickly, increasing only when the cable is unplugged, the far-end system is powered down and then up, or another problem occurs. If the number of carrier transitions increments quickly, possibly once every 10 seconds, the cable, the remote system, or the interface is malfunctioning.  
*Errors*—Sum of outgoing frame aborts and FCS errors.  
*Drops*—Number of packets dropped by the output queue of the I/O Manager ASIC. If the interface is saturated, this number increments once for every packet dropped by the ASIC RED mechanism.  
*Resource errors*—Sum of transmit drops. | extensive |

**Logical Interface**

<table>
<thead>
<tr>
<th>Logical interface</th>
<th>Name of the logical interface</th>
<th>All levels</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Index</strong></td>
<td>Logical interface index number, which reflects its initialization sequence.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>SNMP ifIndex</strong></td>
<td>Logical interface SNMP interface index number.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>Generation</strong></td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Flags</strong></td>
<td>Information about the logical interface; values are described in the “Device Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Encapsulation</strong></td>
<td>Encapsulation on the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>inet</strong></td>
<td>IP address of the logical interface.</td>
<td>brief</td>
</tr>
<tr>
<td><strong>Protocol</strong></td>
<td>Protocol family configured on the logical interface (such as iso or inet6).</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>MTU</strong></td>
<td>MTU size on the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td><strong>Generation</strong></td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Route table</strong></td>
<td>Route table in which this address exists. For example, Route table:0 refers to inet.0.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>Flags</strong></td>
<td>Information about the protocol family flags. Possible values are described in the “Family Flags” section under Common Output Fields Description.</td>
<td>detail extensive none</td>
</tr>
</tbody>
</table>
Table 12: show interfaces Output Fields for M Series, MX Series, T Series, and PTX Series Routers

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addresses, Flags</td>
<td>Information about address flags. Possible values are described in the &quot;Addresses Flags&quot; section under Common Output Fields Description.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Destination</td>
<td>IP address of the remote side of the connection.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Local</td>
<td>IP address of the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Broadcast address.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>

Sample Output

**show interfaces brief (Management Ethernet)**

```
user@host> show interfaces fxp0 brief

Physical interface: fxp0, Enabled, Physical link is Up
Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Clocking: Unspecified, Speed: 100mbps
Device flags : Present Running
Interface flags: SNMP-Traps

Logical interface fxp0.0
 Flags: SNMP-Traps Encapsulation: ENET2
 inet 192.168.70.143/21
```

**show interfaces (Management Ethernet)**

```
user@host> show interfaces fxp0

Physical interface: fxp0, Enabled, Physical link is Up
Interface index: 1, SNMP ifIndex: 1
Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Speed: 100mbps
Device flags : Present Running
Interface flags: SNMP-Traps
Link type : Half-Duplex
```
Current address: 00:00:5E:00:53:89, Hardware address: 00:00:5E:00:53:89
Last flapped : Never
   Input packets : 80804
   Output packets: 1105

Logical interface fxp0.0 (Index 2) (SNMP ifIndex 13)
   Flags: SNMP-Traps Encapsulation: ENET2
   Protocol inet, MTU: 1500
      Flags: Is-Primary
      Addresses, Flags: Is-Preferred Is-Primary
         Destination: 192.168.64/21, Local: 192.168.70.143,
            Broadcast: 192.168.71.255

show interfaces (Management Ethernet [TX Matrix Plus Router])
user@host>  show interfaces em0

Physical interface: em0, Enabled, Physical link is Up
   Interface index: 8, SNMP ifIndex: 17
   Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Speed: 100mbps
   Device flags : Present Running
   Interface flags: SNMP-Traps
   Link type : Full-Duplex
   Current address: 00:00:5E:00:53:c0, Hardware address: 00:00:5E:00:53:c0
   Last flapped : Never
      Input packets : 1424
      Output packets: 5282

Logical interface em0.0 (Index 3) (SNMP ifIndex 18)
   Flags: SNMP-Traps Encapsulation: ENET2
   Input packets : 1424
   Output packets: 5282
   Protocol inet, MTU: 1500
      Flags: Is-Primary
      Addresses, Flags: Is-Preferred Is-Primary
         Destination: 192.168.178.0/25, Local: 192.168.178.11, Broadcast:
            192.168.178.127

show interfaces (Management Ethernet [PTX Series Packet Transport Routers])
user@host>  show interfaces em0


Physical interface: em0, Enabled, Physical link is Up
  Interface index: 8, SNMP ifIndex: 0
  Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps
  Device flags : Present Running
  Interface flags: SNMP-Traps
  Link type : Full-Duplex
  Current address: 00:00:5E:00:53:1b, Hardware address: 00:00:5E:00:53:1b
  Last flapped : Never
  Input packets : 212581
  Output packets: 71

Logical interface em0.0 (Index 3) (SNMP ifIndex 0)
  Flags: SNMP-Traps Encapsulation: ENET2
  Input packets : 212551
  Output packets: 71
  Protocol inet, MTU: 1500
  Flags: Is-Primary
  Addresses, Flags: Is-Default Is-Preferred Is-Primary
    Destination: 192.168.3/24, Local: 192.168.3.30,
    Broadcast: 192.168.3.255

show interfaces detail (Management Ethernet)
user@host> show interfaces fxp0 detail

Physical interface: fxp0, Enabled, Physical link is Up
  Interface index: 1, SNMP ifIndex: 1, Generation: 0
  Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Clocking: Unspecified, Speed: 100mbps
  Device flags : Present Running
  Interface flags: SNMP-Traps
  Link type : Half-Duplex
  Physical info : Unspecified
  Hold-times : Up 0 ms, Down 0 ms
  Current address: 00:00:5E:00:53:89, Hardware address: 00:00:5E:00:53:89
  Alternate link address: Unspecified
  Last flapped : Never
  Statistics last cleared: Never
  Traffic statistics:
    Input bytes : 6484031
    Output bytes : 167503
    Input packets: 81008
    Output packets: 1110
Logical interface fxp0.0 (Index 2) (SNMP ifIndex 13) (Generation 1)
   Flags: SNMP-Traps Encapsulation: ENET2
   Protocol inet, MTU: 1500, Generation: 6, Route table: 0
   Flags: Is-Primary
   Addresses, Flags: Is-Preferred Is-Primary
       Destination: 192.168.64/21, Local: 192.168.70.143,
       Broadcast: 192.168.71.255, Generation: 1

show interfaces detail (Management Ethernet [TX Matrix Plus Router])
user@host> show interfaces em0 detail

Physical interface: em0, Enabled, Physical link is Up
   Interface index: 8, SNMP ifIndex: 17, Generation: 2
   Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Clocking: Unspecified,
   Speed: 100mbps
   Device flags   : Present Running
   Interface flags: SNMP-Traps
   Link type      : Full-Duplex
   Physical info  : Unspecified
   Hold-times     : Up 0 ms, Down 0 ms
   Current address: 00:00:5E:00:53:c0, Hardware address: 00:00:5E:00:53:c0
   Alternate link address: Unspecified
   Last flapped   : Never
   Statistics last cleared: Never
   Traffic statistics:
       Input  bytes  :               124351
       Output bytes  :              1353212
       Input  packets:                 1804
       Output packets:                 5344
   IPv6 transit statistics:
       Input  bytes  :                   0
       Output bytes  :                   0
       Input  packets:                   0
       Output packets:                   0

Logical interface em0.0 (Index 3) (SNMP ifIndex 18) (Generation 1)
   Flags: SNMP-Traps Encapsulation: ENET2
   Traffic statistics:
       Input  bytes  :               117135
       Output bytes  :              1331647
       Input  packets:                 1804
       Output packets:                 5344
   Local statistics:
show interfaces detail (Management Ethernet [PTX Packet Transport Routers])

user@host> show interfaces detail em0

Physical interface: em0, Enabled, Physical link is Up
    Interface index: 8, SNMP ifIndex: 0, Generation: 3
    Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Clocking: Unspecified,
    Speed: 1000mbps
    Device flags : Present Running
    Interface flags: SNMP-Traps
    Link type : Full-Duplex
    Physical info : Unspecified
    Hold-times : Up 0 ms, Down 0 ms
    Current address: 00:00:5E:00:53:1b, Hardware address: 00:00:5E:00:53:1b
    Alternate link address: Unspecified
    Last flapped : Never
    Statistics last cleared: Never
    Traffic statistics:
        Input bytes : 15255909
        Output bytes : 4608
        Input packets: 214753
        Output packets: 72
    IPv6 transit statistics:
        Input bytes : 0
        Output bytes : 0
        Input packets: 0
        Output packets: 0

Logical interface em0.0 (Index 3) (SNMP ifIndex 0) (Generation 1)
    Flags: SNMP-Traps Encapsulation: ENET2
    Traffic statistics:
        Input bytes : 14394630
        Output bytes : 3024
Input packets: 214723  
Output packets: 72  
Local statistics:  
Input bytes : 14394630  
Output bytes : 3024  
Input packets: 214723  
Output packets: 72  
Protocol inet, MTU: 1500, Generation: 1, Route table: 0  
Flags: Is-Primary  
Addresses, Flags: Is-Default Is-Preferred Is-Primary  
  Destination: 192.168.3/24, Local: 192.168.3.30,  
  Broadcast: 192.168.3.255, Generation: 1  

show interfaces extensive (Management Ethernet)  

user@host> show interfaces fxp0 extensive  

Physical interface: fxp0, Enabled, Physical link is Up  
  Interface index: 1, SNMP ifIndex: 1, Generation: 0  
  Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Clocking: Unspecified,  
  Speed: 100mbps  
  Device flags  : Present Running  
  Interface flags: SNMP-Traps  
  Link type     : Half-Duplex  
  Physical info : Unspecified  
  Hold-times    : Up 0 ms, Down 0 ms  
  Current address: 00:00:5E:00:53:89, Hardware address: 00:00:5E:00:53:89  
  Alternate link address: Unspecified  
  Last flapped  : Never  
  Statistics last cleared: Never  
  Traffic statistics:  
    Input bytes : 6678904  
    Output bytes : 169657  
    Input packets: 83946  
    Output packets: 1127  
  Input errors:  
    Errors: 12, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0,  
    Policed discards: 0, Resource errors: 0  
  Output errors:  
    Carrier transitions: 0, Errors: 0, Drops: 0, MTU errors: 0,  
    Resource errors: 0  

Logical interface fxp0.0 (Index 2) (SNMP ifIndex 13) (Generation 1)  
  Flags: SNMP-Traps Encapsulation: ENET2
show interfaces extensive (Management Ethernet [TX Matrix Plus Router])

user@host> show interfaces em0 extensive

Physical interface: em0, Enabled, Physical link is Up
   Interface index: 8, SNMP ifIndex: 17, Generation: 2
   Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Clocking: Unspecified,
   Speed: 100mbps
   Device flags   : Present Running
   Interface flags: SNMP-Traps
   Link type      : Full-Duplex
   Physical info  : Unspecified
   Hold-times     : Up 0 ms, Down 0 ms
   Current address: 00:00:5E:00:53:c0, Hardware address: 00:00:5E:00:53:c0
   Alternate link address: Unspecified
   Last flapped   : Never
   Statistics last cleared: Never

Traffic statistics:
   Input  bytes  :          127120
   Output bytes :          1357414
   Input packets:              1843
   Output packets:             5372

IPv6 transit statistics:
   Input  bytes  :          0
   Output bytes :          0
   Input packets:              0
   Output packets:             0

Input errors:
   Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0, Policed discards: 0, Resource errors: 0

Output errors:
   Carrier transitions: 0, Errors: 0, Drops: 0, MTU errors: 0, Resource errors: 0

Logical interface em0.0 (Index 3) (SNMP ifIndex 18) (Generation 1)
   Flags: SNMP-Traps Encapsulation: ENET2

Traffic statistics:
show interfaces extensive (Management Ethernet [PTX Series Packet Transport Routers])

user@host>  show interfaces extensive em0

<table>
<thead>
<tr>
<th>Physical interface: em0, Enabled, Physical link is Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface index: 8, SNMP ifIndex: 0, Generation: 3</td>
</tr>
<tr>
<td>Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Clocking: Unspecified,</td>
</tr>
</tbody>
</table>

| Speed: 1000mbps |
| Device flags : Present Running |
| Interface flags: SNMP-Traps |
| Link type : Full-Duplex |
| Physical info : Unspecified |
| Hold-times : Up 0 ms, Down 0 ms |
| Current address: 00:00:5E:00:53:1b, Hardware address: 00:00:5E:00:53:1b |
| Alternate link address: Unspecified |
| Last flapped : Never |
| Statistics last cleared: Never |
| Traffic statistics: |
| Input bytes : 15236459 |
| Output bytes : 4608 |
| Input packets: 214482 |
| Output packets: 72 |
| IPv6 transit statistics: |
| Input bytes : 0 |
| Output bytes : 0 |
| Input packets: 0 |
| Output packets: 0 |
| Input errors: |
Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0, Policed discards: 0, Resource errors: 0
Output errors:
Carrier transitions: 0, Errors: 0, Drops: 0, MTU errors: 0, Resource errors: 0

Logical interface em0.0 (Index 3) (SNMP ifIndex 0) (Generation 1)
Flags: SNMP-Traps Encapsulation: ENET2
Traffic statistics:
Input bytes : 14376264
Output bytes : 3024
Input packets: 214452
Output packets: 72
Local statistics:
Input bytes : 14376264
Output bytes : 3024
Input packets: 214452
Output packets: 72
Protocol inet, MTU: 1500, Generation: 1, Route table: 0
Flags: Is-Primary
Addresses, Flags: Is-Default Is-Preferred Is-Primary
Destination: 192.168.3/24, Local: 192.168.3.30,
Broadcast: 192.168.3.255, Generation: 1

show interfaces mgmtre0 (Management Ethernet [PTX5000 Router])
user@host> show interfaces mgmtre0 extensive

Physical interface: mgmtre0, Enabled, Physical link is Up
Interface index: 1001, SNMP ifIndex: 501
Link-level type: Ethernet, MTU: 1500
Device flags : Present
Interface flags: None
Link flags : None
Current address: ec:9e:cd:06:30:da, Hardware address: ec:9e:cd:06:30:da
Last flapped : Never

Logical interface mgmtre0.0 (Index 1001) (SNMP ifIndex 503)
Flags: Encapsulation: ENET2
Protocol inet, MTU: 1486
Flags: None
Addresses, Flags: Is-Preferred Is-Primary
Destination: 10.92.248/23, Local: 10.92.248.22,
Broadcast: 10.92.249.255
show interfaces brief (Management Ethernet)

user@host> show interfaces fxp1 brief

Physical interface: fxp1, Enabled, Physical link is Up
  Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Clocking: Unspecified,
  Speed: 100mbps
  Device flags : Present Running
  Interface flags: SNMP-Traps

Logical interface fxp1.0
  Flags: SNMP-Traps Encapsulation: ENET2
  inet  10.0.0.4/8
  inet6 fe80::200:ff:fe00:4/64
      fec0::10:0:0:4/64
  tnp   4

show interfaces brief (Management Ethernet [TX Matrix Plus Router])

user@host> show interfaces em0 brief

Physical interface: em0, Enabled, Physical link is Up
  Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Clocking: Unspecified,
  Speed: 1000mbps
  Device flags : Present Running
  Interface flags: SNMP-Traps

Logical interface em0.0
  Flags: SNMP-Traps Encapsulation: ENET2
  inet  192.168.178.11/25

show interfaces brief (Management Ethernet [PTX Series Packet Transport Routers])

user@host> show interfaces em0 brief

Physical interface: em0, Enabled, Physical link is Up
  Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Clocking: Unspecified,
  Speed: 1000mbps
Device flags   : Present Running
Interface flags: SNMP-Traps

Logical interface em0.0
Flags: SNMP-Traps Encapsulation: ENET2
inet  192.168.3.30/24

root@absolutely> show interfaces em0 terse
Interface               Admin Link Proto    Local                 Remote
em0                     up    up
em0.0                   up    up   inet     192.168.3.30/24

show interfaces (Internal Ethernet)
user@host> show interfaces fxp1

Physical interface: fxp1, Enabled, Physical link is Up
Interface index: 2, SNMP ifIndex: 2
Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Speed: 100mbps
Device flags   : Present Running
Interface flags: SNMP-Traps
Link type      : Full-Duplex
Current address: 00:00:5E:00:53:04, Hardware address: 00:00:5E:00:53:04
Last flapped   : Never
   Input packets: 30655
   Output packets: 33323

Logical interface fxp1.0 (Index 3) (SNMP ifIndex 14)
Flags: SNMP-Traps Encapsulation: ENET2
Protocol inet, MTU: 1500
   Flags: Is-Primary
   Addresses, Flags: Is-Default Is-Preferred Is-Primary
      Destination: 10/8, Local: 10.0.0.4, Broadcast: 10.255.255.255
Protocol inet6, MTU: 1500
   Flags: Is-Primary
   Addresses, Flags: Is-Preferred
      Destination: fe80::/64, Local: fe80::200:ff:fe00:4
   Addresses, Flags: Is-Default Is-Preferred Is-Primary
      Destination: fec0::/64, Local: fec0::10:0:0:4
Protocol tnp, MTU: 1500
   Flags: Primary, Is-Primary
   Addresses
      Local: 4
### show interfaces (Internal Ethernet [TX Matrix Plus Router])

**user@host> show interfaces ixgbe0**

<table>
<thead>
<tr>
<th>Physical interface: ixgbe0, Enabled, Physical link is Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface index: 2, SNMP ifIndex: 116</td>
</tr>
<tr>
<td>Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps</td>
</tr>
<tr>
<td>Device flags : Present Running</td>
</tr>
<tr>
<td>Interface flags: SNMP-Traps</td>
</tr>
<tr>
<td>Link type : Full-Duplex</td>
</tr>
<tr>
<td>Current address: 00:00:5E:00:53:04, Hardware address: 00:00:5E:00:53:04</td>
</tr>
<tr>
<td>Last flapped : Never</td>
</tr>
<tr>
<td>Input packets : 2301738</td>
</tr>
<tr>
<td>Output packets: 3951155</td>
</tr>
</tbody>
</table>

**Logical interface ixgbe0.0 (Index 4) (SNMP ifIndex 117)**

| Flags: SNMP-Traps Encapsulation: ENET2                   |
| Input packets : 2301595                                  |
| Output packets: 3951155                                 |
| Protocol inet, MTU: 1500                                 |
| Flags: Is-Primary                                       |
| Addresses, Flags: Is-Preferred                          |
| Destination: 10.34.0.4, Broadcast: 10.255.255.255       |
| Addresses, Flags: Primary Is-Default Is-Preferred Is-Primary |
| Destination: 192.168.16, Local: 192.168.0.4, Broadcast: 192.168.0.4 |

**Protocol inet6, MTU: 1500**

| Flags: Is-Primary                                      |
| Addresses, Flags: Is-Preferred                         |
| Destination: fe80::/64, Local: fe80::200:ff:fe22:4    |
| Addresses, Flags: Is-Default Is-Preferred Is-Primary   |
| Destination: fec0::/64, Local: fec0::a:22:0:4          |

**Protocol tnp, MTU: 1500**

| Flags: Primary, Is-Primary                             |
| Addresses                                              |
| Local: 0x220000004                                      |

### show interfaces detail (Internal Ethernet)

**user@host> show interfaces fxp1 detail**

<table>
<thead>
<tr>
<th>Physical interface: fxp1, Enabled, Physical link is Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface index: 2, SNMP ifIndex: 2, Generation: 1</td>
</tr>
<tr>
<td>Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Clocking: Unspecified, Speed: 100mbps</td>
</tr>
<tr>
<td>Device flags : Present Running</td>
</tr>
</tbody>
</table>
### Interface Details

**Interface flags:** SNMP-Traps

**Link type:** Full-Duplex

**Physical info:** Unspecified

**Hold-times:** Up 0 ms, Down 0 ms

**Current address:** 00:00:5E:00:53:04, **Hardware address:** 00:00:5E:00:53:04

**Alternate link address:** Unspecified

**Last flapped:** Never

**Statistics last cleared:** Never

**Traffic statistics:**
- **Input bytes:** 2339969
- **Output bytes:** 15880707
- **Input packets:** 30758
- **Output packets:** 33443

