Junos® OS

OSPF User Guide

Published
2020-03-23
Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. in the United States and other countries. All other trademarks, service marks, registered marks, or registered service marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify, transfer, or otherwise revise this publication without notice.

Junos® OS OSPF User Guide
Copyright © 2020 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License Agreement (“EULA”) posted at https://support.juniper.net/support/eula/. By downloading, installing or using such software, you agree to the terms and conditions of that EULA.
Table of Contents

About the Documentation | xv
- Documentation and Release Notes | xv
- Using the Examples in This Manual | xv
- Merging a Full Example | xvi
- Merging a Snippet | xvii
- Documentation Conventions | xvii
- Documentation Feedback | xx
- Requesting Technical Support | xx
- Self-Help Online Tools and Resources | xxi
- Creating a Service Request with JTAC | xxi

OSPF Overview

Introduction to OSPF | 23

- OSPF Overview | 23
 - OSPF Default Route Preference Values | 25
 - OSPF Routing Algorithm | 25
 - OSPF Three-Way Handshake | 26
 - OSPF Version 3 | 27
- OSPF Packets Overview | 28
 - OSPF Packet Header | 28
 - Hello Packets | 29
 - Database Description Packets | 29
 - Link-State Request Packets | 29
 - Link-State Update Packets | 29
 - Link-State Acknowledgment Packets | 30
 - Link-State Advertisement Packet Types | 30
- Understanding OSPF External Metrics | 31
- Supported OSPF and OSPFv3 Standards | 31

Understand OSPF Configurations

Understanding OSPF Configurations | 35
Configure OSPF Interfaces

Configuring OSPF Interfaces | 38

About OSPF Interfaces | 38
Example: Configuring an Interface on a Broadcast or Point-to-Point Network | 40
Example: Configuring OSPF Demand Circuits | 43
Example: Configuring a Passive OSPF Interface | 46
Example: Configuring OSPFv2 Peer interfaces | 49
Example: Configuring an OSPFv2 Interface on a Nonbroadcast Multiaccess Network | 51
Example: Configuring an OSPFv2 Interface on a Point-to-Multipoint Network | 55
Understanding Multiple Address Families for OSPFv3 | 57
Example: Configuring Multiple Address Families for OSPFv3 | 58

Configure OSPF Areas

Configuring OSPF Areas | 64

Understanding OSPF Areas | 65

Areas | 65
Area Border Routers | 66
Backbone Areas | 66
AS Boundary Routers | 66
Backbone Router | 66
Internal Router | 66
Stub Areas | 67
Not-So-Stubby Areas | 67
Transit Areas | 67
OSPF Area Types and Accepted LSAs | 68
OSPF Designated Router Overview | 68
Example: Configuring an OSPF Router Identifier | 69
Example: Controlling OSPF Designated Router Election | 71
Understanding OSPF Areas and Backbone Areas | 74
Example: Configuring a Single-Area OSPF Network | 76
Example: Configuring a Multiarea OSPF Network | 79
Understanding Multiarea Adjacency for OSPF | 84
Example: Configuring Multiarea Adjacency for OSPF | 84
Understanding Multiarea Adjacencies for OSPFv3 | 90
Example: Configuring a Multiarea Adjacency for OSPFv3 | 91
Understanding OSPF Stub Areas, Totally Stubby Areas, and Not-So-Stubby Areas | 100
Example: Configuring OSPF Stub and Totally Stubby Areas | 102
Example: Configuring OSPF Not-So-Stubby Areas | 107
Understanding OSPFv3 Stub and Totally Stubby Areas | 114
Example: Configuring OSPFv3 Stub and Totally Stubby Areas | 114
Understanding OSPFv3 Not-So-Stubby Areas | 129
Example: Configuring OSPFv3 Not-So-Stubby Areas | 129
Understanding Not-So-Stubby Areas Filtering | 148
Example: Configuring OSPFv3 Not-So-Stubby Areas with Filtering | 148
Understanding OSPF Virtual Links for Noncontiguous Areas | 158
Example: Configuring OSPF Virtual Links to Connect Noncontiguous Areas | 159
Example: Configuring OSPFv3 Virtual Links | 164

Configure OSPF Route Control

Configuring OSPF Route Control | 199
Understanding OSPF Route Summarization | 199
Example: Summarizing Ranges of Routes in OSPF Link-State Advertisements Sent into the Backbone Area | 200
Example: Limiting the Number of Prefixes Exported to OSPF | 207
Understanding OSPF Traffic Control | 209
 Controlling the Cost of Individual OSPF Network Segments | 209
 Dynamically Adjusting OSPF Interface Metrics Based on Bandwidth | 210
 Controlling OSPF Route Preferences | 210
Example: Controlling the Cost of Individual OSPF Network Segments | 211
Example: Dynamically Adjusting OSPF Interface Metrics Based on Bandwidth | 217
Example: Controlling OSPF Route Preferences | 220
Understanding OSPF Overload Function | 222
Example: Configuring OSPF to Make Routing Devices Appear Overloaded | 224
Understanding the SPF Algorithm Options for OSPF | 228
Example: Configuring SPF Algorithm Options for OSPF | 229
Configuring OSPF Refresh and Flooding Reduction in Stable Topologies | 232
Understanding Synchronization Between LDP and IGPs | 234
Example: Configuring Synchronization Between LDP and OSPF | 234
OSPFv2 Compatibility with RFC 1583 Overview | 238
Configure OSPF Authentication

Configuring OSPF Authentication | 243

Understanding IPSec Authentication for OSPF Packets on EX Series Switches | 243

Authentication Algorithms | 244
Encryption Algorithms | 245
IPsec Protocols | 245
Security Associations | 245
IPsec Modes | 245

Understanding OSPFv2 Authentication | 246
Understanding OSPFv3 Authentication | 248
Example: Configuring Simple Authentication for OSPFv2 Exchanges | 249
Example: Configuring MD5 Authentication for OSPFv2 Exchanges | 252
Example: Configuring a Transition of MD5 Keys on an OSPFv2 Interface | 255
Using IPsec to Secure OSPFv3 Networks (CLI Procedure) | 259

Configuring Security Associations | 259
Securing OSPFv3 Networks | 260
Example: Configuring IPsec Authentication for an OSPF Interface | 261

Configure OSPF Routing Instances

Configuring OSPF Routing Instances | 270

Understanding OSPF Routing Instances | 270

Minimum Routing-Instance Configuration for OSPFv2 | 270
Minimum Routing-Instance Configuration for OSPFv3 | 271
Multiple Routing Instances of OSPF | 272
Installing Routes from OSPF Routing Instances into the OSPF Routing Table Group | 272
Example: Configuring Multiple Routing Instances of OSPF | 272

Configure OSPF Timers

Configuring OSPF Timers | 282

OSPF Timers Overview | 282
Example: Configuring OSPF Timers | 283
Configure OSPF Fault Detection using BFD

Configuring OSPF Fault Detection using BFD | 292

Understanding BFD for OSPF | 292
Example: Configuring BFD for OSPF | 294
Understanding BFD Authentication for OSPF | 299
BFD Authentication Algorithms | 300
Security Authentication Keychains | 301
Strict Versus Loose Authentication | 301
Configuring BFD Authentication for OSPF | 301
Configuring BFD Authentication Parameters | 301
Viewing Authentication Information for BFD Sessions | 303

Configure Graceful Restart for OSPF

Configuring Graceful Restart for OSPF | 307

Graceful Restart for OSPF Overview | 307
Helper Mode for Graceful Restart | 308
Planned and Unplanned Graceful Restart | 309
Example: Configuring Graceful Restart for OSPF | 309
Example: Configuring the Helper Capability Mode for OSPFv2 Graceful Restart | 315
Example: Configuring the Helper Capability Mode for OSPFv3 Graceful Restart | 320
Example: Disabling Strict LSA Checking for OSPF Graceful Restart | 324

Configure Loop-Free Alternate Routes for OSPF

Configuring Loop-Free Alternate Routes for OSPF | 330

Per Prefix Loop Free Alternates for OSPF | 330
Configuring Per-Prefix LFA for OSPF | 331
Loop-Free Alternate Routes for OSPF Overview | 332
Configuring Link Protection for OSPF | 333
Configuring Node-Link Protection for OSPF | 335
Configuring Node to Link Protection Fallback for OSPF | 336
Excluding an OSPF Interface as a Backup for a Protected Interface | 337
Configuring Backup SPF Options for Protected OSPF Interfaces | 338
Configuring RSVP Label-Switched Paths as Backup Paths for OSPF | 340
Example: Configuring Loop-Free Alternate Routes for OSPF | 341
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

12

Configure OSPF Support for Traffic Engineering

<table>
<thead>
<tr>
<th>Configuring OSPF Support for Traffic Engineering</th>
<th>392</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF Support for Traffic Engineering</td>
<td>392</td>
</tr>
<tr>
<td>Example: Enabling OSPF Traffic Engineering Support</td>
<td>394</td>
</tr>
<tr>
<td>Example: Configuring the Traffic Engineering Metric for a Specific OSPF Interface</td>
<td>401</td>
</tr>
<tr>
<td>OSPF Passive Traffic Engineering Mode</td>
<td>403</td>
</tr>
<tr>
<td>Example: Configuring OSPF Passive Traffic Engineering Mode</td>
<td>403</td>
</tr>
<tr>
<td>Advertising Label-Switched Paths into OSPFv2</td>
<td>406</td>
</tr>
<tr>
<td>Example: Advertising Label-Switched Paths into OSPFv2</td>
<td>407</td>
</tr>
<tr>
<td>Static Adjacency Segment Identifier for OSPF</td>
<td>423</td>
</tr>
<tr>
<td>Understanding Source Packet Routing in Networking (SPRING)</td>
<td>427</td>
</tr>
</tbody>
</table>

13

Configure OSPF Database Protection

<table>
<thead>
<tr>
<th>Configuring OSPF Database Protection</th>
<th>432</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF Database Protection Overview</td>
<td>432</td>
</tr>
<tr>
<td>Configuring OSPF Database Protection</td>
<td>433</td>
</tr>
</tbody>
</table>

14

Configure OSPF Routing Policy

<table>
<thead>
<tr>
<th>Configuring OSPF Routing Policy</th>
<th>436</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding Routing Policies</td>
<td>436</td>
</tr>
<tr>
<td>Importing and Exporting Routes</td>
<td>437</td>
</tr>
<tr>
<td>Active and Inactive Routes</td>
<td>438</td>
</tr>
<tr>
<td>Explicitly Configured Routes</td>
<td>439</td>
</tr>
<tr>
<td>Dynamic Database</td>
<td>439</td>
</tr>
<tr>
<td>Understanding OSPF Routing Policy</td>
<td>440</td>
</tr>
<tr>
<td>Routing Policy Terms</td>
<td>440</td>
</tr>
<tr>
<td>Routing Policy Match Conditions</td>
<td>441</td>
</tr>
<tr>
<td>Routing Policy Actions</td>
<td>441</td>
</tr>
</tbody>
</table>
Verifying and Monitoring OSPF

Verifying and Monitoring OSPF Configuration | 587

Verifying an OSPF Configuration | 587

Verifying OSPF-Enabled Interfaces | 587
Verifying OSPF Neighbors | 588
Verifying the Number of OSPF Routes | 589
Verifying Reachability of All Hosts in an OSPF Network | 591

Tracing OSPF Protocol Traffic | 592
Example: Tracing OSPF Protocol Traffic | 594

Configuration Statements and Operational Commands

Configuration Statements | 602

admin-group | 606
allow-route-leaking | 608
area | 609
area-range | 611
as-external | 613
authentication | 614
backup-spf-options (Protocols OSPF) | 616
backup-selection (Protocols OSPF or OSPF3) | 618
bandwidth-based-metrics | 620
bdf-liveness-detection (Protocols OSPF) | 622
context-identifier (Protocols OSPF) | 626
database-protection | 627
dead-interval | 629
default-lsa | 631
default-metric | 633
demand-circuit | 635
destination (Protocols OSPF or OSPF3) | 636
disable (Protocols OSPF) | 637
disable (OSPF) | 638
domain-id | 640
domain-vpn-tag | 641
export | 642
external-preference (Protocols OSPF) | 644
flood-reduction | 646
graceful-restart (Protocols OSPF) | 648
hello-interval (Protocols OSPF) | 650
helper-disable (OSPF) | 652
hold-time (Protocols OSPF) | 653
ignore-lsp-metrics | 654
import | 655
inter-area-prefix-export | 657
inter-area-prefix-import | 658
interface (Protocols OSPF) | 660
interface (Protocols OSPF or OSPF3) | 663
interface-type (Protocols OSPF) | 667
intra-area-prefix | 670
ipsec-sa (Protocols OSPF) | 671
label-switched-path (Protocols OSPF) | 673
ldp-stitching (Protocols OSPF) | 674
ldp-synchronization | 675
link-protection (Protocols OSPF) | 676
lsa-refresh-interval | 678
lsp-metric-into-summary | 679
md5 | 680
metric (Protocols OSPF Interface) | 682
metric-type | 684
mtu | 686
neighbor (Protocols OSPF) | 690
network-summary-export | 691
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>secondary (Protocols OSPF)</td>
<td>740</td>
</tr>
<tr>
<td>sham-link</td>
<td>741</td>
</tr>
<tr>
<td>sham-link-remote</td>
<td>743</td>
</tr>
<tr>
<td>shortcuts (Protocols OSPF)</td>
<td>745</td>
</tr>
<tr>
<td>simple-password</td>
<td>746</td>
</tr>
<tr>
<td>source-packet-routing-enable (Protocols OSPF)</td>
<td>747</td>
</tr>
<tr>
<td>source-packet-routing-disable (Protocols OSPF)</td>
<td>748</td>
</tr>
<tr>
<td>spf-options (Protocols OSPF)</td>
<td>749</td>
</tr>
<tr>
<td>stub</td>
<td>751</td>
</tr>
<tr>
<td>stub-network</td>
<td>752</td>
</tr>
<tr>
<td>strict-bfd (Protocols OSPF)</td>
<td>753</td>
</tr>
<tr>
<td>summaries</td>
<td>754</td>
</tr>
<tr>
<td>topology (OSPF Interface)</td>
<td>756</td>
</tr>
<tr>
<td>topology (OSPF)</td>
<td>758</td>
</tr>
<tr>
<td>te-metric (Protocols OSPF)</td>
<td>759</td>
</tr>
<tr>
<td>traceoptions (Protocols OSPF)</td>
<td>760</td>
</tr>
<tr>
<td>traffic-engineering (OSPF)</td>
<td>764</td>
</tr>
<tr>
<td>traffic-engineering (Passive TE Mode)</td>
<td>767</td>
</tr>
<tr>
<td>transit-delay (OSPF)</td>
<td>769</td>
</tr>
<tr>
<td>type-7</td>
<td>771</td>
</tr>
<tr>
<td>use-post-convergence-lfa (Protocols OSPF)</td>
<td>773</td>
</tr>
<tr>
<td>post-convergence-lfa (Protocols OSPF)</td>
<td>775</td>
</tr>
<tr>
<td>virtual-link</td>
<td>776</td>
</tr>
</tbody>
</table>

Operational Commands | 778

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear bfd adaptation</td>
<td>779</td>
</tr>
<tr>
<td>clear bfd session</td>
<td>781</td>
</tr>
<tr>
<td>clear (ospf</td>
<td>ospf3) database</td>
</tr>
<tr>
<td>clear (ospf</td>
<td>ospf3) database-protection</td>
</tr>
<tr>
<td>clear (ospf</td>
<td>ospf3) io-statistics</td>
</tr>
<tr>
<td>clear (ospf</td>
<td>ospf3) neighbor</td>
</tr>
<tr>
<td>clear (ospf</td>
<td>ospf3) overload</td>
</tr>
<tr>
<td>clear (ospf</td>
<td>ospf3) statistics</td>
</tr>
<tr>
<td>show bfd session</td>
<td>797</td>
</tr>
</tbody>
</table>
show (ospf | ospf3) backup coverage | 811
show (ospf | ospf3) backup lsp | 814
show (ospf | ospf3) backup neighbor | 817
show (ospf | ospf3) backup spf | 819
show ospf context-identifier | 829
show ospf database | 832
show ospf3 database | 847
show (ospf | ospf3) interface | 861
show (ospf | ospf3) io-statistics | 869
show (ospf | ospf3) log | 871
show (ospf | ospf3) neighbor | 875
show (ospf | ospf3) overview | 883
show (ospf | ospf3) route | 890
show (ospf | ospf3) statistics | 898
show policy | 904
show route | 908
show route instance | 942
show route protocol | 952
Use this guide to configure, monitor, and troubleshoot the OSPF routing protocol on your Juniper Network devices.

Junos OS Routing Protocols Library for Routing Devices

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product documentation page on the Juniper Networks website at https://www.juniper.net/documentation/.

If the information in the latest release notes differs from the information in the documentation, follow the product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts. These books go beyond the technical documentation to explore the nuances of network architecture, deployment, and administration. The current list can be viewed at https://www.juniper.net/books.

Using the Examples in This Manual

If you want to use the examples in this manual, you can use the `load merge` or the `load merge relative` command. These commands cause the software to merge the incoming configuration into the current candidate configuration. The example does not become active until you commit the candidate configuration.

If the example configuration contains the top level of the hierarchy (or multiple hierarchies), the example is a full example. In this case, use the `load merge` command.
If the example configuration does not start at the top level of the hierarchy, the example is a snippet. In this case, use the `load merge relative` command. These procedures are described in the following sections.

Merging a Full Example

To merge a full example, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration example into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following configuration to a file and name the file `ex-script.conf`. Copy the `ex-script.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   system {
     scripts {
       commit {
         file ex-script.xsl;
       }
     }
     interfaces {
       fxp0 {
         disable;
         unit 0 {
           family inet {
             address 10.0.0.1/24;
           }
         }
       }
     }
   }
   ```

2. Merge the contents of the file into your routing platform configuration by issuing the `load merge` configuration mode command:

   ```
   [edit]
   user@host# load merge /var/tmp/ex-script.conf
   load complete
   ```
Merging a Snippet

To merge a snippet, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration snippet into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following snippet to a file and name the file `ex-script-snippet.conf`. Copy the file to the `/var/tmp` directory on your routing platform.

   ```
   commit {
   file ex-script-snippet.xsl; }
   ```

2. Move to the hierarchy level that is relevant for this snippet by issuing the following configuration mode command:

   ```
   [edit]
   user@host# edit system scripts
   [edit system scripts]
   ```

3. Merge the contents of the file into your routing platform configuration by issuing the `load merge relative` configuration mode command:

   ```
   [edit system scripts]
   user@host# load merge relative /var/tmp/ex-script-snippet.conf
   load complete
   ```

 For more information about the `load` command, see CLI Explorer.

Documentation Conventions

Table 1 on page xviii defines notice icons used in this guide.
Table 1: Notice Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![i]</td>
<td>Informational note</td>
<td>Indicates important features or instructions.</td>
</tr>
<tr>
<td>![⚠️]</td>
<td>Caution</td>
<td>Indicates a situation that might result in loss of data or hardware damage.</td>
</tr>
<tr>
<td>![⚠️]</td>
<td>Warning</td>
<td>Alerts you to the risk of personal injury or death.</td>
</tr>
<tr>
<td>![⚠️]</td>
<td>Laser warning</td>
<td>Alerts you to the risk of personal injury from a laser.</td>
</tr>
<tr>
<td>![💡]</td>
<td>Tip</td>
<td>Indicates helpful information.</td>
</tr>
<tr>
<td>![💡]</td>
<td>Best practice</td>
<td>Alerts you to a recommended use or implementation.</td>
</tr>
</tbody>
</table>

Table 2 on page xviii defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents text that you type.</td>
<td>To enter configuration mode, type the <code>configure</code> command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>user@host> configure</td>
</tr>
<tr>
<td>Fixed-width text like this</td>
<td>Represents output that appears on the terminal screen.</td>
<td>user@host> show chassis alarms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No alarms currently active</td>
</tr>
<tr>
<td>Italic text like this</td>
<td>• Introduces or emphasizes important new terms.</td>
<td>• A policy term is a named structure that defines match conditions and actions.</td>
</tr>
<tr>
<td></td>
<td>• Identifies guide names.</td>
<td>• Junos OS CLI User Guide</td>
</tr>
<tr>
<td></td>
<td>• Identifies RFC and Internet draft titles.</td>
<td>• RFC 1997, BGP Communities Attribute</td>
</tr>
<tr>
<td>Convention</td>
<td>Description</td>
<td>Examples</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Italic text like this</td>
<td>Represents variables (options for which you substitute a value) in commands or configuration statements.</td>
<td>Configure the machine’s domain name:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[edit] root@# set system domain-name domain-name</td>
</tr>
<tr>
<td>Text like this</td>
<td>Represents names of configuration statements, commands, files, and directories; configuration hierarchy levels; or labels on routing platform components.</td>
<td>• To configure a stub area, include the stub statement at the [edit protocols ospf area area-id] hierarchy level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The console port is labeled CONSOLE.</td>
</tr>
<tr>
<td><code>< ></code> (angle brackets)</td>
<td>Encloses optional keywords or variables.</td>
<td>stub <default-metric metric>;</td>
</tr>
<tr>
<td>(pipe symbol)</td>
<td>Indicates a choice between the mutually exclusive keywords or variables on either side of the symbol. The set of choices is often enclosed in parentheses for clarity.</td>
<td>broadcast</td>
</tr>
<tr>
<td>(pound sign)</td>
<td>Indicates a comment specified on the same line as the configuration statement to which it applies.</td>
<td>rsvp [# Required for dynamic MPLS only]</td>
</tr>
<tr>
<td>(square brackets)</td>
<td>Encloses a variable for which you can substitute one or more values.</td>
<td>community name members [community-ids]</td>
</tr>
<tr>
<td>Indention and braces ([])</td>
<td>Identifies a level in the configuration hierarchy.</td>
<td>[edit] routing-options { static { route default { nexthop address; retain; } } }</td>
</tr>
<tr>
<td>(semicolon)</td>
<td>Identifies a leaf statement at a configuration hierarchy level.</td>
<td></td>
</tr>
</tbody>
</table>

GUI Conventions
Table 2: Text and Syntax Conventions (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents graphical user interface (GUI) items you click or select.</td>
<td>• In the Logical Interfaces box, select All Interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To cancel the configuration, click Cancel.</td>
</tr>
<tr>
<td>> (bold right angle bracket)</td>
<td>Separates levels in a hierarchy of menu selections.</td>
<td>In the configuration editor hierarchy, select Protocols > Ospf.</td>
</tr>
</tbody>
</table>

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation. You can use either of the following methods:

- **Online feedback system**—Click TechLibrary Feedback, on the lower right of any page on the Juniper Networks TechLibrary site, and do one of the following:
 - Click the thumbs-up icon if the information on the page was helpful to you.
 - Click the thumbs-down icon if the information on the page was not helpful to you or if you have suggestions for improvement, and use the pop-up form to provide feedback.

- **E-mail**—Send your comments to techpubs-comments@juniper.net. Include the document or topic name, URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC). If you are a customer with an active Juniper Care or Partner Support Services support contract, or are
covered under warranty, and need post-sales technical support, you can access our tools and resources online or open a case with JTAC.

- **Product warranties**—For product warranty information, visit https://www.juniper.net/support/warranty/.
- **JTAC hours of operation**—The JTAC centers have resources available 24 hours a day, 7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called the Customer Support Center (CSC) that provides you with the following features:

- **Find CSC offerings**: https://www.juniper.net/customers/support/
- **Search for known bugs**: https://prsearch.juniper.net/
- **Find product documentation**: https://www.juniper.net/documentation/
- **Find solutions and answer questions using our Knowledge Base**: https://kb.juniper.net/
- **Download the latest versions of software and review release notes**: https://www.juniper.net/customers/csc/software/
- **Search technical bulletins for relevant hardware and software notifications**: https://kb.juniper.net/InfoCenter/
- **Join and participate in the Juniper Networks Community Forum**: https://www.juniper.net/company/communities/
- **Create a service request online**: https://myjuniper.juniper.net

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool: https://entitlementsearch.juniper.net/entitlementsearch/

Creating a Service Request with JTAC

You can create a service request with JTAC on the Web or by telephone.

- **Visit** https://myjuniper.juniper.net.
- **Call** 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see https://support.juniper.net/support/requesting-support/.
CHAPTER

OSPF Overview

Introduction to OSPF | 23
Introduction to OSPF

IN THIS SECTION

- OSPF Overview | 23
- OSPF Packets Overview | 28
- Understanding OSPF External Metrics | 31
- Supported OSPF and OSPFv3 Standards | 31

OSPF Overview

IN THIS SECTION

- OSPF Default Route Preference Values | 25
- OSPF Routing Algorithm | 25
- OSPF Three-Way Handshake | 26
- OSPF Version 3 | 27
OSPF is an interior gateway protocol (IGP) that routes packets within a single autonomous system (AS). OSPF uses link-state information to make routing decisions, making route calculations using the shortest-path-first (SPF) algorithm (also referred to as the Dijkstra algorithm). Each router running OSPF floods link-state advertisements throughout the AS or area that contain information about that router’s attached interfaces and routing metrics. Each router uses the information in these link-state advertisements to calculate the least cost path to each network and create a routing table for the protocol.

Junos OS supports OSPF version 2 (OSPFv2) and OSPF version 3 (OSPFv3), including virtual links, stub areas, and for OSPFv2, authentication. Junos OS does not support type-of-service (ToS) routing.

OSPF was designed for the Transmission Control Protocol/Internet Protocol (TCP/IP) environment and as a result explicitly supports IP subnetting and the tagging of externally derived routing information. OSPF also provides for the authentication of routing updates.

OSPF routes IP packets based solely on the destination IP address contained in the IP packet header. OSPF quickly detects topological changes, such as when router interfaces become unavailable, and calculates new loop-free routes quickly and with a minimum of routing overhead traffic.

NOTE: On SRX Series devices, when only one link-protection is configured under the OSPF interface, the device does not install an alternative route in the forwarding table. When the per-packet load-balancing is enabled as a workaround, the device does not observe both the OSPF metric and sending the traffic through both the interfaces.

An OSPF AS can consist of a single area, or it can be subdivided into multiple areas. In a single-area OSPF network topology, each router maintains a database that describes the topology of the AS. Link-state information for each router is flooded throughout the AS. In a multiarea OSPF topology, each router maintains a database that describes the topology of its area, and link-state information for each router is flooded throughout that area. All routers maintain summarized topologies of other areas within an AS. Within each area, OSPF routers have identical topological databases. When the AS or area topology changes, OSPF ensures that the contents of all routers’ topological databases converge quickly.

All OSPFv2 protocol exchanges can be authenticated. OSPFv3 relies on IPsec to provide this functionality. This means that only trusted routers can participate in the AS’s routing. A variety of authentication schemes can be used. A single authentication scheme is configured for each area, which enables some areas to use stricter authentication than others.

Externally derived routing data (for example, routes learned from BGP) is passed transparently throughout the AS. This externally derived data is kept separate from the OSPF link-state data. Each external route can be tagged by the advertising router, enabling the passing of additional information between routers on the boundaries of the AS.
NOTE: By default, Junos OS is compatible with RFC 1583, OSPF Version 2. In Junos OS Release 8.5 and later, you can disable compatibility with RFC 1583 by including the no-rfc-1583 statement. For more information, see "Example: Disabling OSPFv2 Compatibility with RFC 1583" on page 239.

This topic describes the following information:

OSPF Default Route Preference Values

The Junos OS routing protocol process assigns a default preference value to each route that the routing table receives. The default value depends on the source of the route. The preference value is from 0 through 4,294,967,295 (2^{32} – 1), with a lower value indicating a more preferred route. Table 3 on page 25 lists the default preference values for OSPF.

<table>
<thead>
<tr>
<th>How Route Is Learned</th>
<th>Default Preference</th>
<th>Statement to Modify Default Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF internal route</td>
<td>10</td>
<td>OSPF preference</td>
</tr>
<tr>
<td>OSPF AS external routes</td>
<td>150</td>
<td>OSPF external-preference</td>
</tr>
</tbody>
</table>

OSPF Routing Algorithm

OSPF uses the shortest-path-first (SPF) algorithm, also referred to as the Dijkstra algorithm, to determine the route to each destination. All routing devices in an area run this algorithm in parallel, storing the results in their individual topological databases. Routing devices with interfaces to multiple areas run multiple copies of the algorithm. This section provides a brief summary of how the SPF algorithm works.

When a routing device starts, it initializes OSPF and waits for indications from lower-level protocols that the router interfaces are functional. The routing device then uses the OSPF hello protocol to acquire neighbors, by sending hello packets to its neighbors and receiving their hello packets.

On broadcast or nonbroadcast multiaccess networks (physical networks that support the attachment of more than two routing devices), the OSPF hello protocol elects a designated router for the network. This routing device is responsible for sending link-state advertisements (LSAs) that describe the network, which reduces the amount of network traffic and the size of the routing devices’ topological databases.

The routing device then attempts to form adjacencies with some of its newly acquired neighbors. (On multiaccess networks, only the designated router and backup designated router form adjacencies with other routing devices.) Adjacencies determine the distribution of routing protocol packets. Routing protocol packets are sent and received only on adjacencies, and topological database updates are sent only along
adjacencies. When adjacencies have been established, pairs of adjacent routers synchronize their topological databases.

A routing device sends LSA packets to advertise its state periodically and when its state changes. These packets include information about the routing device’s adjacencies, which allows detection of nonoperational routing devices.

Using a reliable algorithm, the routing device floods LSAs throughout the area, which ensures that all routing devices in an area have exactly the same topological database. Each routing device uses the information in its topological database to calculate a shortest-path tree, with itself as the root. The routing device then uses this tree to route network traffic.

The description of the SPF algorithm up to this point has explained how the algorithm works within a single area (intra-area routing). For internal routers to be able to route to destinations outside the area (interarea routing), the area border routers must inject additional routing information into the area. Because the area border routers are connected to the backbone, they have access to complete topological data about the backbone. The area border routers use this information to calculate paths to all destinations outside its area and then advertise these paths to the area's internal routers.

Autonomous system (AS) boundary routers flood information about external autonomous systems throughout the AS, except to stub areas. Area border routers are responsible for advertising the paths to all AS boundary routers.

OSPF Three-Way Handshake

OSPF creates a topology map by flooding LSAs across OSPF-enabled links. LSAs announce the presence of OSPF-enabled interfaces to adjacent OSPF interfaces. The exchange of LSAs establishes bidirectional connectivity between all adjacent OSPF interfaces (neighbors) using a three-way handshake, as shown in Figure 1 on page 26.

![Figure 1: OSPF Three-Way Handshake](image)

In Figure 1 on page 26, Router A sends hello packets out all its OSPF-enabled interfaces when it comes online. Router B receives the packet, which establishes that Router B can receive traffic from Router A. Router B generates a response to Router A to acknowledge receipt of the hello packet. When Router A receives the response, it establishes that Router B can receive traffic from Router A. Router A then generates a final response packet to inform Router B that Router A can receive traffic from Router B. This three-way handshake ensures bidirectional connectivity.
As new neighbors are added to the network or existing neighbors lose connectivity, the adjacencies in the topology map are modified accordingly through the exchange (or absence) of LSAs. These LSAs advertise only the incremental changes in the network, which helps minimize the amount of OSPF traffic on the network. The adjacencies are shared and used to create the network topology in the topological database.

OSPF Version 3

OSPFv3 is a modified version of OSPF that supports IP version 6 (IPv6) addressing. OSPFv3 differs from OSPFv2 in the following ways:

- All neighbor ID information is based on a 32-bit router ID.
- The protocol runs per link rather than per subnet.
- Router and network link-state advertisements (LSAs) do not carry prefix information.
- Two new LSA types are included: link-LSA and intra-area-prefix-LSA.
- Flooding scopes are as follows:
 - Link-local
 - Area
 - AS
- Link-local addresses are used for all neighbor exchanges except virtual links.
- Authentication is removed. The IPv6 authentication header relies on the IP layer.
- The packet format has changed as follows:
 - Version number 2 is now version number 3.
 - The db option field has been expanded to 24 bits.
 - Authentication information has been removed.
 - Hello messages do not have address information.
 - Two new option bits are included: R and V6.
- Type 3 summary LSAs have been renamed inter-area-prefix-LSAs.
- Type 4 summary LSAs have been renamed inter-area-router-LSAs.

SEE ALSO

| Understanding OSPF Areas and Backbone Areas | 74 |
| Example: Disabling OSPFv2 Compatibility with RFC 1583 | 239 |
There are several types of link-state advertisement (LSA) packets.

This topic describes the following information:

OSPF Packet Header

All OSPFv2 packets have a common 24-byte header, and OSPFv3 packets have a common 16-byte header, that contains all information necessary to determine whether OSPF should accept the packet. The header consists of the following fields:

- **Version number**—The current OSPF version number. This can be either 2 or 3.
- **Type**—Type of OSPF packet.
- **Packet length**—Length of the packet, in bytes, including the header.
- **Router ID**—IP address of the router from which the packet originated.
- **Area ID**—Identifier of the area in which the packet is traveling. Each OSPF packet is associated with a single area. Packets traveling over a virtual link are labeled with the backbone area ID, 0.0.0.0.
- **Checksum**—Fletcher checksum.
- **Authentication**—(OSPFv2 only) Authentication scheme and authentication information.
- **Instance ID**—(OSPFv3 only) Identifier used when there are multiple OSPFv3 realms configured on a link.
Hello Packets

Routers periodically send hello packets on all interfaces, including virtual links, to establish and maintain neighbor relationships. Hello packets are multicast on physical networks that have a multicast or broadcast capability, which enables dynamic discovery of neighboring routers. (On nonbroadcast networks, dynamic neighbor discovery is not possible, so you must configure all neighbors statically as described in "Example: Configuring an OSPFv2 Interface on a Nonbroadcast Multiaccess Network" on page 51.)

Hello packets consist of the OSPF header plus the following fields:

- Network mask—(OSPFv2 only) Network mask associated with the interface.
- Hello interval—How often the router sends hello packets. All routers on a shared network must use the same hello interval.
- Options—Optional capabilities of the router.
- Router priority—The router's priority to become the designated router.
- Router dead interval—How long the router waits without receiving any OSPF packets from a router before declaring that router to be down. All routers on a shared network must use the same router dead interval.
- Designated router—IP address of the designated router.
- Backup designated router—IP address of the backup designated router.
- Neighbor—IP addresses of the routers from which valid hello packets have been received within the time specified by the router dead interval.

Database Description Packets

When initializing an adjacency, OSPF exchanges database description packets, which describe the contents of the topological database. These packets consist of the OSPF header, packet sequence number, and the link-state advertisement's header.

Link-State Request Packets

When a router detects that portions of its topological database are out of date, it sends a link-state request packet to a neighbor requesting a precise instance of the database. These packets consist of the OSPF header plus fields that uniquely identify the database information that the router is seeking.

Link-State Update Packets

Link-state update packets carry one or more link-state advertisements one hop farther from their origin. The router multicasts (floods) these packets on physical networks that support multicast or broadcast
mode. The router acknowledges all link-state update packets and, if retransmission is necessary, sends the retransmitted advertisements unicast.

Link-state update packets consist of the OSPF header plus the following fields:

- Number of advertisements—Number of link-state advertisements included in this packet.
- Link-state advertisements—The link-state advertisements themselves.

Link-State Acknowledgment Packets

The router sends link-state acknowledgment packets in response to link-state update packets to verify that the update packets have been received successfully. A single acknowledgment packet can include responses to multiple update packets.

Link-state acknowledgment packets consist of the OSPF header plus the link-state advertisement header.

Link-State Advertisement Packet Types

Link-state request, link-state update, and link-state acknowledgment packets are used to reliably flood link-state advertisement packets. OSPF sends the following types of link-state advertisements:

- **Router link advertisements**—Are sent by all routers to describe the state and cost of the router’s links to the area. These link-state advertisements are flooded throughout a single area only.
- **Network link advertisements**—Are sent by designated routers to describe all the routers attached to the network. These link-state advertisements are flooded throughout a single area only.
- **Summary link advertisements**—Are sent by area border routers to describe the routes that they know about in other areas. There are two types of summary link advertisements: those used when the destination is an IP network, and those used when the destination is an AS boundary router. Summary link advertisements describe interarea routes, that is, routes to destinations outside the area but within the AS. These link-state advertisements are flooded throughout the advertisement’s associated areas.
- **AS external link advertisement**—Are sent by AS boundary routers to describe external routes that they know about. These link-state advertisements are flooded throughout the AS (except for stub areas).

Each link-state advertisement type describes a portion of the OSPF routing domain. All link-state advertisements are flooded throughout the AS.

Each link-state advertisement packet begins with a common 20-byte header.
Understanding OSPF External Metrics

When OSPF exports route information from external autonomous systems (ASs), it includes a cost, or external metric, in the route. OSPF supports two types of external metrics: Type 1 and Type 2. The difference between the two metrics is how OSPF calculates the cost of the route.

- Type 1 external metrics are equivalent to the link-state metric, where the cost is equal to the sum of the internal costs plus the external cost. This means that Type 1 external metrics include the external cost to the destination as well as the cost (metric) to reach the AS boundary router.

- Type 2 external metrics are greater than the cost of any path internal to the AS. Type 2 external metrics use only the external cost to the destination and ignore the cost (metric) to reach the AS boundary router.

By default, OSPF uses the Type 2 external metric.

Both Type 1 and Type 2 external metrics can be present in the AS at the same time. In that event, Type 1 external metrics always takes the precedence.

Type 1 external paths are always preferred over Type 2 external paths. When all paths are Type 2 external paths, the paths with the smallest advertised Type 2 metric are always preferred.

SEE ALSO

Example: Dynamically Adjusting OSPF Interface Metrics Based on Bandwidth | 217

Supported OSPF and OSPFv3 Standards

Junos OS substantially supports the following RFCs and Internet drafts, which define standards for OSPF and OSPF version 3 (OSPFv3).

- RFC 1583, OSPF Version 2
- RFC 1765, OSPF Database Overflow
- RFC 1793, Extending OSPF to Support Demand Circuits
• RFC 1850, OSPF Version 2 Management Information Base
• RFC 2154, OSPF with Digital Signatures
• RFC 2328, OSPF Version 2
• RFC 2370, The OSPF Opaque LSA Option
 Support is provided by the `update-threshold` configuration statement at the `[edit protocols rsvp interface interface-name]` hierarchy level.
• RFC 3101, The OSPF Not-So-Stubby Area (NSSA) Option
• RFC 3623, Graceful OSPF Restart
• RFC 3630, Traffic Engineering (TE) Extensions to OSPF Version 2
• RFC 4136, OSPF Refresh and Flooding Reduction in Stable Topologies
• RFC 4203, OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)
 Only interface switching is supported.
• RFC 4552, Authentication/Confidentiality for OSPFv3
• RFC 4576, Using a Link State Advertisement (LSA) Options Bit to Prevent Looping in BGP/MPLS IP Virtual Private Networks (VPNs)
• RFC 4577, OSPF as the Provider/Customer Edge Protocol for BGP/MPLS IP Virtual Private Networks (VPNs)
• RFC 4811, OSPF Out-of-Band Link State Database (LSDB) Resynchronization
• RFC 4812, OSPF Restart Signaling
• RFC 4813, OSPF Link-Local Signaling
• RFC 4915, Multi-Topology (MT) Routing in OSPF
• RFC 5185, OSPF Multi-Area Adjacency
• RFC 5187, OSPFv3 Graceful Restart
• RFC 5250, The OSPF Opaque LSA Option

NOTE: RFC 4750, mentioned in this RFC as a “should” requirement is not supported. However, RFC 1850, the predecessor to RFC 4750 is supported.

• RFC 5286, Basic Specification for IP Fast Reroute: Loop-Free Alternates
• RFC 5340, OSPF for IPv6 (RFC 2740 is obsoleted by RFC 5340)
• RFC 5838, Support of Address Families in OSPFv3
• Internet draft draft-ietf-ospf-af-alt-10.txt, Support of address families in OSPFv3
• Internet draft draft-katz-ward-bfd-02.txt, Bidirectional Forwarding Detection
Transmission of echo packets is not supported.

The following RFCs do not define standards, but provide information about OSPF and related technologies. The IETF classifies them as “Informational.”

- RFC 3137, OSPF Stub Router Advertisement
- RFC 3509, Alternative Implementations of OSPF Area Border Routers
- RFC 5309, Point-to-Point Operation over LAN in Link State Routing Protocols

SEE ALSO

- Supported IPv6 Standards
- Accessing Standards Documents on the Internet
CHAPTER 2

Understand OSPF Configurations

Understanding OSPF Configurations | 35
Understanding OSPF Configurations

To activate OSPF on a network, you must enable the protocol on all interfaces within the network on which OSPF traffic is to travel. To enable OSPF, you must configure one or more interfaces on the device within an OSPF area. Once the interfaces are configured, OSPF link-state advertisements (LSAs) are transmitted on all OSPF-enabled interfaces, and the network topology is shared throughout the network.

To complete the minimum device configuration for a node in an OSPF network involves:

1. Configuring the device interfaces.
 See the Junos OS Network Interfaces Library for Routing Devices or the Junos OS Interfaces Configuration Guide for Security Devices.

2. Configuring the router identifiers for the devices in your OSPF network

3. Creating the backbone area (area 0) for your OSPF network and adding the appropriate interfaces to the area

 NOTE: Once you complete this step, OSPF begins sending LSAs. No additional configuration is required to enable OSPF traffic on the network.

You can further define your OSPF network depending on your network requirements. Some optional configurations involve:

- Adding additional areas to your network and configure area border routers (ABRs)
- Enabling dial-on-demand routing backup on the OSPF-enabled interface to configure OSPF across a demand circuit such as an ISDN link. (You must have already configured an ISDN interface.) Because demand circuits do not pass all traffic required to maintain an OSPF adjacency (hello packets, for example), you configure dial-on-demand routing so individual nodes in an OSPF network can maintain adjacencies despite the lack of LSA exchanges.
- Reducing the amount of memory that the nodes use to maintain the topology database by configuring stub and not-so-stubby areas
- Ensuring that only trusted routing devices participate in the autonomous systems’ routing by enabling authentication
- Controlling the flow of traffic across the network by configuring path metrics and route selection

When describing how to configure OSPF, the following terms are used as follows:

- OSPF refers to both OSPF version 2 (OSPFv2) and OSPF version 3 (OSPFv3)
- OSPFv2 refers to OSPF version 2
- OSPFv3 refers to OSPF version 3
Configuring OSPF Interfaces

About OSPF Interfaces

To activate OSPF on a network, you must enable the OSPF protocol on one or more interfaces on each device within the network on which traffic is to travel. How you configure the interface depends on whether the interface is connected to a broadcast or point-to-point network, a point-to-multipoint network, a nonbroadcast multiaccess (NBMA) network, or across a demand circuit.

- A broadcast interface behaves as if the routing device is connected to a LAN.
- A point-to-point interface provides a connection between a single source and a single destination (there is only one OSPF adjacency).
- A point-to-multipoint interface provides a connection between a single source and multiple destinations.
- An NBMA interface behaves in a similar fashion to a point-to-multipoint interface, but you might configure an NBMA interface to interoperate with other equipment.
- A demand circuit is a connection on which you can limit traffic based on user agreements. The demand circuit can limit bandwidth or access time based on agreements between the provider and user.

You can also configure an OSPF interface to be passive, to operate in passive traffic engineering mode, or to be a peer interface.

- A passive interface advertises its address, but does not run the OSPF protocol (adjacencies are not formed and hello packets are not generated).
• An interface operating in OSPF passive traffic engineering mode floods link address information within the autonomous system (AS) and makes it available for traffic engineering calculations.

• A peer interface can be configured for OSPFv2 routing devices. A peer interface is required for Generalized MPLS (GMPLS) to transport traffic engineering information through a link separate from the control channel. You establish this separate link by configuring a peer interface. The peer interface name must match the Link Management Protocol (LMP) peer name. A peer interface is optional for a hierarchy of RSVP label-switched paths (LSPs). After you configure the forwarding adjacency, you can configure OSPFv2 to advertise the traffic engineering properties of a forwarding adjacency to a specific peer.

Point-to-point interfaces differ from multipoint in that only one OSPF adjacency is possible. (A LAN, for instance, can have multiple addresses and can run OSPF on each subnet simultaneously.) As such, when you configure a numbered point-to-point interface to OSPF by name, multiple OSPF interfaces are created. One, which is unnumbered, is the interface on which the protocol is run. An additional OSPF interface is created for each address configured on the interface, if any, which is automatically marked as passive.

For OSPFv3, one OSPF-specific interface must be created per interface name configured under OSPFv3. OSPFv3 does not allow interfaces to be configured by IP address.

Enabling OSPF on an interface (by including the interface statement), disabling it (by including the disable statement), and not actually having OSPF run on an interface (by including the passive statement) are mutually exclusive states.

NOTE: When you configure OSPFv2 on an interface, you must also include the family inet statement at the [edit interfaces interface-name unit logical-unit-number] hierarchy level. When you configure OSPFv3 on an interface, you must also include the family inet6 statement at the [edit interfaces interface-name unit logical-unit-number] hierarchy level. In Junos OS Release 9.2 and later, you can configure OSPFv3 to support address families other than unicast IPv6.

SEE ALSO

| Example: Configuring OSPF Passive Traffic Engineering Mode | 403 |
Example: Configuring an Interface on a Broadcast or Point-to-Point Network

This example shows how to configure an OSPF interface on a broadcast or point-to-point network.

Requirements

Before you begin:

- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.
- Configure a multiarea OSPF network. See "Example: Configuring a Multiarea OSPF Network" on page 79.

Overview

If the interface on which you are configuring OSPF supports broadcast mode (such as a LAN), or if the interface supports point-to-point mode (such as a PPP interface or a point-to-point logical interface on Frame Relay), you specify the interface by including the IP address or the interface name for OSPFv2, or only the interface name for OSPFv3. In Junos OS Release 9.3 and later, an OSPF point-to-point interface can be an Ethernet interface without a subnet. If you configure an interface on a broadcast network, designated router and backup designated router election is performed.

NOTE: Using both the interface name and the IP address of the same interface produces an invalid configuration.

In this example, you configure interface `ge-0/2/0` as an OSPFv2 interface in OSPF area 0.0.0.1.
Configuration

CLI Quick Configuration
To quickly configure an OSPF interface on a broadcast or point-to-point network and to allow the inbound OSPF into the interfaces that are active, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```plaintext
[edit]
set interfaces ge-0/2/0 unit 0 family inet address 10.0.0.1
set protocols ospf area 0.0.0.1 interface ge-0/2/0
set security zones security-zone Trust host-inbound-traffic protocols all
set security zones security-zone Trust host-inbound-traffic system-services all
set groups global security policies default-policy permit-all
set security zones security-zone Trust interfaces ge-0/2/0
```

Step-by-Step Procedure
To configure an OSPF interface on a broadcast or point-to-point network:

1. Configure the interface.

   ```plaintext
   [edit]
   user@host# set interfaces ge-0/2/0 unit 0 family inet address 10.0.0.1
   ```

 NOTE: For an OSPFv3 interface, specify an IPv6 address.

2. Create an OSPF area.

   ```plaintext
   [edit]
   user@host# edit protocols ospf area 0.0.0.1
   ```

 NOTE: For an OSPFv3 interface, include the ospf3 statement at the [edit protocols] hierarchy level.

3. Assign the interface to the area.
4. If you are done configuring the device, commit the configuration.

5. To allow the inbound OSPF into the interfaces that are active.

Results

Confirm your configuration by entering the show interfaces and the show protocols ospf commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

To confirm your OSPFv3 configuration, enter the show interfaces and the show protocols ospf commands.
Verification

Confirm that the configuration is working properly.

Verifying the OSPF Interface

Purpose

Verify the interface configuration. Depending on your deployment, the Type field might display LAN or P2P.

Action

From operational mode, enter the `show ospf interface detail` command for OSPFv2, and enter the `show ospf3 interface detail` command for OSPFv3.

Example: Configuring OSPF Demand Circuits

This example shows how to configure an OSPF demand circuit interface.

Requirements

Before you begin:

- Configure the device interfaces. See the Interfaces User Guide for Security Devices.

 NOTE: If you are using OSPF demand circuits over an ISDN link, you must configure an ISDN interface and enable dial-on-demand routing.

- Configure the router identifiers for the devices in your OSPF network. See “Example: Configuring an OSPF Router Identifier” on page 69.
Overview

OSPF sends periodic hello packets to establish and maintain neighbor adjacencies and uses link-state advertisements (LSAs) to make routing calculations and decisions. OSPF support for demand circuits is defined in RFC 1793, *Extending OSPF to Support Demand Circuits*, and suppresses the periodic hello packets and LSAs. A demand circuit is a connection on which you can limit traffic based on user agreements. The demand circuit can limit bandwidth or access time based on agreements between the provider and user.

You configure demand circuits on an OSPF interface. When the interface becomes a demand circuit, all hello packets and LSAs are suppressed as soon as OSPF synchronization is achieved. LSAs have a DoNotAge bit that stops the LSA from aging and prevents periodic updates from being sent. Hello packets and LSAs are sent and received on a demand-circuit interface only when there is a change in the network topology. This reduces the amount of traffic through the OSPF interface.

Consider the following when configuring OSPF demand circuits:

- Periodic hellos are only suppressed on point-to-point and point-to-multipoint interfaces. If you configure demand circuits on an OSPF broadcast network or on an OSPF nonbroadcast multiaccess (NBMA) network, periodic hello packets are still sent.
- Demand circuit support on an OSPF point-to-multipoint interface resembles that for point-to-point interfaces. If you configure a point-to-multipoint interface as a demand circuit, the device negotiates hello suppression separately on each interface that is part of the point-to-multipoint network.

This example assumes that you have a point-to-point connection between two devices using SONET/SDH interfaces. A demand-circuit interface automatically negotiates the demand-circuit connection with its OSPF neighbor. If the neighbor does not support demand circuits, then no demand circuit connection is established.

In this example, you configure OSPF interface so-0/1/0 in OSPF area 0.0.0.1 as a demand circuit.

Configuration

CLI Quick Configuration

To quickly configure an OSPF demand circuit interface, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.
Step-by-Step Procedure

To configure an OSPF demand circuit interface on one neighboring interface:

1. Create an OSPF area.

   ```
   NOTE: For OSPFv3, include the `ospf3` statement at the [edit protocols] hierarchy level.
   ```

   ```
   [edit]
   user@host# edit protocols ospf area 0.0.0.1
   ```

2. Configure the neighboring interface as a demand circuit.

   ```
   [edit protocols ospf area 0.0.1]
   user@host# set interface so-0/1/0 demand-circuit
   ```

3. If you are done configuring the device, commit the configuration.

   ```
   [edit protocols ospf area 0.0.0.1]
   user@host# commit
   ```

   ```
   NOTE: Repeat this entire configuration on the other neighboring interface.
   ```

Results

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show protocols
ospf {
    area 0.0.0.1 {
        interface so-0/1/0 {
            demand-circuit;
        }
    }
}```
To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

**Verification**

Confirm that the configuration is working properly.

*Verifying the Status of Neighboring Interfaces*

**Purpose**

Verify information about the neighboring interface. When the neighbor is configured for demand circuits, a DC flag displays.

**Action**

From operational mode, enter the `show ospf neighbor detail` command for OSPFv2, and enter the `show ospf3 neighbor detail` command for OSPFv3.

---

**Example: Configuring a Passive OSPF Interface**

This example shows how to configure a passive OSPF interface. A passive OSPF interface advertises its address but does not run the OSPF protocol.

**Requirements**

Before you begin:

- Configure the device interfaces. See the *Interfaces User Guide for Security Devices*.
- Configure the router identifiers for the devices in your OSPF network. See “Example: Configuring an OSPF Router Identifier” on page 69.
Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.

Configure a multiarea OSPF network. See "Example: Configuring a Multiarea OSPF Network" on page 79.

Overview

By default, OSPF must be configured on an interface for direct interface addresses to be advertised as interior routes. To advertise the direct interface addresses without actually running OSPF on that interface (adjacencies are not formed and hello packets are not generated), you configure that interface as a passive interface.

Enabling OSPF on an interface (by including the `interface` statement), disabling it (by including the `disable` statement), and not actually having OSPF run on an interface (by including the `passive` statement) are mutually exclusive states.

NOTE: If you do not want to see notifications for state changes in a passive OSPF interface, you can disable the OSPF traps for the interface by including the `no-interface-state-traps` statement. The `no-interface-state-traps` statement is supported only for OSPFv2.

In this example, you configure interface `ge-0/2/0` as a passive OSPF interface in area 0.0.0.1 by including the `passive` statement.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```
[edit]
set protocols ospf 0.0.0.1 interface ge-0/2/0 passive
```

Step-by-Step Procedure

To configure a passive OSPF interface:

1. Create an OSPF area.
NOTE: For an OSPFv3 interface, include the ospf3 statement at the [edit protocols] hierarchy level.

```
[edit]
user@host# edit protocols ospf area 0.0.0.1
```

2. Configure the passive interface.

```
[edit protocols ospf area 0.0.0.1]
user@host# set interface ge-0/2/0 passive
```

3. If you are done configuring the device, commit the configuration.

```
[edit protocols ospf area 0.0.0.1]
user@host# commit
```

**Results**

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show protocols ospf
area 0.0.0.1 {
interface ge-0/2/0.0 {
 passive;
}
}
```

To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

**Verification**

Confirm that the configuration is working properly.

**Verifying the Status of OSPF Interfaces**

**Purpose**

Verify the status of the OSPF interface. If the interface is passive, the Adj count field is 0 because no adjacencies have been formed. Next to this field, you might also see the word Passive.
Action
From operational mode, enter the show ospf interface detail command for OSPFv2, and enter the show ospf3 interface detail command for OSPFv3.

Example: Configuring OSPFv2 Peer interfaces

This example shows how to configure an OSPFv2 peer interface.

Requirements

Before you begin:

- Configure the device interfaces. See the Interfaces User Guide for Security Devices.
- Configure the router identifiers for the devices in your OSPF network. See “Example: Configuring an OSPF Router Identifier” on page 69.
- Configure a single-area OSPF network. See “Example: Configuring a Single-Area OSPF Network” on page 76.
- Configure a multiarea OSPF network. See “Example: Configuring a Multiarea OSPF Network” on page 79.
- Configure Generalized MPLS per your network requirements.

Overview

You can configure an OSPFv2 peer interface for many reasons, including when you configure Generalized MPLS (GMPLS). This example configures a peer interface for GMPLS. GMPLS requires traffic engineering information to be transported through a link separate from the control channel. You establish this separate link by configuring a peer interface. The OSPFv2 peer interface name must match the Link Management Protocol (LMP) peer name. You configure GMPLS and the LMP settings separately from OSPF.
This example assumes that GMPLS and the LMP peer named ox1 are already configured, and you need to configure the OSPFv2 peer interface in area 0.0.0.0.

Configuration

CLI Quick Configuration
To quickly configure an OSPFv2 peer interface, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[edit]
set protocols ospf area 0.0.0.0 peer-interface ox1
```

Step-by-Step Procedure
To configure a peer OSPFv2 interface used by the LMP:

1. Create an OSPF area.

```
[edit]
user@host# edit protocols ospf area 0.0.0.0
```

2. Configure the peer interface.

```
[edit protocols ospf area 0.0.0.0]
user@host# set peer-interface ox1
```

3. If you are done configuring the device, commit the configuration.

```
[edit protocols ospf area 0.0.0.0]
user@host# commit
```

Results
Confirm your configuration by entering the show protocols ospf command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show protocols ospf
area 0.0.0.0 { peer-interface ox1;
}
```
Verification

Confirm that the configuration is working properly.

Verifying the Configured OSPFv2 Peer

Purpose

Verify the status of the OSPFv2 peer. When an OSPFv2 peer is configured for GMPLS, the Peer Name field displays the name of the LMP peer that you created for GMPLS, which is also the configured OSPFv2 peer.

Action

From operational mode, enter the show link-management command.

Example: Configuring an OSPFv2 Interface on a Nonbroadcast Multiaccess Network

This example shows how to configure an OSPFv2 interface on a nonbroadcast multiaccess (NBMA) network.

Requirements

Before you begin:

- Configure the router identifiers for the devices in your OSPF network. See “Example: Configuring an OSPF Router Identifier” on page 69.
- Control OSPF designated router election. See “Example: Controlling OSPF Designated Router Election” on page 71.
- Configure a multiarea OSPF network. See “Example: Configuring a Multiarea OSPF Network” on page 79.
Overview

When you configure OSPFv2 on an NBMA network, you can use nonbroadcast mode rather than point-to-multipoint mode. Using this mode offers no advantages over point-to-multipoint mode, but it has more disadvantages than point-to-multipoint mode. Nevertheless, you might occasionally find it necessary to configure nonbroadcast mode to interoperate with other equipment. Because there is no autodiscovery mechanism, you must configure each neighbor.

Nonbroadcast mode treats the NBMA network as a partially connected LAN, electing designated and backup designated routers. All routing devices must have a direct connection to both the designated and backup designated routers, or unpredictable results occur.

When you configure the interface, specify either the IP address or the interface name. Using both the IP address and the interface name produces an invalid configuration. For nonbroadcast interfaces, specify the IP address of the nonbroadcast interface as the interface name.

In this example, you configure the Asynchronous Transfer Mode (ATM) interface at-0/1/0 as an OSPFv2 interface in OSPF area 0.0.0.1, and you and specify the following settings:

- **interface-type nbma**—Sets the interface to run in NBMA mode. You must explicitly configure the interface to run in NBMA mode.
- **neighbor address <eligible>**—Specifies the IP address of the neighboring device. OSPF routing devices normally discover their neighbors dynamically by listening to the broadcast or multicast hello packets on the network. Because an NBMA network does not support broadcast (or multicast), the device cannot discover its neighbors dynamically, so you must configure all the neighbors statically. To configure multiple neighbors, include multiple **neighbor** statements. If you want the neighbor to be a designated router, include the **eligible** keyword.
- **poll-interval**—Specifies the length of time, in seconds, before the routing device sends hello packets out of the interface before it establishes adjacency with a neighbor. Routing devices send hello packets for a longer interval on nonbroadcast networks to minimize the bandwidth required on slow WAN links. The range is from 1 through 255 seconds. By default, the device sends hello packets out the interface every 120 seconds before it establishes adjacency with a neighbor.

Once the routing device detects an active neighbor, the hello packet interval changes from the time specified in the **poll-interval** statement to the time specified in the **hello-interval** statement.

Configuration

**CLI Quick Configuration**

To quickly configure an OSPFv2 interface on an NBMA network, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter **commit** from configuration mode.
Step-by-Step Procedure
To configure an OSPFv2 interface on an NBMA network:

1. Configure the interface.

```text
[edit]
user@host# set interfaces at-0/1/0 unit 0 family inet address 192.0.2.1
```

2. Create an OSPF area.

```text
[edit]
user@host# edit protocols ospf area 0.0.0.1
```

3. Assign the interface to the area.
   In this example, include the `eligible` keyword to allow the neighbor to be a designated router.

```text
[edit protocols ospf area 0.0.0.1]
user@host# set interface at-0/1/0 interface-type nbma neighbor 192.0.2.2 eligible
```

4. Configure the poll interval.

```text
[edit protocols ospf area 0.0.0.1]
user@host# set interface at-0/1/0 poll-interval 130
```

5. If you are done configuring the device, commit the configuration.

```text
[edit protocols ospf area 0.0.0.1]
user@host# commit
```
**Results**

Confirm your configuration by entering the `show interfaces` and the `show protocols ospf` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show interfaces
at-0/1/0 {
 unit 0 {
 family inet {
 address 192.0.2.1/32;
 }
 }
}
```

```
user@host# show protocols ospf
area 0.0.0.1 {
 interface at-0/1/0.0 {
 interface-type nbma;
 neighbor 192.0.2.2 eligible;
 poll-interval 130;
 }
}
```

**Verification**

Confirm that the configuration is working properly.

**Verifying the OSPF Interface**

**Purpose**

Verify the interface configuration. Confirm that the Type field displays NBMA.

**Action**

From operational mode, enter the `show ospf interface detail` command.

SEE ALSO

| OSPF Timers Overview | 282 |
Example: Configuring an OSPFv2 Interface on a Point-to-Multipoint Network

This example shows how to configure an OSPFv2 interface on a point-to-multipoint network.

Requirements

Before you begin:

- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.
- Configure a multiarea OSPF network. See "Example: Configuring a Multiarea OSPF Network" on page 79.

Overview

When you configure OSPFv2 on a nonbroadcast multiaccess (NBMA) network, such as a multipoint Asynchronous Transfer Mode (ATM) or Frame Relay, OSPFv2 operates by default in point-to-multipoint mode. In this mode, OSPFv2 treats the network as a set of point-to-point links. Because there is no autodiscovery mechanism, you must configure each neighbor.

When you configure the interface, specify either the IP address or the interface name. Using both the IP address and the interface name produces an invalid configuration.

In this example, you configure ATM interface at-0/1/0 as an OSPFv2 interface in OSPF area 0.0.0.1, and you and specify 192.0.2.1 as the neighbor’s IP address.

Configuration

CLI Quick Configuration
To quickly configure an OSPFv2 interface on a point-to-multipoint network, copy the following commands and paste them into the CLI.

```
[edit]
set interfaces at-0/1/0 unit 0 family inet address 192.0.2.2
set protocols ospf area 0.0.0.1 interface at-0/1/0 neighbor 192.0.2.1
```

Step-by-Step Procedure
To configure an OSPFv2 interface on a point-to-multipoint network:

1. Configure the interface.

```
[edit]
user@host# set interfaces at-0/1/0 unit 0 family inet address 192.0.2.2
```

2. Create an OSPF area.

```
[edit]
user@host# edit protocols ospf area 0.0.0.1
```

3. Assign the interface to the area and specify the neighbor.

```
[edit protocols ospf area 0.0.0.1]
user@host# set interface at-0/1/0 neighbor 192.0.2.1
```

To configure multiple neighbors, include a `neighbor` statement for each neighbor.

4. If you are done configuring the device, commit the configuration.

```
[edit protocols ospf area 0.0.0.1]
user@host# commit
```

Results
Confirm your configuration by entering the `show interfaces` and the `show protocols ospf` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show interfaces
at-0/1/0 {
```
Verification

Confirm that the configuration is working properly.

Verifying the OSPF Interface

Purpose
Verify the interface configuration. Confirm that the Type field displays P2MP.

Action
From operational mode, enter the `show ospf interface detail` command.

Understanding Multiple Address Families for OSPFv3

By default, OSPFv3 supports only unicast IPv6 routes. In Junos OS Release 9.2 and later, you can configure OSPFv3 to support multiple address families, including IPv4 unicast, IPv4 multicast, and IPv6 multicast. This multiple address family support allows OSPFv3 to support both IPv6 and IPv4 nodes. Junos OS maps each address family to a separate realm as defined in Internet draft draft-ietf-ospf-af-alt-06.txt, Support for Address Families in OSPFv3. Each realm maintains a separate set of neighbors and link-state database.

When you configure multiple address families for OSPFv3, there is a new instance ID field that allows multiple OSPFv3 protocol instances per link. This allows a single link to belong to multiple areas.

You configure each realm independently. We recommend that you configure an area and at least one interface for each realm.
These are the default import and export routing tables for each of the four address families:

- IPv6 unicast: inet6.0
- IPv6 multicast: inet6.2
- IPv4 unicast: inet.0
- IPv4 multicast: inet.2

With the exception of virtual links, all configurations supported for the default IPv6 unicast family are supported for the address families that have to be configured as realms.

Example: Configuring Multiple Address Families for OSPFv3

This example shows how to configure multiple address families for OSPFv3.

Requirements

Before you begin:

- Configure the router identifiers for the devices in your OSPF network. See “Example: Configuring an OSPF Router Identifier” on page 69.
- Configure a single-area OSPF network. See “Example: Configuring a Single-Area OSPF Network” on page 76.
- Configure a multiarea OSPF network. See “Example: Configuring a Multiarea OSPF Network” on page 79.

Overview

By default, OSPFv3 supports unicast IPv6 routes, but you can configure OSPFv3 to support multiple address families. To support an address family other than unicast IPv6, you configure a realm that allows
OSPFv3 to advertise IPv4 unicast, IPv4 multicast, or IPv6 multicast routes. Junos OS then maps each address family that you configure to a separate realm with its own set of neighbors and link-state database.

**NOTE:** By default, LDP synchronization is only supported for OSPFv2. If you configure an IPv4 unicast or IPv4 multicast realm, you can also configure LDP synchronization. Since LDP synchronization is only supported for IPv4, this support is only available for OSPFv3 if you configure an IPv4 realm.

When configuring OSPFv3 to support multiple address families, consider the following:

- You configure each realm independently. We recommend that you configure an area and at least one interface for each realm.
- OSPFv3 uses IPv6 link-local addresses as the source of hello packets and next hop calculations. As such, you must enable IPv6 on the link regardless of the additional realm you configure.

Figure 2 on page 59 shows a connection between Routers R0 and R1. In this example, you configure interface fe-0/1/0 on Router R0 in area 0 to advertise IPv4 unicast routes, in addition to the default unicast IPv6 routes in area 1, by including the `realm ipv4-unicast` statement. Depending on your network requirements, you can also advertise IPv4 multicast routes by including the `realm-ipv4-multicast` statement, and you can advertise IPv6 multicast routes by including the `realm-ipv6-multicast` statement.

**Figure 2: IPv4 Unicast Realm**

**Configuration**

**CLI Quick Configuration**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Modifying the Junos OS Configuration* in the CLI User Guide.
To quickly configure multiple address families for OSPFv3, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[edit]
set interfaces fe-0/1/0 unit 0 family inet address 192.0.2.2/24
set interfaces fe-0/1/0 unit 0 family inet6
set protocols ospf3 area 0.0.0.0 interface fe-0/1/0
set protocols ospf3 realm ipv4-unicast area 0.0.0.0 interface fe-0/1/0
```

**Step-by-Step Procedure**

To configure multiple address families for OSPFv3:

1. Configure the device interface participating in OSPFv3.

```
[edit]
user@host# set interfaces fe-0/1/0 unit 0 family inet address 192.0.2.2/24
user@host# set interfaces fe-0/1/0 unit 0 family inet6
```

2. Enter OSPFv3 configuration mode.

```
[edit]
user@host# edit protocols ospf3
```

3. Add the interface you configured to the OSPFv3 area.

```
[edit protocols ospf3]
user@host# set area 0.0.0.0 interface fe-0/1/0
```

4. Configure an IPv4 unicast realm. This allows OSPFv3 to support both IPv4 unicast and IPv6 unicast routes.

```
[edit protocols ospf3]
user@host# set realm ipv4-unicast area 0.0.0.0 interface fe-0/1/0
```

5. If you are done configuring the device, commit the configuration.

```
[edit protocols ospf3]
```
NOTE: Repeat this entire configuration on the neighboring device that is part of the realm.

Results

Confirm your configuration by entering the `show interfaces` and the `show protocols ospf` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show interfaces
fe-0/1/0 {
 unit 0 {
 family inet {
 address 192.0.2.2/24;
 }
 family inet6;
 }
}
```

```
user@host# show protocols ospf3
realm ipv4-unicast {
 area 0.0.0.0 {
 interface fe-0/1/0.0;
 }
}
```

Verification

### IN THIS SECTION

- Verifying the Link-State Database | 62
- Verifying the Status of OSPFv3 Interfaces with Multiple Address Families | 62
Confirm that the configuration is working properly.

**Verifying the Link-State Database**

**Purpose**
Verify the status of the link-state database for the configured realm, or address family.

**Action**
From operational mode, enter the `show ospf3 database realm ipv4-unicast` command.

**Verifying the Status of OSPFv3 Interfaces with Multiple Address Families**

**Purpose**
Verify the status of the interface for the specified OSPFv3 realm, or address family.

**Action**
From operational mode, enter the `show ospf3 interface realm ipv4-unicast` command.
Configure OSPF Areas
Configuring OSPF Areas

IN THIS SECTION

- Understanding OSPF Areas | 65
- OSPF Designated Router Overview | 68
- Example: Configuring an OSPF Router Identifier | 69
- Example: Controlling OSPF Designated Router Election | 71
- Understanding OSPF Areas and Backbone Areas | 74
- Example: Configuring a Single-Area OSPF Network | 76
- Example: Configuring a Multiarea OSPF Network | 79
- Understanding Multiarea Adjacency for OSPF | 84
- Example: Configuring Multiarea Adjacency for OSPF | 84
- Understanding Multiarea Adjacencies for OSPFv3 | 90
- Example: Configuring a Multiarea Adjacency for OSPFv3 | 91
- Understanding OSPF Stub Areas, Totally Stubby Areas, and Not-So-Stubby Areas | 100
- Example: Configuring OSPF Stub and Totally Stubby Areas | 102
- Example: Configuring OSPF Not-So-Stubby Areas | 107
- Understanding OSPFv3 Stub and Totally Stubby Areas | 114
- Example: Configuring OSPFv3 Stub and Totally Stubby Areas | 114
- Understanding OSPFv3 Not-So-Stubby Areas | 129
- Example: Configuring OSPFv3 Not-So-Stubby Areas | 129
- Understanding Not-So-Stubby Areas Filtering | 148
- Example: Configuring OSPFv3 Not-So-Stubby Areas with Filtering | 148
- Understanding OSPF Virtual Links for Noncontiguous Areas | 158
- Example: Configuring OSPF Virtual Links to Connect Noncontiguous Areas | 159
- Example: Configuring OSPFv3 Virtual Links | 164
Understanding OSPF Areas

IN THIS SECTION

- Areas | 65
- Area Border Routers | 66
- Backbone Areas | 66
- AS Boundary Routers | 66
- Backbone Router | 66
- Internal Router | 66
- Stub Areas | 67
- Not-So-Stubby Areas | 67
- Transit Areas | 67
- OSPF Area Types and Accepted LSAs | 68

In OSPF, a single autonomous system (AS) can be divided into smaller groups called areas. This reduces the number of link-state advertisements (LSAs) and other OSPF overhead traffic sent on the network, and it reduces the size of the topology database that each router must maintain. The routing devices that participate in OSPF routing perform one or more functions based on their location in the network.

This topic describes the following OSPF area types and routing device functions:

Areas

An area is a set of networks and hosts within an AS that have been administratively grouped together. We recommend that you configure an area as a collection of contiguous IP subnetted networks. Routing devices that are wholly within an area are called internal routers. All interfaces on internal routers are directly connected to networks within the area.

The topology of an area is hidden from the rest of the AS, thus significantly reducing routing traffic in the AS. Also, routing within the area is determined only by the area’s topology, providing the area with some protection from bad routing data.

All routing devices within an area have identical topology databases.
**Area Border Routers**

Routing devices that belong to more than one area and connect one or more OSPF areas to the backbone area are called **area border routers** (ABRs). At least one interface is within the backbone while another interface is in another area. ABRs also maintain a separate topological database for each area to which they are connected.

**Backbone Areas**

An OSPF **backbone area** consists of all networks in area ID 0.0.0.0, their attached routing devices, and all ABRs. The backbone itself does not have any ABRs. The backbone distributes routing information between areas. The backbone is simply another area, so the terminology and rules of areas apply: a routing device that is directly connected to the backbone is an internal router on the backbone, and the backbone’s topology is hidden from the other areas in the AS.

The routing devices that make up the backbone must be physically contiguous. If they are not, you must configure virtual links to create the appearance of backbone connectivity. You can create virtual links between any two ABRs that have an interface to a common nonbackbone area. OSPF treats two routing devices joined by a virtual link as if they were connected to an unnumbered point-to-point network.

**AS Boundary Routers**

Routing devices that exchange routing information with routing devices in non-OSPF networks are called **AS boundary routers**. They advertise externally learned routes throughout the OSPF AS. Depending on the location of the AS boundary router in the network, it can be an ABR, a backbone router, or an internal router (with the exception of stub areas). Internal routers within a stub area cannot be an AS boundary router because stub areas cannot contain any Type 5 LSAs.

Routing devices within the area where the AS boundary router resides know the path to that AS boundary router. Any routing device outside the area only knows the path to the nearest ABR that is in the same area where the AS boundary router resides.

**Backbone Router**

**Backbone routers** are routing devices that have one or more interfaces connected to the OSPF backbone area (area ID 0.0.0.0).

**Internal Router**

Routing devices that connect to only one OSPF area are called **internal routers**. All interfaces on internal routers are directly connected to networks within a single area.
**Stub Areas**

*Stub areas* are areas through which or into which AS external advertisements are not flooded. You might want to create stub areas when much of the topological database consists of AS external advertisements. Doing so reduces the size of the topological databases and therefore the amount of memory required on the internal routers in the stub area.

Routing devices within a stub area rely on the default routes originated by the area’s ABR to reach external AS destinations. You must configure the `default-metric` option on the ABR before it advertises a default route. Once configured, the ABR advertises a default route in place of the external routes that are not being advertised within the stub area, so that routing devices in the stub area can reach destinations outside the area.