**Logical interface fxp1.0 (Index 3) (SNMP ifIndex 14) (Generation 2)**

- **Flags:** SNMP-Traps
- **Encapsulation:** ENET2

**Protocol inet, MTU:** 1500, **Generation:** 7, **Route table:** 1

- **Flags:** Is-Primary
- **Addresses, Flags:** Is-Default Is-Preferred Is-Primary
  - Destination: 10/8, Local: 10.0.0.4, Broadcast: 10.255.255.255, Generation: 3

**Protocol inet6, MTU:** 1500, **Generation:** 8, **Route table:** 1

- **Flags:** Is-Primary
- **Addresses, Flags:** Is-Preferred
  - Destination: fe80::/64, Local: fe80::200:ff:fe00:4, Broadcast: Unspecified, Generation: 5
  - Addresses, Flags: Is-Default Is-Preferred Is-Primary
    - Destination: fec0::/64, Local: fec0::10:0:0:4, Broadcast: Unspecified, Generation: 7

**Protocol tnp, MTU:** 1500, **Generation:** 9, **Route table:** 1

- **Flags:** Primary, Is-Primary
- **Addresses, Flags:** None
  - Destination: Unspecified, Local: 4, Broadcast: Unspecified, Generation: 8

---

**show interfaces detail (Internal Ethernet [TX Matrix Plus Router])**

`user@host> show interfaces ixgbe0 detail`

**Physical interface:** ixgbe0, **Enabled,** **Physical link is Up**

- **Interface index:** 2, **SNMP ifIndex:** 116, **Generation:** 3
- **Type:** Ethernet, **Link-level type:** Ethernet, **MTU:** 1514, **Clocking:** Unspecified
- **Speed:** 1000mbps
- **Device flags:** Present Running
Interface flags: SNMP-Traps
Link type : Full-Duplex
Physical info : Unspecified
Hold-times : Up 0 ms, Down 0 ms
Current address: 00:00:5E:00:53:04, Hardware address: 00:00:5E:00:53:04
Alternate link address: Unspecified
Last flapped : Never
Statistics last cleared: Never
Traffic statistics:
  Input  bytes  : 238172825
  Output bytes  : 1338948955
  Input  packets: 2360984
  Output packets: 4061512
IPv6 transit statistics:
  Input  bytes  : 0
  Output bytes  : 0
  Input  packets: 0
  Output packets: 0

Logical interface ixgbe0.0 (Index 4) (SNMP ifIndex 117) (Generation 2)
  Flags: SNMP-Traps Encapsulation: ENET2
  Traffic statistics:
  Input  bytes  : 228720309
  Output bytes  : 1261387447
  Input  packets: 2360841
  Output packets: 4061512
IPv6 transit statistics:
  Input  bytes  : 0
  Output bytes  : 0
  Input  packets: 0
  Output packets: 0

Local statistics:
  Input  bytes  : 228720309
  Output bytes  : 1261387447
  Input  packets: 2360841
  Output packets: 4061512
Protocol inet, MTU: 1500, Generation: 2, Route table: 1
  Flags: Is-Primary
  Addresses, Flags: Is-Preferred
    Destination: 10/8, Local: 10.34.0.4, Broadcast: 10.255.255.255, Generation: 2
    Addresses, Flags: Primary Is-Default Is-Preferred Is-Primary
show interfaces extensive (internal Ethernet)

user@host> show interfaces f xp1 extensive

Physical interface: f xp1, Enabled, Physical link is Up
  Interface index: 2, SNMP ifIndex: 2, Generation: 1
  Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Clocking: Unspecified,
  Speed: 100mbps
  Device flags : Present Running
  Interface flags: SNMP-Traps
  Link type : Full-Duplex
  Physical info : Unspecified
  Hold-times : Up 0 ms, Down 0 ms
  Current address: 00:00:5E:00:53:04, Hardware address: 00:00:5E:00:53:04
  Alternate link address: Unspecified
  Last flapped : Never
  Statistics last cleared: Never
  Traffic statistics:
    Input bytes : 2349897
    Output bytes : 15888605
    Input packets: 30896
    Output packets: 33607
  Input errors:
    Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0,
    Policed discards: 0, Resource errors: 0
  Output errors:
    Carrier transitions: 0, Errors: 0, Drops: 0, MTU errors: 0,
    Resource errors: 0

Logical interface f xp1.0 (Index 3) (SNMP ifIndex 14) (Generation 2)
show interfaces extensive (internal Ethernet [TX Matrix Plus Router])

user@host> show interfaces ixgbe0 extensive

Physical interface: ixgbe0, Enabled, Physical link is Up
  Interface index: 2, SNMP ifIndex: 116, Generation: 3
  Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Clocking: Unspecified,
  Speed: 1000mbps
  Device flags : Present Running
  Interface flags: SNMP-Traps
  Link type : Full-Duplex
  Physical info : Unspecified
  Hold-times : Up 0 ms, Down 0 ms
  Current address: 00:00:5E:00:53:04, Hardware address: 00:00:5E:00:53:04
  Alternate link address: Unspecified
  Last flapped : Never
  Statistics last cleared: Never
  Traffic statistics:
    Input bytes : 242730780
    Output bytes : 1348312269
    Input packets: 2398737
    Output packets: 4133510
    IPv6 transit statistics:
      Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0
Input errors:
Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0, Policed discards: 0, Resource errors: 0
Output errors:
Carrier transitions: 0, Errors: 0, Drops: 0, MTU errors: 0, Resource errors: 0

Logical interface ixgbe0.0 (Index 4) (SNMP ifIndex 117) (Generation 2)
Flags: SNMP-Traps Encapsulation: ENET2
Traffic statistics:
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>233127252</td>
</tr>
<tr>
<td>Output</td>
<td>1269350897</td>
</tr>
</tbody>
</table>

IPv6 transit statistics:
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>0</td>
</tr>
<tr>
<td>Output</td>
<td>0</td>
</tr>
</tbody>
</table>

Local statistics:
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>233127252</td>
</tr>
<tr>
<td>Output</td>
<td>1269350897</td>
</tr>
</tbody>
</table>

Protocol inet, MTU: 1500, Generation: 2, Route table: 1
Flags: Is-Primary
Addresses, Flags: Is-Preferred
  Destination: 10/8, Local: 10.34.0.4, Broadcast: 10.255.255.255, Generation: 2

Addresses, Flags: Primary Is-Default Is-Preferred Is-Primary

Protocol inet6, MTU: 1500, Generation: 3, Route table: 1
Flags: Is-Primary
Addresses, Flags: Is-Preferred
  Destination: fe80::/64, Local: fe80::200:ff:fe22:4
Generation: 4

Addresses, Flags: Is-Default Is-Preferred Is-Primary
  Destination: fec0::/64, Local: fec0::a:22:0:4

Protocol tnp, MTU: 1500, Generation: 5
Generation: 4, Route table: 1
Flags: Primary, Is-Primary
Addresses, Flags: None
   Destination: Unspecified, Local: 0x22000004, Broadcast: Unspecified,
   Generation: 6
show interfaces statistics

Syntax

```
show interfaces statistics interface-name
 <satellite-device [device-alias-name | all]>
 <detail>
```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport Routers.
Command introduced in Junos OS Release 12.2 for ACX Series Routers.
satellite-device option introduced in Junos OS Release 14.2R3.

Description

Display static interface statistics, such as errors.

NOTE: When the show interfaces statistics command is executed on an interface that is configured on T4000 Type 5 FPC, the IPv6 transit statistics field displays:

- Total statistics (sum of transit and local statistics) at the physical interface level
- Transit statistics at the logical interface level

Options

interface-name—Name of an interface.

satellite-device [device-alias-name | all ]—(Junos Fusion only) (Optional) Display interface statistics for interfaces on the specified satellite device in the Junos Fusion, or on all satellite devices in the Junos Fusion.

NOTE: In a Junos Fusion Enterprise, logical interface statistics are not synced across aggregation devices in a dual-aggregation device topology.

detail—(Optional) Display detailed output.

Required Privilege Level

view
RELATED DOCUMENTATION

List of Sample Output

show interfaces statistics (Fast Ethernet) on page 347
show interfaces statistics (Gigabit Ethernet PIC—Egress) on page 348
show interfaces statistics detail (Aggregated Ethernet) on page 351
show interfaces statistics detail (Aggregated Ethernet—Ingress) on page 352
show interfaces statistics detail (Aggregated Ethernet—Egress) on page 354
show interfaces statistics (SONET/SDH) on page 355
show interfaces statistics (Aggregated SONET/SDH—Ingress) on page 357
show interfaces statistics (Aggregated SONET/SDH—Egress) on page 358
show interfaces statistics (MX Series Routers) on page 359
show interfaces statistics (MX Series Routers: Dynamic Interfaces with RPF Check Detail) on page 360
show interfaces statistics (PTX Series Packet Transport Routers) on page 361
show interfaces statistics (ACX Series routers) on page 362

Output Fields

Output from both the show interfaces interface-name detail and the show interfaces interface-name extensive commands include all the information displayed in the output from the show interfaces statistics command. For more information, see the particular interface type in which you are interested. For information about destination class and source class statistics, see the "Destination Class Field" section and the "Source Class Field" section under Common Output Fields Description. For information about the input errors and output errors, see Fast Ethernet and Gigabit Ethernet Counters.

Sample Output

show interfaces statistics (Fast Ethernet)

user@host> show interfaces fe-1/3/1 statistics

Physical interface: fe-1/3/1, Enabled, Physical link is Up
   Interface index: 144, SNMP ifIndex: 1042
   Description: for fe-1/3/1
   Link-level type: Ethernet, MTU: 1514, Speed: 100mbps, Loopback: Disabled,
   Source filtering: Disabled, Flow control: Enabled
   Device flags : Present Running
   Interface flags: SNMP-Traps Internal: 0x4000
   CoS queues : 4 supported, 4 maximum usable queues
   Current address: 00:00:5E:00:53:dc, Hardware address: 00:00:5E:00:53:dc
   Last flapped : 2006-04-18 03:08:59 PDT (00:01:24 ago)
   Statistics last cleared: Never
Input rate     : 0 bps (0 pps)
Output rate    : 0 bps (0 pps)
Input errors: 0, Output errors: 0
Active alarms  : None
Active defects : None

Logical interface fe-1/3/1.0 (Index 69) (SNMP ifIndex 50)
Flags: SNMP-Traps Encapsulation: ENET2
Protocol inet, MTU: 1500
Flags: Is-Primary, DCU, SCU-in

<table>
<thead>
<tr>
<th>Destination class</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(packet-per-second)</td>
<td>(bits-per-second)</td>
</tr>
<tr>
<td>silver1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0) (0)</td>
<td>(0)</td>
</tr>
<tr>
<td>silver2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0) (0)</td>
<td>(0)</td>
</tr>
<tr>
<td>silver3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0) (0)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Addresses, Flags: Is-Default Is-Preferred Is-Primary
Destination: 10.27.245/24, Local: 10.27.245.2,
Broadcast: 10.27.245.255
Protocol iso, MTU: 1497
Flags: Is-Primary

show interfaces statistics (Gigabit Ethernet PIC—Egress)

user@host> show interfaces ge-5/2/0 statistics detail

Physical interface: ge-5/2/0, Enabled, Physical link is Up
Interface index: 146, SNMP ifIndex: 519, Generation: 149
Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps, BPDU Error: None,
MAC-REWRITE Error: None, Loopback: Disabled,
Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
Remote fault: Online
Device flags : Present Running
Interface flags: SNMP-Traps Internal: 0x4000
Link flags : None
CoS queues : 8 supported, 8 maximum usable queues
Hold-times : Up 0 ms, Down 0 ms
Current address: 00:00:5E:00:53:74, Hardware address: 00:00:5E:00:53:74
Last flapped : 2009-11-11 11:24:00 PST (09:23:08 ago)
Statistics last cleared: 2009-11-11 17:50:58 PST (02:56:10 ago)
Traffic statistics:
Input bytes : 271524 0 bps
Output bytes : 37769598 352 bps
Input packets: 3664 0 pps
Output packets: 885790 0 pps
IPv6 transit statistics:
Input bytes: 0
Output bytes: 16681118
Input packets: 0
Output packets: 362633
Multicast statistics:
IPv4 multicast statistics:
Input bytes: 112048 0 bps
Output bytes: 20779920 0 bps
Input packets: 1801 0 pps
Output packets: 519498 0 pps
IPv6 multicast statistics:
Input bytes: 156500 0 bps
Output bytes: 16681118 0 bps
Input packets: 1818 0 pps
Output packets: 362633 0 pps
Input errors:
Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0, L3 incompletes: 0, L2 channel errors: 0,
L2 mismatch timeouts: 0, FIFO errors: 0, Resource errors: 0
Output errors:
Carrier transitions: 0, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0,
FIFO errors: 0, HS link CRC errors: 0, MTU errors: 0,
Resource errors: 0
Egress queues: 8 supported, 4 in use
Queue counters:
Queued packets Transmitted packets Dropped packets
0 best-effort 882558 882558 0
1 expedited-fo 0 0 0
2 assured-forw 0 0 0
3 network-cont 3232 3232 0
Active alarms: None
Active defects: None
Logical interface ge-5/2/0.0 (Index 71) (SNMP ifIndex 573) (Generation 135)
Flags: SNMP-Traps 0x4000 Encapsulation: ENET2
Egress account overhead: 100
Ingress account overhead: 90
Traffic statistics:
Input bytes: 271524
Output bytes: 37769598
Input packets: 3664
Output packets: 885790
IPv6 transit statistics:
Input bytes : 0
Output bytes : 16681118
Input packets: 0
Output packets: 362633
Local statistics:
Input bytes : 271524
Output bytes : 308560
Input packets: 3664
Output packets: 3659
Transit statistics:
Input bytes : 0 0 bps
Output bytes : 37461038 0 bps
Input packets: 0 0 pps
Output packets: 882131 0 pps
IPv6 transit statistics:
Input bytes : 0
Output bytes : 16681118
Input packets: 0
Output packets: 362633
Multicast statistics:
IPV4 multicast statistics:
Input bytes : 112048 0 bps
Output bytes : 20779920 0 bps
Input packets: 1801 0 pps
Output packets: 519498 0 pps
IPV6 multicast statistics:
Input bytes : 156500 0 bps
Output bytes : 16681118 0 bps
Input packets: 1818 0 pps
Output packets: 362633 0 pps
Protocol inet, MTU: 1500, Generation: 151, Route table: 0
Addresses, Flags: Is-Preferred Is-Primary
  Destination: 10.40.40.0/30, Local: 10.40.40.2, Broadcast: 10.40.40.3,
  Generation: 167
Protocol inet6, MTU: 1500, Generation: 152, Route table: 0
Addresses, Flags: Is-Preferred Is-Primary
  Destination: ::10.40.40.0/126, Local: ::10.40.40.2
  Generation: 169
Addresses, Flags: Is-Preferred
  Destination: fe80::/64, Local: fe80::21d:b5ff:fe61:d974
Protocol multiservice, MTU: Unlimited, Generation: 171
Generation: 153, Route table: 0
Policer: Input: __default_arp_policer__

show interfaces statistics detail (Aggregated Ethernet)

user@host> show interfaces ae0 detail

Physical interface: ae0, Enabled, Physical link is Up
  Interface index: 186, SNMP ifIndex: 111, Generation: 187
  Link-level type: Ethernet, MTU: 1514, Speed: 2000mbps, Loopback: Disabled,
  Source filtering: Disabled, Flow control: Disabled, Minimum links needed: 1,
  Minimum bandwidth needed: 0
  Device flags : Present Running
  Interface flags: SNMP-Traps Internal: 0x4000
  Current address: 00:00:5E:0053:f0, Hardware address: 00:00:5E:00:53:f0
  Last flapped : Never
  Statistics last cleared: 2006-12-23 03:04:16 PST (01:16:24 ago)
  Traffic statistics:
    Input  bytes :                28544                    0 bps
    Output bytes  :                39770                    0 bps
    Input  packets:                  508                    0 pps
    Output packets:                  509                    0 pps
    Input bytes :           IPv6 28544
    Output bytes  :               IPv6 0
    Input packets:             IPv6 508
    Output packets:               IPv6 0
  Input errors:
    Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0,
    Policed discards: 0, Resource errors: 0
  Output errors:
    Carrier transitions: 0, Errors: 0, Drops: 0, MTU errors: 0,
    Resource errors: 0

Logical interface ae0.0 (Index 67) (SNMP ifIndex 139) (Generation 145)
  Flags: SNMP-Traps Encapsulation: ENET2
  Statistics Packets pps Bytes bps
  Bundle:
    Input :           508          0         28544            0
    Output:           509          0         35698            0
  Link:
    ge-3/3/8.0
      Input :           508          0         28544            0
      Output:             0          0             0            0
    ge-3/3/9.0
show interfaces statistics detail (Aggregated Ethernet—Ingress)

user@host> show interfaces statistics detail ae0 | no-more

Physical interface: ae0, Enabled, Physical link is Up
Interface index: 128, SNMP ifIndex: 504, Generation: 278
Link-level type: Ethernet, MTU: 1514, Speed: 1Gbps, BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled,
Source filtering: Disabled, Flow control: Disabled, Minimum links needed: 1,
Minimum bandwidth needed: 0
Device flags : Present Running
Interface flags: SNMP-Traps Internal: 0x4000
Current address: 00:00:5E:00:53:f0, Hardware address: 00:00:5E:00:53:f0
Last flapped : 2009-11-09 03:30:23 PST (00:01:28 ago)
Statistics last cleared: 2009-11-09 03:26:18 PST (00:05:33 ago)
Traffic statistics:
  Input bytes : 544009602 54761856 bps
  Output bytes : 3396 0 bps
  Input packets: 11826292 148809 pps
  Output packets: 42 0 pps
IPV6 transit statistics:
  Input bytes : 350818604
Output bytes : 0
Input packets: 7626488
Output packets: 0
Input errors:
   Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0, Policed discards: 0, Resource errors: 0
Output errors:
   Carrier transitions: 0, Errors: 0, Drops: 0, MTU errors: 0, Resource errors: 0
Ingress queues: 8 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
   0 best-effort 0 0 0
   1 expedited-fo 0 0 0
   2 assured-forw 0 0 0
   3 network-cont 0 0 0
Egress queues: 8 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
   0 best-effort 21 21 0
   1 expedited-fo 0 0 0
   2 assured-forw 0 0 0
   3 network-cont 451 451 0
Logical interface ae0.0 (Index 70) (SNMP ifIndex 574) (Generation 177)
   Flags: SNMP-Traps 0x4000 Encapsulation: ENET2
Statistics        Packets        pps         Bytes          bps
Bundle:
   Input : 11826292 148809 544009602 54761856
   Output: 42 0 3396 0
Link:
   ge-5/2/0.0
   Input : 11826292 148809 544009602 54761856
   Output: 42 0 3396 0
Marker Statistics: Marker Rx Resp Tx Unknown Rx Illegal Rx
   ge-5/2/0.0 0 0 0 0
Protocol inet, MTU: 1500, Generation: 236, Route table: 0
Addresses, Flags: Is-Preferred Is-Primary
Protocol inet6, MTU: 1500, Generation: 237, Route table: 0
Addresses, Flags: Is-Preferred Is-Primary
   Destination: ::10.30.30.0/126, Local: ::10.30.30.2
Generation: 312
Addresses, Flags: Is-Preferred
   Destination: fe80::/64, Local: fe80::21d:b5ff:fe61:dbf0
Protocol multiservice, MTU: Unlimited, Generation: 314
Generation: 238, Route table: 0
Policer: Input: __default_arp_policer__

show interfaces statistics detail (Aggregated Ethernet—Egress)

user@host> show interfaces statistics detail ae0 | no-more

Physical interface: ae0, Enabled, Physical link is Up
Interface index: 128, SNMP ifIndex: 501, Generation: 319
Link-level type: Ethernet, MTU: 1514, Speed: 1Gbps, BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled,
Source filtering: Disabled, Flow control: Disabled, Minimum links needed: 1,
Minimum bandwidth needed: 0
Device flags : Present Running
Interface flags: SNMP-Traps Internal: 0x4000
Current address: 00:00:5E:00:53:f0, Hardware address: 00:00:5E:00:53:f0
Last flapped : 2009-11-09 03:30:24 PST (00:02:42 ago)
Statistics last cleared: 2009-11-09 03:26:42 PST (00:06:24 ago)
Traffic statistics:
  Input bytes : 440 0 bps
  Output bytes : 1047338120 54635848 bps
  Input packets: 7 0 pps
  Output packets: 22768200 148466 pps
IPv6 transit statistics:
  Input bytes : 288
  Output bytes : 723202616
  Input packets: 4
  Output packets: 15721796
Input errors:
  Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0, Policed discards: 0,
Output errors:
  Carrier transitions: 0, Errors: 0, Drops: 0, MTU errors: 0, Resource errors: 0
Ingress queues: 8 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
  0 best-effort 0 0 0
  1 expedited-fo 0 0 0
  2 assured-forw 0 0 0
  3 network-cont 0 0 0
Egress queues: 8 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
  0 best-effort 201985796 201985796 0
show interfaces statistics (SONET/SDH)

user@host> show interfaces statistics detail so-3/0/0 | no-more

Physical interface: so-3/0/0, Enabled, Physical link is Up
  Interface index: 133, SNMP ifIndex: 538, Generation: 283
  Link-level type: PPP, MTU: 4474, Clocking: Internal, SONET mode, Speed: OC192,
  Loopback: None, FCS: 16, Payload scrambler: Enabled
  Device flags : Present Running
  Interface flags: Point-To-Point SNMP-Traps Internal: 0x4000
  Link flags : Keepalives
  Hold-times : Up 0 ms, Down 0 ms
  Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
  Keepalive statistics:
Input: 13 (last seen 00:00:04 ago)
Output: 14 (last sent 00:00:02 ago)
LCP state: Opened

CHAP state: Closed
PAP state: Closed
CoS queues: 8 supported, 8 maximum usable queues
Last flapped: 2009-11-09 02:52:34 PST (01:12:39 ago)
Statistics last cleared: 2009-11-09 03:58:54 PST (00:06:19 ago)
Traffic statistics:
  Input bytes: 2559160294
  Output bytes: 10640
  Input packets: 55633975
  Output packets: 216
  IPv6 transit statistics:
    Input bytes: 647922328
    Output bytes: 0
    Input packets: 14085269
    Output packets: 0

Input errors:
  Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0, Bucket drops: 0,
  Policed discards: 0, L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0, HS link CRC errors: 0, HS link FIFO overflows: 0

Output errors:
  Carrier transitions: 0, Errors: 0, Drops: 0, Aged packets: 0, HS link FIFO underflows: 0, MTU errors: 0

Egress queues: 8 supported, 4 in use
Queue counters:
  0 best-effort: 4 queued packets, 4 transmitted packets, 0 dropped packets
  1 expedited-forw: 0 queued packets, 0 transmitted packets, 0 dropped packets
  2 assured-forward: 0 queued packets, 0 transmitted packets, 0 dropped packets
  3 network-cont: 213 queued packets, 213 transmitted packets, 0 dropped packets

SONET alarms: None
SONET defects: None

Logical interface so-3/0/0.0 (Index 72) (SNMP ifIndex 578) (Generation 182)
  Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: PPP
  Protocol inet, MTU: 4470, Generation: 244, Route table: 0
  Addresses, Flags: Is-Preferred Is-Primary
    Destination: 10.30.30.0/30, Local: 10.30.30.2, Broadcast: 10.30.30.3,
    Generation: 322
  Protocol inet6, MTU: 4470, Generation: 245, Route table: 0
show interfaces statistics (Aggregated SONET/SDH—Ingress)

user@host> show interfaces statistics detail as0 | no-more

Physical interface: as0, Enabled, Physical link is Up
Interface index: 132, SNMP ifIndex: 534, Generation: 282
Link-level type: PPP, MTU: 4474, Speed: OC192, Minimum links needed: 1, Minimum bandwidth needed: 0
Device flags : Present Running
Interface flags: SNMP-Traps Internal: 0x4000
Link flags : Keepalives
Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
Last flapped : 2009-11-09 03:45:53 PST (00:09:38 ago)
Statistics last cleared: 2009-11-09 03:48:17 PST (00:07:14 ago)
Traffic statistics:
  Input bytes : 2969786332  54761688 bps
  Output bytes : 11601  0 bps
  Input packets: 64560636  148808 pps
  Output packets: 225  0 pps
IPv6 transit statistics:
  Input bytes : 2086013152
  Output bytes : 0
  Input packets: 45348114
  Output packets: 0
Input errors: Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0, Policed discards: 0, Resource errors: 0
Output errors: Carrier transitions: 0, Errors: 0, Drops: 0, MTU errors: 0, Resource errors: 0
Egress queues: 8 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
  0 best-effort 3 3 0
  1 expedited-fo 0 0 0
  2 assured-forw 0 0 0
  3 network-cont 222 222 0
Logical interface as0.0 (Index 71) (SNMP ifIndex 576) (Generation 179)
Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: PPP

Statistics

<table>
<thead>
<tr>
<th></th>
<th>Packets</th>
<th>pps</th>
<th>Bytes</th>
<th>bps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bundle:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input :</td>
<td>64560550</td>
<td>148808</td>
<td>2969785300</td>
<td>54761688</td>
</tr>
<tr>
<td>Output:</td>
<td>139</td>
<td>0</td>
<td>10344</td>
<td>0</td>
</tr>
</tbody>
</table>

Link:

so-3/0/0.0

<table>
<thead>
<tr>
<th></th>
<th>Packets</th>
<th>pps</th>
<th>Bytes</th>
<th>bps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input :</td>
<td>64560550</td>
<td>148808</td>
<td>2969785300</td>
<td>54761688</td>
</tr>
<tr>
<td>Output:</td>
<td>139</td>
<td>0</td>
<td>10344</td>
<td>0</td>
</tr>
</tbody>
</table>

Protocol inet, MTU: 4470, Generation: 240, Route table: 0
Addresses, Flags: Is-Preferred Is-Primary
Destination: 10.30.30.0/30, Local: 10.30.30.2, Broadcast: 10.30.30.3,
Generation: 316

Protocol inet6, MTU: 4470, Generation: 241, Route table: 0
Addresses, Flags: Is-Preferred Is-Primary
Destination: ::10.30.30.0/126, Local: ::10.30.30.2
Generation: 318
Addresses, Flags: Is-Preferred
Destination: fe80::/64, Local: fe80::2a0:a5ff:fe61:9264
Generation: 320

show interfaces statistics (Aggregated SONET/SDH—Egress)

user@host> show interfaces statistics detail as0 | no-more

Physical interface: as0, Enabled, Physical link is Up
Interface index: 132, SNMP ifIndex: 565, Generation: 323
Link-level type: PPP, MTU: 4474, Speed: OC192, Minimum links needed: 1, Minimum bandwidth needed: 0
Device flags : Present Running
Interface flags: SNMP-Traps Internal: 0x4000
Link flags : Keepalives
Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
Last flapped : 2009-11-09 03:43:37 PST (00:12:48 ago)
Statistics last cleared: 2009-11-09 03:48:54 PST (00:07:31 ago)
Traffic statistics:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input bytes :</td>
<td>11198</td>
<td>392 bps</td>
</tr>
<tr>
<td>Output bytes :</td>
<td>3101452132</td>
<td>54783440 bps</td>
</tr>
<tr>
<td>Input packets:</td>
<td>234</td>
<td>0 pps</td>
</tr>
<tr>
<td>Output packets:</td>
<td>67422937</td>
<td>148868 pps</td>
</tr>
</tbody>
</table>

IPv6 transit statistics:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input bytes :</td>
<td>5780</td>
</tr>
<tr>
<td>Output bytes :</td>
<td>2171015678</td>
</tr>
</tbody>
</table>
Input packets: 72
Output packets: 47195993

Input errors:
Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0, Policed discards: 0, Resource errors: 0

Output errors:
Carrier transitions: 0, Errors: 0, Drops: 0, MTU errors: 0, Resource errors: 0

Egress queues: 8 supported, 4 in use

Queue counters: Queued packets Transmitted packets Dropped packets
0 best-effort 67422830 67422830 0
1 expedited-fo 0 0 0
2 assured-forw 0 0 0
3 network-cont 90 90 0

Logical interface as0.0 (Index 71) (SNMP ifIndex 548) (Generation 206)
Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: PPP

Statistics Packets pps Bytes bps
Bundle:
Input: 144 0 10118 392
Output: 67422847 148868 3101450962 54783448

Link:
so-0/1/0.0
Input: 144 0 10118 392
Output: 67422847 148868 3101450962 54783448

Protocol inet, MTU: 4470, Generation: 295, Route table: 0
Addresses, Flags: Is-Preferred Is-Primary

Protocol inet6, MTU: 4470, Generation: 296, Route table: 0
Addresses, Flags: Is-Preferred Is-Primary
Destination: ::/26, Local: ::10.30.30.1
Generation: 428

Addresses, Flags: Is-Preferred
Destination: fe80::/64, Local: fe80::2a0:a5ff:fe63:1d0a
Generation: 429

show interfaces statistics (MX Series Routers)

user@host> show interfaces xe-0/0/0 statistics

Physical interface: xe-0/0/0, Enabled, Physical link is Up
Interface index: 145, SNMP ifIndex: 592
Link-level type: Ethernet, MTU: 1514, LAN-PHY mode, Speed: 10Gbps, BPDU Error:
None, Loopback: None, Source filtering: Disabled, Flow control: Enabled
Pad to minimum frame size: Enabled
Device flags : Present Running
Interface flags: SNMP-Traps Internal: 0x0
Link flags : None
CoS queues : 8 supported, 8 maximum usable queues
Current address: 00:00:5E:00:53:f0, Hardware address: 00:00:5E:00:53:f0
Last flapped : 2013-10-26 03:20:40 test (2w3d 03:29 ago)
Statistics last cleared: Never
Input rate : 0 bps (0 pps)
Output rate : 0 bps (0 pps)
Input errors: 0, Output errors: 0
Active alarms : LINK
Active defects : LINK

show interfaces statistics (MX Series Routers: Dynamic Interfaces with RPF Check Detail)
user@host> show interfaces statistics pp0.3221225475 detail

Logical interface pp0.3221225475(Index 536870921)(SNMP ifIndex 200000009)
(Generation 6)
Flags: Up Point-To-Point Encapsulation: PPPoE
PPPoE:
  State: SessionUp, Session ID: 1,
  Session AC name: B, Remote MAC address:00:00:5E:00:53:01,
  Underlying interface: xe-1/0/0.3221225474 (Index 536870919)
  Ignore End-Of-List tag: Disable
Bandwidth: 0
Traffic statistics:
  Input bytes : 34
  Output bytes : 0
  Input packets: 1
  Output packets: 1
Local statistics:
  Input bytes : 0
  Output bytes : 0
  Input packets: 0
  Output packets: 0
Transit statistics:
  Input bytes : 34 0 bps
show interfaces statistics (PTX Series Packet Transport Routers)

user@host> show interfaces statistics em0

Physical interface: em0, Enabled, Physical link is Up
  Interface index: 8, SNMP ifIndex: 0
  Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps
  Device flags : Present Running
  Interface flags: SNMP-Traps
  Link type : Full-Duplex
  Current address: 00:00:5E:00:53:1b, Hardware address: 00:00:5E:00:53:1b
  Last flapped : Never
  Statistics last cleared: Never
  Input packets : 212620
  Output packets: 71
    Input errors: 0, Output errors: 0

  Logical interface em0.0 (Index 3) (SNMP ifIndex 0)
  Flags: SNMP-Traps Encapsulation: ENET2
  Input packets : 212590
  Output packets: 71
  Protocol inet, MTU: 1500
Flags: Is-Primary
Addresses, Flags: Is-Default Is-Preferred Is-Primary
  Destination: 192.168.3/24, Local: 192.168.3.30,
  Broadcast: 192.168.3.255

show interfaces statistics (ACX Series routers)
user@host> show interfaces statistics ge-0/1/7

Physical interface: ge-0/1/7, Enabled, Physical link is Down
  Interface index: 151, SNMP ifIndex: 524
  Link-level type: Ethernet, Media type: Copper, MTU: 1514, Link-mode: Full-duplex,
  Speed: 1000mbps, BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled,
  Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
  Remote fault: Online
  Device flags   : Present Running Down
  Interface flags: Hardware-Down SNMP-Traps Internal: 0x0
  Link flags     : None
  CoS queues     : 8 supported, 8 maximum usable queues
  Current address: 00:00:5E:00:53:a3, Hardware address: 00:00:5E:00:53:a3
  Input rate     : 0 bps (0 pps)
  Output rate    : 0 bps (0 pps)
  Input errors: 0, Output errors: 0
  Active alarms  : LINK
  Active defects : LINK
  Interface transmit statistics: Disabled
show passive-monitoring error

Syntax

show passive-monitoring error (* | all | mo-fpc/pic/port)

Release Information
Command introduced before Junos OS Release 7.4.

Description
(M40e, M160, and M320 Series routers and T Series routers only) Display passive monitoring error statistics.

Options
* | all | mo-fpc/pic/port—Display error statistics for monitoring interfaces. Use a wildcard character, specify all interfaces, or provide a specific interface name.

Required Privilege Level
view

List of Sample Output
show passive-monitoring error all on page 364

Output Fields
Table 13 on page 363 lists the output fields for the show passive-monitoring error command. Output fields are listed in the approximate order in which they appear.

Table 13: show passive-monitoring error Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive monitoring</td>
<td>Name of the passive monitoring interface.</td>
</tr>
<tr>
<td>interface</td>
<td></td>
</tr>
<tr>
<td>Local interface index</td>
<td>Index counter of the local interface.</td>
</tr>
<tr>
<td>Interface state</td>
<td>State of the passive monitoring interface:</td>
</tr>
<tr>
<td></td>
<td>• Monitoring—Specified interface is actively monitoring.</td>
</tr>
<tr>
<td></td>
<td>• Disabled—Specified interface has been disabled from the CLI.</td>
</tr>
<tr>
<td></td>
<td>• Not monitoring—The interface is operational, but not monitoring. This condition occurs when an interface first comes online, or when the interface is operational, but no logical unit has been configured under the physical interface.</td>
</tr>
<tr>
<td></td>
<td>• Unknown—Unknown state.</td>
</tr>
<tr>
<td></td>
<td>• Error—An error occurred during the process of determining the state of the interface.</td>
</tr>
</tbody>
</table>
Table 13: show passive-monitoring error Output Fields (*continued*)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error information</td>
<td></td>
</tr>
<tr>
<td>Packets dropped (no memory)</td>
<td>Number of packets dropped because of memory shortage.</td>
</tr>
<tr>
<td>Packets dropped (not IP)</td>
<td>Number of non-IP packets dropped.</td>
</tr>
<tr>
<td>Packets dropped (not IPv4)</td>
<td>Number of packets dropped because they failed the IPv4 version check.</td>
</tr>
<tr>
<td>Packets dropped (header too small)</td>
<td>Number of packets dropped because the packet length or IP header length was too small.</td>
</tr>
<tr>
<td>Memory allocation failures</td>
<td>Number of flow record memory allocation failures. A small number reflects failures to replenish the free list. A large number indicates the monitoring station is almost out of memory space.</td>
</tr>
<tr>
<td>Memory free failures</td>
<td>Number of flow record memory free failures.</td>
</tr>
<tr>
<td>Memory free list failures</td>
<td>Number of flow records received from free list that failed. Memory is nearly exhausted or too many new flows greater than 128 KB are being created per second.</td>
</tr>
<tr>
<td>Memory warning</td>
<td>Whether the flows have exceeded 1 million packets per second (Mpps) on a Monitoring Services PIC or 2 Mpps on a Monitoring Services II PIC. The response can be Yes or No.</td>
</tr>
<tr>
<td>Memory overload</td>
<td>Whether the memory has been overloaded. The response can be Yes or No.</td>
</tr>
<tr>
<td>PPS overload</td>
<td>Whether the PIC is receiving more packets per second than the configured threshold. The response can be Yes or No.</td>
</tr>
<tr>
<td>BPS overload</td>
<td>Whether the PIC is receiving more bits per second than the configured threshold. The response can be Yes or No.</td>
</tr>
</tbody>
</table>

**Sample Output**

```
show passive-monitoring error all

user@host> show passive-monitoring error all
```

364
Passive monitoring interface: mo-4/0/0, Local interface index: 44
Interface state: Monitoring

   Error information
     Packets dropped (no memory): 0, Packets dropped (not IP): 0
     Packets dropped (not IPv4): 0, Packets dropped (header too small): 0
     Memory allocation failures: 0, Memory free failures: 0
     Memory free list failures: 0
     Memory warning: No, Memory overload: No, PPS overload: No, BPS overload: No

Passive monitoring interface: mo-4/1/0, Local interface index: 45
Interface state: Not monitoring

   Error information
     Packets dropped (no memory): 0, Packets dropped (not IP): 0
     Packets dropped (not IPv4): 0, Packets dropped (header too small): 0
     Memory allocation failures: 0, Memory free failures: 0
     Memory free list failures: 0
     Memory warning: No, Memory overload: No, PPS overload: No, BPS overload: No
show passive-monitoring flow

Syntax

show passive-monitoring flow (* | all | mo-fpc/pic/port)

Release Information
Command introduced before Junos OS Release 7.4.

Description
(M40e, M160, and M320 Series routers and T Series routers only) Display passive flow statistics.

Options
* | all | mo-fpc/pic/port—Display passive flow statistics for monitoring interfaces. Use a wildcard character, specify all interfaces, or provide a specific interface name.

Required Privilege Level
view

List of Sample Output
show passive-monitoring flow all on page 367

Output Fields
Table 14 on page 366 lists the output fields for the show passive-monitoring flow command. Output fields are listed in the approximate order in which they appear.

Table 14: show passive-monitoring flow Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive monitoring</td>
<td>Name of the passive monitoring interface.</td>
</tr>
<tr>
<td>Local interface index</td>
<td>Index counter of the local interface.</td>
</tr>
<tr>
<td>Interface state</td>
<td>State of the passive monitoring interface:</td>
</tr>
<tr>
<td></td>
<td>• Monitoring—Specified interface is actively monitoring.</td>
</tr>
<tr>
<td></td>
<td>• Disabled—Specified interface has been disabled from the CLI.</td>
</tr>
<tr>
<td></td>
<td>• Not monitoring—The interface is operational, but not monitoring. This condition occurs when an interface first comes online, or when the interface is operational, but no logical unit has been configured under the physical interface.</td>
</tr>
<tr>
<td></td>
<td>• Unknown—Unknown state.</td>
</tr>
<tr>
<td></td>
<td>• Error—An error occurred during the process of determining the state of the interface.</td>
</tr>
</tbody>
</table>
Table 14: show passive-monitoring flow Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Flow information</strong></td>
<td></td>
</tr>
<tr>
<td>Flow packets</td>
<td>Number of packets received by an operational PIC.</td>
</tr>
<tr>
<td>Flow bytes</td>
<td>Number of bytes received by an operational PIC.</td>
</tr>
<tr>
<td>Flow packets 10-second rate</td>
<td>Number of packets per second handled by the PIC and displayed as a 10-second average.</td>
</tr>
<tr>
<td>Flow bytes 10-second rate</td>
<td>Number of bytes per second handled by the PIC and displayed as a 10-second average.</td>
</tr>
<tr>
<td>Active flows</td>
<td>Number of currently active flows tracked by the PIC.</td>
</tr>
<tr>
<td>Total flows</td>
<td>Total number of flows received by an operational PIC.</td>
</tr>
<tr>
<td>Flows exported</td>
<td>Total number of flows exported by an operational PIC.</td>
</tr>
<tr>
<td>Flows packets exported</td>
<td>Total number of cflowd packets exported by an operational PIC.</td>
</tr>
<tr>
<td>Flows inactive timed out</td>
<td>Total number of flows that are exported because of inactivity.</td>
</tr>
<tr>
<td>Flows active timed out</td>
<td>Total number of long-lived flows that are exported because of an active timeout.</td>
</tr>
</tbody>
</table>

Sample Output

```
show passive-monitoring flow all
user@host> show passive-monitoring flow all

Passive monitoring interface: mo-4/0/0, Local interface index: 44
Interface state: Monitoring
 Flow information
 Flow packets: 6533434, Flow bytes: 653343400
 Flow packets 10-second rate: 0, Flow bytes 10-second rate: 0
 Active flows: 0, Total flows: 1599
```
Flows exported: 1599, Flows packets exported: 55
Flows inactive timed out: 1599, Flows active timed out: 0

Passive monitoring interface: mo-4/1/0, Local interface index: 45
Interface state: Monitoring
Flow information
  Flow packets: 6537780, Flow bytes: 653778000
  Flow packets 10-second rate: 0, Flow bytes 10-second rate: 0
  Active flows: 0, Total flows: 1601
  Flows exported: 1601, Flows packets exported: 55
  Flows inactive timed out: 1601, Flows active timed out: 0
show passive-monitoring memory

Syntax

```
show passive-monitoring memory (* | all | mo-fpc/pic/port)
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

(M40e, M160, and M320 Series routers and T Series routers only) Display passive monitoring memory and flow record statistics

Options

`* | all | mo-fpc/pic/port`—Display memory and flow record statistics for monitoring interfaces. Use a wildcard character, specify all interfaces, or provide a specific interface name.

Required Privilege Level

view

List of Sample Output

show passive-monitoring memory all on page 370

Output Fields

Table 15 on page 369 lists the output fields for the `show passive-monitoring memory` command. Output fields are listed in the approximate order in which they appear.

**Table 15: show passive-monitoring memory Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive monitoring</td>
<td>Name of the passive monitoring interface.</td>
</tr>
<tr>
<td>interface</td>
<td></td>
</tr>
<tr>
<td>Local interface index</td>
<td>Index counter of the local interface.</td>
</tr>
<tr>
<td>Memory utilization</td>
<td></td>
</tr>
<tr>
<td>Allocation count</td>
<td>Number of flow records allocated.</td>
</tr>
<tr>
<td>Free count</td>
<td>Number of flow records freed.</td>
</tr>
<tr>
<td>Maximum allocated</td>
<td>Maximum number of flow records allocated since the monitoring station booted. This number represents the peak number of flow records allocated at a time.</td>
</tr>
</tbody>
</table>
Table 15: show passive-monitoring memory Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Allocations per second</strong></td>
<td>Flow records allocated per second during the last statistics interval on the PIC.</td>
</tr>
<tr>
<td><strong>Frees per second</strong></td>
<td>Flow records freed per second during the last statistics interval on the PIC.</td>
</tr>
<tr>
<td><strong>Total memory used, Total memory free</strong></td>
<td>Total memory currently used and total amount of memory currently free (in bytes).</td>
</tr>
</tbody>
</table>

Sample Output

show passive-monitoring memory all

user@host> **show passive-monitoring memory all**

---

Passive monitoring interface: mo-4/0/0, Local interface index: 44

Memory utilization

  Allocation count: 1600, Free count: 1599, Maximum allocated: 1600
  Allocations per second: 3200, Frees per second: 1438
  Total memory used (in bytes): 103579176, Total memory free (in bytes): 163914184
show passive-monitoring status

Syntax

```
show passive-monitoring status (* | all | mo-fpc/pic/port)
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

(M40e, M160, and M320 Series routers and T Series routers only) Display passive monitoring status.