The following restrictions apply to stub areas: you cannot create a virtual link through a stub area, a stub area cannot contain an AS boundary router, the backbone cannot be a stub area, and you cannot configure an area as both a stub area and a not-so-stubby area.

**Not-So-Stubby Areas**

An OSPF stub area has no external routes in it, so you cannot redistribute from another protocol into a stub area. A *not-so-stubby area* (NSSA) allows external routes to be flooded within the area. These routes are then leaked into other areas. However, external routes from other areas still do not enter the NSSA.

The following restriction applies to NSSAs: you cannot configure an area as both a stub area and an NSSA.

**Transit Areas**

*Transit areas* are used to pass traffic from one adjacent area to the backbone (or to another area if the backbone is more than two hops away from an area). The traffic does not originate in, nor is it destined for, the transit area.
**OSPF Area Types and Accepted LSAs**

The following table gives details about OSPF area types and accepted LSAs:

<table>
<thead>
<tr>
<th>Area Types</th>
<th>LSA 1</th>
<th>LSA 2</th>
<th>LSA 3</th>
<th>LSA 4</th>
<th>LSA 5</th>
<th>LSA 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backbone Area</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Non-Backbone Area</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Stub Area</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Totally Stubby Area</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Not-So-Stubby Area</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

**OSPF Designated Router Overview**

Large LANs that have many routing devices and therefore many OSPF adjacencies can produce heavy control-packet traffic as link-state advertisements (LSAs) are flooded across the network. To alleviate the potential traffic problem, OSPF uses designated routers on all multiaccess networks (broadcast and nonbroadcast multiaccess [NBMA] networks types). Rather than broadcasting LSAs to all their OSPF neighbors, the routing devices send their LSAs to the designated router. Each multiaccess network has a designated router, which performs two main functions:

- Originate network link advertisements on behalf of the network.
- Establish adjacencies with all routing devices on the network, thus participating in the synchronizing of the link-state databases.

In LANs, the election of the designated router takes place when the OSPF network is initially established. When the first OSPF links are active, the routing device with the highest router identifier (defined by the
**router-id** configuration value, which is typically the IP address of the routing device, or the loopback address) is elected the designated router. The routing device with the second highest router identifier is elected the backup designated router. If the designated router fails or loses connectivity, the backup designated router assumes its role and a new backup designated router election takes place between all the routers in the OSPF network.

OSPF uses the router identifier for two main purposes: to elect a designated router, unless you manually specify a priority value, and to identify the routing device from which a packet is originated. At designated router election, the router priorities are evaluated first, and the routing device with the highest priority is elected designated router. If router priorities tie, the routing device with the highest router identifier, which is typically the routing device’s IP address, is chosen as the designated router. If you do not configure a router identifier, the IP address of the first interface to come online is used. This is usually the loopback interface. Otherwise, the first hardware interface with an IP address is used.

At least one routing device on each logical IP network or subnet must be eligible to be the designated router for OSPFv2. At least one routing device on each logical link must be eligible to be the designated router for OSPFv3.

By default, routing devices have a priority of 128. A priority of 0 marks the routing device as ineligible to become the designated router. A priority of 1 means the routing device has the least chance of becoming a designated router. A priority of 255 means the routing device is always the designated router.

---

**Example: Configuring an OSPF Router Identifier**

This example shows how to configure an OSPF router identifier.

**Requirements**

Before you begin:
• Identify the interfaces on the routing device that will participate in OSPF. You must enable OSPF on all interfaces within the network on which OSPF traffic is to travel.

• Configure the device interfaces. See the Interfaces User Guide for Security Devices

Overview

The router identifier is used by OSPF to identify the routing device from which a packet originated. Junos OS selects a router identifier according to the following set of rules:

1. By default, Junos OS selects the lowest configured physical IP address of an interface as the router identifier.
2. If a loopback interface is configured, the IP address of the loopback interface becomes the router identifier.
3. If multiple loopback interfaces are configured, the lowest loopback address becomes the router identifier.
4. If a router identifier is explicitly configured using the router-id address statement under the [edit routing-options] hierarchy level, the above three rules are ignored.

NOTE: 1. The router identifier behavior described here holds good even when configured under [edit routing-instances routing-instance-name routing-options] and [edit logical-systems logical-system-name routing-instances routing-instance-name routing-options] hierarchy levels.
2. If the router identifier is modified in a network, the link-state advertisements (LSAs) advertised by the previous router identifier are retained in the OSPF database until the LSA retransmit interval has timed out. Hence, it is strongly recommended that you explicitly configure the router identifier under the [edit routing-options] hierarchy level to avoid unpredictable behavior if the interface address on a loopback interface changes.

In this example, you configure the OSPF router identifier by setting its router ID value to the IP address of the device, which is 192.0.2.24.

Configuration

CLI Quick Configuration

To quickly configure an OSPF router identifier, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[edit]
set routing-options router-id 192.0.2.24
```
Step-by-Step Procedure

To configure an OSPF router identifier:

1. Configure the OSPF router identifier by entering the `[router-id]` configuration value.

   ```
 [edit]
 user@host# set routing-options router-id 192.0.2.24
   ```

2. If you are done configuring the device, commit the configuration.

   ```
 [edit]
 user@host# commit
   ```

Results

Confirm your configuration by entering the `show routing-options router-id` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

   ```
 user@host# show routing-options router-id
 router-id 192.0.2.24;
   ```

Verification

After you configure the router ID and activate OSPF on the routing device, the router ID is referenced by multiple OSPF operational mode commands that you can use to monitor and troubleshoot the OSPF protocol. The router ID fields are clearly marked in the output.

Example: Controlling OSPF Designated Router Election
This example shows how to control OSPF designated router election.

**Requirements**

Before you begin:

- Configure the device interfaces. See the *Interfaces User Guide for Security Devices*.
- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.

**Overview**

This example shows how to control OSPF designated router election. Within the example, you set the OSPF interface to `ge-0/0/1` and the device priority to 200. The higher the priority value, the greater likelihood the routing device will become the designated router.

By default, routing devices have a priority of 128. A priority of 0 marks the routing device as ineligible to become the designated router. A priority of 1 means the routing device has the least chance of becoming a designated router.

**Configuration**

**CLI Quick Configuration**

To quickly configure an OSPF designated router election, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
[edit]
set protocols ospf area 0.0.0.3 interface ge-0/0/1 priority 200
```

**Step-by-Step Procedure**

To control OSPF designated router election:

1. Configure an OSPF interface and specify the device priority.

   **NOTE:** To specify an OSPFv3 interface, include the `ospf3` statement at the [edit protocols] hierarchy level.
2. If you are done configuring the device, commit the configuration.

```plaintext
[edit]
user@host# commit
```

**Results**

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
user@host# show protocols ospf
area 0.0.0.3 {
 interface ge-0/0/1.0 {
 priority 200;
 }
}
```

To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

**Verification**

**IN THIS SECTION**

- Verifying the Designated Router Election | 73

Confirm that the configuration is working properly.

**Verifying the Designated Router Election**

**Purpose**

Based on the priority you configured for a specific OSPF interface, you can confirm the address of the area's designated router. The DR ID, DR, or DR-ID field displays the address of the area's designated router. The BDR ID, BDR, or BDR-ID field displays the address of the backup designated router.

**Action**
From operational mode, enter the `show ospf interface` and the `show ospf neighbor` commands for OSPFv2, and enter the `show ospf3 interface` and the `show ospf3 neighbor` commands for OSPFv3.

### Understanding OSPF Areas and Backbone Areas

OSPF networks in an autonomous system (AS) are administratively grouped into **areas**. Each area within an AS operates like an independent network and has a unique 32-bit area ID, which functions similar to a network address. Within an area, the topology database contains only information about the area, link-state advertisements (LSAs) are flooded only to nodes within the area, and routes are computed only within the area. The topology of an area is hidden from the rest of the AS, thus significantly reducing routing traffic in the AS. Subnetworks are divided into other areas, which are connected to form the whole of the main network. Routing devices that are wholly within an area are called **internal routers**. All interfaces on internal routers are directly connected to networks within the area.

The central area of an AS, called the **backbone area**, has a special function and is always assigned the area ID 0.0.0.0. (Within a simple, single-area network, this is also the ID of the area.) Area IDs are unique numeric identifiers, in dotted decimal notation, but they are not IP addresses. Area IDs need only be unique within an AS. All other networks or areas in the AS must be directly connected to the backbone area by a routing device that has interfaces in more than one area. These connecting routing devices are called **area border routers** (ABRs). Figure 3 on page 74 shows an OSPF topology of three areas connected by two ABRs.

**Figure 3: Multiarea OSPF Topology**

Because all areas are adjacent to the backbone area, OSPF routers send all traffic not destined for their own area through the backbone area. The ABRs in the backbone area are then responsible for transmitting the traffic through the appropriate ABR to the destination area. The ABRs summarize the link-state records of each area and advertise destination address summaries to neighboring areas. The advertisements contain
the ID of the area in which each destination lies, so that packets are routed to the appropriate ABR. For example, in the OSPF areas shown in Figure 3 on page 74, packets sent from Router A to Router C are automatically routed through ABR B.

Junos OS supports active backbone detection. Active backbone detection is implemented to verify that ABRs are connected to the backbone. If the connection to the backbone area is lost, then the routing device’s default metric is not advertised, effectively rerouting traffic through another ABR with a valid connection to the backbone. Active backbone detection enables transit through an ABR with no active backbone connection. An ABR advertises to other routing devices that it is an ABR even if the connection to the backbone is down, so that the neighbors can consider it for interarea routes.

An OSPF restriction requires all areas to be directly connected to the backbone area so that packets can be properly routed. All packets are routed first to the backbone area by default. Packets that are destined for an area other than the backbone area are then routed to the appropriate ABR and on to the remote host within the destination area.

In large networks with many areas, in which direct connectivity between all areas and the backbone area is physically difficult or impossible, you can configure virtual links to connect noncontiguous areas. Virtual links use a transit area that contains two or more ABRs to pass network traffic from one adjacent area to another. For example, Figure 4 on page 75 shows a virtual link between a noncontiguous area and the backbone area through an area connected to both.

Figure 4: OSPF Topology with a Virtual Link

In the topology shown in Figure 4 on page 75, a virtual link is established between area 0.0.0.3 and the backbone area through area 0.0.0.2. All outbound traffic destined for other areas is routed through area 0.0.0.2 to the backbone area and then to the appropriate ABR. All inbound traffic destined for area 0.0.0.3 is routed to the backbone area and then through area 0.0.0.2.
Example: Configuring a Single-Area OSPF Network

IN THIS SECTION

- Requirements | 76
- Overview | 76
- Configuration | 77
- Verification | 78

This example shows how to configure a single-area OSPF network.

Requirements

Before you begin:

- Configure the device interfaces. See the Interfaces User Guide for Security Devices.
- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.

Overview

To activate OSPF on a network, you must enable the OSPF protocol on all interfaces within the network on which OSPF traffic is to travel. To enable OSPF, you must configure one or more interfaces on the device within an OSPF area. Once the interfaces are configured, OSPF LSAs are transmitted on all OSPF-enabled interfaces, and the network topology is shared throughout the network.

In an autonomous system (AS), the backbone area is always assigned area ID 0.0.0.0 (within a simple, single-area network, this is also the ID of the area). Area IDs are unique numeric identifiers, in dotted decimal notation. Area IDs need only be unique within an AS. All other networks or areas in the AS must be directly connected to the backbone area by area border routers that have interfaces in more than one area. You must also create a backbone area if your network consists of multiple areas. In this example, you create the backbone area and add interfaces, such as ge-0/0/0, as needed to the OSPF area.

To use OSPF on the device, you must configure at least one OSPF area, such as the one shown in Figure 5 on page 77.
Figure 5: Typical Single-Area OSPF Network Topology

Configuration

CLI Quick Configuration
To quickly configure a single-area OSPF network, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[edit]
set protocols ospf area 0.0.0.0 interface ge-0/0/0
```

Step-by-Step Procedure
To configure a single-area OSPF network:

1. Configure the single-area OSPF network by specifying the area ID and associated interface.

   ```
 [edit]
 user@host# set protocols ospf area 0.0.0.0 interface ge-0/0/0
   ```

   NOTE: For a single-area OSPFv3 network, include the ospf3 statement at the [edit protocols] hierarchy level.

2. If you are done configuring the device, commit the configuration.

   ```
 [edit]
   ```
Results

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show protocols ospf
area 0.0.0.0 {
 interface ge-0/0/0.0;
}
```

To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

Verification

IN THIS SECTION
- Verifying the Interfaces in the Area | 78

Confirm that the configuration is working properly.

Verifying the Interfaces in the Area

Purpose
Verify that the interface for OSPF or OSPFv3 has been configured for the appropriate area. Confirm that the Area field displays the value that you configured.

Action
From operational mode, enter the `show ospf interface` command for OSPFv2, and enter the `show ospf3 interface` command for OSPFv3.
Example: Configuring a Multiarea OSPF Network

This example shows how to configure a multiarea OSPF network. To reduce traffic and topology maintenance for the devices in an OSPF autonomous system (AS), you can group the OSPF-enabled routing devices into multiple areas.

Requirements

Before you begin:

- Configure the device interfaces. See the Interfaces User Guide for Security Devices.
- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.
- Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.

Overview

To activate OSPF on a network, you must enable the OSPF protocol on all interfaces within the network on which OSPF traffic is to travel. To enable OSPF, you must configure one or more interfaces on the device within an OSPF area. Once the interfaces are configured, OSPF LSAs are transmitted on all OSPF-enabled interfaces, and the network topology is shared throughout the network.

Each OSPF area consists of routing devices configured with the same area number. In Figure 6 on page 80, Router B resides in the backbone area of the AS. The backbone area is always assigned area ID 0.0.0.0. (All area IDs must be unique within an AS.) All other networks or areas in the AS must be directly connected to the backbone area by a router that has interfaces in more than one area. In this example, these area
border routers are A, C, D, and E. You create an additional area (area 2) and assign it unique area ID 0.0.0.2, and then add interface ge-0/0/0 to the OSPF area.

To reduce traffic and topology maintenance for the devices in an OSPF AS, you can group them into multiple areas as shown in Figure 6 on page 80. In this example, you create the backbone area, create an additional area (area 2) and assign it unique area ID 0.0.0.2, and you configure Device B as the area border router, where interface ge-0/0/0 participates in OSPF area 0 and interface ge-0/0/2 participates in OSPF area 2.

Figure 6: Typical Multiarea OSPF Network Topology

Configuration

CLI Quick Configuration
To quickly configure a multiarea OSPF network, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

Device A

```
[edit]
set protocols ospf area 0.0.0.0 interface ge-0/0/0
set protocols ospf area 0.0.0.0 interface ge-0/0/1
```

Device C

```
[edit]
```
set protocols ospf area 0.0.0.0 interface ge-0/0/0

Device B

[edit]
set protocols ospf area 0.0.0.0 interface ge-0/0/0
set protocols ospf area 0.0.0.2 interface ge-0/0/2

Device D

[edit]
set protocols ospf area 0.0.0.2 interface ge-0/0/0
set protocols ospf area 0.0.0.2 interface ge-0/0/2

Device E

[edit]
set protocols ospf area 0.0.0.2 interface ge-0/0/2

Step-by-Step Procedure
To configure a multiarea OSPF network:

1. Configure the backbone area.

**NOTE:** For an OSPFv3 network, include the `ospf3` statement at the `[edit protocols]` hierarchy level.
2. Configure an additional area for your OSPF network.

   NOTE: For a multiarea OSPFv3 network, include the `ospf3` statement at the `[edit protocols]` hierarchy level.

3. If you are done configuring the device, commit the configuration.

**Results**

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.
To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

**Verification**

**IN THIS SECTION**
- **Verifying the Interfaces in the Area** | 83

Confirm that the configuration is working properly.

**Verifying the Interfaces in the Area**

**Purpose**
Verify that the interface for OSPF or OSPFv3 has been configured for the appropriate area. Confirm that the Area field displays the value that you configured.

**Action**
From operational mode, enter the `show ospf interface` command for OSPFv2, and enter the `show ospf3 interface` command for OSPFv3.

**Understanding Multiarea Adjacency for OSPF**

By default, a single interface can belong to only one OSPF area. However, in some situations, you might want to configure an interface to belong to more than one area. Doing so allows the corresponding link to be considered an intra-area link in multiple areas and to be preferred over other higher-cost intra-area paths. For example, you can configure an interface to belong to multiple areas with a high-speed backbone link between two area border routers (ABRs) so you can create multiarea adjacencies that belong to different areas.

In Junos OS Release 9.2 and later, you can configure a logical interface to belong to more than one OSPFv2 area. Support for OSPFv3 was introduced in Junos OS Release 9.4. As defined in RFC 5185, *OSPF Multi-Area Adjacency*, the ABRs establish multiple adjacencies belonging to different areas over the same logical interface. Each multiarea adjacency is announced as a point-to-point unnumbered link in the configured area by the routers connected to the link. For each area, one of the logical interfaces is treated as primary, and the remaining interfaces that are configured for the area are designated as secondary.

Any logical interface not configured as a secondary interface for an area is treated as the primary interface for that area. A logical interface can be configured as primary interface only for one area. For any other area for which you configure the interface, you must configure it as a secondary interface.

**Example: Configuring Multiarea Adjacency for OSPF**

This example shows how to configure multiarea adjacency for OSPF.
Requirements

Before you begin, plan your multiarea OSPF network. See “Example: Configuring a Multiarea OSPF Network” on page 79.

Overview

By default, a single interface can belong to only one OSPF area. You can configure a single interface to belong in multiple OSPF areas. Doing so allows the corresponding link to be considered an intra-area link in multiple areas and to be preferred over other higher-cost intra-area paths. When configuring a secondary interface, consider the following:

• For OSPFv2, you cannot configure point-to-multipoint and nonbroadcast multiaccess (NBMA) network interfaces as a secondary interface because secondary interfaces are treated as a point-to-point unnumbered link.

• Secondary interfaces are supported for LAN interfaces (the primary interface can be a LAN interface, but any secondary interfaces are treated as point-to-point unnumbered links over the LAN). In this scenario, you must ensure that there are only two routing devices on the LAN or that there are only two routing devices on the LAN that have secondary interfaces configured for a specific OSPF area.

• Since the purpose of a secondary interface is to advertise a topological path through an OSPF area, you cannot configure a secondary interface or a primary interface with one or more secondary interfaces to be passive. Passive interfaces advertise their address, but do not run the OSPF protocol (adjacencies are not formed and hello packets are not generated).

• Any logical interface not configured as a secondary interface for an area is treated as a primary interface for that area. A logical interface can be configured as the primary interface only for one area. For any other area for which you configure the interface, you must configure it as a secondary interface.

• You cannot configure the secondary statement with the interface all statement.

• You cannot configure a secondary interface by its IP address.
In this example, you configure an interface to be in two areas, creating a multiarea adjacency with a link between two ABRs: ABR R1 and ABR R2. On each ABR, area 0.0.0.1 contains the primary interface and is the primary link between the ABRs, and area 0.0.0.2 contains the secondary logical interface, which you configure by including the secondary statement. You configure interface so-0/0/0 on ABR R1 and interface so-1/0/0 on ABR R2.

Configuration

CLI Quick Configuration
To quickly configure a secondary logical interface for an OSPF area, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

Configuration on ABR R1:

```
[edit]
set interfaces so-0/0/0 unit 0 family inet address 192.0.2.45/24
set routing-options router-id 10.255.0.1
set protocols ospf area 0.0.0.1 interface so-0/0/0
set protocols ospf area 0.0.0.2 interface so-0/0/0 secondary
```

Configuration on ABR R2:
Step-by-Step Procedure

To configure a secondary logical interface:

1. Configure the device interfaces.

   NOTE: For OSPFv3, on each interface specify the inet6 address family and include the IPv6 address.

   [edit]
   set interfaces so-0/0/0 unit 0 family inet address 192.0.2.45/24
   [edit]
   user@R1# set interfaces so-0/0/0 unit 0 family inet address 192.0.2.45/24

   [edit]
   user@R2# set interfaces so-1/0/0 unit 0 family inet address 192.0.2.37/24

2. Configure the router identifier.

   [edit]
   user@R1# set routing-options router-id 10.255.0.1
   [edit]
   user@R2# set routing-options router-id 10.255.0.2

3. On each ABR, configure the primary interface for the OSPF area.

   NOTE: For OSPFv3, include the ospf3 statement at the [edit protocols] hierarchy level.

   [edit]
   user@R1# set protocols ospf area 0.0.0.1 interface so-0/0/0
4. On each ABR, configure the secondary interface for the OSPF area.

```
[edit]
user@R2# set protocols ospf area 0.0.0.1 interface so-1/0/0
```

```
[edit]
user@R1# set protocols ospf area 0.0.0.2 so-0/0/0 secondary
```

```
[edit]
user@R2# set protocols ospf area 0.0.0.2 so-1/0/0 secondary
```

5. If you are done configuring the devices, commit the configuration.

```
[edit protocols ospf area 0.0.0.1]
user@host# commit
```

**Results**

Confirm your configuration by entering the `show interfaces`, `show routing-options`, and the `show protocols ospf` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

**Configuration on ABR R1:**

```
user@R1# show interfaces
so-0/0/0 {
 unit 0 {
 family inet {
 address 192.0.2.45/24;
 }
 }
}
```

```
user@R1# show routing-options
router-id 10.255.0.1;
```

```
user@R1# show protocols ospf
area 0.0.0.1 {
 interface so-0/0/0.0;
```
Configuration on ABR R2:

```
user@R2# show interfaces
so-0/0/0 {
 unit 0 {
 family inet {
 address 192.0.2.37/24;
 }
 }
}
```

```
user@R2# show routing-options
router-id 10.255.0.2;
```

```
user@R2# show protocols ospf
area 0.0.0.1 {
 interface so-1/0/0.0;
}
area 0.0.0.2 {
 interface so-1/0/0.0 {
 secondary;
 }
}
```

Verification

IN THIS SECTION

- Verifying the Secondary Interface  |  90
- Verifying the Interfaces in the Area  |  90
- Verifying Neighbor Adjacencies  |  90
Confirm that the configuration is working properly.

**Verifying the Secondary Interface**

**Purpose**
Verify that the secondary interface appears for the configured area. The Secondary field is displayed if the interface is configured as a secondary interface. The output might also show the same interface listed in multiple areas.

**Action**
From operational mode, enter the `show ospf interface detail` command for OSPFv2, and enter the `show ospf3 interface detail` command for OSPFv3.

**Verifying the Interfaces in the Area**

**Purpose**
Verify the interfaces configured for the specified area.

**Action**
From operational mode, enter the `show ospf interface area area-id` command for OSPFv2, and enter the `show ospf3 interface area area-id` command for OSPFv3.

**Verifying Neighbor Adjacencies**

**Purpose**
Verify the primary and secondary neighbor adjacencies. The Secondary field displays if the neighbor is on a secondary interface.

**Action**
From operational mode, enter the `show ospf neighbor detail` command for OSPFv2, and enter the `show ospf3 neighbor detail` command for OSPFv3.

---

**Understanding Multiarea Adjacencies for OSPFv3**

An area is a set of networks and hosts within an OSPFv3 domain that have been administratively grouped together. By default, a single interface can belong to only one OSPFv3 area. However, in some situations, you might want to configure an interface to belong to more than one area to avoid suboptimal routing. Doing so allows the corresponding link to be considered an intra-area link in multiple areas and to be preferred over higher-cost intra-area links.

In Junos OS Release 9.2 and later, you can configure an interface to belong to more than one OSPFv2 area. Support for OSPFv3 was introduced in Junos OS Release 9.4. As defined in RFC 5185, *OSPF Multi-Area Adjacency*, the ABRs establish multiple adjacencies belonging to different areas over the same logical
interface. Each multiarea adjacency is announced as a point-to-point unnumbered link in the configured area by the routers connected to the link.

An interface is considered to be primarily in one area. When you configure the same interface in another area, it is considered to be secondarily in the other area. You designate the secondary area by including the secondary statement at the [edit protocols ospf3 area area-number interface interface-name] hierarchy level.

---

### Example: Configuring a Multiarea Adjacency for OSPFv3

This example shows how to configure a multiarea adjacency for OSPFv3.

**Requirements**

No special configuration beyond device initialization is required before configuring this example.

**Overview**

OSPFv3 intra-area paths are preferred over inter-area paths. In this example, Device R1 and Device R2 are area border routers (ABRs) with interfaces in both area 0 and in area 1. The link between Device R1 and R2 is in area 0 and is a high-speed link. The links in area 1 are lower speed.

If you want to forward some of area 1’s traffic between Device R1 and Device R2 over the high-speed link, one method to accomplish this goal is to make the high-speed link a multiarea adjacency so that the link is part of both area 0 and area 1.

If the high-speed link between Device R1 and Device R2 remains in area 1 only, Device R1 always routes traffic to Device R4 and Device R5 through area 1 over the lower-speed links. Device R1 also uses the intra-area area 1 path through Device R3 to get to area 1 destinations downstream of Device R2.

Clearly, this scenario results in suboptimal routing.
An OSPF virtual link cannot be used to resolve this issue without moving the link between Device R1 and Device R2 to area 1. You might not want to do this if the physical link belongs to the network's backbone topology.

The OSPF/OSPFv3 protocol extension described in RFC 5185, OSPF Multi-Area Adjacency resolves the issue, by allowing the link between Device R1 and Device R2 to be part of both the backbone area and area 1.

To create a multiarea adjacency, you configure an interface to be in two areas, with ge-1/2/0 on Device R1 configured in both area 0 and area 1, and ge-1/2/0 on Device R2 configured in both area 0 and area 1. On both Device R1 and Device R2, area 0 contains the primary interface and is the primary link between the devices. Area 1 contains the secondary logical interface, which you configure by including the `secondary` statement.

**Figure 8: OSPFv3 Multiarea Adjacency**

"CLI Quick Configuration" on page 92 shows the configuration for all of the devices in Figure 8 on page 92. The section "Step-by-Step Procedure" on page 94 describes the steps on Device R1 and Device R2.

**Configuration**

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the `[edit]` hierarchy level.

**Device R1**

```bash
set interfaces ge-1/2/0 unit 0 family inet6 address 2001:db8::1/64
set interfaces fe-1/2/1 unit 0 family inet6 address 2001:db8::2/64
```
set interfaces lo0 unit 0 family inet address 1.1.1.1/32
set interfaces lo0 unit 0 family inet6 address 1::1/128
set protocols ospf3 area 0.0.0.0 interface ge-1/2/0.0
set protocols ospf3 area 0.0.0.1 interface fe-1/2/1.0
set protocols ospf3 area 0.0.0.1 interface ge-1/2/0.0 secondary

Device R2

set interfaces ge-1/2/0 unit 0 family inet6 address 9009:1::2/64
set interfaces fe-1/2/1 unit 0 family inet6 address 9009:4::1/64
set interfaces fe-1/2/2 unit 0 family inet6 address 9009:6::2/64
set interfaces lo0 unit 0 family inet address 2.2.2.2/32
set interfaces lo0 unit 0 family inet6 address 2::2/128
set protocols ospf3 area 0.0.0.0 interface ge-1/2/0.0
set protocols ospf3 area 0.0.0.0 interface lo0.0 passive
set protocols ospf3 area 0.0.0.1 interface fe-1/2/2.0
set protocols ospf3 area 0.0.0.1 interface fe-1/2/1.0
set protocols ospf3 area 0.0.0.1 interface ge-1/2/0.0 secondary

Device R3

set interfaces fe-1/2/0 unit 0 family inet6 address 9009:2::1/64
set interfaces fe-1/2/1 unit 0 family inet6 address 9009:3::1/64
set interfaces lo0 unit 0 family inet address 3.3.3.3/32
set interfaces lo0 unit 0 family inet6 address 3::3/128
set protocols ospf3 area 0.0.0.1 interface fe-1/2/0.0
set protocols ospf3 area 0.0.0.1 interface lo0.0 passive
set protocols ospf3 area 0.0.0.1 interface fe-1/2/1.0

Device R4

set interfaces fe-1/2/0 unit 0 family inet6 address 9009:3::2/64
set interfaces fe-1/2/1 unit 0 family inet6 address 9009:4::1/64
Device R5

```
set interfaces fe-1/2/0 unit 0 family inet6 address 9009:5::2/64
set interfaces lo0 unit 0 family inet address 5.5.5.5/32
set interfaces lo0 unit 0 family inet6 address 5::5/128
set protocols ospf3 area 0.0.0.1 interface lo0.0 passive
set protocols ospf3 area 0.0.0.1 interface fe-1/2/0.0
```

Device R6

```
set interfaces fe-1/2/0 unit 0 family inet6 address 9009:6::2/64
set interfaces lo0 unit 0 family inet address 6.6.6.6/32
set interfaces lo0 unit 0 family inet6 address 6::6/128
set protocols ospf3 area 0.0.0.1 interface lo0.0 passive
set protocols ospf3 area 0.0.0.1 interface fe-1/2/0.0
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure Device R1:

1. Configure the interfaces.

```
[edit interfaces]
user@R1# set ge-1/2/0 unit 0 family inet6 address 9009:1::1/64
user@R1# set fe-1/2/1 unit 0 family inet6 address 9009:2::2/64
user@R1# set lo0 unit 0 family inet address 1.1.1.1/32
```
2. Enable OSPFv3 on the interfaces that are in area 0.

```plaintext
[edit protocols ospf3 area 0.0.0.0]
user@R1# set interface ge-1/2/0.0
user@R1# set interface lo0.0 passive
```

3. Enable OSPFv3 on the interface that is in area 1.

```plaintext
[edit protocols ospf3 area 0.0.0.1]
user@R1# set interface fe-1/2/1.0
user@R1# set interface ge-1/2/0.0 secondary
```

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To configure Device R2:

1. Configure the interfaces.

```plaintext
[edit interfaces]
user@R2# set ge-1/2/0 unit 0 family inet6 address 9009::2/64
user@R2# set fe-1/2/1 unit 0 family inet6 address 9009::4/64
user@R2# set fe-1/2/2 unit 0 family inet6 address 9009::6/64
user@R2# set lo0 unit 0 family inet address 2.2.2.2/32
user@R2# set lo0 unit 0 family inet6 address 2::2/128
```

2. Enable OSPFv3 on the interfaces that are in area 0.

```plaintext
[edit protocols ospf3 area 0.0.0.0]
user@R2# set interface ge-1/2/0.0
user@R2# set interface lo0.0 passive
```

3. Enable OSPFv3 on the interface that is in area 1.

```plaintext
[edit protocols ospf3 area 0.0.0.1]
user@R2# set interface fe-1/2/2.0
```
Results

From configuration mode, confirm your configuration by entering the `show interfaces` and `show protocols` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Device R1

```bash
user@R1# show interfaces
ge-1/2/0 {
 unit 0 {
 family inet6 {
 address 9009:1::1/64;
 }
 }
}
fe-1/2/1 {
 unit 0 {
 family inet6 {
 address 9009:2::2/64;
 }
 }
}
lo0 {
 unit 0 {
 family inet {
 address 1.1.1.1/32;
 }
 family inet6 {
 address 1::1/128;
 }
 }
}

user@R1# show protocols
ospf3 {
 area 0.0.0.0 {
 interface ge-1/2/0.0;
 }
}
```
interface lo0.0 {
    passive;
}
}
area 0.0.0.1 {
    interface fe-1/2/1.0;
    interface ge-1/2/0.0 {
        secondary;
    }
}
}

Device R2

user@R2# show interfaces
ge-1/2/0 {
    unit 0 {
        family inet6 {
            address 9009:1::2/64;
        }
    }
}
fe-1/2/1 {
    unit 0 {
        family inet6 {
            address 9009:4::1/64;
        }
    }
}
fe-1/2/2 {
    unit 0 {
        family inet6 {
            address 9009:6::2/64;
        }
    }
}
lo0 {
    unit 0 {
        family inet {
            address 2.2.2.2/32;
        }
        family inet6 {
            address 2001:db8::1/64;
        }
    }
}
If you are done configuring the device, enter commit from configuration mode.

Verification

IN THIS SECTION
- Verifying the Flow of Traffic | 98
- Verifying That the Traffic Flow Changes When You Remove the Multiarea Adjacency | 99

Confirm that the configuration is working properly.

Verifying the Flow of Traffic

Purpose
Verify that traffic uses the high-speed link between Device R1 and Device R2 to reach destinations in area 1.

Action
From operational mode on Device R1, use the traceroute command check the traffic flow to Device R5 and Device R6.

```plaintext
user@R1> traceroute 6::6
traceroute6 to 6::6 (6::6) from 9009:1::1, 64 hops max, 12 byte packets
 1 9009:1::2 (9009:1::2) 1.361 ms 1.166 ms 1.117 ms
 2 6::6 (6::6) 1.578 ms 1.484 ms 1.488 ms

user@R1> traceroute 5::5
traceroute6 to 5::5 (5::5) from 9009:1::1, 64 hops max, 12 byte packets
 1 9009:1::2 (9009:1::2) 1.312 ms 1.472 ms 1.132 ms
 2 9009:4::1 (9009:4::1) 1.137 ms 1.174 ms 1.126 ms
 3 5::5 (5::5) 1.591 ms 1.445 ms 1.441 ms
```

Meaning
The traceroute output shows that traffic uses the 9009:1:: link between Device R1 and Device R2.

Verifying That the Traffic Flow Changes When You Remove the Multiarea Adjacency

Purpose
Verify the results without the multiarea adjacency configured.

Action
1. Deactivate the backbone link interfaces in area 1.
```
user@R1# deactivate protocols ospf3 area 0.0.0.1 interface ge-1/2/0.0
user@R1# commit
user@R2# deactivate protocols ospf3 area 0.0.0.1 interface ge-1/2/0.0
user@R2# commit
```

2. From operational mode on Device R1, use the traceroute command check the traffic flow to Device R5 and Device R6.
```
user@R1> traceroute 6::6
```
### Understanding OSPF Stub Areas, Totally Stubby Areas, and Not-So-Stubby Areas

Figure 9 on page 101 shows an autonomous system (AS) across which many external routes are advertised. If external routes make up a significant portion of a topology database, you can suppress the advertisements in areas that do not have links outside the network. By doing so, you can reduce the amount of memory the nodes use to maintain the topology database and free it for other uses.
To control the advertisement of external routes into an area, OSPF uses stub areas. By designating an area border router (ABR) interface to the area as a stub interface, you suppress external route advertisements through the ABR. Instead, the ABR advertises a default route (through itself) in place of the external routes and generates network summary (Type 3) link-state advertisements (LSAs). Packets destined for external routes are automatically sent to the ABR, which acts as a gateway for outbound traffic and routes the traffic appropriately.

**NOTE:** You must explicitly configure the ABR to generate a default route when attached to a stub or not-so-stubby-area (NSSA). To inject a default route with a specified metric value into the area, you must configure the **default-metric** option and specify a metric value.

For example, area 0.0.0.3 in Figure 9 on page 101 is not directly connected to the outside network. All outbound traffic is routed through the ABR to the backbone and then to the destination addresses. By designating area 0.0.0.3 as a stub area, you reduce the size of the topology database for that area by limiting the route entries to only those routes internal to the area.

A stub area that only allows routes internal to the area and restricts Type 3 LSAs from entering the stub area is often called a **totally stubby area**. You can convert area 0.0.0.3 to a totally stubby area by configuring the ABR to only advertise and allow the default route to enter into the area. External routes and destinations to other areas are no longer summarized or allowed into a totally stubby area.

**NOTE:** If you incorrectly configure a totally stubby area, you might encounter network connectivity issues. You should have advanced knowledge of OSPF and understand your network environment before configuring totally stubby areas.
Similar to area 0.0.0.3 in Figure 9 on page 101, area 0.0.0.4 has no external connections. However, area 0.0.0.4 has static customer routes that are not internal OSPF routes. You can limit the external route advertisements to the area and advertise the static customer routes by designating the area an NSSA. In an NSSA, the AS boundary router generates NSSA external (Type 7) LSAs and floods them into the NSSA, where they are contained. Type 7 LSAs allow an NSSA to support the presence of AS boundary routers and their corresponding external routing information. The ABR converts Type 7 LSAs into AS external (Type 5) LSAs and leaks them to the other areas, but external routes from other areas are not advertised within the NSSA.

**Example: Configuring OSPF Stub and Totally Stubby Areas**

This example shows how to configure an OSPF stub area and a totally stubby area to control the advertisement of external routes into an area.

**Requirements**

Before you begin:

- Configure the device interfaces. See the *Interfaces User Guide for Security Devices*.
- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.
- Configure a multiarea OSPF network. See "Example: Configuring a Multiarea OSPF Network" on page 79.
Overview

The backbone area, which is 0 in Figure 10 on page 104, has a special function and is always assigned the area ID 0.0.0.0. Area IDs are unique numeric identifiers, in dotted decimal notation. Area IDs need only be unique within an autonomous system (AS). All other networks or areas (such as 3, 7, and 9) in the AS must be directly connected to the backbone area by area border routers (ABRs) that have interfaces in more than one area.

Stub areas are areas through which or into which OSPF does not flood AS external link-state advertisements (Type 5 LSAs). You might create stub areas when much of the topology database consists of AS external advertisements and you want to minimize the size of the topology databases on the internal routers in the stub area.

The following restrictions apply to stub areas:

- You cannot create a virtual link through a stub area.
- A stub area cannot contain an AS boundary router.
- You cannot configure the backbone as a stub area.
- You cannot configure an area as both a stub area and an not-so-stubby area (NSSA).

In this example, you configure each routing device in area 7 (area ID 0.0.0.7) as a stub router and some additional settings on the ABR:

- **stub**—Specifies that this area become a stub area and not be flooded with Type 5 LSAs. You must include the stub statement on all routing devices that are in area 7 because this area has no external connections.
- **default-metric**—Configures the ABR to generate a default route with a specified metric into the stub area. This default route enables packet forwarding from the stub area to external destinations. You configure this option only on the ABR. The ABR does not automatically generate a default route when attached to a stub. You must explicitly configure this option to generate a default route.
- **no-summaries**—(Optional) Prevents the ABR from advertising summary routes into the stub area by converting the stub area into a totally stubby area. If configured in combination with the default-metric statement, a totally stubby area only allows routes internal to the area and advertises the default route into the area. External routes and destinations to other areas are no longer summarized or allowed into a totally stubby area. Only the ABR requires this additional configuration because it is the only routing device within the totally stubby area that creates Type 3 LSAs used to receive and send traffic from outside of the area.
NOTE:

In Junos OS Release 8.5 and later, the following applies:

- A router-identifier interface that is not configured to run OSPF is no longer advertised as a stub network in OSPF LSAs.
- OSPF advertises a local route with a prefix length of 32 as a stub link if the loopback interface is configured with a prefix length other than 32. OSPF also advertises the direct route with the configured mask length, as in earlier releases.

Figure 10: OSPF Network Topology with Stub Areas and NSSAs

Configuration

CLI Quick Configuration

- To quickly configure an OSPF stub area, copy the following command and paste it into the CLI. You must configure all routing devices that are part of the stub area.

  ```
 [edit]
 set protocols ospf area 07 stub
  ```

- To quickly configure the ABR to inject a default route into the area, copy the following command and paste it into the CLI. You apply this configuration only on the ABR.

  ```
 [edit]
 set protocols ospf area 07 stub default-metric 10
  ```
• (Optional) To quickly configure the ABR to restrict all summary advertisements and allow only internal routes and default route advertisements into the area, copy the following command and paste it into the CLI. You apply this configuration only on the ABR.

```
[edit]
set protocols ospf area 0.0.0.7 stub no-summaries
```

**Step-by-Step Procedure**

To configure OSPF stub areas:

1. On all routing devices in the area, configure an OSPF stub area.

   ```
 user@host# set protocols ospf area 0.0.0.7 stub
   ```

2. On the ABR, inject a default route into the area.

   ```
 user@host# set protocols ospf area 0.0.0.7 stub default-metric 10
   ```

3. (Optional) On the ABR, restrict summary LSAs from entering the area. This step converts the stub area into a totally stubby area.

   ```
 user@host# set protocols ospf area 0.0.0.7 stub no-summaries
   ```

4. If you are done configuring the devices, commit the configuration.

   ```
 user@host# commit
   ```

**Results**

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.
Configuration on all routing devices:

```bash
user@host# show protocols ospf
area 0.0.0.7 {
 stub;
}
```

Configuration on the ABR (the output also includes the optional setting):

```bash
user@host# show protocols ospf
area 0.0.0.7 {
 stub default-metric 10 no-summaries;
}
```

To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

**Verification**

**IN THIS SECTION**

- Verifying the Interfaces in the Area | 106
- Verifying the Type of OSPF Area | 106

Confirm that the configuration is working properly.

**Verifying the Interfaces in the Area**

**Purpose**

Verify that the interface for OSPF has been configured for the appropriate area. Confirm that the output includes Stub as the type of OSPF area.

**Action**

From operational mode, enter the `show ospf interface detail` command for OSPFv2, and enter the `show ospf3 interface detail` command for OSPFv3.

**Verifying the Type of OSPF Area**

**Purpose**

Verify that the OSPF area is a stub area. Confirm that the output displays Normal Stub as the Stub type.

**Action**
From operational mode, enter the `show ospf overview` command for OSPFv2, and enter the `show ospf3 overview` command for OSPFv3.

### Example: Configuring OSPF Not-So-Stubby Areas

#### IN THIS SECTION
- Requirements | 107
- Overview | 107
- Configuration | 109
- Verification | 113

This example shows how to configure an OSPF not-so-stubby area (NSSA) to control the advertisement of external routes into an area.

#### Requirements

Before you begin:

- Configure the device interfaces. See the *Interfaces User Guide for Security Devices*.
- Configure the router identifiers for the devices in your OSPF network. See “Example: Configuring an OSPF Router Identifier” on page 69.
- Control OSPF designated router election. See “Example: Controlling OSPF Designated Router Election” on page 71.
- Configure a multiarea OSPF network. See “Example: Configuring a Multiarea OSPF Network” on page 79.

#### Overview

The backbone area, which is 0 in Figure 11 on page 109, has a special function and is always assigned the area ID 0.0.0.0. Area IDs are unique numeric identifiers, in dotted decimal notation. Area IDs need only be unique within an AS. All other networks or areas (such as 3, 7, and 9) in the AS must be directly connected to the backbone area by ABRs that have interfaces in more than one area.

An OSPF stub area has no external routes, so you cannot redistribute routes from another protocol into a stub area. OSPF NSSAs allow external routes to be flooded within the area.
In addition, you might have a situation when exporting Type 7 LSAs into the NSSA is unnecessary. When an AS boundary router is also an ABR with an NSSA attached, Type 7 LSAs are exported into the NSSA by default. If the ABR is attached to multiple NSSAs, a separate Type 7 LSA is exported into each NSSA by default. During route redistribution, this routing device generates both Type 5 LSAs and Type 7 LSAs. You can disable exporting Type 7 LSAs into the NSSA.

NOTE: The following restriction applies to NSSAs: You cannot configure an area as both a stub area and an NSSA.

You configure each routing device in area 9 (area ID 0.0.0.9) with the following setting:

- **nssa**—Specifies an OSPF NSSA. You must include the `nssa` statement on all routing devices in area 9 because this area only has external connections to static routes.

You also configure the ABR in area 9 with the following additional settings:

- **no-summaries**—Prevents the ABR from advertising summary routes into the NSSA. If configured in combination with the `default-metric` statement, the NSSA only allows routes internal to the area and advertises the default route into the area. External routes and destinations to other areas are no longer summarized or allowed into the NSSA. Only the ABR requires this additional configuration because it is the only routing device within the NSSA that creates Type 3 LSAs used to receive and send traffic from outside the area.

- **default-lsa**—Configures the ABR to generate a default route into the NSSA. In this example, you configure the following:
  - **default-metric**—Specifies that the ABR generate a default route with a specified metric into the NSSA. This default route enables packet forwarding from the NSSA to external destinations. You configure this option only on the ABR. The ABR does not automatically generate a default route when attached to an NSSA. You must explicitly configure this option for the ABR to generate a default route.
  - **metric-type**—(Optional) Specifies the external metric type for the default LSA, which can be either Type 1 or Type 2. When OSPF exports route information from external ASs, it includes a cost, or external metric, in the route. The difference between the two metrics is how OSPF calculates the cost of the route. Type 1 external metrics are equivalent to the link-state metric, where the cost is equal to the sum of the internal costs plus the external cost. Type 2 external metrics use only the external cost assigned by the AS boundary router. By default, OSPF uses the Type 2 external metric.
  - **type-7**—(Optional) Floods Type 7 default LSAs into the NSSA if the `no-summaries` statement is configured. By default, when the `no-summaries` statement is configured, a Type 3 LSA is injected into NSSAs for Junos OS release 5.0 and later. To support backward compatibility with earlier Junos OS releases, include the `type-7` statement.
The second example also shows the optional configuration required to disable exporting Type 7 LSAs into the NSSA by including the `no-nssa-abr` statement on the routing device that performs the functions of both an ABR and an AS boundary router.

**Figure 11: OSPF Network Topology with Stub Areas and NSSAs**

![OSPF Network Topology with Stub Areas and NSSAs](image)

### Configuration

**IN THIS SECTION**

- Configuring Routing Devices to Participate in a Not-So-Stubby-Area | 109
- Disabling the Export of Type 7 Link State Advertisements into Not-So-Stubby Areas | 111

### Configuring Routing Devices to Participate in a Not-So-Stubby-Area

**CLI Quick Configuration**

To quickly configure an OSPF NSSA, copy the following command and paste it into the CLI. You must configure all routing devices that are part of the NSSA.

```plaintext
[edit]
set protocols ospf area 0.0.0.9 nssa
```

To quickly configure an ABR that participates in an OSPF NSSA, copy the following commands and paste them into the CLI.
Step-by-Step Procedure
To configure OSPF NSSAs:

1. On all routing devices in the area, configure an OSPF NSSA.

   **NOTE:** To specify an OSPFv3 NSSA area, include the `ospf3` statement at the `[edit protocols]` hierarchy level.

   [edit]
   user@host# set protocols ospf area 0.0.0.9 nssa

2. On the ABR, enter OSPF configuration mode and specify the NSSA area 0.0.0.9 that you already created.

   [edit ]
   user@host# edit protocols ospf area 0.0.0.9 nssa

3. On the ABR, inject a default route into the area.

   [edit protocols ospf area 0.0.0.9 nssa]
   user@host# set default-lsa default-metric 10

4. (Optional) On the ABR, specify the external metric type for the default route.

   [edit protocols ospf area 0.0.0.9 nssa]
   user@host# set default-lsa metric-type 1

5. (Optional) On the ABR, specify the flooding of Type 7 LSAs.

   [edit protocols ospf area 0.0.0.9 nssa]
   user@host# set default-lsa type-7
6. On the ABR, restrict summary LSAs from entering the area.

```
[edit protocols ospf area 0.0.0.9 nssa]
user@host# set no-summaries
```

7. If you are done configuring the devices, commit the configuration.

```
[edit protocols ospf area 0.0.0.9 nssa]
user@host# commit
```

**Results**

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Configuration on all routing devices in the area:

```
user@host# show protocols ospf
area 0.0.0.9 {
 nssa;
}
```

Configuration on the ABR. The output also includes the optional `metric-type` and `type-7` statements.

```
user@host# show protocols ospf
area 0.0.0.9 {
 nssa {
 default-lsa {
 default-metric 10;
 metric-type 1;
 type-7;
 }
 no-summaries;
 }
}
```

To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

**Disabling the Export of Type 7 Link State Advertisements into Not-So-Stubby Areas**

**CLI Quick Configuration**

To quickly disable exporting Type 7 LSAs into the NSSA, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from
configuration mode. You configure this setting on an AS boundary router that is also an ABR with an NSSA area attached.

```
[edit]
set protocols ospf no-nssa-abr
```

**Step-by-Step Procedure**

You can configure this setting if you have an AS boundary router that is also an ABR with an NSSA area attached.

1. Disable exporting Type 7 LSAs into the NSSA.

   ```
 NOTE: To specify OSPFv3, include the `ospf3` statement at the [edit protocols] hierarchy level.
   ```

```
[edit]
user@host# set protocols ospf no-nssa-abr
```

2. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

**Results**

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show protocols ospf
no-nssa-abr;
```

To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.
Verification

IN THIS SECTION
- Verifying the Interfaces in the Area | 113
- Verifying the Type of OSPF Area | 113
- Verifying the Type of LSAs | 113

Confirm that the configuration is working properly.

**Verifying the Interfaces in the Area**

**Purpose**
Verify that the interface for OSPF has been configured for the appropriate area. Confirm that the output includes Stub NSSA as the type of OSPF area.

**Action**
From operational mode, enter the `show ospf interface detail` command for OSPFv2, and enter the `show ospf3 interface detail` command for OSPFv3.

**Verifying the Type of OSPF Area**

**Purpose**
Verify that the OSPF area is a stub area. Confirm that the output displays Not so Stubby Stub as the Stub type.

**Action**
From operational mode, enter the `show ospf overview` command for OSPFv2, and enter the `show ospf3 overview` command for OSPFv3.

**Verifying the Type of LSAs**

**Purpose**
Verify the type of LSAs that are in the area. If you disabled exporting Type 7 LSAs into an NSSA, confirm that the Type field does not include NSSA as a type of LSA.

**Action**
From operational mode, enter the `show ospf overview` command for OSPFv2, and enter the `show ospf3 overview` command for OSPFv3.
Understanding OSPFv3 Stub and Totally Stubby Areas

Junos OS OSPFv3 configuration for IPv6 networks is identical to OSPFv2 configuration. You configure the protocol with `set ospf3` commands instead of `set ospf` commands and use `show ospf3` commands instead of `show ospf` commands to check the OSPF status. Also, make sure to set IPv6 addresses on the interfaces running OSPFv3.

Stub areas are areas through which or into which OSPF does not flood AS external link-state advertisements (Type 5 LSAs). You might create stub areas when much of the topology database consists of AS external advertisements and you want to minimize the size of the topology databases on the internal routers in the stub area.

The following restrictions apply to stub areas:

- You cannot create a virtual link through a stub area.
- A stub area cannot contain an AS boundary router.
- You cannot configure the backbone as a stub area.
- You cannot configure an area as both a stub area and an not-so-stubby area (NSSA).

Example: Configuring OSPFv3 Stub and Totally Stubby Areas

This example shows how to configure an OSPFv3 stub area and a totally stubby area to control the advertisement of external routes into an area.

Requirements

No special configuration beyond device initialization is required before configuring this example.
Overview

Figure 12 on page 115 shows the topology used in this example.

Figure 12: OSPFv3 Network Topology with Stub Areas

In this example, you configure each routing device in area 7 (area ID 0.0.0.7) as a stub router and some additional settings on the ABR:

- **stub**—Specifies that this area become a stub area and not be flooded with Type 5 LSAs. You must include the `stub` statement on all routing devices that are in area 7 because this area has no external connections.

- **default-metric**—Configures the ABR to generate a default route with a specified metric into the stub area. This default route enables packet forwarding from the stub area to external destinations. You configure this option only on the ABR. The ABR does not automatically generate a default route when attached to a stub. You must explicitly configure this option to generate a default route.

- **no-summaries**—(Optional) Prevents the ABR from advertising summary routes into the stub area by converting the stub area into a totally stubby area. If configured in combination with the `default-metric` statement, a totally stubby area only allows routes internal to the area and advertises the default route into the area. External routes and destinations to other areas are no longer summarized or allowed into a totally stubby area. Only the ABR requires this additional configuration because it is the only routing device within the totally stubby area that creates Type 3 LSAs used to receive and send traffic from outside of the area.
NOTE:

In Junos OS Release 8.5 and later, the following applies:

- A router-identifier interface that is not configured to run OSPF is no longer advertised as a stub network in OSPF LSAs.

- OSPF advertises a local route with a prefix length of 32 as a stub link if the loopback interface is configured with a prefix length other than 32. OSPF also advertises the direct route with the configured mask length, as in earlier releases.

"CLI Quick Configuration" on page 116 shows the configuration for all of the devices in Figure 12 on page 115. The section "Step-by-Step Procedure" on page 118 describes the steps on Device 2, Device 6, Device 7, and Device 8.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device 1

```
set interfaces fe-1/2/0 unit 0 family inet6 address 9009:1::1/64
set interfaces fe-1/2/1 unit 0 family inet6 address 9009:2::1/64
set interfaces fe-1/2/2 unit 0 family inet6 address 9009:3::1/64
set interfaces lo0 unit 0 family inet address 1.1.1.1/32
set protocols ospf3 area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf3 area 0.0.0.0 interface fe-1/2/1.0
set protocols ospf3 area 0.0.0.0 interface fe-1/2/2.0
set protocols ospf3 area 0.0.0.0 interface lo0.0 passive
```

Device 2

```
set interfaces fe-1/2/0 unit 0 family inet6 address 9009:2::2/64
set interfaces fe-1/2/1 unit 0 family inet6 address 9009:4::1/64
set interfaces lo0 unit 0 family inet address 2.2.2.2/32
set protocols ospf3 area 0.0.0.0 interface fe-1/2/0.0
```
set protocols ospf3 area 0.0.0.0 interface lo0.0 passive
set protocols ospf3 area 0.0.0.7 stub default-metric 10
set protocols ospf3 area 0.0.0.7 stub no-summaries
set protocols ospf3 area 0.0.0.7 interface fe-1/2/1.0

Device 3

set interfaces fe-1/2/0 unit 0 family inet6 address 9009:3::2/64
set interfaces fe-1/2/1 unit 0 family inet6 address 9009:5::1/64
set interfaces lo0 unit 0 family inet address 3.3.3.3/32
set protocols ospf3 area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf3 area 0.0.0.0 interface lo0.0 passive
set protocols ospf3 area 0.0.0.9 interface fe-1/2/1.0

Device 4

set interfaces fe-1/2/0 unit 0 family inet6 address 9009:1::2/64
set interfaces fe-1/2/1 unit 0 family inet6 address 9009:6::1/64
set interfaces lo0 unit 0 family inet address 4.4.4.4/32
set protocols ospf3 area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf3 area 0.0.0.0 interface lo0.0 passive
set protocols ospf3 area 0.0.0.3 interface fe-1/2/1.0

Device 5

set interfaces fe-1/2/0 unit 0 family inet6 address 9009:6::2/64
set interfaces lo0 unit 0 family inet address 5.5.5.5/32
set protocols ospf3 area 0.0.0.3 interface fe-1/2/0.0
set protocols ospf3 area 0.0.0.3 interface lo0.0 passive

Device 6
Device 7

```
set interfaces fe-1/2/0 unit 0 family inet6 address 9009:5::2/64
set interfaces fe-1/2/1 unit 0 family inet6 address 9009:7::1/64
set interfaces lo0 unit 0 family inet address 7.7.7/32
set protocols ospf3 export static-to-ospf
set protocols ospf3 area 0.0.0.9 interface fe-1/2/0.0
set protocols ospf3 area 0.0.0.9 interface lo0.0 passive
set policy-options policy-statement static-to-ospf term 1 from protocol static
set policy-options policy-statement static-to-ospf term 1 then accept
set routing-options rib inet6.0 static route 1010::1/128 next-hop 9009:7::2
set routing-options rib inet6.0 static route 2020::1/128 next-hop 9009:7::2
```

Device 8

```
set interfaces fe-1/2/0 unit 0 family inet6 address 9009:7::2/64
set interfaces lo0 unit 0 family inet address 8.8.8.8/32
set interfaces lo0 unit 0 family inet6 address 1010::1/128
set interfaces lo0 unit 0 family inet6 address 2020::1/128
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure Device 2:

1. Configure the interfaces.

```
[edit interfaces]
user@2# set fe-1/2/0 unit 0 family inet6 address 9009:2::2/64
```
2. Enable OSPFv3 on the interfaces that are in area 0.

```
[edit protocols ospf3 area 0.0.0.0]
user@2# set interface fe-1/2/0.0
user@2# set interface lo0.0 passive
```

3. Enable OSPFv3 on the interface that is in area 0.

```
[edit protocols ospf3 area 0.0.0.7]
user@2# set interface fe-1/2/1.0
```

4. Specify area 7 as an OSPFv3 stub area.

   The `stub` statement is required on all routing devices in the area.

```
[edit protocols ospf3 area 0.0.0.7]
user@2# set stub
```

5. On the ABR, inject a default route into the area.

```
[edit protocols ospf3 area 0.0.0.7]
user@2# set stub default-metric 10
```

6. (Optional) On the ABR, restrict summary LSAs from entering the area.

   This step converts the stub area into a totally stubby area.

```
[edit protocols ospf3 area 0.0.0.7]
user@2# set stub no-summaries
```

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the CLI User Guide.

To configure Device 6:

1. Configure the interfaces.
2. Enable OSPFv3 on the interface that is in area 7.

   [edit protocols ospf3 area 0.0.0.7]
   user@6# set interface fe-1/2/0.0
   user@6# set interface lo0.0 passive

3. Specify area 7 as an OSPFv3 stub area.

   The **stub** statement is required on all routing devices in the area.

   [edit protocols ospf3 area 0.0.0.7]
   user@6# set stub

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the CLI User Guide.

To configure Device 7:

1. Configure the interfaces.

   [edit interfaces]
   user@7# set fe-1/2/0 unit 0 family inet6 address 9009:5::2/64
   user@7# set fe-1/2/1 unit 0 family inet6 address 9009:7::1/64
   user@7# set lo0 unit 0 family inet address 7.7.7.7/32

2. Enable OSPFv3 on the interface that is in area 9.

   [edit protocols ospf3 area 0.0.0.9]
   user@7# set interface fe-1/2/0.0
   user@7# set interface lo0.0 passive

3. Configure static routes that enable connectivity to the customer routes.

   [edit routing-options rib inet6.0 static]
4. Configure a routing policy to redistribute the static routes.

```plaintext
[edit policy-options policy-statement static-to-ospf term 1]
user@7# set from protocol static
user@7# set then accept
```

5. Apply the routing policy to the OSPFv3 instance.

```plaintext
[edit protocols ospf3]
user@7# set export static-to-ospf
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure Device 8:

1. Configure the interfaces.

```plaintext
[edit interfaces]
user@8# set fe-1/2/0 unit 0 family inet6 address 9009:7::2/64
user@8# set lo0 unit 0 family inet address 8.8.8.8/32
```

2. Configure two loopback interface addresses to simulate customer routes.

```plaintext
[edit interfaces lo0 unit 0 family inet6]
user@8# set address 1010::1/128
user@8# set address 2020::1/128
```

Results

From configuration mode, confirm your configuration by entering the show interfaces, show protocols, show policy-options, and show routing-options commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Device 2
user@2# show interfaces
fe-1/2/0 {
    unit 0 {
        family inet6 {
            address 9009:2::2/64;
        }
    }
}
fe-1/2/1 {
    unit 0 {
        family inet6 {
            address 9009:4::1/64;
        }
    }
}
lo0 {
    unit 0 {
        family inet {
            address 2.2.2.2/32;
        }
    }
}

user@2# show protocols
ospf3 {
    area 0.0.0.0 {
        interface fe-1/2/0.0;
        interface lo0.0 {
            passive;
        }
    }
    area 0.0.0.7 {
        stub default-metric 10 no-summaries;
        interface fe-1/2/1.0;
    }
}

Device 6
user@6# show interfaces
fe-1/2/0 {
  unit 0 {
    family inet6 {
      address 9009:4::2/64;
    }
  }
  lo0 {
    unit 0 {
      family inet {
        address 6.6.6.6/32;
      }
    }
  }
}

user@6# show protocols
ospf3 {
  area 0.0.0.7 {
    stub;
    interface fe-1/2/0.0;
    interface lo0.0 {
      passive;
    }
  }
}

Device 7

user@7# show interfaces
fe-1/2/0 {
  unit 0 {
    family inet6 {
      address 9009:5::2/64;
    }
  }
  lo0 {
  }
  fe-1/2/1 {
unit 0 {
    family inet6 {
        address 9009:7::1/64;
    }
}
}

lo0 {
    unit 0 {
        family inet {
            address 7.7.7.7/32;
        }
    }
}

user@7# show protocols
ospf3 {
    export static-to-ospf;
    area 0.0.0.9 {
        interface fe-1/2/0.0;
        interface lo0.0 {
            passive;
        }
    }
}

user@7# show policy-options
policy-statement static-to-ospf {
    term 1 {
        from protocol static;
        then accept;
    }
}

user@7# show routing-options
rib inet6.0 {
    static {
        route 1010::1/128 next-hop 9009:7::2;
        route 2020::1/128 next-hop 9009:7::2;
    }
}
Device 8

```plaintext
user@8# show interfaces
fe-1/2/0 {
 unit 0 {
 family inet6 {
 address 9009:7::2/64;
 }
 }
}
lo0 {
 unit 0 {
 family inet {
 address 8.8.8.8/32;
 }
 family inet6 {
 address 1010::1/128;
 address 2020::1/128;
 }
 }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

**IN THIS SECTION**

- Verifying the Type of OSPFv3 Area | 125
- Verifying the Routes in the OSPFv3 Stub Area | 127

Confirm that the configuration is working properly.

**Verifying the Type of OSPFv3 Area**

**Purpose**
Verify that the OSPFv3 area is a stub area. Confirm that the output displays Stub as the Stub type.

**Action**
From operational mode on Device 2 and on Device 6, enter the `show ospf3 overview` command.

```
user@2> show ospf3 overview

Instance: master
 Router ID: 2.2.2.2
 Route table index: 51
 Area border router
 LSA refresh time: 50 minutes
 Area: 0.0.0.0
 Stub type: Not Stub
 Area border routers: 2, AS boundary routers: 0
 Neighbors
 Up (in full state): 1
 Area: 0.0.0.7
 Stub type: Stub, Stub cost: 10
 Area border routers: 0, AS boundary routers: 0
 Neighbors
 Up (in full state): 1
 Topology: default (ID 0)
 Prefix export count: 0
 Full SPF runs: 24
 SPF delay: 0.200000 sec, SPF holddown: 5 sec, SPF rapid runs: 3
 Backup SPF: Not Needed

user@6> show ospf3 overview

Instance: master
 Router ID: 6.6.6.6
 Route table index: 46
 LSA refresh time: 50 minutes
 Area: 0.0.0.7
 Stub type: Stub
 Area border routers: 1, AS boundary routers: 0
 Neighbors
 Up (in full state): 1
 Topology: default (ID 0)
 Prefix export count: 0
 Full SPF runs: 17
```
Meaning
On Device 2, the stub type of area 0 is Not Stub. The stub type of area 7 is Stub. The stub default metric is 10.

On Device 6, the stub type of area 7 is Stub.

Verifying the Routes in the OSPFv3 Stub Area

Purpose
Make sure that the expected routes are present in the routing tables.

Action
From operational mode on Device 6 and Device 2, enter the show route command.

user@6> show route

inet.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

6.6.6.6/32         *[Direct/0] 1d 01:57:12
                       > via lo0.0

inet6.0: 6 destinations, 7 routes (6 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

::/0                   *[OSPF3/10] 00:10:52, metric 11
                        > via fe-1/2/0.0
9009:4::/64            *[Direct/0] 1d 01:56:31
                        > via fe-1/2/0.0
                        [OSPF3/10] 1d 01:56:31, metric 1
                        > via fe-1/2/0.0
9009:4::2/128          *[Local/0] 1d 01:56:53
                        Local via fe-1/2/0.0
fe80::/64              *[Direct/0] 1d 01:56:31
                        > via fe-1/2/0.0
fe80::2a0:a514:0:a4c/128  *[Local/0] 1d 01:56:53
                        Local via fe-1/2/0.0
user@2> show route

inet.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2.2.2.2/32  *[Direct/0] 1d 02:16:13
            > via lo0.0

inet6.0: 14 destinations, 17 routes (14 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

1010::1/128 *[OSPF3/150] 00:30:15, metric 0, tag 0
              > via fe-1/2/0.0

2020::1/128 *[OSPF3/150] 00:30:15, metric 0, tag 0
              > via fe-1/2/0.0

9009:1::/64  *[OSPF3/10] 1d 02:15:54, metric 2
              > via fe-1/2/0.0

9009:2::/64  *[Direct/0] 1d 02:15:54
              > via fe-1/2/0.0

9009:2::2/128 *[Local/0] 1d 02:15:54
                Local via fe-1/2/0.0

9009:3::/64  *[OSPF3/10] 1d 02:15:54, metric 2
              > via fe-1/2/0.0

9009:4::/64  *[Direct/0] 1d 02:15:54
              > via fe-1/2/1.0

9009:4::1/128 *[Local/0] 1d 02:15:54
                Local via fe-1/2/1.0

9009:5::/64  *[OSPF3/10] 1d 02:15:54, metric 3
              > via fe-1/2/0.0

9009:6::/64  *[OSPF3/10] 01:33:10, metric 3
              > via fe-1/2/0.0

fe80::/64  *[Direct/0] 1d 02:15:54
            > via fe-1/2/0.0
            *[Direct/0] 1d 02:15:54
            > via fe-1/2/1.0
Meaning
On Device 6, the default route has been learned because of the default-metric statement on the ABR, Device 2. Otherwise, the only OSPFv3 routes in Device 6’s routing table are the network address 9009:4::/64 and the OSPFv3 multicast address ff02::5/128 for all SPF link-state routers, also known as AllSPFRouters.

On Device 2, all of the OSPFv3 routes have been learned, including the external customer routes, 1010::1/128 and 2020::1/128.

Understanding OSPFv3 Not-So-Stubby Areas

Like an OSPF stub area, an OSPFv3 stub area has no external routes, so you cannot redistribute routes from another protocol into a stub area. Not-so-stubby-areas (NSSAs) allow external routes to be flooded within the area. Routers in an NSSA do not receive external link-state advertisements (LSAs) from area border routers (ABRs), but are allowed to send external routing information for redistribution. They use type 7 LSAs to tell the ABRs about these external routes, which the ABR then translates to type 5 external LSAs and floods as normal to the rest of the OSPF network.

Example: Configuring OSPFv3 Not-So-Stubby Areas
This example shows how to configure an OSPFv3 not-so-stubby area (NSSA) to control the advertisement of external routes into the area.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, Device 7 redistributes static Customer 1 routes into OSPFv3. Device 7 is in area 9, which is configured as an NSSA. Device 3 is the ABR attached to the NSSA. An NSSA is a type of stub area that can import autonomous system external routes and send them to other areas, but still cannot receive AS-external routes from other areas. Because area 9 is defined as an NSSA, Device 7 uses type 7 LSAs to tell the ABR (Device 3) about these external routes. Device 3 then translates the type 7 routes to type 5 external LSAs and floods them as normal to the rest of the OSPF network.

In area 3, Device 5 redistributes static Customer 2 routes into OSPFv3. These routes are learned on Device 3, but not on Device 7 or 10. Device 3 injects a default static route into area 9 so that Device 7 and 10 can still reach the Customer 2 routes.

You configure each routing device in area 9 (area ID 0.0.0.9) with the following setting:

- **nssa**—Specifies an OSPFv3 NSSA. You must include the `nssa` statement on all routing devices in area 9.

You also configure the ABR in area 9 with the following additional settings:

- **no-summaries**—Prevents the ABR from advertising summary routes into the NSSA. If configured in combination with the `default-metric` statement, the NSSA only allows routes internal to the area and advertises the default route into the area. External routes and destinations to other areas are no longer summarized or allowed into the NSSA. Only the ABR requires this additional configuration because it is the only routing device within the NSSA that creates Type 3 summary LSAs used to receive and send traffic from outside the area.

- **default-lsa**—Configures the ABR to generate a default route into the NSSA. In this example, you configure the following:
  
  - **default-metric**—Specifies that the ABR generate a default route with a specified metric into the NSSA. This default route enables packet forwarding from the NSSA to external destinations. You configure this option only on the ABR. The ABR does not automatically generate a default route when attached to an NSSA. You must explicitly configure this option for the ABR to generate a default route.

  - **metric-type**—(Optional) Specifies the external metric type for the default LSA, which can be either Type 1 or Type 2. When OSPFv3 exports route information from external ASs, it includes a cost, or external metric, in the route. The difference between the two metrics is how OSPFv3 calculates the cost of the route. Type 1 external metrics are equivalent to the link-state metric, where the cost is
equal to the sum of the internal costs plus the external cost. Type 2 external metrics use only the external cost assigned by the AS boundary router. By default, OSPFv3 uses the Type 2 external metric.

- **type-7**—(Optional) Floods Type 7 default LSAs into the NSSA if the no-summaries statement is configured. By default, when the no-summaries statement is configured, a Type 3 LSA is injected into NSSAs for Junos OS release 5.0 and later. To support backward compatibility with earlier Junos OS releases, include the type-7 statement.

Figure 13: OSPFv3 Network Topology with an NSSA

"CLI Quick Configuration" on page 131 shows the configuration for all of the devices in Figure 13 on page 131. The section "Step-by-Step Procedure" on page 134 describes the steps on Device 3, Device 7, and Device 9.

**Configuration**

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

**Device 1**
Device 3

```
set interfaces fe-1/2/0 unit 0 family inet6 address 9009:1::1/64
set interfaces fe-1/2/1 unit 0 family inet6 address 9009:3::1/64
set interfaces lo0 unit 0 family inet address 1.1.1.1/32
set protocols ospf3 area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf3 area 0.0.0.0 interface fe-1/2/0.5
set protocols ospf3 area 0.0.0.0 interface fe-1/2/1.0
set protocols ospf3 area 0.0.0.0 interface lo0.0 passive
```

Device 4

```
set interfaces fe-1/2/0 unit 0 family inet6 address 9009:3::2/64
set interfaces fe-1/2/1 unit 0 family inet6 address 9009:5::1/64
set interfaces lo0 unit 0 family inet address 3.3.3.3/32
set protocols ospf3 area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf3 area 0.0.0.0 interface lo0.0 passive
set protocols ospf3 area 0.0.0.9 nssa default-lsa default-metric 10
set protocols ospf3 area 0.0.0.9 nssa default-lsa metric-type 1
set protocols ospf3 area 0.0.0.9 nssa default-lsa type-7
set protocols ospf3 area 0.0.0.9 nssa no-summaries
set protocols ospf3 area 0.0.0.9 interface fe-1/2/1.0
```

Device 5

```
set interfaces fe-1/2/0 unit 0 family inet6 address 9009:6::2/64
set interfaces fe-1/2/1 unit 0 family inet6 address 9009:7::1/64
```
set interfaces lo0 unit 0 family inet address 5.5.5.5/32
set protocols ospf3 export static-to-ospf
set protocols ospf3 area 0.0.0.3 interface fe-1/2/0.0
set protocols ospf3 area 0.0.0.3 interface lo0.0 passive
set policy-options policy-statement static-to-ospf term 1 from protocol static
set policy-options policy-statement static-to-ospf term 1 then accept
set routing-options rib inet6.0 static route 1010::1/128 next-hop 9009:7::2
set routing-options rib inet6.0 static route 2020::1/128 next-hop 9009:7::2

Device 7

set interfaces fe-1/2/0 unit 0 family inet6 address 9009:8::1/64
set interfaces fe-1/2/1 unit 0 family inet6 address 9009:9::1/64
set interfaces lo0 unit 0 family inet address 7.7.7.32
set protocols ospf3 export static2-to-ospf
set protocols ospf3 area 0.0.0.9 nssa
set protocols ospf3 area 0.0.0.9 interface fe-1/2/1.0
set protocols ospf3 area 0.0.0.9 interface lo0.0 passive
set policy-options policy-statement static2-to-ospf term 1 from protocol static
set policy-options policy-statement static2-to-ospf term 1 then accept
set routing-options rib inet6.0 static route 3030::1/128 next-hop 9009:8::2
set routing-options rib inet6.0 static route 4040::1/128 next-hop 9009:8::2

Device 8

set interfaces fe-1/2/0 unit 0 family inet6 address 9009:7::2/64
set interfaces lo0 unit 0 family inet address 8.8.8.8/32
set interfaces lo0 unit 0 family inet6 address 1010::1/128
set interfaces lo0 unit 0 family inet6 address 2020::1/128

Device 9

set interfaces fe-1/2/0 unit 0 family inet6 address 9009:8::2/64
set interfaces lo0 unit 0 family inet address 9.9.9.9/32
Device 10

```
set interfaces lo0 unit 0 family inet6 address 3030::1/128
set interfaces lo0 unit 0 family inet6 address 4040::1/128
```

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To configure Device 3:

1. Configure the interfaces.

   [edit interfaces]
   user@3# set fe-1/2/0 unit 0 family inet6 address 9009:5::2/64
   user@3# set fe-1/2/1 unit 0 family inet6 address 9009:9::2/64
   set interfaces lo0 unit 0 family inet address 10.10.10.10/32
   set protocols ospf3 area 0.0.0.9 nssa
   set protocols ospf3 area 0.0.0.9 interface fe-1/2/0.0
   set protocols ospf3 area 0.0.0.9 interface fe-1/2/1.0
   set protocols ospf3 area 0.0.0.9 interface lo0.0 passive

2. Enable OSPFv3 on the interfaces that are in area 0.

   [edit protocols ospf3 area 0.0.0.0]
   user@3# set interface fe-1/2/0.0
   user@3# set interface lo0.0 passive

3. Enable OSPFv3 on the interface that is in area 9.

   [edit protocols ospf3 area 0.0.0.9]
   user@3# set interface fe-1/2/1.0
4. Configure an OSPFv3 NSSA.