Options

```
* | all | mo-fpc/pic/port—Display status for monitoring interfaces. Use a wildcard character, specify all
 interfaces, or provide a specific interface name.
```

Required Privilege Level

view

List of Sample Output

show passive-monitoring status all on page 372

Output Fields

Table 16 on page 371 lists the output fields for the show passive-monitoring status command. Output fields are listed in the approximate order in which they appear.

Table 16: show passive-monitoring status Output Fields

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Output Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive monitoring</td>
<td>Name of the passive monitoring interface.</td>
</tr>
<tr>
<td>interface</td>
<td></td>
</tr>
<tr>
<td>Local interface index</td>
<td>Index counter of the local interface.</td>
</tr>
<tr>
<td>Interface state</td>
<td>Monitoring state of the passive monitoring interface.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Monitoring</strong>—PIC is actively monitoring.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Disabled</strong>—PIC has been disabled using the CLI.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Not monitoring</strong>—PIC is operational, but not monitoring. This condition can happen</td>
</tr>
<tr>
<td></td>
<td>while the PIC is coming online, or when the PIC is operational but has no logical unit</td>
</tr>
<tr>
<td></td>
<td>configured under the physical interface.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Unknown</strong></td>
</tr>
<tr>
<td>Output Field</td>
<td>Output Field Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Group index</td>
<td>Integer that represents the monitoring group of which the PIC is a member. Group index is a mapping from the group name to an index. It is not related to the number of monitoring groups.</td>
</tr>
<tr>
<td>Export interval</td>
<td>Configured export interval for cflowd records, in seconds.</td>
</tr>
<tr>
<td>Export format</td>
<td>Configured export format (only cflowd version 5 is supported).</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol the PIC is configured to monitor (only IPv4 is supported).</td>
</tr>
<tr>
<td>Engine type</td>
<td>Configured engine type that is inserted in output cflowd packets.</td>
</tr>
<tr>
<td>Engine ID</td>
<td>Configured engine ID that is inserted in output cflowd packets.</td>
</tr>
</tbody>
</table>

**Sample Output**

```
show passive-monitoring status all
user@host> show passive-monitoring status all

Passive monitoring interface: mo-4/0/0, Local interface index: 44
 Interface state: Monitoring
 Group index: 0
 Export interval: 15 secs, Export format: cflowd v5
 Protocol: IPv4, Engine type: 1, Engine ID: 1

Passive monitoring interface: mo-4/1/0, Local interface index: 45
 Interface state: Disabled

Passive monitoring interface: mo-4/2/0, Local interface index: 46
 Interface state: Not monitoring
```
show passive-monitoring usage

Syntax

show passive-monitoring usage (* | all | mo-fpc/pic/port)

Release Information
Command introduced before Junos OS Release 7.4.

Description
(M40e, M160, and M320 Series routers and T Series routers only) Display passive monitoring usage statistics.

Options
* | all | mo-fpc/pic/port—Display usage statistics for monitoring interfaces. Use a wildcard character, specify all interfaces, or provide a specific interface name.

Required Privilege Level
view

List of Sample Output
 SHOW PASSIVE-MONITORING USAGE ALL ON PAGE 374

Output Fields
Table 17 on page 373 lists the output fields for the show passive-monitoring usage command. Output fields are listed in the approximate order in which they appear.

Table 17: show passive-monitoring usage Output Fields

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Output Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive monitoring interface</td>
<td>Name of the passive monitoring interface.</td>
</tr>
<tr>
<td>Local interface index</td>
<td>Index counter of the local interface.</td>
</tr>
<tr>
<td>CPU utilization</td>
<td></td>
</tr>
<tr>
<td>Uptime</td>
<td>Time, in milliseconds, that the PIC has been operational.</td>
</tr>
<tr>
<td>Interrupt time</td>
<td>Total time that the PIC has spent processing packets since the last PIC reset.</td>
</tr>
<tr>
<td>Load (5 second)</td>
<td>CPU load on the PIC, averaged more than 5 seconds. The number is a percentage obtained by dividing the time spent on active tasks by the total elapsed time.</td>
</tr>
</tbody>
</table>
Table 17: show passive-monitoring usage Output Fields (continued)

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Output Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load (1 minute)</td>
<td>CPU load on the PIC, averaged more than 1 minute. The number is a percentage obtained by dividing the time spent on active tasks by the total elapsed time.</td>
</tr>
</tbody>
</table>

Sample Output

```
show passive-monitoring usage all

user@host> show passive-monitoring usage

Passive monitoring interface: mo-4/0/0, Local interface index: 44
 CPU utilization
 Uptime: 653155 milliseconds, Interrupt time: 40213754 microseconds
 Load (5 second): 20%, Load (1 minute): 17%

Passive monitoring interface: mo-4/1/0, Local interface index: 45
 CPU utilization
 Uptime: 652292 milliseconds, Interrupt time: 40223178 microseconds
 Load (5 second): 22%, Load (1 minute): 15%

Passive monitoring interface: mo-4/2/0, Local interface index: 46
 CPU utilization
 Uptime: 649491 milliseconds, Interrupt time: 40173645 microseconds
 Load (5 second): 22%, Load (1 minute): 10098862%
```
### show route forwarding-table

**List of Syntax**

Syntax on page 375  
Syntax (MX Series Routers) on page 375  
Syntax (TX Matrix and TX Matrix Plus Routers) on page 375

**Syntax**

```plaintext
show route forwarding-table
<detail | extensive | summary>
<all>
<ccc interface-name>
<destination destination-prefix>
<family family | matching matching>
<internetwork-name interface-name>
<label name>
<matching matching>
<multicast>
<table (default | logical-system-name/routing-instance-name | routing-instance-name)>
<vlan (all | vlan-name)>
<vpn vpn>
```

**Syntax (MX Series Routers)**

```plaintext
show route forwarding-table
<detail | extensive | summary>
<all>
<bridge-domain (all | domain-name)>
<ccc interface-name>
<destination destination-prefix>
<family family | matching matching>
<internetwork-name interface-name>
<label name>
<learning-vlan-id learning-vlan-id>
<matching matching>
<multicast>
<table (default | logical-system-name/routing-instance-name | routing-instance-name)>
<vlan (all | vlan-name)>
<vpn vpn>
```

**Syntax (TX Matrix and TX Matrix Plus Routers)**

```plaintext
show route forwarding-table
<detail | extensive | summary>
<all>
<ccc interface-name>
<destination destination-prefix>
<family family | matching matching>
<internetwork-name interface-name>
<label name>
<learning-vlan-id learning-vlan-id>
<matching matching>
<multicast>
<table (default | logical-system-name/routing-instance-name | routing-instance-name)>
<vlan (all | vlan-name)>
<vpn vpn>
```
show route forwarding-table
<detail | extensive | summary>
<all>
<ccc interface-name>
<destination destination-prefix>
<family family | matching matching>
<interface-name interface-name>
<matching matching>
<label name>
<lcc number>
<multicast>
<table routing-instance-name>
<vpn vpn>

Release Information
Command introduced before Junos OS Release 7.4.
Option bridge-domain introduced in Junos OS Release 7.5
Option learning-vlan-id introduced in Junos OS Release 8.4
Options all and vlan introduced in Junos OS Release 9.6.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display the Routing Engine’s forwarding table, including the network-layer prefixes and their next hops. This command is used to help verify that the routing protocol process has relayed the correction information to the forwarding table. The Routing Engine constructs and maintains one or more routing tables. From the routing tables, the Routing Engine derives a table of active routes, called the forwarding table.

NOTE: The Routing Engine copies the forwarding table to the Packet Forwarding Engine, the part of the router that is responsible for forwarding packets. To display the entries in the Packet Forwarding Engine’s forwarding table, use the show pfe route command.

Options
none—Display the routes in the forwarding tables. By default, the show route forwarding-table command does not display information about private, or internal, forwarding tables.
detail | extensive | summary—(Optional) Display the specified level of output.
all—(Optional) Display routing table entries for all forwarding tables, including private, or internal, tables.
bridge-domain (all | bridge-domain-name)—(MX Series routers only) (Optional) Display route entries for all bridge domains or the specified bridge domain.

ccc interface-name—(Optional) Display route entries for the specified circuit cross-connect interface.

destination destination-prefix—(Optional) Destination prefix.

family family—(Optional) Display routing table entries for the specified family: bridge (ccc | destination | detail | extensive | interface-name | label | learning-vlan-id | matching | multicast | summary | table | vlan | vpn), ethernet-switching, evpn, fibre-channel, fmembers, inet, inet6, iso, mcsnoop-inet, mcsnoop-inet6, mpls, satellite-inet, satellite-inet6, satellite-vpls, tnp, unix, vpls, or vlan-classification.

interface-name interface-name—(Optional) Display routing table entries for the specified interface.

label name—(Optional) Display route entries for the specified label.

lcc number—(TX Matrix and TX matrix Plus routers only) (Optional) On a routing matrix composed of a TX Matrix router and T640 routers, display information for the specified T640 router (or line-card chassis) connected to the TX Matrix router. On a routing matrix composed of the TX Matrix Plus router and T1600 or T4000 routers, display information for the specified router (line-card chassis) connected to the TX Matrix Plus router.

Replace number with the following values depending on the LCC configuration:

• 0 through 3, when T640 routers are connected to a TX Matrix router in a routing matrix.
• 0 through 3, when T1600 routers are connected to a TX Matrix Plus router in a routing matrix.
• 0 through 7, when T1600 routers are connected to a TX Matrix Plus router with 3D SIBs in a routing matrix.
• 0, 2, 4, or 6, when T4000 routers are connected to a TX Matrix Plus router with 3D SIBs in a routing matrix.

learning-vlan-id learning-vlan-id—(MX Series routers only) (Optional) Display learned information for all VLANs or for the specified VLAN.

matching matching—(Optional) Display routing table entries matching the specified prefix or prefix length.

multicast—(Optional) Display routing table entries for multicast routes.

table—(Optional) Display route entries for all the routing tables in the main routing instance or for the specified routing instance. If your device supports logical systems, you can also display route entries for the specified logical system and routing instance. To view the routing instances on your device, use the show route instance command.

vlan (all | vlan-name)—(Optional) Display information for all VLANs or for the specified VLAN.

vpn vpn—(Optional) Display routing table entries for a specified VPN.
Required Privilege Level
view

RELATED DOCUMENTATION

show route instance

List of Sample Output

show route forwarding-table on page 383
show route forwarding-table detail on page 385
show route forwarding-table extensive (RPF) on page 386

Output Fields

Table 18 on page 378 lists the output fields for the `show route forwarding-table` command. Output fields are listed in the approximate order in which they appear. Field names might be abbreviated (as shown in parentheses) when no level of output is specified, or when the `detail` keyword is used instead of the `extensive` keyword.

Table 18: show route forwarding-table Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical system</td>
<td>Name of the logical system. This field is displayed if you specify the <code>table logical-system-name/routing-instance-name</code> option on a device that is configured for and supports logical systems.</td>
<td>All levels</td>
</tr>
<tr>
<td>Routing table</td>
<td>Name of the routing table (for example, inet, inet6, mpls).</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 18: show route forwarding-table Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled protocols</td>
<td></td>
<td>All levels</td>
</tr>
</tbody>
</table>
The features and protocols that have been enabled for a given routing table. This field can contain the following values:

- **BUM hashing**—BUM hashing is enabled.
- **MAC Stats**—Mac Statistics is enabled.
- **Bridging**—Routing instance is a normal layer 2 bridge.
- **No VLAN**—No VLANs are associated with the bridge domain.
- **All VLANs**—The `vlan-id all` statement has been enabled for this bridge domain.
- **Single VLAN**—Single VLAN ID is associated with the bridge domain.
- **MAC action drop**—New MACs will be dropped when the MAC address limit is reached.
- **Dual VLAN**—Dual VLAN tags are associated with the bridge domain.
- **No local switching**—No local switching is enabled for this routing instance.
- **Learning disabled**—Layer 2 learning is disabled for this routing instance.
- **MAC limit reached**—The maximum number of MAC addresses that was configured for this routing instance has been reached.
- **VPLS**—The VPLS protocol is enabled.
- **No IRB l2-copy**—The `no-irb-layer-2-copy` feature is enabled for this routing instance.
- **ACKed by all peers**—All peers have acknowledged this routing instance.
- **BUM Pruning**—BUM pruning is enabled on the VPLS instance.
- **Def BD VXLAN**—VXLAN is enabled for the default bridge domain.
- **EVPN**—EVPN protocol is enabled for this routing instance.
- **Def BD OVSDB**—Open vSwitch Database (OVSDB) is enabled on the default bridge domain.
- **Def BD Ingress replication**—VXLAN ingress node replication is enabled on the default bridge domain.
- **L2 backhaul**—Layer 2 backhaul is enabled.
- **FRR optimize**—Fast reroute optimization
- **MAC pinning**—MAC pinning is enabled for this bridge domain.
- **MAC Aging Timer**—The MAC table aging time is set per routing instance.
- **EVPN VXLAN**—This routing instance supports EVPN with VXLAN encapsulation.
- **PBBN**—This routing instance is configured as a provider backbone bridged network.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address family</td>
<td>Address family (for example, IP, IPv6, ISO, MPLS, and VPLS).</td>
<td>All levels</td>
</tr>
<tr>
<td>Destination</td>
<td>Destination of the route.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Route Type (Type)</td>
<td>How the route was placed into the forwarding table. When the detail keyword is used, the route type might be abbreviated (as shown in parentheses):</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• cloned (clon)—(TCP or multicast only) Cloned route.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• destination (dest)—Remote addresses directly reachable through an interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• destination down (iddn)—Destination route for which the interface is unreachable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• interface cloned (ifcl)—Cloned route for which the interface is unreachable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• route down (ifdn)—Interface route for which the interface is unreachable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ignore (ignr)—Ignore this route.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• interface (intf)—Installed as a result of configuring an interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• permanent (perm)—Routes installed by the kernel when the routing table is initialized.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• user—Routes installed by the routing protocol process or as a result of the configuration.</td>
<td></td>
</tr>
<tr>
<td>Route Reference</td>
<td>Number of routes to reference.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>(RtRef)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 18: show route forwarding-table Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags</td>
<td>Route type flags:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• none—No flags are enabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• accounting—Route has accounting enabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• cached—Cache route.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• incoming interface interface-number—Check against incoming interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• prefix load balance—Load balancing is enabled for this prefix.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• rt nh decoupled—Route has been decoupled from the next hop to the destination.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• sent to PFE—Route has been sent to the Packet Forwarding Engine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• static—Static route.</td>
<td></td>
</tr>
<tr>
<td>Next hop</td>
<td>IP address of the next hop to the destination.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>NOTE: For static routes that use point-to-point (P2P) outgoing interfaces, the next-hop address is not displayed in the output.</td>
<td></td>
</tr>
<tr>
<td>Next hop Type (Type)</td>
<td>Next-hop type. When the detail keyword is used, the next-hop type might be abbreviated (as indicated in parentheses):</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• broadcast (bcst)—Broadcast.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• deny—Deny.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• discard (dscd) —Discard.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• hold—Next hop is waiting to be resolved into a unicast or multicast type.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• indexed (idxd)—Indexed next hop.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• indirect (indr)—Indirect next hop.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• local (loc)—Local address on an interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• routed multicast (mcrt)—Regular multicast next hop.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• multicast (mcst)—Wire multicast next hop (limited to the LAN).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• multicast discard (mdsc)—Multicast discard.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• multicast group (mgrp)—Multicast group member.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• receive (recv)—Receive.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• reject (rjct)—Discard. An ICMP unreachable message was sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• resolve (rsv)—Resolving the next hop.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• unicast (ucst)—Unicast.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• unilist (ulst)—List of unicast next hops. A packet sent to this next hop goes to any next hop in the list.</td>
<td></td>
</tr>
</tbody>
</table>
Table 18: show route forwarding-table Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Software index of the next hop that is used to route the traffic for a given prefix.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Route interface-index</td>
<td>Logical interface index from which the route is learned. For example, for interface routes, this is the logical interface index of the route itself. For static routes, this field is zero. For routes learned through routing protocols, this is the logical interface index from which the route is learned.</td>
<td>extensive</td>
</tr>
<tr>
<td>Reference (NhRef)</td>
<td>Number of routes that refer to this next hop.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Next-hop interface (Netif)</td>
<td>Interface used to reach the next hop.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Weight</td>
<td>Value used to distinguish primary, secondary, and fast reroute backup routes. Weight information is available when MPLS label-switched path (LSP) link protection, node-link protection, or fast reroute is enabled, or when the standby state is enabled for secondary paths. A lower weight value is preferred. Among routes with the same weight value, load balancing is possible (see the Balance field description).</td>
<td>extensive</td>
</tr>
<tr>
<td>Balance</td>
<td>Balance coefficient indicating how traffic of unequal cost is distributed among next hops when a router is performing unequal-cost load balancing. This information is available when you enable BGP multipath load balancing.</td>
<td>extensive</td>
</tr>
<tr>
<td>RPF interface</td>
<td>List of interfaces from which the prefix can be accepted. Reverse path forwarding (RPF) information is displayed only when rpf-check is configured on the interface.</td>
<td>extensive</td>
</tr>
</tbody>
</table>

---

**Sample Output**

`show route forwarding-table`

```
user@host> show route forwarding-table
Routing table: default.inet
Internet:
Destination Type RtRef Next hop Type Index NhRef Netif
383
```
## ISO Routing Table

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td>rjct</td>
<td>27</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## Internet6 Routing Table

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td>rjct</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
show route forwarding-table detail

user@host> show route forwarding-table detail

Routing table: inet
Internet:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>user</td>
<td>2</td>
<td>0:90:69:8:e:b1:1b</td>
<td>ucst</td>
<td>132</td>
<td>4</td>
<td>fxp0.0</td>
</tr>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td>0</td>
<td>rjct</td>
<td>14</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10.1.1.0/24</td>
<td>intf</td>
<td>0</td>
<td>ff.30.21</td>
<td>ucst</td>
<td>322</td>
<td>1</td>
<td>so-5/3/0.0</td>
</tr>
<tr>
<td>10.1.1.0/32</td>
<td>dest</td>
<td>0</td>
<td>10.1.1.0</td>
<td>recv</td>
<td>324</td>
<td>1</td>
<td>so-5/3/0.0</td>
</tr>
<tr>
<td>10.1.1.1/32</td>
<td>intf</td>
<td>0</td>
<td>10.1.1.1</td>
<td>locl</td>
<td>321</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10.1.1.255/32</td>
<td>dest</td>
<td>0</td>
<td>10.1.1.255</td>
<td>bcst</td>
<td>323</td>
<td>1</td>
<td>so-5/3/0.0</td>
</tr>
<tr>
<td>10.21.21.0/24</td>
<td>intf</td>
<td>0</td>
<td>ff.30.21</td>
<td>ucst</td>
<td>326</td>
<td>1</td>
<td>so-5/3/0.0</td>
</tr>
<tr>
<td>10.21.21.0/32</td>
<td>dest</td>
<td>0</td>
<td>10.21.21.0</td>
<td>recv</td>
<td>328</td>
<td>1</td>
<td>so-5/3/0.0</td>
</tr>
<tr>
<td>10.21.21.1/32</td>
<td>intf</td>
<td>0</td>
<td>10.21.21.1</td>
<td>locl</td>
<td>325</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10.21.21.255/32</td>
<td>dest</td>
<td>0</td>
<td>10.21.21.255</td>
<td>bcst</td>
<td>327</td>
<td>1</td>
<td>so-5/3/0.0</td>
</tr>
<tr>
<td>127.0.0.1/32</td>
<td>intf</td>
<td>0</td>
<td>127.0.0.1</td>
<td>locl</td>
<td>320</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>172.17.28.19/32</td>
<td>clon</td>
<td>1</td>
<td>192.168.4.254</td>
<td>ucst</td>
<td>132</td>
<td>4</td>
<td>fxp0.0</td>
</tr>
<tr>
<td>172.17.28.44/32</td>
<td>clon</td>
<td>1</td>
<td>192.168.4.254</td>
<td>ucst</td>
<td>132</td>
<td>4</td>
<td>fxp0.0</td>
</tr>
</tbody>
</table>

...
### ISO:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td></td>
<td>rjct</td>
<td>38</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

### Routing table: inet6

#### Internet6:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td></td>
<td>rjct</td>
<td>22</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ff00::/8</td>
<td>perm</td>
<td>0</td>
<td></td>
<td>mdsc</td>
<td>21</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ff02::1/128</td>
<td>perm</td>
<td>0</td>
<td>ff02::1</td>
<td>mcst</td>
<td>17</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

...  