   The `nssa` statement is required on all routing devices in the area.

   ```
 [edit protocols ospf3 area 0.0.0.9]
 user@3# set nssa
   ```

5. On the ABR, inject a default route into the area.

   ```
 [edit protocols ospf3 area 0.0.0.9]
 user@3# set default-lsa default-metric 10
   ```

6. (Optional) On the ABR, specify the external metric type for the default route.

   ```
 [edit protocols ospf3 area 0.0.0.9]
 user@3# set nssa default-lsa metric-type 1
   ```

7. (Optional) On the ABR, specify the flooding of Type 7 LSAs.

   ```
 [edit protocols ospf3 area 0.0.0.9]
 user@3# set nssa default-lsa type-7
   ```

8. On the ABR, restrict summary LSAs from entering the area.

   ```
 [edit protocols ospf3 area 0.0.0.9]
 user@3# set nssa no-summaries
   ```

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the CLI User Guide.

To configure Device 5:

1. Configure the interfaces.

   ```
 [edit interfaces]
 user@5# set fe-1/2/0 unit 0 family inet6 address 9009:6::2/64
 user@5# set fe-1/2/1 unit 0 family inet6 address 9009:7::1/64
 user@5# set lo0 unit 0 family inet address 5.5.5.5/32
   ```
2. Enable OSPFv3 on the interface that is in area 3.

   [edit protocols ospf3 area 0.0.0.3]
   user@5# set interface fe-1/2/0.0
   user@5# set interface lo0.0 passive

3. Configure static routes that enable connectivity to the customer routes.

   [edit routing-options rib inet6.0 static]
   user@5# set route 1010::1/128 next-hop 9009:7::2
   user@5# set route 2020::1/128 next-hop 9009:7::2

4. Configure a routing policy to redistribute the static routes.

   [edit policy-options policy-statement static-to-ospf term 1]
   user@5# set from protocol static
   user@5# set then accept

5. Apply the routing policy to the OSPFv3 instance.

   [edit protocols ospf3]
   user@5# set export static-to-ospf

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure Device 7:

1. Configure the interfaces.

   [edit interfaces]
   user@7# set fe-1/2/0 unit 0 family inet6 address 9009:5::2/64
   user@7# set fe-1/2/1 unit 0 family inet6 address 9009:7::1/64
   user@7# set lo0 unit 0 family inet address 7.7.7.7/32

2. Enable OSPFv3 on the interface that is in area 9.

   [edit protocols ospf3 area 0.0.0.9]
3. Configure an OSPFv3 NSSA.

   The nssa statement is required on all routing devices in the area.

   ```
 [edit protocols ospf3 area 0.0.0.9]
 user@7# set nssa
   ```

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the CLI User Guide.

To configure Device 8:

1. Configure the interfaces.

   ```
 [edit interfaces]
 user@8# set fe-1/2/0 unit 0 family inet6 address 9009:7::2/64
 user@8# set lo0 unit 0 family inet address 8.8.8.8/32
   ```

2. Configure two loopback interface addresses to simulate customer routes.

   ```
 [edit interfaces lo0 unit 0 family inet6]
 user@8# set address 1010::1/128
 user@8# set address 2020::1/128
   ```

**Results**

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

**Device 3**

```
user@3# show interfaces
fe-1/2/0 {
 unit 0 {
```
family inet6 {
    address 9009:3::2/64;
}

fe-1/2/1 {
    unit 0 {
        family inet6 {
            address 9009:5::1/64;
        }
    }
}

lo0 {
    unit 0 {
        family inet {
            address 3.3.3.3/32;
        }
    }
}

user@3# show protocols
ospf3 {
    area 0.0.0.0 {
        interface fe-1/2/0.0;
        interface lo0.0 {
            passive;
        }
    }
    area 0.0.0.9 {
        nssa {
            default-lsa {
                default-metric 10;
                metric-type 1;
                type-7;
            }
            no-summaries;
        }
        interface fe-1/2/1.0;
    }
}
Device 5

user@5# show interfaces
fe-1/2/0 {
    unit 0 {
        family inet6 {
            address 9009:6::2/64;
        }
    }
}
fe-1/2/1 {
    unit 0 {
        family inet6 {
            address 9009:7::1/64;
        }
    }
}
lo0 {
    unit 0 {
        family inet {
            address 5.5.5.5/32;
        }
    }
}

user@5# show protocols
ospf3 {
    export static-to-ospf;
    area 0.0.0.3 {
        interface fe-1/2/0.0;
        interface lo0.0 {
            passive;
        }
    }
}

user@5# show policy-options
policy-statement static-to-ospf {
    term 1 {
        from protocol static;
then accept;
} 
}

user@5# show routing-options
rib inet6.0 {
    static {
        route 1010::1/128 next-hop 9009:7::2;
        route 2020::1/128 next-hop 9009:7::2;
    }
}

Device 7

user@7# show interfaces
fe-1/2/0 {
    unit 0{
        family inet6 {
            address 9009:5::2/64;
        }
    }
}

lo0 {
    unit 0 {
        family inet {
            address 7.7.7.7/32;
        }
    }
}

user@7# show protocols
ospf3 {
    area 0.0.0.9 {
        nssa;
        interface fe-1/2/0.0;
        interface lo0.0 {
            passive;
        }
    }
}
If you are done configuring the device, enter **commit** from configuration mode.

**Verification**

**IN THIS SECTION**

- Verifying the Type of OSPFv3 Area | 141
- Verifying the Routes in the OSPFv3 Stub Area | 143
- Verifying the Type of LSAs | 147

Confirm that the configuration is working properly.

**Verifying the Type of OSPFv3 Area**

**Purpose**
Verify that the OSPFv3 area is an NSSA area. Confirm that the output displays **Stub NSSA** as the Stub type.

**Action**

From operational mode on Device 3, Device 7, and Device 10 enter the `show ospf3 overview` command.

```
user@3> show ospf3 overview
```

```
Instance: master
 Router ID: 3.3.3.3
 Route table index: 36
 Area border router, AS boundary router, **NSSA router**
 LSA refresh time: 50 minutes
 Area: 0.0.0.0
 Stub type: Not Stub
 Area border routers: 2, AS boundary routers: 0
 Neighbors
 Up (in full state): 1
 Area: 0.0.0.9
 Stub type: **Stub NSSA, Stub cost: 10**
 Area border routers: 0, AS boundary routers: 1
 Neighbors
 Up (in full state): 1
 Topology: default (ID 0)
 Prefix export count: 0
 Full SPF runs: 22
 SPF delay: 0.200000 sec, SPF holddown: 5 sec, SPF rapid runs: 3
 Backup SPF: Not Needed
```

```
user@7> show ospf3 overview
```

```
Instance: master
 Router ID: 7.7.7.7
 Route table index: 44
 AS boundary router, **NSSA router**
 LSA refresh time: 50 minutes
 Area: 0.0.0.9
 Stub type: **Stub NSSA**
 Area border routers: 1, AS boundary routers: 1
 Neighbors
 Up (in full state): 1
 Topology: default (ID 0)
 Prefix export count: 2
```
Full SPF runs: 11
SPF delay: 0.200000 sec, SPF holddown: 5 sec, SPF rapid runs: 3
Backup SPF: Not Needed

user@10> show ospf3 overview

Instance: master
   Router ID: 10.10.10.10
   Route table index: 55
   NSSA router
   LSA refresh time: 50 minutes
   Area: 0.0.0.9
      Stub type: Stub NSSA
      Area border routers: 1, AS boundary routers: 2
      Neighbors
         Up (in full state): 2
      Topology: default (ID 0)
      Prefix export count: 0
      Full SPF runs: 6
      SPF delay: 0.200000 sec, SPF holddown: 5 sec, SPF rapid runs: 3
      Backup SPF: Not Needed

Meaning
On Device 3, the stub type of area 0 is Not Stub. The stub type of area 9 is Stub NSSA. The stub default metric is 10.

On Device 7 and Device 10, the stub type of area 9 is Stub NSSA.

Verifying the Routes in the OSPFv3 Stub Area

Purpose
Make sure that the expected routes are present in the routing tables.

Action
From operational mode on Device 7 and Device 3, enter the show route command.

user@7> show route

inet.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

7.7.7.7/32     *[Direct/0] 3d 03:00:23
inet6.0: 12 destinations, 14 routes (12 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

::/0  *[OSPF3/150] 01:01:31, metric 12, tag 0
  > via fe-1/2/1.0
3030::1/128  *[Static/5] 01:01:43
  > to 9009:8::2 via fe-1/2/0.0
4040::1/128  *[Static/5] 01:01:43
  > to 9009:8::2 via fe-1/2/0.0
9009:5::/64  *[OSPF3/10] 01:01:33, metric 2
  > via fe-1/2/1.0
9009:8::/64  *[Direct/0] 01:01:43
  > via fe-1/2/0.0
9009:8::1/128  *[Local/0] 01:02:01
  Local via fe-1/2/0.0
9009:9::/64  *[Direct/0] 01:01:45
  > via fe-1/2/1.0
  [OSPF3/10] 01:01:44, metric 1
  > via fe-1/2/1.0
9009:9::1/128  *[Local/0] 01:02:01
  Local via fe-1/2/1.0
fe80::/64  *[Direct/0] 01:01:45
  > via fe-1/2/1.0
  [Direct/0] 01:01:43
  > via fe-1/2/0.0
fe80::2a0:a514:0:f4c/128  *[Local/0] 01:02:01
  Local via fe-1/2/0.0
fe80::2a0:a514:0:114c/128  *[Local/0] 01:02:01
  Local via fe-1/2/1.0
ff02::5/128  *[OSPF3/10] 3d 03:01:25, metric 1
  MultiRecv

user@10> show route

inet.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.10.10.10/32  *[Direct/0] 01:01:59
  > via lo0.0
inet6.0: 11 destinations, 14 routes (11 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Type</th>
<th>Metric</th>
<th>TTL</th>
<th>Time</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>::/0</td>
<td>[OSPF3/150] 01:01:35</td>
<td>metric 11, tag 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3030::1/128</td>
<td>[OSPF3/150] 01:01:35</td>
<td>metric 0, tag 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4040::1/128</td>
<td>[OSPF3/150] 01:01:35</td>
<td>metric 0, tag 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:5::/64</td>
<td>[Direct/0] 01:01:50</td>
<td>metric 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:5::2/128</td>
<td>[Local/0] 01:01:50</td>
<td>metric 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:9::/64</td>
<td>[Direct/0] 01:01:50</td>
<td>metric 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:9::2/128</td>
<td>[Local/0] 01:01:50</td>
<td>metric 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fe80::/64</td>
<td>[Direct/0] 01:01:50</td>
<td>metric 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fe80::2a0:a514:0:c4c/128</td>
<td>[Local/0] 01:01:50</td>
<td>metric 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fe80::2a0:a514:0:124c/128</td>
<td>[Local/0] 01:01:50</td>
<td>metric 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ff02::5/128</td>
<td>[OSPF3/10] 01:02:16</td>
<td>metric 1</td>
<td></td>
<td></td>
<td>MultiRecv</td>
</tr>
</tbody>
</table>

user@3> show route

inet.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Type</th>
<th>Metric</th>
<th>TTL</th>
<th>Time</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.3.3/32</td>
<td>[Direct/0] 3d 03:03:10</td>
<td>metric 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>via lo0.0</td>
</tr>
</tbody>
</table>
inet6.0: 15 destinations, 18 routes (15 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

1010::1/128 *[OSPF3/150] 01:04:21, metric 0, tag 0
  > via fe-1/2/0.0
2020::1/128 *[OSPF3/150] 01:04:21, metric 0, tag 0
  > via fe-1/2/0.0
3030::1/128 *[OSPF3/150] 01:03:57, metric 0, tag 0
  > via fe-1/2/1.0
4040::1/128 *[OSPF3/150] 01:03:57, metric 0, tag 0
  > via fe-1/2/1.0
9009:1::/64 *[OSPF3/10] 3d 03:02:06, metric 2
  > via fe-1/2/0.0
9009:3::/64 *[Direct/0] 3d 03:02:55
  > via fe-1/2/0.0
  [OSPF3/10] 3d 03:02:54, metric 1
  > via fe-1/2/0.0
9009:3::2/128 *[Local/0] 3d 03:02:55
  Local via fe-1/2/0.0
9009:5::/64 *[Direct/0] 01:04:09
  > via fe-1/2/1.0
  [OSPF3/10] 01:04:09, metric 1
  > via fe-1/2/1.0
9009:5::1/128 *[Local/0] 3d 03:02:54
  Local via fe-1/2/1.0
9009:6::/64 *[OSPF3/10] 3d 02:19:14, metric 3
  > via fe-1/2/0.0
9009:9::/64 *[OSPF3/10] 01:04:02, metric 2
  > via fe-1/2/1.0
fe80::/64 *[Direct/0] 3d 03:02:55
  > via fe-1/2/0.0
  [Direct/0] 01:04:09
  > via fe-1/2/1.0
fe80::2a0:a514:0:84c/128 *
  [Local/0] 3d 03:02:55
  Local via fe-1/2/0.0
fe80::2a0:a514:0:b4c/128 *
  [Local/0] 3d 03:02:54
  Local via fe-1/2/1.0
ff02::5/128 *[OSPF3/10] 3d 03:03:50, metric 1
  MultiRecv

Meaning
On Device 7, the default route has been learned because of the **default-metric** statement on the ABR, Device 3. Otherwise, the only OSPFv3 routes in Device 7’s routing table are those local to area 9 and the OSPFv3 multicast address ff02::5/128 for all SPF link-state routers, also known as AllSPFRouters.

Device 10 has the default route injected by Device 3 and also the OSPF external routes injected by Device 7.

Neither Device 7 nor Device 10 has the external customer routes that were injected into OSPFv3 by Device 5.

On Device 3, all of the OSPFv3 routes have been learned, including the external customer routes, 1010::1/128 and 2020::1/128.

**Verifying the Type of LSAs**

**Purpose**
Verify the type of LSAs that are in the area.

**Action**
From operational mode on Device 7, enter the `show ospf3 database nssa detail` command.

```
user@7> show ospf3 database nssa detail
```

<table>
<thead>
<tr>
<th>Area</th>
<th>0.0.0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>ID</td>
</tr>
<tr>
<td>NSSA</td>
<td>0.0.0.1</td>
</tr>
<tr>
<td>Adv Rtr</td>
<td>3.3.3.3</td>
</tr>
<tr>
<td>Seq</td>
<td>0x8000002a</td>
</tr>
<tr>
<td>Age</td>
<td>1462</td>
</tr>
<tr>
<td>Cksum</td>
<td>0xf406</td>
</tr>
<tr>
<td>Len</td>
<td>28</td>
</tr>
<tr>
<td>Prefix</td>
<td>::/0</td>
</tr>
<tr>
<td>Prefix-options</td>
<td>0x0, Metric 10, Type 1,</td>
</tr>
<tr>
<td>NSSA</td>
<td>*0.0.0.1</td>
</tr>
<tr>
<td>Adv Rtr</td>
<td>7.7.7.7</td>
</tr>
<tr>
<td>Seq</td>
<td>0x80000003</td>
</tr>
<tr>
<td>Age</td>
<td>1625</td>
</tr>
<tr>
<td>Cksum</td>
<td>0x88df</td>
</tr>
<tr>
<td>Len</td>
<td>60</td>
</tr>
<tr>
<td>Prefix</td>
<td>3030::1/128</td>
</tr>
<tr>
<td>Prefix-options</td>
<td>0x8, Metric 0, Type 2,</td>
</tr>
<tr>
<td>Fwd addr</td>
<td>9009:9::1,</td>
</tr>
<tr>
<td>NSSA</td>
<td>*0.0.0.2</td>
</tr>
<tr>
<td>Adv Rtr</td>
<td>7.7.7.7</td>
</tr>
<tr>
<td>Seq</td>
<td>0x80000003</td>
</tr>
<tr>
<td>Age</td>
<td>1025</td>
</tr>
<tr>
<td>Cksum</td>
<td>0xef57</td>
</tr>
<tr>
<td>Len</td>
<td>60</td>
</tr>
<tr>
<td>Prefix</td>
<td>4040::1/128</td>
</tr>
<tr>
<td>Prefix-options</td>
<td>0x8, Metric 0, Type 2,</td>
</tr>
<tr>
<td>Fwd addr</td>
<td>9009:9::1,</td>
</tr>
</tbody>
</table>

**Meaning**
On Device 7, the NSSA LSAs are the type 1 external default route, learned from Device 3, and the type 2 external static routes to the Customer 1 network.
Understanding Not-So-Stubby Areas Filtering

You might have a situation when exporting Type 7 LSAs into a not-so-stubby area (NSSA) is unnecessary. When an autonomous system boundary router (ASBR) is also an area border router (ABR) with an NSSA attached, Type 7 LSAs are exported into the NSSA by default.

Also, when the ASBR (also an ABR) is attached to multiple NSSAs, a separate Type 7 LSA is exported into each NSSA by default. During route redistribution, this routing device generates both Type 5 LSAs and Type 7 LSAs. Hence, to avoid the same route getting redistributed twice (from Type 5 LSAs and Type 7 LSAs), you can disable exporting Type 7 LSAs into the NSSA by including the `no-nssa-abr` statement on the routing device.

Example: Configuring OSPFv3 Not-So-Stubby Areas with Filtering

This example shows how to configure an OSPFv3 not-so-stubby area (NSSA) when there is no need to inject external routes into the NSSA as Type 7 link-state advertisements (LSAs).

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

When an autonomous system boundary router (ASBR) is also an NSSA area border router (ABR), the routing device generates Type 5 as well as Type 7 LSAs. You can prevent the router from creating Type 7 LSAs for the NSSA with the `no-nssa-abr` statement.

In this example, Device 5 and Device 3 are in customer networks. Device 4 and Device 2 are both injecting the customer routes into OSPFv3. Area 1 is an NSSA. Because Device 4 is both an NSSA ABR and an
ASBR, it generates both type 7 and type 5 LSAs and injects type 7 LSAs into area 1 and type 5 LSAs into area 0. To stop type 7 LSAs from being injected into area 1, the **no-nssa-abr** statement in included in the Device 4 configuration.

Figure 14: OSPFv3 Network Topology with an NSSA ABR That Is Also an ASBR

"CLI Quick Configuration" on page 149 shows the configuration for all of the devices in Figure 14 on page 149. The section "Step-by-Step Procedure" on page 151 describes the steps on Device 4.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device 1

```
set interfaces fe-1/2/0 unit 0 family inet6 address 9009:6::2/64
set interfaces fe-1/2/1 unit 0 family inet6 address 9009:5::1/64
set interfaces lo0 unit 0 family inet address 1.1.1.1/32
set protocols ospf3 area 0.0.0.1 nssa
set protocols ospf3 area 0.0.0.1 interface fe-1/2/0.0
set protocols ospf3 area 0.0.0.1 interface fe-1/2/1.0
```
set protocols ospf3 area 0.0.0.1 interface lo0.0 passive

Device 2

set interfaces fe-1/2/0 unit 0 family inet6 address 9009:5::2/64
set interfaces fe-1/2/1 unit 0 family inet6 address 9009:4::1/64
set interfaces lo0 unit 0 family inet address 2.2.2.2/32
set protocols ospf3 export static2-to-ospf
set protocols ospf3 area 0.0.0.1 nssa
set protocols ospf3 area 0.0.0.1 interface fe-1/2/0.0
set protocols ospf3 area 0.0.0.1 interface lo0.0 passive
set policy-options policy-statement static2-to-ospf term 1 from protocol static
set policy-options policy-statement static2-to-ospf term 1 then accept
set routing-options rib inet6.0 static route 3030::1/128 next-hop 9009:4::2
set routing-options rib inet6.0 static route 4040::1/128 next-hop 9009:4::2

Device 3

set interfaces fe-1/2/0 unit 0 family inet6 address 9009:4::2/64
set interfaces lo0 unit 0 family inet address 3.3.3.3/32
set interfaces lo0 unit 0 family inet6 address 3030::1/128
set interfaces lo0 unit 0 family inet6 address 4040::1/128
set routing-options rib inet6.0 static route ::/0 next-hop 9009:4::1

Device 4

set interfaces fe-1/2/0 unit 0 family inet6 address 9009:1::2/64
set interfaces fe-1/2/1 unit 0 family inet6 address 9009:6::1/64
set interfaces fe-1/2/2 unit 0 family inet6 address 9009:3::1/64
set interfaces lo0 unit 0 family inet address 4.4.4.4/32
set protocols ospf3 export static-to-ospf
set protocols ospf3 no-nssa-abr
set protocols ospf3 area 0.0.0.0 interface fe-1/2/2.0
set protocols ospf3 area 0.0.0.0 interface lo0.0 passive
set protocols ospf3 area 0.0.0.1 nssa default-lsa default-metric 10
set protocols ospf3 area 0.0.0.1 nssa default-lsa metric-type 1
set protocols ospf3 area 0.0.0.1 nssa default-lsa type-7
set protocols ospf3 area 0.0.0.1 nssa no-summaries
set protocols ospf3 area 0.0.0.1 interface fe-1/2/1.0
set policy-options policy-statement static-to-ospf term 1 from protocol static
set policy-options policy-statement static-to-ospf term 1 then accept
set routing-options rib inet6.0 static route 1010::1/128 next-hop 9009:1::1
set routing-options rib inet6.0 static route 2020::1/128 next-hop 9009:1::1

Device 5

set interfaces fe-1/2/0 unit 0 family inet6 address 9009:1::1/64
set interfaces lo0 unit 0 family inet address 5.5.5.5/32
set interfaces lo0 unit 0 family inet6 address 1010::1/128
set interfaces lo0 unit 0 family inet6 address 2020::1/128
set routing-options rib inet6.0 static route ::/0 next-hop 9009:1::2

Device 6

set interfaces fe-1/2/0 unit 0 family inet6 address 9009:3::2/64
set interfaces lo0 unit 0 family inet address 6.6.6.6/32
set protocols ospf3 area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf3 area 0.0.0.0 interface lo0.0 passive

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” in the CLI User Guide.

To configure Device 4:

1. Configure the interfaces.

[edit interfaces]
user@4# set fe-1/2/0 unit 0 family inet6 address 9009:1::2/64
user@4# set fe-1/2/1 unit 0 family inet6 address 9009:6::1/64
2. Enable OSPFv3 on the interfaces that are in area 0.

   [edit protocols ospf3 area 0.0.0.0]
   user@4# set interface fe-1/2/2.0
   user@4# set interface lo0.0 passive

3. Enable OSPFv3 on the interface that is in area 1.

   [edit protocols ospf3 area 0.0.0.1]
   user@4# set interface fe-1/2/1.0

4. Configure an OSPFv3 NSSA.

   The **nssa** statement is required on all routing devices in the area.

   [edit protocols ospf3 area 0.0.0.1]
   user@4# set nssa

5. On the ABR, inject a default route into the area.

   [edit protocols ospf3 area 0.0.0.1]
   user@4# set nssa default-lsa default-metric 10

6. (Optional) On the ABR, specify the external metric type for the default route.

   [edit protocols ospf3 area 0.0.0.1]
   user@4# set nssa default-lsa metric-type 1

7. (Optional) On the ABR, specify the flooding of Type 7 LSAs.

   [edit protocols ospf3 area 0.0.0.1]
   user@4# set nssa default-lsa type-7

8. On the ABR, restrict summary LSAs from entering the area.
9. Disable exporting Type 7 LSAs into the NSSA.
   This setting is useful if you have an AS boundary router that is also an ABR with an NSSA area attached.

   [edit protocols ospf3]
   user@4# set nssa no-summaries

10. Configure static routes to the customer network.

   [edit routing-options rib inet6.0 static]
   user@4# set route 1010::1/128 next-hop 9009:1::1
   user@4# set route 2020::1/128 next-hop 9009:1::1

11. Configure a policy to inject the static routes into OSPFv3.

   [edit policy-options policy-statement static-to-ospfterm1]
   user@4# set from protocol static
   user@4# set then accept

12. Apply the policy to OSPFv3.

   [edit protocols ospf3]
   user@4# set export static-to-ospf

**Results**
From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

**Device 4**

user@4# show interfaces
fe-1/2/0 {
    unit 0 {
family inet6 {
    address 9009:1::2/64;
}
}

unit 0 {
    family inet6 {
        address 9009:6::1/64;
    }
}

unit 0 {
    family inet6 {
        address 9009:3::1/64;
    }
}

lo0 {
    unit 0 {
        family inet {
            address 4.4.4.4/32;
        }
    }
}

user@4# show protocols
ospf3 {
    export static-to-ospf;
    no-nssa-abr;
    area 0.0.0.0 {
        interface fe-1/2/2.0;
        interface lo0.0 {
            passive;
        }
    }
    area 0.0.0.1 {
        nssa {
            default-lsa {
                default-metric 10;
                metric-type 1;
                type-7;
            }
        }
    no-summaries;
If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Verifying the Routes in the OSPFv3 Stub Area | 155
- Verifying the Type of LSAs | 158

Confirm that the configuration is working properly.

**Verifying the Routes in the OSPFv3 Stub Area**

**Purpose**

Make sure that the expected routes are present in the routing tables.

**Action**
From operational mode on Device 1 and Device 6, enter the `show route` command.

```
user@1> show route

inet.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

1.1.1.1/32 *[Direct/0] 03:25:44
 > via lo0.0

inet6.0: 11 destinations, 14 routes (11 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

::/0 *[OSPF3/150] 01:52:58, metric 11, tag 0
 > via fe-1/2/0.0

3030::1/128 *[OSPF3/150] 02:44:02, metric 0, tag 0
 > via fe-1/2/1.0

4040::1/128 *[OSPF3/150] 02:44:02, metric 0, tag 0
 > via fe-1/2/1.0

9009:5::/64 *[Direct/0] 03:25:34
 > via fe-1/2/1.0

9009:5::1/128 *[OSPF3/150] 03:25:24, metric 1
 > via fe-1/2/1.0

9009:5::1/128 *[Local/0] 03:25:34
 Local via fe-1/2/1.0

9009:6::/64 *[Direct/0] 03:25:34
 > via fe-1/2/0.0

9009:6::2/128 *[Local/0] 03:25:34
 Local via fe-1/2/0.0

fe80::/64 *[Local/0] 03:25:34
 Local via fe-1/2/0.0

fe80::2a0:a514:0:44c/128
 *[Local/0] 03:25:34
 Local via fe-1/2/0.0

fe80::2a0:a514:0:74c/128
 *[Local/0] 03:25:34
 Local via fe-1/2/1.0
```
ff02::5/128       *[OSPF3/10] 03:27:00, metric 1
                  MultiRecv

user@6> show route

inet.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

6.6.6.6/32         *[Direct/0] 03:26:57
       > via lo0.0

inet6.0: 11 destinations, 12 routes (11 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

1010::1/128        *[OSPF3/150] 03:16:59, metric 0, tag 0
       > via fe-1/2/0.0

2020::1/128        *[OSPF3/150] 03:16:59, metric 0, tag 0
       > via fe-1/2/0.0

3030::1/128        *[OSPF3/150] 02:44:34, metric 0, tag 0
       > via fe-1/2/0.0

4040::1/128        *[OSPF3/150] 02:44:34, metric 0, tag 0
       > via fe-1/2/0.0

9009:3::/64        *[Direct/0] 03:26:29
       > via fe-1/2/0.0
       [OSPF3/10] 03:26:29, metric 1
       > via fe-1/2/0.0

9009:3::2/128      *[Local/0] 03:26:29
       Local via fe-1/2/0.0

9009:5::/64        *[OSPF3/10] 02:44:34, metric 3
       > via fe-1/2/0.0

9009:6::/64        *[OSPF3/10] 03:16:59, metric 2
       > via fe-1/2/0.0

fe80::/64          *[Direct/0] 03:26:29
       > via fe-1/2/0.0

fe80::2a0:a514:0:64c/128
       *[Local/0] 03:26:29
       Local via fe-1/2/0.0

ff02::5/128        *[OSPF3/10] 03:27:37, metric 1
                  MultiRecv

Meaning
On Device 1, the default route (::/0) has been learned because of the default-metric statement on the ABR, Device 4. The customer routes 3030::1 and 4040::1 have been learned from Device 2. The 1010::1 and 2020::1 routes have been suppressed. They are not needed because the default route can be used instead.

On Device 6 in area 0, all of the customer routes have been learned.

*Verifying the Type of LSAs*

**Purpose**
Verify the type of LSAs that are in the area.

**Action**
From operational mode on Device 1, enter the `show ospf3 database nssa detail` command.

```
user@4> show ospf3 database nssa detail
```

<table>
<thead>
<tr>
<th>Area 0.0.0.1</th>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSSA</td>
<td>0.0.1</td>
<td>2.2.2.2</td>
<td>0x00000004</td>
<td>2063</td>
<td>0xceaf</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Prefix 3030::1/128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefix-options 0x8, Metric 0, Type 2,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fwd addr 9009:5::2,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSSA</td>
<td>0.0.2</td>
<td>2.2.2.2</td>
<td>0x00000004</td>
<td>1463</td>
<td>0x3627</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Prefix 4040::1/128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefix-options 0x8, Metric 0, Type 2,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fwd addr 9009:5::2,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSSA</td>
<td>*0.0.0.1</td>
<td>4.4.4.4</td>
<td>0x00000003</td>
<td>35</td>
<td>0x25f8</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Prefix ::/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefix-options 0x0, Metric 10, Type 1,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Meaning**
Device 4 is not sending Type 7 (NSSA) LSAs for customer routes 1010::1/128 and 2020::1/128. If you were to delete or deactivate the no-nssa-abr statement and then rerun the `show ospf3 database nssa detail` command, you would see that Device 4 is sending Type 7 LSAs for 1010::1/128 and 2020::1/128.

*Understanding OSPF Virtual Links for Noncontiguous Areas*

OSPF requires that all areas in an autonomous system (AS) must be physically connected to the backbone area (area 0). In large networks with many areas, in which direct connectivity between all areas and the backbone area is physically difficult or impossible, you can configure virtual links to connect noncontiguous areas. Virtual links use a transit area that contains two or more area border routers (ABRs) to pass network
traffic from one adjacent area to another. The transit area must have full routing information and it cannot be a stub area. For example, Figure 15 on page 159 shows a virtual link between a noncontiguous area and the backbone area through an area connected to both.

Figure 15: OSPF Topology with a Virtual Link

In the topology shown in Figure 15 on page 159, a virtual link is established between area 0.0.0.3 and the backbone area through area 0.0.0.2. The virtual link transits area 0.0.0.2. All outbound traffic destined for other areas is routed through area 0.0.0.2 to the backbone area and then to the appropriate ABR. All inbound traffic destined for area 0.0.0.3 is routed to the backbone area and then through area 0.0.0.2.

Example: Configuring OSPF Virtual Links to Connect Noncontiguous Areas

This example shows how to configure an OSPF virtual link to connect noncontiguous areas.

Requirements

Before you begin:

- Configure the device interfaces. See the Junos OS Network Interfaces Library for Routing Devices.
• Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.

• Configure a multiarea OSPF network. See "Example: Configuring a Multiarea OSPF Network" on page 79.

Overview

If any routing device on the backbone is not physically connected to the backbone, you must establish a virtual connection between that routing device and the backbone to connect the noncontiguous areas.

To configure an OSPF virtual link through an area, you specify the router ID (IP address) of the routing devices at each end of the virtual link. These routing devices must be area border routers (ABRs), with one that is physically connected to the backbone. You cannot configure virtual links through stub areas. You must also specify the number of the area through which the virtual link transits (also known as the transit area). You apply these settings to the backbone area (defined by the area 0.0.0.0) configuration on the ABRs that are part of the virtual link.

In this example, Device R1 and Device R2 are the routing devices at each end of the virtual link, with Device R1 physically connected to the backbone, as shown in Figure 16 on page 160. You configure the following virtual link settings:

• neighbor-id—Specifies the IP address of the routing device at the other end of the virtual link. In this example, Device R1 has a router ID of 192.0.2.5, and Device R2 has a router ID of 192.0.2.3.

• transit-area—Specifies the area identifier through which the virtual link transits. In this example, area 0.0.0.3 is not connected to the backbone, so you configure a virtual link session between area 0.0.0.3 and the backbone area through area 0.0.0.2. Area 0.0.0.2 is the transit area.

Figure 16: OSPF Virtual Link

Configuration

CLI Quick Configuration
• To quickly configure an OSPF virtual link on the local routing device (Device R1), copy the following commands and paste them into the CLI.

**NOTE:** You must configure both routing devices that are part of the virtual link and specify the applicable neighbor ID on each routing device.

```plaintext
[edit]
set routing-options router-id 192.0.2.5
set protocols ospf area 0.0.0.0 virtual-link neighbor-id 192.0.2.3 transit-area 0.0.0.2
```

• To quickly configure an OSPF virtual link on the remote routing device (Device R2), copy the following commands and paste them into the CLI.

```plaintext
[edit]
set routing-options router-id 192.0.2.3
set protocols ospf area 0.0.0.0 virtual-link neighbor-id 192.0.2.5 transit-area 0.0.0.2
```

**Step-by-Step Procedure**

To configure an OSPF virtual link on the local routing device (Device R1):

1. Configure the router ID.

   ```plaintext
 [edit]
 user@R1# set routing-options router-id 192.0.2.5
   ```

2. Enter OSPF configuration mode and specify OSPF area 0.0.0.0.

   **NOTE:** For an OSPFv3 virtual link, include the `ospf3` statement at the `[edit protocols]` hierarchy level.

   ```plaintext
 [edit]
 user@R1# edit protocols ospf area 0.0.0.0
   ```

3. Configure an OSPF virtual link and specify the transit area 0.0.0.2.
   This routing device must be an ABR that is physically connected to the backbone.
4. If you are done configuring the device, commit the configuration.

[edit protocols ospf area 0.0.0.0]
user@R1# commit

---

**Step-by-Step Procedure**

To configure an OSPF virtual link on the remote ABR (Device R2, the routing device at the other end of the link):

1. Configure the router ID.

```
[edit]
user@R2# set routing-options router-id 192.0.2.3
```

2. Enter OSPF configuration mode and specify OSPF area 0.0.0.0.

```
[edit]
user@R2# edit protocols ospf area 0.0.0
```

---

**NOTE:** For an OSPFv3 virtual link, include the `ospf3` statement at the `[edit protocols]` hierarchy level.

3. Configure an OSPF virtual link on the remote ABR and specify the transit area 0.0.0.2. This routing device is not physically connected to the backbone.

```
[edit protocols ospf area 0.0.0.0]
user@R2# set virtual-link neighbor-id 192.0.2.5 transit-area 0.0.0.2
```

4. If you are done configuring the device, commit the configuration.

```
[edit protocols ospf area 0.0.0.0]
user@R2# commit
```
Results

Confirm your configuration by entering the show **routing-options** and the show **protocols ospf** commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Configuration on the local routing device (Device R1):

```plaintext
user@R1# show routing-options
router-id 192.0.2.5;
```

```plaintext
user@R1# show protocols ospf
area 0.0.0.0 {
 virtual-link neighbor-id 192.0.2.3 transit-area 0.0.0.2;
}
```

Configuration on the remote ABR (Device R2):

```plaintext
user@R2# show routing-options
router-id 192.0.2.3;
```

```plaintext
user@R2# show protocols ospf
area 0.0.0.0 {
 virtual-link neighbor-id 192.0.2.5 transit-area 0.0.0.2;
}
```

To confirm your OSPFv3 configuration, enter the **show protocols ospf3** command.

Verification

**IN THIS SECTION**

- Verifying Entries in the Link-State Database | 163
- Verifying OSPF Interface Status and Configuration | 164

Confirm that the configuration is working properly.

*Verifying Entries in the Link-State Database*

Purpose
Verify that the entries in the OSPFv2 or OSPFv3 link-state database display. The Router field in the OSPFv2 output displays LSA information, including the type of link. If configured as a virtual link, the Type is Virtual. For each router link, the Type field in the OSPFv3 output displays the type of interface. If configured as a virtual link, the Type is Virtual.

**Action**

From operational mode, enter the `show ospf database detail` command for OSPFv2, and enter the `show ospf3 database detail` command for OSPFv3.

**Verifying OSPF Interface Status and Configuration**

**Purpose**

Verify that the OSPFv2 or OSPFv3 interface is configured and status displays. The Type field displays the type of interface. If the interface is configured as part of a virtual link, the Type is Virtual.

**Action**

From operational mode, enter the `show ospf interface detail` command for OSPFv2, and enter the `show ospf3 interface detail` command for OSPFv3.

---

**Example: Configuring OSPFv3 Virtual Links**

This example shows how to configure OSPF version 3 (OSPFv3) with some areas that do not have a direct adjacency to the backbone area (area 0). When an area lacks an adjacency with area 0, a virtual link is required to connect to the backbone through a non-backbone area. The area through which you configure the virtual link, known as a transit area, must have full routing information. The transit area cannot be a stub area.

**Requirements**

No special configuration beyond device initialization is required before configuring this example.
Overview

Figure 17 on page 165 shows the topology used in this example.

Figure 17: OSPFv3 with Virtual Links

Device 0, Device 1, Device 2, and Device 3 are connected to the OSPFv3 backbone Area 0. Device 2, Device 3, and Device 4 connect to each other across Area 1. and Area 2 is located between Device 4 and Device 5. Because Device 5 does not have a direct adjacency to Area 0, a virtual link is required across Area 1 between Device 3 and Device 4. Similarly, because Device 0 and Device 1 have two separate Area 0 backbone sections, you need to configure a second virtual link across Area 1 between Device 2 and Device 3.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device 0

```
set logical-systems 0 interfaces so-0/3/2 unit 0 family inet6 address 9009:1::1/64
set logical-systems 0 interfaces lo0 unit 0 family inet address 192.168.0.1/32
```
set logical-systems 0 interfaces lo0 unit 0 family inet6 address feee::10:255:71:4/128
set logical-systems 0 protocols ospf3 area 0.0.0.0 interface so-0/3/2.0
set logical-systems 0 protocols ospf3 area 0.0.0.0 interface lo0.0 passive
set logical-systems 0 routing-options router-id 192.168.0.1

Device 1

set logical-systems 1 interfaces at-2/0/0 atm-options vpi 0
set logical-systems 1 interfaces at-2/0/0 unit 0 family inet6 address 9009:2::1/64
set logical-systems 1 interfaces at-2/0/0 unit 0 vci 0.77
set logical-systems 1 interfaces lo0 unit 0 family inet address 192.168.1.1/32
set logical-systems 1 interfaces lo0 unit 0 family inet6 address feee::10:255:71:1/128
set logical-systems 1 protocols ospf3 area 0.0.0.0 interface at-2/0/0.0
set logical-systems 1 protocols ospf3 area 0.0.0.0 interface lo0.0 passive
set logical-systems 1 routing-options router-id 192.168.1.1

Device 2

set logical-systems 2 interfaces so-0/2/0 unit 0 family inet6 address 9009:3::1/64
set logical-systems 2 interfaces fe-1/1/0 unit 0 family inet6 address 9009:4::1/64
set logical-systems 2 interfaces at-0/3/1 atm-options vpi 0 maximum-vcs 1200
set logical-systems 2 interfaces at-0/3/1 unit 0 family inet6 address 9009:2::2/64
set logical-systems 2 interfaces at-0/3/1 unit 0 vci 0.77
set logical-systems 2 interfaces lo0 unit 0 family inet address 192.168.2.1/32
set logical-systems 2 interfaces lo0 unit 0 family inet6 address feee::10:255:71:128
set logical-systems 2 protocols ospf3 area 0.0.0.0 virtual-link neighbor-id 192.168.3.1 transit-area 0.0.0.1
set logical-systems 2 protocols ospf3 area 0.0.0.0 interface at-0/3/1.0
set logical-systems 2 protocols ospf3 area 0.0.0.1 interface fe-1/1/0.0
set logical-systems 2 protocols ospf3 area 0.0.0.1 interface so-0/2/0.0
set logical-systems 2 protocols ospf3 area 0.0.0.1 interface lo0.0 passive
set logical-systems 2 routing-options router-id 192.168.2.1

Device 3
set logical-systems 3 interfaces so-0/3/2 unit 0 family inet6 address 9009:1::2/64
set logical-systems 3 interfaces t1-0/2/1 unit 0 family inet6 address 9009:5::1/64
set logical-systems 3 interfaces so-0/3/0 unit 0 family inet6 address 9009:3::2/64
set logical-systems 3 interfaces lo0 unit 0 family inet address 192.168.3.1/32
set logical-systems 3 interfaces lo0 unit 0 family inet6 address feee::10:255:71:3/128
set logical-systems 3 protocols ospf3 area 0.0.0.1 interface so-0/3/0
set logical-systems 3 protocols ospf3 area 0.0.0.1 interface t1-0/2/1.0
set logical-systems 3 protocols ospf3 area 0.0.0.1 interface lo0.0 passive
set logical-systems 3 protocols ospf3 area 0.0.0.0 virtual-link neighbor-id 192.168.2.1 transit-area 0.0.0.1
set logical-systems 3 protocols ospf3 area 0.0.0.0 virtual-link neighbor-id 192.168.4.1 transit-area 0.0.0.1
set logical-systems 3 protocols ospf3 area 0.0.0.0 interface so-0/3/2.0
set logical-systems 3 routing-options router-id 192.168.3.1

Device 4

set logical-systems 4 interfaces t1-0/2/1 unit 0 family inet6 address 9009:5::2/64
set logical-systems 4 interfaces fe-0/0/0 unit 0 family inet6 address 9009:6::1/64
set logical-systems 4 interfaces fe-1/1/0 unit 0 family inet6 address 9009:4::2/64
set logical-systems 4 interfaces lo0 unit 0 family inet address 192.168.4.1/32
set logical-systems 4 interfaces lo0 unit 0 family inet6 address feee::10:255:71:5/128
set logical-systems 4 protocols ospf3 area 0.0.0.1 interface fe-1/1/0.0
set logical-systems 4 protocols ospf3 area 0.0.0.1 interface t1-0/2/1.0
set logical-systems 4 protocols ospf3 area 0.0.0.1 interface lo0.0 passive
set logical-systems 4 protocols ospf3 area 0.0.0.2 interface fe-0/0/0.0
set logical-systems 4 protocols ospf3 area 0.0.0.0 virtual-link neighbor-id 192.168.3.1 transit-area 0.0.0.1
set logical-systems 4 routing-options router-id 192.168.4.1

Device 5

set logical-systems 5 interfaces fe-0/0/0 unit 0 family inet6 address 9009:6::2/64
set logical-systems 5 interfaces lo0 unit 0 family inet address 192.168.5.1/32
set logical-systems 5 interfaces lo0 unit 0 family inet6 address feee::10:255:71:6/128
set logical-systems 5 protocols ospf3 area 0.0.0.2 interface fe-0/0/0.0
set logical-systems 5 protocols ospf3 area 0.0.0.2 interface lo0.0 passive
set logical-systems 5 routing-options router-id 192.168.5.1

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure Device 0:

1. Configure the interfaces.

```plaintext
[edit interfaces]
user@0# set s0-0/3/2 unit 0 family inet6 address 9009:1::1/64
user@0# set lo0 unit 0 family inet address 192.168.0.1/32
user@0# set lo0 unit 0 family inet6 address feee::10:255:71:4/128
```

2. Add the interfaces into Area 0 of the OSPFv3 process.

```plaintext
[edit protocols ospf3 area 0.0.0.0]
user@0# set interface s0-0/3/2.0
user@0# set interface lo0.0 passive
```

3. Configure the router ID.

```plaintext
[edit routing-options]
user@0# set router-id 192.168.0.1
```

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure Device 1:

1. Configure the interfaces.

```plaintext
[edit interfaces]
user@1# set at-2/0/0 atm-options vpi 0
user@1# set at-2/0/0 unit 0 family inet6 address 9009:2::1/64
user@1# set at-2/0/0 unit 0 vci 0.77
```
2. Add the interfaces into Area 0 of the OSPFv3 process.

   [edit protocols ospf3 area 0.0.0.0]
   user@1# set interface at-2/0/0.0
   user@1# set interface lo0.0 passive

3. Configure the router ID.

   [edit routing-options]
   user@1# set router-id 192.168.1.1

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure Device 2:

1. Configure the interfaces.

   [edit interfaces]
   user@2# set so-0/2/0 unit 0 family inet6 address 9009:3::1/64
   user@2# set fe-1/1/0 unit 0 family inet6 address 9009:4::1/64
   user@2# set at-0/3/1 atm-options vpi 0 maximum-vcs 1200
   user@2# set at-0/3/1 unit 0 family inet6 address 9009:2::2/64
   user@2# set at-0/3/1 unit 0 vci 0.77
   user@2# set lo0 unit 0 family inet address 192.168.2.1/32
   user@2# set lo0 unit 0 family inet6 address feee::10:255:71:1/128

2. Add the interfaces connected to Device 1, Device 3, and Device 4 into the OSPFv3 process.

   [edit protocols ospf3 area 0.0.0.0]
   user@2# set interface at-0/3/1.0
   [edit protocols ospf3 area 0.0.0.1]
   user@2# set interface fe-1/1/0.0
   user@2# set interface so-0/2/0.0
   user@2# set interface lo0.0 passive
3. Configure the virtual link to Device 3 through Area 1 so that Device 1 can access the discontiguous portion of the OSPF backbone found on Device 0.

```
[edit protocols ospf3 area 0.0.0.0]
user@2# set virtual-link neighbor-id 192.168.3.1 transit-area 0.0.0.1
```

4. Configure the router ID.

```
[edit routing-options]
user@2# set router-id 192.168.2.1
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure Device 3:

1. Configure the interfaces.

```
[edit interfaces]
user@3# set so-0/3/2 unit 0 family inet6 address 9009:1::2/64
user@3# set t1-0/2/1 unit 0 family inet6 address 9009:5::1/64
user@3# set so-0/3/0 unit 0 family inet6 address 9009:3::2/64
user@3# set lo0 unit 0 family inet address 192.168.3.1/32
user@3# set lo0 unit 0 family inet6 address feee::10:255:71:3/128
```

2. For the OSPFv3 process on Device 3, configure the interfaces connected to Device 2 and Device 4 into Area 1 and the interface connected to Device 0 into Area 0.

```
[edit protocols ospf3 area 0.0.0.1]
user@3# set interface so-0/3/0.0
user@3# set interface t1-0/2/1.0
user@3# set interface lo0.0 passive
[edit protocols ospf3 area 0.0.0.0]
user@3# set interface so-0/3/2.0
```

3. Configure two virtual links through Area 1—one connecting to Device 2 and the second connecting to Device 4.

   The virtual links allow Device 5 to access the OSPF backbone, and connect the discontiguous sections of Area 0 located at Device 0 and Device 1.
4. Configure the router ID.

```
[edit routing-options]
user@3# set router-id 192.168.3.1
```

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To configure Device 4:

1. Configure the interfaces.

```
[edit interfaces]
user@4# set t1-0/2/1 unit 0 family inet6 address 9009:5::2/64
user@4# set fe-0/0/0 unit 0 family inet6 address 9009:6::1/64
user@4# set fe-1/1/0 unit 0 family inet6 address 9009:4::2/64
user@4# set lo0 unit 0 family inet address 192.168.4.1/32
user@4# set lo0 unit 0 family inet6 address feee::10:255:71:5/128
```

2. On Device 4, add the connected interfaces into the OSPFv3 process.

```
[edit protocols ospf3 area 0.0.0.1]
user@4# set interface fe-1/1/0.0
user@4# set interface t1-0/2/1.0
user@4# set interface lo0.0 passive
[edit protocols ospf3 area 0.0.0.2]
user@4# set interface fe-0/0/0.0
```

3. Configure the virtual link to Device 3 through Area 1 so that Device 5 can access the OSPF backbone.

```
[edit protocols ospf3 area 0.0.0.0]
user@4# set virtual-link neighbor-id 192.168.3.1 transit-area 0.0.0.1
```

4. Configure the router ID.
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure Device 5:

1. Configure the interfaces.

```
[edit interfaces]
user@5# set fe-0/0/0 unit 0 family inet6 address 9009:6::2/64
user@5# set lo0 unit 0 family inet address 192.168.5.1/32
user@5# set lo0 unit 0 family inet6 address feee::10:255:71:6/128
```

2. Add the interfaces into the OSPFv3 process.

```
[edit protocols ospf3 area 0.0.0.2]
user@5# set interface fe-0/0/0.0
user@5# set interface lo0.0 passive
```

3. Configure the router ID.

```
[edit routing-options]
user@5# set router-id 192.168.5.1
```

Results

From configuration mode, confirm your configuration by entering the show interfaces, show protocols, and show routing-options commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Device 0

```
user@0# show interfaces
so-0/3/2 {
 unit 0 {
 family inet6 {
```

```
```
Device 1

```
user@1# show interfaces
at-2/0/0 {
 atm-options {
 vpi 0;
 }
 unit 0 {
 family inet6 {
 address 9009:2::1/64;
 }
 }
 lo0 {
```

```
user@0# show protocols
ospf3 {
 area 0.0.0.0 {
 interface so-0/3/2.0;
 interface lo0.0 {
 passive;
 }
 }
}
user@0# show routing-options
router-id 192.168.0.1;
```
unit 0 {
    family inet {
        address 192.168.1.1/32;
    }
    family inet6 {
        address feee::10:255:71:1/128;
    }
}

user@1# show protocols
ospf3 {
    area 0.0.0.0 {
        interface at-2/0/0/0;
        interface lo0.0 {
            passive;
        }
    }
}

user@1# show routing-options
router-id 192.168.1.1;

Device 2

user@2# show interfaces
so-0/2/0 {
    unit 0 {
        family inet6 {
            address 9009:3::1/64;
        }
    }
}

fe-1/1/0 {
    unit 0 {
        family inet6 {
            address 9009:4::1/64;
        }
    }
}

at-0/3/1 {
    atm-options {
vpi 0 {
  maximum-vcs 1200;
}

unit 0 {
  vci 0.77;
  family inet6 {
    address 9009::2/64;
  }
}

lo0 {
  unit 0 {
    family inet {
      address 192.168.2.1/32;
    }
    family inet6 {
      address feee::10:255:71:11/128;
    }
  }
}

user@2# show protocols
ospf3 {
  area 0.0.0.0 {
    virtual-link neighbor-id 192.168.3.1 transit-area 0.0.0.1;
    interface at-0/3/1.0;
  }
  area 0.0.0.1 {
    interface fe-1/1/0.0;
    interface so-0/2/0.0;
    interface lo0.0 {
      passive;
    }
  }
}

user@2# show routing-options
router-id 192.168.2.1;

Device 3
user@3# show interfaces
so-0/3/2 {
    unit 0 {
        family inet6 {
            address 9009:1::2/64;
        }
    }
}

t1-0/2/1 {
    unit 0 {
        family inet6 {
            address 9009:5::1/64;
        }
    }
}
}
so-0/3/0 {
    unit 0 {
        family inet6 {
            address 9009:3::2/64;
        }
    }
}
}
lo0 {
    unit 0 {
        family inet {
            address 192.168.3.1/32;
        }
        family inet6 {
            address feee::10:255:71:3/128;
        }
    }
}
user@3# show protocols
ospf3 {
    area 0.0.0.1 {
        interface so-0/3/0.0;
        interface t1-0/2/1.0;
        interface lo0.0 {
            passive;
        }
    }
    area 0.0.0.0 {

virtual-link neighbor-id 192.168.2.1 transit-area 0.0.0.1;
virtual-link neighbor-id 192.168.4.1 transit-area 0.0.0.1;
interface so-0/3/2.0;

user@3# show routing-options
router-id 192.168.3.1;

Device 4

user@4# show interfaces
t1-0/2/1 {
    unit 0 {
        family inet6 {
            address 9009::2/64;
        }
    }
}
fe-0/0/0 {
    unit 0 {
        family inet6 {
            address 9009::1/64;
        }
    }
}
fe-1/1/0 {
    unit 0 {
        family inet6 {
            address 9009::2/64;
        }
    }
}
lo0 {
    unit 0 {
        family inet {
            address 192.168.4.1/32;
        }
        family inet6 {
            address feee::10:255:71:5/128;
        }
    }
}
user@4# show protocols
ospf3 {
  area 0.0.0.1 {
    interface fe-1/1/0.0;
    interface t1-0/2/1.0;
    interface lo0.0 {
      passive;
    }
  }
  area 0.0.0.2 {
    interface fe-0/0/0.0;
  }
  area 0.0.0.0 {
    virtual-link neighbor-id 192.168.3.1 transit-area 0.0.0.1;
  }
}

user@4# show routing-options
router-id 192.168.4.1;

Device 5

user@5# show interfaces
fe-0/0/0 {
  unit 0 {
    family inet6 {
      address 9009:6::2/64;
    }
  }
}

lo0 {
  unit 0 {
    family inet {
      address 192.168.5.1/32;
    }
    family inet6 {
      address feee::10:255:71:6/128;
    }
  }
}
If you are done configuring the devices, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Device 0 Status | 180
- Device 1 Status | 182
- Device 2 Status | 185
- Device 3 Status | 188
- Device 4 Status | 192
- Device 5 Status | 196

Confirm that the configuration is working properly.

To verify proper operation of OSPFv3 for IPv6, use the following commands:

- `show ospf3 interface`
- `show ospf3 neighbor`
- `show ospf3 database`
- `show ospf3 route`
- `show interfaces terse` (to see the IPv6 link local address assigned to the `lo0` interface)
NOTE: To view prefix information, you must use the extensive option with the show ospf3 database command.

**Device 0 Status**

**Purpose**

Verify that Device 0 has learned the expected routes and has established the expected neighbor adjacencies.

In the `show ospf3 database` sample output, the stars indicate the "best" routes. These routes are the routes that are installed in the routing table.

**Action**

```
user@0> show ospf3 database
```
interface so-0/3/2.0 Area 0.0.0.0

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>*0.0.2</td>
<td>192.168.0.1</td>
<td>0x80000091</td>
<td>858</td>
<td>0xc0c7</td>
<td>56</td>
</tr>
<tr>
<td>Link</td>
<td>0.0.8</td>
<td>192.168.3.1</td>
<td>0x80000091</td>
<td>1354</td>
<td>0x84f9</td>
<td>56</td>
</tr>
</tbody>
</table>

user@0> show ospf3 interface

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0.0</td>
<td>DRother</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td>so-0/3/2.0</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
</tbody>
</table>

user@0> show ospf3 neighbor

<table>
<thead>
<tr>
<th>ID</th>
<th>Interface</th>
<th>State</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.3.1</td>
<td>so-0/3/2.0</td>
<td>Full</td>
<td>128</td>
<td>33</td>
</tr>
</tbody>
</table>

Neighbor-address fe80::2a0:a514:0:24c

user@0> show ospf3 route

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Path</th>
<th>Route</th>
<th>NH</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface so-0/3/2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface so-0/3/2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface so-0/3/2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface so-0/3/2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:1::/64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface so-0/3/2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:1::2/128</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface so-0/3/2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:2::/64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface so-0/3/2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:3::/64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface so-0/3/2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:4::/64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface so-0/3/2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Device 1 Status

Purpose
Verify that Device 1 has learned the expected routes and has established the expected neighbor adjacencies.

Action

user@1> show ospf3 interface

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>DROther</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td>at-2/0/0.0</td>
<td>PointToPoint</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
</tbody>
</table>

user@1> show ospf3 neighbor
User@1> show ospf3 database

Area 0.0.0.0

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.0.1</td>
<td>0x8000008f</td>
<td>2334</td>
<td>0x6e21</td>
<td>40</td>
</tr>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.1.1</td>
<td>0x8000008f</td>
<td>2331</td>
<td>0x523d</td>
<td>40</td>
</tr>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.2.1</td>
<td>0x80000090</td>
<td>2390</td>
<td>0x9e62</td>
<td>56</td>
</tr>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.3.1</td>
<td>0x80000092</td>
<td>2578</td>
<td>0x46d</td>
<td>72</td>
</tr>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.4.1</td>
<td>0x8000008f</td>
<td>2486</td>
<td>0x7016</td>
<td>40</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.1</td>
<td>192.168.2.1</td>
<td>0x80000093</td>
<td>703</td>
<td>0xc5c</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.2</td>
<td>192.168.2.1</td>
<td>0x80000093</td>
<td>515</td>
<td>0x156</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.3</td>
<td>192.168.2.1</td>
<td>0x80000092</td>
<td>2203</td>
<td>0x31a4</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.4</td>
<td>192.168.2.1</td>
<td>0x80000090</td>
<td>140</td>
<td>0xc320</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.5</td>
<td>192.168.2.1</td>
<td>0x80000092</td>
<td>328</td>
<td>0xf85a</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.6</td>
<td>192.168.2.1</td>
<td>0x80000090</td>
<td>2953</td>
<td>0xe3fb</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.1</td>
<td>192.168.3.1</td>
<td>0x80000093</td>
<td>891</td>
<td>0xf562</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.2</td>
<td>192.168.3.1</td>
<td>0x80000094</td>
<td>328</td>
<td>0x64e</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.3</td>
<td>192.168.3.1</td>
<td>0x80000092</td>
<td>2203</td>
<td>0xbc26</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.4</td>
<td>192.168.3.1</td>
<td>0x80000090</td>
<td>141</td>
<td>0x2aaa</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.5</td>
<td>192.168.3.1</td>
<td>0x80000091</td>
<td>703</td>
<td>0xe56e</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.6</td>
<td>192.168.3.1</td>
<td>0x8000008f</td>
<td>2766</td>
<td>0xde01</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.2</td>
<td>192.168.4.1</td>
<td>0x80000092</td>
<td>1268</td>
<td>0xf461</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.3</td>
<td>192.168.4.1</td>
<td>0x80000092</td>
<td>1080</td>
<td>0xf85b</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.4</td>
<td>192.168.4.1</td>
<td>0x80000091</td>
<td>893</td>
<td>0xf654</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.5</td>
<td>192.168.4.1</td>
<td>0x80000090</td>
<td>2299</td>
<td>0xd906</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.6</td>
<td>192.168.4.1</td>
<td>0x80000090</td>
<td>143</td>
<td>0xefec</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.7</td>
<td>192.168.4.1</td>
<td>0x80000091</td>
<td>1455</td>
<td>0xbc95</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.8</td>
<td>192.168.4.1</td>
<td>0x8000008f</td>
<td>2955</td>
<td>0x8ff4</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.9</td>
<td>192.168.4.1</td>
<td>0x80000090</td>
<td>2768</td>
<td>0xf0dd</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.10</td>
<td>192.168.4.1</td>
<td>0x8000008f</td>
<td>705</td>
<td>0xacc5</td>
<td>44</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>0.0.0.1</td>
<td>192.168.0.1</td>
<td>0x80000095</td>
<td>334</td>
<td>0xbd0a</td>
<td>64</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>0.0.0.1</td>
<td>192.168.1.1</td>
<td>0x80000096</td>
<td>331</td>
<td>0x85d7</td>
<td>64</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>0.0.0.1</td>
<td>192.168.2.1</td>
<td>0x80000096</td>
<td>1265</td>
<td>0xc7bd</td>
<td>64</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>0.0.0.1</td>
<td>192.168.3.1</td>
<td>0x80000097</td>
<td>1641</td>
<td>0x93f0</td>
<td>64</td>
</tr>
</tbody>
</table>

interface at-2/0/0.0 Area 0.0.0.0

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>*0.0.0.2</td>
<td>192.168.1.1</td>
<td>0x80000091</td>
<td>1331</td>
<td>0xae5d</td>
<td>56</td>
</tr>
<tr>
<td>Link</td>
<td>0.0.0.8</td>
<td>192.168.2.1</td>
<td>0x80000091</td>
<td>1453</td>
<td>0x80f3</td>
<td>56</td>
</tr>
</tbody>
</table>

user@1> show ospf3 route
<table>
<thead>
<tr>
<th>Prefix</th>
<th>Path</th>
<th>Route</th>
<th>NH</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type</td>
<td>Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.0.1</td>
<td>Intra</td>
<td>Router</td>
<td>IP</td>
<td>3</td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.2.1</td>
<td>Intra</td>
<td>Area</td>
<td>IP</td>
<td>1</td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.3.1</td>
<td>Intra</td>
<td>Area</td>
<td>IP</td>
<td>2</td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.4.1</td>
<td>Intra</td>
<td>Area</td>
<td>IP</td>
<td>3</td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:1::/64</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>3</td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:1::2/128</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>2</td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:2::/64</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:2::2/128</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:3::/64</td>
<td>Inter</td>
<td>Network</td>
<td>IP</td>
<td>2</td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:4::/64</td>
<td>Inter</td>
<td>Network</td>
<td>IP</td>
<td>2</td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:5::/64</td>
<td>Inter</td>
<td>Network</td>
<td>IP</td>
<td>3</td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:6::/64</td>
<td>Inter</td>
<td>Network</td>
<td>IP</td>
<td>4</td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9009:6::1/128</td>
<td>Inter</td>
<td>Network</td>
<td>IP</td>
<td>3</td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>feee::10:255:71:1/128</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>0</td>
</tr>
<tr>
<td>NH-interface lo0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>feee::10:255:71:3/128</td>
<td>Inter</td>
<td>Network</td>
<td>IP</td>
<td>2</td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>feee::10:255:71:5/128</td>
<td>Inter</td>
<td>Network</td>
<td>IP</td>
<td>2</td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>feee::10:255:71:6/128</td>
<td>Inter</td>
<td>Network</td>
<td>IP</td>
<td>4</td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>feee::10:255:71:11/128</td>
<td>Inter</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
</tr>
<tr>
<td>NH-interface at-2/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
user@1> show interfaces terse
Interface Admin Link Proto Local Remote
lt-1/2/0
```
Device 2 Status

Purpose
Verify that Device 2 has learned the expected routes and has established the expected neighbor adjacencies.

Action

user@2> show ospf3 interface

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>at-0/3/1.0</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
<tr>
<td>vl-192.168.3.1</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
<tr>
<td>lo0.0</td>
<td>DRother</td>
<td>0.0.0.1</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td>so-0/2/0.0</td>
<td>PtToPt</td>
<td>0.0.0.1</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
<tr>
<td>fe-1/1/0.0</td>
<td>PtToPt</td>
<td>0.0.0.1</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
</tbody>
</table>

user@2> show ospf3 neighbor

<table>
<thead>
<tr>
<th>ID</th>
<th>Interface</th>
<th>State</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.1</td>
<td>at-0/3/1.0</td>
<td>Full</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td>Neighbor-address</td>
<td>fe80::2a0:a514:0:b4c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.3.1</td>
<td>vl-192.168.3.1</td>
<td>Full</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>Neighbor-address</td>
<td>fe80::2a0:a514:0:74c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.3.1</td>
<td>so-0/2/0.0</td>
<td>Full</td>
<td>128</td>
<td>38</td>
</tr>
<tr>
<td>Neighbor-address</td>
<td>fe80::2a0:a514:0:a4c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.4.1</td>
<td>fe-1/1/0.0</td>
<td>Full</td>
<td>128</td>
<td>30</td>
</tr>
<tr>
<td>Neighbor-address</td>
<td>fe80::2a0:a514:0:a4c</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

user@2> show ospf3 database

Area 0.0.0.0

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.0.1</td>
<td>0x80000008f</td>
<td>2771</td>
<td>0x6e21</td>
<td>40</td>
</tr>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.1.1</td>
<td>0x80000008f</td>
<td>2770</td>
<td>0x523d</td>
<td>40</td>
</tr>
<tr>
<td>Router</td>
<td>*0.0.0.0</td>
<td>192.168.2.1</td>
<td>0x800000090</td>
<td>2827</td>
<td>0x9e62</td>
<td>56</td>
</tr>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.3.1</td>
<td>0x800000093</td>
<td>15</td>
<td>0x26e</td>
<td>72</td>
</tr>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.4.1</td>
<td>0x80000008f</td>
<td>2923</td>
<td>0x7016</td>
<td>40</td>
</tr>
<tr>
<td>Area</td>
<td>Type</td>
<td>ID</td>
<td>Adv Rtr</td>
<td>Seq</td>
<td>Age</td>
<td>Cksum</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>0.0.0.1</td>
<td>Router *0.0.0.0</td>
<td>192.168.2.1</td>
<td>0x80000093</td>
<td>1140</td>
<td>0xfc5c</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Router 0.0.0.0</td>
<td>192.168.2.1</td>
<td>0x80000093</td>
<td>952</td>
<td>0x156</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Router 0.0.0.0</td>
<td>192.168.2.1</td>
<td>0x80000093</td>
<td>2640</td>
<td>0x31a4</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>InterArPfx *0.0.0.4</td>
<td>192.168.2.1</td>
<td>0x80000090</td>
<td>577</td>
<td>0xc320</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>InterArPfx *0.0.0.5</td>
<td>192.168.2.1</td>
<td>0x80000092</td>
<td>765</td>
<td>0xf85a</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>InterArPfx *0.0.0.6</td>
<td>192.168.2.1</td>
<td>0x80000091</td>
<td>390</td>
<td>0xe1fc</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>InterArPfx 0.0.0.1</td>
<td>192.168.3.1</td>
<td>0x80000093</td>
<td>1328</td>
<td>0xf562</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>InterArPfx 0.0.0.2</td>
<td>192.168.3.1</td>
<td>0x80000094</td>
<td>768</td>
<td>0x64e</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>InterArPfx 0.0.0.3</td>
<td>192.168.3.1</td>
<td>0x80000092</td>
<td>2640</td>
<td>0xbc26</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>InterArPfx 0.0.0.4</td>
<td>192.168.3.1</td>
<td>0x80000090</td>
<td>578</td>
<td>0x2aaa</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>InterArPfx 0.0.0.5</td>
<td>192.168.3.1</td>
<td>0x80000091</td>
<td>1140</td>
<td>0xe56e</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>InterArPfx 0.0.0.6</td>
<td>192.168.3.1</td>
<td>0x80000090</td>
<td>203</td>
<td>0xdc02</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>InterArPfx 0.0.0.7</td>
<td>192.168.3.1</td>
<td>0x80000091</td>
<td>578</td>
<td>0x2aaa</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>InterArPfx 0.0.0.8</td>
<td>192.168.3.1</td>
<td>0x80000097</td>
<td>2078</td>
<td>0x93f0</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>InterArPfx 0.0.0.9</td>
<td>192.168.3.1</td>
<td>0x80000091</td>
<td>1140</td>
<td>0xe56e</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>InterArPfx 0.0.10</td>
<td>192.168.3.1</td>
<td>0x80000090</td>
<td>578</td>
<td>0x2aaa</td>
<td>44</td>
</tr>
</tbody>
</table>
interface at-0/3/1.0 Area 0.0.0.0
  Type       ID               Adv Rtr           Seq         Age  Cksum  Len
  Link       0.0.0.2          192.168.1.1      0x80000091  1770  0xaecd  56
  Link       *0.0.0.8          192.168.2.1      0x80000091  1890  0x80f3   56

interface so-0/2/0.0 Area 0.0.0.1
  Type       ID               Adv Rtr           Seq         Age  Cksum  Len
  Link       *0.0.0.6          192.168.2.1      0x80000092  2452  0x6018  56
  Link       0.0.0.7          192.168.3.1      0x80000092  2453  0x3a3d  56

interface fe-1/1/0.0 Area 0.0.0.1
  Type       ID               Adv Rtr           Seq         Age  Cksum  Len
  Link       *0.0.0.7          192.168.2.1      0x80000092  2077  0x8de7  56
  Link       0.0.0.8          192.168.4.1      0x80000091  2172  0x8ce5  56

user@2> show ospf3 route
Prefix                                       Path  Route      NH   Metric
  Type  Type       Type
192.168.0.1                                  Intra Router     IP   2
       NH-interface (null), NH-addr feee::10:255:71:3
192.168.1.1                                  Intra Router     IP   1
       NH-interface at-0/3/1.0
192.168.3.1                                  Intra Area BR    IP   1
       NH-interface so-0/2/0.0
192.168.4.1                                  Intra Area BR    IP   1
       NH-interface fe-1/1/0.0
9009:1::/64                                  Intra Network    IP   2
       NH-interface so-0/2/0.0
9009:1::2/128                                Intra Network    IP   1
       NH-interface so-0/2/0.0
9009:2::/64                                  Intra Network    IP   1
       NH-interface at-0/3/1.0
9009:2::2/128                                Intra Network    IP   0
       NH-interface at-0/3/1.0
9009:3::/64                                  Intra Network    IP   1
       NH-interface so-0/2/0.0
9009:4::/64                                  Intra Network    IP   1
       NH-interface fe-1/1/0.0
9009:5::/64                                  Intra Network    IP   2
       NH-interface so-0/2/0.0
       NH-interface fe-1/1/0.0
9009:6::/64                                  Inter Network    IP   2
       NH-interface fe-1/1/0.0
9009:6::1/128                                Inter Network    IP   1
NH-interface fe-1/1/0.0
feee::10:255:71:1/128                        Intra Network    IP   1

NH-interface at-0/3/1.0
feee::10:255:71:3/128                        Intra Network    IP   1

NH-interface so-0/2/0.0

NH-interface so-0/2/0.0
feee::10:255:71:5/128                        Intra Network    IP   1

NH-interface fe-1/1/0.0

NH-interface fe-1/1/0.0
feee::10:255:71:11/128                       Intra Network    IP   0

NH-interface lo0.0

user@2>  show interfaces terse

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>lt-1/2/0</td>
<td></td>
<td></td>
<td></td>
<td>9009:3::1/64</td>
<td>fe80::2a0:a514:0:84c/64</td>
</tr>
<tr>
<td>so-0/2/0.0</td>
<td>up</td>
<td>up</td>
<td>inet6</td>
<td>feee::10:255:71:11</td>
<td></td>
</tr>
<tr>
<td>fe-1/1/0.0</td>
<td>up</td>
<td>up</td>
<td>inet6</td>
<td>9009:4::1/64</td>
<td>fe80::2a0:a514:0:94c/64</td>
</tr>
<tr>
<td>at-0/3/1.0</td>
<td>up</td>
<td>up</td>
<td>inet6</td>
<td>9009:2::2/64</td>
<td>fe80::2a0:a514:0:c4c/64</td>
</tr>
<tr>
<td>lo0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lo0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>192.168.2.1 --&gt; 0/0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>inet6</td>
<td>fe80::2a0:a50f:fc56:14c</td>
<td>feee::10:255:71:11</td>
</tr>
</tbody>
</table>

Device 3 Status

Purpose
Verify that Device 3 has learned the expected routes and has established the expected neighbor adjacencies.