### Routing table: mpls

#### MPLS:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td></td>
<td>rjct</td>
<td>28</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

### show route forwarding-table extensive (RPF)

The next example is based on the following configuration, which enables an RPF check on all routes that are learned from this interface, including the interface route:

```plaintext
so-1/1/0 {
 unit 0 {
 family inet {
 rpf-check;
 address 192.0.2.2/30;
 }
 }
}
```
show route rpm-tracking

Syntax

show route rpm-tracking

Release Information
Command introduced in Junos OS Release 18.4 R1.
Output showing multiple next hops added in Junos OS Release 19.1 R1.

Description
Display a brief summary of state of rpm-tracked routes along with the current state for a given test.

Required Privilege Level
view

RELATED DOCUMENTATION
rpm-tracking | 267
Configuring RPM Probes on M, MX and T Series Routers and EX Series Switches

List of Sample Output
show route rpm-tracking on page 388
show route rpm-tracking destination [IP address] on page 389
show route rpm-tracking destination [IP address, Owner, and Test name] on page 389

Output Fields
Table 19 on page 387 lists the output fields for the show route rpm-tracking command. You can filter on routing table name, destination prefix, RPM probe owner, and RPM test name. If no filter is present all rpm-tracked routes are displayed. Output fields are listed in the approximate order in which they appear.

Table 19: shows route rpm-tracking Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>Displays the IPv4 or IPv6 address and optional prefix length of the configured</td>
</tr>
<tr>
<td></td>
<td>target address.</td>
</tr>
<tr>
<td>Next-Hop</td>
<td>Specifies the IPv4 or IPv6 next-hop address of the route to be injected during</td>
</tr>
<tr>
<td></td>
<td>failover. When there are multiple next-hop entries, a type attribute is shown to</td>
</tr>
<tr>
<td></td>
<td>indicate whether it a single unicast next-hop, ucst, or a list of unicast</td>
</tr>
<tr>
<td></td>
<td>next-hops, ulst.</td>
</tr>
<tr>
<td>• ucst</td>
<td></td>
</tr>
<tr>
<td>• ulst</td>
<td></td>
</tr>
</tbody>
</table>
Table 19: shows route rpm-tracking Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>Routes advertised by a protocol are associated with route preference; when multiple routes have the same preference, the route one with lowest metric is made active in routing table.</td>
</tr>
<tr>
<td>Owner</td>
<td>Name of the test owner.</td>
</tr>
<tr>
<td>Test Name</td>
<td>Name of the test probe.</td>
</tr>
<tr>
<td>State</td>
<td>Display the state of the route injection action. Routes added to RPD appear as active in RPM. The initial state of an RPM-tracked route, that is, before the first completion of its associated RPM test, is inactive. Routes removed from RPD appear as inactive.</td>
</tr>
</tbody>
</table>

Sample Output

```bash
show route rpm-tracking

user@host> show route rpm-tracking
```

```
Routing table: inet.0
Destination Next-Hop Metric Owner Test Name State
10.10.10.0/24 10.10.10.11 1 probe1 test1 Active
10.10.20.0/24 10.10.10.22 1 probe1 test2 Active
10.10.30.0/24 10.10.10.33 1 probe1 test3 Inactive
10.10.10.3/24 10.1.010.11 1 probe1 test1 Active

Routing table: inet6.0
10::/64 10::11 1 probe1 test1 Active
20::/64 10::22 1 probe1 test2 Active
10::33 10::33 1 probe1 test3 Inactive
10.10.20.0/24 10::11 1 probe1 test1 Active
```
show route rpm-tracking destination [IP address]
user@host> show route rpm-tracking destination 10.39.0.0/16

```
Routing table: inet.0
<table>
<thead>
<tr>
<th>Destination</th>
<th>Next-Hop</th>
<th>Metric</th>
<th>Owner</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.39.0.0/16</td>
<td>10.20.21.2</td>
<td>2</td>
<td>probe-delegate</td>
<td>test7984</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.39.1.0/16</td>
<td>10.20.21.3</td>
<td>2</td>
<td>probe-delegate</td>
<td>test7985</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.39.2.0/16</td>
<td>10.20.21.4</td>
<td>2</td>
<td>probe-delegate</td>
<td>test7986</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.39.3.0/16</td>
<td>10.20.21.5</td>
<td>2</td>
<td>probe-delegate</td>
<td>test7987</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.39.4.0/16</td>
<td>10.20.21.6</td>
<td>2</td>
<td>probe-delegate</td>
<td>test7988</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

show route rpm-tracking destination [IP address, Owner, and Test name]
user@host> show route rpm-tracking destination 10.39.0.0/16 owner probe-delegate test test7998

```
<table>
<thead>
<tr>
<th>Destination</th>
<th>Next-Hop</th>
<th>Metric</th>
<th>Owner</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.39.14.0/24</td>
<td>10.20.21.2</td>
<td>2</td>
<td>probe-delegate</td>
<td>test7998</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>inet.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
show services accounting aggregation

Syntax

show services accounting aggregation aggregation-type <aggregation-value>
<detail | extensive | terse>
<limit limit-value>
< name service-name>
<order (bytes | packets>

Release Information
Command introduced before Junos OS Release 7.4.

Description
Display information about the aggregated active flows being processed by the accounting service.

Options

aggregation-type <aggregation-value>—Display information for the specified aggregation type and optional value:

• as <source-as-value | destination-as-value | input-snmp-interface-index-value | output-snmp-interface-index-value>—Aggregate by autonomous system (AS).

• destination-prefix <destination-prefix-value | destination-as-value | output-snmp-interface-index-value>—Aggregate by destination prefix.

• protocol-port <protocol-value | source-port-value | destination-port-value>—Aggregate by protocol and port.

• source-destination-prefix <source-prefix-value | destination-prefix-value | destination-as-value | source-as-value | input-snmp-interface-index-value | output-snmp-interface-index-value>—Aggregate by source and destination prefix.

• source-prefix <source-prefix-value | source-as-value | input-snmp-interface-index-value>—Aggregate by source prefix.

detail | extensive | terse—(Optional) Display the specified level of output.

limit limit-value—(Optional) Limit the display output to the specified number of flows. The default is no limit.

name service-name—(Optional) Display information about the aggregated flows for a specified service name.

order (bytes | packets)—(Optional) Display the flow with the ordering of the highest number, either by byte count or by packet count.
Additional Information
For information about aggregation configuration options, see the Junos OS Services Interfaces Library for Routing Devices.

Required Privilege Level
view

List of Sample Output
show services accounting aggregation protocol-port detail on page 392
show services accounting aggregation source-destination-prefix on page 393
show services accounting aggregation source-destination-prefix order packet detail on page 393
show services accounting aggregation source-destination-prefix extensive limit on page 394
show services accounting aggregation source-destination-prefix name terse on page 394

Output Fields
Table 20 on page 391 lists the output fields for the show services accounting aggregation command. Output fields are listed in the approximate order in which they appear.

Table 20: show services accounting aggregation Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Accounting interface</td>
<td>Name of the service accounting interface.</td>
</tr>
<tr>
<td>Local interface index</td>
<td>Index corresponding to the service accounting interface.</td>
</tr>
<tr>
<td>Service name</td>
<td>Name of a service that was configured at the [edit forwarding-options accounting] hierarchy level. The default display, (default sampling), indicates the service was configured at the [edit forwarding-options sampling-level] hierarchy level.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol identifier and number.</td>
</tr>
<tr>
<td>Source Port</td>
<td>Source port identifier and number.</td>
</tr>
<tr>
<td>Destination Port</td>
<td>Destination port identifier and number.</td>
</tr>
<tr>
<td>Source-AS</td>
<td>Source autonomous system (AS) number.</td>
</tr>
<tr>
<td>Destination-AS</td>
<td>Destination AS number.</td>
</tr>
<tr>
<td>Source Prefix</td>
<td>Source prefix.</td>
</tr>
</tbody>
</table>
### Table 20: show services accounting aggregation Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination Prefix</td>
<td>Destination prefix.</td>
</tr>
<tr>
<td>Source address</td>
<td>Source address.</td>
</tr>
<tr>
<td>Source prefix length</td>
<td>Source prefix length.</td>
</tr>
<tr>
<td>Destination address</td>
<td>Destination address.</td>
</tr>
<tr>
<td>Destination prefix length</td>
<td>Destination prefix length.</td>
</tr>
<tr>
<td>Input SNMP interface index</td>
<td>SNMP index of the interface the packet came in on.</td>
</tr>
<tr>
<td>Output SNMP interface index</td>
<td>SNMP index of the interface the packet went out on.</td>
</tr>
<tr>
<td>Start time</td>
<td>Actual time when the packet in this aggregation was first seen.</td>
</tr>
<tr>
<td>End time</td>
<td>Actual time when the packet in this aggregation was last seen.</td>
</tr>
<tr>
<td>Flow count</td>
<td>Number of flows in the aggregation.</td>
</tr>
<tr>
<td>Packet count</td>
<td>Number of packets in the aggregation.</td>
</tr>
<tr>
<td>Byte count</td>
<td>Number of bytes in the aggregation.</td>
</tr>
</tbody>
</table>

### Sample Output

```
show services accounting aggregation protocol-port detail

user@host> show service accounting aggregation protocol-port detail

 Service Accounting interface: mo-2/0/0, Local interface index: 468
 Service name: (default sampling)
 Protocol: 6, Source port: 20, Destination port: 20
```
show services accounting aggregation source-destination-prefix

user@host>  show service accounting aggregation source-destination-prefix

Service Accounting interface: rsp0, Local interface index: 171
Service name: (default sampling)
Interface state: Accounting

<table>
<thead>
<tr>
<th>Source prefix</th>
<th>Destination prefix</th>
<th>Input interface</th>
<th>Output interface</th>
<th>Flow count</th>
<th>Packet count</th>
<th>Byte count</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.2.0/20</td>
<td>198.51.100.0/24</td>
<td>ge-5/0/1.0</td>
<td>ge-5/0/0.0</td>
<td>256</td>
<td>491761</td>
<td>31472704</td>
</tr>
<tr>
<td>192.0.2.0/20</td>
<td>203.0.113.36/32</td>
<td>ge-5/0/1.0</td>
<td>ge-5/0/0.0</td>
<td>1</td>
<td>1926</td>
<td>123264</td>
</tr>
<tr>
<td>192.0.2.0/20</td>
<td>203.0.113.59/32</td>
<td>ge-5/0/1.0</td>
<td>ge-5/0/0.0</td>
<td>1</td>
<td>1926</td>
<td>123264</td>
</tr>
<tr>
<td>192.0.2.0/20</td>
<td>192.168.0.63/32</td>
<td>ge-5/0/1.0</td>
<td>ge-5/0/0.0</td>
<td>1</td>
<td>1925</td>
<td>123200</td>
</tr>
<tr>
<td>192.0.2.0/20</td>
<td>192.168.0.32/32</td>
<td>ge-5/0/1.0</td>
<td>ge-5/0/0.0</td>
<td>1</td>
<td>1925</td>
<td>123200</td>
</tr>
</tbody>
</table>

show services accounting aggregation source-destination-prefix order packet detail

user@host>  show service accounting aggregation source-destination-prefix order packet detail name t2 input-snmp-interface-index 538

Service Accounting interface: mo-2/0/0, Local interface index: 468
Service name: t2

<table>
<thead>
<tr>
<th>Source Prefix</th>
<th>Destination Prefix</th>
<th>Input SNMP Index</th>
<th>Output SNMP Index</th>
<th>Flow Count</th>
<th>Packet Count</th>
<th>Byte Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.2/20</td>
<td>192.168.167.1/0</td>
<td>538</td>
<td>432</td>
<td>1</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>10.1.1.2/20</td>
<td>192.168.168.1/0</td>
<td>538</td>
<td>432</td>
<td>1</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>10.1.1.2/20</td>
<td>192.168.154.1/0</td>
<td>538</td>
<td>432</td>
<td>2</td>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td>10.1.1.2/20</td>
<td>192.168.76.1/0</td>
<td>538</td>
<td>432</td>
<td>1</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>10.1.1.2/20</td>
<td>192.168.149.1/0</td>
<td>538</td>
<td>432</td>
<td>1</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>10.1.1.2/20</td>
<td>192.168.113.1/0</td>
<td>538</td>
<td>432</td>
<td>2</td>
<td>2</td>
<td>60</td>
</tr>
</tbody>
</table>
show services accounting aggregation source-destination- prefix extensive limit

user@host> show service accounting aggregation source-destination-prefix name t2 extensive limit

Service Accounting interface: mo-2/0/0, Local interface index: 542
Service name: t2

Source address: 10.1.1.2, Source prefix length: 20
Destination address: 192.168.200.176.1, Destination prefix length: 0
Input SNMP interface index: 24, Output SNMP interface index: 26
Source-AS: 69, Destination-AS: 69
Flow count: 0, Packet count: 6, Byte count: 5340

Source address: 10.1.1.2, Source prefix length: 20
Destination address: 192.168.160.1, Destination prefix length: 0
Input SNMP interface index: 24, Output SNMP interface index: 26
Source-AS: 69, Destination-AS: 69
Flow count: 0, Packet count: 6, Byte count: 5490

Source address: 10.1.1.2, Source prefix length: 20
Destination address: 192.168.160.1, Destination prefix length: 0
Input SNMP interface index: 24, Output SNMP interface index: 26
Source-AS: 69, Destination-AS: 69
Flow count: 0, Packet count: 6, Byte count: 4079

show services accounting aggregation source-destination-prefix name terse

user@host> show service accounting aggregation source-destination-prefix name T3 terse

Service Accounting interface: rsp0, Local interface index: 171
Service name: T3
Interface state: Accounting

<table>
<thead>
<tr>
<th>Source prefix</th>
<th>Destination prefix</th>
<th>Input interface</th>
<th>Output interface</th>
<th>Flow</th>
<th>Packet</th>
<th>Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.0.0/20</td>
<td>192.168.3.0/24</td>
<td>ge-5/0/1.0</td>
<td>ge-5/0/0.0</td>
<td>256</td>
<td>639822</td>
<td>40948608</td>
</tr>
<tr>
<td>10.1.0.0/20</td>
<td>192.168.2.67/32</td>
<td>ge-5/0/1.0</td>
<td>ge-5/0/0.0</td>
<td>1</td>
<td>2485</td>
<td>159040</td>
</tr>
<tr>
<td>10.1.0.0/20</td>
<td>192.168.2.92/32</td>
<td>ge-5/0/1.0</td>
<td>ge-5/0/0.0</td>
<td>1</td>
<td>2485</td>
<td></td>
</tr>
</tbody>
</table>
show services accounting aggregation template

Syntax

```
show services accounting aggregation template
<template-name template-name>
```

Release Information
Command introduced in Junos OS Release 8.3.

Description
Display information for flow aggregation version 9 templates.

Options

- `none`—Display information for all flow aggregation version version 9 templates.
- `template-name template-name`—(Optional) Display information for the specified template only.

Required Privilege Level
view

List of Sample Output
show services accounting aggregation template template-name on page 396

Output Fields
Table 21 on page 395 lists the output fields for the `show services accounting aggregation template` command. Output fields are listed in the approximate order in which they appear.

Table 21: show services accounting aggregation template Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS Label 1</td>
<td>Position of first MPLS label.</td>
</tr>
<tr>
<td>MPLS Label 2</td>
<td>Position of second MPLS label.</td>
</tr>
<tr>
<td>MPLS Label 3</td>
<td>Position of third MPLS label.</td>
</tr>
<tr>
<td>MPLS Top Level Address</td>
<td>Outer top label FEC IP address.</td>
</tr>
<tr>
<td>Packet Count</td>
<td>Number of packets sent.</td>
</tr>
</tbody>
</table>
Sample Output

show services accounting aggregation template template-name

user@host> show services accounting aggregation template template-name mpls

MPLS label 1: 299808, MPLS label 2: 0, MPLS label 3: 0
Source address: 192.0.2.2, Destination address: 10.255.15.22, Top Label Address: 198.51.100.10
Source port: 0, Destination port: 0
Protocol: 61, TOS: 0, TCP flags: 0
Source mask: 24, Destination mask: 32
Input SNMP interface index: 503, Output SNMP interface index: 505
Start time: 40780, End time: 157330
Packet count: 3949198, Byte count: 181663062
show services accounting errors

Syntax

```
show services accounting errors
<inline-jflow | name (* | all | service-name)>
```

Release Information
Command introduced before Junos OS Release 7.4.

Description
Display active flow error statistics.

Options

```
none—Display error statistics for all services accounting instances.

inline-jflow fpc-slot slot-number—(Optional) Display error statistics for inline jflow.

name (* | all | service-name)—(Optional) Display active flow error statistics. Use a wildcard character, specify all services, or provide a specific service name.
```

Required Privilege Level
view

RELATED DOCUMENTATION

| show services accounting flow | 403 |

List of Sample Output

show services accounting errors (Monitoring PIC interface) on page 399
show services accounting errors (Service PIC interface) on page 399
show services accounting errors inline-jflow fpc-slot (When Only IPv6 Is Configured) on page 400
show services accounting errors inline-jflow fpc-slot (When IPv4, IPv6, VPLS, and Bridge Are Configured) on page 400
show services accounting errors inline-jflow (MX80 Router When Both IPv4 and IPv6 Are Configured) on page 401
show services accounting errors inline-jflow fpc-slot(PTX1000 Router When Both IPv4 and IPv6 Are Configured) on page 401
show services accounting errors inline-jflow (SRX Series Devices When Both IPv4 and IPv6 Are Configured) on page 402

Output Fields
Table 22 on page 398 lists the output fields for the `show services accounting errors` command. Output fields are listed in the approximate order in which they appear.

Table 22: show services accounting errors Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Accounting interface</td>
<td>Name of the service accounting interface.</td>
</tr>
<tr>
<td>Local interface index</td>
<td>Index counter of the local interface.</td>
</tr>
<tr>
<td>FPC slot</td>
<td>Slot number of the FPC for which the flow information is displayed. (Available only when the <code>inline-jflow fpc-slot slot-number</code> option is used.)</td>
</tr>
<tr>
<td>Service name</td>
<td>Name of a service that was configured at the [edit forwarding-options accounting] hierarchy level. The default display, (default sampling), indicates the service was configured at the [edit forwarding-options sampling-level] hierarchy level.</td>
</tr>
</tbody>
</table>

**Error Information**

<table>
<thead>
<tr>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets dropped (no memory)</td>
<td>Number of packets dropped because of memory shortage.</td>
</tr>
<tr>
<td>Packets dropped (not IP)</td>
<td>Number of non-IP packets dropped.</td>
</tr>
<tr>
<td>Packets dropped (not IPv4)</td>
<td>Number of packets dropped because they failed the IPv4 version check.</td>
</tr>
<tr>
<td>Packets dropped (header too small)</td>
<td>Number of packets dropped because the packet length or IP header length was too small.</td>
</tr>
<tr>
<td>Memory allocation failures</td>
<td>Number of flow record memory allocation failures. A small number reflects failures to replenish the free list. A large number indicates the monitoring station is almost out of memory space.</td>
</tr>
<tr>
<td>Memory free failures</td>
<td>Number of flow record memory free failures.</td>
</tr>
<tr>
<td>Memory free list failures</td>
<td>Number of flow records received from the free list that failed. Memory is nearly exhausted, or too many new flows greater than 128 KB are being created per second.</td>
</tr>
<tr>
<td>Memory overload</td>
<td>Whether the memory has been overloaded. The response can be Yes or No.</td>
</tr>
<tr>
<td>PPS overload</td>
<td>Whether the PIC is receiving more packets per second than the configured threshold. The response can be Yes or No.</td>
</tr>
</tbody>
</table>
Table 22: show services accounting errors Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPS overload</td>
<td>Whether the PIC is receiving more bits per second than the configured threshold. The response can be Yes or No.</td>
</tr>
<tr>
<td>Flow Creation Failures</td>
<td>Number of times flow creation failed.</td>
</tr>
<tr>
<td>Route Record Lookup Failures</td>
<td>Number of times the route record lookup failed.</td>
</tr>
<tr>
<td>AS Lookup Failures</td>
<td>Number of times autonomous system lookup failed.</td>
</tr>
<tr>
<td>Export Packet Failures</td>
<td>Number of times packet export failed.</td>
</tr>
</tbody>
</table>

### Sample Output

**show services accounting errors (Monitoring PIC interface)**

```bash
user@host> show services accounting errors
```

Service Accounting interface: mo-1/1/0, Local interface index: 15
Service name: (default sampling)
Error information
    Packets dropped (no memory): 0, Packets dropped (not IP): 0
    Packets dropped (not IPv4): 0, Packets dropped (header too small): 0
    Memory allocation failures: 0, Memory free failures: 0
    Memory free list failures: 0
    Memory overload: No, PPS overload: No, BPS overload: No

### Sample Output

**show services accounting errors (Service PIC interface)**

```bash
user@host> show services accounting errors
```
Service Accounting interface: sp-0/1/0
Service name: (default sampling)
   Error information
   Service sets dropped: 0, Active timeout failures: 0
   Export packet failures: 0, Flow creation failures: 0
   Memory overload: No

Service Accounting interface: sp-1/0/0
Service name: (default sampling)
   Error information
   Service sets dropped: 0, Active timeout failures: 0
   Export packet failures: 0, Flow creation failures: 0
   Memory overload: No

show services accounting errors inline-jflow fpc-slot (When Only IPv6 Is Configured)
user@host> show services accounting errors inline-jflow fpc-slot 5

Error information
   FPC Slot: 5
   Flow Creation Failures: 0
   Route Record Lookup Failures: 0, AS Lookup Failures: 0
   Export Packet Failures: 0
   Memory Overload: No, Memory Alloc Fail Count: 0

show services accounting errors inline-jflow fpc-slot (When IPv4, IPv6, VPLS, and Bridge Are Configured)
user@host> show services accounting errors inline-jflow fpc-slot 5

Error information
   FPC Slot: 5
   Flow Creation Failures: 0
   Route Record Lookup Failures: 0, AS Lookup Failures: 0
   Export Packet Failures: 0
   Memory Overload: No, Memory Alloc Fail Count: 0

   IPv4:
   IPv4 Flow Creation Failures: 0
   IPv4 Route Record Lookup Failures: 0, IPv4 AS Lookup Failures: 0
   IPv4 Export Packet Failures: 0

   IPv6:
IPv6 Flow Creation Failures: 0
IPv6 Route Record Lookup Failures: 0, IPv6 AS Lookup Failures: 0
IPv6 Export Packet Failures: 0

VPLS:
VPLS Flow Creation Failures: 0
VPLS Export Packet Failures: 0

BRIDGE:
BRIDGE Flow Creation Failures: 0
BRIDGE Route Record Lookup Failures: 0, BRIDGE AS Lookup Failures: 0
BRIDGE Export Packet Failures: 0

show services accounting errors inline-jflow (MX80 Router When Both IPv4 and IPv6 Are Configured)

user@host> show services accounting errors inline-jflow

Error information
TFEB Slot: 0
Flow Creation Failures: 0
Route Record Lookup Failures: 0, AS Lookup Failures: 0
Export Packet Failures: 0
Memory Overload: No

IPv4:
IPv4 Flow Creation Failures: 0
IPv4 Route Record Lookup Failures: 0, IPv4 AS Lookup Failures: 0
IPv4 Export Packet Failures: 0

IPv6:
IPv6 Flow Creation Failures: 0
IPv6 Route Record Lookup Failures: 0, IPv6 AS Lookup Failures: 0
IPv6 Export Packet Failures: 0

show services accounting errors inline-jflow fpc-slot (PTX1000 Router When Both IPv4 and IPv6 Are Configured)

user@host> show services accounting errors inline-jflow fpc-slot 0

Error information
FPC Slot: 0
Flow Creation Failures: 0
Route Record Lookup Failures: 0, AS Lookup Failures: 0
Export Packet Failures: 0
Memory Overload: No, Memory Alloc Fail Count: 0

IPv4:
IPv4 Flow Creation Failures: 0
IPv4 Route Record Lookup Failures: 0, IPv4 AS Lookup Failures: 0
IPv4 Export Packet Failures: 0

IPv6:
IPv6 Flow Creation Failures: 0
IPv6 Route Record Lookup Failures: 0, IPv6 AS Lookup Failures: 0
IPv6 Export Packet Failures: 0

show services accounting errors inline-jflow (SRX Series Devices When Both IPv4 and IPv6 Are Configured)
user@host> show services accounting errors inline-jflow

Error information
   FPC Slot: 0
   Flow Creation Failures: 0
   Route Record Lookup Failures: 0, AS Lookup Failures: 0
   Export Packet Failures: 0
   Memory Overload: No, Memory Alloc Fail Count: 0

IPv4:
IPv4 Flow Creation Failures: 0
IPv4 Route Record Lookup Failures: 0, IPv4 AS Lookup Failures: 0
IPv4 Export Packet Failures: 0
show services accounting flow

Syntax

```plaintext
show services accounting flow
<inline-jflow fpc-slot slot-number | logical-system (all | logical-system) | name (* | all | service-name)>
```

Release Information
Command introduced before Junos OS Release 7.4.
Junos OS Release 10.0 added the capability to display output from multiple sampling instances.

Description
Display active flow statistics.

Options

- **none**—Display active flow statistics for all service instances.
- **logical-system (all | logical-system)**—(Optional) Display active flow statistics for the specified logical system or all logical systems on the device.
- **inline-jflow (fpc-slot slot-number)**—(Optional) Display inline flow statistics for the specified FPC.
- **name (* | all | service-name)**—(Optional) Display services accounting active flow statistics. Use a wildcard character, specify all services, or provide a specific service name.

Required Privilege Level
view

RELATED DOCUMENTATION

- show services accounting status | 422

List of Sample Output

- show services accounting flow (Flow Aggregation v5/v8 Configuration) on page 405
- show services accounting flow (Flow Aggregation v9 Configuration) on page 405
- show services accounting flow name on page 405
- show services accounting flow name all on page 406
- show services accounting flow (Multiple Sampling Instances) on page 407
- show services accounting flow inline-jflow fpc-slot (for IPv4 Flow) on page 407
- show services accounting flow inline-jflow fpc-slot (with IPv4, IPv6, VPLS, and Bridge Configuration) on page 407
- show services accounting flow inline-jflow (MX80 Router with IPv4 and IPv6 Configuration) on page 408
**Output Fields**

Table 23 on page 404 lists the output fields for the `show services accounting flow` command. Output fields are listed in the approximate order in which they appear.

Table 23: show services accounting flow Output Fields

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Output Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Service Accounting interface</strong></td>
<td>Name of the service accounting interface.</td>
</tr>
<tr>
<td><strong>Local interface index</strong></td>
<td>Index counter of the local interface.</td>
</tr>
<tr>
<td><strong>Service name</strong></td>
<td>Name of a service that was configured at the [edit forwarding-options accounting] hierarchy level. The default display, <em>(default sampling)</em>, indicates the service was configured at the [edit forwarding-options sampling-level] hierarchy level.</td>
</tr>
<tr>
<td><strong>Flow Information</strong></td>
<td></td>
</tr>
<tr>
<td><strong>FPC Slot</strong></td>
<td>Slot number of the FPC for which the flow information is displayed. (Available only when the <code>inline-jflow fpc-slot slot-number</code> option is used.)</td>
</tr>
<tr>
<td><strong>Flow packets</strong></td>
<td>Number of packets received by an operational PIC.</td>
</tr>
<tr>
<td><strong>Flow bytes</strong></td>
<td>Number of bytes received by an operational PIC.</td>
</tr>
<tr>
<td><strong>Flow packets 10-second rate</strong></td>
<td>Number of packets per second handled by the PIC and displayed as a 10-second average.</td>
</tr>
<tr>
<td><strong>Flow bytes 10-second rate</strong></td>
<td>Number of bytes per second handled by the PIC and displayed as a 10-second average.</td>
</tr>
<tr>
<td><strong>Active flows</strong></td>
<td>Number of currently active flows tracked by the PIC.</td>
</tr>
<tr>
<td><strong>Total flows</strong></td>
<td>Total number of flows received by an operational PIC.</td>
</tr>
<tr>
<td><strong>Flows exported</strong></td>
<td>Total number of flows exported by an operational PIC.</td>
</tr>
<tr>
<td><strong>Flows packets exported</strong></td>
<td>Total number of cflowd packets exported by an operational PIC.</td>
</tr>
</tbody>
</table>
Table 23: show services accounting flow Output Fields (continued)

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Output Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flows inactive timed out</td>
<td>Total number of flows that are exported because of inactivity.</td>
</tr>
<tr>
<td>Flows active timed out</td>
<td>Total number of long-lived flows that are exported because of an active timeout.</td>
</tr>
</tbody>
</table>

Sample Output

**show services accounting flow (Flow Aggregation v5/v8 Configuration)**

```
user@host> show services accounting flow

Service Accounting interface: rsp0, Local interface index: 171
Service name: (default sampling)
Interface state: Accounting
Flow information
 Flow packets: 87168293, Flow bytes: 5578770752
 Active flows: 1000, Total flows: 2000
 Flows exported: 19960, Flows packets exported: 582
 Flows inactive timed out: 1000, Flows active timed out: 29000
```

**show services accounting flow (Flow Aggregation v9 Configuration)**

```
user@host> show services accounting flow

Flow information
 Service Accounting interface: sp-7/1/0, Local interface index: 149
 Flow packets: 0, Flow bytes: 0
 Flow packets 10-second rate: 0, Flow bytes 10-second rate: 0
 Active flows: 0, Total flows: 0
 Flows exported: 0, Flows packets exported: 1
 Flows inactive timed out: 0, Flows active timed out: 0
```

**show services accounting flow name**

```
user@host> show services accounting flow name count2
```
Service Accounting interface: mo-1/1/0, Local interface index: 15
Service name: count2
Flow information
   Flow packets: 0, Flow bytes: 0
   Flow packets 10-second rate: 0, Flow bytes 10-second rate: 0
   Active flows: 0, Total flows: 0
   Flows exported: 0, Flows packets exported: 0
   Flows inactive timed out: 0, Flows active timed out: 0

show services accounting flow name all
user@host>  show services accounting flow name all

Service Accounting interface: rsp0, Local interface index: 171
Service name: T2
Interface state: Accounting
Flow information
   Flow packets: 37609891, Flow bytes: 2407033024
   Active flows: 1000, Total flows: 1000
   Flows exported: 6705, Flows packets exported: 198
   Flows inactive timed out: 0, Flows active timed out: 13000

Service Accounting interface: rsp0, Local interface index: 171
Service name: T3
Interface state: Accounting
Flow information
   Flow packets: 37750807, Flow bytes: 2416051712
   Active flows: 1000, Total flows: 1000
   Flows exported: 13437, Flows packets exported: 378
   Flows inactive timed out: 0, Flows active timed out: 13000

Service Accounting interface: rsp0, Local interface index: 171
Service name: T4
Interface state: Accounting
Flow information
   Flow packets: 0, Flow bytes: 0
   Flow packets 10-second rate: 0, Flow bytes 10-second rate: 0
   Active flows: 0, Total flows: 0
   Flows exported: 0, Flows packets exported: 0
   Flows inactive timed out: 0, Flows active timed out: 0

Service Accounting interface: rsp0, Local interface index: 171
Service name: count1  
Interface state: Accounting  
Flow information  
  Flow packets: 0, Flow bytes: 0  
  Flow packets 10-second rate: 0, Flow bytes 10-second rate: 0  
  Active flows: 0, Total flows: 0  
  Flows exported: 0, Flows packets exported: 0  
  Flows inactive timed out: 0, Flows active timed out: 0  

show services accounting flow (Multiple Sampling Instances)  
user@host>  show services accounting flow  

Flow information  
  Service Accounting interface: sp-2/0/0, Local interface index: 215  
  Flow packets: 9867, Flow bytes: 631488  
  Flow packets 10-second rate: 0, Flow bytes 10-second rate: 628  
  Active flows: 2, Total flows: 10  
  Flows exported: 4028, Flows packets exported: 6150  
  Flows inactive timed out: 8, Flows active timed out: 4026  

  Service Accounting interface: sp-2/1/0, Local interface index: 223  
  Flow packets: 0, Flow bytes: 0  
  Flow packets 10-second rate: 0, Flow bytes 10-second rate: 0  
  Active flows: 0, Total flows: 0  
  Flows exported: 0, Flows packets exported: 1  
  Flows inactive timed out: 0, Flows active timed out: 0  

show services accounting flow inline-jflow fpc-slot (for IPv4 Flow)  
user@host>  show services accounting flow inline-jflow fpc-slot 5  

Flow information  
  FPC Slot: 5  
  Flow Packets: 0, Flow Bytes: 0  
  Active Flows: 0, Total Flows: 0  
  Flows Exported: 0, Flow Packets Exported: 0  
  Flows Inactive Timed Out: 0, Flows Active Timed Out: 0  

show services accounting flow inline-jflow fpc-slot (with IPv4, IPv6, VPLS, and Bridge Configuration)  
user@host>  show services accounting flow inline-jflow fpc-slot 5
Flow information
FPC Slot: 5
Flow Packets: 0, Flow Bytes: 0
Active Flows: 0, Total Flows: 0
Flows Exported: 0, Flow Packets Exported: 0
Flows Inactive Timed Out: 0, Flows Active Timed Out: 0

IPv4 Flows:
IPv4 Flow Packets: 0, IPv4 Flow Bytes: 0
IPv4 Active Flows: 0, IPv4 Total Flows: 0
IPv4 Flows Exported: 0, IPv4 Flow Packets Exported: 0
IPv4 Flows Inactive Timed Out: 0, IPv4 Flows Active Timed Out: 0

IPv6 Flows:
IPv6 Flow Packets: 0, IPv6 Flow Bytes: 0
IPv6 Active Flows: 0, IPv6 Total Flows: 0
IPv6 Flows Exported: 0, IPv6 Flow Packets Exported: 0
IPv6 Flows Inactive Timed Out: 0, IPv6 Flows Active Timed Out: 0

VPLS Flows:
VPLS Flow Packets: 0, VPLS Flow Bytes: 0
VPLS Active Flows: 0, VPLS Total Flows: 0
VPLS Flows Exported: 0, VPLS Flow Packets Exported: 0
VPLS Flows Inactive Timed Out: 0, VPLS Flows Active Timed Out: 0

BRIDGE Flows:
BRIDGE Flow Packets: 0, BRIDGE Flow Bytes: 0
BRIDGE Active Flows: 0, BRIDGE Total Flows: 0
BRIDGE Flows Exported: 0, BRIDGE Flow Packets Exported: 0
BRIDGE Flows Inactive Timed Out: 0, BRIDGE Flows Active Timed Out: 0
BRIDGE Flow Insert Count: 0

show services accounting flow inline-jflow (MX80 Router with IPv4 and IPv6 Configuration)
user@host> show services accounting flow inline-jflow

Flow information
TFEB Slot: 0
Flow Packets: 0, Flow Bytes: 0
Active Flows: 0, Total Flows: 0
Flows Exported: 0, Flow Packets Exported: 0
Flows Inactive Timed Out: 0, Flows Active Timed Out: 0

IPv4 Flows:
IPv4 Flow Packets: 0, IPv4 Flow Bytes: 0
IPv4 Active Flows: 0, IPv4 Total Flows: 0
IPv4 Flows Exported: 0, IPv4 Flow Packets exported: 0
IPv4 Flows Inactive Timed Out: 0, IPv4 Flows Active Timed Out: 0

IPv6 Flows:
IPv6 Flow Packets: 0, IPv6 Flow Bytes: 0
IPv6 Active Flows: 0, IPv6 Total Flows: 0
IPv6 Flows Exported: 0, IPv6 Flow Packets Exported: 0
IPv6 Flows Inactive Timed Out: 0, IPv6 Flows Active Timed Out: 0

show services accounting flow inline-jflow fpc-slot (PTX1000 Router When Both IPv4 and IPv6 Are Configured)

user@host> show services accounting flow inline-jflow fpc-slot 0

Flow information
FPC Slot: 0
Flow Packets: 47427946, Flow Bytes: 5217074060
Active Flows: 0, Total Flows: 2
Flows Exported: 194, Flow Packets Exported: 7045
Flows Inactive Timed Out: 2, Flows Active Timed Out: 192

IPv4 Flows:
IPv4 Active Flows: 0, IPv4 Total Flows: 2

IPv6 Flows:
IPv6 Flow Packets: 0, IPv6 Flow Bytes: 0
IPv6 Active Flows: 0, IPv6 Total Flows: 0
IPv6 Flows Exported: 0, IPv6 Flow Packets Exported: 0
IPv6 Flows Inactive Timed Out: 0, IPv6 Flows Active Timed Out: 0

show services accounting flow inline-jflow (SRX Series When IPv4 is configured)

user@host> show services accounting flow inline-jflow

Flow information
FPC Slot: 0
Flow Packets: 462680, Flow Bytes: 45433206
Active Flows: 34, Total Flows: 61093
Flows Exported: 138936, Flow Packets Exported: 96649
Total Flow Insert Count: 0

IPv4 Flows:
IPv4 Active Flows: 34, IPv4 Total Flows: 61093
IPv4 Flow Insert Count: 0
show services accounting flow-detail

Syntax

```
show services accounting flow-detail
<detail | extensive | terse>
<filters>
<limit limit-value>
<name (* | all | service-name)>
<order (bytes | packets)>
```

Release Information
Command introduced before Junos OS Release 7.4.

Description
Display information about the flows being processed by the accounting service.