Action

user@3>  show ospf3 interface

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>so-0/3/2.0</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
<tr>
<td>vl-192.168.2.1</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
<tr>
<td>vl-192.168.4.1</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
<tr>
<td>lo0.0</td>
<td>DRother</td>
<td>0.0.0.1</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
</tbody>
</table>
user@3> show ospf3 neighbor

<table>
<thead>
<tr>
<th>ID</th>
<th>Interface</th>
<th>State</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.0.1</td>
<td>so-0/3/2.0</td>
<td>Full</td>
<td>128</td>
<td>31</td>
</tr>
<tr>
<td>Neighbor-address</td>
<td>fe80::2a0:a514:0:14c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.2.1</td>
<td>vl-192.168.2.1</td>
<td>Full</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>Neighbor-address</td>
<td>9009:3:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.4.1</td>
<td>vl-192.168.4.1</td>
<td>Full</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>Neighbor-address</td>
<td>9009:5:2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.4.1</td>
<td>t1-0/2/1.0</td>
<td>Full</td>
<td>128</td>
<td>35</td>
</tr>
<tr>
<td>Neighbor-address</td>
<td>fe80::2a0:a514:0:44c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.2.1</td>
<td>so-0/3/0.0</td>
<td>Full</td>
<td>128</td>
<td>37</td>
</tr>
<tr>
<td>Neighbor-address</td>
<td>fe80::2a0:a514:0:84c</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

user@3> show ospf3 database

Area 0.0.0.0

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.0.1</td>
<td>0x800000090</td>
<td>11</td>
<td>0x6c22</td>
<td>40</td>
</tr>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.1.1</td>
<td>0x800000090</td>
<td>12</td>
<td>0x503e</td>
<td>40</td>
</tr>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.2.1</td>
<td>0x80000091</td>
<td>69</td>
<td>0x9c63</td>
<td>56</td>
</tr>
<tr>
<td>Router</td>
<td>*0.0.0.0</td>
<td>192.168.3.1</td>
<td>0x800000093</td>
<td>255</td>
<td>0x26e</td>
<td>72</td>
</tr>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.4.1</td>
<td>0x800000090</td>
<td>163</td>
<td>0x6e17</td>
<td>40</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.1</td>
<td>192.168.2.1</td>
<td>0x80000093</td>
<td>1382</td>
<td>0xfc5c</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.2</td>
<td>192.168.2.1</td>
<td>0x80000093</td>
<td>1194</td>
<td>0x156</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.3</td>
<td>192.168.2.1</td>
<td>0x80000092</td>
<td>2882</td>
<td>0x31a4</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.4</td>
<td>192.168.2.1</td>
<td>0x80000090</td>
<td>819</td>
<td>0xc320</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.5</td>
<td>192.168.2.1</td>
<td>0x80000092</td>
<td>1007</td>
<td>0xff5a</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.6</td>
<td>192.168.2.1</td>
<td>0x80000091</td>
<td>632</td>
<td>0xex1fc</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.1</td>
<td>192.168.3.1</td>
<td>0x80000093</td>
<td>1568</td>
<td>0xf562</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.2</td>
<td>192.168.3.1</td>
<td>0x80000094</td>
<td>1005</td>
<td>0x6e4</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.3</td>
<td>192.168.3.1</td>
<td>0x80000092</td>
<td>2880</td>
<td>0xexc26</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.4</td>
<td>192.168.3.1</td>
<td>0x80000090</td>
<td>818</td>
<td>0x2aaa</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.5</td>
<td>192.168.3.1</td>
<td>0x80000091</td>
<td>1380</td>
<td>0xe56e</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.6</td>
<td>192.168.3.1</td>
<td>0x80000090</td>
<td>443</td>
<td>0xdc02</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.2</td>
<td>192.168.4.1</td>
<td>0x80000092</td>
<td>1945</td>
<td>0xff461</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.3</td>
<td>192.168.4.1</td>
<td>0x80000092</td>
<td>1757</td>
<td>0xff58b</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.4</td>
<td>192.168.4.1</td>
<td>0x80000091</td>
<td>1570</td>
<td>0xfe54</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.5</td>
<td>192.168.4.1</td>
<td>0x80000090</td>
<td>2976</td>
<td>0xd906</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.6</td>
<td>192.168.4.1</td>
<td>0x80000090</td>
<td>820</td>
<td>0xexefec</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.7</td>
<td>192.168.4.1</td>
<td>0x80000091</td>
<td>2132</td>
<td>0xexc95</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.8</td>
<td>192.168.4.1</td>
<td>0x80000090</td>
<td>632</td>
<td>0x8d50</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.9</td>
<td>192.168.4.1</td>
<td>0x80000091</td>
<td>445</td>
<td>0xexede</td>
<td>44</td>
</tr>
<tr>
<td>Prefix</td>
<td>Path</td>
<td>Route</td>
<td>NH</td>
<td>Metric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.0.1</td>
<td></td>
<td>Intra</td>
<td>IP</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Router</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Interface so-0/3/2.0 Area 0.0.0.0

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>0.0.0.2</td>
<td>192.168.0.1</td>
<td>0x80000091</td>
<td>2011</td>
<td>0xc0c7</td>
<td>56</td>
</tr>
<tr>
<td>Link</td>
<td>*0.0.0.8</td>
<td>192.168.3.1</td>
<td>0x80000091</td>
<td>2505</td>
<td>0x84f9</td>
<td>56</td>
</tr>
</tbody>
</table>

### Interface t1-0/2/1.0 Area 0.0.0.1

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>*0.0.0.9</td>
<td>192.168.3.1</td>
<td>0x80000092</td>
<td>2130</td>
<td>0x1661</td>
<td>56</td>
</tr>
<tr>
<td>Link</td>
<td>0.0.0.7</td>
<td>192.168.4.1</td>
<td>0x80000092</td>
<td>2507</td>
<td>0x383f</td>
<td>56</td>
</tr>
</tbody>
</table>

### Interface so-0/3/0.0 Area 0.0.0.1

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>0.0.0.6</td>
<td>192.168.2.1</td>
<td>0x80000092</td>
<td>2694</td>
<td>0x6018</td>
<td>56</td>
</tr>
<tr>
<td>Link</td>
<td>*0.0.0.7</td>
<td>192.168.3.1</td>
<td>0x80000092</td>
<td>2693</td>
<td>0x3a3d</td>
<td>56</td>
</tr>
</tbody>
</table>

user@3> show ospf3 route

Prefix | Path | Route | NH | Metric | Type | Type | Type |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.0.1</td>
<td></td>
<td>Intra</td>
<td>IP</td>
<td>1</td>
<td>Router</td>
<td>Type</td>
<td>Type</td>
</tr>
</tbody>
</table>
### show interfaces terse

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln-1/2/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>so-0/3/2.0</td>
<td>up</td>
<td>up</td>
<td>inet6</td>
<td>9009:1::2/64</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fe80::2a0:a514:0:24c/64</td>
<td></td>
</tr>
<tr>
<td>tl-0/2/1.0</td>
<td>up</td>
<td>up</td>
<td>inet6</td>
<td>9009:5::1/64</td>
<td></td>
</tr>
</tbody>
</table>
Device 4 Status

Purpose
Verify that Device 4 has learned the expected routes and has established the expected neighbor adjacencies.

Action

user@4> show ospf3 interface

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0.0</td>
<td>DRother</td>
<td>0.0.0.1</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td>fe-1/1/0.0</td>
<td>PtToPt</td>
<td>0.0.0.1</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
<tr>
<td>t1-0/2/1.0</td>
<td>PtToPt</td>
<td>0.0.0.1</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
<tr>
<td>fe-0/0/0.0</td>
<td>PtToPt</td>
<td>0.0.0.2</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
<tr>
<td>vl-192.168.3.1</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
</tbody>
</table>

user@4> show ospf3 neighbor

<table>
<thead>
<tr>
<th>ID</th>
<th>Interface</th>
<th>State</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.2.1</td>
<td>fe-1/1/0.0</td>
<td>Full</td>
<td>128</td>
<td>35</td>
</tr>
<tr>
<td>Neighbor-address</td>
<td>fe80::2a0:a514:0:94c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.3.1</td>
<td>t1-0/2/1.0</td>
<td>Full</td>
<td>128</td>
<td>34</td>
</tr>
<tr>
<td>Neighbor-address</td>
<td>fe80::2a0:a514:0:34c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.5.1</td>
<td>fe-0/0/0.0</td>
<td>Full</td>
<td>128</td>
<td>39</td>
</tr>
<tr>
<td>Neighbor-address</td>
<td>fe80::2a0:a514:0:64c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.3.1</td>
<td>vl-192.168.3.1</td>
<td>Full</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>Neighbor-address</td>
<td>9009:5::1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

user@4> show ospf3 database

Area 0.0.0.0

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.0.1</td>
<td>0x80000090</td>
<td>270</td>
<td>0x6c22</td>
<td>40</td>
</tr>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.1.1</td>
<td>0x80000090</td>
<td>271</td>
<td>0x503e</td>
<td>40</td>
</tr>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.2.1</td>
<td>0x80000091</td>
<td>328</td>
<td>0x9c63</td>
<td>56</td>
</tr>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.3.1</td>
<td>0x80000093</td>
<td>514</td>
<td>0x26e</td>
<td>72</td>
</tr>
<tr>
<td>Type</td>
<td>ID</td>
<td>Adv Rtr</td>
<td>Seq</td>
<td>Age</td>
<td>Cksum</td>
<td>Len</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>-------------</td>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>Router</td>
<td>*0.0.0.0</td>
<td>192.168.4.1</td>
<td>0x80000090</td>
<td>420</td>
<td>0x6e17</td>
<td>40</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.1</td>
<td>192.168.2.1</td>
<td>0x80000093</td>
<td>1641</td>
<td>0xfc5c</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.2</td>
<td>192.168.2.1</td>
<td>0x80000093</td>
<td>1453</td>
<td>0x156</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.3</td>
<td>192.168.2.1</td>
<td>0x80000093</td>
<td>141</td>
<td>0x2f5a</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.4</td>
<td>192.168.2.1</td>
<td>0x80000090</td>
<td>1078</td>
<td>0xc320</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.5</td>
<td>192.168.2.1</td>
<td>0x80000092</td>
<td>1266</td>
<td>0xf85a</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.6</td>
<td>192.168.2.1</td>
<td>0x80000091</td>
<td>891</td>
<td>0xe1fc</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.7</td>
<td>192.168.2.1</td>
<td>0x80000090</td>
<td>1827</td>
<td>0xf562</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.8</td>
<td>192.168.2.1</td>
<td>0x80000094</td>
<td>1264</td>
<td>0x6e4</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.9</td>
<td>192.168.2.1</td>
<td>0x80000093</td>
<td>139</td>
<td>0xba27</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.10</td>
<td>192.168.2.1</td>
<td>0x80000091</td>
<td>1538</td>
<td>0x2f5a</td>
<td>44</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>0.0.0.1</td>
<td>192.168.2.1</td>
<td>0x80000095</td>
<td>2202</td>
<td>0x4f61</td>
<td>36</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>0.0.0.2</td>
<td>192.168.2.1</td>
<td>0x80000090</td>
<td>1827</td>
<td>0x8e54</td>
<td>36</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>0.0.0.3</td>
<td>192.168.2.1</td>
<td>0x80000091</td>
<td>233</td>
<td>0xd707</td>
<td>36</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>0.0.0.4</td>
<td>192.168.2.1</td>
<td>0x80000090</td>
<td>1077</td>
<td>0xefec</td>
<td>44</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>0.0.0.5</td>
<td>192.168.2.1</td>
<td>0x80000091</td>
<td>2389</td>
<td>0xbc95</td>
<td>36</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>0.0.0.6</td>
<td>192.168.2.1</td>
<td>0x80000090</td>
<td>889</td>
<td>0x8d50</td>
<td>44</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>0.0.0.7</td>
<td>192.168.2.1</td>
<td>0x80000091</td>
<td>702</td>
<td>0x2aaa</td>
<td>44</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>0.0.0.8</td>
<td>192.168.2.1</td>
<td>0x80000091</td>
<td>1639</td>
<td>0xe56e</td>
<td>36</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>0.0.0.9</td>
<td>192.168.2.1</td>
<td>0x80000090</td>
<td>1827</td>
<td>0xf562</td>
<td>36</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>0.0.10</td>
<td>192.168.2.1</td>
<td>0x80000091</td>
<td>2577</td>
<td>0x93f0</td>
<td>64</td>
</tr>
</tbody>
</table>

Area 0.0.0.1
Area 0.0.0.2

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>*0.0.0.0</td>
<td>192.168.4.1</td>
<td>0x80000091</td>
<td>45</td>
<td>0x4741</td>
<td>40</td>
</tr>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.5.1</td>
<td>0x80000090</td>
<td>270</td>
<td>0x3c50</td>
<td>40</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.1</td>
<td>192.168.4.1</td>
<td>0x80000094</td>
<td>2295</td>
<td>0xfa5a</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.2</td>
<td>192.168.4.1</td>
<td>0x80000094</td>
<td>2108</td>
<td>0xfe54</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.3</td>
<td>192.168.4.1</td>
<td>0x80000093</td>
<td>139</td>
<td>0xe7f6</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.4</td>
<td>192.168.4.1</td>
<td>0x80000091</td>
<td>1483</td>
<td>0xda7a</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.5</td>
<td>192.168.4.1</td>
<td>0x80000090</td>
<td>2108</td>
<td>0xa6b3</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.6</td>
<td>192.168.4.1</td>
<td>0x80000091</td>
<td>795</td>
<td>0xdc3</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.7</td>
<td>192.168.4.1</td>
<td>0x80000090</td>
<td>1483</td>
<td>0xa2b2</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.9</td>
<td>192.168.4.1</td>
<td>0x80000090</td>
<td>1358</td>
<td>0x9cb5</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.11</td>
<td>192.168.4.1</td>
<td>0x80000090</td>
<td>608</td>
<td>0x8f49</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.12</td>
<td>192.168.4.1</td>
<td>0x80000090</td>
<td>327</td>
<td>0x47a3</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.13</td>
<td>192.168.4.1</td>
<td>0x80000098</td>
<td>1452</td>
<td>0x689e</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.14</td>
<td>192.168.4.1</td>
<td>0x80000098</td>
<td>1264</td>
<td>0x6c98</td>
<td>44</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>*0.0.0.1</td>
<td>192.168.4.1</td>
<td>0x80000098</td>
<td>2858</td>
<td>0x82f5</td>
<td>44</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>0.0.0.1</td>
<td>192.168.5.1</td>
<td>0x80000095</td>
<td>1270</td>
<td>0xf25a</td>
<td>44</td>
</tr>
</tbody>
</table>

interface fe-1/1/0.0 Area 0.0.0.1

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>0.0.0.7</td>
<td>192.168.2.1</td>
<td>0x80000092</td>
<td>2577</td>
<td>0x8de7</td>
<td>56</td>
</tr>
<tr>
<td>Link</td>
<td>*0.0.0.8</td>
<td>192.168.4.1</td>
<td>0x80000091</td>
<td>2670</td>
<td>0x8ce5</td>
<td>56</td>
</tr>
</tbody>
</table>

interface t1-0/2/1.0 Area 0.0.0.1

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>0.0.0.9</td>
<td>192.168.3.1</td>
<td>0x80000092</td>
<td>2389</td>
<td>0x1661</td>
<td>56</td>
</tr>
<tr>
<td>Link</td>
<td>*0.0.0.7</td>
<td>192.168.4.1</td>
<td>0x80000092</td>
<td>2670</td>
<td>0x8ce5</td>
<td>56</td>
</tr>
</tbody>
</table>

interface fe-0/0/0.0 Area 0.0.0.2

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>*0.0.0.6</td>
<td>192.168.4.1</td>
<td>0x80000092</td>
<td>2952</td>
<td>0x79fc</td>
<td>56</td>
</tr>
<tr>
<td>Link</td>
<td>0.0.0.2</td>
<td>192.168.5.1</td>
<td>0x80000091</td>
<td>2270</td>
<td>0xb1c7</td>
<td>56</td>
</tr>
</tbody>
</table>

user@4> show ospf3 route

Prefix Path Route NH Metric
192.168.0.1 Intra Router IP 2
    NH-interface (null), NH-addr feee::10:255:71:3
192.168.1.1 Intra Router IP 3
    NH-interface (null), NH-addr feee::10:255:71:3
192.168.2.1 Intra Area BR IP 1
    NH-interface fe-1/1/0.0
<table>
<thead>
<tr>
<th>IP Address</th>
<th>Type</th>
<th>Prefix Length</th>
<th>Interface</th>
<th>NH-Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.3.1</td>
<td>Intra Area BR</td>
<td>IP 1</td>
<td>t1-0/2/1.0</td>
<td></td>
</tr>
<tr>
<td>192.168.5.1</td>
<td>Intra Router</td>
<td>IP 1</td>
<td>fe-0/0/0.0</td>
<td></td>
</tr>
<tr>
<td>9009:1::/64</td>
<td>Intra Network</td>
<td>IP 2</td>
<td>t1-0/2/1.0</td>
<td></td>
</tr>
<tr>
<td>9009:1:2/128</td>
<td>Intra Network</td>
<td>IP 1</td>
<td>t1-0/2/1.0</td>
<td></td>
</tr>
<tr>
<td>9009:2::/64</td>
<td>Intra Network</td>
<td>IP 2</td>
<td>fe-1/1/0.0</td>
<td></td>
</tr>
<tr>
<td>9009:2:2/128</td>
<td>Intra Network</td>
<td>IP 1</td>
<td>fe-1/1/0.0</td>
<td></td>
</tr>
<tr>
<td>9009:3::/64</td>
<td>Intra Network</td>
<td>IP 2</td>
<td>t1-0/2/1.0</td>
<td></td>
</tr>
<tr>
<td>9009:4::/64</td>
<td>Intra Network</td>
<td>IP 1</td>
<td>fe-1/1/0.0</td>
<td></td>
</tr>
<tr>
<td>9009:5::/64</td>
<td>Intra Network</td>
<td>IP 1</td>
<td>t1-0/2/1.0</td>
<td></td>
</tr>
<tr>
<td>9009:6::/64</td>
<td>Intra Network</td>
<td>IP 1</td>
<td>fe-1/1/0.0</td>
<td></td>
</tr>
<tr>
<td>9009:6:1/128</td>
<td>Intra Network</td>
<td>IP 0</td>
<td>fe0/0/0.0</td>
<td></td>
</tr>
</tbody>
</table>

**show interfaces terse**

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>lt-1/2/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t1-0/2/1.0</td>
<td>up</td>
<td>up</td>
<td>inet6</td>
<td>9009:5::2/64</td>
<td>fe80::2a0:a514:0:44c/64</td>
</tr>
<tr>
<td>fe-0/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet6</td>
<td>9009:6::1/64</td>
<td>fe80::2a0:a514:0:54c/64</td>
</tr>
<tr>
<td>fe-1/1/0.0</td>
<td>up</td>
<td>up</td>
<td>inet6</td>
<td>9009:4::2/64</td>
<td></td>
</tr>
</tbody>
</table>
Device 5 Status

Purpose
Verify that Device 5 has learned the expected routes and has established the expected neighbor adjacencies.

Action

user@5> show ospf3 interface

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0.0</td>
<td>DRother</td>
<td>0.0.0.2</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td>fe-0/0/0.0</td>
<td>PtToPt</td>
<td>0.0.0.2</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
</tbody>
</table>

user@5> show ospf3 neighbor

<table>
<thead>
<tr>
<th>ID</th>
<th>Interface</th>
<th>State</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.4.1</td>
<td>fe-0/0/0.0</td>
<td>Full</td>
<td>128</td>
<td>34</td>
</tr>
</tbody>
</table>

Neighbor-address fe80::2a0:a514:0:54c

user@5> show ospf3 database

Area 0.0.0.2

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>0.0.0.0</td>
<td>192.168.4.1</td>
<td>0x80000091</td>
<td>509</td>
<td>0x4741</td>
<td>40</td>
</tr>
<tr>
<td>Router</td>
<td>*0.0.0.0</td>
<td>192.168.5.1</td>
<td>0x80000090</td>
<td>732</td>
<td>0x3a50</td>
<td>40</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.1</td>
<td>192.168.4.1</td>
<td>0x80000094</td>
<td>2759</td>
<td>0xfa5a</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.2</td>
<td>192.168.4.1</td>
<td>0x80000094</td>
<td>2572</td>
<td>0xfe54</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.3</td>
<td>192.168.4.1</td>
<td>0x80000093</td>
<td>603</td>
<td>0xe7f6</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.4</td>
<td>192.168.4.1</td>
<td>0x80000091</td>
<td>2947</td>
<td>0xda7a</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.5</td>
<td>192.168.4.1</td>
<td>0x80000090</td>
<td>1447</td>
<td>0xab35</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.6</td>
<td>192.168.4.1</td>
<td>0x80000091</td>
<td>1259</td>
<td>0xdc3</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.7</td>
<td>192.168.4.1</td>
<td>0x80000090</td>
<td>2009</td>
<td>0xa2b2</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.0.9</td>
<td>192.168.4.1</td>
<td>0x80000090</td>
<td>1822</td>
<td>0x9cb5</td>
<td>36</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.11</td>
<td>192.168.4.1</td>
<td>0x80000090</td>
<td>1072</td>
<td>0x8f49</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.12</td>
<td>192.168.4.1</td>
<td>0x80000090</td>
<td>791</td>
<td>0x37a3</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.13</td>
<td>192.168.4.1</td>
<td>0x8000008f</td>
<td>1916</td>
<td>0x689e</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>0.0.14</td>
<td>192.168.4.1</td>
<td>0x8000008f</td>
<td>1728</td>
<td>0x6c98</td>
<td>44</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>0.0.0.1</td>
<td>192.168.4.1</td>
<td>0x80000099</td>
<td>322</td>
<td>0x80f6</td>
<td>64</td>
</tr>
<tr>
<td>IntraArPfx*0.0.1</td>
<td>192.168.5.1</td>
<td>0x80000095</td>
<td>1732</td>
<td>0xf25a</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>
interface fe-0/0/0.0 Area 0.0.0.2

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>0.0.0.6</td>
<td>192.168.4.1</td>
<td>0x80000093</td>
<td>416</td>
<td>0x77fd</td>
<td>56</td>
</tr>
<tr>
<td>Link</td>
<td>*0.0.0.2</td>
<td>192.168.5.1</td>
<td>0x80000091</td>
<td>2732</td>
<td>0xb1c7</td>
<td>56</td>
</tr>
</tbody>
</table>

user@5> show interfaces terse

Interface     Admin Link Proto Local                 Remote
lt-1/2/0      up    up   inet6    9009:6::2/64
fe-0/0/0.0    up    up   inet6    fe80::2a0:a514:0:64c/64
lo0           up    up   inet      192.168.5.1         --> 0/0
lo0.0         up    up   inet6    fe80::2a0:a50f:fc56:14c
              inet6    feee::10:255:71:6

RELATED DOCUMENTATION

OSPF Overview	23
OSPF Packets Overview	28
Understanding OSPF Configurations	35
Configure OSPF Route Control
Configuring OSPF Route Control

IN THIS SECTION

- Understanding OSPF Route Summarization | 199
- Example: Summarizing Ranges of Routes in OSPF Link-State Advertisements Sent into the Backbone Area | 200
- Example: Limiting the Number of Prefixes Exported to OSPF | 207
- Understanding OSPF Traffic Control | 209
- Example: Controlling the Cost of Individual OSPF Network Segments | 211
- Example: Dynamically Adjusting OSPF Interface Metrics Based on Bandwidth | 217
- Example: Controlling OSPF Route Preferences | 220
- Understanding OSPF Overload Function | 222
- Example: Configuring OSPF to Make Routing Devices Appear Overloaded | 224
- Understanding the SPF Algorithm Options for OSPF | 228
- Example: Configuring SPF Algorithm Options for OSPF | 229
- Configuring OSPF Refresh and Flooding Reduction in Stable Topologies | 232
- Understanding Synchronization Between LDP and IGPs | 234
- Example: Configuring Synchronization Between LDP and OSPF | 234
- OSPFv2 Compatibility with RFC 1583 Overview | 238
- Example: Disabling OSPFv2 Compatibility with RFC 1583 | 239

Understanding OSPF Route Summarization

Area border routers (ABRs) send summary link advertisements to describe the routes to other areas. Depending on the number of destinations, an area can get flooded with a large number of link-state records, which can utilize routing device resources. To minimize the number of advertisements that are flooded into an area, you can configure the ABR to coalesce, or summarize, a range of IP addresses and send reachability information about these addresses in a single link-state advertisement (LSA). You can summarize one or more ranges of IP addresses, where all routes that match the specified area range are filtered at the area boundary, and the summary is advertised in their place.

For an OSPF area, you can summarize and filter intra-area prefixes. All routes that match the specified area range are filtered at the area boundary, and the summary is advertised in their place. For an OSPF
not-so-stubby area (NSSA), you can only coalesce or filter NSSA external (Type 7) LSAs before they are translated into AS external (Type 5) LSAs and enter the backbone area. All external routes learned within the area that do not fall into the range of one of the prefixes are advertised individually to other areas.

In addition, you can also limit the number of prefixes (routes) that are exported into OSPF. By setting a user-defined maximum number of prefixes, you prevent the routing device from flooding an excessive number of routes into an area.

**Example: Summarizing Ranges of Routes in OSPF Link-State Advertisements Sent into the Backbone Area**

This example shows how to summarize routes sent into the backbone area.

**Requirements**

Before you begin:

- Configure the router identifiers for the devices in your OSPF network. See “Example: Configuring an OSPF Router Identifier” on page 69.
- Control OSPF designated router election. See “Example: Controlling OSPF Designated Router Election” on page 71.
- Configure a static route. See Examples: Configuring Static Routes in the Junos OS Routing Protocols Library.

**Overview**

You can summarize a range of IP addresses to minimize the size of the backbone router’s link-state database. All routes that match the specified area range are filtered at the area boundary, and the summary is advertised in their place.
Figure 18 on page 201 shows the topology used in this example. R5 is the ABR between area 0.0.0.4 and the backbone. The networks in area 0.0.0.4 are 10.0.8.4/30, 10.0.8.0/30, and 10.0.8.8/30, which can be summarized as 10.0.8.0/28. R3 is the ABR between NSSA area 0.0.0.3 and the backbone. The networks in area 0.0.0.3 are 10.0.4.4/30, 10.0.4.0/30, and 10.0.4.12/30, which can be summarized as 10.0.4.0/28. Area 0.0.0.3 also contains external static route 3.0.0.8, which will be flooded throughout the network.

In this example, you configure the ABRs for route summarization by including the following settings:

- **area-range**—For an area, summarizes a range of IP addresses when sending summary intra-area link advertisements. For an NSSA, summarizes a range of IP addresses when sending NSSA link-state advertisements (Type 7 LSAs). The specified prefixes are used to aggregate external routes learned within the area when the routes are advertised to other areas.

- **network/mask-length**—Indicates the summarized IP address range and the number of significant bits in the network mask.

### Configuration

**CLI Quick Configuration**

- To quickly configure route summarization for an OSPF area, copy the following commands and paste them into the CLI. The following is the configuration on ABR R5:
set interfaces fe-0/0/1 unit 0 family inet address 10.0.8.3/30
set interfaces fe-0/0/2 unit 0 family inet address 10.0.8.4/30
set interfaces fe-0/0/0 unit 0 family inet address 10.0.2.3/30
set interfaces fe-0/0/4 unit 0 family inet address 10.0.2.5/30
set protocols ospf area 0.0.0.4 stub
set protocols ospf area 0.0.0.4 interface fe-0/0/1
set protocols ospf area 0.0.0.4 interface fe-0/0/2
set protocols ospf area 0.0.0.0 interface fe-0/0/0
set protocols ospf area 0.0.0.0 interface fe-0/0/4
set protocols ospf area 0.0.0.4 area-range 10.0.8.0/28

To quickly configure route summarization for an OSPF NSSA, copy the following commands and paste them into the CLI. The following is the configuration on ABR R3:

set interfaces fe-0/0/1 unit 0 family inet address 10.0.4.10/30
set interfaces fe-0/0/2 unit 0 family inet address 10.0.4.1/30
set interfaces fe-0/0/0 unit 0 family inet address 10.0.2.1/30
set interfaces fe-0/0/4 unit 0 family inet address 10.0.2.7/30
set protocols ospf area 0.0.0.3 interface fe-0/0/1
set protocols ospf area 0.0.0.3 interface fe-0/0/2
set protocols ospf area 0.0.0.0 interface fe-0/0/0
set protocols ospf area 0.0.0.0 interface fe-0/0/4
set protocols ospf area 0.0.0.3 area-range 10.0.4.0/28
set protocols ospf area 0.0.0.3 nssa
set protocols ospf area 0.0.0.3 nssa area-range 3.0.0.0/8

Step-by-Step Procedure
To summarize routes sent to the backbone area:

1. Configure the interfaces.

NOTE: For OSPFv3, include IPv6 addresses.
2. Configure the type of OSPF area.

   **NOTE:** For OSPFv3, include the `ospf3` statement at the `[edit protocols]` hierarchy level.

3. Assign the interfaces to the OSPF areas.

4. Summarize the routes that are flooded into the backbone.
5. On ABR R3, restrict the external static route from leaving area 0.0.0.3.

```
[edit]
user@R3# set protocols ospf area 0.0.0.3 nssa area-range 3.0.0.0/8
```

6. If you are done configuring the devices, commit the configuration.

```
[edit]
user@host# commit
```

**Results**

Confirm your configuration by entering the `show interfaces` and the `show protocols ospf` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Configuration on ABR R5:

```
user@R5# show interfaces
fe-0/0/0 {
 unit 0 {
 family inet {
 address 10.0.2.3/32;
 }
 }
}
fe-0/0/1 {
 unit 0 {
 family inet {
 address 10.0.8.3/32;
 }
 }
}
fe-0/0/2 {
 unit 0 {
 family inet {
 address 10.0.8.4/32;
 }
 }
}
fe-0/0/4 {
 unit 0 {
 family inet {
```
address 10.0.2.5/32;
}
}

user@R5# show protocols ospf
area 0.0.0.0 {
  interface fe-0/0/0.0;
  interface fe-0/0/4.0;
}
area 0.0.0.4 {
  stub;
  area-range 10.0.8.0/28;
  interface fe-0/0/1.0;
  interface fe-0/0/2.0;
}

Configuration on ABR R3:

user@R3# show interfaces
fe-0/0/0 {
  unit 0 {
    family inet {
      address 10.0.2.1/32;
    }
  }
}
fe-0/0/1 {
  unit 0 {
    family inet {
      address 10.0.4.10/32;
    }
  }
}
fe-0/0/2 {
  unit 0 {
    family inet {
      address 10.0.4.1/32;
    }
  }
}
fe-0/0/4 {
  unit 0 {

To confirm your OSPFv3 configuration, enter the `show interfaces` and `show protocols ospf3` commands.

**Verification**

Confirm that the configuration is working properly.

**Verifying the Summarized Route**

**Purpose**

Verify that the routes you configured for route summarization are being aggregated by the ABRs before the routes enter the backbone area. Confirm route summarization by checking the entries of the OSPF link-state database for the routing devices in the backbone.

**Action**

From operational mode, enter the `show ospf database` command for OSPFv2, and enter the `show ospf3 database` command for OSPFv3.
Example: Limiting the Number of Prefixes Exported to OSPF

This example shows how to limit the number of prefixes exported to OSPF.

Requirements

Before you begin:

- Configure the device interfaces. See the Junos OS Network Interfaces Library for Routing Devices.
- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.
- Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.
- Configure a multiarea OSPF network. See "Example: Configuring a Multiarea OSPF Network" on page 79.

Overview

By default, there is no limit to the number of prefixes (routes) that can be exported into OSPF. By allowing any number of routes to be exported into OSPF, the routing device can become overwhelmed and potentially flood an excessive number of routes into an area.

You can limit the number of routes exported into OSPF to minimize the load on the routing device and prevent this potential problem. If the routing device exceeds the configured prefix export value, the routing device purges the external prefixes and enters into an overload state. This state ensures that the routing device is not overwhelmed as it attempts to process routing information. The prefix export limit number can be a value from 0 through 4,294,967,295.

In this example, you configure a prefix export limit of 100,000 by including the prefix-export-limit statement.
Configuration

CLI Quick Configuration
To quickly limit the number of prefixes exported to OSPF, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[edit]
set protocols ospf prefix-export-limit 100000
```

Step-by-Step Procedure
To limit the number of prefixes exported to OSPF:

1. Configure the prefix export limit value.

   **NOTE:** For OSPFv3, include the ospf3 statement at the [edit protocols] hierarchy level.

   ```
 [edit]
 user@host# set protocols ospf prefix-export-limit 100000
   ```

2. If you are done configuring the device, commit the configuration.

   ```
 [edit]
 user@host# commit
   ```

Results
Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show protocols ospf
prefix-export-limit 100000;
```

To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

Verification
Confirm that the configuration is working properly.
Verifying the Prefix Export Limit

Purpose
Verify the prefix export counter that displays the number or routes exported into OSPF.

Action
From operational mode, enter the `show ospf overview` command for OSPFv2, and enter the `show ospf3 overview` command for OSPFv3.

SEE ALSO

Understanding OSPF Traffic Control

Once a topology is shared across the network, OSPF uses the topology to route packets between network nodes. Each path between neighbors is assigned a cost based on the throughput, round-trip time, and reliability of the link. The sum of the costs across a particular path between hosts determines the overall cost of the path. Packets are then routed along the shortest path using the shortest-path-first (SPF) algorithm. If multiple equal-cost paths exist between a source and destination address, OSPF routes packets along each path alternately, in round-robin fashion. Routes with lower total path metrics are preferred over those with higher path metrics.

You can use the following methods to control OSPF traffic:

- Control the cost of individual OSPF network segments
- Dynamically adjust OSPF interface metrics based on bandwidth
- Control OSPF route selection

Controlling the Cost of Individual OSPF Network Segments

OSPF uses the following formula to determine the cost of a route:

\[
\text{cost} = \frac{\text{reference-bandwidth}}{\text{interface bandwidth}}
\]

You can modify the reference-bandwidth value, which is used to calculate the default interface cost. The interface bandwidth value is not user-configurable and refers to the actual bandwidth of the physical interface.

By default, OSPF assigns a default cost metric of 1 to any link faster than 100 Mbps, and a default cost metric of 0 to the loopback interface (lo0). No bandwidth is associated with the loopback interface.
To control the flow of packets across the network, OSPF allows you to manually assign a cost (or metric) to a particular path segment. When you specify a metric for a specific OSPF interface, that value is used to determine the cost of routes advertised from that interface. For example, if all routers in the OSPF network use default metric values, and you increase the metric on one interface to 5, all paths through that interface have a calculated metric higher than the default and are not preferred.

NOTE: Any value you configure for the metric overrides the default behavior of using the reference-bandwidth value to calculate the route cost for that interface.

When there are multiple equal-cost routes to the same destination in a routing table, an equal-cost multipath (ECMP) set is formed. If there is an ECMP set for the active route, the Junos OS software uses a hash algorithm to choose one of the next-hop addresses in the ECMP set to install in the forwarding table.

You can configure Junos OS so that multiple next-hop entries in an ECMP set are installed in the forwarding table. Define a load-balancing routing policy by including one or more `policy-statement` configuration statements at the `[edit policy-options]` hierarchy level, with the action `load-balance per-packet`. Then apply the routing policy to routes exported from the routing table to the forwarding table.

**Dynamically Adjusting OSPF Interface Metrics Based on Bandwidth**

You can specify a set of bandwidth threshold values and associated metric values for an OSPF interface or for a topology on an OSPF interface. When the bandwidth of an interface changes, Junos OS automatically sets the interface metric to the value associated with the appropriate bandwidth threshold value. Junos OS uses the smallest configured bandwidth threshold value that is equal to or greater than the actual interface bandwidth to determine the metric value. If the interface bandwidth is greater than any of the configured bandwidth threshold values, the metric value configured for the interface is used instead of any of the bandwidth-based metric values configured. The ability to recalculate the metric for an interface when its bandwidth changes is especially useful for aggregate interfaces.

NOTE: You must also configure a metric for the interface when you enable bandwidth-based metrics.

**Controlling OSPF Route Preferences**

You can control the flow of packets through the network using route preferences. Route preferences are used to select which route is installed in the forwarding table when several protocols calculate routes to the same destination. The route with the lowest preference value is selected.
By default, internal OSPF routes have a preference value of 10, and external OSPF routes have a preference value of 150. Although the default settings are appropriate for most environments, you might want to modify the default settings if all of the routing devices in your OSPF network use the default preference values, or if you are planning to migrate from OSPF to a different interior gateway protocol (IGP). If all of the devices use the default route preference values, you can change the route preferences to ensure that the path through a particular device is selected for the forwarding table any time multiple equal-cost paths to a destination exist. When migrating from OSPF to a different IGP, modifying the route preferences allows you to perform the migration in a controlled manner.

SEE ALSO

OSPF Overview | 23
Example: Controlling OSPF Route Preferences | 220
Example: Configuring ECMP Flow-Based Forwarding

Example: Controlling the Cost of Individual OSPF Network Segments

This example shows how to control the cost of individual OSPF network segments.

Requirements

Before you begin:

• Configure the device interfaces. See the Interfaces User Guide for Security Devices.
• Configure the router identifiers for the devices in your OSPF network. See “Example: Configuring an OSPF Router Identifier” on page 69.
• Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71

• Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.

Overview

All OSPF interfaces have a cost, which is a routing metric that is used in the link-state calculation. Routes with lower total path metrics are preferred to those with higher path metrics. In this example, we explore how to control the cost of OSPF network segments.

By default, OSPF assigns a default cost metric of 1 to any link faster than 100 Mbps, and a default cost metric of 0 to the loopback interface (lo0). No bandwidth is associated with the loopback interface. This means that all interfaces faster than 100 Mbps have the same default cost metric of 1. If multiple equal-cost paths exist between a source and destination address, OSPF routes packets along each path alternately, in round-robin fashion.

Having the same default metric might not be a problem if all of the interfaces are running at the same speed. If the interfaces operate at different speeds, you might notice that traffic is not routed over the fastest interface because OSPF equally routes packets across the different interfaces. For example, if your routing device has Fast Ethernet and Gigabit Ethernet interfaces running OSPF, each of these interfaces have a default cost metric of 1.

In the first example, you set the reference bandwidth to 10g (10 Gbps, as denoted by 10,000,000,000 bits) by including the reference-bandwidth statement. With this configuration, OSPF assigns the Fast Ethernet interface a default metric of 100, and the Gigabit Ethernet interface a metric of 10. Since the Gigabit Ethernet interface has the lowest metric, OSPF selects it when routing packets. The range is 9600 through 1,000,000,000,000 bits.

Figure 19 on page 213 shows three routing devices in area 0.0.0.0 and assumes that the link between Device R2 and Device R3 is congested with other traffic. You can also control the flow of packets across the network by manually assigning a metric to a particular path segment. Any value you configure for the metric overrides the default behavior of using the reference-bandwidth value to calculate the route cost for that interface. To prevent the traffic from Device R3 going directly to Device R2, you adjust the metric on the interface on Device R3 that connects with Device R1 so that all traffic goes through Device R1.

In the second example, you set the metric to 5 on interface fe-1/0/1 on Device R3 that connects with Device R1 by including the metric statement. The range is 1 through 65,535.
Figure 19: OSPF Metric Configuration

Configuration

IN THIS SECTION

- Configuring the Reference Bandwidth | 213
- Configuring a Metric for a Specific OSPF Interface | 214

Configuring the Reference Bandwidth

CLI Quick Configuration

To quickly configure the reference bandwidth, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[edit]
 set protocols ospf reference-bandwidth 10g
```

Step-by-Step Procedure

To configure the reference bandwidth:

1. Configure the reference bandwidth to calculate the default interface cost.
NOTE: To specify OSPFv3, include the **ospf3** statement at the [edit protocols] hierarchy level.

```
[edit]
user@host# set protocols ospf reference-bandwidth 10g
```

**TIP:** As a shortcut in this example, you enter **10g** to specify 10 Gbps reference bandwidth. Whether you enter **10g** or **10000000000**, the output of `show protocols ospf` command displays 10 Gbps as **10g**, not **10000000000**.

2. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

**NOTE:** Repeat this entire configuration on all routing devices in a shared network.

**Results**
Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show protocols ospf
reference-bandwidth 10g;
```

To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

**Configuring a Metric for a Specific OSPF Interface**

**CLI Quick Configuration**
To quickly configure a metric for a specific OSPF interface, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter **commit** from configuration mode.
Step-by-Step Procedure
To configure the metric for a specific OSPF interface:

1. Create an OSPF area.

   ```
 [edit]
 set protocols ospf area 0.0.0.0 interface fe-1/0/1 metric 5
   ```

2. Configure the metric of the OSPF network segment.

   ```
 [edit protocols ospf area 0.0.0.0]
 user@host# set interface fe-1/0/1 metric 5
   ```

3. If you are done configuring the device, commit the configuration.

   ```
 [edit protocols ospf area 0.0.0.0]
 user@host# commit
   ```

Results
Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show protocols ospf
area 0.0.0.0 {
 interface fe-1/0/1.0 {
 metric 5;
 }
}
```

To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.
Verification

IN THIS SECTION
- Verifying the Configured Metric | 216
- Verifying the Route | 216

Confirm that the configuration is working properly.

**Verifying the Configured Metric**

**Purpose**
Verify the metric setting on the interface. Confirm that the Cost field displays the interface’s configured metric (cost). When choosing paths to a destination, OSPF uses the path with the lowest cost.

**Action**
From operational mode, enter the `show ospf interface detail` command for OSPFv2, and enter the `show ospf3 interface detail` command for OSPFv3.

**Verifying the Route**

**Purpose**
When choosing paths to a destination, OSPF uses the path with the lowest total cost. Confirm that OSPF is using the appropriate path.

**Action**
From operational mode, enter the `show route` command.

SEE ALSO
- Understanding OSPF Traffic Control | 209
- Example: Controlling OSPF Route Preferences | 220
Example: Dynamically Adjusting OSPF Interface Metrics Based on Bandwidth

This example shows how to dynamically adjust OSPF interface metrics based on bandwidth.

Requirements

Before you begin:

- Configure the device interfaces. See the Interfaces User Guide for Security Devices.
- Configure the router identifiers for the devices in your OSPF network. See “Example: Configuring an OSPF Router Identifier” on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.
- Configure a single-area OSPF network. See “Example: Configuring a Single-Area OSPF Network” on page 76.

Overview

You can specify a set of bandwidth threshold values and associated metric values for an OSPF interface. When the bandwidth of an interface changes, Junos OS automatically sets the interface metric to the value associated with the appropriate bandwidth threshold value. When you configure bandwidth-based metric values, you typically configure multiple bandwidth and metric values.

In this example, you configure OSPF interface ae0 for bandwidth-based metrics by including the bandwidth-based-metrics statement and the following settings:

- **bandwidth**—Specifies the bandwidth threshold in bits per second. The range is 9600 through 1,000,000,000,000,000.
- **metric**—Specifies the metric value to associate with a specific bandwidth value. The range is 1 through 65,535.

**Configuration**

**CLI Quick Configuration**

To quickly configure bandwidth threshold values and associated metric values for an OSPF interface, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
[edit]
set protocols ospf area 0.0.0.0 interface ae0.0 metric 5
set protocols ospf area 0.0.0.0 interface ae0.0 bandwidth-based-metrics bandwidth 1g metric 60
set protocols ospf area 0.0.0.0 interface ae0.0 bandwidth-based-metrics bandwidth 10g metric 50
```

To configure the metric for a specific OSPF interface:

1. Create an OSPF area.

   ```
 [edit]
 user@host# edit protocols ospf area 0.0.0.0
   ```

2. Configure the metric of the OSPF network segment.

   ```
 [edit protocols ospf area 0.0.0.0]
 user@host# set interface ae0 metric 5
   ```

3. Configure the bandwidth threshold values and associated metric values.

   ```
 [edit protocols ospf area 0.0.0.0]
 user@host# set interface ae0.0 bandwidth-based-metrics bandwidth 1g metric 60
 user@host# set interface ae0.0 bandwidth-based-metrics bandwidth 10g metric 50
   ```

4. If you are done configuring the device, commit the configuration.
[edit protocols ospf area 0.0.0.0 ]
user@host# commit

Results

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```bash
user@host# show protocols ospf
area 0.0.0.0 {
 interface ae0.0 {
 bandwidth-based-metrics {
 bandwidth 1g metric 60;
 bandwidth 10g metric 50;
 }
 metric 5;
 }
}
```

To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

Verification

Confirm that the configuration is working properly.

Verifying the Configured Metric

Purpose

Verify the metric setting on the interface. Confirm that the Cost field displays the interface's configured metric (cost). When choosing paths to a destination, OSPF uses the path with the lowest cost.

Action

From operational mode, enter the `show ospf interface detail` command for OSPFv2, and enter the `show ospf3 interface detail` command for OSPFv3.
Example: Controlling OSPF Route Preferences

This example shows how to control OSPF route selection in the forwarding table. This example also shows how you might control route selection if you are migrating from OSPF to another IGP.

Requirements

This example assumes that OSPF is properly configured and running in your network, and you want to control route selection because you are planning to migrate from OSPF to a different IGP.

- Configure the device interfaces. See the Interfaces User Guide for Security Devices.
- Configure the IGP that you want to migrate to.

Overview

Route preferences are used to select which route is installed in the forwarding table when several protocols calculate routes to the same destination. The route with the lowest preference value is selected.

By default, internal OSPF routes have a preference value of 10, and external OSPF routes have a preference value of 150. You might want to modify this setting if you are planning to migrate from OSPF to a different IGP. Modifying the route preferences enables you to perform the migration in a controlled manner.

This example makes the following assumptions:

- OSPF is already running in your network.
- You want to migrate from OSPF to IS-IS.
- You configured IS-IS per your network requirements and confirmed it is working properly.
In this example, you increase the OSPF route preference values to make them less preferred than IS-IS routes by specifying 168 for internal OSPF routes and 169 for external OSPF routes. IS-IS internal routes have a preference of either 15 (for Level1) or 18 (for Level 2), and external routes have a preference of 160 (for Level 1) or 165 (for Level 2). In general, it is preferred to leave the new protocol at its default settings to minimize complexities and simplify any future addition of routing devices to the network. To modify the OSPF route preference values, configure the following settings:

- **preference**—Specifies the route preference for internal OSPF routes. By default, internal OSPF routes have a value of 10. The range is from 0 through 4,294,967,295 ($2^{32} - 1$).

- **external-preference**—Specifies the route preference for external OSPF routes. By default, external OSPF routes have a value of 150. The range is from 0 through 4,294,967,295 ($2^{32} - 1$).

**Configuration**

**CLI Quick Configuration**

To quickly configure the OSPF route preference values, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
[edit]
set protocols ospf preference 168 external-preference 169
```

To configure route selection:

1. Enter OSPF configuration mode and set the external and internal routing preferences.

   **NOTE:** To specify OSPFv3, include the `ospf3` statement at the [edit protocols] hierarchy level.

```
[edit]
user@host# set protocols ospf preference 168 external-preference 169
```

2. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```
**Results**

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show protocols ospf
preference 168;
external-preference 169;
```

To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

---

**Verification**

**IN THIS SECTION**

- Verifying the Route | 222

---

Confirm that the configuration is working properly.

**Verifying the Route**

**Purpose**

Verify that the IGP is using the appropriate route. After the new IGP becomes the preferred protocol (in this example, IS-IS), you should monitor the network for any issues. After you confirm that the new IGP is working properly, you can remove the OSPF configuration from the routing device by entering the `delete ospf` command at the `[edit protocols]` hierarchy level.

**Action**

From operational mode, enter the `show route` command.

---

**Understanding OSPF Overload Function**

If the time elapsed after the OSPF instance is enabled is less than the specified timeout, overload mode is set.
You can configure the local routing device so that it appears to be overloaded. An overloaded routing device determines it is unable to handle any more OSPF transit traffic, which results in sending OSPF transit traffic to other routing devices. OSPF traffic to directly attached interfaces continues to reach the routing device. You might configure overload mode for many reasons, including:

- If you want the routing device to participate in OSPF routing, but do not want it to be used for transit traffic. This could include a routing device that is connected to the network for analysis purposes, but is not considered part of the production network, such as network management routing devices.
- If you are performing maintenance on a routing device in a production network. You can move traffic off that routing device so network services are not interrupted during your maintenance window.

You configure or disable overload mode in OSPF with or without a timeout. Without a timeout, overload mode is set until it is explicitly deleted from the configuration. With a timeout, overload mode is set if the time elapsed since the OSPF instance started is less than the specified timeout.

A timer is started for the difference between the timeout and the time elapsed since the instance started. When the timer expires, overload mode is cleared. In overload mode, the router link-state advertisement (LSA) is originated with all the transit router links (except stub) set to a metric of 0xFFFF. The stub router links are advertised with the actual cost of the interfaces corresponding to the stub. This causes the transit traffic to avoid the overloaded routing device and to take paths around the routing device. However, the overloaded routing device’s own links are still accessible.

The routing device can also dynamically enter the overload state, regardless of configuring the device to appear overloaded. For example, if the routing device exceeds the configured OSPF prefix limit, the routing device purges the external prefixes and enters into an overload state.

In cases of incorrect configurations, the huge number of routes might enter OSPF, which can hamper the network performance. To prevent this, `prefix-export-limit` should be configured which will purge externals and prevent the network from the bad impact.

By allowing any number of routes to be exported into OSPF, the routing device can become overwhelmed and potentially flood an excessive number of routes into an area. You can limit the number of routes exported into OSPF to minimize the load on the routing device and prevent this potential problem.

By default, there is no limit to the number of prefixes (routes) that can be exported into OSPF. To prevent this, `prefix-export-limit` should be configured which will purge externals and prevent the network.

Starting from Junos OS Release 18.2 onward, the following functionalities are supported by Stub Router in your OSPF network, when the OSPF is overloaded:

- Allow Route leaking—external prefixes are redistributed during OSPF overload and the prefixes are originated with normal cost.
- Advertise stub network with max metric—stub networks are advertised with maximum metric during OSPF overload.
• Advertise intra-area prefix with max metric—intra-area prefixes are advertised with maximum metric during OSPF overload.

• Advertise external prefix with max possible metric—OSPF AS external prefixes are redistributed during OSPF overload and the prefixes are advertised with maximum cost.

You can now configure the following when OSPF is overloaded:

• **allow-route-leaking** at the [edit protocols ospf | ospf3 overload] hierarchy level to advertise the external prefixes with normal cost.

• **stub-network** at the [edit protocols ospf overload] hierarchy level to advertise stub network with maximum metric.

• **intra-area-prefix** at the [edit protocols ospf3 overload] hierarchy level to advertise intra-area prefix with maximum metric.

• **as-external** at the [edit protocols <ospf | ospf3> overload] hierarchy level to advertise external prefix with maximum metric.

To limit the number of prefixes exported to OSPF:

```
[edit]
set protocols ospf prefix-export-limit number
```

The prefix export limit number can be a value from 0 through 4,294,967,295.

**SEE ALSO**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>overload</td>
<td>712</td>
</tr>
<tr>
<td>allow-route-leaking</td>
<td>608</td>
</tr>
<tr>
<td>stub-network</td>
<td>752</td>
</tr>
<tr>
<td>intra-area-prefix</td>
<td>670</td>
</tr>
<tr>
<td>as-external</td>
<td>613</td>
</tr>
</tbody>
</table>

**Example: Configuring OSPF to Make Routing Devices Appear Overloaded**

**IN THIS SECTION**

- Requirements | 225
- Overview | 225
This example shows how to configure a routing device running OSPF to appear to be overloaded.

**Requirements**

Before you begin:

- Configure the device interfaces. See the *Interfaces User Guide for Security Devices*.
- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.
- Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.
- Configure a multiarea OSPF network. See "Example: Configuring a Multiarea OSPF Network" on page 79.

**Overview**

You can configure a local routing device running OSPF to appear to be overloaded, which allows the local routing device to participate in OSPF routing, but not for transit traffic. When configured, the transit interface metrics are set to the maximum value of 65535.

This example includes the following settings:

- **overload**—Configures the local routing device so it appears to be overloaded. You might configure this if you want the routing device to participate in OSPF routing, but do not want it to be used for transit traffic, or you are performing maintenance on a routing device in a production network.

- **timeout seconds**—(Optional) Specifies the number of seconds at which the overload is reset. If no timeout interval is specified, the routing device remains in the overload state until the overload statement is deleted or a timeout is set. In this example, you configure 60 seconds as the amount of time the routing device remains in the overload state. By default, the timeout interval is 0 seconds (this value is not configured). The range is from 60 through 1800 seconds.
Configuration

CLI Quick Configuration
To quickly configure a local routing device to appear as overloaded, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[edit]
set protocols ospf overload timeout 60
```

Step-by-Step Procedure
To configure a local routing device to appear overloaded:

1. Enter OSPF configuration mode.

```
[edit]
user@host# edit protocols ospf
```

2. Configure the local routing device to be overloaded.

```
[edit protocols ospf]
user@host# set overload
```

3. (Optional) Configure the number of seconds at which overload is reset.

```
[edit protocols ospf]
user@host# set overload timeout 60
```

4. (Optional) Configure the limit on the number prefixes exported to OSPF, to minimise the load on the routing device and prevent the device from entering the overload mode.

```
[edit protocols ospf]
user@host# set prefix-export-limit 50
```
5. If you are done configuring the device, commit the configuration.

```
[edit protocols ospf]
user@host# commit
```

**Results**
Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration. The output includes the optional `timeout` and `prefix-export-limit` statements.

```
user@host# show protocols ospf

prefix-export-limit 50;
overload timeout 60;
```

To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

**Verification**

**IN THIS SECTION**
- Verifying Traffic Has Moved Off Devices | 227
- Verifying Transit Interface Metrics | 228
- Verifying the Overload Configuration | 228
- Verifying the Viable Next Hop | 228

Confirm that the configuration is working properly.

**Verifying Traffic Has Moved Off Devices**

**Purpose**
Verify that the traffic has moved off the upstream devices.

**Action**
From operational mode, enter the `show interfaces detail` command.
Verifying Transit Interface Metrics

Purpose
Verify that the transit interface metrics are set to the maximum value of 65535 on the downstream neighboring device.

Action
From operational mode, enter the `show ospf database router detail advertising-router address` command for OSPFv2, and enter the `show ospf3 database router detail advertising-router address` command for OSPFv3.

Verifying the Overload Configuration

Purpose
Verify that overload is configured by reviewing the Configured overload field. If the overload timer is also configured, this field also displays the time that remains before it is set to expire.

Action
From operational mode, enter the `show ospf overview` command for OSPFv2, and the `show ospf3 overview` command for OSPFv3.

Verifying the Viable Next Hop

Purpose
Verify the viable next hop configuration on the upstream neighboring device. If the neighboring device is overloaded, it is not used for transit traffic and is not displayed in the output.

Action
From operational mode, enter the `show route address` command.

Understanding the SPF Algorithm Options for OSPF

OSPF uses the shortest-path-first (SPF) algorithm, also referred to as the Dijkstra algorithm, to determine the route to reach each destination. The SPF algorithm describes how OSPF determines the route to reach each destination, and the SPF options control the timers that dictate when the SPF algorithm runs. Depending on your network environment and requirements, you might want to modify the SPF options. For example, consider a large-scale environment with a large number of devices flooding link-state advertisements (LSAs) throughout the area. In this environment, it is possible to receive a large number of LSAs to process, which can consume memory resources. By configuring the SPF options, you continue to adapt to the changing network topology, but you can minimize the amount of memory resources being used by the devices to run the SPF algorithm.
You can configure the following SPF options:

- The delay in the time between the detection of a topology change and when the SPF algorithm actually runs.
- The maximum number of times that the SPF algorithm can run in succession before the hold-down timer begins.
- The time to hold down, or wait, before running another SPF calculation after the SPF algorithm has run in succession the configured number of times. If the network stabilizes during the holddown period and the SPF algorithm does not need to run again, the system reverts to the configured values for the delay and rapid-runs statements.

**Example: Configuring SPF Algorithm Options for OSPF**

This example shows how to configure the SPF algorithm options. The SPF options control the timers that dictate when the SPF algorithm runs.

**Requirements**

Before you begin:

- Configure the device interfaces. See the Junos OS Network Interfaces Library for Routing Devices.
- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.
- Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.
- Configure a multiarea OSPF network. See "Example: Configuring a Multiarea OSPF Network" on page 79.
Overview

OSPF uses the SPF algorithm to determine the route to reach each destination. All routing devices in an area run this algorithm in parallel, storing the results in their individual topology databases. Routing devices with interfaces to multiple areas run multiple copies of the algorithm. The SPF options control the timers used by the SPF algorithm.

Before you modify any of the default settings, you should have a good understanding of your network environment and requirements.

This example shows how to configure the options for running the SPF algorithm. You include the `spf-options` statement and the following options:

- **delay**—Configures the amount of time (in milliseconds) between the detection of a topology and when the SPF actually runs. When you modify the delay timer, consider your requirements for network reconvergence. For example, you want to specify a timer value that can help you identify abnormalities in the network, but allow a stable network to reconverge quickly. By default, the SPF algorithm runs 200 milliseconds after the detection of a topology. The range is from 50 through 8000 milliseconds.

- **rapid-runs**—Configures the maximum number of times that the SPF algorithm can run in succession before the hold-down timer begins. By default, the number of SPF calculations that can occur in succession is 3. The range is from 1 through 10. Each SPF algorithm is run after the configured SPF delay. When the maximum number of SPF calculations occurs, the hold-down timer begins. Any subsequent SPF calculation is not run until the hold-down timer expires.

- **holddown**—Configures the time to hold down, or wait, before running another SPF calculation after the SPF algorithm has run in succession the configured maximum number of times. By default, the hold down time is 5000 milliseconds. The range is from 2000 through 20,000 milliseconds. If the network stabilizes during the holddown period and the SPF algorithm does not need to run again, the system reverts to the configured values for the `delay` and `rapid-runs` statements.

Configuration

**CLI Quick Configuration**

To quickly configure the SPF options, copy the following commands and paste them into the CLI.

```plaintext
[edit]
set protocols ospf spf-options delay 210
set protocols ospf spf-options rapid-runs 4
set protocols ospf spf-options holddown 5050
```

**Step-by-Step Procedure**

To configure the SPF options:

1. Enter OSPF configuration mode.
NOTE: To specify OSPFv3, include the ospf3 statement at the [edit protocols] hierarchy level.

```
[edit]
user@host# edit protocols ospf
```

2. Configure the SPF delay time.

```
[edit protocols ospf]
user@host# set spf-options delay 210
```

3. Configure the maximum number of times that the SPF algorithm can run in succession.

```
[edit protocols ospf]
user@host# set spf-options rapid-runs 4
```

4. Configure the SPF hold-down timer.

```
[edit protocols ospf]
user@host# set spf-options holddown 5050
```

5. If you are done configuring the device, commit the configuration.

```
[edit protocols ospf]
user@host# commit
```

**Results**

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show protocols ospf
spf-options {
 delay 210;
 holddown 5050;
 rapid-runs 4;
```
To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

**Verification**

Confirm that the configuration is working properly.

**Verifying SPF Options**

**Purpose**
Verify that SPF is operating per your network requirements. Review the SPF delay field, the SPF hold down field, and the SPF rapid runs fields.

**Action**
From operational mode, enter the `show ospf overview` command for OSPFv2, and enter the `show ospf3 overview` command for OSPFv3.

---

**Configuring OSPF Refresh and Flooding Reduction in Stable Topologies**

The OSPF standard requires that every link-state advertisement (LSA) be refreshed every 30 minutes. The Juniper Networks implementation refreshes LSAs every 50 minutes. By default, any LSA that is not refreshed expires after 60 minutes. This requirement can result in traffic overhead that makes it difficult to scale OSPF networks. You can override the default behavior by specifying that the DoNotAge bit be set in self-originated LSAs when they are initially sent by the router or switch. Any LSA with the DoNotAge bit set is reflooded only when a change occurs in the LSA. This feature thus reduces protocol traffic overhead while permitting any changed LSAs to be flooded immediately. Routers or switches enabled for flood reduction continue to send hello packets to their neighbors and to age self-originated LSAs in their databases.

The Juniper implementation of OSPF refresh and flooding reduction is based on RFC 4136, *OSPF Refresh and Flooding Reduction in Stable Topologies*. However, the Juniper implementation does not include the forced-flooding interval defined in the RFC. Not implementing the forced-flooding interval ensures that LSAs with the DoNotAge bit set are reflooded only when a change occurs.

This feature is supported for the following:

- OSPFv2 and OSPFv3 interfaces
- OSPFv3 realms
- OSPFv2 and OSPFv3 virtual links
- OSPFv2 sham links
• OSPFv2 peer interfaces
• All routing instances supported by OSPF
• Logical systems

To configure flooding reduction for an OSPF interface, include the `flood-reduction` statement at the `[edit protocols (ospf | ospf3) area area-id interface interface-id]` hierarchy level.

**NOTE:** If you configure flooding reduction for an interface configured as a demand circuit, the LSAs are not initially flooded, but sent only when their content has changed. Hello packets and LSAs are sent and received on a demand-circuit interface only when a change occurs in the network topology.

In the following example, the OSPF interface `so-0/0/1.0` is configured for flooding reduction. As a result, all the LSAs generated by the routes that traverse the specified interface have the DoNotAge bit set when they are initially flooded, and LSAs are refreshed only when a change occurs.

```
[edit]
protocols ospf {
 area 0.0.0.0 {
 interface so-0/0/1.0 {
 flood-reduction;
 }
 interface lo0.0;
 interface so-0/0/0.0;
 }
}
```

**NOTE:** Beginning with Junos OS Release 12.2, you can configure a global default link-state advertisement (LSA) flooding interval in OSPF for self-generated LSAs by including the `lsa-refresh-interval minutes` statement at the `[edit protocols (ospf | ospf3)]` hierarchy level. The Juniper Networks implementation refreshes LSAs every 50 minutes. The range is 25 through 50 minutes. By default, any LSA that is not refreshed expires after 60 minutes.

If you have both the global LSA refresh interval configured for OSPF and OSPF flooding reduction configured for a specific interface in an OSPF area, the OSPF flood reduction configuration takes precedence for that specific interface.
Understanding Synchronization Between LDP and IGPs

LDP is a protocol for distributing labels in non-traffic-engineered applications. Labels are distributed along the best path determined by the interior gateway protocol (IGP). If synchronization between LDP and the IGP is not maintained, the label-switch path (LSP) goes down. When LDP is not fully operational on a given link (a session is not established and labels are not exchanged), the IGP advertises the link with the maximum cost metric. The link is not preferred but remains in the network topology.

LDP synchronization is supported only on active point-to-point interfaces and LAN interfaces configured as point-to-point under the IGP. LDP synchronization is not supported during graceful restart.

Example: Configuring Synchronization Between LDP and OSPF

This example shows how to configure synchronization between LDP and OSPFv2.
Requirements

Before you begin:

- Configure the device interfaces. See the Junos OS Network Interfaces Library for Routing Devices.
- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.
- Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.
- Configure a multiarea OSPF network. See "Example: Configuring a Multiarea OSPF Network" on page 79.

Overview

In this example, configure synchronization between LDP and OSPFv2 by performing the following tasks:

- Enable LDP on interface so-1/0/3, which is a member of OSPF area 0.0.0.0, by including the ldp statement at the [edit protocols] hierarchy level. You can configure one or more interfaces. By default, LDP is disabled on the routing device.
- Enable LDP synchronization by including the ldp-synchronization statement at the [edit protocols ospf area area-id interface interface-name] hierarchy level. This statement enables LDP synchronization by advertising the maximum cost metric until LDP is operational on the link.
- Configure the amount of time (in seconds) the routing device advertises the maximum cost metric for a link that is not fully operational by including the hold-time statement at the [edit protocols ospf area area-id interface interface-name ldp-synchronization] hierarchy level. If you do not configure the hold-time statement, the hold-time value defaults to infinity. The range is from 1 through 65,535 seconds. In this example, configure 10 seconds for the hold-time interval.

This example also shows how to disable synchronization between LDP and OSPFv2 by including the disable statement at the [edit protocols ospf area area-id interface interface-name ldp-synchronization] hierarchy level.

Configuration

IN THIS SECTION

- Enabling Synchronization Between LDP and OSPFv2 | 236
- Disabling Synchronization Between LDP and OSPFv2 | 237
Enabling Synchronization Between LDP and OSPFv2

CLI Quick Configuration
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Modifying the Junos OS Configuration in CLI User Guide.

To quickly enable synchronization between LDP and OSPFv2, copy the following commands, remove any line breaks, and then paste them into the CLI.

```
[edit]
set protocols ldp interface so-1/0/3
set protocols ospf area 0.0.0.0 interface so-1/0/3 ldp-synchronization hold-time 10
```

Step-by-Step Procedure
To enable synchronization between LDP and OSPFv2:

1. Enable LDP on the interface.

```
[edit]
user@host# set protocols ldp interface so-1/0/3
```

2. Configure LDP synchronization and optionally configure a time period of 10 seconds to advertise the maximum cost metric for a link that is not fully operational.

```
[edit]
user@host# edit protocols ospf area 0.0.0.0 interface so-1/0/3 ldp-synchronization
```

3. Configure a time period of 10 seconds to advertise the maximum cost metric for a link that is not fully operational.

```
[edit protocols ospf area 0.0.0.0 interface so-1/0/3 ldp-synchronization]
user@host# set hold-time 10
```

4. If you are done configuring the device, commit the configuration.

```
[edit protocols ospf area 0.0.0.0 interface so-1/0/3 ldp-synchronization]
user@host# commit
```

Results
Confirm your configuration by entering the `show protocols ldp` and `show protocols ospf` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show protocols ldp
interface so-1/0/3.0;
```

```
user@host# show protocols ospf
area 0.0.0.0 {
 interface so-1/0/3.0 {
 ldp-synchronization {
 hold-time 10;
 }
 }
}
```

**Disabling Synchronization Between LDP and OSPFv2**

**CLI Quick Configuration**

To quickly disable synchronization between LDP and OSPFv2, copy the following command and paste it into the CLI.

```
[edit]
set protocols ospf area 0.0.0.0 interface so-1/0/3 ldp-synchronization disable
```

**Step-by-Step Procedure**

To disable synchronization between LDP and OSPF:

1. Disable synchronization by including the `disable` statement.

```
[edit]
user@host# set protocols ospf area 0.0.0.0 interface so-1/0/3 ldp-synchronization disable
```

2. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

**Results**

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.
user@host# show protocols ospf
area 0.0.0.0 {
  interface so-1/0/3.0 {
    ldp-synchronization {
      disable;
    }
  }
}

Verification

Confirm that the configuration is working properly.

Verifying the LDP Synchronization State of the Interface

Purpose

Verify the current state of LDP synchronization on the interface. The LDP sync state displays information related to the current state, and the config holdtime field displays the configured hold-time interval.

Action

From operational mode, enter the show ospf interface extensive command.

OSPFv2 Compatibility with RFC 1583 Overview

By default, the Junos OS implementation of OSPFv2 is compatible with RFC 1583, OSPF Version 2. This means that Junos OS maintains a single best route to an autonomous system (AS) boundary router in the OSPF routing table, rather than multiple intra-AS paths, if they are available. You can now disable compatibility with RFC 1583. It is preferable to do so when the same external destination is advertised by AS boundary routers that belong to different OSPF areas. When you disable compatibility with RFC 1583, the OSPF routing table maintains the multiple intra-AS paths that are available, which the router uses to calculate AS external routes as defined in RFC 2328, OSPF Version 2. Being able to use multiple available paths to calculate an AS external route can prevent routing loops.

SEE ALSO

Example: Disabling OSPFv2 Compatibility with RFC 1583 | 239
Example: Disabling OSPFv2 Compatibility with RFC 1583

This example shows how to disable OSPFv2 compatibility with RFC 1583 on the routing device.

Requirements

No special configuration beyond device initialization is required before disabling OSPFv2 compatibility with RFC 1583.

Overview

By default, the Junos OS implementation of OSPF is compatible with RFC 1583. This means that Junos OS maintains a single best route to an autonomous system (AS) boundary router in the OSPF routing table, rather than multiple intra-AS paths, if they are available. You can disable compatibility with RFC 1583. It is preferable to do so when the same external destination is advertised by AS boundary routers that belong to different OSPF areas. When you disable compatibility with RFC 1583, the OSPF routing table maintains the multiple intra-AS paths that are available, which the router uses to calculate AS external routes as defined in RFC 2328. Being able to use multiple available paths to calculate an AS external route can prevent routing loops. To minimize the potential for routing loops, configure the same RFC compatibility on all OSPF devices in an OSPF domain.

Configuration

CLI Quick Configuration
To quickly disable OSPFv2 compatibility with RFC 1583, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode. You configure this setting on all devices that are part of the OSPF domain.
Step-by-Step Procedure
To disable OSPFv2 compatibility with RFC 1583:

1. Disable RFC 1583.

   ```
 [edit]
 user@host# set protocols ospf no-rfc-1583
   ```

2. If you are done configuring the device, commit the configuration.

   ```
 [edit]
 user@host# commit
   ```

   NOTE: Repeat this configuration on each routing device that participates in an OSPF routing domain.

Results

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show protocols ospf
no-rfc-1583;
```

Verification

Confirm that the configuration is working properly.

Verifying the OSPF Routes

Purpose

Verify that the OSPF routing table maintains the intra-AS paths with the largest metric, which the router uses to calculate AS external routes.

Action

From operational mode, enter the `show ospf route detail` command.
RELATED DOCUMENTATION

OSPF Overview | 23
Understanding OSPF Configurations | 35
CHAPTER 6

Configure OSPF Authentication

Configuring OSPF Authentication | 243
Configuring OSPF Authentication

IN THIS SECTION

- Understanding IPsec Authentication for OSPF Packets on EX Series Switches | 243
- Understanding OSPFv2 Authentication | 246
- Understanding OSPFv3 Authentication | 248
- Example: Configuring Simple Authentication for OSPFv2 Exchanges | 249
- Example: Configuring MD5 Authentication for OSPFv2 Exchanges | 252
- Example: Configuring a Transition of MD5 Keys on an OSPFv2 Interface | 255
- Using IPsec to Secure OSPFv3 Networks (CLI Procedure) | 259
- Example: Configuring IPsec Authentication for an OSPF Interface | 261

Understanding IPsec Authentication for OSPF Packets on EX Series Switches

IN THIS SECTION

- Authentication Algorithms | 244
- Encryption Algorithms | 245
- IPsec Protocols | 245
- Security Associations | 245
- IPsec Modes | 245
IP Security (IPsec) provides a secure way to authenticate senders and encrypt IP version 4 (IPv4) traffic between network devices. IPsec offers network administrators for Juniper Networks EX Series Ethernet Switches and their users the benefits of data confidentiality, data integrity, sender authentication, and anti-replay services.

IPsec is a framework for ensuring secure private communication over IP networks and is based on standards developed by the International Engineering Task Force (IETF). IPsec provides security services at the network layer of the Open Systems Interconnection (OSI) model by enabling a system to select required security protocols, determine the algorithms to use for the security services, and implement any cryptographic keys required to provide the requested services. You can use IPsec to protect one or more paths between a pair of hosts, between a pair of security gateways (such as switches), or between a security gateway and a host.

OSPF version 3 (OSPFv3), unlike OSPF version 2 (OSPFv2), does not have a built-in authentication method and relies on IPsec to provide this functionality. You can secure specific OSPFv3 interfaces and protect OSPFv3 virtual links.

### Authentication Algorithms

Authentication is the process of verifying the identity of the sender. Authentication algorithms use a shared key to verify the authenticity of the IPsec devices. The Juniper Networks Junos operating system (Junos OS) uses the following authentication algorithms:

- **Message Digest 5 (MD5)** uses a one-way hash function to convert a message of arbitrary length to a fixed-length message digest of 128 bits. Because of the conversion process, it is mathematically infeasible to calculate the original message by computing it backwards from the resulting message digest. Likewise, a change to a single character in the message will cause it to generate a very different message digest number.

  To verify that the message has not been tampered with, Junos OS compares the calculated message digest against a message digest that is decrypted with a shared key. Junos OS uses the MD5 hashed message authentication code (HMAC) variant that provides an additional level of hashing. MD5 can be used with an authentication header (AH) and Encapsulating Security Payload (ESP).

- **Secure Hash Algorithm 1 (SHA-1)** uses a stronger algorithm than MD5. SHA-1 takes a message of less than 264 bits in length and produces a 160-bit message digest. The large message digest ensures that the data has not been changed and that it originates from the correct source. Junos OS uses the SHA-1 HMAC variant that provides an additional level of hashing. SHA-1 can be used with AH, ESP, and Internet Key Exchange (IKE).
Encryption Algorithms

Encryption encodes data into a secure format so that it cannot be deciphered by unauthorized users. As with authentication algorithms, a shared key is used with encryption algorithms to verify the authenticity of IPsec devices. Junos OS uses the following encryption algorithms:

- Data Encryption Standard cipher-block chaining (DES-CBC) is a symmetric secret-key block algorithm. DES uses a key size of 64 bits, where 8 bits are used for error detection and the remaining 56 bits provide encryption. DES performs a series of simple logical operations on the shared key, including permutations and substitutions. CBC takes the first block of 64 bits of output from DES, combines this block with the second block, feeds this back into the DES algorithm, and repeats this process for all subsequent blocks.

- Triple DES-CBC (3DES-CBC) is an encryption algorithm that is similar to DES-CBC but provides a much stronger encryption result because it uses three keys for 168-bit (3 x 56-bit) encryption. 3DES works by using the first key to encrypt the blocks, the second key to decrypt the blocks, and the third key to reencrypt the blocks.

IPsec Protocols

IPsec protocols determine the type of authentication and encryption applied to packets that are secured by the switch. Junos OS supports the following IPsec protocols:

- AH—Defined in RFC 2402, AH provides connectionless integrity and data origin authentication for IPv4. It also provides protection against replays. AH authenticates as much of the IP header as possible, as well as the upper-level protocol data. However, some IP header fields might change in transit. Because the value of these fields might not be predictable by the sender, they cannot be protected by AH. In an IP header, AH can be identified with a value of 51 in the Protocol field of an IPv4 packet.

- ESP—Defined in RFC 2406, ESP can provide encryption and limited traffic flow confidentiality or connectionless integrity, data origin authentication, and an anti-replay service. In an IP header, ESP can be identified with a value of 50 in the Protocol field of an IPv4 packet.

Security Associations

An IPsec consideration is the type of security association (SA) that you wish to implement. An SA is a set of IPsec specifications that are negotiated between devices that are establishing an IPsec relationship. These specifications include preferences for the type of authentication, encryption, and IPsec protocol to be used when establishing the IPsec connection. An SA can be either unidirectional or bidirectional, depending on the choices made by the network administrator. An SA is uniquely identified by a Security Parameter Index (SPI), an IPv4 or IPv6 destination address, and a security protocol (AH or ESP) identifier.

IPsec Modes

Junos OS supports the following IPsec modes:
Tunnel mode is supported for both AH and ESP in Junos OS. In tunnel mode, the SA and associated protocols are applied to tunneled IPv4 or IPv6 packets. For a tunnel mode SA, an outer IP header specifies the IPsec processing destination and an inner IP header specifies the ultimate destination for the packet. The security protocol header appears after the outer IP header and before the inner IP header. In addition, there are slight differences for tunnel mode when you implement it with AH and ESP:

- For AH, portions of the outer IP header are protected, as well as the entire tunneled IP packet.
- For ESP, only the tunneled packet is protected, not the outer header.

When one side of an SA is a security gateway (such as a switch), the SA must use tunnel mode. However, when traffic (for example, SNMP commands or BGP sessions) is destined for a switch, the system acts as a host. Transport mode is allowed in this case because the system does not act as a security gateway and does not send or receive transit traffic.

**NOTE:** Tunnel mode is not supported for OSPF v3 control packet authentication.

Transport mode provides an SA between two hosts. In transport mode, the protocols provide protection primarily for upper-layer protocols. A transport mode security protocol header appears immediately after the IP header and any options and before any higher-layer protocols (for example, TCP or UDP). There are slight differences for transport mode when you implement it with AH and ESP:

- For AH, selected portions of the IP header are protected, as well as selected portions of the extension headers and selected options within the IPv4 header.
- For ESP, only the higher-layer protocols are protected, not the IP header or any extension headers preceding the ESP header.

### Understanding OSPFv2 Authentication

All OSPFv2 protocol exchanges can be authenticated to guarantee that only trusted routing devices participate in the autonomous system’s routing. By default, OSPFv2 authentication is disabled.

**NOTE:** OSPFv3 does not have a built-in authentication method and relies on IP Security (IPsec) to provide this functionality.

You can enable the following authentication types:

- Simple authentication—Authenticates by using a plain-text password that is included in the transmitted packet. The receiving routing device uses an authentication key (password) to verify the packet.
• MD5 authentication—Authenticates by using an encoded MD5 checksum that is included in the transmitted packet. The receiving routing device uses an authentication key (password) to verify the packet.

You define an MD5 key for each interface. If MD5 is enabled on an interface, that interface accepts routing updates only if MD5 authentication succeeds. Otherwise, updates are rejected. The routing device only accepts OSPFv2 packets sent using the same key identifier (ID) that is defined for that interface.

• IPsec authentication (beginning with Junos OS Release 8.3)—Authenticates OSPFv2 interfaces, the remote endpoint of a sham link, and the OSPFv2 virtual link by using manual security associations (SAs) to ensure that a packet’s contents are secure between the routing devices. You configure the actual IPsec authentication separately.

NOTE: You can configure IPsec authentication together with either MD5 or simple authentication.

The following restrictions apply to IPsec authentication for OSPFv2:

• Dynamic Internet Key Exchange (IKE) SAs are not supported.
• Only IPsec transport mode is supported. Tunnel mode is not supported.
• Because only bidirectional manual SAs are supported, all OSPFv2 peers must be configured with the same IPsec SA. You configure a manual bidirectional SA at the [edit security ipsec] hierarchy level.
• You must configure the same IPsec SA for all virtual links with the same remote endpoint address, for all neighbors on OSPF nonbroadcast multiaccess (NBMA) or point-to-multipoint links, and for every subnet that is part of a broadcast link.
• OSPFv2 peer interfaces are not supported.

Because OSPF performs authentication at the area level, all routing devices within the area must have the same authentication and corresponding password (key) configured. For MD5 authentication to work, both the receiving and transmitting routing devices must have the same MD5 key. In addition, a simple password and MD5 key are mutually exclusive. You can configure only one simple password, but multiple MD5 keys.

As part of your security measures, you can change MD5 keys. You can do this by configuring multiple MD5 keys, each with a unique key ID, and setting the date and time to switch to the new key. Each unique MD5 key has a unique ID. The ID is used by the receiver of the OSPF packet to determine which key to use for authentication. The key ID, which is required for MD5 authentication, specifies the identifier associated with the MD5 key.

SEE ALSO
Overview of IPsec

Understanding OSPFv3 Authentication

OSPFv3 does not have a built-in authentication method and relies on the IP Security (IPsec) suite to provide this functionality. IPsec provides such functionality as authentication of origin, data integrity, confidentiality, replay protection, and nonrepudiation of source. You can use IPsec to secure specific OSPFv3 interfaces and protect OSPFv3 virtual links.

**NOTE:**
You configure the actual IPsec authentication separately from your OSPFv3 configuration and then apply IPsec to the OSPFv3 interfaces or OSPFv3 virtual links.

OSPFv3 uses the IP authentication header (AH) and the IP Encapsulating Security Payload (ESP) portions of the IPsec Protocol to authenticate routing information between peers. AH can provide connectionless integrity and data origin authentication. It also provides protection against replays. AH authenticates as much of the IP header as possible, as well as the upper-level protocol data. However, some IP header fields might change in transit. Because the value of these fields might not be predictable by the sender, they cannot be protected by AH. ESP can provide encryption and limited traffic flow confidentiality or connectionless integrity, data origin authentication, and an anti-replay service.

IPsec is based on security associations (SAs). An SA is a set of IPsec specifications that are negotiated between devices that are establishing an IPsec relationship. This simplex connection provides security services to the packets carried by the SA. These specifications include preferences for the type of authentication, encryption, and IPsec protocol to be used when establishing the IPsec connection. An SA is used to encrypt and authenticate a particular flow in one direction. Therefore, in normal bidirectional traffic, the flows are secured by a pair of SAs. An SA to be used with OSPFv3 must be configured manually and use transport mode. Static values must be configured on both ends of the SA.

Manual SAs require no negotiation between the peers. All values, including the keys, are static and specified in the configuration. Manual SAs statically define the security parameter index (SPI) values, algorithms, and keys to be used and require matching configurations on both end points (OSPFv3 peers). As a result, each peer must have the same configured options for communication to take place.

The actual choice of encryption and authentication algorithms is left to your IPsec administrator; however, we have the following recommendations:

- Use ESP with NULL encryption to provide authentication to the OSPFv3 protocol headers only. With NULL encryption, you are choosing not to provide encryption on OSPFv3 headers. This can be useful
for troubleshooting and debugging purposes. For more information about NULL encryption, see RFC 2410, *The NULL Encryption Algorithm and Its Use With IPsec*.

- Use ESP with non-NULL encryption for full confidentiality. With non-NULL encryption, you are choosing to provide encryption. For more information about NULL encryption, see RFC 2410, *The NULL Encryption Algorithm and Its Use With IPsec*.

- Use AH to provide authentication to the OSPFv3 protocol headers, portions of the IPv6 header, and portions of the extension headers.

The following restrictions apply to IPsec authentication for OSPFv3:

- Dynamic Internet Key Exchange (IKE) security associations (SAs) are not supported.

- Only IPsec transport mode is supported. In transport mode, only the payload (the data you transfer) of the IP packet is encrypted and/or authenticated. Tunnel mode is not supported.

- Because only bidirectional manual SAs are supported, all OSPFv3 peers must be configured with the same IPsec SA. You configure a manual bidirectional SA at the [edit security ipsec] hierarchy level.

- You must configure the same IPsec SA for all virtual links with the same remote endpoint address.

SEE ALSO

| Overview of IPsec |

**Example: Configuring Simple Authentication for OSPFv2 Exchanges**

This example shows how to enable simple authentication for OSPFv2 exchanges.
Requirements

Before you begin:

- Configure the device interfaces. See the Junos OS Network Interfaces Library for Routing Devices or the Junos OS Interfaces Configuration Guide for Security Devices.
- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.
- Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.
- Configure a multiarea OSPF network. See "Example: Configuring a Multiarea OSPF Network" on page 79.

Overview

Simple authentication uses a plain-text password that is included in the transmitted packet. The receiving routing device uses an authentication key (password) to verify the packet. Plain-text passwords are not encrypted and might be subject to packet interception. This method is the least secure and should only be used if network security is not your goal.

You can configure only one simple authentication key (password) on the routing device. The simple key can be from 1 through 8 characters and can include ASCII strings. If you include spaces, enclose all characters in quotation marks (" ").

In this example, you specify OSPFv2 interface so-0/1/0 in area 0.0.0.0, set the authentication type to simple-password, and define the key as PssWd4.

Configuration

CLI Quick Configuration
To quickly configure simple authentication, copy the following command, removing any line breaks, and then paste the command into the CLI. You must configure all routing devices within the area with the same authentication and corresponding password.

```
[edit]
 set protocols ospf area 0.0.0.0 interface so-0/1/0 authentication simple-password PssWd4
```

Step-by-Step Procedure
To enable simple authentication for OSPFv2 exchanges:

1. Create an OSPF area.

   ```
 [edit]
 user@host# edit protocols ospf area 0.0.0.0
   ```

2. Specify the interface.

   ```
 [edit protocols ospf area 0.0.0.0]
 user@host# edit interface so-0/1/0
   ```

3. Set the authentication type and the password.

   ```
 [edit protocols ospf area 0.0.0.0 interface so-0/1/0.0]
 user@host# set authentication simple-password PssWd4
   ```

4. If you are done configuring the device, commit the configuration.

   ```
 [edit protocols ospf area 0.0.0.0 interface so-0/1/0.0]
 user@host# commit
   ```

   NOTE: Repeat this entire configuration on all peer OSPFv2 routing devices in the area.

**Results**

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

NOTE: After you configure the password, you do not see the password itself. The output displays the encrypted form of the password you configured.

```
user@host# show protocols ospf
area 0.0.0.0 {
 interface so-0/1/0.0 {
 authentication {
```
Verification

IN THIS SECTION

- Verifying the Configured Authentication Method | 252

Confirm that the configuration is working properly.

Verifying the Configured Authentication Method

Purpose
Verify that the authentication method for sending and receiving OSPF protocol packets is configured. The Authentication Type field displays Password when configured for simple authentication.

Action
From operational mode, enter the `show ospf interface` and the `show ospf overview` commands.

Example: Configuring MD5 Authentication for OSPFv2 Exchanges

IN THIS SECTION

- Requirements | 253
- Overview | 253
- Configuration | 253
- Verification | 255

This example shows how to enable MD5 authentication for OSPFv2 exchanges.
Requirements

Before you begin:

- Configure the device interfaces. See the Junos OS Network Interfaces Library for Routing Devices or the Junos OS Interfaces Configuration Guide for Security Devices.
- Configure the router identifiers for the devices in your OSPF network. See “Example: Configuring an OSPF Router Identifier” on page 69.
- Control OSPF designated router election. See “Example: Controlling OSPF Designated Router Election” on page 71.
- Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.
- Configure a multiarea OSPF network. See “Example: Configuring a Multiarea OSPF Network” on page 79.

Overview

MD5 authentication uses an encoded MD5 checksum that is included in the transmitted packet. The receiving routing device uses an authentication key (password) to verify the packet.

You define an MD5 key for each interface. If MD5 is enabled on an interface, that interface accepts routing updates only if MD5 authentication succeeds. Otherwise, updates are rejected. The routing device only accepts OSPFv2 packets sent using the same key identifier (ID) that is defined for that interface.

In this example, you create the backbone area (area 0.0.0.0), specify OSPFv2 interface so-0/2/0, set the authentication type to md5, and then define the authentication key ID as 5 and the password as PssWd8.

Configuration

CLI Quick Configuration
To quickly configure MD5 authentication, copy the following command and paste it into the CLI.

```
[edit]
set protocols ospf area 0.0.0.0 interface so-0/2/0 authentication md5 5 key PssWd8
```

Step-by-Step Procedure
To enable MD5 authentication for OSPFv2 exchanges:

1. Create an OSPF area.

```
[edit]
user@host# edit protocols ospf area 0.0.0.0
```
2. Specify the interface.

```plaintext
[edit protocols ospf area 0.0.0.0]
user@host# edit interface s0-0/2/0
```

3. Configure MD5 authentication and set a key ID and an authentication password.

```plaintext
[edit protocols ospf area 0.0.0.0 interfaces s0-0/2/0.0]
user@host# set authentication md5 5 key PssWd8
```

4. If you are done configuring the device, commit the configuration.

```plaintext
[edit protocols ospf area 0.0.0.0 interface s0-0/2/0.0]
user@host# commit
```

**NOTE:** Repeat this entire configuration on all peer OSPFv2 routing devices.

**Results**

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

**NOTE:** After you configure the password, you do not see the password itself. The output displays the encrypted form of the password you configured.

```plaintext
user@host# show protocols ospf
area 0.0.0.0 {
interface so-0/2/0.0 {
 authentication {
 md5 5 key "9XXhulhreWx-wQF9puBEh"; # SECRET-DATA
 }
}
}
```
Verification

Confirm that the configuration is working properly.

Verifying the Configured Authentication Method

Purpose
Verify that the authentication method for sending and receiving OSPF protocol packets is configured. When configured for MD5 authentication, the Authentication Type field displays MD5, the Active key ID field displays the unique number you entered that identifies the MD5 key, and the Start time field displays the date as Start time 1970 Jan 01 00:00:00 PST. Do not be alarmed by this start time. This is the default start time that the routing device displays if the MD5 key is effective immediately.

Action
From operational mode, enter the show ospf interface and the show ospf overview commands.

Example: Configuring a Transition of MD5 Keys on an OSPFv2 Interface

This example shows how to configure a transition of MD5 keys on an OSPFv2 interface.

Requirements

Before you begin:

• Configure the device interfaces. See the Junos OS Network Interfaces Library for Routing Devices or the Junos OS Interfaces Configuration Guide for Security Devices.

• Configure the router identifiers for the devices in your OSPF network. See “Example: Configuring an OSPF Router Identifier” on page 69.

• Control OSPF designated router election. See “Example: Controlling OSPF Designated Router Election” on page 71
• Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.

• Configure a multiarea OSPF network. See "Example: Configuring a Multiarea OSPF Network" on page 79.

Overview

MD5 authentication uses an encoded MD5 checksum that is included in the transmitted packet. For MD5 authentication to work, both the receiving and transmitting routing devices must have the same MD5 key.

You define an MD5 key for each interface. If MD5 is enabled on an interface, that interface accepts routing updates only if MD5 authentication succeeds. Otherwise, updates are rejected. The routing device only accepts OSPFv2 packets sent using the same key identifier (ID) that is defined for that interface.

For increased security, you can configure multiple MD5 keys, each with a unique key ID, and set the date and time to switch to a new key. The receiver of the OSPF packet uses the ID to determine which key to use for authentication.

In this example, you configure new keys to take effect at 12:01 AM on the first day of the next three months on OSPFv2 interface fe-0/0/1 in the backbone area (area 0.0.0.0), and you configure the following MD5 authentication settings:

• md5—Specifies the MD5 authentication key ID. The key ID can be set to any value between 0 and 255, with a default value of 0. The routing device only accepts OSPFv2 packets sent using the same key ID that is defined for that interface.

• key—Specifies the MD5 key. Each key can be a value from 1 through 16 characters long. Characters can include ASCII strings. If you include spaces, enclose all characters in quotation marks (" ").

• start-time—Specifies the time to start using the MD5 key. This option enables you to configure a smooth transition mechanism for multiple keys. The start time is relevant for transmission but not for receiving OSPF packets.

NOTE: You must set the same passwords and transition dates and times on all devices in the area so that OSPFv2 adjacencies remain active.

Configuration

CLI Quick Configuration

To quickly configure multiple MD5 keys on an OSPFv2 interface, copy the following commands, remove any line breaks, and then paste the commands into the CLI.
Step-by-Step Procedure
To configure multiple MD5 keys on an OSPFv2 interface:

1. Create an OSPF area.

   ```
 [edit]
 user@host# edit protocols ospf area 0.0.0.0
   ```

2. Specify the interface.

   ```
 [edit protocols ospf area 0.0.0.0]
 user@host# edit interface fe-0/1/0
   ```

3. Configure MD5 authentication and set an authentication password and key ID.

   ```
 [edit protocols ospf area 0.0.0.0 interface fe-0/1/0.0]
 user@host# set authentication md5 1 key $2010HaL
   ```

4. Configure a new key to take effect at 12:01 AM on the first day of February, March, and April.
   You configure a new authentication password and key ID for each month.
   a. For the month of February, enter the following:

   ```
 [edit protocols ospf area 0.0.0.0 interface fe-0/1/0.0]
 user@host# set authentication md5 2 key NeWpsswdFEB start-time 2011-02-01.00:01
   ```

   b. For the month of March, enter the following:

   ```
 [edit protocols ospf area 0.0.0.0 interface fe-0/1/0.0]
 user@host# set authentication md5 3 key NeWpsswdMAR start-time 2011-03-01.00:01
   ```
c. For the month of April, enter the following:

```
[edit protocols ospf area 0.0.0.0 interface fe-0/1/0.0]
user@host# set authentication md5 4 key NeWpsswdAPR start-time 2011-04-01 00:01
```

5. If you are done configuring the device, commit the configuration.

```
[edit protocols ospf area 0.0.0.0 interface fe-0/1/0.0]
user@host# commit
```

**NOTE:** Repeat this entire configuration on all peer OSPFv2 routing devices.

**Results**

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

**NOTE:** After you configure the password, you do not see the password itself. The output displays the encrypted form of the password you configured.

```
user@host# show protocols ospf
area 0.0.0.0 {
 interface fe-0/1/0.0 {
 authentication {
 md5 1 key "9wzs24JGDJk.2gfTQ3CApOB1hy"; ##SECRET-DATA
 md5 2 key "9Q9gz39t1IcML7EcwgJZq.Rh5yLMN-b4oZDi" start-time "2011-2-1.00:01:00-0800"; ##SECRET-DATA
 md5 3 key "9zjo2nCpIRSWXNhSs4ZG.mEcyreW2gaZGjCt" start-time "2011-3-1.00:01:00-0800"; ##SECRET-DATA
 md5 4 key "9fQn90OReML1Rds4oiHBlEhSevMLXNVqm" start-time "2011-4-1.00:01:00-0700"; ##SECRET-DATA
 }
 }
}
```

**Verification**

Confirm that the configuration is working properly.
Verifying the Configured Authentication Method

Purpose
Verify that the authentication method for sending and receiving OSPF protocol packets is configured. When configured for MD5 authentication with a transition of keys, the Auth type field displays MD5, the Active key ID field displays the unique number you entered that identifies the MD5 key, and the Start time field displays the time at which the routing device starts using an MD5 key to authenticate OSPF packets transmitted on the interface you configured.

Action
From operational mode, enter the show ospf interface and the show ospf overview commands.

Using IPsec to Secure OSPFv3 Networks (CLI Procedure)

OSPF version 3 (OSPFv3) does not have a built-in authentication method and relies on IP Security (IPsec) to provide this functionality. You can use IPsec to secure OSPFv3 interfaces on EX Series switches.

This topic includes:

Configuring Security Associations
When you configure a security association (SA), include your choices for authentication, encryption, direction, mode, protocol, and security parameter index (SPI).

To configure a security association:

1. Specify a name for the security association:

   [edit security ipsec]
   user@switch# set security-association sa-name

2. Specify the mode of the security association:

   [edit security ipsec security-association sa-name]
3. Specify the type of security association:

```
user@switch# set mode transport
```

```
[edit security ipsec security-association sa-name]
user@switch# set type manual
```

4. Specify the direction of the security association:

```
[edit security ipsec security-association sa-name]
user@switch# set direction bidirectional
```

5. Specify the value of the security parameter index:

```
[edit security ipsec security-association sa-name]
user@switch# set spi spi-value
```

6. Specify the type of authentication to be used:

```
[edit security ipsec security-association sa-name]
user@switch# set authentication algorithm type
```

7. Specify the encryption algorithm and key:

```
[edit security ipsec security-association sa-name]
user@switch# set encryption algorithm algorithm key type
```

Securing OSPFv3 Networks

You can secure the OSPFv3 network by applying the SA to the OSPFv3 configuration.

To secure the OSPFv3 network:

```
[edit protocols ospf3 area area-number interface interface-name]
user@switch# set ipsec-sa sa-name
```

Example: Configuring IPsec Authentication for an OSPF Interface

This example shows how to enable IP Security (IPsec) authentication for an OSPF interface.

Requirements

Before you begin:

- Configure the device interfaces. See the Junos OS Network Interfaces Library for Routing Devices or the Junos OS Interfaces Configuration Guide for Security Devices.
- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.
- Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.
- Configure a multiarea OSPF network. See "Example: Configuring a Multiarea OSPF Network" on page 79.

Overview

You can use IPsec authentication for both OSPFv2 and OSPFv3. You configure the actual IPsec authentication separately and apply it to the applicable OSPF configuration.

OSPFv2

Beginning with Junos OS Release 8.3, you can use IPsec authentication to authenticate OSPFv2 interfaces, the remote endpoint of a sham link, and the OSPFv2 virtual link by using manual security associations (SAs) to ensure that a packet's contents are secure between the routing devices.
NOTE: You can configure IPsec authentication together with either MD5 or simple authentication.

To enable IPsec authentication, do one of the following:

- For an OSPFv2 interface, include the `ipsec-sa name` statement for a specific interface:

  ```
 interface interface-name ipsec-sa name;
  ```

- For a remote sham link, include the `ispec-sa name` statement for the remote end point of the sham link:

  ```
 sham-link-remote address ipsec-sa name;
  ```

  NOTE: If a Layer 3 VPN configuration has multiple sham links with the same remote endpoint IP address, you must configure the same IPsec security association for all the remote endpoints. You configure a Layer 3 VPN at the [edit routing-instances routing-instance-name instance-type] hierarchy level. For more information about Layer 3 VPNs, see the Junos OS VPNs Library for Routing Devices.

- For a virtual link, include the `ipsec-sa name` statement for a specific virtual link:

  ```
 virtual-link neighbor-id router-id transit-area area-id ipsec-sa name;
  ```

OSPFv3

OSPFv3 does not have a built-in authentication method and relies on IPsec to provide this functionality. You use IPsec authentication to secure OSPFv3 interfaces and protect OSPFv3 virtual links by using manual SAs to ensure that a packet’s contents are secure between the routing devices.

To apply authentication, do one of the following:

- For an OSPFv3 interface, include the `ipsec-sa name` statement for a specific interface:

  ```
 interface interface-name ipsec-sa name;
  ```

- For a virtual link, include the `ipsec-sa name` statement for a specific virtual link:

  ```
 virtual-link neighbor-id router-id transit-area area-id ipsec-sa name;
  ```

Tasks to Complete for Both OSPFv2 and OSPFv3
In this example, you perform the following tasks:

1. Configure IPsec authentication. To do this, define a manual SA named sa1 and specify the processing direction, the protocol used to protect IP traffic, the security parameter index (SPI), and the authentication algorithm and key.
   
a. Configure the following option at the `[edit security ipsec security-association sa-name mode]` hierarchy level:
      
      **transport**—Specifies transport mode. This mode protects traffic when the communication endpoint and the cryptographic endpoint are the same. The data portion of the IP packet is encrypted, but the IP header is not.

   b. Configure the following option at the `[edit security ipsec security-association sa-name manual direction]` hierarchy level:
      
      **bidirectional**—Defines the direction of IPsec processing. By specifying bidirectional, the same algorithms, keys, and security parameter index (SPI) values you configure are used in both directions.

   c. Configure the following options at the `[edit security ipsec security-association sa-name manual direction bidirectional]` hierarchy level:
      
      **protocol**—Defines the IPsec protocol used by the manual SA to protect IP traffic. You can specify either the authentication header (AH) or the Encapsulating Security Payload (ESP). If you specify AH, which you do in this example, you cannot configure encryption.

      **spi**—Configures the SPI for the manual SA. An SPI is an arbitrary value that uniquely identifies which SA to use at the receiving host. The sending host uses the SPI to identify and select which SA to use to secure every packet. The receiving host uses the SPI to identify and select the encryption algorithm and key used to decrypt packets. In this example, you specify 256.

      **authentication**—Configures the authentication algorithm and key. The **algorithm** option specifies the hash algorithm that authenticates packet data. In this example, you specify **hmac-md5-96**, which produces a 128-bit digest. The **key** option indicates the type of authentication key. In this example, you specify **ascii-text-key**, which is 16 ASCII characters for the **hmac-md5-96** algorithm.

2. Enable IPsec authentication on OSPF interface so-0/2/0.0 in the backbone area (area 0.0.0.0) by including the name of the manual SA sa1 that you configured at the `[edit security ipsec]` hierarchy level.

Configuration

IN THIS SECTION

- Configuring Security Associations | 264
- Enabling IPsec Authentication for an OSPF Interface | 266
Configuring Security Associations

CLI Quick Configuration

To quickly configure a manual SA to be used for IPsec authentication on an OSPF interface, copy the following commands, remove any line breaks, and then paste the commands into the CLI.

```
[edit]
set security ipsec security-association sa1
set security ipsec security-association sa1 mode transport
set security ipsec security-association sa1 manual direction bidirectional
set security ipsec security-association sa1 manual direction bidirectional protocol ah
set security ipsec security-association sa1 manual direction bidirectional spi 256
set security ipsec security-association sa1 manual direction bidirectional authentication algorithm hmac-md5-96
key ascii-text 123456789012abcd
```

Step-by-Step Procedure

To configure a manual SA to be used on an OSPF interface:

1. Specify a name for the SA.

```
[edit]
user@host# edit security ipsec security-association sa1
```

2. Specify the mode of the SA.

```
[edit security ipsec security-association sa1]
user@host# set mode transport
```

3. Configure the direction of the manual SA.

```
[edit security ipsec security-association sa1]
user@host# set manual direction bidirectional
```

4. Configure the IPsec protocol to use.

```
[edit security ipsec security-association sa1]
user@host# set manual direction bidirectional protocol ah
```

5. Configure the value of the SPI.
6. Configure the authentication algorithm and key.

```
[edit security ipsec security-association sa1]
user@host# set manual direction bidirectional spi 256
```

```
[edit security ipsec security-association sa1]
user@host# set manual direction bidirectional authentication algorithm hmac-md5-96 key ascii-text 123456789012abcd
```

7. If you are done configuring the device, commit the configuration.

```
[edit security ipsec security-association sa1]
user@host# commit
```

NOTE: Repeat this entire configuration on all peer OSPF routing devices.

**Results**

Confirm your configuration by entering the `show security ipsec` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

NOTE: After you configure the password, you do not see the password itself. The output displays the encrypted form of the password you configured.
Enabling IPsec Authentication for an OSPF Interface

CLI Quick Configuration
To quickly apply a manual SA used for IPsec authentication to an OSPF interface, copy the following command and paste it into the CLI.

```
[edit]
set protocols ospf area 0.0.0.0 interface so-0/2/0 ipsec-sa sa1
```

Step-by-Step Procedure
To enable IPsec authentication for an OSPF interface:

1. Create an OSPF area.

   ```
 [edit]
 user@host# edit protocols ospf area 0.0.0.0
   ```

   NOTE: To specify OSPFv3, include the `ospf3` statement at the `[edit protocols]` hierarchy level.

2. Specify the interface.

   ```
 [edit protocols ospf area 0.0.0.0]
 user@host# edit interface so-0/2/0
   ```

3. Apply the IPsec manual SA.

   ```
 [edit protocols ospf area 0.0.0.0 interface so-0/2/0.0]
 user@host# set ipsec-sa sa1
   ```

4. If you are done configuring the device, commit the configuration.

   ```
 [edit protocols ospf area 0.0.0.0 interface so-0/2/0.0]
 user@host# commit
   ```
NOTE: Repeat this entire configuration on all peer OSPF routing devices.

Results
Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show protocols ospf
area 0.0.0.0 {
 interface so-0/2/0.0 {
 ipsec-sa sa1;
 }
}
```

To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

Verification

IN THIS SECTION

- Verifying the IPsec Security Association Settings | 267
- Verifying the IPsec Security Association on the OSPF Interface | 268

Confirm that the configuration is working properly.

**Verifying the IPsec Security Association Settings**

**Purpose**
Verify the configured IPsec security association settings. Verify the following information:

- The Security association field displays the name of the configured security association.
- The SPI field displays the value you configured.
- The Mode field displays transport mode.
- The Type field displays manual as the type of security association.

**Action**
From operational mode, enter the `show ipsec security-associations` command.
Verifying the IPsec Security Association on the OSPF Interface

Purpose
Verify that the IPsec security association that you configured has been applied to the OSPF interface. Confirm that the IPSec SA name field displays the name of the configured IPsec security association.

Action
From operational mode, enter the `show ospf interface detail` command for OSPFv2, and enter the `show ospf3 interface detail` command for OSPFv3.

SEE ALSO
- Security Services Configuration Guidelines in the Junos OS Administration Library
- IPsec Services Configuration Guidelines in the Junos OS Services Interfaces Library for Routing Devices

RELATED DOCUMENTATION
- Day One: Advanced OSPF in the Enterprise
Configure OSPF Routing Instances
Configuring OSPF Routing Instances

IN THIS SECTION

- Understanding OSPF Routing Instances | 270
- Installing Routes from OSPF Routing Instances into the OSPF Routing Table Group | 272
- Example: Configuring Multiple Routing Instances of OSPF | 272

Understanding OSPF Routing Instances

A routing instance is a collection of routing tables, interfaces, and routing protocol parameters. The set of interfaces belongs to the routing tables, and the OSPF routing protocol parameters control the information in the routing tables. You can further install routes learned from OSPF routing instances into routing tables in the OSPF routing table group.

NOTE: The default routing instance, master, refers to the main inet.0 routing table. The master routing instance is reserved and cannot be specified as a routing instance.

You can configure the following types of routing instances:

- OSPFv2—Forwarding, Layer 2 virtual private network (VPN), nonforwarding, VPN routing and forwarding (VRF), virtual router, and virtual private LAN service (VPLS).
- OSPFv3—Nonforwarding, VRF, and virtual router.

Each routing instance has a unique name and a corresponding IP unicast table. For example, if you configure a routing instance with the name my-instance, the corresponding IP unicast table is my-instance.inet.0. All routes for my-instance are installed into my-instance.inet.0.

You can also configure multiple routing instances of OSPF.

Minimum Routing-Instance Configuration for OSPFv2

To configure a routing instance for OSPFv2, you must include at least the following statements in the configuration:
NOTE: You can configure a logical interface under only one routing instance.

Minimum Routing-Instance Configuration for OSPFv3

To configure a routing instance for OSPFv3, you must include at least the following statements in the configuration:

```bash
[edit]
routing-instances {
 routing-instance-name {
 interface interface-name;
 instance-type (forwarding | l2vpn | no-forwarding | virtual-router | vpls | vrf);
 route-distinguisher (as-number:number | ip-address:number);
 vrf-import [policy-names];
 vrf-export [policy-names];
 protocols {
 ospf { ...
 ospf-configuration ...
 }
 }
 }
}
```
NOTE: You can configure a logical interface under only one routing instance.

Multiple Routing Instances of OSPF

Multiple instances of OSPF are used for Layer 3 VPN implementations. The multiple instances of OSPF keep routing information for different VPNs separate. The VRF instance advertises routes from the customer edge (CE) router to the provider edge (PE) router and advertises routes from the PE router to the CE router. Each VPN receives only routing information belonging to that VPN.

You can create multiple instances of OSPF by including statements at the following hierarchy levels:

- [edit routing-instances routing-instance-name (ospf | ospf3)]
- [edit logical-systems logical-system-name routing-instances routing-instance-name (ospf | ospf3)]

Installing Routes from OSPF Routing Instances into the OSPF Routing Table Group

To install routes learned from OSPF routing instances into routing tables in the OSPF routing table group, include the `rib-group` statement:

```
rib-group group-name;
```

For a list of hierarchy levels at which you can include this statement, see the statement summary section for this statement.

Example: Configuring Multiple Routing Instances of OSPF
This example shows how to configure multiple routing instances of OSPF.

Requirements

Before you begin:

- Configure the device interfaces. See the Junos OS Network Interfaces Library for Routing Devices.
- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71

Overview

When you configure multiple routing instances of OSPF, we recommend that you perform the following tasks:

1. Configure the OSPFv2 or OSPFv3 default instance at the [edit protocols (ospf | ospf3)] and [edit logical-systems logical-system-name protocols (ospf | ospf3)] hierarchy levels with the statements needed for your network so that routes are installed in inet.0 and in the forwarding table. Make sure to include the routing table group.

2. Configure an OSPFv2 or OSPFv3 routing instance for each additional OSPFv2 or OSPFv3 routing entity, configuring the following:
   - Interfaces
   - Routing options
   - OSPF protocol statements belonging to that entity
   - Routing table group

3. Configure a routing table group to install routes from the default route table, inet.0, into a routing instance's route table.

4. Configure a routing table group to install routes from a routing instance into the default route table, inet.0.
NOTE: Nonforwarding routing instances do not have forwarding tables that correspond to their routing tables.

5. Create an export policy to export routes with a specific tag, and use that tag to export routes back into the instances. For more information, see the Routing Policies, Firewall Filters, and Traffic Policers User Guide.

Figure 20 on page 274 shows how you can use multiple routing instances of OSPFv2 or OSPFv3 to segregate prefixes within a large network. The network consists of three administrative entities: voice-policy, other-policy, and the default routing instance. Each entity is composed of several geographically separate sites that are connected by the backbone and managed by the backbone entity.

Figure 20: Configuration for Multiple Routing Instances

Sites A and D belong to the voice-policy routing instance. Sites B and C belong to the other-policy instance. Device 1 and Device 3 at the edge of the backbone connect the routing instances. Each runs a separate OSPF or OSPFv3 instance (one per entity).

Device 1 runs three OSPFv2 or OSPFv3 instances: one each for Site A (voice-policy), Site C (other-policy), and the backbone, otherwise known as the default instance. Device 3 also runs three OSPFv2 or OSPFv3 instances: one each for Site B (other-policy), Site D (voice-policy), and the backbone (default instance).

When Device 1 runs the OSPFv2 or OSPFv3 instances, the following occur:

- Routes from the default instance routing table are placed in the voice-policy and other-policy instance routing tables.
- Routes from the voice-policy routing instance are placed in the default instance routing table.
• Routes from the other-policy routing instance are placed in the default instance routing table.
• Routes from the voice-policy routing instance do not enter the other-policy instance routing table.
• Routes from the other-policy routing instance do not enter the voice-policy instance routing table.

Configuration

CLI Quick Configuration
To quickly configure multiple routing instances of OSPF, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

Configuration on Device 1:

```
[edit]
set routing-instances voice-policy interface so-2/2/2
set routing-instances voice-policy protocols ospf rib-group voice-to-inet area 0.0.0.0 interface so-2/2/2
set routing-instances other-policy interface so-4/2/2
set routing-instances other-policy protocols ospf rib-group other-to-inet area 0.0.0.0 interface so-4/2/2
set routing-options rib-groups inet-to-voice-and-other import-rib [inet.0 voice-policy.inet.0 other-policy.inet.0]
set routing-options rib-groups voice-to-inet import-rib [voice-policy.inet.0 inet.0]
set routing-options rib-groups other-to-inet import-rib [other-policy.inet.0 inet.0]
set protocols ospf rib-group inet-to-voice-and-other area 0.0.0.0 interface so-2/2/2
set protocols ospf rib-group inet-to-voice-and-other area 0.0.0.0 interface so-4/2/2
```

Configuration on Device 3:

```
[edit]
set routing-instances voice-policy interface so-3/2/2
set routing-instances voice-policy protocols ospf rib-group voice-to-inet area 0.0.0.0 interface so-3/2/2
set routing-instances other-policy interface so-5/2/2
set routing-instances other-policy protocols ospf rib-group other-to-inet area 0.0.0.0 interface so-5/2/2
set routing-options rib-groups inet-to-voice-and-other import-rib [inet.0 voice-policy.inet.0 other-policy.inet.0]
set routing-options rib-groups voice-to-inet import-rib [voice-policy.inet.0 inet.0]
set routing-options rib-groups other-to-inet import-rib [other-policy.inet.0 inet.0]
set protocols ospf rib-group inet-to-voice-and-other area 0.0.0.0 interface so-3/2/2
set protocols ospf rib-group inet-to-voice-and-other area 0.0.0.0 interface so-5/2/2
```

Step-by-Step Procedure
To configure multiple routing instances of OSPF:

1. Configure the routing instances for **voice-policy** and **other-policy**.

   **NOTE:** To specify OSPFv3, include the **ospf3** statement at the [edit routing-instances protocols] hierarchy level.

```
[edit]
user@D1# set routing-instances voice-policy interface so-2/2/2
user@D1# set routing-instances voice-policy protocols ospf rib-group voice-to-inet area 0.0.0.0 interface so-2/2/2
user@D1# set routing-instances other-policy interface so-4/2/2
user@D1# set routing-instances other-policy protocols ospf rib-group other-to-inet area 0.0.0.0 interface so-4/2/2
```

```
[edit]
user@D3# set routing-instances voice-policy interface so-3/2/2
user@D3# set routing-instances voice-policy protocols ospf rib-group voice-to-inet area 0.0.0.0 interface so-3/2/2
user@D3# set routing-instances other-policy interface so-5/2/2
user@D3# set routing-instances other-policy protocols ospf rib-group other-to-inet area 0.0.0.0 interface so-5/2/2
```

2. Configure the routing table group **inet-to-voice-and-other** to take routes from **inet.0** (default routing table) and place them in the **voice-policy.inet.0** and **other-policy.inet.0** routing tables.

```
[edit]
user@D1# set routing-options rib-groups inet-to-voice-and-other import-rib [inet.0 voice-policy.inet.0 other-policy.inet.0]
```

```
[edit]
user@D3# set routing-options rib-groups inet-to-voice-and-other import-rib [inet.0 voice-policy.inet.0 other-policy.inet.0]
```

3. Configure the routing table group **voice-to-inet** to take routes from **voice-policy.inet.0** and place them in the **inet.0** default routing table.

```
[edit]
```
4. Configure the routing table group `other-to-inet` to take routes from `other-policy.inet.0` and place them in the `inet.0` default routing table.

```
[edit]
user@D1# set routing-options rib-groups other-to-inet import-rib [other-policy.inet.0 inet.0]
```

```
[edit]
user@D3# set routing-options rib-groups other-to-inet import-rib [other-policy.inet.0 inet.0]
```

5. Configure the default OSPF instance.

**NOTE:** To specify OSPFv3, include the `ospf3` statement at the `[edit routing-instances protocols]` hierarchy level.

```
[edit]
user@D1# set protocols ospf rib-group inet-to-voice-and-other area 0.0.0.0 interface so-2/2/2
user@D1# set protocols ospf rib-group inet-to-voice-and-other area 0.0.0.0 interface so-4/2/2
```

```
[edit]
user@D3# set protocols ospf rib-group inet-to-voice-and-other area 0.0.0.0 interface so-3/2/2
user@D3# set protocols ospf rib-group inet-to-voice-and-other area 0.0.0.0 interface so-5/2/2
```

6. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

**Results**
Confirm your configuration by entering the `show routing-instances`, `show routing-options`, and `show protocols ospf` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Configuration on Device 1:

```
user@D1# show routing-instances
voice-policy {
 interface so-2/2/2.0;
 protocols {
 ospf {
 rib-group voice-to-inet;
 area 0.0.0.0 {
 interface so-2/2/2.0;
 }
 }
 }
}
other-policy {
 interface so-4/2/2.0;
 protocols {
 ospf {
 rib-group other-to-inet;
 area 0.0.0.0 {
 interface so-4/2/2.0;
 }
 }
 }
}

user@D1# show routing-options
rib-groups {
 inet-to-voice-and-other {
 import-rib [inet.0 voice-policy.inet.0 other-policy.inet.0];
 }
 voice-to-inet {
 import-rib [voice-policy.inet.0 inet.0];
 }
 other-to-inet {
 import-rib [other-policy.inet.0 inet.0];
 }
}
```
user@D1# show protocols ospf
rib-group inet-to-voice-and-other;
area 0.0.0.0 {
    interface so-2/2/2.0;
    interface so-4/2/2.0;
}

Configuration on Device 3:

user@D3# show routing-instances
voice-policy {
    interface so-3/2/2.0;
    protocols {
        ospf {
            rib-group voice-to-inet;
            area 0.0.0.0 {
                interface so-3/2/2.0;
            }
        }
    }
}

other-policy {
    interface so-5/2/2.0;
    protocols {
        ospf {
            rib-group other-to-inet;
            area 0.0.0.0 {
                interface so-5/2/2.0;
            }
        }
    }
}

user@D3# show routing-options
rib-groups {
    inet-to-voice-and-other {
        import-rib [ inet.0 voice-policy.inet.0 other-policy.inet.0 ];
    }
    voice-to-inet {
        import-rib [ voice-policy.inet.0 inet.0 ];
    }
    other-to-inet {
        import-rib [ other-policy.inet.0 inet.0 ];
To confirm your OSPFv3 configuration, enter the `show routing-instances`, `show routing-options`, and `show protocols ospf3` commands.

**Verification**

Confirm that the configuration is working properly.

**Verifying the Routing Instances**

**Purpose**
Verify the configured routing instance settings.

**Action**
From operational mode, enter the `show route instance detail` command.

**SEE ALSO**

- `rib-group (Protocols OSPF)` | 736

**RELATED DOCUMENTATION**

- *Routing Instances Overview*
Configure OSPF Timers
Configuring OSPF Timers

IN THIS SECTION

- OSPF Timers Overview | 282
- Example: Configuring OSPF Timers | 283

OSPF Timers Overview

OSPF routing devices constantly track the status of their neighbors, sending and receiving hello packets that indicate whether each neighbor still is functioning, and sending and receiving link-state advertisement (LSA) and acknowledgment packets. OSPF sends packets and expects to receive packets at specified intervals.

You configure OSPF timers on the interface of the routing device participating in OSPF. Depending on the timer, the configured interval must be the same on all routing devices on a shared network (area).

You can configure the following OSPF timers:

- **Hello interval**—Routing devices send hello packets at a fixed interval on all interfaces, including virtual links, to establish and maintain neighbor relationships. The hello interval specifies the length of time, in seconds, before the routing device sends a hello packet out of an interface. This interval must be the same on all routing devices on a shared network. By default, the routing device sends hello packets every 10 seconds (broadcast and point-to-point networks) and 30 seconds (nonbroadcast multiple access (NBMA) networks).

- **Poll interval**—(OSPFv2, Nonbroadcast networks only) Routing devices send hello packets for a longer interval on nonbroadcast networks to minimize the bandwidth required on slow WAN links. The poll interval specifies the length of time, in seconds, before the routing device sends hello packets out of the interface before establishing adjacency with a neighbor. By default, the routing device sends hello packets every 120 seconds until active neighbors are detected.

  Once the routing device detects an active neighbor, the hello packet interval changes from the time specified in the poll interval to the time specified in the hello interval.

- **LSA retransmission interval**—When a routing device sends LSAs to its neighbors, the routing device expects to receive an acknowledgment packet from each neighbor within a certain amount of time. The LSA retransmission interval specifies the length of time, in seconds, that the routing device waits to receive an LSA packet before retransmitting the LSA to an interface’s neighbors. By default, the routing device waits 5 seconds for an acknowledgment before retransmitting the LSA.
• Dead interval—If a routing device does not receive a hello packet from a neighbor within a fixed amount of time, the routing device modifies its topology database to indicate that the neighbor is nonoperational. The dead interval specifies the length of time, in seconds, that the routing device waits before declaring that a neighboring routing device is unavailable. This is an interval during which the routing device receives no hello packets from the neighbor. This interval must be the same on all routing devices on a shared network. By default, this interval is four times the default hello interval, which is 40 seconds (broadcast and point-to-point networks) and 120 seconds (NBMA networks).

• Transit delay—Before a link-state update packet is propagated out of an interface, the routing device must increase the age of the packet. The transit delay sets the estimated time required to transmit a link-state update on the interface. By default, the transit delay is 1 second. You should never have to modify the transit delay time.

SEE ALSO

| Example: Configuring an OSPFv2 Interface on a Nonbroadcast Multiaccess Network | 51

Example: Configuring OSPF Timers

This example shows how to configure the OSPF timers.

Requirements

Before you begin:

• Configure the device interfaces. See the Interfaces User Guide for Security Devices.

• Configure the router identifiers for the devices in your OSPF network. See “Example: Configuring an OSPF Router Identifier” on page 69.
• Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.

• Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.

• Configure a multiarea OSPF network. See "Example: Configuring a Multiarea OSPF Network" on page 79.

Overview

The default OSPF timer settings are optimal for most networks. However, depending on your network requirements, you might need to modify the timer settings. This example explains why you might need to modify the following timers:

• Hello interval
• Dead interval
• LSA retransmission interval
• Transit delay

Hello Interval and Dead Interval

The hello interval and the dead interval optimize convergence times by efficiently tracking neighbor status. By lowering the values of the hello interval and the dead interval, you can increase the convergence of OSPF routes if a path fails. These intervals must be the same on all routing devices on a shared network. Otherwise, OSPF cannot establish the appropriate adjacencies.

In the first example, you lower the hello interval to 2 seconds and the dead interval to 8 seconds on point-to-point OSPF interfaces `fe-0/0/1` and `fe-1/0/1` in area 0.0.0.0 by configuring the following settings:

• `hello-interval`—Specifies the length of time, in seconds, before the routing device sends a hello packet out of an interface. By default, the routing device sends hello packets every 10 seconds. The range is from 1 through 255 seconds.

• `dead-interval`—Specifies the length of time, in seconds, that the routing device waits before declaring that a neighboring routing device is unavailable. This is an interval during which the routing device receives no hello packets from the neighbor. By default, the routing device waits 40 seconds (four times the hello interval). The range is 1 through 65,535 seconds.

LSA Retransmission Interval

The link-state advertisement (LSA) retransmission interval optimizes the sending and receiving of LSA and acknowledgement packets. You must configure the LSA retransmission interval to be equal to or greater than 3 seconds to avoid triggering a retransmit trap because the Junos OS delays LSA acknowledgments by up to 2 seconds. If you have a virtual link, you might find increased performance by increasing the value of the LSA retransmission interval.
In the second example, you increase the LSA retransmission timer to 8 seconds on OSPF interface `fe-0/0/1` in area 0.0.0.1 by configuring the following setting:

- **retransmit-interval**—Specifies the length of time, in seconds, that the routing device waits to receive an LSA packet before retransmitting LSA to an interface's neighbors. By default, the routing device retransmits LSAs to its neighbors every 5 seconds. The range is from 1 through 65,535 seconds.

### Transit Delay

The transit delay sets the time the routing device uses to age a link-state update packet. If you have a slow link (for example, one with an average propagation delay of multiple seconds), you should increase the age of the packet by a similar amount. Doing this ensures that you do not receive a packet back that is younger than the original copy.

In the final example, you increase the transit delay to 2 seconds on OSPF interface `fe-1/0/1` in area 0.0.0.1. By configuring the following setting, this causes the routing device to age the link-state update packet by 2 seconds:

- **transit-delay**—Sets the estimated time required to transmit a link-state update on the interface. You should never have to modify the transit delay time. By default, the routing device ages the packet by 1 second. The range is from 1 through 65,535 seconds.

### Configuration

**IN THIS SECTION**

- Configuring the Hello Interval and the Dead Interval | 285
- Controlling the LSA Retransmission Interval | 287
- Specifying the Transit Delay | 288

**Configuring the Hello Interval and the Dead Interval**

**CLI Quick Configuration**

To quickly configure the hello and dead intervals, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```
[edit]
set protocols ospf area 0.0.0.0 interface fe-0/0/1 hello-interval 2
set protocols ospf area 0.0.0.0 interface fe-0/0/1 dead-interval 8
```
Step-by-Step Procedure
To configure the hello and dead intervals:

1. Create an OSPF area.

   NOTE: To specify OSPFv3, include the ospf3 statement at the [edit protocols] hierarchy level.

   ```
 [edit]
 user@host# edit protocols ospf area 0.0.0.0
   ```

2. Specify the interfaces.

   ```
 [edit protocols ospf area 0.0.0.0]
 user@host# set interface fe-0/0/1
 user@host# set interface fe-1/0/1
   ```

3. Configure the hello interval.

   ```
 [edit protocols ospf area 0.0.0.0]
 user@host# set interface fe-0/0/1 hello-interval 2
 user@host# set interface fe-1/0/1 hello-interval 2
   ```

4. Configure the dead interval.

   ```
 [edit protocols ospf area 0.0.0.0]
 user@host# set interface fe-0/0/1 dead-interval 8
 user@host# set interface fe-1/0/1 dead-interval 8
   ```

5. If you are done configuring the device, commit the configuration.

   ```
 [edit protocols ospf area 0.0.0.0]
 user@host# commit
   ```
NOTE: Repeat this entire configuration on all routing devices in a shared network.

Results
Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show protocols ospf
area 0.0.0.0 {
 interface fe-0/0/1.0 {
 hello-interval 2;
 dead-interval 8;
 }
 interface fe-1/0/1.0 {
 hello-interval 2;
 dead-interval 8;
 }
}
```

To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

Controlling the LSA Retransmission Interval

CLI Quick Configuration
To quickly configure the LSA retransmission interval, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
[edit]
set protocols ospf area 0.0.0.1 interface fe-0/0/1 retransmit-interval 8
```

Step-by-Step Procedure
To configure the LSA retransmission interval:

1. Create an OSPF area.

   **NOTE:** To specify OSPFv3, include the `ospf3` statement at the [edit protocols] hierarchy level.
2. Specify the interface.

```
[edit]
user@host# edit protocols ospf area 0.0.0.1
```

```
[edit protocols ospf area 0.0.0.1]
user@host# set interface fe-0/0/1
```

3. Configure the LSA retransmission interval.

```
[edit protocols ospf area 0.0.0.1]
user@host# set interface fe-0/0/1 retransmit-interval 8
```

4. If you are done configuring the device, commit the configuration.

```
[edit protocols ospf area 0.0.0.1]
user@host# commit
```

**Results**

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show protocols ospf
area 0.0.0.1 {
 interface fe-0/0/1.0 {
 retransmit-interval 8;
 }
}
```

To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

**Specifying the Transit Delay**

**CLI Quick Configuration**

To quickly configure the transit delay, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
[edit]
```
Step-by-Step Procedure

To configure the transit delay:

1. Create an OSPF area.

   **NOTE:** To specify OSPFv3, include the `ospf3` statement at the [edit protocols] hierarchy level.

   ```
 [edit]
 user@host# edit protocols ospf area 0.0.0.1
   ```

2. Specify the interface.

   ```
 [edit protocols ospf area 0.0.0.1]
 user@host# set interface fe-1/0/1
   ```

3. Configure the transit delay.

   ```
 [edit protocols ospf area 0.0.0.1]
 user@host# set interface fe-1/0/1 transit-delay 2
   ```

4. If you are done configuring the device, commit the configuration.

   ```
 [edit protocols ospf area 0.0.0.1]
 user@host# commit
   ```

Results

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```bash
user@host# show protocols ospf
area 0.0.0.1 {
 interface fe-1/0/1.0 {
 transit-delay 2;
 }
}
To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

Verification

Confirm that the configuration is working properly.

Verifying the Timer Configuration

Purpose
Verify that the interface for OSPF or OSPFv3 has been configured with the applicable timer values. Confirm that the Hello field, the Dead field, and the ReXmit field display the values that you configured.

Action
From operational mode, enter the `show ospf interface detail` for OSPFv2, and enter the `show ospf3 interface detail` command for OSPFv3.

RELATED DOCUMENTATION

- About OSPF Interfaces | 38
- Example: Configuring an OSPFv2 Interface on a Nonbroadcast Multiaccess Network | 51
Configure OSPF Fault Detection using BFD
Configuring OSPF Fault Detection using BFD

IN THIS SECTION

- Understanding BFD for OSPF | 292
- Example: Configuring BFD for OSPF | 294
- Understanding BFD Authentication for OSPF | 299
- Configuring BFD Authentication for OSPF | 301

Understanding BFD for OSPF

The Bidirectional Forwarding Detection (BFD) protocol is a simple hello mechanism that detects failures in a network. BFD works with a wide variety of network environments and topologies. A pair of routing devices exchange BFD packets. Hello packets are sent at a specified, regular interval. A neighbor failure is detected when the routing device stops receiving a reply after a specified interval. The BFD failure detection timers have shorter time limits than the OSPF failure detection mechanisms, so they provide faster detection.

The BFD failure detection timers are adaptive and can be adjusted to be faster or slower. The lower the BFD failure detection timer value, the faster the failure detection and vice versa. For example, the timers can adapt to a higher value if the adjacency fails (that is, the timer detects failures more slowly). Or a neighbor can negotiate a higher value for a timer than the configured value. The timers adapt to a higher value when a BFD session flap occurs more than three times in a span of 15 seconds. A back-off algorithm increases the receive (Rx) interval by two if the local BFD instance is the reason for the session flap. The transmission (Tx) interval is increased by two if the remote BFD instance is the reason for the session flap. You can use the `clear bfd adaptation` command to return BFD interval timers to their configured values. The `clear bfd adaptation` command is hitless, meaning that the command does not affect traffic flow on the routing device.

NOTE: QFX5000 Series switches and EX4600 switches do not support minimum interval values of less than 1 second.

NOTE: BFD is supported for OSPFv3 in Junos OS Release 9.3 and later.
NOTE: For branch SRX Series devices, we recommend 1000 ms as the minimum keepalive time interval for BFD packets.

You can configure the following BFD protocol settings:

- **detection-time threshold**—Threshold for the adaptation of the detection time. When the BFD session detection time adapts to a value equal to or greater than the configured threshold, a single trap and a single system log message are sent.

- **full-neighbors-only**—Ability to establish BFD sessions only for OSPF neighbors with full neighbor adjacency. The default behavior is to establish BFD sessions for all OSPF neighbors. This setting is available in Junos OS Release 9.5 and later.

- **minimum-interval**—Minimum transmit and receive interval for failure detection. This setting configures both the minimum interval after which the local routing device transmits hello packets and the minimum interval after which the routing device expects to receive a reply from the neighbor with which it has established a BFD session. Both intervals are in milliseconds. You can also specify the minimum transmit and receive intervals separately using the `transmit-interval minimum-interval` and `minimum-receive-interval` statements.

NOTE: BFD is an intensive protocol that consumes system resources. Specifying a minimum interval for BFD of less than 100 ms for Routing Engine-based sessions and 10 ms for distributed BFD sessions can cause undesired BFD flapping.

Depending on your network environment, these additional recommendations might apply:

- For large-scale network deployments with a large number of BFD sessions, specify a minimum interval of no less than 500 ms. An interval of 1000 ms is recommended to avoid any instability issues.

- For very large-scale network deployments with a large number of BFD sessions, contact Juniper Networks customer support for more information.

- For BFD sessions to remain up during a Routing Engine switchover event when nonstop active routing (NSR) is configured, specify a minimum interval of 2500 ms for Routing Engine-based sessions. Without NSR, Routing Engine-based sessions can have a minimum interval of 100 ms. In OSPFv3, BFD is always based in the Routing Engine, meaning that BFD is not distributed. For distributed BFD sessions with NSR configured, the minimum interval recommendations are unchanged and depend only on your network deployment.

- On a single QFX5100 switch, when you add a QFX-EM-4Q expansion module, specify a minimum interval higher than 1000 ms.
• **minimum-receive-interval**—Minimum receive interval for failure detection. This setting configures the minimum receive interval, in milliseconds, after which the routing device expects to receive a hello packet from a neighbor with which it has established a BFD session. You can also specify the minimum receive interval using the `minimum-interval` statement.

• **multiplier**—Multiplier for hello packets. This setting configures the number of hello packets that are not received by a neighbor, which causes the originating interface to be declared down. By default, three missed hello packets cause the originating interface to be declared down.

• **no-adaptation**—Disables BFD adaption. This setting disables BFD sessions from adapting to changing network conditions. This setting is available in Junos OS Release 9.0 and later.

 NOTE: We recommend that you do not disable BFD adaptation unless it is preferable not to have BFD adaptation in your network.

• **transmit-interval minimum-interval**—Minimum transmit interval for failure detection. This setting configures the minimum transmit interval, in milliseconds, at which the local routing device transmits hello packets to the neighbor with which it has established a BFD session. You can also specify the minimum transmit interval using the `minimum-interval` statement.

• **transmit-interval threshold**—Threshold for the adaptation of the BFD session transmit interval. When the transmit interval adapts to a value greater than the threshold, a single trap and a single system log message are sent. The threshold value must be greater than the minimum transmit interval. If you attempt to commit a configuration with a threshold value less than the minimum transmit interval, the routing device displays an error and does not accept the configuration.

• **version**—BFD version. This setting configures the BFD version used for detection. You can explicitly configure BFD version 1, or the routing device can automatically detect the BFD version. By default, the routing device automatically detects the BFD version automatically, which is either 0 or 1.

You can also trace BFD operations for troubleshooting purposes.

Example: Configuring BFD for OSPF
This example shows how to configure the Bidirectional Forwarding Detection (BFD) protocol for OSPF.

Requirements

Before you begin:

- Configure the device interfaces. See the *Junos OS Network Interfaces Library for Routing Devices*.
- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.
- Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.
- Configure a multiarea OSPF network. See "Example: Configuring a Multiarea OSPF Network" on page 79.

Overview

An alternative to adjusting the OSPF hello interval and dead interval settings to increase route convergence is to configure BFD. The BFD protocol is a simple hello mechanism that detects failures in a network. The BFD failure detection timers have shorter timer limits than the OSPF failure detection mechanisms, thereby providing faster detection.

BFD is useful on interfaces that are unable to detect failure quickly, such as Ethernet interfaces. Other interfaces, such as SONET interfaces, already have built-in failure detection. Configuring BFD on those interfaces is unnecessary.

You configure BFD on a pair of neighboring OSPF interfaces. Unlike the OSPF hello interval and dead interval settings, you do not have to enable BFD on all interfaces in an OSPF area.

In this example, you enable failure detection by including the `bfd-liveness-detection` statement on the neighbor OSPF interface *fe-0/1/0* in area 0.0.0.0 and configure the BFD packet exchange interval to 300 milliseconds, configure 4 as the number of missed hello packets that causes the originating interface to be declared down, and configure BFD sessions only for OSPF neighbors with full neighbor adjacency by including the following settings:

- **full-neighbors-only**—In Junos OS Release 9.5 and later, configures the BFD protocol to establish BFD sessions only for OSPF neighbors with full neighbor adjacency. The default behavior is to establish BFD sessions for all OSPF neighbors.
- **minimum-interval**—Configures the minimum interval, in milliseconds, after which the local routing device transmits hello packets as well as the minimum interval after which the routing device expects to receive a reply from the neighbor with which it has established a BFD session. You can configure a number in
the range from 1 through 255,000 milliseconds. You can also specify the minimum transmit and receive intervals separately using the `transmit-interval` `minimum-interval` and `minimum-receive-interval` statements.

NOTE: BFD is an intensive protocol that consumes system resources. Specifying a minimum interval for BFD of less than 100 ms for Routing Engine-based sessions and 10 ms for distributed BFD sessions can cause undesired BFD flapping.

Depending on your network environment, these additional recommendations might apply:

- For large-scale network deployments with a large number of BFD sessions, specify a minimum interval of no less than 500 ms. An interval of 1000 ms is recommended to avoid any instability issues.

NOTE:
- For the `bfdd` process, the detection time interval set is lower than 300 ms. If there is a high priority process such as `ppmd` running on the system, the CPU might spend time on the `ppmd` process rather than the `bfdd` process.
- For branch SRX Series devices, we recommend 1000 ms as the minimum keepalive time interval for BFD packets.

- For very large-scale network deployments with a large number of BFD sessions, contact Juniper Networks customer support for more information.

- For BFD sessions to remain up during a Routing Engine switchover event when nonstop active routing (NSR) is configured, specify a minimum interval of 2500 ms for Routing Engine-based sessions. For distributed BFD sessions with NSR configured, the minimum interval recommendations are unchanged and depend only on your network deployment.

- **multiplier**—Configures the number of hello packets not received by a neighbor that causes the originating interface to be declared down. By default, three missed hello packets cause the originating interface to be declared down. You can configure a value in the range from 1 through 255.

Configuration

CLI Quick Configuration

To quickly configure the BFD protocol for OSPF, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.
Step-by-Step Procedure
To configure the BFD protocol for OSPF on one neighboring interface:

1. Create an OSPF area.

 NOTE: To specify OSPFv3, include the ospf3 statement at the [edit protocols] hierarchy level.

   ```
   [edit]
   user@host# edit protocols ospf area 0.0.0.0
   ```

2. Specify the interface.

   ```
   [edit protocols ospf area 0.0.0.0]
   user@host# set interface fe-0/0/1
   ```

3. Specify the minimum transmit and receive intervals.

   ```
   [edit protocols ospf area 0.0.0.0 ]
   user@host# set interface fe-0/0/1 bfd-liveness-detection minimum-interval 300
   ```

4. Configure the number of missed hello packets that cause the originating interface to be declared down.

   ```
   [edit protocols ospf area 0.0.0.0 ]
   user@host# set interface fe-0/0/1 bfd-liveness-detection multiplier 4
   ```

5. Configure BFD sessions only for OSPF neighbors with full neighbor adjacency.

   ```
   [edit protocols ospf area 0.0.0.0 ]
   user@host# set interface fe-0/0/1 bfd-liveness-detection full-neighbors-only
   ```
6. If you are done configuring the device, commit the configuration.

   ```
   [edit protocols ospf area 0.0.0.0 ]
   user@host# commit
   ```

 NOTE: Repeat this entire configuration on the other neighboring interface.

Results

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

   ```
   user@host# show protocols ospf
   area 0.0.0.0 {
     interface fe-0/0/1.0 {
       bfd-liveness-detection {
         minimum-interval 300;
         multiplier 4;
         full-neighbors-only;
       }
     }
   }
   ```

 To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

Verification

Confirms that the configuration is working properly.

Verifying the BFD Sessions

Purpose

Verify that the OSPF interfaces have active BFD sessions, and that session components have been configured correctly.

Action

From operational mode, enter the `show bfd session detail` command.

Meaning

The output displays information about the BFD sessions.
• The Address field displays the IP address of the neighbor.
• The Interface field displays the interface you configured for BFD.
• The State field displays the state of the neighbor and should show Full to reflect the full neighbor adjacency that you configured.
• The Transmit Interval field displays the time interval you configured to send BFD packets.
• The Multiplier field displays the multiplier you configured.

Understanding BFD Authentication for OSPF

Bidirectional Forwarding Detection (BFD) enables rapid detection of communication failures between adjacent systems. By default, authentication for BFD sessions is disabled. However, when you run BFD over Network Layer protocols, the risk of service attacks can be significant. We strongly recommend using authentication if you are running BFD over multiple hops or through insecure tunnels. Beginning with Junos OS Release 9.6, Junos OS supports authentication for BFD sessions running over OSPFv2. BFD authentication is not supported on MPLS OAM sessions. BFD authentication is only supported in the Canada and United States version of the Junos OS image and is not available in the export version.

You authenticate BFD sessions by specifying an authentication algorithm and keychain, and then associating that configuration information with a security authentication keychain using the keychain name.

The following sections describe the supported authentication algorithms, security keychains, and level of authentication that can be configured:
BFD Authentication Algorithms

Junos OS supports the following algorithms for BFD authentication:

- **simple-password**—Plain-text password. One to 16 bytes of plain text are used to authenticate the BFD session. One or more passwords can be configured. This method is the least secure and should be used only when BFD sessions are not subject to packet interception.

- **keyed-md5**—Keyed Message Digest 5 hash algorithm for sessions with transmit and receive intervals greater than 100 ms. To authenticate the BFD session, keyed MD5 uses one or more secret keys (generated by the algorithm) and a sequence number that is updated periodically. With this method, packets are accepted at the receiving end of the session if one of the keys matches and the sequence number is greater than or equal to the last sequence number received. Although more secure than a simple password, this method is vulnerable to replay attacks. Increasing the rate at which the sequence number is updated can reduce this risk.

- **meticulous-keyed-md5**—Meticulous keyed Message Digest 5 hash algorithm. This method works in the same manner as keyed MD5, but the sequence number is updated with every packet. Although more secure than keyed MD5 and simple passwords, this method might take additional time to authenticate the session.

- **keyed-sha-1**—Keyed Secure Hash Algorithm I for sessions with transmit and receive intervals greater than 100 ms. To authenticate the BFD session, keyed SHA uses one or more secret keys (generated by the algorithm) and a sequence number that is updated periodically. The key is not carried within the packets. With this method, packets are accepted at the receiving end of the session if one of the keys matches and the sequence number is greater than the last sequence number received.

- **meticulous-keyed-sha-1**—Meticulous keyed Secure Hash Algorithm I. This method works in the same manner as keyed SHA, but the sequence number is updated with every packet. Although more secure than keyed SHA and simple passwords, this method might take additional time to authenticate the session.

NOTE: Nonstop active routing (NSR) is not supported with the meticulous-keyed-md5 and meticulous-keyed-sha-1 authentication algorithms. BFD sessions using these algorithms might go down after a switchover.

NOTE: QFX5000 Series switches and EX4600 switches do not support minimum interval values of less than 1 second.
Security Authentication Keychains

The security authentication keychain defines the authentication attributes used for authentication key updates. When the security authentication keychain is configured and associated with a protocol through the keychain name, authentication key updates can occur without interrupting routing and signaling protocols.

The authentication keychain contains one or more keychains. Each keychain contains one or more keys. Each key holds the secret data and the time at which the key becomes valid. The algorithm and keychain must be configured on both ends of the BFD session, and they must match. Any mismatch in configuration prevents the BFD session from being created.

BFD allows multiple clients per session, and each client can have its own keychain and algorithm defined. To avoid confusion, we recommend specifying only one security authentication keychain.

Strict Versus Loose Authentication

By default, strict authentication is enabled and authentication is checked at both ends of each BFD session. Optionally, to smooth migration from nonauthenticated sessions to authenticated sessions, you can configure loose checking. When loose checking is configured, packets are accepted without authentication being checked at each end of the session. This feature is intended for transitional periods only.

Configuring BFD Authentication for OSPF

Beginning with Junos OS Release 9.6, you can configure authentication for BFD sessions running over OSPFv2. Routing instances are also supported.

The following sections provide instructions for configuring and viewing BFD authentication on OSPF:

Configuring BFD Authentication Parameters

Only three steps are needed to configure authentication on a BFD session:

1. Specify the BFD authentication algorithm for the OSPFv2 protocol.
2. Associate the authentication keychain with the OSPFv2 protocol.

3. Configure the related security authentication keychain.

To configure BFD authentication:

1. Specify the algorithm (keyed-md5, keyed-sha-1, meticulous-keyed-md5, meticulous-keyed-sha-1, or simple-password) to use for BFD authentication on an OSPF route or routing instance.

   ```
   [edit]
   user@host# set protocols ospf area 0.0.0.1 interface if2 ospf bfd-liveness-detection authentication algorithm keyed-sha-1
   ```

 NOTE: Nonstop active routing (NSR) is not supported with meticulous-keyed-md5 and meticulous-keyed-sha-1 authentication algorithms. BFD sessions using these algorithms might go down after a switchover.

2. Specify the keychain to be used to associate BFD sessions on the specified OSPF route or routing instance with the unique security authentication keychain attributes.

 This keychain should match the keychain name configured at the [edit security authentication key-chains] hierarchy level.

   ```
   [edit]
   user@host# set protocols ospf area 0.0.0.1 interface if2 ospf bfd-liveness-detection authentication keychain bfd-ospf
   ```

 NOTE: The algorithm and keychain must be configured on both ends of the BFD session, and they must match. Any mismatch in configuration prevents the BFD session from being created.

3. Specify the unique security authentication information for BFD sessions:

 - The matching keychain name as specified in Step 2.
 - At least one key, a unique integer between 0 and 63. Creating multiple keys enables multiple clients to use the BFD session.
 - The secret data used to allow access to the session.
 - The time at which the authentication key becomes active, in the format yyyy-mm-dd.hh:mm:ss.
4. (Optional) Specify loose authentication checking if you are transitioning from nonauthenticated sessions to authenticated sessions.

```
[edit]
user@host> set protocols ospf interface if2-ospf bfd-liveness-detection authentication loose-check
```

5. (Optional) View your configuration using the `show bfd session detail` or `show bfd session extensive` command.

6. Repeat the steps in this procedure to configure the other end of the BFD session.

NOTE: BFD authentication is only supported in the Canada and United States version of the Junos OS image and is not available in the export version.

Viewing Authentication Information for BFD Sessions

You can view the existing BFD authentication configuration using the `show bfd session detail` and `show bfd session extensive` commands.

The following example shows BFD authentication configured for the `if2-ospf` BGP group. It specifies the keyed SHA-1 authentication algorithm and a keychain name of `bfd-ospf`. The authentication keychain is configured with two keys. Key 1 contains the secret data "$ABC123$ABC123" and a start time of June 1, 2009, at 9:46:02 AM PST. Key 2 contains the secret data "$ABC123$ABC123" and a start time of June 1, 2009, at 3:29:20 PM PST.

```
[edit protocols ospf]
area 0.0.0.1 {
    interface if2-ospf {
        bfd-liveness-detection {
            authentication {
                algorithm keyed-sha-1;
                key-chain bfd-ospf;
            }
        }
    }
}
```
If you commit these updates to your configuration, you see output similar to the following. In the output for the `show bfd session detail` command, **Authenticate** is displayed to indicate that BFD authentication is configured.