Options

none—Display information about all flows.

detail | extensive | terse—(Optional) Display the specified level of output.

filters—(Optional) Filter the display output of the currently active flow records. The following filters query actively changing data structures and result in different results for multiple invocations:

- destination-as—Display flow records filtered by destination autonomous system information.
- destination-port—Display flow records filtered by destination port information.
- destination-prefix—Display flow records filtered by destination prefix information.
- input-snmp-interface-index—Display flow records filtered by SNMP input interface index information.
- output-snmp-interface-index—Display flow records filtered by SNMP output interface index information.
- proto—Display flow records filtered by protocol type.
- source-as—Display flow records filtered by source autonomous system information.
- source-port—Display flow records filtered by source port information.
- source-prefix—Display flow records filtered by source prefix information.
- tos—Display flow records filtered by type of service classification.

limit limit-value—(Optional) Limit the display output to the specified number of flows. The default is no limit.
name (* | all | service-name)—(Optional) Display information about the flows being processed. Use a wildcard character, specify all services, or provide a specific services name.

order (bytes | packets)—(Optional) Display the flow with the ordering of the highest number, either by byte count or by packet count.

Additional Information
When no PIC is active, or when no route record has been downloaded from the PIC, this command reports no flows, even though packets are being sampled. This command displays information about two concurrent sessions only. If a third session is attempted, the command pauses with no output until one of the previous sessions is completed.

Required Privilege Level
view

List of Sample Output
show services accounting flow-detail on page 414
show services accounting flow-detail limit on page 414
show services accounting flow-detail name extensive on page 415
show services accounting flow-detail limit order bytes on page 415
show services accounting flow-detail name detail source-port on page 416

Output Fields
Table 24 on page 412 lists the output fields for the show services accounting flow-detail command. Output fields are listed in the approximate order in which they appear.

Table 24: show services accounting flow-detail Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Output Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Accounting interface</td>
<td>Name of the service accounting interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Service name</td>
<td>Name of a service that was configured at the [edit forwarding-options accounting] hierarchy level. The default display, (default sampling), indicates the service was configured at the [edit forwarding-options sampling] hierarchy level.</td>
<td>All levels</td>
</tr>
<tr>
<td>Local interface index</td>
<td>Index counter of the local interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>TOS</td>
<td>Type-of-service value from the IP header.</td>
<td>extensive</td>
</tr>
<tr>
<td>Input SNMP interface index</td>
<td>SNMP index of the interface on which the packet came in.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
### Table 24: show services accounting flow-detail Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Output Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output SNMP interface index</td>
<td>SNMP index of the interface on which the packet went out.</td>
<td>extensive</td>
</tr>
<tr>
<td>Source-AS</td>
<td>Source AS number.</td>
<td>extensive</td>
</tr>
<tr>
<td>Destination-AS</td>
<td>Destination AS number.</td>
<td>extensive</td>
</tr>
<tr>
<td>Protocol</td>
<td>Name of the protocol used for the packet flow from the corresponding source address.</td>
<td>All levels</td>
</tr>
<tr>
<td>Input interface</td>
<td>Interface on which the packets were received.</td>
<td>All levels</td>
</tr>
<tr>
<td>Output interface</td>
<td>Interface on which the packets were transmitted.</td>
<td>All levels</td>
</tr>
<tr>
<td>TCP flags</td>
<td>Number of TCP header flags detected in the flow.</td>
<td>extensive</td>
</tr>
<tr>
<td>Source address</td>
<td>Address where the flow originated.</td>
<td>All levels</td>
</tr>
<tr>
<td>Source port</td>
<td>Name of the source port.</td>
<td>All levels</td>
</tr>
<tr>
<td>Source prefix length</td>
<td>Source prefix length.</td>
<td>extensive</td>
</tr>
<tr>
<td>Destination address</td>
<td>Address where the flow is sent.</td>
<td>All levels</td>
</tr>
<tr>
<td>Destination prefix length</td>
<td>Destination prefix length.</td>
<td>extensive</td>
</tr>
<tr>
<td>Destination port</td>
<td>Name of the destination port.</td>
<td>All levels</td>
</tr>
<tr>
<td>Start time</td>
<td>Actual time when the packet in this aggregation was first seen.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>End time</td>
<td>Actual time when the packet in this aggregation was last seen.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Packet count</td>
<td>Number of packets in the aggregation.</td>
<td>All levels</td>
</tr>
<tr>
<td>Byte count</td>
<td>Number of bytes in the aggregation.</td>
<td>All levels</td>
</tr>
<tr>
<td>Time since last active timeout</td>
<td>Amount of time elapsed since the last active timeout, in the format \textit{hh:mm:ss}.</td>
<td>None specified</td>
</tr>
</tbody>
</table>
Table 24: show services accounting flow-detail Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Output Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet count for last active timeout</td>
<td>Number of packets in the aggregation since the last active timeout.</td>
<td>None specified</td>
</tr>
<tr>
<td>Byte count for last active timeout</td>
<td>Number of bytes in the aggregation since the last active timeout.</td>
<td>None specified</td>
</tr>
</tbody>
</table>

Sample Output

show services accounting flow-detail

In this sample, the output is split into three sections, with ellipses (...) indicating where the sections are continued.

```plaintext
user@host> show services accounting flow-detail
```

```
Service Accounting interface: rsp0, Local interface index: 171
Service name: (default sampling)
Interface state: Accounting
Protocol Input Source Source Output
interface address port interface...
tcp(6) ge-5/0/1.0 192.0.2.2 0 ge-5/0/0.0
 ge-5/0/1.0 192.0.2.2 0 ge-5/0/0.0

Destination Destination Packet Byte Time since last
address port count count active timeout...
198.51.100.149 0 2660 170240 00:00:58
198.51.100.138 0 2660 170240 00:00:58

Packet count for Byte count for
last active timeout last active timeout
2805 179520
2805 179520
```

show services accounting flow-detail limit

In this sample, the output is split into three sections, with ellipses (...) indicating where the sections are continued.
### show services accounting flow-detail limit 1

Service Accounting interface: rsp0, Local interface index: 171
Service name: (default sampling)
Interface state: Accounting

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Input interface</th>
<th>Source address</th>
<th>Source port</th>
<th>Output interface...</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp(6)</td>
<td>ge-5/0/1.0</td>
<td>192.0.2.2</td>
<td>0</td>
<td>ge-5/0/0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Destination address</th>
<th>Destination port</th>
<th>Packet count</th>
<th>Byte count</th>
<th>Time since last active timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>198.51.100.149</td>
<td></td>
<td>2158</td>
<td>138112</td>
<td>00:00:47</td>
</tr>
</tbody>
</table>

Packet count for last active timeout: 2827
Byte count for last active timeout: 180928

### show services accounting flow-detail name extensive

Service Accounting interface: mo-0/2/0, Local interface index: 145
Service name: cf-2
TOS: 0, Protocol: udp(17), TCP flags: 0
Source address: 10.10.10.1, Source prefix length: 0, Destination address: 203.0.113.20,
Destination prefix length: 0, Source port: 1173, Destination port: 69
Input SNMP interface index: 65, Output SNMP interface index: 0, Source-AS: 0,
Destination-AS: 0
Start time: 62425, End time: 635265, Packet count: 165845, Byte count: 9453165

### show services accounting flow-detail limit order bytes

The output of the following command is displayed over 141 columns, not the standard 80 columns. In this sample, the output is split into three sections, with ellipses (...) indicating where the sections are continued.

User@host> show services accounting flow-detail limit 5 order bytes

Service Accounting interface: mo-2/0/0, Local interface index: 356
Service name: (default sampling)

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Input interface</th>
<th>Source address</th>
<th>Source port</th>
<th>Output interface...</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp(1)</td>
<td>ge-2/3/0.0</td>
<td>192.0.2.2</td>
<td>0</td>
<td>.local.</td>
</tr>
<tr>
<td>Destination address</td>
<td>Destination port</td>
<td>Packet count</td>
<td>Byte count</td>
<td>Time since last active timeout</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>192.168.128.2</td>
<td>0</td>
<td>16</td>
<td>12148</td>
<td>Not applicable</td>
</tr>
<tr>
<td>192.168.144.2</td>
<td>0</td>
<td>16</td>
<td>15229</td>
<td>Not applicable</td>
</tr>
<tr>
<td>192.168.192.2</td>
<td>0</td>
<td>16</td>
<td>13296</td>
<td>Not applicable</td>
</tr>
<tr>
<td>192.168.16.2</td>
<td>0</td>
<td>16</td>
<td>13924</td>
<td>Not applicable</td>
</tr>
<tr>
<td>192.168.48.2</td>
<td>0</td>
<td>16</td>
<td>13428</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

show services accounting flow-detail name detail source-port

user@host> show services accounting flow-detail name cf-2 detail source-port 1173

Service Accounting interface: mo-0/2/0, Local interface index: 145
Service name: cf-2
Protocol: udp(17), Source address: 10.10.10.1, Source port: 1173, Destination address:
203.0.113.20, Destination port: 69
Start time: 62425, End time: 811115, Packet count: 142438, Byte count: 8118966
show services accounting memory

Syntax

show services accounting memory

Release Information
Command introduced before Junos OS Release 7.4.

Description
Display memory and flow record statistics.

Options
This command has no options.

Required Privilege Level
view

List of Sample Output
show services accounting memory (Monitoring PIC Interface) on page 418
show services accounting memory (Service PIC Interface) on page 418

Output Fields
Table 25 on page 417 lists the output fields for the show services accounting memory command. Output fields are listed in the approximate order in which they appear.

Table 25: show services accounting memory Output Fields

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Output Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Accounting</td>
<td>Name of the service accounting interface.</td>
</tr>
<tr>
<td>Interface</td>
<td></td>
</tr>
<tr>
<td>Memory Utilization</td>
<td></td>
</tr>
<tr>
<td>Local interface index</td>
<td>Index counter of the local interface.</td>
</tr>
<tr>
<td>Allocation count</td>
<td>Number of flow records allocated.</td>
</tr>
<tr>
<td>Free count</td>
<td>Number of flow records freed.</td>
</tr>
<tr>
<td>Maximum allocated</td>
<td>Maximum number of flow records allocated since the monitoring station booted. This number represents the peak number of flow records allocated at a time.</td>
</tr>
</tbody>
</table>
### Table 25: show services accounting memory Output Fields (continued)

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Output Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocations per second</td>
<td>Flow records allocated per second during the last statistics interval on the PIC.</td>
</tr>
<tr>
<td>Frees per second</td>
<td>Flow records freed per second during the last statistics interval on the PIC.</td>
</tr>
<tr>
<td>Total memory used</td>
<td>Total amount of memory currently used (in bytes).</td>
</tr>
<tr>
<td>Total memory free</td>
<td>Total amount of memory currently free (in bytes).</td>
</tr>
</tbody>
</table>

### Sample Output

#### show services accounting memory (Monitoring PIC Interface)

```bash
user@host> show services accounting memory
```

```
Service Accounting interface: mo-2/0/0, Local interface index: 468
 Memory utilization
 Allocation count: 437340, Free count: 433699, Maximum allocated: 6782
 Allocations per second: 3366, Frees per second: 6412
 Total memory used (in bytes): 133460320,
 Total memory free (in bytes): 133918352
```

#### show services accounting memory (Service PIC Interface)

```bash
user@host> show services accounting memory
```

```
Service Accounting interface: sp-0/1/0
 Memory utilization
 Allocation count: 1000, Free count: 0
 Allocations per second: 0, Frees per second: 0
 Total memory used (in bytes): 218158272
 Total memory free (in bytes): 587147696
```

```
Service Accounting interface: sp-1/0/0
 Memory utilization
 Allocation count: 1000, Free count: 0
 Allocations per second: 0, Frees per second: 0
```
Total memory used (in bytes): 218157592
Total memory free (in bytes): 587148376
show services accounting packet-size-distribution

Syntax

```
show services accounting packet-size-distribution
<name (* | all | service-name)>
```

Release Information
Command introduced before Junos OS Release 7.4.

Description
Display a packet size distribution histogram.

Options
```
none—Display a packet size distribution histogram of all accounting services.

name (* | all | service-name)—(Optional) Display a packet size distribution histogram. Use a wildcard character, specify all services, or provide a specific services name.
```

Required Privilege Level
view

List of Sample Output
show services accounting packet-size-distribution name on page 421

Output Fields
Table 26 on page 420 lists the output fields for the show services accounting packet-size-distribution command. Output fields are listed in the approximate order in which they appear.

Table 26: show services accounting packet-size-distribution Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Accounting interface</td>
<td>Name of the service accounting interface.</td>
</tr>
<tr>
<td>Service name</td>
<td>Name of a service that was configured at the [edit-forwarding-options accounting] hierarchy level. The default display, (default sampling), indicates the service was configured at the [edit-forwarding-options sampling-level] hierarchy level.</td>
</tr>
<tr>
<td>Local interface index</td>
<td>Index counter of the local interface.</td>
</tr>
<tr>
<td>Range start</td>
<td>Smallest packet length (in bytes) to count.</td>
</tr>
<tr>
<td>Range end</td>
<td>Largest packet length (in bytes) to count.</td>
</tr>
</tbody>
</table>
Table 26: show services accounting packet-size-distribution Output Fields (*continued*)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of packets</td>
<td>Count of packets detected in the size between Range start and Range end.</td>
</tr>
<tr>
<td>Percentage packets</td>
<td>Percentage of the total number of packets that are in this size range.</td>
</tr>
</tbody>
</table>

**Sample Output**

```
show services accounting packet-size-distribution name

user@host> show services accounting packet-size-distribution name test3

Service Accounting interface: mo-0/2/0, Local interface index: 163
Service name: test3

<table>
<thead>
<tr>
<th>Range start</th>
<th>Range end</th>
<th>Number of packets</th>
<th>Percentage packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>64</td>
<td>2924</td>
<td>100</td>
</tr>
</tbody>
</table>
```
show services accounting status

Syntax

```plaintext
show services accounting status
<inline-jflow fpc-slot slot-number | name (* | all | service-name)>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 13.2R2 for EX Series switches.

Description
Display available Physical Interface Cards (PICs) for accounting services.

Options
none—Display available PICs for all accounting services.

```
inline-jflow fpc-slot slot-number—(Optional) Display inline flow accounting status for the specified FPC.
For a two-member MX Series Virtual Chassis or EX9200 Virtual Chassis, the master router or switch uses FPC slot numbers 0 through 11 with no offset; the backup router or switch uses FPC slot numbers 12 through 23, with an offset of 12.
```

```
name(* | all | service-name)—(Optional) Display available PICs. Use a wildcard character, specify all services, or provide a specific services name.
```

Required Privilege Level
view

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>show services accounting flow</th>
<th>403</th>
</tr>
</thead>
</table>

Inline Flow Monitoring for Virtual Chassis Overview

List of Sample Output

- show services accounting status name (Monitoring PIC Interface) on page 424
- show services accounting status name (Service PIC Interface) on page 424
- show services accounting status inline-jflow fpc-slot (When IPv4, IPv6 and Bridge Family Are Configured) on page 425
- show services accounting status inline-jflow (MX80 Router When Both IPv4 and IPv6 ) on page 425
- show services accounting status inline-jflow fpc-slot (PTX1000 Router When Both IPv4 and IPv6 Are Configured) on page 425
show services accounting status inline-jflow (SRX Series Devices When Both IPv4 and IPv6 Are Configured) on page 426

Output Fields

**Table 27 on page 423** lists the output fields for the show services accounting status command. Output fields are listed in the approximate order in which they appear.

**Table 27: show services accounting status Output Fields**

<table>
<thead>
<tr>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Accounting interface</td>
<td>Name of the service accounting interface.</td>
</tr>
<tr>
<td>Service name</td>
<td>Name of a service that was configured at the [edit-forwarding-options accounting] hierarchy level. The default display, (default sampling), indicates the service was configured at the [edit-forwarding-options sampling-level] hierarchy level.</td>
</tr>
<tr>
<td>FPC Slot</td>
<td>Slot number of the FPC for which the flow information is displayed.</td>
</tr>
<tr>
<td>Local interface index</td>
<td>Index counter of the local interface.</td>
</tr>
<tr>
<td>Interface state</td>
<td>Accounting state of the passive monitoring interface.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Accounting</strong>—PIC is actively accounting.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Disabled</strong>—PIC has been disabled from the CLI.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Not accounting</strong>—PIC is up but not accounting. This can happen while the PIC is coming online, or when the PIC is up but has no logical unit configured under the physical interface.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Unknown</strong></td>
</tr>
<tr>
<td>Group index</td>
<td>Integer that represents the monitoring group of which the PIC is a member. <strong>Group index</strong> is a mapping from the group name to an index. It is not related to the number of monitoring groups.</td>
</tr>
<tr>
<td>Export interval (in seconds)</td>
<td>Configured export interval for cflowd records, in seconds.</td>
</tr>
<tr>
<td>Export format</td>
<td>Configured export format.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol the PIC is configured to monitor.</td>
</tr>
<tr>
<td>Engine type</td>
<td>Configured engine type that is inserted in output cflowd packets.</td>
</tr>
<tr>
<td>Engine ID</td>
<td>Configured engine ID that is inserted in output cflowd packets.</td>
</tr>
<tr>
<td>Route Record Count</td>
<td>Number of routes recorded.</td>
</tr>
</tbody>
</table>
Table 27: show services accounting status Output Fields (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS Record Count</td>
<td>Number of autonomous systems recorded.</td>
</tr>
<tr>
<td>Route Records Set</td>
<td>Status of route recording; whether routes are recorded or not.</td>
</tr>
<tr>
<td>Configuration Set</td>
<td>Status of monitoring configuration; whether monitoring configuration is set or not.</td>
</tr>
</tbody>
</table>

**Sample Output**

**show services accounting status name (Monitoring PIC Interface)**

user@host>  show services accounting status name count1

```
Service Accounting interface: mo-2/0/0, Local interface index: 468
Service name: count1
Interface state: Accounting
 Group index: 0
 Export interval (in seconds): 60, Export format: cflowd v8
```

**Sample Output**

**show services accounting status name (Service PIC Interface)**

user@host>  show services accounting status name

```
Service Accounting interface: sp-0/1/0
Interface state: Accounting
 Export format: 9, Route record count: 0
 IFL to SNMP index count: 7, AS count: 0
 Configuration set: Yes, Route record set: No, IFL SNMP map set: Yes