```
show bfd session detail
```

```
user@host#  show bfd session detail

Detect  Transmit
Address         State Interface Time Interval Multiplier
10.9.1.33       Up so-7/1/0.0  0.600  0.200  3

Client OSPF, TX interval 0.200, RX interval 0.200, multiplier 3, **Authenticate**
Session up time 3d 00:34
Local diagnostic None, remote diagnostic None
Remote state Up, version 1
Replicated

1 sessions, 1 clients
Cumulative transmit rate 10.0 pps, cumulative receive rate 10.0 pps
```

For more information about the configuration, use the `show bfd session extensive` command. The output for this command provides the keychain name, the authentication algorithm and mode for each client in the session, and the overall BFD authentication configuration status, keychain name, and authentication algorithm and mode.
show bfd session extensive

```
user@host#  show bfd session extensive

<table>
<thead>
<tr>
<th>Address</th>
<th>State</th>
<th>Interface</th>
<th>Detect</th>
<th>Transmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.9.1.33</td>
<td>Up</td>
<td>so-7/1/0.0</td>
<td>0.600</td>
<td>0.200</td>
</tr>
</tbody>
</table>

Client OSPF, TX interval 0.200, RX interval 0.200, multiplier 3, **Authenticate keychain bfd-ospf, algo keyed-md5, mode loose**

Session up time 3d 00:34
Local diagnostic None, remote diagnostic None
Remote state Up, version 1
Replicated
Min async interval 0.200, min slow interval 1.000
Adaptive async tx interval 0.200, rx interval 0.200
Local min tx interval 0.200, min rx interval 0.200, multiplier 3
Remote min tx interval 0.100, min rx interval 0.100, multiplier 3
Threshold transmission interval 0.000, Threshold for detection time 0.000
Local discriminator 11, remote discriminator 80
Echo mode disabled/inactive

**Authentication enabled/active, keychain bfd-ospf, algo keyed-sha-1, mode strict**

1 sessions, 1 clients
Cumulative transmit rate 10.0 pps, cumulative receive rate 10.0 pps
```

RELATED DOCUMENTATION

- bfd-liveness-detection | 622
- authentication-key-chains statement in the Junos OS Administration Library
- show bfd session command in the CLI Explorer

Example: Configuring BFD Authentication for OSPF
CHAPTER 10

Configure Graceful Restart for OSPF

Configuring Graceful Restart for OSPF | 307
Configuring Graceful Restart for OSPF

Graceful Restart for OSPF Overview

Graceful restart allows a routing device undergoing a restart to inform its adjacent neighbors and peers of its condition. During a graceful restart, the restarting device and its neighbors continue forwarding packets without disrupting network performance. Because neighboring devices assist in the restart (these neighbors are called helper routers), the restarting device can quickly resume full operation without recalculating algorithms.

NOTE: On a broadcast link with a single neighbor, when the neighbor initiates an OSPFv3 graceful restart operation, the restart might be terminated at the point when the local routing device assumes the role of a helper. A change in the LSA is considered a topology change, which terminates the neighbor’s restart operation.

Graceful restart is disabled by default. You can either globally enable graceful restart for all routing protocols, or you can enable graceful restart specifically for OSPF.
This topic describes the following information:

Helper Mode for Graceful Restart

When a device enabled for OSPF graceful restart restarts, it retains routes learned before the restart in its forwarding table. The device does not allow new OSPF link-state advertisements (LSAs) to update the routing table. This device continues to forward traffic to other OSPF neighbors (or helper routers), and sends only a limited number of LSAs during the restart period. To reestablish OSPF adjacencies with neighbors, the restarting device must send a grace LSA to all neighbors. In response, the helper routers enter helper mode (the ability to assist a neighboring device attempting a graceful restart) and send an acknowledgment back to the restarting device. If there are no topology changes, the helper routers continue to advertise LSAs as if the restarting device had remained in continuous OSPF operation.

NOTE: Helper mode is enabled by default when you start the routing platform, even if graceful restart is not enabled. You can disable helper mode specifically for OSPF.

When the restarting device receives replies from all the helper routers, the restarting device selects routes, updates the forwarding table, and discards the old routes. At this point, full OSPF adjacencies are reestablished and the restarting device receives and processes OSPF LSAs as usual. When the helper routers no longer receive grace LSAs from the restarting device or when the topology of the network changes, the helper routers also resume normal operation.

Beginning with Junos OS Release 11.4, you can configure restart signaling-based helper mode for OSPFv2 graceful restart configurations. The Junos OS implementation is based on RFC 4811, *OSPF Out-of-Band Link State Database (LSDB) Resynchronization*, RFC 4812, *OSPF Restart Signaling*, and RFC 4813, *OSPF Link-Local Signaling*. In restart signaling-based helper mode implementations, the restarting device informs its restart status to its neighbors only after the restart is complete. When the restart is complete, the restarting device sends hello messages to its helper routers with the restart signal (RS) bit set in the hello packet header. When a helper router receives a hello packet with the RS bit set in the header, the helper router returns a hello message to the restarting device. The reply hello message from the helper router contains the ResyncState flag and the ResyncTimeout timer that enable the restarting device to keep track of the helper routers that are syncing up with it. When all helpers complete the synchronization, the restarting device exits the restart mode.

NOTE: Restart signaling-based graceful restart helper mode is not supported for OSPFv3 configurations.
Planned and Unplanned Graceful Restart

OSPF supports two types of graceful restart: planned and unplanned. During a planned restart, the restarting routing device informs the neighbors before restarting. The neighbors act as if the routing device is still within the network topology, and continue forwarding traffic to the restarting routing device. A grace period is set to specify when the neighbors should consider the restarting routing device as part of the topology. During an unplanned restart, the routing device restarts without warning.

Example: Configuring Graceful Restart for OSPF

This example shows how to configure graceful restart specifically for OSPF.

Requirements

Before you begin:

- Configure the router identifiers for the devices in your OSPF network. See “Example: Configuring an OSPF Router Identifier” on page 69.
- Control OSPF designated router election. See “Example: Controlling OSPF Designated Router Election” on page 71.
- Configure a single-area OSPF network. See “Example: Configuring a Single-Area OSPF Network” on page 76.
- Configure a multiarea OSPF network. See “Example: Configuring a Multiarea OSPF Network” on page 79.

Overview

Graceful restart enables a routing device undergoing a restart to inform its adjacent neighbors and peers of its condition. During a graceful restart, the restarting routing device and its neighbors continue forwarding traffic.
packets without disrupting network performance. By default, graceful restart is disabled. You can globally enable graceful restart for all routing protocols by including the `graceful-restart` statement at the `[edit routing-options]` hierarchy level, or you can enable graceful restart specifically for OSPF by including the `graceful-restart` statement at the `[edit protocols (ospf|ospf3)]` hierarchy level.

The first example shows how to enable graceful restart and configure the optional settings for the grace period interval. In this example, interfaces `fe-1/1/1` and `fe-1/1/2` are in OSPF area 0.0.0.0, and you configure those interfaces for graceful restart. The grace period interval for OSPF graceful restart is determined as equal to or less than the sum of the `notify-duration` time interval and the `restart-duration` time interval. The grace period is the number of seconds that the routing device’s neighbors continue to advertise the routing device as fully adjacent, regardless of the connection state between the routing device and its neighbors.

The `notify-duration` statement configures how long (in seconds) the routing device notifies helper routers that it has completed graceful restart by sending purged grace link-state advertisements (LSAs) over all interfaces. By default, the routing device sends grace LSAs for 30 seconds. The range is from 1 through 3600 seconds.

The `restart-duration` statement configures the amount of time the routing device waits (in seconds) to complete reacquisition of OSPF neighbors from each area. By default, the routing device allows 180 seconds. The range is from 1 through 3600 seconds.

The second example shows how to disable graceful restart for OSPF by including the `disable` statement.

Configuration

IN THIS SECTION

- Enabling Graceful Restart for OSPF | 310
- Disabling Graceful Restart for OSPF | 313

Enabling Graceful Restart for OSPF

CLI Quick Configuration

To quickly enable graceful restart for OSPF, copy the following commands and paste them into the CLI.

```
[edit]
set interfaces fe-1/1/1 unit 0 family inet address 10.0.0.4
set interfaces fe-1/1/2 unit 0 family inet address 10.0.0.5
set protocols ospf area 0.0.0.0 interface fe-1/1/1
```
Step-by-Step Procedure

To enable graceful restart for OSPF:

1. Configure the interfaces.

 NOTE: For OSPFv3, use IPv6 addresses.

   ```
   [edit]
   user@host# set interfaces fe-1/1/1 unit 0 family inet address 10.0.0.4
   user@host# set interfaces fe-1/1/1 unit 0 family inet address 10.0.0.5
   ```

2. Configure OSPF on the interfaces.

 NOTE: To specify OSPFv3, include the ospf3 statement at the [edit protocols] hierarchy level.

   ```
   [edit]
   user@host# set protocols ospf area 0.0.0.0 interface fe-1/1/1
   user@host# set protocols ospf area 0.0.0.0 interface fe-1/1/2
   ```

3. Configure graceful restart globally

   ```
   [edit]
   user@host#edit routing-options graceful-restart
   ```

4. Configure OSPF graceful restart.

   ```
   [edit]
   user@host# edit protocols ospf graceful-restart
   ```
5. (Optional) Configure the restart duration time.

```
[edit protocols ospf graceful-restart]
user@host# set restart-duration 190
```

6. (Optional) Configure the notify duration time.

```
[edit protocols ospf graceful-restart]
user@host# set notify-duration 40
```

7. If you are done configuring the device, commit the configuration.

```
[edit protocols ospf graceful-restart]
user@host# commit
```

Results

Confirm your configuration by entering the `show interfaces` and `show protocols ospf` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show interfaces
fe-1/1/1 {
  unit 0 {
    family inet {
      address 10.0.0.4/32;
    }
  }
}
fe-1/1/2 {
  unit 0 {
    family inet {
      address 10.0.0.5/32;
    }
  }
}
user@host# show protocols ospf
graceful-restart {
  restart-duration 190;
  notify-duration 40;
}
area 0.0.0.0 {
```
To confirm an OSPFv3 configuration, enter the `show interfaces` and the `show protocols ospf3` commands.

Disabling Graceful Restart for OSPF

CLI Quick Configuration

To quickly disable graceful restart for OSPF, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```plaintext
[edit]
user@host# set protocols ospf graceful-restart disable
```

Step-by-Step Procedure

To disable graceful restart for OSPF:

1. Disable graceful restart for the OSPF protocol only.

 This command does not affect the global graceful restart configuration setting.

   ```plaintext
   [edit]
   user@host# set protocols ospf graceful-restart disable
   
   NOTE: To specify OSPFv3, include the `ospf3` statement at the [edit protocols] hierarchy level.
   ```

2. If you are done configuring the device, commit the configuration.

   ```plaintext
   [edit]
   user@host# commit
   ```

Results

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
user@host# show protocols ospf
```
To confirm an OSPFv3 configuration, enter the `show protocols ospf3` command.

Verification

IN THIS SECTION

- Verifying the OSPF Graceful Restart Configuration | 314
- Verifying Graceful Restart Status | 314

Confirm that the configuration is working properly.

Verifying the OSPF Graceful Restart Configuration

Purpose

Verify information about your OSPF graceful restart configuration.

Action

From operational mode, enter the `show ospf overview` command for OSPFv2. Enter the `show ospf3 overview` command for OSPFv3.

Meaning

The Restart field displays the status of graceful restart as either enabled or disabled. The Restart duration field displays how much time the restarted routing device requires to complete reacquisition of OSPF neighbors. The Restart grace period field displays how much time the neighbors should consider the restarted routing device as part of the topology.

Verifying Graceful Restart Status

Purpose

Verify the status of graceful restart.

Action

From operational mode, enter the `show route instance detail` command.

Meaning

The Restart State field displays Pending if the restart has not been completed or Complete if the restart has finished. The Path selection timeout field indicates the amount of time remaining until graceful restart is declared complete. There is a more detailed Restart State field that displays a list of protocols that have or have not yet completed graceful restart for the specified routing table.
Example: Configuring the Helper Capability Mode for OSPFv2 Graceful Restart

This example shows how to disable and reenable the helper mode capability for OSPFv2 graceful restart.

Requirements

Before you begin:

- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.
- Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.
- Configure a multiarea OSPF network. See "Example: Configuring a Multiarea OSPF Network" on page 79.

Overview

The OSPF graceful restart helper capability assists a neighboring routing device attempting a graceful restart. By default, the helper capability is globally enabled when you start the routing platform. This means that the helper capability is enabled when you start OSPF, even if graceful restart is not globally enabled or specifically enabled for OSPF. You can further modify your graceful restart configuration to disable the helper capability.

Beginning with Junos OS Release 11.4, you can configure restart signaling-based helper mode for OSPFv2 graceful restart configurations. Both the standard and restart signaling-based helper modes are enabled by default.
In the first example, interfaces `fe-1/1/1` and `fe-1/1/2` are in OSPFv2 area 0.0.0.0, and you configure those interfaces for graceful restart. You then disable the standard OSPFv2 graceful restart helper capability by including the `helper-disable standard` statement. This configuration is useful if you have an environment that contains other vendor equipment that is configured for restart signaling-based graceful restart.

NOTE: The `helper-disable` statement and the `no-strict-lsa-checking` statement cannot be configured at the same time. If you attempt to configure both statements at the same time, the routing device displays a warning message when you enter the `show protocols ospf` command.

The second example shows how to reenable the standard OSPFv2 restart helper capability that you disabled in the first example.

Configuration

Disabling Helper Mode for OSPFv2

CLI Quick Configuration
To quickly enable graceful restart for OSPFv2 with helper mode disabled, copy the following commands and paste them into the CLI.

```
[edit]
set interfaces fe-1/1/1 unit 0 family inet address 10.0.0.4
set interfaces fe-1/1/2 unit 0 family inet address 10.0.0.5
set protocols ospf area 0.0.0.0 interface fe-1/1/1
set protocols ospf area 0.0.0.0 interface fe-1/1/2
set protocols ospf graceful-restart helper-disable standard
```

Step-by-Step Procedure
To enable graceful restart for OSPFv2 with helper mode disabled:

1. Configure the interfaces.
2. Configure OSPFv2 on the interfaces

[edit]
user@host# set interfaces fe-1/1/1 unit 0 family inet address 10.0.0.4
user@host# set interfaces fe-1/1/1 unit 0 family inet address 10.0.0.5

3. Disable the OSPFv2 graceful restart helper capability.
 If you disable the OSPFv2 graceful restart helper capability, you cannot disable strict LSA checking.

[edit]
user@host# set protocols ospf area 0.0.0.0 interface fe-1/1/1
user@host# set protocols ospf area 0.0.0.0 interface fe-1/1/2

4. If you are done configuring the device, commit the configuration.

[edit]
user@host# commit

Results
Confirm your configuration by entering the `show interfaces` and the `show protocols ospf` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@host# show interfaces
fe-1/1/1 {
 unit 0 {
 family inet {
 address 10.0.0.4/32;
 }
 }
}
fe-1/1/2 {
 unit 0 {
 family inet {
 address 10.0.0.5/32;
 }
 }
}
Reenabling Helper Mode for OSPFv2

CLI Quick Configuration
To quickly reenable standard helper-mode for OSPFv2, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
[edit]
delete protocols ospf graceful-restart helper-disable standard
```

NOTE: To reenable restart signaling-based helper mode, include the `restart-signaling` statement. To reenable both standard and restart signaling-based helper mode, include the `both` statement.

Step-by-Step Procedure
To reenable standard helper mode for OSPFv2:

1. Delete the standard helper-mode statement from the OSPFv2 configuration.

```
[edit]
user@host# delete protocols ospf graceful-restart helper-disable standard
```

2. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```
Results
After you reenable standard helper mode, the `show protocols ospf` command no longer displays the graceful restart configuration.

Verification

Confirm that the configuration is working properly.

Verifying the OSPFv2 Graceful Restart Configuration

Purpose
Verify information about your OSPFv2 graceful restart configuration. The Restart field displays the status of graceful restart as either enabled or disabled, the Graceful restart helper mode field displays the status of the standard helper mode capability as enabled or disabled, and the Restart-signaling helper mode field displays the status of the restart signaling-based helper mode as enabled or disabled. By default, both standard and restart signaling-based helper modes are enabled.

Action
From operational mode, enter the `show ospf overview` command.

Verifying Graceful Restart Status

Purpose
Verify the status of graceful restart. The Restart State field displays Pending if the restart has not completed, or Complete if the restart has finished. The Path selection timeout field indicates the amount of time remaining until graceful restart is declared complete. There is a more detailed Restart State field that displays a list of protocols that have completed graceful restart or have not yet completed graceful restart for the specified routing table.

Action
From operational mode, enter the `show route instance detail` command.
Example: Configuring the Helper Capability Mode for OSPFv3 Graceful Restart

IN THIS SECTION

- Requirements | 320
- Overview | 320
- Configuration | 321
- Verification | 323

This example shows how to disable and reenable the helper mode capability for OSPFv3 graceful restart.

Requirements

Before you begin:

- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.
- Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.
- Configure a multiarea OSPF network. See "Example: Configuring a Multiarea OSPF Network" on page 79.

Overview

The OSPF graceful restart helper capability assists a neighboring routing device attempting a graceful restart. By default, the helper capability is globally enabled when you start the routing platform. This means that the helper capability is enabled when you start OSPF, even if graceful restart is not globally enabled or specifically enabled for OSPF. You can further modify your graceful restart configuration to disable the helper capability.

In the first example, interfaces fe-1/1/1 and fe-1/1/2 are in OSPFv3 area 0.0.0.0, and you configure those interfaces for graceful restart. You then disable the OSPFv3 graceful restart helper capability by including the helper-disable statement.
NOTE: The helper-disable statement and the no-strict-lsa-checking statement cannot be configured at the same time. If you attempt to configure both statements at the same time, the routing device displays a warning message when you enter the show protocols ospf command.

The second example shows how to reenable the OSPFv3 restart helper capability that you disabled in the first example.

Configuration

IN THIS SECTION

- Disabling Helper Mode for OSPFv3 | 321
- Reenabling Helper Mode for OSPFv3 | 323

Disabling Helper Mode for OSPFv3

CLI Quick Configuration

To quickly enable graceful restart for OSPFv3 with helper mode disabled, copy the following commands and paste them into the CLI.

```
[edit]
set interfaces fe-1/1/1 unit 0 family inet6 address 2001:0a00:0004::
set interfaces fe-1/1/2 unit 0 family inet6 address 2001:0a00:0005::
set protocols ospf3 area 0.0.0.0 interface fe-1/1/1
set protocols ospf3 area 0.0.0.0 interface fe-1/1/2
set protocols ospf3 graceful-restart helper disable
```

Step-by-Step Procedure

To enable graceful restart for OSPFv3 with helper mode disabled:

1. Configure the interfaces.

```
[edit]
user@host# set interfaces fe-1/1/1 unit 0 family inet6 address 2001:0a00:0004::
user@host# set interfaces fe-1/1/1 unit 0 family inet address 2001:0a00:0005::
```

2. Configure OSPFv3 on the interfaces
3. Disable the OSPFv3 graceful restart helper capability.
 If you disable the OSPFv3 graceful restart helper capability, you cannot disable strict LSA checking.

```text
[edit]
user@host# set protocols ospf3 graceful-restart helper-disable
```

4. If you are done configuring the device, commit the configuration.

```text
[edit]
user@host# commit
```

Results

Confirm your configuration by entering the `show interfaces` and the `show protocols ospf3` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```text
user@host# show interfaces
fe-1/1/1 {
    unit 0 {
        family inet6 {
            address 2001:0a00:0004::/128;
        }
    }
}
fe-1/1/2 {
    unit 0 {
        family inet6 {
            address 2001:0a00:0005::/128;
        }
    }
}
user@host# show protocols ospf3
graceful-restart {
    helper-disable;
}
area 0.0.0.0 {
```
Reenabling Helper Mode for OSPFv3

CLI Quick Configuration
To quickly reenable helper-mode for OSPFv3, copy the following command and paste it into the CLI.

```
[edit]
delete protocols ospf3 graceful-restart helper-disable
```

Step-by-Step Procedure
To reenable helper mode for OSPFv3:

1. Delete the standard helper-mode statement from the OSPFv3 configuration.

```
[edit]
user@host# delete protocols ospf3 graceful-restart helper-disable
```

2. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

Results
After you reenable standard helper mode, the `show protocols ospfs` command no longer displays the graceful restart configuration.

Verification

IN THIS SECTION

- Verifying the OSPFv3 Graceful Restart Configuration | 324
- Verifying Graceful Restart Status | 324

Confirm that the configuration is working properly.
Verifying the OSPFv3 Graceful Restart Configuration

Purpose
Verify information about your OSPFv3 graceful restart configuration. The Restart field displays the status of graceful restart as either enabled or disabled, and the Helper mode field displays the status of the helper mode capability as either enabled or disabled.

Action
From operational mode, enter the `show ospf3 overview` command.

Verifying Graceful Restart Status

Purpose
Verify the status of graceful restart. The Restart State field displays Pending if the restart has not completed, or Complete if the restart has finished. The Path selection timeout field indicates the amount of time remaining until graceful restart is declared complete. There is a more detailed Restart State field that displays a list of protocols that have completed graceful restart or have not yet completed graceful restart for the specified routing table.

Action
From operational mode, enter the `show route instance detail` command.

Example: Disabling Strict LSA Checking for OSPF Graceful Restart

This example shows how to disable strict link-state advertisement (LSA) checking for OSPF graceful restart.

Requirements
Before you begin:
• Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.

• Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71

• Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.

• Configure a multiarea OSPF network. See “Example: Configuring a Multiarea OSPF Network” on page 79.

Overview

You can disable strict LSA checking to prevent the termination of graceful restart by a helping router. You might configure this option for interoperability with other vendor devices. The OSPF graceful restart helper capability must be enabled if you disable strict LSA checking. By default, LSA checking is enabled.

In this example, interfaces fe-1/1/1 and fe-1/1/2 are in OSPF area 0.0.0.0, and you configure those interfaces for graceful restart. You then disable strict LSA checking by including the `no-strict-lsa-checking` statement.

NOTE: The `helper-disable` statement and the `no-strict-lsa-checking` statement cannot be configured at the same time. If you attempt to configure both statements at the same time, the routing device displays a warning message when you enter the `show protocols ospf` command.

Configuration

CLI Quick Configuration

To quickly enable graceful restart for OSPF with strict LSA checking disabled, copy the following commands and paste them into the CLI.

```
[edit]
set interfaces fe-1/1/1 unit 0 family inet address 10.0.0.4
set interfaces fe-1/1/2 unit 0 family inet address 10.0.0.5
set protocols ospf area 0.0.0.0 interface fe-1/1/1
set protocols ospf area 0.0.0.0 interface fe-1/1/2
set protocols ospf graceful-restart no-strict-lsa-checking
```

Step-by-Step Procedure

To enable graceful restart for OSPF with strict LSA checking disabled:

1. Configure the interfaces.
NOTE: For OSPFv3, use IPv6 addresses.

```
[edit]
user@host# set interfaces fe-1/1/1 unit 0 family inet address 10.0.0.4
user@host# set interfaces fe-1/1/1 unit 0 family inet address 10.0.0.5
```

2. Configure OSPF on the interfaces

NOTE: To specify OSPFv3, include the `ospf3` statement at the `[edit protocols] hierarchy level.

```
[edit]
user@host# set protocols ospf area 0.0.0.0 interface fe-1/1/1
user@host# set protocols ospf area 0.0.0.0 interface fe-1/1/2
```

3. Disable strict LSA checking.
 If you disable the strict LSA checking, OSPF graceful restart helper capability must be enabled (which is the default behavior).

```
[edit]
user@host# set protocols ospf graceful-restart no-strict-lsa-checking
```

4. If you are done configuring the device, commit the configuration.

```
[edit ]
user@host# commit
```

Results

Confirm your configuration by entering the `show interfaces` and the `show protocols ospf` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show interfaces
fe-1/1/1 {
```
unit 0 {
 family inet {
 address 10.0.0.4/32;
 }
}
}

fe-1/1/2 {
 unit 0 {
 family inet {
 address 10.0.0.5/32;
 }
 }
}

user@host# show protocols ospf
graceful-restart {
 no-strict-lsa-checking;
}
}
area 0.0.0.0 {
 interface fe-1/1/1.0;
 interface fe-1/1/2.0;
}

To confirm your OSPFv3 configuration, enter the show interfaces and the show protocols ospf3 commands.

Verification

IN THIS SECTION

- Verifying the OSPF Graceful Restart Configuration | 327
- Verifying Graceful Restart Status | 328

Confirm that the configuration is working properly.

Verifying the OSPF Graceful Restart Configuration

Purpose

Verify information about your OSPF graceful restart configuration. The Restart field displays the status of graceful restart as either enabled or disabled.

Action
From operational mode, enter the `show ospf overview` command for OSPFv2, and enter the `show ospf3 overview` command for OSPFv3.

Verifying Graceful Restart Status

Purpose
Verify the status of graceful restart. The Restart State field displays Pending if the restart has not completed, or Complete if the restart has finished. The Path selection timeout field indicates the amount of time remaining until graceful restart is declared complete. There is a more detailed Restart State field that displays a list of protocols that have completed graceful restart or have not yet completed graceful restart for the specified routing table.

Action
From operational mode, enter the `show route instance detail` command.

RELATED DOCUMENTATION
- *Graceful Restart Concepts*
Configure Loop-Free Alternate Routes for OSPF
Per Prefix Loop Free Alternates for OSPF

In certain topologies and usage scenarios, when multiple destinations originate the same prefix and there is no viable LFA to the best prefix originator, whilst a non-best prefix originator has one. Per-prefix LFA is a technology by which, the LFA to a non-best prefix originator can be used in lieu of the LFA to the best prefix originator to provide local repair. This can be used to increase the local repair coverage for the OSPF protocol also.

Per-Prefix Loop Free Alternates (LFA)—Loop Free Alternates (LFA) is a technology by which a neighbor can be used as a backup next hop to provide a local repair path for the traffic to flow temporarily in case of failures in the primary next hop (node or link). For this, the basic requirement is that the selected backup neighbor provides a loop free path with respect to primary next hop towards a destination, originating a set of interior gateway protocol (IGP) prefixes.

The following topology explains the deployment case where per prefix LFA feature is applicable.
ABR1 and ABR2 are area boundary routers (ABRs), dual homed to an IPv6 core network, which advertises the summary LSA for the prefix 10.0.1.0/24 with a metric of 10. Also, from PE router’s perspective, ABR1 is the best prefix originator for 10.0.1.0/24. In this case, P2 is not a valid LFA for ABR1 because of the equal cost multi paths (ECMP) {P2, PE, P1, ABR1} and {P2, ABR2, ABR1} causing some of the traffic to be looped back through the router PE (no valid LFA). However for ABR2, which is also a prefix originator for 10.0.1.0/24, P2 is a valid LFA because the only path is [P2, ABR2].

SEE ALSO

per-prefix-calculation | 717

Configuring Per-Prefix LFA for OSPF

Per prefix LFA is a mechanism by which LFA to a non-best prefix originator can be used in lieu of the LFA to the best prefix originator to provide local repair. In such cases, per prefix LFA can be used to increase the local repair coverage for the OSPF protocol.

Loop Free Alternates (LFA) is a mechanism by which a neighbor can be used as a backup next hop to provide a local repair path for the traffic to flow temporarily in case of failures in the primary next hop (node or link). For this the basic requirement is that the selected backup neighbor provides a loop free path with respect to primary next hop towards a destination originating a set of IGP prefixes. In certain topologies and usage scenarios, it may be possible that multiple destinations are originating the same prefix and there is no viable LFA to the best prefix originator, whilst a non-best prefix originator has one. Per prefix LFA is a mechanism by which LFA to a non-best prefix originator can be used in lieu of the LFA to
the best prefix originator to provide local repair. In such cases, per prefix LFA can be used to increase the local repair coverage for the OSPF protocol.

To configure per prefix LFA for an OSPF interface:

- Configure the `per-prefix-calculation` configuration statement at the `[edit protocols (ospf | ospf3) backup-spf-options]` hierarchy level.

SEE ALSO

| `per-prefix-calculation` | 717 |

Loop-Free Alternate Routes for OSPF Overview

Support for OSPF loop-free alternate routes essentially adds IP fast-reroute capability for OSPF. Junos OS precomputes loop-free backup routes for all OSPF routes. These backup routes are preinstalled in the Packet Forwarding Engine, which performs a local repair and implements the backup path when the link for a primary next hop for a particular route is no longer available. With local repair, the Packet Forwarding Engine can correct a path failure before it receives precomputed paths from the Routing Engine. Local repair reduces the amount of time needed to reroute traffic to less than 50 milliseconds. In contrast, global repair can take up to 800 milliseconds to compute a new route. Local repair enables traffic to continue to be routed using a backup path until global repair is able to calculate a new route.

A loop-free path is one that does not forward traffic back through the routing device to reach a given destination. That is, a neighbor whose shortest path first to the destination traverses the routing device that is not used as a backup route to that destination. To determine loop-free alternate paths for OSPF routes, Junos OS runs shortest-path-first (SPF) calculations on each one-hop neighbor. You can enable support for alternate loop-free routes on any OSPF interface. Because it is common practice to enable LDP on an interface for which OSPF is already enabled, this feature also provides support for LDP label-switched paths (LSPs.)

NOTE: If you enable support for alternate loop-free routes on an interface configured for both LDP and OSPF, you can use the `traceroute` command to trace the active path to the primary next hop.

The level of backup coverage available through OSPF routes depends on the actual network topology and is typically less than 100 percent for all destinations on any given routing device. You can extend backup coverage to include RSVP LSP paths.
Junos OS provides three mechanisms for route redundancy for OSPF through alternate loop-free routes:

- **Link protection**—Offers per-link traffic protection. Use link protection when you assume that only a single link might become unavailable but that the neighboring node on the primary path would still be available through another interface.

- **Node-link protection**—Establishes an alternate path through a different routing device altogether. Use node-link protection when you assume that access to a node is lost when a link is no longer available. As a result, Junos OS calculates a backup path that avoids the primary next-hop routing device.

- **Per-prefix loop-free alternates (LFAs)**—It is a technology by which a neighbor can be used as a backup next hop to provide a local repair path for the traffic to flow temporarily in case of failures in the primary next hop (node or link). For this, the basic requirement is that the selected backup neighbor provides a loop-free path with respect to a primary next hop towards a destination, originating a set of interior gateway protocol (IGP) prefixes.

 In certain topologies and usage scenarios, it may be possible that multiple destinations are originating the same prefix and there is no viable LFA to the best prefix originator, while a non-best prefix originator has a viable LFA. *Per-prefix LFA* is a mechanism by which LFA to a non-best prefix originator can be used in lieu of the LFA to the best prefix originator to provide local repair. In such cases, per prefix LFA can be used to increase the local repair coverage for the OSPF protocol.

When you enable link protection or node-link protection on an OSPF interface, Junos OS creates an alternate path to the primary next hop for all destination routes that traverse a protected interface.

Configuring Link Protection for OSPF

You can configure link protection for any interface for which OSPF is enabled. When you enable link protection, Junos OS creates an alternate path to the primary next hop for all destination routes that traverse a protected interface. Use link protection when you assume that only a single link might become unavailable but that the neighboring node would still be available through another interface.

Link protection is supported on:

- OSPFv2 and OSPFv3 interfaces
- OSPFv3 unicast realms
- OSPFv2 unicast topologies, except for multicast topologies
- All routing instances supported by OSPFv2 and OSPFv3
- Logical systems
To configure link protection for an OSPF interface:

- Include the `link-protection` statement at the `[edit protocols (ospf | ospf3) area area-id interface interface-name]` hierarchy level.

BEST PRACTICE: When you configure link protection for OSPF, you must also configure a per-packet load-balancing routing policy to ensure that the routing protocol process installs all the next hops for a given route in the routing table.

In the following example, the OSPF interface `so-0/0/0.0` in area `0.0.0.0` is configured for link protection. If a link for a destination route that traverses this interface becomes unavailable, Junos OS creates a loop-free backup path through another interface on the neighboring node, thus avoiding the link that is no longer available.

```
[edit]
protocols {
  ospf {
    area 0.0.0.0 {
      interface so-0/0/0.0 {
        link-protection;
      }
    }
  }
}
```

SEE ALSO

- `link-protection` | 676
Configuring Node-Link Protection for OSPF

You can configure node-link protection on any interface for which OSPF is enabled. Node-link protection establishes an alternative path through a different routing device altogether for all destination routes that traverse a protected interface. Node-link protection assumes that the entire routing device, or node, has failed. Junos OS therefore calculates a backup path that avoids the primary next-hop routing device.

Node-link protection is supported on:

- OSPFv2 and OSPFv3 interfaces
- OSPFv3 unicast realms
- OSPFv2 unicast topologies
- All routing instances supported by OSPFv2 and OSPFv3
- Logical systems

To configure node-link protection for an OSPF interface:

- Include the `node-link-protection` statement at the `[edit protocols (ospf | ospf3) area area-id interface interface-name]` hierarchy level.

 BEST PRACTICE: You must also configure a per-packet load-balancing routing policy to ensure that the routing protocol process installs all the next hops for a given route in the routing table.

In the following example, the OSPF interface `so-0/0/0.0` in area `0.0.0.0` is configured for node-link protection. If a link for a destination route that traverses this interface becomes unavailable, Junos OS creates a loop-free backup path through a different routing device altogether, thus avoiding the primary next-hop routing device.

```
[edit]
protocols {
    ospf {
        area 0.0.0.0 {
            interface so-0/0/0.0 {
                node-link-protection;
            }
        }
    }
}
```
Configuring Node to Link Protection Fallback for OSPF

You can configure link protection for any interface for which OSPF is enabled. When you enable link protection, Junos OS creates an alternate path to the primary next hop for all destination routes that traverse a protected interface. Use link protection when you assume that only a single link might become unavailable but that the neighboring node would still be available through another interface.

You can configure node-link protection on any interface for which OSPF is enabled. Node-link protection establishes an alternative path through a different routing device altogether for all destination routes that traverse a protected interface. Node-link protection assumes that the entire routing device, or node, has failed. Junos OS therefore calculates a backup path that avoids the primary next-hop routing device.

In certain topologies it may be desirable to have local repair protection to node failures in the primary next hop, which may not be available. In that case, to ensure that some level of local repair capabilities exist, a fallback mechanism is required. Since the link protection is less stringent than node protection, it may be possible that link protection exists and provide the same to those destination (and hence the prefixes originated by it).

To configure node to link protection fallback for an OSPF interface:

- Include the node-link-degradation statement at the [edit protocols (ospf | ospf3) backup-spf-options] hierarchy level.

SEE ALSO

- link-protection | 676
- node-link-protection | 708
- node-link-degradation | 707
Excluding an OSPF Interface as a Backup for a Protected Interface

By default, all OSPF interfaces that belong to the default instance or to a specific routing instance are eligible as a backup interface for interfaces configured with link-protection or node-link protection. You can specify that any OSPF interface be excluded from functioning as a backup interface to protected interfaces.

To exclude an OSPF interface as a backup interface for a protected interface:

- Include the no-eligible-backup statement at the [edit protocols (ospf | ospf3) area area-id interface interface-name] hierarchy level.

In the following example, interface so-0/0/0.0 has been configured to prohibit backup traffic for traffic destined for a protected interface. This means that if a neighboring next-hop path or node for a protected interface fails, interface so-0/0/0.0 cannot be used to transmit traffic to a backup path.

```text
[edit]
protocols {
    ospf {
        area 0.0.0.0 {
            interface so-0/0/0.0 {
                no-eligible-backup;
            }
        }
    }
}
```

SEE ALSO

- no-eligible-backup | 700
Configuring Backup SPF Options for Protected OSPF Interfaces

By default, if at least one OSPF interface is configured for link-protection or node-link protection, Junos OS calculates backup next hops for all the topologies in an OSPF instance. You can configure the following backup shortest-path-first (SPF) options to override the default behavior:

- Disable the calculation of backup next hops for an OSPF instance or a specific topology in an instance.
- Prevent the installation of backup next hops in the routing table or the forwarding table for an OSPF instance or a specific topology in an instance.
- Limit the calculation of backup next hops to a subset of paths as defined in RFC 5286, Basic Specification for IP Fast Reroute: Loop-Free Alternates.

You can disable the backup SPF algorithm for an OSPF instance or specific topology in an instance. Doing so prevents the calculation of backup next hops for that OSPF instance or topology.

To disable the calculation of backup next hops for an OSPF instance or topology:

- Include the disable statement at the [edit protocols (ospf | ospf3) backup-spf-options] or [edit protocols ospf backup-spf-options topology topology-name] hierarchy level.

In the following example, the calculation of backup next hops is disabled for the OSPF topology voice:

```
[edit]
protocols {
    ospf {
        topology voice {
            backup-spf-options {
                disable;
            }
        }
    }
}
```

You can configure the routing device to prevent the installation of backup next hops in the routing table or the forwarding table for an OSPF instance, or a specific topology in an OSPF instance. The SPF algorithm continues to calculate backup next hops, but they are not installed.

To prevent the routing device from installing backup next hops in the routing table or the forwarding table:

- Include the no-install statement at the [edit protocols (ospf | ospf3) backup-spf-options] or the [edit protocols ospf topology topology-name] hierarchy level.

In the following example, backup next hops for the OSPF topology voice are not installed in the routing table or forwarding table. Any calculated backup next hops for other OSPF instances or topologies continue to be installed.
You can limit the calculation of backup next hops to downstream paths, as defined in RFC 5286. You can specify for Junos OS to use only downstream paths as backup next hops for protected interfaces for an OSPF instance or a specific topology in an OSPF instance. In a downstream path, the distance from the backup neighbor to the destination must be smaller than the distance from the calculating routing device to the destination. Using only downstream paths as loop-free alternate paths for protected interfaces ensures that these paths do not result in microloops. However, you might experience less than optimal backup coverage for your network.

To limit the calculation of backup next hops to downstream paths:

- Include the `downstream-paths-only` statement at the `[edit protocols (ospf | ospf3) backup-spf-options]` or `[edit protocols ospf backup-spf-options topology topology-name]` hierarchy level.

In the following example, only downstream paths are calculated as backup next hops for the topology `voice`:

```plaintext
[edit]
protocols {
    ospf {
        topology voice {
            backup-spf-options {
                downstream-paths-only;
            }
        }
    }
}
```

SEE ALSO

```plaintext
backup-spf-options | 616
```
Configuring RSVP Label-Switched Paths as Backup Paths for OSPF

When configuring an OSPF interface for link protection or node-link protection, relying on the shortest-path-first (SPF) calculation of backup paths for one-hop neighbors might result in less than 100 percent backup coverage for a specific network topology. You can enhance coverage of OSPF and LDP label-switched-paths (LSPs) by configuring RSVP LSPs as backup paths.

When configuring an LSP, you must specify the IP address of the egress router.

NOTE: RSVP LSPs can be used as backup paths only for the default topology for OSPFv2 and not for a configured topology. Additionally, RSVP LSP cannot be used a backup paths for non-default instances for OSPFv2 or OSPFv3.

To configure a specific RSVP LSP as a backup path:

1. Include the **backup** statement at the [edit protocols mpls labeled-switched-path lsp-name] hierarchy level.

2. Specify the address of the egress router by including the **to ip-address** statement at the [edit protocols mpls label-switched-path] hierarchy level.

In the following example, the RSVP LSP **f-to-g** is configured as a backup LSP for protected OSPF interfaces. The egress router is configured with the IP address **192.168.1.4**.

```conf
[edit]
  protocols {
    mpls {
      labeled-switched-path f-to-g {
        to 192.168.1.4;
        backup;
      }
    }
  }
```
Example: Configuring Loop-Free Alternate Routes for OSPF

This example demonstrates the use of link protection for interfaces that have OSPF enabled.

When you enable link protection, Junos OS creates an alternate path to the primary next hop for all destination routes that traverse a protected interface. Use link protection when you assume that only a single link might become unavailable but that the neighboring node would still be available through another interface.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, six OSPF neighbors are configured with link protection. This causes Junos OS to create an alternate path to the primary next hop for all destination routes that traverse each protected interface. Link protection is used here because even if a link becomes unavailable, the neighboring node would still be available through another interface.

The example shows two topologies. One is the default topology, and the other is the voice topology. For more information about multitopology routing, see the Multitopology Routing User Guide.

The example also includes RSVP LSPs configured as backup LSPs for protected OSPF interfaces.

Topology

Figure 22 on page 342 shows the sample network.
Figure 22: OSPF Link Protection

```
Nor    Mal P    Bacu    Path
R1     R2     R3
R4     R5     R6
so-0/2/1 so-0/2/1
so-0/2/1 so-0/2/0
t1-0/1/0 ... t1-0/1/1so-0/2/0

Normal Path
Backup Path
```

ERROR: Unresolved graphic fileref="" not found in "/cmsxml/default/main/supplemental/STAGING/images/".

"CLI Quick Configuration" on page 342 shows the configuration for all of the devices in Figure 22 on page 342.

The section "Step-by-Step Procedure" on page 348 describes the steps on Device R1.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

```
set interfaces so-0/2/2 unit 0 description to-R2
set interfaces so-0/2/2 unit 0 family inet address 192.168.242.1/30
set interfaces so-0/2/2 unit 0 family mpls
set interfaces t1-0/1/2 unit 0 description to-R2
set interfaces t1-0/1/2 unit 0 family inet address 192.168.241.1/30
set interfaces t1-0/1/2 unit 0 family mpls
set interfaces t1-0/1/0 unit 0 description to-R4
set interfaces t1-0/1/0 unit 0 family inet address 192.168.241.17/30
```
Device R2

set interfaces so-0/2/2 unit 0 description to-R1
set interfaces so-0/2/2 unit 0 family inet address 192.168.242.2/30
set interfaces so-0/2/2 unit 0 family mpls
set interfaces t1-0/1/2 unit 0 description to-R1
set interfaces t1-0/1/2 unit 0 family inet address 192.168.241.2/30
set interfaces t1-0/1/2 unit 0 family mpls
set interfaces so-0/2/0 unit 0 description to-R5
set interfaces so-0/2/0 unit 0 family inet address 192.168.242.21/30
set interfaces so-0/2/0 unit 0 family mpls
set interfaces so-0/2/1 unit 0 description to-R3
set interfaces so-0/2/1 unit 0 family inet address 192.168.242.5/30
set interfaces so-0/2/1 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 10.255.164.2/32 primary
set protocols rsvp interface all link-protection
set protocols rsvp interface fxp0.0 disable
set protocols mpls interface all
set protocols mpls interface fxp0.0 disable
set protocols ospf topology voice topology-id 32
set protocols ospf traffic-engineering
set protocols ospf area 0.0.0.0 interface fxp0.0 disable
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ospf area 0.0.0.0 interface so-0/2/0.0 link-protection
set protocols ospf area 0.0.0.0 interface so-0/2/0.0 metric 10
set protocols ospf area 0.0.0.0 interface so-0/2/0.0 passive
set protocols ospf area 0.0.0.0 interface so-0/1/2.0 link-protection
set protocols ospf area 0.0.0.0 interface so-0/1/2.0 metric 10
set protocols ospf area 0.0.0.0 interface so-0/2/1.0 link-protection
set protocols ospf area 0.0.0.0 interface so-0/2/1.0 metric 10
set protocols ldp interface all
set protocols ldp interface fxp0.0 disable
set routing-options topologies family inet topology voice
set routing-options forwarding-table indirect-next-hop-change-acknowledgements

Device R3

set interfaces t1-0/1/2 unit 0 description to-R6
set interfaces t1-0/1/2 unit 0 family inet address 192.168.241.25/30
set interfaces t1-0/1/2 unit 0 family mpls
set interfaces so-0/2/1 unit 0 description to-R2
set interfaces so-0/2/1 unit 0 family inet address 192.168.242.6/30
set interfaces so-0/2/1 unit 0 family mpls
set interfaces so-0/2/0 unit 0 description to-R6
set interfaces so-0/2/0 unit 0 family inet address 192.168.242.25/30
set interfaces so-0/2/0 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 10.255.164.3/32 primary
set protocols rsvp interface all link-protection
set protocols rsvp interface fxp0.0 disable
set protocols mpls interface all
set protocols mpls interface fxp0.0 disable
set protocols ospf traceoptions file ospf
set protocols ospf traceoptions file size 5m
set protocols ospf traceoptions file world-readable
set protocols ospf traceoptions flag error
set protocols ospf topology voice topology-id 32
set protocols ospf traffic-engineering
set protocols ospf area 0.0.0.0 interface fxp0.0 disable
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ospf area 0.0.0.0 interface so-0/2/0.0 link-protection
set protocols ospf area 0.0.0.0 interface so-0/2/0.0 metric 5
set protocols ospf area 0.0.0.0 interface t1-0/1/2.0 link-protection
set protocols ospf area 0.0.0.0 interface t1-0/1/2.0 metric 10
set protocols ospf area 0.0.0.0 interface so-0/2/1.0 link-protection
set protocols ospf area 0.0.0.0 interface so-0/2/1.0 metric 10
set protocols ldp interface all
set protocols ldp interface fxp0.0 disable
set routing-options static route 11.3.1.0/24 discard
set routing-options static route 11.3.2.0/24 discard
set routing-options static route 11.3.3.0/24 discard
set routing-options topologies family inet topology voice
set routing-options forwarding-table indirect-next-hop-change-acknowledgements

Device R4

set interfaces t1-0/1/0 unit 0 description to-R1
set interfaces t1-0/1/0 unit 0 family inet address 192.168.241.18/30
set interfaces t1-0/1/0 unit 0 family mpls
set interfaces so-0/2/0 unit 0 description to-R1
set interfaces so-0/2/0 unit 0 family inet address 192.168.242.18/30
set interfaces so-0/2/0 unit 0 family mpls
set interfaces t1-0/1/2 unit 0 description to-R5
set interfaces t1-0/1/2 unit 0 family inet address 192.168.241.9/30
set interfaces t1-0/1/2 unit 0 family mpls
set interfaces so-0/2/2 unit 0 description to-R5
set interfaces so-0/2/2 unit 0 family inet address 192.168.242.9/30
set interfaces so-0/2/2 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 10.255.164.4/32 primary
set protocols rsvp interface all link-protection
set protocols rsvp interface fxp0.0 disable
set protocols mpls interface all
set protocols mpls interface fxp0.0 disable
set protocols ospf topology voice topology-id 32
set protocols ospf traffic-engineering
set protocols ospf area 0.0.0.0 interface fxp0.0 disable
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ospf area 0.0.0.0 interface t1-0/1/0.0 link-protection
set protocols ospf area 0.0.0.0 interface t1-0/1/0.0 metric 10
set protocols ospf area 0.0.0.0 interface so-0/2/0.0 link-protection
set protocols ospf area 0.0.0.0 interface so-0/2/0.0 metric 10
set protocols ospf area 0.0.0.0 interface t1-0/1/2.0 link-protection
set protocols ospf area 0.0.0.0 interface t1-0/1/2.0 metric 10
set protocols ospf area 0.0.0.0 interface so-0/2/2.0 link-protection
set protocols ospf area 0.0.0.0 interface so-0/2/2.0 metric 10
set protocols ldp interface all
set protocols ldp interface fxp0.0 disable
set routing-options topologies family inet topology voice
set routing-options forwarding-table indirect-next-hop-change-acknowledgements

Device R5

set interfaces t1-0/1/2 unit 0 description to-R4
set interfaces t1-0/1/2 unit 0 family inet address 192.168.241.10/30
set interfaces t1-0/1/2 unit 0 family mpls
set interfaces so-0/2/0 unit 0 description to-R2
set interfaces so-0/2/0 unit 0 family inet address 192.168.242.22/30
set interfaces so-0/2/0 unit 0 family mpls
set interfaces so-0/2/2 unit 0 description to-R4
set interfaces so-0/2/2 unit 0 family inet address 192.168.242.10/30
set interfaces so-0/2/2 unit 0 family mpls
set interfaces so-0/2/2 unit 0 family inet address 192.168.242.13/30
set interfaces so-0/2/2 unit 0 family mpls
set interfaces t1-0/2/1 unit 0 description to-R6
set interfaces t1-0/2/1 unit 0 family inet address 192.168.241.13/30
set interfaces t1-0/2/1 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 10.255.164.5/32 primary
set protocols rsvp interface all link-protection
set protocols rsvp interface fxp0.0 disable
set protocols mpls interface all
set protocols mpls interface fxp0.0 disable
set protocols ospf topology voice topology-id 32
set protocols ospf traffic-engineering
set protocols ospf area 0.0.0.0 interface fxp0.0 disable
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ospf area 0.0.0.0 interface so-0/2/1.0 link-protection
set protocols ospf area 0.0.0.0 interface so-0/2/1.0 metric 5
set protocols ospf area 0.0.0.0 interface t1-0/1/2.0 link-protection
set protocols ospf area 0.0.0.0 interface t1-0/1/2.0 metric 10
set protocols ospf area 0.0.0.0 interface s0-0/2/0.0 link-protection
set protocols ospf area 0.0.0.0 interface s0-0/2/0.0 metric 10
set protocols ospf area 0.0.0.0 interface so-0/2/2.0 link-protection
set protocols ospf area 0.0.0.0 interface so-0/2/2.0 metric 10
set protocols ospf area 0.0.0.0 interface t1-0/2/1.0 link-protection
set protocols ospf area 0.0.0.0 interface t1-0/2/1.0 metric 10
set protocols ldp interface all
set protocols ldp interface fxp0.0 disable
set routing-options topologies family inet topology voice
set routing-options forwarding-table indirect-next-hop-change-acknowledgements

Device R6

set interfaces so-0/2/0 unit 0 description to-R5
set interfaces so-0/2/0 unit 0 family inet address 192.168.242.14/30
set interfaces so-0/2/0 unit 0 family mpls
set interfaces t1-0/1/0 unit 0 description to-R5
set interfaces t1-0/1/0 unit 0 family inet address 192.168.241.14/30
set interfaces t1-0/1/0 unit 0 family mpls
set interfaces t1-0/1/1 unit 0 description to-R3
set interfaces t1-0/1/1 unit 0 family inet address 192.168.241.26/30
set interfaces t1-0/1/1 unit 0 family mpls
set interfaces so-0/2/1 unit 0 description to-R3
set interfaces so-0/2/1 unit 0 family inet address 192.168.242.26/30
set interfaces so-0/2/1 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 10.255.164.6/32 primary
set protocols rsvp interface all link-protection
set protocols rsvp interface fxp0.0 disable
set protocols mpls interface all
set protocols mpls interface fxp0.0 disable
set protocols ospf topology voice topology-id 32
set protocols ospf traffic-engineering
set protocols ospf area 0.0.0.0 interface fxp0.0 disable
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ospf area 0.0.0.0 interface so-0/2/1.0 link-protection
set protocols ospf area 0.0.0.0 interface so-0/2/1.0 metric 5
set protocols ospf area 0.0.0.0 interface so-0/2/0.0 link-protection
set protocols ospf area 0.0.0.0 interface so-0/2/0.0 metric 5
set protocols ospf area 0.0.0.0 interface t1-0/1/0.0 link-protection
set protocols ospf area 0.0.0.0 interface t1-0/1/0.0 metric 10
set protocols ospf area 0.0.0.0 interface t1-0/1/1.0 link-protection
set protocols ospf area 0.0.0.0 interface t1-0/1/1.0 metric 10
set protocols ldp interface all
set protocols ldp interface fxp0.0 disable
set routing-options topologies family inet topology voice
set routing-options forwarding-table indirect-next-hop-change-acknowledgements

Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure Device R1:

1. Configure the device interfaces.

[edit interfaces]
user@R1# set so-0/2/2 unit 0 description to-R2
user@R1# set so-0/2/2 unit 0 family inet address 192.168.242.1/30
user@R1# set so-0/2/2 unit 0 family mpls
user@R1# set t1-0/1/2 unit 0 description to-R2
user@R1# set t1-0/1/2 unit 0 family inet address 192.168.241.1/30
user@R1# set t1-0/1/2 unit 0 family mpls
user@R1# set t1-0/1/0 unit 0 description to-R4
user@R1# set t1-0/1/0 unit 0 family inet address 192.168.241.17/30
user@R1# set t1-0/1/0 unit 0 family mpls
user@R1# set so-0/2/0 unit 0 description to-R4
user@R1# set so-0/2/0 unit 0 family inet address 192.168.242.17/30
user@R1# set so-0/2/0 unit 0 family mpls
user@R1# set lo0 unit 0 family inet address 10.255.164.1/32 primary
2. Extend backup coverage to include RSVP LSP paths.

```
[edit protocols rsvp]
user@R1# set interface all link-protection
user@R1# set interface fxp0.0 disable
```

3. Enable MPLS on the interfaces, and configure backup LSPs to Device R3.

```
[edit protocols mpls]
user@R1# set interface all
user@R1# set interface fxp0.0 disable
user@R1# set label-switched-path path1 backup
user@R1# set label-switched-path path1 to 10.255.164.3
user@R1# set label-switched-path path2 backup
user@R1# set label-switched-path path2 to 10.255.164.3
```

4. Configure OSPF connections, link metrics, and link protection.

```
[edit protocols ospf]
user@R1# set traffic-engineering
[edit protocols ospf area 0.0.0.0]
user@R1# set interface fxp0.0 disable
user@R1# set interface lo0.0 passive
user@R1# set interface so-0/2/0.0 link-protection
user@R1# set interface so-0/2/0.0 metric 10
user@R1# set interface so-0/2/2.0 link-protection
user@R1# set interface so-0/2/2.0 metric 10
user@R1# set interface t1-0/1/0.0 link-protection
user@R1# set interface t1-0/1/0.0 metric 10
user@R1# set interface t1-0/1/2.0 link-protection
user@R1# set interface t1-0/1/2.0 metric 10
```

5. (Optional) Configure a specific OSPF topology for voice traffic.

```
[edit protocols ospf]
user@R1# set topology voice topology-id 32
[edit routing-options topologies family inet]
user@R1# set topology voice
```

6. Enable LDP on the interfaces.
7. (Optional) Configure per-packet load balancing.

```
[edit policy-options policy-statement pplb]
user@R1# set then load-balance per-packet
[edit routing-options forwarding-table]
user@R1# set export pplb
```

8. Configure the routing protocol process (rpd) to request an acknowledgement when creating a new forwarding next hop.

We recommend that the `indirect-next-hop-change-acknowledgements` statement be configured when protection mechanisms are being used. This includes MPLS RSVP protection such as fast reroute (FRR) as well as interior gateway protocol (IGP) loop-free alternate (LFA) link or node protection.

```
[edit routing-options forwarding-table]
user@R1# set indirect-next-hop-change-acknowledgements
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R1# show interfaces
so-0/2/2 {
    unit 0 {
        description to-R2;
        family inet {
            address 192.168.242.1/30;
        }
        family mpls;
    }
}
t1-0/1/2 {
    unit 0 {
        description to-R2;
        family inet {
            address 192.168.241.1/30;
        }
    }
}
```
user@R1# show protocols
rsvp {
 interface all {
 link-protection;
 }
 interface fxp0.0 {
 disable;
 }
}
mpls {
 label-switched-path path1 {
 backup;
 }
}
to 10.255.164.3;
}
label-switched-path path2 {
 backup;
 to 10.255.164.3;
}
interface all;
interface fxp0.0 {
 disable;
}

ospf {
 topology voice topology-id 32;
 traffic-engineering;
 area 0.0.0.0 {
 interface fxp0.0 {
 disable;
 }
 interface lo0.0 {
 passive;
 }
 interface so-0/2/0.0 {
 link-protection;
 metric 10;
 }
 interface so-0/2/2.0 {
 link-protection;
 metric 10;
 }
 interface t1-0/1/0.0 {
 link-protection;
 metric 10;
 }
 interface t1-0/1/2.0 {
 link-protection;
 metric 10;
 }
 }
}

ldp {
 interface all;
 interface fxp0.0 {
 disable;
 }
}
If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Verifying the Routes on Device R1 | 353
- Checking the Backup Coverage | 356
- Checking the Backup LSPs | 357
- Checking the Backup Neighbors | 358
- Checking the SPF Calculations | 359

Confirm that the configuration is working properly.

Verifying the Routes on Device R1

Purpose

On Device R1, check the OSPF routes in the routing table.
Action

user@R1> show route protocol ospf

inet.0: 23 destinations, 23 routes (23 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.255.164.2/32 *[OSPF/10] 1d 23:34:00, metric 10
 > to 192.168.242.2 via so-0/2/2.0
 to 192.168.241.2 via t1-0/1/2.0

10.255.164.3/32 *[OSPF/10] 1d 23:34:00, metric 20
 > to 192.168.242.2 via so-0/2/2.0
 to 192.168.241.2 via t1-0/1/2.0

10.255.164.4/32 *[OSPF/10] 1d 23:34:00, metric 10
 > to 192.168.242.18 via so-0/2/0.0
 to 192.168.241.18 via t1-0/1/0.0

10.255.164.5/32 *[OSPF/10] 1d 23:34:00, metric 20
 to 192.168.242.2 via so-0/2/2.0
 to 192.168.241.2 via t1-0/1/2.0
 > to 192.168.242.18 via so-0/2/0.0
 to 192.168.241.18 via t1-0/1/0.0

10.255.164.6/32 *[OSPF/10] 1d 23:34:00, metric 25
 to 192.168.242.2 via so-0/2/2.0
 > to 192.168.241.2 via t1-0/1/2.0
 to 192.168.242.18 via so-0/2/0.0
 to 192.168.241.18 via t1-0/1/0.0

192.168.241.8/30 *[OSPF/10] 1d 23:34:00, metric 20
 > to 192.168.242.18 via so-0/2/0.0
 to 192.168.241.18 via t1-0/1/0.0

192.168.241.12/30 *[OSPF/10] 1d 23:34:00, metric 30
 to 192.168.242.2 via so-0/2/2.0
 to 192.168.241.2 via t1-0/1/2.0
 to 192.168.242.18 via so-0/2/0.0
 > to 192.168.241.18 via t1-0/1/0.0

192.168.241.24/30 *[OSPF/10] 1d 23:34:00, metric 30
 to 192.168.242.2 via so-0/2/2.0
 > to 192.168.241.2 via t1-0/1/2.0

192.168.242.4/30 *[OSPF/10] 1d 23:34:00, metric 20
 to 192.168.242.2 via so-0/2/2.0
 > to 192.168.241.2 via t1-0/1/2.0

192.168.242.8/30 *[OSPF/10] 1d 23:34:00, metric 20
 > to 192.168.242.18 via so-0/2/0.0
 to 192.168.241.18 via t1-0/1/0.0

192.168.242.12/30 *[OSPF/10] 1d 23:34:00, metric 25
to 192.168.242.2 via so-0/2/2.0
> to 192.168.241.2 via t1-0/1/2.0
to 192.168.242.18 via so-0/2/0.0
to 192.168.241.18 via t1-0/1/0.0

192.168.242.20/30 *[OSPF/10] 1d 23:34:00, metric 20
> to 192.168.242.2 via so-0/2/2.0
> to 192.168.241.2 via t1-0/1/2.0

192.168.242.24/30 *[OSPF/10] 1d 23:34:00, metric 25
to 192.168.242.2 via so-0/2/2.0
> to 192.168.241.2 via t1-0/1/2.0

224.0.0.5/32 *[OSPF/10] lwld 02:46:58, metric 1
MultiRecv

inet.3: 5 destinations, 6 routes (5 active, 0 holddown, 0 hidden)

:voice.inet.0: 22 destinations, 22 routes (22 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.255.164.2/32 *[OSPF/10] 1d 23:34:00, metric 10
> to 192.168.242.2 via so-0/2/2.0
to 192.168.241.2 via t1-0/1/2.0

10.255.164.3/32 *[OSPF/10] 1d 23:34:00, metric 20
> to 192.168.242.2 via so-0/2/2.0
to 192.168.241.2 via t1-0/1/2.0

10.255.164.4/32 *[OSPF/10] 1d 23:34:00, metric 10
to 192.168.242.18 via so-0/2/0.0
> to 192.168.241.18 via t1-0/1/0.0

10.255.164.5/32 *[OSPF/10] 1d 23:34:00, metric 20
to 192.168.242.2 via so-0/2/2.0
to 192.168.241.2 via t1-0/1/2.0
> to 192.168.242.18 via so-0/2/0.0
to 192.168.241.18 via t1-0/1/0.0

10.255.164.6/32 *[OSPF/10] 1d 23:34:00, metric 25
to 192.168.242.2 via so-0/2/2.0
to 192.168.241.2 via t1-0/1/2.0
> to 192.168.242.18 via so-0/2/0.0
to 192.168.241.18 via t1-0/1/0.0

192.168.241.8/30 *[OSPF/10] 1d 23:34:00, metric 20
> to 192.168.242.18 via so-0/2/0.0
to 192.168.241.18 via t1-0/1/0.0

192.168.241.12/30 *[OSPF/10] 1d 23:34:00, metric 30
> to 192.168.242.2 via so-0/2/2.0
to 192.168.241.2 via t1-0/1/2.0
to 192.168.242.18 via so-0/2/0.0
to 192.168.241.18 via t1-0/1/0.0
192.168.241.24/30 *[OSPF/10] 1d 23:34:00, metric 30
 to 192.168.242.2 via so-0/2/2.0
> to 192.168.241.2 via t1-0/1/2.0
192.168.242.4/30 *[OSPF/10] 1d 23:34:00, metric 20
 to 192.168.242.2 via so-0/2/2.0
> to 192.168.241.2 via t1-0/1/2.0
192.168.242.8/30 *[OSPF/10] 1d 23:34:00, metric 20
 to 192.168.242.18 via so-0/2/0.0
> to 192.168.241.18 via t1-0/1/0.0
192.168.242.12/30 *[OSPF/10] 1d 23:34:00, metric 25
 to 192.168.242.2 via so-0/2/2.0
 to 192.168.241.2 via t1-0/1/2.0
> to 192.168.242.18 via so-0/2/0.0
 to 192.168.241.18 via t1-0/1/0.0
192.168.242.20/30 *[OSPF/10] 1d 23:34:00, metric 20
 to 192.168.242.2 via so-0/2/2.0
> to 192.168.241.2 via t1-0/1/2.0
192.168.242.24/30 *[OSPF/10] 1d 23:34:00, metric 25
 > to 192.168.242.2 via so-0/2/2.0
 to 192.168.241.2 via t1-0/1/2.0

mpls.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)

Meaning

As expected, Device R1 has multiple potential routes to each destination.

Checking the Backup Coverage

Purpose

On Device R1, use the `show (ospf | ospf3) backup coverage` command to check the level of backup coverage available for all the nodes and prefixes in the network.

Action

```
user@R1> show ospf backup coverage
```

Topology default coverage:

Node Coverage:
Checking the Backup LSPs

Purpose
On Device R1, use the `show ospf | ospf3 backup lsp` command to check LSPs designated as backup routes for OSPF routes.

Action

user@R1> show ospf backup lsp
Checking the Backup Neighbors

Purpose
On Device R1, use the `show ospf | ospf3 backup neighbor` command to check the neighbors through which direct next hops for the backup paths are available.

Action

```bash
user@R1> show ospf backup neighbors
```

Topology default backup neighbors:

Area 0.0.0.0 backup neighbors:

10.255.164.4
 Neighbor to Self Metric: 10
 Self to Neighbor Metric: 10
 Direct next-hop: so-0/2/0.0 via 192.168.242.18
 Direct next-hop: t1-0/1/0.0 via 192.168.241.18

10.255.164.2
 Neighbor to Self Metric: 10
 Self to Neighbor Metric: 10
 Direct next-hop: so-0/2/2.0 via 192.168.242.2
 Direct next-hop: t1-0/1/2.0 via 192.168.241.2

10.255.164.3 (LSP endpoint)
 Neighbor to Self Metric: 20
 Self to Neighbor Metric: 20
 Direct next-hop: path1
 Direct next-hop: path2

Topology voice backup neighbors:
Checking the SPF Calculations

Purpose

On Device R1, use the `show ospf | ospf3 backup spf detail` command to check OSPF shortest-path-first (SPF) calculations for backup paths. To limit the output, the voice topology is specified in the command.

Action

```
user@R1> show ospf backup spf detail topology voice
```

Topology voice results:

Area 0.0.0.0 results:

192.168.241.2
 Self to Destination Metric: 10
 Parent Node: 10.255.164.1
 Primary next-hop: t1-0/1/2.0
 Backup next-hop: path1
 Backup Neighbor: 10.255.164.3 (LSP endpoint)
 Neighbor to Destination Metric: 20, Neighbor to Self Metric: 20
Self to Neighbor Metric: 20, Backup preference: 0x0
Track Item: 10.255.164.2
Eligible, Reason: Contributes backup next-hop
Backup Neighbor: 10.255.164.2
Neighbor to Destination Metric: 10, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Not evaluated, Reason: Interface is already covered
Backup Neighbor: 10.255.164.4
Neighbor to Destination Metric: 20, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Track Item: 10.255.164.1
Not evaluated, Reason: Interface is already covered

192.168.241.18
Self to Destination Metric: 10
Parent Node: 10.255.164.1
Primary next-hop: t1-0/1/0.0
Backup next-hop: so-0/2/0.0 via 192.168.242.18
Backup Neighbor: 10.255.164.3 (LSP endpoint)
Neighbor to Destination Metric: 30, Neighbor to Self Metric: 20
Self to Neighbor Metric: 20, Backup preference: 0x0
Track Item: 10.255.164.1
Track Item: 10.255.164.2
Track Item: 10.255.164.4
Not eligible, Reason: Path loops
Backup Neighbor: 10.255.164.4
Neighbor to Destination Metric: 10, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Eligible, Reason: Contributes backup next-hop
Backup Neighbor: 10.255.164.2
Neighbor to Destination Metric: 20, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Track Item: 10.255.164.1
Not evaluated, Reason: Interface is already covered

192.168.242.2
Self to Destination Metric: 10
Parent Node: 10.255.164.1
Primary next-hop: so-0/2/2.0
Backup next-hop: path2
Backup Neighbor: 10.255.164.3 (LSP endpoint)
Neighbor to Destination Metric: 20, Neighbor to Self Metric: 20
Self to Neighbor Metric: 20, Backup preference: 0x0
Track Item: 10.255.164.2
Eligible, Reason: Contributes backup next-hop
Backup Neighbor: 10.255.164.2
Neighbor to Destination Metric: 10, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Not evaluated, Reason: Interface is already covered
Backup Neighbor: 10.255.164.4
Neighbor to Destination Metric: 20, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Track Item: 10.255.164.1
Not evaluated, Reason: Interface is already covered

192.168.242.18
Self to Destination Metric: 10
Parent Node: 10.255.164.1
Primary next-hop: so-0/2/0.0
Backup next-hop: t1-0/1/0.0 via 192.168.241.18
Backup Neighbor: 10.255.164.3 (LSP endpoint)
Neighbor to Destination Metric: 30, Neighbor to Self Metric: 20
Self to Neighbor Metric: 20, Backup preference: 0x0
Track Item: 10.255.164.1
Track Item: 10.255.164.2
Track Item: 10.255.164.4
Not eligible, Reason: Path loops
Backup Neighbor: 10.255.164.4
Neighbor to Destination Metric: 10, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Eligible, Reason: Contributes backup next-hop
Backup Neighbor: 10.255.164.2
Neighbor to Destination Metric: 20, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Track Item: 10.255.164.1
Not evaluated, Reason: Interface is already covered

10.255.164.2
Self to Destination Metric: 10
Parent Node: 192.168.241.2
Parent Node: 192.168.242.2
Primary next-hop: so-0/2/2.0 via 192.168.242.2
Primary next-hop: t1-0/1/2.0 via 192.168.241.2
Backup Neighbor: 10.255.164.3 (LSP endpoint)
Neighbor to Destination Metric: 10, Neighbor to Self Metric: 20
Self to Neighbor Metric: 20, Backup preference: 0x0
Track Item: 10.255.164.2
Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.2
Neighbor to Destination Metric: 0, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath

Backup Neighbor: 10.255.164.4
Neighbor to Destination Metric: 20, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Track Item: 10.255.164.1
Track Item: 10.255.164.2
Not evaluated, Reason: Primary next-hop multipath

10.255.164.4
Self to Destination Metric: 10
Parent Node: 192.168.241.18
Parent Node: 192.168.242.18
Primary next-hop: so-0/2/0.0 via 192.168.242.18
Primary next-hop: t1-0/1/0.0 via 192.168.241.18
Backup Neighbor: 10.255.164.3 (LSP endpoint)
 Neighbor to Destination Metric: 20, Neighbor to Self Metric: 20
 Self to Neighbor Metric: 20, Backup preference: 0x0
 Track Item: 10.255.164.4
 Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.4
Neighbor to Destination Metric: 0, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.2
Neighbor to Destination Metric: 20, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Track Item: 10.255.164.1
Track Item: 10.255.164.4
Not evaluated, Reason: Primary next-hop multipath

192.168.241.10
Self to Destination Metric: 20
Parent Node: 10.255.164.4
Primary next-hop: so-0/2/0.0 via 192.168.242.18
Primary next-hop: t1-0/1/0.0 via 192.168.241.18
Backup Neighbor: 10.255.164.3 (LSP endpoint)
 Neighbor to Destination Metric: 20, Neighbor to Self Metric: 20
 Self to Neighbor Metric: 20, Backup preference: 0x0
 Track Item: 10.255.164.4
 Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.4
Neighbor to Destination Metric: 0, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.4
Neighbor to Destination Metric: 10, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath
Self to Neighbor Metric: 10, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath

Backup Neighbor: 10.255.164.2
Neighbor to Destination Metric: 20, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath

192.168.242.6
Self to Destination Metric: 20
Parent Node: 10.255.164.2
Primary next-hop: so-0/2/2.0 via 192.168.242.2
Primary next-hop: t1-0/1/2.0 via 192.168.241.2
Backup Neighbor: 10.255.164.3 (LSP endpoint)
Neighbor to Destination Metric: 10, Neighbor to Self Metric: 20
Self to Neighbor Metric: 20, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.2
Neighbor to Destination Metric: 10, Neighbor to Self Metric: 10
Self to Neighbor Metric: 20, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.4
Neighbor to Destination Metric: 30, Neighbor to Self Metric: 10
Self to Neighbor Metric: 30, Backup preference: 0x0
Track Item: 10.255.164.1
Track Item: 10.255.164.2
Not evaluated, Reason: Primary next-hop multipath

192.168.242.10
Self to Destination Metric: 20
Parent Node: 10.255.164.4
Primary next-hop: so-0/2/0.0 via 192.168.242.18
Primary next-hop: t1-0/1/0.0 via 192.168.241.18
Backup Neighbor: 10.255.164.3 (LSP endpoint)
Neighbor to Destination Metric: 20, Neighbor to Self Metric: 20
Self to Neighbor Metric: 20, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.4
Neighbor to Destination Metric: 10, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.2
Neighbor to Destination Metric: 20, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath
192.168.242.22
Self to Destination Metric: 20
Parent Node: 10.255.164.2
Primary next-hop: so-0/2/2.0 via 192.168.242.2
Primary next-hop: t1-0/1/2.0 via 192.168.241.2
Backup Neighbor: 10.255.164.3 (LSP endpoint)
 Neighbor to Destination Metric: 20, Neighbor to Self Metric: 20
 Self to Neighbor Metric: 20, Backup preference: 0x0
 Track Item: 10.255.164.2
 Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.2
 Neighbor to Destination Metric: 10, Neighbor to Self Metric: 10
 Self to Neighbor Metric: 10, Backup preference: 0x0
 Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.4
 Neighbor to Destination Metric: 20, Neighbor to Self Metric: 10
 Self to Neighbor Metric: 10, Backup preference: 0x0
 Not evaluated, Reason: Primary next-hop multipath
10.255.164.3
Self to Destination Metric: 20
Parent Node: 192.168.242.6
Primary next-hop: so-0/2/2.0 via 192.168.242.2
Primary next-hop: t1-0/1/2.0 via 192.168.241.2
Backup Neighbor: 10.255.164.3 (LSP endpoint)
 Neighbor to Destination Metric: 0, Neighbor to Self Metric: 20
 Self to Neighbor Metric: 20, Backup preference: 0x0
 Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.2
 Neighbor to Destination Metric: 10, Neighbor to Self Metric: 10
 Self to Neighbor Metric: 10, Backup preference: 0x0
 Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.4
 Neighbor to Destination Metric: 20, Neighbor to Self Metric: 10
 Self to Neighbor Metric: 10, Backup preference: 0x0
 Not evaluated, Reason: Primary next-hop multipath
10.255.164.5
Self to Destination Metric: 20
Parent Node: 192.168.241.10
Parent Node: 192.168.242.10
Parent Node: 192.168.242.22
Primary next-hop: so-0/2/2.0 via 192.168.242.2
<table>
<thead>
<tr>
<th>Primary next-hop</th>
<th>Backup Neighbor</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1-0/1/2.0 via 192.168.241.2</td>
<td>10.255.164.3 (LSP endpoint)</td>
</tr>
<tr>
<td>so-0/2/0.0 via 192.168.242.18</td>
<td>Neighbor to Destination Metric: 10, Neighbor to Self Metric: 20</td>
</tr>
<tr>
<td>t1-0/1/0.0 via 192.168.241.18</td>
<td>Self to Neighbor Metric: 20, Backup preference: 0x0</td>
</tr>
<tr>
<td></td>
<td>Not evaluated, Reason: Primary next-hop multipath</td>
</tr>
<tr>
<td>192.168.242.14</td>
<td>Backup Neighbor: 10.255.164.2</td>
</tr>
<tr>
<td></td>
<td>Neighbor to Destination Metric: 10, Neighbor to Self Metric: 10</td>
</tr>
<tr>
<td></td>
<td>Self to Neighbor Metric: 10, Backup preference: 0x0</td>
</tr>
<tr>
<td></td>
<td>Not evaluated, Reason: Primary next-hop multipath</td>
</tr>
<tr>
<td></td>
<td>Backup Neighbor: 10.255.164.4</td>
</tr>
<tr>
<td></td>
<td>Neighbor to Destination Metric: 10, Neighbor to Self Metric: 10</td>
</tr>
<tr>
<td></td>
<td>Self to Neighbor Metric: 10, Backup preference: 0x0</td>
</tr>
<tr>
<td></td>
<td>Not evaluated, Reason: Primary next-hop multipath</td>
</tr>
<tr>
<td>192.168.242.26</td>
<td>Backup Neighbor: 10.255.164.3 (LSP endpoint)</td>
</tr>
<tr>
<td></td>
<td>Neighbor to Destination Metric: 10, Neighbor to Self Metric: 20</td>
</tr>
<tr>
<td></td>
<td>Self to Neighbor Metric: 20, Backup preference: 0x0</td>
</tr>
<tr>
<td></td>
<td>Not evaluated, Reason: Primary next-hop multipath</td>
</tr>
</tbody>
</table>

192.168.242.14
Self to Destination Metric: 25
Parent Node: 10.255.164.5
Primary next-hop: so-0/2/2.0 via 192.168.242.2
Primary next-hop: t1-0/1/2.0 via 192.168.241.2
Primary next-hop: so-0/2/0.0 via 192.168.242.18
Primary next-hop: t1-0/0/1.0 via 192.168.241.18
Backup Neighbor: 10.255.164.3 (LSP endpoint)
Neighbor to Destination Metric: 10, Neighbor to Self Metric: 20
Self to Neighbor Metric: 20, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.2
Neighbor to Destination Metric: 15, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.4
Neighbor to Destination Metric: 15, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath

192.168.242.26
Self to Destination Metric: 25
Parent Node: 10.255.164.3
Primary next-hop: so-0/2/2.0 via 192.168.242.2
Primary next-hop: t1-0/0/1.0 via 192.168.241.2
Backup Neighbor: 10.255.164.3 (LSP endpoint)
Neighbor to Destination Metric: 5, Neighbor to Self Metric: 20
Self to Neighbor Metric: 20, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.2
 Neighbor to Destination Metric: 15, Neighbor to Self Metric: 10
 Self to Neighbor Metric: 10, Backup preference: 0x0
 Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.4
 Neighbor to Destination Metric: 20, Neighbor to Self Metric: 10
 Self to Neighbor Metric: 10, Backup preference: 0x0
 Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.6
 Neighbor to Destination Metric: 25
 Parent Node: 192.168.242.14
 Parent Node: 192.168.242.26
 Primary next-hop: so-0/2/2.0 via 192.168.242.2
 Primary next-hop: t1-0/1/2.0 via 192.168.241.2
 Primary next-hop: so-0/2/0.0 via 192.168.242.18
 Primary next-hop: t1-0/1/0.0 via 192.168.241.18
 Backup Neighbor: 10.255.164.3 (LSP endpoint)
 Neighbor to Destination Metric: 5, Neighbor to Self Metric: 20
 Self to Neighbor Metric: 20, Backup preference: 0x0
 Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.2
 Neighbor to Destination Metric: 15, Neighbor to Self Metric: 10
 Self to Neighbor Metric: 10, Backup preference: 0x0
 Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.4
 Neighbor to Destination Metric: 15, Neighbor to Self Metric: 10
 Self to Neighbor Metric: 10, Backup preference: 0x0
 Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.6
 Neighbor to Destination Metric: 30
 Parent Node: 192.168.242.14
 Parent Node: 192.168.242.26
 Primary next-hop: so-0/2/2.0 via 192.168.242.2
 Primary next-hop: t1-0/1/2.0 via 192.168.241.2
 Primary next-hop: so-0/2/0.0 via 192.168.242.18
 Primary next-hop: t1-0/1/0.0 via 192.168.241.18
 Backup Neighbor: 10.255.164.3 (LSP endpoint)
 Neighbor to Destination Metric: 15, Neighbor to Self Metric: 20
 Self to Neighbor Metric: 20, Backup preference: 0x0
 Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.2
 Neighbor to Destination Metric: 20, Neighbor to Self Metric: 10
 Self to Neighbor Metric: 20, Backup preference: 0x0
 Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.4
 Neighbor to Destination Metric: 20, Neighbor to Self Metric: 10
 Self to Neighbor Metric: 10, Backup preference: 0x0
 Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.6
 Neighbor to Destination Metric: 30
Self to Neighbor Metric: 10, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.4
Neighbor to Destination Metric: 20, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath

192.168.241.26
Self to Destination Metric: 30
Parent Node: 10.255.164.3
Primary next-hop: so-0/2/2.0 via 192.168.242.2
Primary next-hop: t1-0/1/2.0 via 192.168.241.2
Backup Neighbor: 10.255.164.3 (LSP endpoint)
Neighbor to Destination Metric: 10, Neighbor to Self Metric: 20
Self to Neighbor Metric: 20, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.2
Neighbor to Destination Metric: 20, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath
Backup Neighbor: 10.255.164.4
Neighbor to Destination Metric: 25, Neighbor to Self Metric: 10
Self to Neighbor Metric: 10, Backup preference: 0x0
Not evaluated, Reason: Primary next-hop multipath

SEE ALSO

- Example: Configuring Multitopology Routing for Class-Based Forwarding of Voice, Video, and Data Traffic
Remote LFA over LDP Tunnels in OSPF Networks Overview

In an OSPF network, a loop free alternate (LFA) is a directly connected neighbor that provides precomputed backup paths to the destinations reachable through the protected link on the point of local repair (PLR). A remote LFA is not directly connected to the PLR and provides precomputed backup paths using dynamically created LDP tunnels to the remote LFA node. The PLR uses this remote LFA backup path when the primary link fails. The primary goal of the remote LFA is to increase backup coverage for the OSPF networks and provide protection for Layer 1 metro-rings.

LFAs do not provide full backup coverage for OSPF networks. This is a major setback for metro Ethernet networks that are often shaped as ring topologies. To overcome this setback, Resource Reservation Protocol - Traffic Engineering (RSVP-TE) backup tunnels are commonly used to extend the backup coverage. However, a majority of network providers have already implemented LDP as the MPLS tunnel setup protocol and do not want to implement the RSVP-TE protocol merely for backup coverage. LDP automatically brings up transport tunnels to all potential destinations in an OSPF network and hence is the preferred protocol. The existing LDP implemented for the MPLS tunnel setup can be reused for protection of OSPF networks and subsequent LDP destinations, thereby eliminating the need for RSVP-TE backup tunnels for backup coverage.

To calculate the remote LFA backup path, the OSPF protocol determines the remote LFA node in the following manner:

1. Calculates the reverse shortest path first from the adjacent router across the protected link of a PLR. The reverse shortest path first uses the incoming link metric instead of the outgoing link metric to reach a neighboring node.
 The result is a set of links and nodes, which is the shortest path from each leaf node to the root node.

2. Calculates the shortest path first (SPF) on the remaining adjacent routers to find the list of nodes that can be reached without traversing the link being protected.
 The result is another set of links and nodes on the shortest path from the root node to all leaf nodes.

3. Determines the common nodes from the above results. These nodes are the remote LFAs.

OSPF listens to the advertised labels for the LDP routes. For each advertised LDP route, OSPF checks whether it contains an LDP supplied next hop. If the corresponding OSPF route does have a backup next hop, then OSPF runs the backup policy and adds an additional tracking route with the corresponding LDP label-switched path next hop as the backup next hop. If there are no backup next hops, LDP builds a dynamic LDP tunnel to the remote LFA, and LDP establishes a targeted adjacency between the remote LFA node and the PLR node. This backup route has two LDP labels. The top label is the OSPF route, which denotes the backup path from the PLR to the remote LFA route. The bottom label is the LDP MPLS label-switched path that denotes the route for reaching the ultimate destination from the remote LFA.
When an LDP session goes down and a remote tunnel is no longer available, OSPF changes all the routes that have been using this backup LDP tunnel.

NOTE: Currently, Junos OS supports only IPv4 transport LSPs. If you need to reuse IPv4 transport LSPs for IPv6 IGP networks, add an IPv6 explicit NULL label to the label stack of the tracking route. The system automatically converts the IPv4 LSP to an IPv6 LSP.

LDP might be vulnerable by an automatically targeted adjacency, and these threats can be mitigated using all or some of the following mechanisms:

- Remote LFAs that are several hops away use extended hello messages to indicate willingness to establish a targeted LDP session. A remote LFA can reduce the threat of spoofed extended hello messages by filtering them and accepting only those originating at sources permitted by an access or filter list.
- There is a need to authenticate with TCP-MD5 all auto-targeted LDP sessions in the given IGP/LDP domain using apply groups or LDP global-level authentication.
- As an added security measure, the repair or remote tunnel endpoint routers should be assigned from a set of addresses that are not reachable from outside of the routing domain.

SEE ALSO

- auto-targeted-session
- no-eligible-remote-backup
- remote-backup-calculation

Configuring Remote LFA Backup over LDP Tunnels in an OSPF Network

The primary goal of a remote loop free alternate (LFA) is to increase backup coverage for OSPF routes and provide protection especially for Layer 1 metro-rings. The existing LDP implemented for the MPLS tunnel setup can be reused for protection of OSPF networks and subsequent LDP destinations. The OSPF protocol creates a dynamic LDP tunnel to reach the remote LFA node from the point of local repair (PLR). The PLR uses this remote LFA backup path when the primary link fails.

Before you configure remote LFA over LDP tunnels in an OSPF network, you must do the following:

1. Enable LDP on the loopback interface.

 Configure a loopback interface because an LDP targeted adjacency cannot be formed without a loopback interface. LDP targeted adjacency is essential for determining remote LFA backup paths.
2. Make sure that remote LFA allows asymmetric remote neighbor discovery—that is, it must send periodic targeted hello messages to the router that initiated the remote neighbor for LDP auto-targeted adjacency.

3. Configure link protection or node-link protection on the PLR.

To configure remote LFA backup over LDP tunnels in an OSPF network:

1. Enable remote LFA backup to determine the backup next hop using dynamic LDP label-switched path.

   ```
   [edit protocols ospf backup-spf-options]
   user@host# set remote-backup-calculation
   ```

2. Enable automatically targeted LDP sessions using the loopback addresses between the PLR and the remote LFA node.

   ```
   [edit protocols ldp]
   user@host# set auto-targeted-session
   ```

3. Specify a time interval for which the targeted LDP sessions are kept up even after the remote LFA node goes down.

   ```
   [edit protocols ldp auto-targeted-session]
   user@host# set teardown-delay seconds
   ```

 For example, to set a teardown delay value of 60 seconds:

   ```
   [edit protocols ldp auto-targeted-session]
   user@host# set teardown-delay 60
   ```

4. Specify the maximum number of automatically targeted LDP sessions to optimize memory usage.

   ```
   [edit protocols ldp auto-targeted-session]
   user@host# set maximum-sessions number of sessions
   ```

 For example, to set a maximum sessions allowed to 20:

   ```
   [edit protocols ldp auto-targeted-session]
   user@host# set maximum-sessions 20
   ```
In an OSPF network, a loop free alternate (LFA) is a directly connected neighbor that provides precomputed backup paths to the destinations reachable via the protected link on the point of local repair (PLR). A remote LFA is not directly connected to the PLR and provides precomputed backup paths using dynamically created LDP tunnels to the remote LFA node. The PLR uses this remote LFA backup path when the primary link fails. The primary goal of the remote LFA is to increase backup coverage for the OSPF networks and provide protection for Layer 1 metro-rings. This example shows how to configure remote LFA for LDP tunnels in an OSPF network for extending backup protection.

Requirements

This example uses the following hardware and software components:

- Nine MX Series routers with OSPF protocol and LDP enabled on the connected interfaces.
- Junos OS Release 15.1 or later running on all devices.

Before you configure remote LFA over LDP tunnels in an OSPF networks, make sure of the following:

- LDP is enabled on the loopback interface. Without a loopback interface, LDP targeted adjacency cannot be formed. Remote LFA cannot be configured without LDP targeted adjacency.
- Remote LFA must allow asymmetric remote neighbor discovery, that is, it must send periodic targeted hellos to the router that initiated the remote neighbor for LDP auto targeted adjacency.
• Link protection or node-link protection must be configured on the point of local repair (PLR).

Overview

The example includes nine routers in a ring topology. Configure the OSPF protocol on the directly connected interfaces. Device R6 is the PLR. This example verifies that Junos OS updates the routing table of Device R6 with LDP next-hop routes as the backup route.

Topology

In the topology Figure 23 on page 372 shows the remote LFA over LDP tunnels in OSPF networks is configured on Device R6.

Figure 23: Example Remote LFA over LDP Tunnels

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

R0

<table>
<thead>
<tr>
<th>lo0:</th>
<th>R0 1.1.1/32</th>
<th>R1 2.2.2.2/32</th>
<th>R2 3.3.3.3/32</th>
<th>R3 4.4.4.4/32</th>
<th>R4 5.5.5.5/32</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R5 6.6.6.6/32</td>
<td>R6 7.7.7/32</td>
<td>R7 8.8.8.8/32</td>
<td>R8 9.9.9.9/32</td>
<td></td>
</tr>
</tbody>
</table>
set interfaces ge-0/0/0 unit 0 family inet address 10.1.1.1/24
set interfaces ge-0/0/0 unit 0 family mpls
set interfaces ge-0/0/1 unit 0 family inet address 90.1.1.1/24
set interfaces ge-0/0/1 unit 0 family mpls
set interfaces ge-0/0/2 unit 0 family inet address 110.1.1.1/24
set interfaces ge-0/0/2 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 1.1.1.1/32
set interfaces lo0 unit 0 family mpls
set routing-options static route 88.88.88.88/32 discard
set routing-options router-id 1.1.1.1
set routing-options forwarding-table export per-packet
set protocols mpls interface ge-0/0/0.0
set protocols mpls interface ge-0/0/1.0
set protocols mpls interface ge-0/0/2.0
set protocols mpls interface lo0.0
set protocols ospf backup-spf-options remote-backup-calculation
set protocols ospf export static
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0
set protocols ospf area 0.0.0.0 interface ge-0/0/1.0
set protocols ospf area 0.0.0.0 interface ge-0/0/2.0
set protocols ospf area 0.0.0.0 interface lo0.0
set protocols ldp auto-targeted-session teardown-delay 20
set protocols ldp auto-targeted-session maximum-sessions 60
set protocols ldp egress-policy static
set protocols ldp interface ge-0/0/0.0
set protocols ldp interface ge-0/0/1.0
set protocols ldp interface ge-0/0/2.0
set protocols ldp interface lo0.0
set policy-options policy-statement per-packet then load-balance per-packet
set policy-options policy-statement per-packet then accept
set policy-options policy-statement static from protocol static
set policy-options policy-statement static then accept

R1

set interfaces ge-0/0/0 unit 0 family inet address 10.1.1.2/24
set interfaces ge-0/0/0 unit 0 family mpls
set interfaces ge-0/0/1 unit 0 family inet address 20.1.1.1/24
set interfaces ge-0/0/1 unit 0 family mpls
set interfaces ge-0/0/2 unit 0 family inet address 80.1.1.1/24
set interfaces ge-0/0/2 unit 0 family mpls
set interfaces ge-0/0/3 unit 0 family inet address 100.1.1.1/24
set interfaces ge-0/0/3 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 2.2.2.2/32
set interfaces lo0 unit 0 family mpls
set routing-options router-id 2.2.2.2
set routing-options forwarding-table export per-packet
set protocols ospf backup-spf-options remote-backup-calculation
set protocols ospf traffic-engineering
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0
set protocols ospf area 0.0.0.0 interface ge-0/0/2.0
set protocols ospf area 0.0.0.0 interface ge-0/0/1.0 link-protection
set protocols ospf area 0.0.0.0 interface ge-0/0/3.0
set protocols ospf area 0.0.0.0 interface lo0.0
set protocols ldp auto-targeted-session teardown-delay 20
set protocols ldp auto-targeted-session maximum-sessions 60
set protocols ldp interface ge-0/0/0.0
set protocols ldp interface ge-0/0/1.0
set protocols ldp interface ge-0/0/2.0
set protocols ldp interface ge-0/0/3.0
set protocols ldp interface lo0.0
set policy-options policy-statement per-packet then load-balance per-packet
set policy-options policy-statement per-packet then accept

R2

set interfaces ge-0/0/0 unit 0 family inet address 20.1.1.2/24
set interfaces ge-0/0/0 unit 0 family mpls
set interfaces ge-0/0/1 unit 0 family inet address 30.1.1.1/24
set interfaces ge-0/0/1 unit 0 family mpls
set interfaces ge-0/0/2 unit 0 family inet address 110.1.1.1/24
set interfaces ge-0/0/2 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 3.3.3.3/32
set interfaces lo0 unit 0 family mpls
set protocols ospf area 0.0.0.0 interface all
set protocols ospf area 0.0.0.0 interface fxp0.0 disable
set policy-options policy-statement per-packet then load-balance per-packet
set policy-options policy-statement per-packet then accept

R3
set interfaces ge-0/0/0 unit 0 family inet address 30.1.1.2/24
set interfaces ge-0/0/0 unit 0 family mpls
set interfaces ge-0/0/1 unit 0 family inet address 40.1.1.1/24
set interfaces ge-0/0/1 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 4.4.4.4/32
set interfaces lo0 unit 0 family mpls
set routing-options router-id 4.4.4.4
set routing-options forwarding-table export per-packet
set protocols ospf backup-spf-options remote-backup-calculation
set protocols ospf traffic-engineering
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0
set protocols ospf area 0.0.0.0 interface ge-0/0/1.0
set protocols ospf area 0.0.0.0 interface lo0.0
set protocols ldp auto-targeted-session teardown-delay 20
set protocols ldp auto-targeted-session maximum-sessions 60
set protocols ldp interface ge-0/0/0.0
set protocols ldp interface ge-0/0/1.0
set protocols ldp interface lo0.0
set policy-options policy-statement per-packet then load-balance per-packet
set policy-options policy-statement per-packet then accept

R4

set interfaces ge-0/0/0 unit 0 family inet address 40.1.1.2/24
set interfaces ge-0/0/0 unit 0 family mpls
set interfaces ge-0/0/1 unit 0 family inet address 50.1.1.1/24
set interfaces ge-0/0/1 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 5.5.5.5/32
set interfaces lo0 unit 0 family mpls
set routing-options router-id 5.5.5.5
set routing-options forwarding-table export per-packet
set protocols ospf traffic-engineering
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0
set protocols ospf area 0.0.0.0 interface ge-0/0/1.0
set protocols ospf area 0.0.0.0 interface lo0.0
set protocols ldp auto-targeted-session teardown-delay 60
set protocols ldp auto-targeted-session maximum-sessions 20
set protocols ldp interface ge-0/0/0.0
set protocols ldp interface ge-0/0/1.0
set protocols ldp interface lo0.0
set policy-options policy-statement per-packet then load-balance per-packet
set policy-options policy-statement per-packet then accept

R5

set interfaces ge-0/0/0 unit 0 family inet address 50.1.1.2/24
set interfaces ge-0/0/0 unit 0 family mpls
set interfaces ge-0/0/1 unit 0 family inet address 60.1.1.1/24
set interfaces ge-0/0/1 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 6.6.6.6/32
set interfaces lo0 unit 0 family mpls
set routing-options router-id 6.6.6.6
set routing-options forwarding-table export per-packet
set protocols ospf backup-spf-options remote-backup-calculation
set protocols ospf traffic-engineering
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0
set protocols ospf area 0.0.0.0 interface ge-0/0/1.0
set protocols ospf area 0.0.0.0 interface lo0.0
set protocols ldp auto-targeted-session teardown-delay 20
set protocols ldp auto-targeted-session maximum-sessions 60
set protocols ldp interface ge-0/0/0.0
set protocols ldp interface ge-0/0/1.0
set protocols ldp interface lo0.0
set policy-options policy-statement per-packet then load-balance per-packet
set policy-options policy-statement per-packet then accept

R6

set interfaces ge-0/0/0/0 unit 0 family inet address 60.1.1.2/24
set interfaces ge-0/0/0/0 unit 0 family mpls
set interfaces ge-0/0/1 unit 0 family inet address 70.1.1.1/24
set interfaces ge-0/0/1 unit 0 family mpls
set interfaces ge-0/0/2 unit 0 family inet address 80.1.1.2/24
set interfaces ge-0/0/2 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 7.7.7.7/32
set interfaces lo0 unit 0 family mpls
set routing-options router-id 7.7.7.7
set routing-options forwarding-table export per-packet
set protocols ospf topology default backup-spf-options remote-backup-calculation
set protocols ospf backup-spf-options remote-backup-calculation
set protocols ospf traffic-engineering
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0 link-protection
set protocols ospf area 0.0.0.0 interface ge-0/0/1.0 link-protection
set protocols ospf area 0.0.0.0 interface ge-0/0/2.0 link-protection
set protocols ospf area 0.0.0.0 interface lo0.0
set protocols ldp auto-targeted-session teardown-delay 20
set protocols ldp auto-targeted-session maximum-sessions 60
set protocols ldp interface ge-0/0/0.0
set protocols ldp interface ge-0/0/1.0
set protocols ldp interface ge-0/0/2.0
set protocols ldp interface lo0.0
set policy-options policy-statement per-packet then load-balance per-packet
set policy-options policy-statement per-packet then accept

R7

set interfaces ge-0/0/0 unit 0 family inet address 70.1.1.2/24
set interfaces ge-0/0/0 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 8.8.8.8/32
set interfaces lo0 unit 0 family mpls
set routing-options router-id 8.8.8.8
set routing-options forwarding-table export per-packet
set protocols mpls interface ge-0/0/0.0
set protocols mpls interface lo0.0
set protocols ospf backup-spf-options remote-backup-calculation
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0
set protocols ospf area 0.0.0.0 interface lo0.0
set protocols ldp auto-targeted-session teardown-delay 20
set protocols ldp auto-targeted-session maximum-sessions 60
set protocols ldp interface ge-0/0/0.0
set protocols ldp interface lo0.0
set policy-options policy-statement per-packet then load-balance per-packet
set policy-options policy-statement per-packet then accept

R8
Configuring Device R6

Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure Device R6:

1. Configure the interfaces.

 [edit interfaces]
 user@R6# set ge-0/0/0 unit 0 family inet address 60.1.1.2/24
 user@R6# set ge-0/0/0 unit 0 family mpls
 user@R6# set ge-0/0/1 unit 0 family inet address 70.1.1.1/24
 user@R6# set ge-0/0/1 unit 0 family mpls
 user@R6# set ge-0/0/2 unit 0 family inet address 80.1.1.2/24
 user@R6# set ge-0/0/2 unit 0 family mpls
2. Assign the loopback addresses to the device.

```
[edit lo0 unit 0 family]
user@R6# set address 7.7.7.7/32
user@R6# set mpls
```

3. Configure the router ID. Apply the policy to the forwarding table of the local router with the export statement.

```
[edit routing-options]
user@R6# set router-id 7.7.7.7
user@R6# set forwarding-table export per-packet
```

4. Enable remote LFA backup which calculates the backup next hop using dynamic LDP label-switched path.

```
[edit protocols ospf]
user@R6# set topology default backup-spf-options remote-backup-calculation
user@R6# set backup-spf-options remote-backup-calculation
```

5. Configure the traffic engineering and the link protection for the interfaces in the OSPF area.

```
[edit protocols ospf]
user@R6# set traffic-engineering
user@R6# set area 0.0.0.0 interface ge-0/0/0.0 link-protection
user@R6# set area 0.0.0.0 interface ge-0/0/1.0 link-protection
user@R6# set area 0.0.0.0 interface ge-0/0/2.0 link-protection
user@R6# set area 0.0.0.0 interface lo0.0
```

6. Specify a time interval for which the targeted LDP sessions are kept up when the remote LFA goes down, and specify a maximum number of automatically, targeted LDP sessions to optimize the use of memory.

```
[edit protocols ldp]
user@R6# set auto-targeted-session teardown-delay 20
user@R6# set auto-targeted-session maximum-sessions 60
```

7. Configure the LDP protocols on the interfaces.
8. Configure the policy options to load balance the per-packet of the policy-statement routing policy.

```
[edit policy-options policy-statement]
user@R6# set per-packet then load-balance per-packet
user@R6# set per-packet then accept
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R6# show interfaces
ge-0/0/0 {
    unit 0 {
        family inet {
            address 60.1.1.2/24;
        }
        family mpls;
    }
}
ge-0/0/1 {
    unit 0 {
        family inet {
            address 70.1.1.1/24;
        }
        family mpls;
    }
}
ge-0/0/2 {
    unit 0 {
        family inet {
            address 80.1.1.2/24;
        }
        family mpls;
    }
}
```
show protocols

ospf
 topology default
 backup-spf-options
 remote-backup-calculation;

 backup-spf-options
 remote-backup-calculation;
 inactive: per-prefix-calculation all;

 traffic-engineering;
 area 0.0.0.0
 interface ge-0/0/0.0
 link-protection;
 interface ge-0/0/1.0
 link-protection;
 interface ge-0/0/2.0
 link-protection;
 interface lo0.0;

ldp
 auto-targeted-session
 teardown-delay 20;
 maximum-sessions 60;

 interface ge-0/0/0.0;
 interface ge-0/0/1.0;
 interface ge-0/0/2.0;
 interface lo0.0;
If you are done configuring the device, enter **commit** from the configuration mode.

Verification

IN THIS SECTION

- Verifying the Routes | 382
- Verifying the LDP Routes | 385
- Verifying the OSPF Routes | 385
- Verifying the Designated Backup Path Node | 387
- Verifying the Backup Neighbors | 388

Confirm that the configuration is working properly.

Verifying the Routes

Purpose

Verify that the expected routes are learned.

Action
On Device R6, from operational mode, run the `show route 6.6.6.6/24` command to display the routes in the routing table.

```
user@R6> show route 6.6.6.6/24

inet.0: 75 destinations, 75 routes (75 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

6.6.6.6/32  *[OSPF/10] 02:21:07, metric 1
    > to 60.1.1.1 via ge-0/0/0.0
    to 80.1.1.1 via ge-0/0/2.0, Push 299872

inet.3: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

6.6.6.6/32  *[LDP/9] 02:21:07, metric 1
    > to 60.1.1.1 via ge-0/0/0.0
    to 80.1.1.1 via ge-0/0/2.0, Push 299792, Push 299872(top)
```

inet.0: 75 destinations, 75 routes (75 active, 0 holddown, 0 hidden)
6.6.6.6/32 (1 entry, 1 announced)
 State: <FlashAll>
 *OSPF Preference: 10
 Next hop type: Router, Next hop index: 1048585
 Address: 0x9df2690
 Next-hop reference count: 10
 Next hop: 60.1.1.1 via ge-0/0/0/0.0 weight 0x1, selected
 Session Id: 0x141
 Next hop: 80.1.1.1 via ge-0/0/2.0 weight 0x101 uflags Remote

neighbor path
 Label operation: Push 299872
 Label TTL action: prop-ttl
 Load balance label: Label 299872: None;
 Label element ptr: 0x9dc27a0
 Label parent element ptr: 0x0
 Label element references: 6
 Label element child references: 4
 Label element lsp id: 0
 Session Id: 0x142
 State: <Active Int>
 Age: 2:22:40 Metric: 1
Validation State: unverified
Area: 0.0.0.0
Task: OSPF
Announcement bits (2): 0-KRT 4-LDP
AS path: I

inet.3: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)

6.6.6.6/32 (1 entry, 1 announced)
State: <FlashAll>
 *LDP Preference: 9
 Next hop type: Router, Next hop index: 0
 Address: 0x9df2a90
 Next-hop reference count: 1
 Next hop: 60.1.1.1 via ge-0/0/0.0 weight 0x1, selected
 Label element ptr: 0x9dc0dc0
 Label parent element ptr: 0x90
 Label element references: 1
 Label element child references: 0
 Label element lsp id: 0
 Session Id: 0x0
 Next hop: 80.1.1.1 via ge-0/0/2.0 weight 0x101 uflags Remote neighbor path
 Label operation: Push 299792, Push 299872(top)
 Label TTL action: prop-ttl, prop-ttl(top)
 Load balance label: Label 299792: None; Label 299872: None;
 Label element ptr: 0x9dc1ba0
 Label parent element ptr: 0x9dc27a0
 Label element references: 1
 Label element child references: 0
 Label element lsp id: 0
 Session Id: 0x0
 State: <Active Int>
 Age: 2:22:40 Metric: 1
 Validation State: unverified
 Task: LDP
 Announcement bits (1): 0-Resolve tree 1
 AS path: I

Meaning
The output shows all the routes in the routing table of Device R6.
Verifying the LDP Routes

Purpose
Verify the automatically targeted LDP routes.

Action
From operational mode, enter the `show ldp session auto-targeted detail` command.

```
user@R6> show ldp session auto-targeted detail
```

Address: 4.4.4.4, State: Operational, Connection: Open, Hold time: 28
Session ID: 7.7.7.0--4.4.4.4:0
Next keepalive in 8 seconds
Active, Maximum PDU: 4096, Hold time: 30, Neighbor count: 1
Neighbor types: auto-targeted
Keepalive interval: 10, Connect retry interval: 1
Local address: 7.7.7.7, Remote address: 4.4.4.4
Up for 02:28:28
Capabilities advertised: none
Capabilities received: none
Protection: disabled
Session flags: none
Local - Restart: disabled, Helper mode: enabled
Remote - Restart: disabled, Helper mode: enabled
Local maximum neighbor reconnect time: 120000 msec
Local maximum neighbor recovery time: 240000 msec
Local Label Advertisement mode: Downstream unsolicited
Remote Label Advertisement mode: Downstream unsolicited
Negotiated Label Advertisement mode: Downstream unsolicited
MTU discovery: disabled
Nonstop routing state: Not in sync
Next-hop addresses received:
 4.4.4.4
 30.1.1.2
 40.1.1.1
 128.92.25.37

Verifying the OSPF Routes

Purpose
Display all the LDP backup routes in the OSPF routing table of Device R6.
Action

On Device R6, from operational mode, run the `show ospf route` command to display the routes in the OSPF routing table.

```
user@R6> show ospf route
```

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Path Type</th>
<th>Route Type</th>
<th>NH Type</th>
<th>Metric</th>
<th>Interface</th>
<th>NextHop</th>
<th>Nexthop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.1/32</td>
<td>Intra AS BR</td>
<td>IP</td>
<td>2 0/0/2.0</td>
<td>80.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>2.2.2.2/32</td>
<td>Intra Router</td>
<td>IP</td>
<td>1 0/0/2.0</td>
<td>80.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>4.4.4.4/32</td>
<td>Intra Router</td>
<td>IP</td>
<td>3 0/0/0</td>
<td>60.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>5.5.5.5/32</td>
<td>Intra Router</td>
<td>IP</td>
<td>2 0/0/0</td>
<td>60.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>6.6.6.6/32</td>
<td>Intra Router</td>
<td>IP</td>
<td>1 0/0/0</td>
<td>60.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>8.8.8.8/32</td>
<td>Intra Router</td>
<td>IP</td>
<td>1 0/0/1.0</td>
<td>70.1.1.2</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>9.9.9.9/32</td>
<td>Intra Router</td>
<td>IP</td>
<td>2 0/0/2.0</td>
<td>80.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>128.92.21.22</td>
<td>Intra Router</td>
<td>IP</td>
<td>2 0/0/2.0</td>
<td>80.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>1.1.1.1/32</td>
<td>Intra Network</td>
<td>IP</td>
<td>2 0/0/2.0</td>
<td>80.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>2.2.2.2/32</td>
<td>Intra Network</td>
<td>IP</td>
<td>1 0/0/2.0</td>
<td>80.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>3.3.3.3/32</td>
<td>Intra Network</td>
<td>IP</td>
<td>2 0/0/2.0</td>
<td>80.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>4.4.4.4/32</td>
<td>Intra Network</td>
<td>IP</td>
<td>3 0/0/0</td>
<td>60.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>5.5.5.5/32</td>
<td>Intra Network</td>
<td>IP</td>
<td>2 0/0/0</td>
<td>60.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>6.6.6.6/32</td>
<td>Intra Network</td>
<td>IP</td>
<td>1 0/0/0</td>
<td>60.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>6.6.6.6.6/32</td>
<td>Intra Network</td>
<td>IP</td>
<td>2 0/0/2.0</td>
<td>80.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>7.7.7.7/32</td>
<td>Intra Network</td>
<td>IP</td>
<td>0 lo0.0</td>
<td>80.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>8.8.8.8/32</td>
<td>Intra Network</td>
<td>IP</td>
<td>1 0/0/1.0</td>
<td>70.1.1.2</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>9.9.9.9/32</td>
<td>Intra Network</td>
<td>IP</td>
<td>2 0/0/2.0</td>
<td>80.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>10.1.1.0/24</td>
<td>Intra Network</td>
<td>IP</td>
<td>2 0/0/2.0</td>
<td>80.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>20.1.1.0/24</td>
<td>Intra Network</td>
<td>IP</td>
<td>2 0/0/2.0</td>
<td>80.1.1.1</td>
<td>ge-0/0/2.0</td>
<td>80.1.1.1</td>
<td>LDP->4.4.4.4</td>
</tr>
<tr>
<td>Destination</td>
<td>Type</td>
<td>IP Address</td>
<td>Prefix Length</td>
<td>Next Hop</td>
<td>Interface</td>
<td>Backup LSP</td>
<td>LDP Target</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>------------</td>
<td>---------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>30.1.1.0/24</td>
<td>Intra</td>
<td>80.1.1.1</td>
<td>3 ge-0/0/2.0</td>
<td>ge-0/0/0.0</td>
<td>ge-0/0/0.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
</tr>
<tr>
<td>40.1.1.0/24</td>
<td>Intra</td>
<td>60.1.1.1</td>
<td>3 ge-0/0/0.0</td>
<td>ge-0/0/0.0</td>
<td>ge-0/0/0.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
</tr>
<tr>
<td>50.1.1.0/24</td>
<td>Intra</td>
<td>60.1.1.1</td>
<td>2 ge-0/0/0.0</td>
<td>ge-0/0/2.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.1.1.0/24</td>
<td>Intra</td>
<td>80.1.1.1</td>
<td>1 ge-0/0/0.0</td>
<td>ge-0/0/2.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.1.1.0/24</td>
<td>Intra</td>
<td>80.1.1.1</td>
<td>1 ge-0/0/1.0</td>
<td>ge-0/0/2.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.1.1.0/24</td>
<td>Intra</td>
<td>80.1.1.1</td>
<td>1 ge-0/0/2.0</td>
<td>ge-0/0/2.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.88.88.88/32</td>
<td>Ext2</td>
<td>80.1.1.1</td>
<td>0 ge-0/0/2.0</td>
<td>ge-0/0/2.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.1.1.0/24</td>
<td>Intra</td>
<td>80.1.1.1</td>
<td>3 ge-0/0/2.0</td>
<td>ge-0/0/2.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100.1.1.0/24</td>
<td>Intra</td>
<td>80.1.1.1</td>
<td>2 ge-0/0/2.0</td>
<td>ge-0/0/2.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110.1.1.0/24</td>
<td>Intra</td>
<td>80.1.1.1</td>
<td>3 ge-0/0/2.0</td>
<td>ge-0/0/2.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.92.19.153/32</td>
<td>Intra</td>
<td>60.1.1.1</td>
<td>1 ge-0/0/0.0</td>
<td>ge-0/0/2.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.92.19.176/32</td>
<td>Intra</td>
<td>80.1.1.1</td>
<td>0 lo0.0</td>
<td>ge-0/0/2.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.92.21.13/32</td>
<td>Intra</td>
<td>80.1.1.1</td>
<td>1 ge-0/0/2.0</td>
<td>ge-0/0/2.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.92.21.22/32</td>
<td>Intra</td>
<td>80.1.1.1</td>
<td>2 ge-0/0/2.0</td>
<td>ge-0/0/2.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.92.23.228/32</td>
<td>Intra</td>
<td>70.1.1.2</td>
<td>1 ge-0/0/1.0</td>
<td>ge-0/0/2.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.92.25.37/32</td>
<td>Intra</td>
<td>60.1.1.1</td>
<td>3 ge-0/0/0.0</td>
<td>ge-0/0/2.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.92.25.196/32</td>
<td>Intra</td>
<td>80.1.1.1</td>
<td>2 ge-0/0/2.0</td>
<td>ge-0/0/2.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.92.26.29/32</td>
<td>Intra</td>
<td>80.1.1.1</td>
<td>2 ge-0/0/2.0</td>
<td>ge-0/0/2.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.92.29.156/32</td>
<td>Intra</td>
<td>60.1.1.1</td>
<td>2 ge-0/0/0.0</td>
<td>ge-0/0/2.0</td>
<td>LDP->4.4.4.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meaning
The output shows all the LDP backup routes in the OSPF routing table of Device R6.

Verifying the Designated Backup Path Node

Purpose
Display the remote LFA next hop determined for a given destination.
Action

From operational mode, enter the `show ospf backup spf results` command.

```
user@R6> show ospf backup spf results
```

Topography default results:

Area 0.0.0.0 results:

6.6.6.6
 Self to Destination Metric: 1
 Parent Node: 60.1.1.2
 Primary next-hop: ge-0/0/0.0 via 60.1.1.1
 Backup next-hop: LDP->4.4.4.4 via ge-0/0/2.0
 Backup Neighbor: 6.6.6.6 via: Direct
 Neighbor to Destination Metric: 0, Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1, Backup preference: 0x0
 Not eligible, Reason: Primary next-hop link fate sharing
 Backup Neighbor: 2.2.2.2 via: Direct
 Neighbor to Destination Metric: 2, Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1, Backup preference: 0x0
 Not eligible, Reason: Path loops
 Backup Neighbor: 8.8.8.8 via: Direct
 Neighbor to Destination Metric: 2, Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1, Backup preference: 0x0
 Not eligible, Reason: Path loops
 Backup Neighbor: 4.4.4.4 via: LDP (LSP endpoint)
 Neighbor to Destination Metric: 2, Neighbor to Self Metric: 3
 Self to Neighbor Metric: 3, Backup preference: 0x0
 Eligible, Reason: Contributes backup next-hop

Meaning

The output indicates whether a specific interface or node has been designated as a remote backup path and why.

Verifying the Backup Neighbors

Purpose

Display the backup neighbors for the Device R6

Action

From operational mode, enter the `show ospf backup neighbor` command.
user@R6> **show ospf backup neighbor**

Topology default backup neighbors:

Area 0.0.0.0 backup neighbors:

6.6.6.6 via: Direct
 Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1
 Direct next-hop: ge-0/0/0.0 via 60.1.1.1

8.8.8.8 via: Direct
 Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1
 Direct next-hop: ge-0/0/1.0 via 70.1.1.2

2.2.2.2 via: Direct
 Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1
 Direct next-hop: ge-0/0/2.0 via 80.1.1.1

4.4.4.4 via: LDP (LSP endpoint)
 Neighbor to Self Metric: 3
 Self to Neighbor Metric: 3
 Direct next-hop: LDP->4.4.4.4 via ge-0/0/2.0
 Direct next-hop: LDP->4.4.4.4 via ge-0/0/0.0
 Neighbors Protected: 2

Meaning
The output displays the backup neighbors available for area 0.0.0.0.

SEE ALSO

- **auto-targeted-session**
- **no-eligible-remote-backup**
- **remote-backupcalculation** | 733

RELATED DOCUMENTATION
Day One: Advanced OSPF in the Enterprise
Configure OSPF Support for Traffic Engineering
Configuring OSPF Support for Traffic Engineering

IN THIS SECTION

- OSPF Support for Traffic Engineering | 392
- Example: Enabling OSPF Traffic Engineering Support | 394
- Example: Configuring the Traffic Engineering Metric for a Specific OSPF Interface | 401
- OSPF Passive Traffic Engineering Mode | 403
- Example: Configuring OSPF Passive Traffic Engineering Mode | 403
- Advertising Label-Switched Paths into OSPFv2 | 406
- Example: Advertising Label-Switched Paths into OSPFv2 | 407
- Static Adjacency Segment Identifier for OSPF | 423
- Understanding Source Packet Routing in Networking (SPRING) | 427

OSPF Support for Traffic Engineering

Traffic engineering allows you to control the path that data packets follow, bypassing the standard routing model, which uses routing tables. Traffic engineering moves flows from congested links to alternate links that would not be selected by the automatically computed destination-based shortest path.

To help provide traffic engineering and MPLS with information about network topology and loading, extensions have been added to the Junos OS implementation of OSPF. When traffic engineering is enabled on the routing device, you can enable OSPF traffic engineering support. When you enable traffic engineering for OSPF, the shortest-path-first (SPF) algorithm takes into account the various label-switched paths (LSPs) configured under MPLS and configures OSPF to generate opaque link-state advertisements (LSAs) that carry traffic engineering parameters. The parameters are used to populate the traffic engineering database. The traffic engineering database is used exclusively for calculating explicit paths for the placement of LSPs across the physical topology. The Constrained Shortest Path First (CSPF) algorithm uses the traffic engineering database to compute the paths that MPLS LSPs take. RSVP uses this path information to set up LSPs and to reserve bandwidth for them.
By default, traffic engineering support is disabled. To enable traffic engineering, include the `traffic-engineering` statement. You can also configure the following OSPF traffic engineering extensions:

- **advertise-unnumbered-interfaces**—(OSPFv2 only) Advertises the link-local identifier in the link-local traffic engineering LSA packet. You do not need to include this statement if RSVP is able to signal unnumbered interfaces as defined in RFC 3477, *Signalling Unnumbered Links in Resource Reservation Protocol - Traffic Engineering (RSVP-TE)*.

- **credibility-protocol-preference**—(OSPFv2 only) Assigns a credibility value to OSPF routes in the traffic engineering database. By default, Junos OS prefers IS-IS routes in the traffic engineering database over other interior gateway protocol (IGP) routes even if the routes of another IGP are configured with a lower, that is, more preferred, preference value. The traffic engineering database assigns a credibility value to each IGP and prefers the routes of the IGP with the highest credibility value. In Junos OS Release 9.4 and later, you can configure OSPF to take protocol preference into account to determine the traffic engineering database credibility value. When protocol preference is used to determine the credibility value, IS-IS routes are not automatically preferred by the traffic engineering database, depending on your configuration.

- **ignore-lsp-metrics**—Ignores RSVP LSP metrics in OSPF traffic engineering shortcut calculations or when you configure LDP over RSVP LSPs. This option avoids mutual dependency between OSPF and RSVP, eliminating the time period when the RSVP metric used for tunneling traffic is not up to date. In addition, if you are using RSVP for traffic engineering, you can run LDP simultaneously to eliminate the distribution of external routes in the core. The LSPs established by LDP are tunneled through the LSPs established by RSVP. LDP effectively treats the traffic-engineered LSPs as single hops.

- **multicast-rpf-routes**—(OSPFv2 only) Installs unicast IPv4 routes (not LSPs) in the multicast routing table (`inet.2`) for multicast reverse-path forwarding (RPF) checks. The `inet.2` routing table consists of unicast routes used for multicast RPF lookup. RPF is an antispoofing mechanism used to check if the packet is coming in on an interface that is also sending data back to the packet source.

- **no-topology**—(OSPFv2 only) To disable the dissemination of link-state topology information. If disabled, traffic engineering topology information is no longer distributed within the OSPF area.

- **shortcuts**—Configures IGP shortcuts, which allows OSPF to use an LSP as the next hop as if it were a logical interface from the ingress routing device to the egress routing device. The address specified in the `to` statement at the [edit protocols mpls label-switched-path lsp-path-name] hierarchy level on the ingress routing device must match the router ID of the egress routing device for the LSP to function as a direct link to the egress routing device and to be used as input to the OSPF SPF calculations. When used in this way, LSPs are no different from Asynchronous Transfer Mode (ATM) and Frame Relay virtual circuits (VCs), except that LSPs carry only IPv4 traffic.

OSPFv2 installs the prefix for IPv4 routes in the `inet.0` routing table, and the LSPs are installed by default in the `inet.3` routing table.

OSPFv3 LSPs used for shortcuts continue to be signaled using IPv4. However, by default, shortcut IPv6 routes calculated through OSPFv3 are added to the `inet.3` routing table. The default behavior is for BGP only to use LSPs in its calculations. If you configure MPLS so that both BGP and IGPs use LSPs for
forwarding traffic, IPv6 shortcut routes calculated through OSPFv3 are added to the inet6.0 routing table.

NOTE: Whenever possible, use OSPF IGP shortcuts instead of traffic engineering shortcuts.

- **lsp-metric-info-summary**—Advertises the LSP metric in summary LSAs to treat the LSP as a link. This configuration allows other routing devices in the network to use this LSP. To accomplish this, you need to configure MPLS and OSPF traffic engineering to advertise the LSP metric in summary LSAs.

When you enable traffic engineering on the routing device, you can also configure an OSPF metric that is used exclusively for traffic engineering. The traffic engineering metric is used for information injected into the traffic engineering database. Its value does not affect normal OSPF forwarding.

Example: Enabling OSPF Traffic Engineering Support

This example shows how to enable OSPF traffic engineering support to advertise the label-switched path (LSP) metric in summary link-state advertisements (LSAs).

Requirements

Before you begin:

- Configure the device interfaces. See the *Interfaces User Guide for Security Devices*.
- Configure BGP per your network requirements. See the *BGP User Guide*.
- Configure MPLS per your network requirements. See the *MPLS Applications User Guide*.
Overview

You can configure OSPF to treat an LSP as a link and have other routing devices in the network use this LSP. To accomplish this, you configure MPLS and OSPF traffic engineering to advertise the LSP metric in summary LSAs.

In this example, there are four routing devices in area 0.0.0.0, and you want OSPF to treat the LSP named R1-to-R4 that goes from the ingress Device R1 to the egress Device R4 as a link.

For OSPF, you enable traffic engineering on all four routing devices in the area by including the `traffic-engineering` statement. This configuration ensures that the shortest-path-first (SPF) algorithm takes into account the LSPs configured under MPLS and configures OSPF to generate LSAs that carry traffic engineering parameters. You further ensure that OSPF uses the MPLS LSP as the next hop and advertises the LSP metric in summary LSAs, by including the optional `shortcuts lsp-metric-into-summary` statement on the ingress Device R1.

For MPLS, you enable traffic engineering so that MPLS performs traffic engineering on both BGP and IGP destinations by including the `traffic-engineering bgp-igp` statement, and you include the LSP named R1-to-R4 by including the `label-switched-path lsp-path-name to address` statement on the ingress Device R1. The address specified in the `to` statement on the ingress Device R1 must match the router ID of the egress Device R4 for the LSP to function as a direct link to the egress routing device and to be used as input to the OSPF SPF calculations. In this example, the router ID of the egress Device R4 is 10.0.0.4.

Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Modifying the Junos OS Configuration* in the CLI User Guide.

CLI Quick Configuration

To quickly enable OSPF traffic engineering support to advertise the LSP metric in summary LSAs, copy the following commands and paste them into the CLI.

Configuration on R1:

```
[edit]
set routing-options router-id 10.0.0.1
set protocols ospf area 0.0.0.0 interface all
set protocols ospf area 0.0.0.0 interface fxp0.0 disable
set protocols ospf traffic-engineering shortcuts lsp-metric-into-summary
set protocols mpls traffic-engineering bgp-igp
set protocols mpls label-switched-path R1-to-R4 to 10.0.0.4
```

Configuration on R2:
Step-by-Step Procedure

To enable OSPF traffic engineering support to advertise LSP metrics in summary LSAs:

1. Configure the router ID.

 |edit|
 ---|---|
 user@R1# set routing-options router-id 10.0.0.1

 |edit|
 ---|---|
 user@R2# set routing-options router-id 10.0.0.2

 |edit|
 ---|---|
 user@R3# set routing-options router-id 10.0.0.3

 |edit|
 ---|---|
 user@R4# set routing-options router-id 10.0.0.4

2. Configure the OSPF area and add the interfaces.
3. Enable OSPF traffic engineering.

[edit]
user@R1# set protocols ospf traffic-engineering shortcuts lsp-metric-into-summary

[edit]
user@R2# set protocols ospf traffic-engineering

[edit]
user@R3# set protocols ospf traffic-engineering

[edit]
user@R4# set protocols ospf traffic-engineering

4. On Device R1, configure MPLS traffic engineering.

NOTE: To specify OSPFv3, include the ospf3 statement at the [edit protocols] hierarchy level.
5. If you are done configuring the devices, commit the configuration.

```text
[edit]
user@R1# set protocols mpls traffic-engineering bgp-igp
user@R1# set protocols mpls label-switched-path R1-to-R4 to 10.0.0.4
```

Results

Confirm your configuration by entering the `show routing-options`, `show protocols ospf`, and `show protocols mpls` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Output for R1:

```text
user@host# show routing-options
router-id 10.0.0.1;
```

```text
user@host# show protocols ospf
traffic-engineering {
  shortcuts lsp-metric-into-summary;
}
area 0.0.0.0 {
  interface all;
  interface fxp0.0 {
    disable;
  }
}
```

```text
user@host# show protocols mpls
traffic-engineering bgp-igp;
label-switched-path R1-to-R4 {
  to 10.0.0.4;
}
```

Output for R2:

```text
user@host# show routing-options
router-id 10.0.0.2;
```
To confirm your OSPFv3 configuration, enter the `show routing-options`, `show protocols ospf3`, and `show protocols mpls` commands.
Verification

IN THIS SECTION

- Verifying the Traffic Engineering Capability for OSPF | 400
- Verifying OSPF Entries in the Traffic Engineering Database | 400
- Verifying That the Traffic Engineering Database Is Learning Node Information from OSPF | 400

Confirm that the configuration is working properly.

Verifying the Traffic Engineering Capability for OSPF

Purpose
Verify that traffic engineering has been enabled for OSPF. By default, traffic engineering is disabled.

Action
From operational mode, enter the `show ospf overview` command for OSPFv2, and enter the `show ospf3 overview` for OSPFv3.

Verifying OSPF Entries in the Traffic Engineering Database

Purpose
Verify the OSPF information in the traffic engineering database. The Protocol field displays OSPF and the area from which the information was learned.

Action
From operational mode, enter the `show ted database` command.

Verifying That the Traffic Engineering Database Is Learning Node Information from OSPF

Purpose
Verify that OSPF is reporting node information. The Protocol name field displays OSPF and the area from which the information was learned.

Action
From operational mode, enter the `show ted protocol` command.
Example: Configuring the Traffic Engineering Metric for a Specific OSPF Interface

This example shows how to configure the OSPF metric value used for traffic engineering.

Requirements

Before you begin:

- Configure the device interfaces. See the Interfaces User Guide for Security Devices.
- Configure OSPF for traffic engineering. See "Example: Enabling OSPF Traffic Engineering Support" on page 394

Overview

You can configure an OSPF metric that is used exclusively for traffic engineering. To modify the default value of the traffic engineering metric, include the te-metric statement. The OSPF traffic engineering metric does not affect normal OSPF forwarding. By default, the traffic engineering metric is the same value as the OSPF metric. The range is 1 through 65,535.

In this example, you configure the OSPF traffic engineering metric on OSPF interface fe-0/1/1 in area 0.0.0.0.

Configuration

CLI Quick Configuration

To quickly configure the OSPF traffic engineering metric for a specific interface, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.
Step-by-Step Procedure
To configure an OSPF traffic engineering metric for a specific interface used only for traffic engineering:

1. Create an OSPF area.

 `set protocols ospf area 0.0.0.0 interface fe-0/1/1 te-metric 10`

 NOTE: To specify OSPFv3, include the `ospf3` statement at the `[edit protocols]` hierarchy level.

2. Configure the traffic engineering metric of the OSPF network segments.

 `user@host# edit protocols ospf area 0.0.0.0`
 `user@host set interface fe-0/1/1 te-metric 10`

3. If you are done configuring the device, commit the configuration.

 `user@host# commit`

Results
Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show protocols ospf
area 0.0.0.0 {
   interface fe-0/1/1.0 {
      te-metric 10;
   }
}
```

To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.
Verification

Confirm that the configuration is working properly.

Verifying the Configured Traffic Engineering Metric

Purpose

Verify the traffic engineering metric value. Confirm that Metric field displays the configured traffic engineering metric.

Action

From operational mode, enter the `show ted database extensive` command.

OSPF Passive Traffic Engineering Mode

Ordinarily, interior routing protocols such as OSPF are not run on links between autonomous systems. However, for inter-AS traffic engineering to function properly, information about the inter-AS link—in particular, the address on the remote interface—must be made available inside the autonomous system (AS). This information is not normally included either in the external BGP (EBGP) reachability messages or in the OSPF routing advertisements.

To flood this link address information within the AS and make it available for traffic engineering calculations, you must configure OSPF passive mode for traffic engineering on each inter-AS interface. You must also supply the remote address for OSPF to distribute and include it in the traffic engineering database. OSPF traffic engineering mode allows MPLS label-switched paths (LSPs) to dynamically discover OSPF AS boundary routers and to allow routers to establish a traffic engineering LSP across multiple autonomous systems.

Example: Configuring OSPF Passive Traffic Engineering Mode
This example shows how to configure OSPF passive mode for traffic engineering on an inter-AS interface. The AS boundary router link between the EBGP peers must be a directly connected link and must be configured as a passive traffic engineering link.

Requirements

Before you begin:

- Configure the device interfaces. See the Interfaces User Guide for Security Devices.
- Configure BGP per your network requirements. See the BGP User Guide.
- Configure the LSP per your network requirements. See the MPLS Applications User Guide.
- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.
- Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.
- Configure a multiarea OSPF network. See "Example: Configuring a Multiarea OSPF Network" on page 79.

Overview

You can configure OSPF passive mode for traffic engineering on an inter-AS interface. The address used for the remote node of the OSPF passive traffic engineering link must be the same as the address used for the EBGP link. In this example, you configure interface so-1/1/0 in area 0.0.0.1 as the inter-AS link to distribute traffic engineering information with OSPF within the AS and include the following settings:

- **passive**—Advertises the direct interface addresses on an interface without actually running OSPF on that interface. A passive interface is one for which the address information is advertised as an internal route in OSPF, but on which the protocol does not run.
- **traffic-engineering**—Configures an interface in OSPF passive traffic-engineering mode to enable dynamic discovery of OSPF AS boundary routers. By default, OSPF passive traffic-engineering mode is disabled.
- **remote-node-id**—Specifies the IP address at the far end of the inter-AS link. In this example, the remote IP address is 192.168.207.2.

Configuration

To quickly configure OSPF passive mode for traffic engineering, copy the following command, remove any line breaks, and paste it into the CLI.
Step-by-Step Procedure

To configure OSPF passive traffic engineering mode:

1. Create an OSPF area.

 NOTE: To specify OSPFv3, include the `ospf3` statement at the [edit protocols] hierarchy level.

2. Configure interface `so-1/1/0` as a passive interface configured for traffic engineering, and specify the IP address at the far end of the inter-AS link.

3. If you are done configuring the device, commit the configuration.

 Results

 Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.
To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

Verification

Confirm that the configuration is working properly.

Verifying the Status of OSPF Interfaces

Purpose
Verify the status of OSPF interfaces. If the interface is passive, the Adj count field is 0 because no adjacencies have been formed. Next to this field, you might also see the word Passive.

Action
From operational mode, enter the `show ospf interface detail` command for OSPFv2, and enter the `show ospf3 interface detail` command for OSPFv3.

Advertising Label-Switched Paths into OSPFv2

One main reason to configure label-switched paths (LSPs) in your network is to control the shortest path between two points on the network. You can advertise LSPs into OSPFv2 as point-to-point links so that all participating routing devices can take the LSP into account when performing SPF calculations. The advertisement contains a local address (the `from` address of the LSP), a remote address (the `to` address of the LSP), and a metric with the following precedence:

1. Use the LSP metric defined under OSPFv2.
2. Use the LSP metric configured for the label-switched path under MPLS.
3. If you do not configure any of the above, use the default OSPFv2 metric of 1.

NOTE: If you want an LSP that is announced into OSPFv2 to be used in SPF calculations, there must be a reverse link (that is, a link from the tail end of the LSP to the head end). You can accomplish this by configuring an LSP in the reverse direction and also announcing it in OSPFv2.
Example: Advertising Label-Switched Paths into OSPFv2

This example shows how to advertise LSPs into OSPFv2.

Requirements

Before you begin, configure the device interfaces. See the Junos OS Network Interfaces Library for Routing Devices.

Overview

To advertise an LSP into OSPFv2, you define the LSP and configure OSPFv2 to route traffic using the LSP. By doing this, you can use the LSP to control the shortest path between two points on the network. You might choose to do this if you want to have OSPF traffic routed along the LSP instead of having OSPF use the default best-effort routing.

In this example, you configure the following to advertise an LSP into OSPFv2:

- BGP
 For all routing devices, configure the local AS number 65000 and define the IBGP group that recognizes the specified BGP systems as peers. All members are internal to the local AS, so you configure an internal group with a full list of peers. You also include the peer AS group, which is the same as the local AS number that you configure.

- MPLS
 For all routing devices, configure the protocol family on each transit logical interface and enable MPLS on all interfaces, except for the management interface (fxp0.0). Specify the mpls protocol family type.

- RSVP
 For all routing devices, enable RSVP on all interfaces, except for the management interface (fxp0.0). You enable RSVP on the devices in this network to ensure that the interfaces can signal the LSP.
• OSPFv2

For all routing devices, use the loopback address to assign the router ID, administratively group all of the devices into OSPF area 0.0.0.0, add all of the interfaces participating in OSPF to area 0.0.0.0, and disable OSPF on the management interface (fxp0.0).

• Label-switched path

On the ingress routing device R1, which is the beginning (or head end) of the LSP, configure an LSP with an explicit path. The explicit path indicates that the LSP must go to the next specified IP address in the path without traversing other nodes. In this example, you create an LSP named R1-to-R6, and you specify the IP address of the egress routing device R6.

• Advertise the LSP in OSPFv2

On the ingress routing device R1, you advertise the LSP as a point-to-point link into OSPFv2. You can optionally assign a metric to have the LSP be the more or less preferred path to the destination.

Figure 24 on page 409 shows a sample network topology that consists of the following:

• BGP is configured on all routing devices, with one local autonomous system (AS) 65000 that contains three routing devices:
 • R1—Device R1 is the ingress device with a router ID of 10.0.0.1. Interface so-0/0/2 connects to Device R3.
 • R3—Device R3 is the transit device with a router ID of 10.0.0.3. Interface so-0/0/2 connects to Device R1, and interface so-0/0/3 connects to Device R6.
 • R6—Device R6 is the egress device with a router ID of 10.0.0.6. Interface so-0/0/3 connects to Device R3.

• OSPFv2 is configured on all routing devices.

• MPLS and RSVP are enabled on all routing devices.

• One RSVP-signaled LSP is configured on Device R1.
The following examples require you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Modifying the Junos OS Configuration* in *CLI User Guide*.

To configure the devices to advertise an LSP into OSPFv2, perform the following tasks:

Configuring BGP

CLI Quick Configuration

To quickly configure BGP on each routing device, copy the following commands and paste them into the CLI.

Configuration on Device R1:

```
[edit]
```
set routing-options autonomous-system 65000
set protocols bgp group internal-peers type internal
set protocols bgp group internal-peers local-address 10.0.0.1
set protocols bgp group internal-peers neighbor 10.0.0.3
set protocols bgp group internal-peers neighbor 10.0.0.6
set protocols bgp group internal-peers peer-as 65000

Configuration on Device R3:

[edit]
set routing-options autonomous-system 65000
set protocols bgp group internal-peers type internal
set protocols bgp group internal-peers local-address 10.0.0.3
set protocols bgp group internal-peers neighbor 10.0.0.1
set protocols bgp group internal-peers neighbor 10.0.0.6
set protocols bgp group internal-peers peer-as 65000

Configuration on Device R6:

[edit]
set routing-options autonomous-system 65000
set protocols bgp group internal-peers type internal
set protocols bgp group internal-peers local-address 10.0.0.6
set protocols bgp group internal-peers neighbor 10.0.0.1
set protocols bgp group internal-peers neighbor 10.0.0.3
set protocols bgp group internal-peers peer-as 65000

Step-by-Step Procedure
To configure BGP:

1. On each routing device, configure the local AS number.

[edit]
user@R1# set routing-options autonomous-system 65000

[edit]
user@R3# set routing-options autonomous-system 65000

[edit]
user@R6# set routing-options autonomous-system 65000
2. On each routing device, configure the internal BGP neighbor connections.

```
[edit]
user@R1# set protocols bgp group internal-peers type internal
user@R1# set protocols bgp group internal-peers local-address 10.0.0.1
user@R1# set protocols bgp group internal-peers neighbor 10.0.0.3
user@R1# set protocols bgp group internal-peers neighbor 10.0.0.6
user@R1# set protocols bgp group internal-peers peer-as 65000
```

```
[edit]
user@R3# set protocols bgp group internal-peers type internal
user@R3# set protocols bgp group internal-peers local-address 10.0.0.3
user@R3# set protocols bgp group internal-peers neighbor 10.0.0.1
user@R3# set protocols bgp group internal-peers neighbor 10.0.0.6
user@R3# set protocols bgp group internal-peers peer-as 65000
```

```
[edit]
user@R6# set protocols bgp group internal-peers type internal
user@R6# set protocols bgp group internal-peers local-address 10.0.0.6
user@R6# set protocols bgp group internal-peers local-address 10.0.0.6
user@R6# set protocols bgp group internal-peers neighbor 10.0.0.1
user@R6# set protocols bgp group internal-peers neighbor 10.0.0.3
user@R6# set protocols bgp group internal-peers peer-as 65000
```

3. If you are done configuring the devices, commit the configuration.

```
[edit]
user@host# commit
```

Results

Confirm your configuration by entering the `show routing-options` and `show protocols bgp` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Configuration on R1:

```
user@R1# show routing-options
autonomous-system 65000;
```

```
user@R1# show protocols bgp
group internal-peers {
```
type internal;
local-address 10.0.0.1;
peer-as 65000;
neighbor 10.0.0.3;
neighbor 10.0.0.6;
}

Configuration on R3:

user@R3# show routing-options
autonomous-system 65000;

user@R3# show protocols bgp
group internal-peers {
 type internal;
 local-address 10.0.0.3;
 peer-as 65000;
 neighbor 10.0.0.1;
 neighbor 10.0.0.6;
}

Configuration on R6:

user@R6# show routing-options
autonomous-system 65000;

user@R6# show protocols bgp
group internal-peers {
 type internal;
 local-address 10.0.0.6;
 peer-as 65000;
 neighbor 10.0.0.1;
 neighbor 10.0.0.3;
}

Configuring MPLS

CLI Quick Configuration
To quickly configure MPLS on all of the routing devices in AS 65000, copy the following commands and paste them into the CLI.

Configuration on Device R1:
Configuration on Device R3:

```
[edit]
set interfaces so-0/0/2 unit 0 family mpls
set protocols mpls interface all
set protocols mpls interface fxp0.0 disable
```

Configuration on Device R6:

```
[edit]
set interfaces so-0/0/3 unit 0 family mpls
set protocols mpls interface all
set protocols mpls interface fxp0.0 disable
```

Step-by-Step Procedure

To configure MPLS:

1. Configure the transit interfaces for MPLS.

```
[edit ]
user@R1# set interfaces so-0/0/2 unit 0 family mpls
```

```
[edit ]
user@R3# set interfaces so-0/0/2 unit 0 family mpls
user@R3# set interfaces so-0/0/3 unit 0 family mpls
```

```
[edit ]
user@R6# set interfaces so-0/0/3 unit 0 family mpls
```

2. Enable MPLS.

```
[edit ]
user@R1# set protocols mpls interface all
```
3. Disable MPLS on the management interface (fxp0.0).

4. If you are done configuring the devices, commit the configuration.

Results
Confirm your configuration by entering the `show interfaces` and `show protocols mpls` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Configuration on Device R1:
Configuration on Device R3:

```plaintext
user@R3# show interfaces
so-0/0/2 {
    unit 0 {
        family mpls;
    }
}
so-0/0/3 {
    unit 0 {
        family mpls;
    }
}

user@R3# show protocols mpls
interface all;
interface fxp0.0 {
    disable;
}
```

Configuration on Device R6:

```plaintext
user@R6# show interfaces
so-0/0/3 {
    unit 0 {
        family mpls;
    }
}

user@R6# show protocols mpls
interface all;
interface fxp0.0 {
    disable;
}
```
Configuring RSVP

CLI Quick Configuration
To quickly configure RSVP on all of the routing devices in AS 65000, copy the following commands and paste them into the CLI.

Configuration on Device R1:

```
[edit]
set protocols rsvp interface so-0/0/2
set protocols rsvp interface fxp0.0 disable
```

Configuration on Device R3:

```
[edit]
set protocols rsvp interface so-0/0/2
set protocols rsvp interface so-0/0/3
set protocols rsvp interface fxp0.0 disable
```

Configuration on Device R6:

```
[edit]
set protocols rsvp interface so-0/0/3
set protocols rsvp interface fxp0.0 disable
```

Step-by-Step Procedure
To configure RSVP:

1. Enable RSVP.

```
[edit ]
user@R1# set protocols rsvp interface so-0/0/2
```

```
[edit ]
user@R3# set protocols rsvp interface so-0/0/2
user@R3# set protocols rsvp interface so-0/0/3
```

```
[edit ]
user@R6# set protocols rsvp interface so-0/0/3
```

2. Disable RSVP on the management interface (fxp0.0).
3. If you are done configuring the devices, commit the configuration.

```
[edit]
user@R1# set protocols rsvp interface fxp0.0 disable
```

```
[edit]
user@R3# set protocols rsvp interface fxp0.0 disable
```

```
[edit]
user@R6# set protocols rsvp interface fxp0.0 disable
```

Results

Confirm your configuration by entering the `show protocols rsvp` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Configuration on Device R1:

```
user@R1# show protocols rsvp
interface so-0/0/2.0;
interface fxp0.0 {
    disable;
}
```

Configuration on Device R3:

```
user@R3# show protocols rsvp
interface so-0/0/2.0;
interface so-0/0/3.0;
interface fxp0.0 {
    disable;
}
```

Configuration on Device R6:

```
user@R3# show protocols rsvp
interface so-0/0/3.0;
```
Interface fxp0.0 {
 disable;
}

Configuring OSPF

CLI Quick Configuration

To quickly configure OSPF, copy the following commands and paste them into the CLI.

Configuration on Device R1:

```
[edit]
set routing-options router-id 10.0.0.1
set protocols ospf area 0.0.0.0 interface all
set protocols ospf area 0.0.0.0 interface fxp0.0 disable
```

Configuration on Device R3:

```
[edit]
set routing-options router-id 10.0.0.3
set protocols ospf area 0.0.0.0 interface all
set protocols ospf area 0.0.0.0 interface fxp0.0 disable
```

Configuration on Device R6:

```
[edit]
set routing-options router-id 10.0.0.6
set protocols ospf area 0.0.0.0 interface all
set protocols ospf area 0.0.0.0 interface fxp0.0 disable
```

Step-by-Step Procedure

To configure OSPF:

1. Configure the router ID.

```
[edit]
user@R1# set routing-options router-id 10.0.0.1
```

```
[edit]
user@R3# set routing-options router-id 10.0.0.3
```
2. Configure the OSPF area and the interfaces.

3. Disable OSPF on the management interface (fxp0.0).

4. If you are done configuring the devices, commit the configuration.

Results
Confirm your configuration by entering the `show routing-options` and the `show protocols ospf` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Configuration on Device R1:
user@R1# show routing-options
router-id 10.0.0.1;

user@R1# show protocols ospf
area 0.0.0.0 {
 interface all;
 interface fxp0.0 {
 disable;
 }
}

Configuration on Device R3:

user@R3# show routing-options
router-id 10.0.0.3;

user@R3# show protocols ospf
area 0.0.0.0 {
 interface all;
 interface fxp0.0 {
 disable;
 }
}

Configuration on Device R6:

user@R6# show routing-options
router-id 10.0.0.6;

user@R6# show protocols ospf
area 0.0.0.0 {
 interface all;
 interface fxp0.0 {
 disable;
 }
}

Configuring the LSP

CLI Quick Configuration
To quickly configure the LSP on the ingress routing device Router R1, copy the following command and paste it into the CLI.

```
[edit]
set protocols mpls label-switched-path R1-to-R6 to 10.0.0.6
```

Step-by-Step Procedure

To configure the LSP on Device R1:

1. Enter MPLS configuration mode.

```
[edit]
user@R1# edit protocols mpls
```

2. Create the LSP.

```
[edit protocols mpls]
user@R1# set label-switched-path R1-to-R6 to 10.0.0.6
```

3. If you are done configuring the device, commit the configuration.

```
[edit ]
user@R1# commit
```

Results

Confirm your configuration by entering the `show protocols mpls` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R1# show protocols mpls
label-switched-path R1-to-R6 {
  to 10.0.0.6;
}
```

Advertising the LSP into OSPFv2

CLI Quick Configuration

To quickly advertise the LSP into OSPFv2 and optionally include a metric for the LSP on Device R1, copy the following commands and paste them into the CLI.
Step-by-Step Procedure
To advertise the LSP into OSPFv2 on Router R1:

1. Enter OSPF configuration mode.

 [edit]
 user@R1# edit protocols ospf

2. Include the `label-switched-path` statement, and specify the LSP R1-to-R6 that you created.

 [edit protocols ospf]
 user@R1# set area 0.0.0.0 label-switched-path R1-to-R6

3. (Optional) Specify a metric for the LSP.

 [edit protocols ospf]
 user@R1# set protocols ospf area 0.0.0.0 label-switched-path R1-to-R6 metric 2

4. If you are done configuring the device, commit the configuration.

 [edit]
 user@R1# commit

Results
Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@R1# show protocols ospf
area 0.0.0.0 {
 label-switched-path R1-to-R6 {
 metric 2;
 }
}
Verification

Confirm that the configuration is working properly.

Verifying the OSPF Neighbor

Purpose

Verify that another neighbor is listed and is reachable over the LSP. The interface field indicates the name of the LSP.

Action

From operational mode, enter the `show ospf neighbor` command.

Static Adjacency Segment Identifier for OSPF

Adjacency segment is a strict forwarded single-hop tunnel that carries packets over a specific link between two nodes, irrespective of the link cost. You can configure static adjacency segment identifier (SID) labels for an interface.

Configuring a static adjacency SID on an interface causes the existing dynamically allocated adjacency SID to be removed along with the transit route for the same.

For static adjacency SIDs, the labels are picked from either a static reserved label pool or from an OSPF segment routing global block (SRGB).

You can reserve a label range to be used for static allocation of labels using the following configuration:

```
user@host# set protocols mpls label-range static-label-range start-value end-value
```

The static pool can be used by any protocol to allocate a label in this range. You need to ensure that no two protocols use the same static label. OSPF adjacency SIDs can be allocated from this label block through the configuration using keyword `label`. The `label` value for the specific adjacency SIDs need to be explicitly configured. The following is a sample configuration:

```
user@host# set protocols mpls label-range static-label-range 700000 799999;
user@host# set protocols ospf source-packet-routing srgb start-label 800000 index-range 4000;
user@host# set protocols ospf area0 interface ge-0/0/0.1 ipv4-adjacency-segment unprotected label 700001;
```
NOTE: When you use **ipv4-adjacency-segment** command, the underlying interface must be point-to-point.

SRGB is a global label space that is allocated for the protocol based on configuration. The labels in the entire SRGB is available for OSPF to use and are not allocated to other applications/protocols. Prefix SIDs (and Node SIDs) are indexed from this SRGB.

OSPF Adj-SIDs can be allocated from OSPF SRGB using keyword ‘index’ in the configuration. In such cases, it should be ensured that the Adj-SID index does not conflict with any other prefix SID in the domain. Like Prefix-SIDs, Adj-SIDs will also be configured by mentioning the index with respect to the SRGB. However, the Adj-SID subtlv will still have the SID as a value and the L and V flags are set. The following is a sample configuration:

```
user@host# set protocols ospf source-packet-routing srgb start-label 800000 index-range 4000;
user@host# set protocols ospf area0 interface ge-0/0/0.1 ipv4-adjacency-segment unprotected index 1;
```

Static adjacency SIDs can be configured per area and also based on whether the protection is required or not. Adjacency SIDs should be configured per interface at the [edit protocols ospf area area interface interface-name] hierarchy level.

- **Protected**—Ensures adjacency SID is eligible to have a backup path and a B-flag is set in an adjacency SID advertisement.
- **Unprotected**—Ensures no backup path is calculated for a specific adjacency SID and a B-flag is not set in an adjacency SID advertisement.

The following is a sample configuration:

```
user@host# set protocols ospf area0 interface ge-0/0/0.1 ipv4-adjacency-segment unprotected index 1;
user@host# set protocols ospf area0 interface ge-0/0/1.1 ipv4-adjacency-segment protected index 2;
```

When segment routing is used in LAN subnetworks, each router in the LAN may advertise the adjacency SID of each of its neighbors. To configure adjacency SID for a LAN interface to a specific neighbor, you should configure the adjacency SIDs under the lan-neighbor configuration at the [edit protocols ospf area0 interface interface-name lan-neighbor neighbor-routerid] hierarchy level. The following is a sample configuration:

```
user@host# set protocols mpls label-range static-label-range 700000 799999;
```
Use the following CLI hierarchy for configuring adjacency SID:

```
[edit]
protocols {
  ospf {
    area0 {
      interface <interface_name> {
        ipv4-adjacency-segment {
          protected {
            dynamic;
            label <value>
            index <index>
          }
          unprotected {
            dynamic;
            label <value>
            index <index>
          }
        }
      }
      lan-neighbor <neighbor-routerid>{
        ipv4-adjacency-segment {
          protected {
            dynamic;
            label <value>
            index <index>
          }
          unprotected {
            dynamic;
            label <value>
            index <index>
          }
        }
      }
    }
  }
}
```
Use the following operational CLI commands to verify the configuration:

`show ospf neighbor detail`

The following sample output displays the details of configured and dynamic adjacency SID.