Service Accounting interface: sp-1/0/0
Interface state: Accounting
 Export format: 9, Route record count: 33
```
show services accounting status inline-jflow fpc-slot (When IPv4, IPv6 and Bridge Family Are Configured)

user@host> show services accounting status inline-jflow fpc-slot 0

FPC Slot: 0
IPv4 export format: Version-IPFIX, IPv6 export format: Not set
BRIDGE export format: Version-IPFIX, MPLS export format: Version-IPFIX
IPv4 Route Record Count: 31, IPv6 Route Record Count: 0, MPLS Route Record Count: 13
Route Record Count: 44, AS Record Count: 1
Route-Records Set: Yes, Config Set: Yes
Service Status: PFE-0: Steady PFE-1: Steady
Using Extended Flow Memory?: PFE-0: No PFE-1: No
Flex Flow Sizing ENABLED?: PFE-0: No PFE-1: No
IPv4 MAX FLOW Count: 1024, IPv6 MAX FLOW Count: 512
BRIDGE MAX FLOW Count: 1024, MPLS MAX FLOW Count: 1024
MAX Flow Table size: 15

show services accounting status inline-jflow (MX80 Router When Both IPv4 and IPv6)

user@host> show services accounting status inline-jflow

Status information
TFEB Slot: 0
Export format: IP-FIX
IPv4 Route Record Count: 6, IPv6 Route Record Count: 8
Route Record Count: 14, AS Record Count: 1
Route-Records Set: Yes, Config Set: Yes

show services accounting status inline-jflow fpc-slot (PTX1000 Router When Both IPv4 and IPv6 Are Configured)

user@host> show services accounting status inline-jflow fpc-slot 0

Status information
FPC Slot: 0
IPv4 export format: Version-IPFIX, IPv6 export format: Version-IPFIX
MPLS export format: Not set
IPv4 Route Record Count: 23, IPv6 Route Record Count: 3, MPLS Route Record Count:
route record count: 26, as record count: 1
route-records set: yes, config set: yes

show services accounting status inline-jflow (SRX Series Devices When Both IPv4 and IPv6 Are Configured)
user@host> show services accounting status inline-jflow

Status information
  FPC Slot: 0
  IPV4 export format: Version9, IPV6 export format: Version9
  BRIDGE export format: Not set, MPLS export format: Not set
  IPv4 Route Record Count: 24, IPv6 Route Record Count: 0, MPLS Route Record Count: 0
  Route Record Count: 24, AS Record Count: 1
  Route-Records Set: Yes, Config Set: Yes
  Service Status: PFE-0: Steady
  Using Extended Flow Memory?: PFE-0: No
  Flex Flow Sizing ENABLED?: PFE-0: No
  IPv4 MAX FLOW Count: 0, IPv6 MAX FLOW Count: 0
  BRIDGE MAX FLOW Count: 0, MPLS MAX FLOW Count: 0
show services accounting usage

Syntax

show services accounting usage
<name service-name>

Release Information
Command introduced before Junos OS Release 7.4.

Description
Display the CPU usage of PIC used for active flow monitoring.

Options
none—Display CPU usage for all service names.

name service-name—(Optional) Display CPU usage for the specified service name.

Additional Information
When no route record has been downloaded from the PIC, this command reports no flows, even though packets are being sampled.

Required Privilege Level
view

List of Sample Output
show services accounting usage (Monitoring PIC Interface) on page 428
show services accounting usage (Service PIC Interface) on page 428

Output Fields
Table 28 on page 427 lists the output fields for the show services accounting usage command. Output fields are listed in the approximate order in which they appear.

Table 28: show services accounting usage Output Fields

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Output Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Accounting interface</td>
<td>Name of the service accounting interface.</td>
</tr>
<tr>
<td>Service name</td>
<td>Name of a service that was configured at the [edit-forwarding-options accounting] hierarchy level. The default display, (default sampling), indicates the service was configured at the [edit-forwarding-options sampling-level] hierarchy level.</td>
</tr>
<tr>
<td>Local interface index</td>
<td>Index counter of the local interface.</td>
</tr>
</tbody>
</table>
Table 28: show services accounting usage Output Fields (continued)

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Output Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uptime</td>
<td>Time that the PIC has been operational (in milliseconds).</td>
</tr>
<tr>
<td>Interrupt time</td>
<td>Total time that the PIC has spent processing packets since the last PIC reset (in microseconds).</td>
</tr>
<tr>
<td>Load (5 second)</td>
<td>CPU load on the PIC, averaged more than 5 seconds. The number is a percentage obtained by dividing the time spent on active tasks by the total elapsed time.</td>
</tr>
<tr>
<td>Load (1 minute)</td>
<td>CPU load on the PIC, averaged more than 1 minute. The number is a percentage obtained by dividing the time spent on active tasks by the total elapsed time.</td>
</tr>
</tbody>
</table>

Sample Output

show services accounting usage (Monitoring PIC Interface)

user@host> show services accounting usage

Service Accounting interface: mo-1/1/0, Local interface index: 15
Service name: (default sampling)
  CPU utilization
    Uptime: 600413856 milliseconds, Interrupt time: 2403 microseconds
    Load (5 second): 43%, Load (1 minute): 24%

show services accounting usage (Service PIC Interface)

user@host> show services accounting usage

Service Accounting interface: sp-0/1/0
Service name: (default sampling)
  CPU utilization
    Uptime: 7853940 milliseconds, Interrupt time: 0 microseconds
    Load (5 second): 2%, Load (1 minute): 0%

Service Accounting interface: sp-0/1/0
Service name: (default sampling)
  CPU utilization
| Uptime: 331160 milliseconds, Interrupt time: 0 microseconds |
| Load (5 second): 2%, Load (1 minute): 0% |
show services flow-collector file interface

Syntax

```
show services flow-collector file interface (all | cp-fpc/pic/port)
<detail | extensive | terse>
```

Release Information
Command introduced before Junos OS Release 7.4.

Description
(M40e, M160, and M320 Series routers and T Series routers only) Display information about flow collector files.

Options
none—Display file information for all configured flow collector interfaces.

all | cp-fpc/pic/port—Display file information for all configured flow collector interfaces or for the specified interface.

detail | extensive | terse—(Optional) Display the specified level of output.

Additional Information
No entries are displayed for files that have been successfully transferred.

Required Privilege Level
view

List of Sample Output
show services flow-collector file interface extensive on page 431

Output Fields
Table 29 on page 430 lists the output fields for the show services flow-collector file interface command. Output fields are listed in the approximate order in which they appear.

Table 29: show services flow-collector file interface Output Fields

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Output Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filename</td>
<td>Name of the file created on the flow collector interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Flows</td>
<td>Total number of collector flows for which records are present in the file.</td>
<td>none specified</td>
</tr>
</tbody>
</table>
Table 29: show services flow-collector file interface Output Fields (continued)

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Output Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput</td>
<td>Throughput statistics:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Flow records—Number of flow records in the file.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• per second—Average number of flow records per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• peak per second—Peak number of flow records per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Uncompressed bytes—Total file size before compression.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• per second—Average number of uncompressed bytes per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• peak per second—Peak number of uncompressed bytes per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Compressed bytes—Total file size after compression.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• per second—Average number of compressed bytes per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• peak per second—Peak number of compressed bytes per second.</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>File statistics:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• Compressed blocks—(extensive output only) Data blocks in the file that have been compressed. The file is exported only when the compressed block count and block count become the same.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Block count—(extensive output only) Total number of data blocks in the file.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• State—Processing state of the file.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Active—The flow collector interface is writing to the file.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Export 1—File export is in progress to the primary server.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Export 2—File export is in progress to the secondary server.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Wait—File is pending export.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Transfer attempts 0.—Number of attempts made to transfer the file. If the file is successfully transferred in the first attempt, this field is 0.</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

```
show services flow-collector file interface extensive

user@host> show services flow-collector file interface cp-3/2/0 extensive

Filename: cFlowd-py69Ni69-0-20031112_014301-so_3_0_0_0.bcp.bi.gz
Throughput:
 Flow records: 188365, per second: 238, peak per second: 287
```
Uncompressed bytes: 21267756, per second: 27007, peak per second: 32526
Compressed bytes: 2965643, per second: 0, peak per second: 22999
Status:
Compressed blocks: 156, Block count: 156
State: Active, Transfer attempts: 0
show services flow-collector input interface

Syntax

```
show services flow-collector input interface (all | cp-fpc/pic/port)
<detail | extensive | terse>
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

(M40e, M160, and M320 Series routers and T Series routers only) Display the number of packets received by collector interfaces from monitoring interfaces.

Options

- **none**—Display packets received by all configured flow collector interfaces.
- **all | cp-fpc/pic/port**—Display packets received by all configured flow collector interfaces or by the specified interface.
- **detail | extensive | terse**—(Optional) Display the specified level of output.

Required Privilege Level

view

List of Sample Output

- [show services flow-collector input interface on page 434](#)
- [show services flow-collector input interface all on page 434](#)

Output Fields

Table 30 on page 433 lists the output fields for the `show services flow-collector input interface` command. Output fields are listed in the approximate order in which they appear.

Table 30: show services flow-collector input interface Output Fields

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Output Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the monitoring interface.</td>
</tr>
<tr>
<td>Packets</td>
<td>Number of packets traveling from the monitoring interface to the flow collector interface.</td>
</tr>
<tr>
<td>Bytes</td>
<td>Number of bytes traveling from the monitoring interface to the flow collector interface.</td>
</tr>
</tbody>
</table>
### Sample Output

**show services flow-collector input interface**

```
user@host> show services flow-collector input interface cp-3/2/0
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>mo-3/0/0.0</td>
<td>21706</td>
<td>32328568</td>
</tr>
<tr>
<td>mo-3/1/0.0</td>
<td>21706</td>
<td>32329096</td>
</tr>
</tbody>
</table>

```
user@host> show services flow-collector input interface all
```

Flow collector interface: cp-6/1/0

Interface state: Collecting flows

<table>
<thead>
<tr>
<th>Interface</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>mo-3/0/0.0</td>
<td>274</td>
<td>416232</td>
</tr>
<tr>
<td>mo-3/3/0.0</td>
<td>274</td>
<td>416184</td>
</tr>
<tr>
<td>mo-1/0/0.0</td>
<td>274</td>
<td>416232</td>
</tr>
<tr>
<td>mo-1/1/0.0</td>
<td>274</td>
<td>416232</td>
</tr>
<tr>
<td>mo-1/2/0.0</td>
<td>274</td>
<td>416232</td>
</tr>
<tr>
<td>mo-1/3/0.0</td>
<td>274</td>
<td>416232</td>
</tr>
<tr>
<td>mo-3/1/0.0</td>
<td>274</td>
<td>416232</td>
</tr>
<tr>
<td>mo-4/0/0.0</td>
<td>274</td>
<td>416232</td>
</tr>
<tr>
<td>mo-4/1/0.0</td>
<td>274</td>
<td>416232</td>
</tr>
<tr>
<td>mo-4/2/0.0</td>
<td>274</td>
<td>416184</td>
</tr>
<tr>
<td>mo-4/3/0.0</td>
<td>274</td>
<td>416232</td>
</tr>
<tr>
<td>mo-5/0/0.0</td>
<td>274</td>
<td>416232</td>
</tr>
<tr>
<td>mo-5/1/0.0</td>
<td>274</td>
<td>416232</td>
</tr>
<tr>
<td>mo-5/2/0.0</td>
<td>274</td>
<td>416232</td>
</tr>
<tr>
<td>mo-5/3/0.0</td>
<td>274</td>
<td>416232</td>
</tr>
<tr>
<td>mo-6/0/0.0</td>
<td>274</td>
<td>416232</td>
</tr>
</tbody>
</table>

Flow collector interface: cp-6/3/0

Interface state: Collecting flows
show services flow-collector interface

Syntax

```
show services flow-collector interface (all | cp-fpc/pic/port)
<detail | extensive | terse>
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

(M40e, M160, and M320 Series routers and T Series routers only) Display overall statistics for the flow collector application.

Options

none—Display statistics for flow collector applications on all interfaces.

all | cp-fpc/pic/port—Display statistics for flow collector applications on all interfaces or for the specified interface.

detail | extensive | terse—(Optional) Display the specified level of output.

Required Privilege Level

view

List of Sample Output

show services flow-collector interface all detail on page 439
show services flow-collector interface all extensive on page 440
show services flow-collector interface all terse on page 442
show services flow-collector interface extensive on page 443

Output Fields

Table 31 on page 435 lists the output fields for the `show services flow-collector interface` command. Output fields are listed in the approximate order in which they appear.

Table 31: show services flow-collector interface Output Fields

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Output Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Flow collector interface</strong></td>
<td>Name of the flow collector interface.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Interface state</strong></td>
<td>Collecting flow state for the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Packets</strong></td>
<td>Total number of packets received.</td>
<td>none specified</td>
</tr>
</tbody>
</table>
Table 31: show services flow-collector interface Output Fields (continued)

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Output Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flows Uncompressed Bytes</td>
<td>Total uncompressed data size for all files created on this PIC.</td>
<td>none specified</td>
</tr>
<tr>
<td>Compressed Bytes</td>
<td>Total compressed data size for all files created on this PIC.</td>
<td>none specified</td>
</tr>
<tr>
<td>FTP bytes</td>
<td>Total number of bytes transferred to the FTP server, including those dropped during transfer.</td>
<td>none specified</td>
</tr>
<tr>
<td>FTP files</td>
<td>Total number of FTP transfers attempted by the server.</td>
<td>none specified</td>
</tr>
<tr>
<td>Memory</td>
<td>Bytes used on the PIC and bytes free.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Input</td>
<td>Incoming flow collector packet statistics:</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Packets</strong>—Number of packets received on the unit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>per second</strong>—Average number of packets per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>peak per second</strong>—Peak number of packets per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Bytes</strong>—Number of bytes received on the unit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>per second</strong>—Average number of bytes per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>peak per second</strong>—Peak number of bytes per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Flow records processed</strong>—Number of records in the flow collector packets that were processed by the flow-collector interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>per second</strong>—Average number of flow records processed per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>peak per second</strong>—Peak number of flow records per second.</td>
<td></td>
</tr>
</tbody>
</table>
Table 31: show services flow-collector interface Output Fields (continued)

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Output Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Allocation</strong></td>
<td>Data block statistics:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Blocks allocated</strong>—Total number of data blocks (containing flow records) allocated to the files created on this PIC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>per second</strong>—Average number of blocks allocated per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>peak per second</strong>—Peak number of blocks allocated per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Blocks freed</strong>—Total number of data blocks freed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>per second</strong>—Average number of blocks freed per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>peak per second</strong>—Peak number of blocks freed per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Blocks unavailable</strong>—Total number of data block requests denied, typically because of a memory shortage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>per second</strong>—Average number of blocks unavailable per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>peak per second</strong>—Peak number of blocks unavailable per second.</td>
<td></td>
</tr>
<tr>
<td><strong>Files</strong></td>
<td>File statistics, incremented since the PIC last booted:</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Files created</strong>—Total number of files created on this PIC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Files exported</strong>—Number of files successfully created and exported.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Files destroyed</strong>—(extensive output only) Number of files successfully exported and files dropped by the flow collection interface.</td>
<td></td>
</tr>
<tr>
<td><strong>Throughput</strong></td>
<td>Throughput statistics:</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Uncompressed bytes</strong>—Total uncompressed data size for all files created on this PIC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>per second</strong>—Average number of uncompressed bytes per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>peak per second</strong>—Peak number of uncompressed bytes per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Compressed bytes</strong>—Total compressed data size for all files created on this PIC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>per second</strong>—Average number of compressed bytes per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>peak per second</strong>—Peak number of compressed bytes per second.</td>
<td></td>
</tr>
</tbody>
</table>
### Table 31: show services flow-collector interface Output Fields (continued)

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Output Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Packet drops</strong></td>
<td>Number of packets dropped for the following causes:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>- <strong>No memory</strong>—Packets dropped because of insufficient memory.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Not IP</strong>—Packets dropped because they are not IP packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Not IPv4</strong>—Packets dropped because they are not IP version 4 packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Too small</strong>—Packets dropped because each packet was smaller than the size reported in its header.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Fragments</strong>—Packets dropped because of fragmentation. Fragments are not reassembled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>ICMP</strong>—Packets dropped because they are not ICMP packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>TCP</strong>—Packets dropped because they are not TCP packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Unknown</strong>—Packets dropped because of undetermined causes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Not Junos flow</strong>—Packets dropped because they are not interpreted by Junos OS. Junos OS interprets only IPv4, UDP cflowd version 5 packets.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>File transfer</strong></th>
<th>File transfer statistics:</th>
<th>detail extensive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- <strong>FTP bytes</strong>—Total number of bytes transferred to the FTP server, including those dropped during transfer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>FTP files</strong>—Total number of FTP transfers attempted by the server.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>FTP failure</strong>—Total number of FTP failures encountered by the server.</td>
<td></td>
</tr>
</tbody>
</table>

| **Flow collector interface** | Physical interface acting as a flow collector.                                                               | detail           |
Table 31: show services flow-collector interface Output Fields (continued)

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Output Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export channel</td>
<td>Export channel 0 is unit 0. Export channel 1 is unit 1. Flow receive channel is unit 2. Server status statistics are the following:</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Current server Primary or Secondary—Current FTP server being used. Value is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Primary server state—State of the server:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OK—Server is operating without problems.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FTP error—Server encountered an FTP protocol error while sending files.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Network error—Flow-collector interface has errors when contacting the primary FTP server.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Unknown—First file transfer has not been sent to the primary server.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Secondary server state—State of the server:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OK—Server is operating without errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FTP error—Server encountered an FTP protocol error while sending files.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Network error—Flow-collector interface has errors when contacting the secondary FTP server.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Unknown—First file transfer has not been sent to the secondary server.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Not configured—Secondary server is not configured.</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

```
show services flow-collector interface all detail

user@host> show services flow-collector interface all detail

Flow collector interface: cp-6/1/0
Interface state: Collecting flows
Memory:
 Used: 51452732, Free: 440329088
Input:
 Packets: 4384, per second: 0, peak per second: 156
 Bytes: 6659616, per second: 0, peak per second: 249695
 Flow records processed: 131070, per second: 0, peak per second: 4914
Files:
```
show services flow-collector interface all extensive

user@host> show services flow-collector interface all extensive
Flow collector interface: cp-6/1/0
Interface state: Collecting flows
Memory:
    Used: 51452732, Free: 440329088
Input:
    Packets: 4384, per second: 0, peak per second: 156
    Bytes: 6659616, per second: 0, peak per second: 249695
    Flow records processed: 131070, per second: 0, peak per second: 4914
Allocation:
    Blocks allocated: 108, per second: 0, peak per second: 0
    Blocks freed: 108, per second: 0, peak per second: 10
    Blocks unavailable: 0, per second: 0, peak per second: 0
Files:
    Files created: 1, per second: 0, peak per second: 0
    Files exported: 1, per second: 0, peak per second: 0
    Files destroyed: 1, per second: 0, peak per second: 0
Throughput:
    Uncompressed bytes: 13742307, per second: 0, peak per second: 593564
    Compressed bytes: 3786177, per second: 0, peak per second: 162826
Packet drops:
    No memory: 0, Not IP: 0
    Not IPv4: 0, Too small: 0
    Fragments: 0, ICMP: 0
    TCP: 0, Unknown: 0
    Not JUNOS flow: 0
File Transfer:
    FTP bytes: 3786247, per second: 0, peak per second: 378620
    FTP files: 1, per second: 0, peak per second: 0
    FTP failure: 0
Export channel: 0
    Current server: Primary
    Primary server state: OK, Secondary server state: OK
Export channel: 1
    Current server: Primary
    Primary server state: Unknown, Secondary server state: OK

Flow collector interface: cp-6/3/0
Interface state: Collecting flows
Memory:
    Used: 51452732, Free: 440329088
Input:
    Packets: 0, per second: 0, peak per second: 0
    Bytes: 0, per second: 0, peak per second: 0
    Flow records processed: 0, per second: 0, peak per second: 0
show services flow-collector interface all terse

user@host> show services flow-collector interface all terse

Flow collector interface: cp-6/1/0
Interface state: Collecting flows

<table>
<thead>
<tr>
<th>Packets</th>
<th>Bytes</th>
<th>Flows Uncompressed</th>
<th>Compressed</th>
<th>FTP bytes</th>
<th>FTP files</th>
</tr>
</thead>
<tbody>
<tr>
<td>4384</td>
<td>6659616</td>
<td>131070</td>
<td>13742307</td>
<td>3786177</td>
<td>3786247</td>
</tr>
</tbody>
</table>

Flow collector interface: cp-6/3/0
Interface state: Collecting flows

<table>
<thead>
<tr>
<th>Packets</th>
<th>Bytes</th>
<th>Flows Uncompressed</th>
<th>Compressed</th>
<th>FTP bytes</th>
<th>FTP files</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
show services flow-collector interface extensive

```
Flow collector interface: cp-5/2/0
Interface state: Collecting flows
Memory:
 Used: 458311860, Free: 40810008
Input:
 Packets: 922629, per second: 2069, peak per second: 3266
 Bytes: 1376559252, per second: 3096940, peak per second: 4880051
 Flow records processed: 25764957, per second: 42564, peak per second: 98124
Allocation:
 Blocks allocated: 20862, per second: 31, peak per second: 72
 Blocks freed: 17161, per second: 40, peak per second: 202
 Blocks unavailable: 58786, per second: 652, peak per second: 1120
Files:
 Files created: 52, per second: 0, peak per second: 0
 Files exported: 42, per second: 0, peak per second: 0
 Files destroyed: 42, per second: 0, peak per second: 0
Throughput:
 Uncompressed bytes: 2592070401, per second: 7297307,
 peak per second: 8630023
 Compressed bytes: 659600068, per second: 1858458, peak per second: 2198471
Packet drops:
 No memory: 58786, Not IP: 0
 Not IPv4: 0, Too small: 0
 Fragments: 0, ICMP: 0
 TCP: 0, Unknown: 0
 Not JUNOS flow: 0
File Transfer:
 FTP bytes: 585981447, per second: 1313320, peak per second: 4857798
 FTP files: 48, per second: 0, peak per second: 0
 FTP failure: 8
Export channel: 0
 Current server: Primary
 Primary server state: FTP error, Secondary server state: Not configured
 Export channel: 1
 Current server: Primary
 Primary server state: OK, Secondary server state: Not configured
```