```
user@host> show ospf neighbor detail

Address          Interface              State     ID               Pri  Dead
11.12.1.2        ge-1/0/0/0.0             Full      12.1.1.1         128    34

Area 0.0.0.0, opt 0x52, DR 0.0.0.0, BDR 0.0.0.0
Up 00:06:27, adjacent 00:06:27

SPRING Adjacency Labels:

<table>
<thead>
<tr>
<th>Label</th>
<th>Flags</th>
<th>Adj-Sid-Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>90010</td>
<td>BVLP</td>
<td>Protected</td>
</tr>
<tr>
<td>1212</td>
<td>VLP</td>
<td>UnProtected</td>
</tr>
</tbody>
</table>

regress@10.49.129.231# run show route label 90010

mpls.0: 19 destinations, 19 routes (19 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

90010         *[L-OSPF/10/5] 00:00:21, metric 0
   > to 11.12.2.2 via ge-1/0/2.0, Swap 16021
   to 11.12.3.2 via ge-1/0/3.0, Swap 16021
```
Understanding Source Packet Routing in Networking (SPRING)

Source packet routing or segment routing is a control-plane architecture that enables an ingress router to steer a packet through a specific set of nodes and links in the network without relying on the intermediate nodes in the network to determine the actual path it should take. In this context, the term 'source' means 'the point at which the explicit route is imposed'. Starting with Junos OS Release 17.2R1, segment routing for IS-IS and OSPFv2 is supported on QFX5100 and QFX10000 switches.

Starting with Junos OS Release 17.3R1, segment routing for IS-IS and OSPFv2 is supported on QFX5110 and QFX5200 switches.

Essentially segment routing engages IGPs like IS-IS and OSPF for advertising two types of network segments or tunnels:

- First, a strict forwarded single-hop tunnel that carries packets over a specific link between two nodes, irrespective of the link cost, referred to as adjacency segments.
- Second, a multihop tunnel using shortest path links between two specific nodes, referred to as node segments.

Ingress routers can steer a packet through a desired set of nodes and links by pre-appending the packet with an appropriate combination of tunnels.

Segment routing leverages the source routing paradigm. A node steers a packet through an ordered list of instructions, called segments. A segment can represent any instruction, topological or service-based. A segment can have a local semantic to a segment routing node or to a global node within a segment routing domain. Segment routing enforces a flow through any topological path and service chain while maintaining per-flow state only at the ingress node to the segment routing domain. Segment routing can be directly applied to the MPLS architecture with no change on the forwarding plane. A segment is encoded as an MPLS label. An ordered list of segments is encoded as a stack of labels. The segment to process is on the top of the stack. Upon completion of a segment, the related label is popped from the stack. Segment routing can be applied to the IPv6 architecture, with a new type of routing extension header. A segment is encoded as an IPv6 address. An ordered list of segments is encoded as an ordered list of IPv6 addresses in the routing extension header. The segment to process is indicated by a pointer in the routing extension header. Upon completion of a segment, the pointer is incremented.

Traffic engineering shortcuts are enabled for labeled IS-IS segment routes, when you configure shortcuts at the following hierarchy levels:

- [edit protocols is-is traffic-engineering family inet] for IPv4 traffic.
- [edit protocols is-is traffic-engineering family inet6] for IPv6 traffic.

When source packet routing is deployed in the network, the data center, backbone, and peering devices, switch MPLS packets with a label stack built by the source of the traffic; for example, data center servers. In Junos OS Release 17.4R1, the source-routed traffic co-exists with traffic taking RSVP signaled paths, and source routing is implemented as regular label switching through mpls.0 table using the label operations
- pop, swap (to the same label value), and swap-push (for interface protection). In all the cases, traffic can be load balanced between multiple Layer 3 interfaces, or within an aggregate interface. Starting in Junos OS Release 17.4R1, the traffic statistics in a segment routing network can be recorded in an OpenConfig compliant format for the Layer 3 interfaces. The statistics is recorded for the Source Packet Routing in Networking (SPRING) traffic only, excluding RSVP and LDP-signaled traffic, and the family MPLS statistics per interface is accounted for separately. The SR statistics also includes SPRING traffic statistics per link aggregation group (LAG) member, and per segment identifier (SID). To enable recording of segment routing statistics, include sensor-based-stats statement at the [edit protocol isis source-packet-routing] hierarchy level.

Prior to Junos OS Release 19.1R1, sensors were available for collecting segment routing statistics for MPLS transit traffic only, which is MPLS-to-MPLS in nature. Starting in Junos OS Release 19.1R1, on MX Series routers with MPC and MIC interfaces and PTX Series routers, additional sensors are introduced to collect segment routing statistics for MPLS ingress traffic, which is IP-to-MPLS in nature. With this feature, you can enable sensors for label IS-IS segment routing traffic only, and stream the statistics to a gRPC client.

You can enable the segment routing statistics for MPLS ingress traffic using the egress option under the per-sid configuration statement. The resource name for the per-sid egress functionality is:

/junos/services/segment-routing/sid/egress/usage/

You can view the label IS-IS route association with the sensors using the show isis spring sensor info command output. This command does not display counter values of the actual sensors.

The segment routing statistics records are exported to a server. You can view segment routing statistics data from the following the OpenConfig paths:

- /mpl/signalling-protocols/segment-routing/aggregate-sid-counters/aggregate-sid-counter[ip-addr='L-ISIS-1.1.1.1']/state/counters[name='oc-xxx']/out-pkts
- /mpl/signalling-protocols/segment-routing/aggregate-sid-counters/aggregate-sid-counter[ip-addr='L-ISIS-1.1.1.1']/state/counters[name='oc-xxx']/out-pkts
- /mpl/signalling-protocols/segment-routing/aggregate-sid-counters/aggregate-sid-counter[ip-addr='L-ISIS-1.1.1.1']/state/counters[name='oc-xxx']/out-pkts
NOTE:

- Graceful Routing Engine switchover (GRES) is not supported for segment routing statistics.

 Nonstop active routing (NSR) is not supported for label IS-IS. During a Routing Engine switchover, a new sensor is created in the new master Routing Engine, replacing the sensor created by the previous master Routing Engine. As a result, at the time of a Routing Engine switchover, the segment routing statistics counter start from zero.

- Graceful restart is not support for label IS-IS.

 In case of graceful restart, the existing sensor is deleted and a new sensor is created during IS-IS initialization. The segment routing statistics counter restarts from zero.

- In-service software upgrade (ISSU) and nonstop software upgrade (NSSU) are not supported. In such cases, the segment routing statistics counter is restarted.

- Zero-statistics segment routing data is suppresses and does not get streamed to the gRPC clients.

SEE ALSO

<table>
<thead>
<tr>
<th>IS-IS Extensions to Support Traffic Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding Forwarding Adjacencies</td>
</tr>
<tr>
<td>Understanding LDP-IGP Synchronization</td>
</tr>
<tr>
<td>node-segment (Protocols OSPF)</td>
</tr>
<tr>
<td>no-advertise-adjacency-segment (Protocols OSPF)</td>
</tr>
<tr>
<td>no-source-packet-routing (Protocols OSPF)</td>
</tr>
<tr>
<td>per-sid</td>
</tr>
<tr>
<td>sensor-based-stats</td>
</tr>
<tr>
<td>sensor (Junos Telemetry Interface)</td>
</tr>
<tr>
<td>sensor-based-stats (Junos Telemetry Interface)</td>
</tr>
<tr>
<td>show (ospf</td>
</tr>
<tr>
<td>show (ospf</td>
</tr>
<tr>
<td>show ospf database</td>
</tr>
<tr>
<td>show (ospf</td>
</tr>
<tr>
<td>show route table</td>
</tr>
<tr>
<td>level (Global IS-IS)</td>
</tr>
<tr>
<td>show isis database</td>
</tr>
</tbody>
</table>
show isis overview
show isis route
show isis adjacency
source-packet-routing (Protocols IS-IS and OSPF)
node-segment (Protocols IS-IS)
no-advertise-adjacency-segment (Protocols IS-IS)
use-source-packet-routing (Protocols IS-IS)

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1R1</td>
<td>Starting in Junos OS Release 19.1R1, on MX Series routers with MPC and MIC interfaces and PTX Series routers, additional sensors are introduced to collect segment routing statistics for MPLS ingress traffic, which is IP-to-MPLS in nature. With this feature, you can enable sensors for label IS-IS segment routing traffic only, and stream the statistics to a gRPC client.</td>
</tr>
<tr>
<td>17.4R1</td>
<td>Starting in Junos OS Release 17.4R1, the traffic statistics in a segment routing network can be recorded in an OpenConfig compliant format for the Layer 3 interfaces.</td>
</tr>
<tr>
<td>17.3R1</td>
<td>Starting with Junos OS Release 17.3R1, segment routing for IS-IS and OSPFv2 is supported on QFX5110 and QFX5200 switches.</td>
</tr>
<tr>
<td>17.2R1</td>
<td>Starting with Junos OS Release 17.2R1, segment routing for IS-IS and OSPFv2 is supported on QFX5100 and QFX10000 switches.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

For more information about traffic engineering, see the *MPLS Applications User Guide*.
CHAPTER 13

Configure OSPF Database Protection

Configuring OSPF Database Protection | 432
Configuring OSPF Database Protection

OSPF Database Protection Overview

OSPF database protection allows you to limit the number of link-state advertisements (LSAs) not generated by the local router in a given OSPF routing instance, helping to protect the link-state database from being flooded with excessive LSAs. This feature is particularly useful if VPN routing and forwarding is configured on your provider edge and customer edge routers using OSPF as the routing protocol. An overrun link-state database on the customer edge router can exhaust resources on the provider edge router and impact the rest of the service provider network.

When you enable OSPF database protection, the maximum number of LSAs you specify includes all LSAs whose advertising router ID is not equal to the local router ID (nonself-generated LSAs). These might include external LSAs as well as LSAs with any scope such as the link, area, and autonomous system (AS).

Once the specified maximum LSA count is exceeded, the database typically enters into the ignore state. In this state, all neighbors are brought down, and nonself-generated LSAs are destroyed. In addition, the database sends out hellos but ignores all received packets. As a result, the database does not form any full neighbors, and therefore does not learn about new LSAs. However, if you have configured the **warning-only** option, only a warning is issued and the database does not enter the ignore state but continues to operate as before.

You can also configure one or more of the following options:

- A warning threshold for issuing a warning message before the LSA limit is reached.
- An ignore state time during which the database must remain in the ignore state and after which normal operations can be resumed.
- An ignore state count that limits the number of times the database can enter the ignore state, after which it must enter the isolate state. The isolate state is very similar to the ignore state, but has one
important difference: once the database enters the isolate state, it must remain there until you issue a command to clear database protection before it can return to normal operations.

- A reset time during which the database must stay out of the ignore or isolate state before it is returned to a normal operating state.

SEE ALSO

| database-protection | 627 |

Configuring OSPF Database Protection

By configuring OSPF database protection, you can help prevent your OSPF link-state database from being overrun with excessive LSAs that are not generated by the local router. You specify the maximum number of LSAs whose advertising router ID is not the same as the local router ID in an OSPF instance. This feature is particularly useful if your provider edge and customer edge routers are configured with VPN routing and forwarding using OSPF.

OSPF database protection is supported on:

- Logical systems
- All routing instances supported by OSPFv2 and OSPFv3
- OSPFv2 and OSPFv3 topologies
- OSPFv3 realms

To configure OSPF database protection:

1. Include the `database-protection` statement at one of the following hierarchy levels:
 - `[edit protocols ospf | ospf3]`
 - `[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)]`
 - `[edit routing-instances routing-instance-name protocols (ospf | ospf3)]`
 - `[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-unicast | ipv6-multicast)]`

2. Include the `maximum-lsa number` statement.
NOTE: The **maximum-lsa** statement is mandatory, and there is no default value for it. If you omit this statement, you cannot configure OSPF database protection.

3. (Optional) Include the following statements:

- **ignore-count number**—Specify the number of times the database can enter the ignore state before it goes into the isolate state.

- **ignore-time seconds**—Specify the time limit the database must remain in the ignore state before it resumes regular operations.

- **reset-time seconds**—Specify the time during which the database must operate without being in either the ignore or isolate state before it is reset to a normal operating state.

- **warning-threshold percent**—Specify the percent of the maximum LSA number that must be exceeded before a warning message is issued.

4. (Optional) Include the **warning-only** statement to prevent the database from entering the ignore state or isolate state when the maximum LSA count is exceeded.

 NOTE: If you include the **warning-only** statement, values for the other optional statements at the same hierarchy level are not used when the maximum LSA number is exceeded.

5. Verify your configuration by checking the database protection fields in the output of the **show ospf overview** command.

RELATED DOCUMENTATION

| database-protection | 627 |
Configure OSPF Routing Policy
Configuring OSPF Routing Policy

IN THIS SECTION

- Understanding Routing Policies | 436
- Understanding OSPF Routing Policy | 440
- Understanding Backup Selection Policy for OSPF Protocol | 442
- Configuring Backup Selection Policy for the OSPF Protocol | 444
- Topology-Independent Loop-Free Alternate with Segment Routing for OSPF | 450
- Example: Configuring Backup Selection Policy for the OSPF or OSPF3 Protocol | 453
- Example: Injecting OSPF Routes into the BGP Routing Table | 486
- Example: Redistributing Static Routes into OSPF | 491
- Example: Configuring an OSPF Import Policy | 494
- Example: Configuring a Route Filter Policy to Specify Priority for Prefixes Learned Through OSPF | 499
- Import and Export Policies for Network Summaries Overview | 505
- Example: Configuring an OSPF Export Policy for Network Summaries | 505
- Example: Configuring an OSPF Import Policy for Network Summaries | 516
- Example: Redistributing OSPF Routes into IS-IS | 527

Understanding Routing Policies

IN THIS SECTION

- Importing and Exporting Routes | 437
- Active and Inactive Routes | 438
- Explicitly Configured Routes | 439
- Dynamic Database | 439
For some routing platform vendors, the flow of routes occurs between various protocols. If, for example, you want to configure redistribution from RIP to OSPF, the RIP process tells the OSPF process that it has routes that might be included for redistribution. In Junos OS, there is not much direct interaction between the routing protocols. Instead, there are central gathering points where all protocols install their routing information. These are the main unicast routing tables inet.0 and inet6.0.

From these tables, the routing protocols calculate the best route to each destination and place these routes in a forwarding table. These routes are then used to forward routing protocol traffic toward a destination, and they can be advertised to neighbors.

Importing and Exporting Routes

Two terms—*import* and *export*—explain how routes move between the routing protocols and the routing table.

- When the Routing Engine places the routes of a routing protocol into the routing table, it is *importing* routes into the routing table.
- When the Routing Engine uses active routes from the routing table to send a protocol advertisement, it is *exporting* routes from the routing table.

NOTE: The process of moving routes between a routing protocol and the routing table is described always from the point of view of the routing table. That is, routes are imported into a routing table from a routing protocol and they are exported from a routing table to a routing protocol. Remember this distinction when working with routing policies.

As shown in Figure 25 on page 438, you use import routing policies to control which routes are placed in the routing table, and export routing policies to control which routes are advertised from the routing table to neighbors.
In general, the routing protocols place all their routes in the routing table and advertise a limited set of routes from the routing table. The general rules for handling the routing information between the routing protocols and the routing table are known as the routing policy framework.

The routing policy framework is composed of default rules for each routing protocol that determine which routes the protocol places in the routing table and advertises from the routing table. The default rules for each routing protocol are known as default routing policies.

You can create routing policies to preempt the default policies, which are always present. A routing policy allows you to modify the routing policy framework to suit your needs. You can create and implement your own routing policies to do the following:

- Control which routes a routing protocol places in the routing table.
- Control which active routes a routing protocol advertises from the routing table. An active route is a route that is chosen from all routes in the routing table to reach a destination.
- Manipulate the route characteristics as a routing protocol places the route in the routing table or advertises the route from the routing table.

You can manipulate the route characteristics to control which route is selected as the active route to reach a destination. The active route is placed in the forwarding table and is used to forward traffic toward the route's destination. In general, the active route is also advertised to a router's neighbors.

Active and Inactive Routes

When multiple routes for a destination exist in the routing table, the protocol selects an active route and that route is placed in the appropriate routing table. For equal-cost routes, the Junos OS places multiple next hops in the appropriate routing table.

When a protocol is exporting routes from the routing table, it exports active routes only. This applies to actions specified by both default and user-defined export policies.
When evaluating routes for export, the Routing Engine uses only active routes from the routing table. For example, if a routing table contains multiple routes to the same destination and one route has a preferable metric, only that route is evaluated. In other words, an export policy does not evaluate all routes; it evaluates only those routes that a routing protocol is allowed to advertise to a neighbor.

NOTE: By default, BGP advertises active routes. However, you can configure BGP to advertise *inactive routes*, which go to the same destination as other routes but have less preferable metrics.

Explicitly Configured Routes

An *explicitly configured route* is a route that you have configured. *Direct routes* are not explicitly configured. They are created as a result of IP addresses being configured on an interface. Explicitly configured routes include *aggregate*, *generated*, *local*, and *static routes*. (An *aggregate route* is a route that distills groups of routes with common addresses into one route. A *generated route* is a route used when the routing table has no information about how to reach a particular destination. A *local route* is an IP address assigned to a router interface. A *static route* is an unchanging route to a destination.)

The policy framework software treats direct and explicitly configured routes as if they are learned through routing protocols; therefore, they can be imported into the routing table. Routes cannot be exported from the routing table to the pseudoprotocol, because this protocol is not a real routing protocol. However, aggregate, direct, generated, and static routes can be exported from the routing table to routing protocols, whereas local routes cannot.

Dynamic Database

In Junos OS Release 9.5 and later, you can configure routing policies and certain routing policy objects in a dynamic database that is not subject to the same verification required by the standard configuration database. As a result, you can quickly commit these routing policies and policy objects, which can be referenced and applied in the standard configuration as needed. BGP is the only protocol to which you can apply routing policies that reference policies configured in the dynamic database. After a routing policy based on the dynamic database is configured and committed in the standard configuration, you can quickly make changes to existing routing policies by modifying policy objects in the dynamic database. Because Junos OS does not validate configuration changes to the dynamic database, when you use this feature, you should test and verify all configuration changes before committing them.

SEE ALSO

- *Example: Configuring Dynamic Routing Policies*
Understanding OSPF Routing Policy

Each routing policy is identified by a policy name. The name can contain letters, numbers, and hyphens (-) and can be up to 255 characters long. To include spaces in the name, enclose the entire name in double quotation marks. Each routing policy name must be unique within a configuration. Once a policy is created and named, it must be applied before it is active.

In the import statement, you list the name of the routing policy used to filter OSPF external routes from being installed into the routing tables of OSPF neighbors. You can filter the routes, but not link-state address (LSA) flooding. An external route is a route that is outside the OSPF Autonomous System (AS). The import policy does not impact the OSPF database. This means that the import policy has no impact on the link-state advertisements.

In the export statement, you list the name of the routing policy to be evaluated when routes are being exported from the routing table into OSPF.

By default, if a routing device has multiple OSPF areas, learned routes from other areas are automatically installed into area 0 of the routing table.

To specify more than one policy and create a policy chain, you list the policies using a space as a separator. If multiple policies are specified, the policies are evaluated in the order in which they are specified. As soon as an accept or reject action is executed, the policy chain evaluation ends.

This topic describes the following information:

Routing Policy Terms

Routing policies are made up of one or more terms. A term is a named structure in which match conditions and actions are defined. You can define one or more terms. The name can contain letters, numbers, and hyphens (-) and can be up to 255 characters long. To include spaces in the name, enclose the entire name in double quotation marks.
Each term contains a set of match conditions and a set of actions:

- Match conditions are criteria that a route must match before the actions can be applied. If a route matches all criteria, one or more actions are applied to the route.
- Actions specify whether to accept or reject the route, control how a series of policies are evaluated, and manipulate the characteristics associated with a route.

Routing Policy Match Conditions

A match condition defines the criteria that a route must match for an action to take place. You can define one or more match conditions for each term. If a route matches all of the match conditions for a particular term, the actions defined for that term are processed.

Each term can include two statements, **from** and **to**, that define the match conditions:

- In the **from** statement, you define the criteria that an incoming route must match. You can specify one or more match conditions. If you specify more than one, they all must match the route for a match to occur.

 The **from** statement is optional. If you omit the **from** and the **to** statements, all routes are considered to match.

 NOTE: In export policies, omitting the **from** statement from a routing policy term might lead to unexpected results.

- In the **to** statement, you define the criteria that an outgoing route must match. You can specify one or more match conditions. If you specify more than one, they all must match the route for a match to occur.

 The order of the match conditions in a term is not important because a route must match all match conditions in a term for an action to be taken.

 For a complete list of match conditions, see Configuring Match Conditions in Routing Policy Terms.

Routing Policy Actions

An action defines what the routing device does with the route when the route matches all the match conditions in the **from** and **to** statements for a particular term. If a term does not have **from** and **to** statements, all routes are considered to match and the actions apply to all routes.

Each term can have one or more of the following types of actions. The actions are configured under the **then** statement.

- Flow control actions, which affect whether to accept or reject the route and whether to evaluate the next term or routing policy.
- Actions that manipulate route characteristics.
- Trace action, which logs route matches.

The **then** statement is optional. If you omit it, one of the following occurs:

- The next term in the routing policy, if one exists, is evaluated.
- If the routing policy has no more terms, the next routing policy, if one exists, is evaluated.
- If there are no more terms or routing policies, the **accept** or **reject** action specified by the default policy is executed.

For a complete list of routing policy actions, see Configuring Actions in Routing Policy Terms.

Understanding Backup Selection Policy for OSPF Protocol

Support for OSPF loop-free alternate (LFA) routes essentially adds IP fast-reroute capability for OSPF. Junos OS precomputes multiple loop-free backup routes for all OSPF routes. These backup routes are pre-installed in the Packet Forwarding Engine, which performs a local repair and implements the backup path when the link for a primary next hop for a particular route is no longer available. The selection of LFA is done randomly by selecting any matching LFA to progress to the given destination. This does not ensure best backup coverage available for the network. In order to choose the best LFA, Junos OS allows you to configure network-wide backup selection policies for each destination (IPv4 and IPv6) and a primary next-hop interface. These policies are evaluated based on admin-group, srlg, bandwidth, protection-type, metric, and node information.

During backup shortest-path-first (SPF) computation, each node and link attribute of the backup path is accumulated by IGP and is associated with every node (router) in the topology. The next hop in the best backup path is selected as the backup next hop in the routing table. In general, backup evaluation policy rules are categorized into the following types:

- **Pruning** — Rules configured to select the eligible backup path.
- **Ordering** — Rules configured to select the best among the eligible backup paths.

The backup selection policies can be configured with both pruning and ordering rules. While evaluating the backup policies, each backup path is assigned a score, an integer value that signifies the total weight of the evaluated criteria. The backup path with the highest score is selected.

To enforce LFA selection, configure various rules for the following attributes:
• **admin-group**— Administrative groups, also known as link coloring or resource class, are manually assigned attributes that describe the "color" of links, such that links with the same color conceptually belong to the same class. These configured administrative groups are defined under protocol MPLS. You can use administrative groups to implement a variety of backup selection policies using exclude, include-all, include-any, or preference.

• **srlg**— A shared risk link group (SRLG) is a set of links sharing a common resource, which affects all links in the set if the common resource fails. These links share the same risk of failure and are therefore considered to belong to the same SRLG. For example, links sharing a common fiber are said to be in the same SRLG because a fault with the fiber might cause all links in the group to fail. An SRLG is represented by a 32-bit number unique within an IGP (OSPF) domain. A link might belong to multiple SRLGs. You can define the backup selection to either allow or reject the common SRLGs between the primary and the backup path. This rejection of common SRLGs are based on the non-existence of link having common SRLGs in the primary next-hop and the backup SPF.

NOTE: Administrative groups and SRLGs can be created only for default topologies.

• **bandwidth**—The bandwidth specifies the bandwidth constraints between the primary and the backup path. The backup next-hop link can be used only if the bandwidth of the backup next-hop interface is greater than or equal to the bandwidth of the primary next hop.

• **protection-type**— The protection-type protects the destination from node failure of the primary node or link failure of the primary link. You can configure node, link, or node-link to protect the destination. If link-node is configured, then the node-protecting LFA is preferred over link-protection LFA.

• **node**—The node is per-node policy information. Here, node can be a directly connected router, remote router like RSVP backup LSP tail-end, or any other router in the backup SPF path. The nodes are identified through the route-id advertised by a node in the LSP. You can list the nodes to either prefer or exclude them in the backup path.

• **metric**— Metric decides how the LFAs should be preferred. In backup selection path, root metric and dest-metric are the two types of metrics. root-metric indicates the metric to the one-hop neighbor or a remote router such as an RSVP backup LSP tail-end router. The dest-metric indicates the metric from a one-hop neighbor or remote router such as an RSVP backup LSP tail-end router to the final destination. The metric evaluation is done either in ascending or descending order. By default, the first preference is given to backup paths with lowest destination evaluation and then to backup paths with lowest root metrics.

The evaluation-order allows you to control the order and criteria of evaluating these attributes in the backup path. You can explicitly configure the evaluation order. Only the configured attributes influence the backup path selection. The default order of evaluation of these attributes for the LFA is [admin-group srlg bandwidth protection-type node metric].
NOTE: TE attributes are not supported in OSPFv3 and cannot be used for backup selection policy evaluation for IPv6 prefixes.

SEE ALSO

| backup-selection (Protocols ISIS) |

Configuring Backup Selection Policy for the OSPF Protocol

Support for OSPF loop-free alternate (LFA) routes essentially adds IP fast-reroute capability for OSPF. Junos OS precomputes multiple loop-free backup routes for all OSPF routes. These backup routes are pre-installed in the Packet Forwarding Engine, which performs a local repair and implements the backup path when the link for a primary next hop for a particular route is no longer available. The selection of LFA is done randomly by selecting any matching LFA to progress to the given destination. This does not ensure best backup coverage available for the network. In order to choose the best LFA, Junos OS allows you to configure network-wide backup selection policies for each destination (IPv4 and IPv6) and a primary next-hop interface. These policies are evaluated based on admin-group, srlg, bandwidth, protection-type, metric, and node information.

Before you begin to configure the backup selection policy for the OSPF protocol:

- Configure the router interfaces. See the Junos OS Network Management Administration Guide for Routing Devices.
- Configure an interior gateway protocol or static routing. See the Junos OS Routing Protocols Library for Routing Devices.

To configure the backup selection policy for the OSPF protocol:

1. Configure per-packet load balancing.

   ```
   [edit policy-options]
   user@host# set policy-statement ecmp term 1 then load-balance per-packet
   ```

2. Enable RSVP on all the interfaces.
3. Configure administrative groups.

[edit protocols mpls]
user@host# set admin-groups group-name

4. Configure srlg values.

[edit routing-options]
user@host# set srlg srlg-name srlg-value srlg-value

5. Enable MPLS on all the interfaces.

[edit protocols mpls]
user@host# set interface all

6. Apply MPLS to an interface configured with an administrative group.

[edit protocols mpls]
user@host# set interface interface-name admin-group group-name

7. Configure the ID of the router.

[edit routing-options]
user@host# set router-id router-id

8. Apply the routing policy to all equal cost multipaths exported from the routing table to the forwarding table.

[edit routing-options]
user@host# set forwarding-table export ecmp

9. Enable link protection and configure metric values on all the interfaces for an area.

[edit protocols ospf]
10. Configure the administrative group of the backup selection policy for an IP address.

You can choose to exclude, include all, include any, or prefer the administrative groups from the backup path.

- Specify the administrative group to be excluded.

  ```
  [edit routing-options]
  user@host# set backup-selection destination ip-address interface interface-name admin-group
  ```

 The backup path is not selected as the loop-free alternate (LFA) or backup nexthop if any of the links in the path have any one of the listed administrative groups.

 For example, to exclude the group c1 from the administrative group:

  ```
  [edit routing-options backup-selection destination 0.0.0.0/0 interface all admin-group]
  user@host# set exclude c1
  ```

- Configure all the administrative groups if each link in the backup path requires all the listed administrative groups in order to accept the path.

  ```
  [edit routing-options backup-selection destination ip-address interface interface-name admin-group]
  user@host# set include-all group-name
  ```

 For example, to set all the administrative groups if each link requires all the listed administrative groups in order to accept the path:

  ```
  [edit routing-options backup-selection destination 0.0.0.0/0 interface all admin-group]
  user@host# set include-all c2
  ```

- Configure any administrative group if each link in the backup path requires at least one of the listed administrative groups in order to select the path.

  ```
  [edit routing-options backup-selection destination ip-address interface interface-name admin-group]
  user@host# set include-any group-name
  ```
For example, to set any administrative group if each link in the backup path requires at least one of the listed administrative groups in order to select the path:

```plaintext
[edit routing-options backup-selection destination 0.0.0.0/0 interface all admin-group]
user@host# set include-any c3
```

- Define an ordered set of an administrative group that specifies the preference of the backup path.
 The leftmost element in the set is given the highest preference.

```plaintext
[edit routing-options backup-selection destination ip-address interface interface-name admin-group]
user@host# set preference group-name
```

For example, to set an ordered set of an administrative group that specifies the preference of the backup path:

```plaintext
[edit routing-options backup-selection destination 0.0.0.0/0 interface all admin-group]
user@host# set preference c4
```

11. Configure the backup path to allow the selection of the backup next hop only if the bandwidth is greater than or equal to the bandwidth of the primary next hop.

```plaintext
[edit routing-options]
user@host# set backup-selection destination ip-address interface interface-name bandwidth-greater-equal-primary
```

12. Configure the backup path to specify the metric from the one-hop neighbor or from the remote router such as an RSVP backup label-switched-path (LSP) tail-end router to the final destination.

The destination metric can be either highest or lowest.

- Configure the backup path that has the highest destination metric.

```plaintext
[edit routing-options]
user@host# set backup-selection destination ip-address interface interface-name dest-metric highest
```

- Configure the backup path that has the lowest destination metric.

```plaintext
[edit routing-options]
user@host# set backup-selection destination ip-address interface interface-name dest-metric lowest
```

13. Configure the backup path that is a downstream path to the destination.
14. Set the order of preference of the root and the destination metric during backup path selection.

The preference order can be:

- [root dest] — Backup path selection or preference is first based on the root-metric criteria. If the criteria of all the root-metric is the same, then the selection or preference is based on the dest-metric.
- [dest root] — Backup path selection or preference is first based on the dest-metric criteria. If the criteria of all the dest-metric is the same, then the selection is based on the root-metric.

15. Configure the backup path to define a list of loop-back IP addresses of the adjacent neighbors to either exclude or prefer in the backup path selection.

The neighbor can be a local (adjacent router) neighbor, remote neighbor, or any other router in the backup path.

- Configure the list of neighbors to be excluded.
- Configure an ordered set of neighbors to be preferred.

16. Configure the backup path to specify the required protection type of the backup path to be link, node, or node-link.

- Select the backup path that provides link protection.
Select the backup path that provides node protection.

Select the backup path that allows either node or link protection LFA where node-protection LFA is preferred over link-protection LFA.

Specify the metric to the one-hop neighbor or to the remote router such as an RSVP backup label-switched-path (LSP) tail-end router.

Select the path with highest root metric.

Select the path with lowest root metric.

Configure the backup selection path to either allow or reject the common shared risk link groups (SRLGs) between the primary link and each link in the backup path.

Configure the backup path to allow common srlgs between the primary link and each link in the backup path.

A backup path with a fewer number of srlg collisions is preferred.

Configure the backup path to reject the backup path that has common srlgs between the primary next-hop link and each link in the backup path.
19. Configure the backup path to control the order and the criteria of evaluating the backup path based on the administrative group, srlg, bandwidth, protection type, node, and metric.

The default order of evaluation is admin-group, srlg, bandwidth, protection-type, node, and metric.

```
[edit routing-options]
user@host# set backup-selection destination ip-address interface all evaluation-order admin-group
user@host# set backup-selection destination ip-address interface all evaluation-order srlg
user@host# set backup-selection destination ip-address interface all evaluation-order bandwidth
```

SEE ALSO

`backup-selection (Protocols ISIS)`

Topology-Independent Loop-Free Alternate with Segment Routing for OSPF

IN THIS SECTION

- Understanding Topology-Independent Loop-Free Alternate with Segment Routing for OSPF | 450
- Configuring Topology-Independent Loop-Free Alternate with Segment Routing for OSPF | 452

Understanding Topology-Independent Loop-Free Alternate with Segment Routing for OSPF

IN THIS SECTION

- Benefits of Using Topology-Independent Loop-Free Alternate with Segment Routing | 452
Segment routing enables a router to send a packet along a specific path in the network by imposing a label stack that describes the path. The forwarding actions described by a segment routing label stack do not need to be established on a per-path basis. Therefore, an ingress router can instantiate an arbitrary path using a segment routing label stack and use it immediately without any signaling.

In segment routing, each node advertises mappings between incoming labels and forwarding actions. A specific forwarding action is referred to as a segment and the label that identifies that segment is referred to as a segment identifier (SID). The backup paths created by TI-LFA use the following types of segments:

- **Node segment**—A node segment forwards packets along the shortest path or paths to a destination node. The label representing the node segment (the node SID) is swapped until the destination node is reached.

- **Adjacency segment**—An adjacency segment forwards packets across a specific interface on the node that advertised the adjacency segment. The label representing an adjacency segment (the adjacency SID) is popped by the node that advertised it.

A router can send a packet along a specific path by creating a label stack that uses a combination of node SIDs and adjacency SIDs. Typically, node SIDs are used to represent parts of the path that correspond to the shortest path between two nodes. An adjacency SID is used wherever a node SID cannot be used to accurately represent the desired path.

When used with OSPF, TI-LFA provides protection against link failure and node failure. In link failure mode, the destination is protected if the link fails. In node protection mode, the destination is protected if the neighbor connected to the primary link fails. To determine the node-protecting post-convergence path, the cost of all the links leaving the neighbor is assumed to increase by a configurable amount.

In order to construct a backup path that follows the post-convergence path, TI-LFA can use several labels in the label stack that define the backup path. If the number of labels required to construct a particular post-convergence backup path exceeds a certain amount, it is useful in some circumstances to not install that backup path. You can configure the maximum number of labels that a backup path can have in order to be installed. The default value is 3, with a range of 2 through 5.

It is often the case that the post-convergence path for a given failure is actually a set of equal-cost paths. TI-LFA attempts to construct the backup paths to a given destination using multiple equal-cost paths in the post-failure topology. Depending on the topology, TI-LFA might need to use different label stacks to accurately construct those equal-cost backup paths. By default, TI-LFA only installs one backup path for a given destination. However, you can configure the value in the range from 1 through 8.
Benefits of Using Topology-Independent Loop-Free Alternate with Segment Routing

- Loop-free alternate (LFA) and remote LFA (RLFA) have been used to provide fast-reroute protection for several years. With LFA, a point of local repair (PLR) determines whether or not a packet sent to one of its direct neighbors reaches its destination without looping back through the PLR. In a typical network topology, approximately 40 to 60 percent of the destinations can be protected by LFA. Remote LFA expands on the concept of LFA by allowing the PLR to impose a single label to tunnel the packet to a repair tunnel endpoint from which the packet can reach its destination without looping back through the PLR. Using remote LFA, more destinations can be protected by the PLR compared to LFA. However, depending on the network topology, the percentage of destinations protected by remote LFA is usually less than 100 percent.

- Topology-independent LFA (TI-LFA) extends the concept of LFA and remote LFA by allowing the PLR to use deeper label stacks to construct backup paths. In addition, TI-LFA imposes the constraint that the backup path used by the PLR be the same path that a packet takes once the interior gateway protocol (IGP) has converged for a given failure scenario. This path is referred to as the post-convergence path.

- Using the post-convergence path as the backup path has some desirable characteristics. For some topologies, a network operator only needs to make sure that the network has enough capacity to carry the traffic along the post-convergence path after a failure. In these cases, a network operator does not need to allocate additional capacity to deal with the traffic pattern immediately after the failure while the backup path is active, because the backup path follows the post-convergence path.

- When used with OSPF, TI-LFA provides protection against link failure and node failure.

Configuring Topology-Independent Loop-Free Alternate with Segment Routing for OSPF

Before you configure TI-LFA for OSPF, be sure you configure SPRING or segment routing.

Starting in Junos OS Release 19.3R1, Junos supports creation of OSPF topology-independent TI-LFA backup paths where the prefix SID is learned from a segment routing mapping server advertisement when the PLR and mapping server are both in the same OSPF area.

To configure TI-LFA using SPRING for OSPF, you must do the following:

1. Enable TI-LFA for OSPF protocol.

   ```
   [edit protocols ospf backup-spf-options]
   user@R1# set use-post-convergence-lfa
   ```

2. (Optional) Configure backup shortest path first (SPF) attributes such as maximum equal-cost multipath (ECMP) backup paths and maximum labels for TI-LFA for the OSPF protocol.

   ```
   [edit protocols ospf backup-spf-options use-post-convergence-lfa]
   user@R1# set maximum-backup-paths maximum-backup-paths
   ```
3. Configure the computation and installation of a backup path that follows the post-convergence path on the given interface and level for the OSPF protocol.

   ```
   [edit protocols ospf interface interface-name level level]
   user@R1# set post-convergence-lfa
   ```

4. (Optional) Enable node protection for a given interface and level.

   ```
   [edit protocols ospf interface interface-name level level post-convergence-lfa]
   user@R1# set node-protection
   ```

RELATED DOCUMENTATION

- source-packet-routing
- use-post-convergence-lfa | 773
- post-convergence-lfa | 775

Example: Configuring Backup Selection Policy for the OSPF or OSPF3 Protocol

This example shows how to configure the backup selection policy for the OSPF or OSPF3 protocol, which enables you to select a loop-free alternate (LFA) in the network.
When you enable backup selection policies, Junos OS allows selection of LFA based on the policy rules and attributes of the links and nodes in the network. These attributes are admin-group, srlg, bandwidth, protection-type, metric, and node.

Requirements

This example uses the following hardware and software components:

- Eight routers that can be a combination of M Series Multiservice Edge Routers, MX Series 5G Universal Routing Platforms, PTX Series Packet Transport Routers, and T Series Core Routers
- Junos OS Release 15.1 or later running on all devices

Before you begin:

1. Configure the device interfaces.
2. Configure OSPF.

Overview

In Junos OS, the default loop-free alternative (LFA) selection algorithm or criteria can be overridden with an LFA policy. These policies are configured for each destination (IPv4 and IPv6) and a primary next-hop interface. These backup policies enforce LFA selection based on admin-group, srlg, bandwidth, protection-type, metric, and node attributes of the backup path. During backup shortest-path-first (SPF) computation, each attribute (both node and link) of the backup path, stored per backup next-hop, is accumulated by IGP. For the routes created internally by IGP, the attribute set of every backup path is evaluated against the policy configured for each destination (IPv4 and IPv6) and a primary next-hop interface. The first or the best backup path is selected and installed as the backup next hop in the routing table. To configure the backup selection policy, include the backup-selection configuration statement at the [edit routing-options] hierarchy level. The show backup-selection command displays the configured policies for a given interface and destination. The display can be filtered against a particular destination, prefix, interface, or logical systems.

Topology

In this topology shown in Figure 26 on page 455, the backup selection policy is configured on Device R3.
Figure 26: Example Backup Selection Policy for OSPF or OPSF3

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

R0

```
set interfaces ge-0/0/0 unit 0 family inet address 10.1.1.1/30
set interfaces ge-0/0/0 unit 0 family inet6 address 2001:db8:10:1::1/64
set interfaces ge-0/0/0 unit 0 family mpls
set interfaces ge-0/1/0 unit 0 family inet address 172.16.15.1/30
set interfaces ge-0/1/0 unit 0 family inet6 address 2001:db8:15:1::1/64
set interfaces ge-0/1/0 unit 0 family mpls
```
set interfaces xe-0/2/0 unit 0 family inet address 172.16.20.1/30
set interfaces xe-0/2/0 unit 0 family inet6 address 2001:db8:20:1::1/64
set interfaces xe-0/2/0 unit 0 family mpls
set interfaces ge-1/0/5 unit 0 family inet address 172.16.150.1/24
set interfaces ge-1/0/5 unit 0 family inet6 address 2001:db8:150:1::1/64
set interfaces ge-1/0/5 unit 0 family mpls
set interfaces ge-1/1/1 unit 0 family inet address 172.16.30.1/30
set interfaces ge-1/1/1 unit 0 family inet6 address 2001:db8:30:1::1/64
set interfaces ge-1/1/1 unit 0 family mpls
set interfaces xe-1/3/0 unit 0 family inet address 172.16.25.1/30
set interfaces xe-1/3/0 unit 0 family inet6 address 2001:db8:25:1::1/64
set interfaces xe-1/3/0 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 10.10.10.10/32 primary
set interfaces lo0 unit 0 family inet6 address 2001::10:10:10:10/128 primary
set interfaces lo0 unit 0 family mpls
set routing-options srlg srlg1 srlg-value 1001
set routing-options srlg srlg2 srlg-value 1002
set routing-options srlg srlg3 srlg-value 1003
set routing-options srlg srlg4 srlg-value 1004
set routing-options srlg srlg5 srlg-value 1005
set routing-options srlg srlg6 srlg-value 1006
set routing-options srlg srlg7 srlg-value 1007
set routing-options srlg srlg8 srlg-value 1008
set routing-options srlg srlg9 srlg-value 1009
set routing-options srlg srlg10 srlg-value 10010
set routing-options srlg srlg11 srlg-value 10011
set routing-options srlg srlg12 srlg-value 10012
set routing-options router-id 10.10.10.10
set protocols rsvp interface all
set protocols mpls admin-groups c0 0
set protocols mpls admin-groups c1 1
set protocols mpls admin-groups c2 2
set protocols mpls admin-groups c3 3
set protocols mpls admin-groups c4 4
set protocols mpls admin-groups c5 5
set protocols mpls admin-groups c6 6
set protocols mpls admin-groups c7 7
set protocols mpls admin-groups c8 8
set protocols mpls admin-groups c9 9
set protocols mpls admin-groups c10 10
set protocols mpls admin-groups c11 11
set protocols mpls admin-groups c12 12
R1

set interfaces ge-0/0/0 unit 0 family inet address 10.1.1.2/30
set interfaces ge-0/0/0 unit 0 family inet6 address 2001:db8:10:1:1::2/64
set interfaces ge-0/0/0 unit 0 family mpls
set interfaces ge-0/0/5 unit 0 family inet address 172.16.35.1/30
set interfaces ge-0/0/5 unit 0 family inet6 address 2001:db8:35:1:1::1/64
set interfaces ge-0/0/5 unit 0 family mpls
set interfaces xe-0/2/0 unit 0 family inet address 172.16.40.1/30
set interfaces xe-0/2/0 unit 0 family inet6 address 2001:db8:40:1::1/64
set interfaces xe-0/2/0 unit 0 family mpls
set interfaces xe-0/3/0 unit 0 family inet address 172.16.45.1/30
set interfaces xe-0/3/0 unit 0 family inet6 address 2001:db8:45:1::1/64
set interfaces xe-0/3/0 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 172.16.1.1/32 primary
set interfaces lo0 unit 0 family inet6 address 2001:db8::1:1:1/128 primary
set interfaces lo0 unit 0 family mpls
set routing-options srlg srlg1 srlg-value 1001
set routing-options srlg srlg2 srlg-value 1002
set routing-options srlg srlg3 srlg-value 1003
set routing-options srlg srlg4 srlg-value 1004
set routing-options srlg srlg5 srlg-value 1005
set routing-options srlg srlg6 srlg-value 1006
set routing-options srlg srlg7 srlg-value 1007
set routing-options srlg srlg8 srlg-value 1008
set routing-options srlg srlg9 srlg-value 1009
set routing-options srlg srlg10 srlg-value 10010
set routing-options srlg srlg11 srlg-value 10011
set routing-options srlg srlg12 srlg-value 10012
set routing-options router-id 172.16.1.1
set protocols rsvp interface all
set protocols mpls admin-groups c0 0
set protocols mpls admin-groups c1 1
set protocols mpls admin-groups c2 2
set protocols mpls admin-groups c3 3
set protocols mpls admin-groups c4 4
set protocols mpls admin-groups c5 5
set protocols mpls admin-groups c6 6
set protocols mpls admin-groups c7 7
set protocols mpls admin-groups c8 8
set protocols mpls admin-groups c9 9
set protocols mpls admin-groups c10 10
set protocols mpls admin-groups c11 11
set protocols mpls admin-groups c12 12
set protocols mpls admin-groups c13 13
set protocols mpls admin-groups c14 14
set protocols mpls admin-groups c15 15
set protocols mpls admin-groups c16 16
set protocols mpls admin-groups c17 17
set protocols mpls admin-groups c18 18
set protocols mpls admin-groups c19 19
set protocols mpls admin-groups c20 20
set protocols mpls admin-groups c21 21
set protocols mpls admin-groups c22 22
set protocols mpls admin-groups c23 23
set protocols mpls admin-groups c24 24
set protocols mpls admin-groups c25 25
set protocols mpls admin-groups c26 26
set protocols mpls admin-groups c27 27
set protocols mpls admin-groups c28 28
set protocols mpls admin-groups c29 29
set protocols mpls admin-groups c30 30
set protocols mpls admin-groups c31 31
set protocols mpls interface all
set protocols mpls interface ge-0/0/0.0 srlg srlg9
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0 metric 10
set protocols ospf area 0.0.0.0 interface ge-0/0/5.0 metric 10
set protocols ospf area 0.0.0.0 interface xe-0/2/0.0 metric 10
set protocols ospf area 0.0.0.0 interface xe-0/3/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface ge-0/0/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface ge-0/0/5.0 metric 10
set protocols ospf3 area 0.0.0.0 interface xe-0/2/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface xe-0/3/0.0 metric 10

R2

set interfaces ge-0/0/2 unit 0 family inet address 172.16.35.2/30
set interfaces ge-0/0/2 unit 0 family inet6 address 2001:db8:35:1:1::2/64
set interfaces ge-0/1/0 unit 0 family mpls
set interfaces ge-0/1/0 unit 0 family inet address 172.16.50.1/30
set interfaces ge-0/1/0 unit 0 family inet6 address 2001:db8:50:1:1::1/64
set interfaces ge-0/1/0 unit 0 family mpls
set interfaces xe-0/2/1 unit 0 family inet address 172.16.55.1/30
set interfaces xe-0/2/1 unit 0 family inet6 address 2001:db8:55:1:1::1/64
set interfaces xe-0/2/1 unit 0 family mpls
set interfaces ge-1/0/2 unit 0 family inet address 172.16.60.1/30
set interfaces ge-1/0/2 unit 0 family inet6 address 2001:db8:60:1:1::1/64
set interfaces ge-1/0/2 unit 0 family mpls
set interfaces ge-1/0/9 unit 0 family inet address 172.16.65.1/30
set interfaces ge-1/0/9 unit 0 family inet6 address 2001:db8:65:1:1::1/64
set interfaces ge-1/0/9 unit 0 family mpls
set interfaces ge-1/1/5 unit 0 family inet address 172.16.70.1/30
set interfaces ge-1/1/5 unit 0 family inet6 address 2001:db8:70:1:1::1/64
set interfaces ge-1/1/5 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 172.16.2.2/32 primary
set interfaces lo0 unit 0 family inet6 address 2001::2:2:2/128 primary
set interfaces lo0 unit 0 family mpls
set routing-options srlg srlg1 srlg-value 1001
set routing-options srlg srlg2 srlg-value 1002
set routing-options srlg srlg3 srlg-value 1003
set routing-options srlg srlg4 srlg-value 1004
set routing-options srlg srlg5 srlg-value 1005
set routing-options srlg srlg6 srlg-value 1006
set routing-options srlg srlg7 srlg-value 1007
set routing-options srlg srlg8 srlg-value 1008
set routing-options srlg srlg9 srlg-value 1009
set routing-options srlg srlg10 srlg-value 10010
set routing-options srlg srlg11 srlg-value 10011
set routing-options srlg srlg12 srlg-value 10012
set routing-options router-id 172.16.2.2
set protocols rsvp interface all
set protocols mpls admin-groups c0 0
set protocols mpls admin-groups c1 1
set protocols mpls admin-groups c2 2
set protocols mpls admin-groups c3 3
set protocols mpls admin-groups c4 4
set protocols mpls admin-groups c5 5
set protocols mpls admin-groups c6 6
set protocols mpls admin-groups c7 7
set protocols mpls admin-groups c8 8
set protocols mpls admin-groups c9 9
set protocols mpls admin-groups c10 10
set protocols mpls admin-groups c11 11
set protocols mpls admin-groups c12 12
set protocols mpls admin-groups c13 13
set protocols mpls admin-groups c14 14
set protocols mpls admin-groups c15 15
set protocols mpls admin-groups c16 16
set protocols mpls admin-groups c17 17
set protocols mpls admin-groups c18 18
set protocols mpls admin-groups c19 19
set protocols mpls admin-groups c20 20
set protocols mpls admin-groups c21 21
set protocols mpls admin-groups c22 22
set protocols mpls admin-groups c23 23
set protocols mpls admin-groups c24 24
set protocols mpls admin-groups c25 25
set protocols mpls admin-groups c26 26
set protocols mpls admin-groups c27 27
set protocols mpls admin-groups c28 28
set protocols mpls admin-groups c29 29
set protocols mpls admin-groups c30 30
set protocols mpls admin-groups c31 31
set protocols mpls interface all
set protocols mpls interface ge-0/1/0.0 srlg srlg1
set protocols mpls interface ge-1/0/9.0 srlg srlg1
set protocols mpls interface ge-1/1/5.0 srlg srlg7
set protocols ospf area 0.0.0.0 interface ge-0/0/2.0 metric 10
set protocols ospf area 0.0.0.0 interface ge-0/1/0.0 link-protection
set protocols ospf area 0.0.0.0 interface xe-0/2/1.0 metric 12
set protocols ospf area 0.0.0.0 interface ge-1/0/2.0 metric 10
set protocols ospf area 0.0.0.0 interface ge-1/0/9.0 metric 12
set protocols ospf area 0.0.0.0 interface ge-1/1/5.0 metric 13
set protocols ospf3 area 0.0.0.0 interface ge-0/0/2.0 metric 10
set protocols ospf3 area 0.0.0.0 interface ge-0/1/0.0 link-protection
set protocols ospf3 area 0.0.0.0 interface xe-0/2/1.0 metric 12
set protocols ospf3 area 0.0.0.0 interface ge-1/0/2.0 metric 10
set protocols ospf3 area 0.0.0.0 interface ge-1/0/9.0 metric 12
set protocols ospf3 area 0.0.0.0 interface ge-1/1/5.0 metric 13

R3

set interfaces ge-0/0/5 unit 0 family inet address 172.16.50.2/30
set interfaces ge-0/0/5 unit 0 family inet6 address 2001:db8:50:1:1::2/64
set interfaces ge-0/0/5 unit 0 family mpls
set interfaces xe-0/3/1 unit 0 family inet address 172.16.75.1/30
set interfaces xe-0/3/1 unit 0 family inet6 address 2001:db8:75:1:1::1/64
set interfaces xe-0/3/1 unit 0 family mpls
set interfaces ge-1/0/0 unit 0 family inet address 172.16.80.1/30
set interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8:80:1:1::1/64
set interfaces ge-1/0/0 unit 0 family mpls
set interfaces ge-1/0/5 unit 0 family inet address 172.16.200.1/24
set interfaces ge-1/0/5 unit 0 family inet6 address 2001:db8:200:1::1/64
set interfaces ge-1/0/6 unit 0 family inet address 172.16.85.1/30
set interfaces ge-1/0/6 unit 0 family inet6 address 2001:db8:85:1::1/64
set interfaces ge-1/0/6 unit 0 family mpls
set interfaces xe-1/3/0 unit 0 family inet address 172.16.90.1/30
set interfaces xe-1/3/0 unit 0 family inet6 address 2001:db8:90:1::1/64
set interfaces xe-1/3/0 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 172.16.3.3/32 primary
set interfaces lo0 unit 0 family inet6 address 2001:db8::3:3:3:3/128 primary
set interfaces lo0 unit 0 family mpls
set routing-options srlg srlg1 srlg-value 1001
set routing-options srlg srlg2 srlg-value 1002
set routing-options srlg srlg3 srlg-value 1003
set routing-options srlg srlg4 srlg-value 1004
set routing-options srlg srlg5 srlg-value 1005
set routing-options srlg srlg6 srlg-value 1006
set routing-options srlg srlg7 srlg-value 1007
set routing-options srlg srlg8 srlg-value 1008
set routing-options srlg srlg9 srlg-value 1009
set routing-options srlg srlg10 srlg-value 10010
set routing-options srlg srlg11 srlg-value 10011
set routing-options srlg srlg12 srlg-value 10012
set routing-options router-id 172.16.3.3
set routing-options forwarding-table export ecmp
set routing-options backup-selection destination 10.1.1.0/30 interface xe-1/3/0.0 admin-group include-all c2
set routing-options backup-selection destination 10.1.1.0/30 interface all admin-group exclude c3
set routing-options backup-selection destination 10.1.1.0/30 interface all srlg strict
set routing-options backup-selection destination 10.1.1.0/30 interface all protection-type node
set routing-options backup-selection destination 10.1.1.0/30 interface all bandwidth-greater-equal-primary
set routing-options backup-selection destination 10.1.1.0/30 interface all neighbor preference 172.16.7.7
set routing-options backup-selection destination 10.1.1.0/30 interface all root-metric lowest
set routing-options backup-selection destination 10.1.1.0/30 interface all metric-order root
set routing-options backup-selection destination 172.16.30.0/30 interface all admin-group exclude c5
set routing-options backup-selection destination 172.16.30.0/30 interface all srlg strict
set routing-options backup-selection destination 172.16.30.0/30 interface all protection-type node
set routing-options backup-selection destination 172.16.30.0/30 interface all bandwidth-greater-equal-primary
set routing-options backup-selection destination 172.16.30.0/30 interface all neighbor preference 172.16.7.7
set routing-options backup-selection destination 172.16.30.0/30 interface all root-metric lowest
set routing-options backup-selection destination 172.16.30.0/30 interface all metric-order root
set routing-options backup-selection destination 172.16.30.0/30 interface all admin-group exclude c5
set routing-options backup-selection destination 172.16.45.0/30 interface all srlg strict
set routing-options backup-selection destination 172.16.45.0/30 interface all protection-type node
set routing-options backup-selection destination 172.16.45.0/30 interface all bandwidth-greater-equal-primary
set routing-options backup-selection destination 172.16.45.0/30 interface all neighbor preference 172.16.7.7
set routing-options backup-selection destination 172.16.45.0/30 interface all root-metric lowest
set routing-options backup-selection destination 172.16.45.0/30 interface all metric-order root
set protocols rsvp interface all
set protocols mpls admin-groups c0 0
set protocols mpls admin-groups c1 1
set protocols mpls admin-groups c2 2
set protocols mpls admin-groups c3 3
set protocols mpls admin-groups c4 4
set protocols mpls admin-groups c5 5
set protocols mpls admin-groups c6 6
set protocols mpls admin-groups c7 7
set protocols mpls admin-groups c8 8
set protocols mpls admin-groups c9 9
set protocols mpls admin-groups c10 10
set protocols mpls admin-groups c11 11
set protocols mpls admin-groups c12 12
set protocols mpls admin-groups c13 13
set protocols mpls admin-groups c14 14
set protocols mpls admin-groups c15 15
set protocols mpls admin-groups c16 16
set protocols mpls admin-groups c17 17
set protocols mpls admin-groups c18 18
set protocols mpls admin-groups c19 19
set protocols mpls admin-groups c20 20
set protocols mpls admin-groups c21 21
set protocols mpls admin-groups c22 22
set protocols mpls admin-groups c23 23
set protocols mpls admin-groups c24 24
set protocols mpls admin-groups c25 25
set protocols mpls admin-groups c26 26
set protocols mpls admin-groups c27 27
set protocols mpls admin-groups c28 28
set protocols mpls admin-groups c29 29
set protocols mpls admin-groups c30 30
set protocols mpls admin-groups c31 31
set protocols mpls interface all
set protocols mpls interface ge-0/0/5.0 admin-group c0
set protocols ospf area 0.0.0.0 interface ge-0/0/5.0 link-protection
set protocols ospf area 0.0.0.0 interface xe-0/3/1.0 metric 21
set protocols ospf area 0.0.0.0 interface ge-1/0/0.0 metric 13
set protocols ospf area 0.0.0.0 interface xe-1/0/6.0 metric 15
set protocols ospf area 0.0.0.0 interface xe-1/3/0.0 link-protection
set protocols ospf area 0.0.0.0 interface xe-1/3/0.0 metric 22
set protocols ospf3 area 0.0.0.0 interface ge-0/0/5.0 link-protection
set protocols ospf3 area 0.0.0.0 interface ge-0/0/5.0 metric 10
set protocols ospf3 area 0.0.0.0 interface xe-0/3/1.0 metric 21
set protocols ospf3 area 0.0.0.0 interface ge-1/0/0.0 metric 13
set protocols ospf3 area 0.0.0.0 interface ge-1/0/6.0 metric 15
set protocols ospf3 area 0.0.0.0 interface xe-1/3/0.0 link-protection
set protocols ospf3 area 0.0.0.0 interface xe-1/3/0.0 metric 22
set policy-options policy-statement ecmp term 1 then load-balance per-packet

set routing-options srlg srlg1 srlg-value 1001
set routing-options srlg srlg2 srlg-value 1002
set routing-options srlg srlg3 srlg-value 1003
set routing-options srlg srlg4 srlg-value 1004
set routing-options srlg srlg5 srlg-value 1005
set routing-options srlg srlg6 srlg-value 1006
set routing-options srlg srlg7 srlg-value 1007
set routing-options srlg srlg8 srlg-value 1008
set routing-options srlg srlg9 srlg-value 1009
set routing-options srlg srlg10 srlg-value 10010
set routing-options srlg srlg11 srlg-value 10011
set routing-options srlg srlg12 srlg-value 10012
set routing-options router-id 172.16.4.4
set protocols rsvp interface all
set protocols mpls admin-groups c0 0
set protocols mpls admin-groups c1 1
set protocols mpls admin-groups c2 2
set protocols mpls admin-groups c3 3
set protocols mpls admin-groups c4 4
set protocols mpls admin-groups c5 5
set protocols mpls admin-groups c6 6
set protocols mpls admin-groups c7 7
set protocols mpls admin-groups c8 8
set protocols mpls admin-groups c9 9
set protocols mpls admin-groups c10 10
set protocols mpls admin-groups c11 11
set protocols mpls admin-groups c12 12
set protocols mpls admin-groups c13 13
set protocols mpls admin-groups c14 14
set protocols mpls admin-groups c15 15
set protocols mpls admin-groups c16 16
set protocols mpls admin-groups c17 17
set protocols mpls admin-groups c18 18
set protocols mpls admin-groups c19 19
set protocols mpls admin-groups c20 20
set protocols mpls admin-groups c21 21
set protocols mpls admin-groups c22 22
set protocols mpls admin-groups c23 23
set protocols mpls admin-groups c24 24
set protocols mpls admin-groups c25 25
set protocols mpls admin-groups c26 26
set protocols mpls admin-groups c27 27
set protocols mpls admin-groups c28 28
set protocols mpls admin-groups c29 29
set protocols mpls admin-groups c30 30
set protocols mpls admin-groups c31 31
set protocols mpls interface all
set protocols ospf area 0.0.0.0 interface ge-0/1/0.0 metric 18
set protocols ospf area 0.0.0.0 interface xe-0/1/0.0 metric 10
set protocols ospf area 0.0.0.0 interface xe-0/2/0.0 metric 10
set protocols ospf area 0.0.0.0 interface xe-0/3/0.0 metric 10
set protocols ospf area 0.0.0.0 interface ge-0/1/0.0 metric 10
set protocols ospf area 0.0.0.0 interface ge-0/1/0.0 metric 10
set protocols ospf area 0.0.0.0 interface xe-0/3/1.0 metric 21
set protocols ospf3 area 0.0.0.0 interface ge-0/0/1/0.0 metric 18
set protocols ospf3 area 0.0.0.0 interface xe-0/2/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface xe-1/3/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface ge-0/0/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface ge-1/1/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface xe-0/3/1.0 metric 21

R5

set routing-options srlg srlg1 srlg-value 1001
set routing-options srlg srlg2 srlg-value 1002
set routing-options srlg srlg3 srlg-value 1003
set routing-options srlg srlg4 srlg-value 1004
set routing-options srlg srlg5 srlg-value 1005
set routing-options srlg srlg6 srlg-value 1006
set routing-options srlg srlg7 srlg-value 1007
set routing-options srlg srlg8 srlg-value 1008
set routing-options srlg srlg9 srlg-value 1009
set routing-options srlg srlg10 srlg-value 10010
set routing-options srlg srlg11 srlg-value 10011
set routing-options srlg srlg12 srlg-value 10012
set routing-options router-id 172.16.5.5
set protocols rsvp interface all
set protocols mpls admin-groups c0 0
set protocols mpls admin-groups c1 1
set protocols mpls admin-groups c2 2
set protocols mpls admin-groups c3 3
set protocols mpls admin-groups c4 4
set protocols mpls admin-groups c5 5
set protocols mpls admin-groups c6 6
set protocols mpls admin-groups c7 7
set protocols mpls admin-groups c8 8
set protocols mpls admin-groups c9 9
set protocols mpls admin-groups c10 10
set protocols mpls admin-groups c11 11
set protocols mpls admin-groups c12 12
set protocols mpls admin-groups c13 13
set protocols mpls admin-groups c14 14
set protocols mpls admin-groups c15 15
set protocols mpls admin-groups c16 16
set protocols mpls admin-groups c17 17
set protocols mpls admin-groups c18 18
set protocols mpls admin-groups c19 19
set protocols mpls admin-groups c20 20
set protocols mpls admin-groups c21 21
cset protocols mpls admin-groups c22 22
cset protocols mpls admin-groups c23 23
cset protocols mpls admin-groups c24 24
cset protocols mpls admin-groups c25 25
cset protocols mpls admin-groups c26 26
cset protocols mpls admin-groups c27 27
cset protocols mpls admin-groups c28 28
cset protocols mpls admin-groups c29 29
cset protocols mpls admin-groups c30 30
cset protocols mpls admin-groups c31 31
cset protocols mpls interface all
cset protocols ospf area 0.0.0.0 interface xe-0/2/0.0 metric 51
cset protocols ospf area 0.0.0.0 interface ge-0/0/1.0 metric 10
cset protocols ospf area 0.0.0.0 interface ge-0/0/5.0 metric 13
cset protocols ospf area 0.0.0.0 interface ge-0/1/0.0 metric 10

cset protocols ospf3 area 0.0.0.0 interface xe-0/2/0.0 metric 51
cset protocols ospf3 area 0.0.0.0 interface ge-0/0/1.0 metric 10
cset protocols ospf3 area 0.0.0.0 interface ge-0/0/5.0 metric 13

cset routing-options srlg srlg1 srlg-value 1001
cset routing-options srlg srlg2 srlg-value 1002
cset routing-options srlg srlg3 srlg-value 1003
cset routing-options srlg srlg4 srlg-value 1004
cset routing-options srlg srlg5 srlg-value 1005
cset routing-options srlg srlg6 srlg-value 1006
cset routing-options srlg srlg7 srlg-value 1007
cset routing-options srlg srlg8 srlg-value 1008
cset routing-options srlg srlg9 srlg-value 1009
cset routing-options srlg srlg10 srlg-value 10010
cset routing-options srlg srlg11 srlg-value 10011
cset routing-options srlg srlg12 srlg-value 10012
cset routing-options router-id 172.16.6.6

cset protocols rsvp interface all
cset protocols mpls admin-groups c0 0
cset protocols mpls admin-groups c1 1
cset protocols mpls admin-groups c2 2
set protocols mpls admin-groups c3 3
set protocols mpls admin-groups c4 4
set protocols mpls admin-groups c5 5
set protocols mpls admin-groups c6 6
set protocols mpls admin-groups c7 7
set protocols mpls admin-groups c8 8
set protocols mpls admin-groups c9 9
set protocols mpls admin-groups c10 10
set protocols mpls admin-groups c11 11
set protocols mpls admin-groups c12 12
set protocols mpls admin-groups c13 13
set protocols mpls admin-groups c14 14
set protocols mpls admin-groups c15 15
set protocols mpls admin-groups c16 16
set protocols mpls admin-groups c17 17
set protocols mpls admin-groups c18 18
set protocols mpls admin-groups c19 19
set protocols mpls admin-groups c20 20
set protocols mpls admin-groups c21 21
set protocols mpls admin-groups c22 22
set protocols mpls admin-groups c23 23
set protocols mpls admin-groups c24 24
set protocols mpls admin-groups c25 25
set protocols mpls admin-groups c26 26
set protocols mpls admin-groups c27 27
set protocols mpls admin-groups c28 28
set protocols mpls admin-groups c29 29
set protocols mpls admin-groups c30 30
set protocols mpls admin-groups c31 31
set protocols mpls interface all
set protocols ospf area 0.0.0.0 interface xe-0/3/0/0 metric 52
set protocols ospf area 0.0.0.0 interface ge-0/0/0/0 metric 12
set protocols ospf area 0.0.0.0 interface ge-0/0/4/0 metric 15
set protocols ospf area 0.0.0.0 interface xe-0/2/0/0 metric 10
set protocols ospf3 area 0.0.0.0 interface xe-0/3/0/0 metric 52
set protocols ospf3 area 0.0.0.0 interface ge-0/0/0/0 metric 12
set protocols ospf3 area 0.0.0.0 interface ge-0/0/4/0 metric 15
set protocols ospf3 area 0.0.0.0 interface xe-0/2/0/0 metric 10
set routing-options srlg srlg1 srlg-value 1001
set routing-options srlg srlg2 srlg-value 1002
set routing-options srlg srlg3 srlg-value 1003
set routing-options srlg srlg4 srlg-value 1004
set routing-options srlg srlg5 srlg-value 1005
set routing-options srlg srlg6 srlg-value 1006
set routing-options srlg srlg7 srlg-value 1007
set routing-options srlg srlg8 srlg-value 1008
set routing-options srlg srlg9 srlg-value 1009
set routing-options srlg srlg10 srlg-value 10010
set routing-options srlg srlg11 srlg-value 10011
set routing-options srlg srlg12 srlg-value 10012
set routing-options router-id 172.16.7.7
set protocols rsvp interface all
set protocols mpls admin-groups c0 0
set protocols mpls admin-groups c1 1
set protocols mpls admin-groups c2 2
set protocols mpls admin-groups c3 3
set protocols mpls admin-groups c4 4
set protocols mpls admin-groups c5 5
set protocols mpls admin-groups c6 6
set protocols mpls admin-groups c7 7
set protocols mpls admin-groups c8 8
set protocols mpls admin-groups c9 9
set protocols mpls admin-groups c10 10
set protocols mpls admin-groups c11 11
set protocols mpls admin-groups c12 12
set protocols mpls admin-groups c13 13
set protocols mpls admin-groups c14 14
set protocols mpls admin-groups c15 15
set protocols mpls admin-groups c16 16
set protocols mpls admin-groups c17 17
set protocols mpls admin-groups c18 18
set protocols mpls admin-groups c19 19
set protocols mpls admin-groups c20 20
set protocols mpls admin-groups c21 21
set protocols mpls admin-groups c22 22
set protocols mpls admin-groups c23 23
set protocols mpls admin-groups c24 24
set protocols mpls admin-groups c25 26
set protocols mpls admin-groups c27 27
set protocols mpls admin-groups c28 28
set protocols mpls admin-groups c29 29
set protocols mpls admin-groups c30 30
set protocols mpls admin-groups c31 31
set protocols mpls interface all
set protocols mpls interface xe-0/3/0.0 srlg srlg8
set protocols ospf area 0.0.0.0 interface ge-0/1/5.0 metric 23
set protocols ospf area 0.0.0.0 interface xe-0/3/0.0 metric 10
set protocols ospf area 0.0.0.0 interface ge-1/0/0.0 metric 13
set protocols ospf area 0.0.0.0 interface xe-1/3/0.0 metric 22
set protocols ospf area 0.0.0.0 interface xe-1/2/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface ge-0/1/5.0 metric 23
set protocols ospf3 area 0.0.0.0 interface xe-0/3/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface ge-1/0/0.0 metric 13
set protocols ospf3 area 0.0.0.0 interface xe-1/3/0.0 metric 22
set protocols ospf3 area 0.0.0.0 interface xe-1/2/0.0 metric 10

Configuring Device R3

Step-by-Step Procedure

The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure Device R3:

1. Configure the interfaces.

 [edit interfaces]
 user@R3# set ge-0/0/5 unit 0 family inet address 172.16.50.2/30
 user@R3# set ge-0/0/5 unit 0 family inet6 address 2001:db8:50:1:1::2/64
 user@R3# set ge-0/0/5 unit 0 family mpls

 user@R3# set xe-0/3/1 unit 0 family inet address 172.16.75.1/30
 user@R3# set xe-0/3/1 unit 0 family inet6 address 2001:db8:75:1:1::1/64
 user@R3# set xe-0/3/1 unit 0 family mpls

 user@R3# set ge-1/0/0 unit 0 family inet address 172.16.80.1/30
 user@R3# set ge-1/0/0 unit 0 family inet6 address 2001:db8:80:1:1::1/64
 user@R3# set ge-1/0/0 unit 0 family mpls

 user@R3# set ge-1/0/5 unit 0 family inet address 172.16.200.1/24
 user@R3# set ge-1/0/5 unit 0 family inet6 address 2001:db8:200:1:1::1/64
2. Configure srlg values.

```
[edit routing-options]
user@R3# set srlg srlg1 srlg-value 1001
user@R3# set srlg srlg2 srlg-value 1002
user@R3# set srlg srlg3 srlg-value 1003
user@R3# set srlg srlg4 srlg-value 1004
user@R3# set srlg srlg5 srlg-value 1005
user@R3# set srlg srlg6 srlg-value 1006
user@R3# set srlg srlg7 srlg-value 1007
user@R3# set srlg srlg8 srlg-value 1008
user@R3# set srlg srlg9 srlg-value 1009
user@R3# set srlg srlg10 srlg-value 10010
user@R3# set srlg srlg11 srlg-value 10011
user@R3# set srlg srlg12 srlg-value 10012
```
[edit routing-options backup-selection]
user@R3# set destination 10.1.1.0/30 interface xe-1/3/0.0 admin-group include-all c2
user@R3# set destination 10.1.1.0/30 interface all admin-group exclude c3
user@R3# set destination 10.1.1.0/30 interface all srlg strict
user@R3# set destination 10.1.1.0/30 interface all protection-type node
user@R3# set destination 10.1.1.0/30 interface all bandwidth-greater-equal-primary
user@R3# set destination 10.1.1.0/30 interface all neighbor preference 172.16.7.7
user@R3# set destination 10.1.1.0/30 interface all root-metric lowest
user@R3# set destination 10.1.1.0/30 interface all metric-order root

user@R3# set destination 172.16.30.0/30 interface all admin-group exclude c5
user@R3# set destination 172.16.30.0/30 interface all srlg strict
user@R3# set destination 172.16.30.0/30 interface all protection-type node
user@R3# set destination 172.16.30.0/30 interface all bandwidth-greater-equal-primary
user@R3# set destination 172.16.30.0/30 interface all neighbor preference 172.16.7.7
user@R3# set destination 172.16.30.0/30 interface all root-metric lowest
user@R3# set destination 172.16.30.0/30 interface all metric-order root

user@R3# set destination 192.168.45.0/30 interface all admin-group exclude c5
user@R3# set destination 192.168.45.0/30 interface all srlg strict
user@R3# set destination 192.168.45.0/30 interface all protection-type node
user@R3# set destination 192.168.45.0/30 interface all bandwidth-greater-equal-primary
user@R3# set destination 192.168.45.0/30 interface all neighbor preference 172.16.7.7
user@R3# set destination 192.168.45.0/30 interface all root-metric lowest
user@R3# set destination 192.168.45.0/30 interface all metric-order root

6. Enable RSVP on all the interfaces.

 [edit protocols]
user@R3# set rsvp interface all

7. Configure administrative groups.

 [edit protocols mpls]
user@R3# set admin-groups c0 0
user@R3# set admin-groups c1 1
user@R3# set admin-groups c2 2
user@R3# set admin-groups c3 3
user@R3# set admin-groups c4 4
user@R3# set admin-groups c5 5
user@R3# set admin-groups c6 6
user@R3# set admin-groups c7 7
8. Enable MPLS on all the interfaces and configure administrative group for an interface.

[edit protocols mpls]
user@R3# set interface all
user@R3# set interface ge-0/0/5.0 admin-group c0

9. Enable link protection and configure metric values on all the interfaces for an OSPF area.

[edit protocols ospf]
user@R3# set area 0.0.0.0 interface ge-0/0/5.0 link-protection
user@R3# set area 0.0.0.0 interface ge-0/0/5.0 metric 10
user@R3# set area 0.0.0.0 interface xe-0/3/1.0 metric 21
user@R3# set area 0.0.0.0 interface ge-1/0/0.0 metric 13
user@R3# set area 0.0.0.0 interface ge-1/0/6.0 metric 15
user@R3# set area 0.0.0.0 interface xe-1/3/0.0 link-protection
user@R3# set area 0.0.0.0 interface xe-1/3/0.0 metric 22
10. Enable link protection and configure metric values on all the interfaces for an OSPF3 area.

```
[edit protocols ospf3]
user@R3# set area 0.0.0.0 interface ge-0/0/5.0 link-protection
user@R3# set area 0.0.0.0 interface ge-0/0/5.0 metric 10
user@R3# set area 0.0.0.0 interface xe-0/3/1.0 metric 21
user@R3# set area 0.0.0.0 interface ge-1/0/0.0 metric 13
user@R3# set area 0.0.0.0 interface ge-1/0/6.0 metric 15
user@R3# set area 0.0.0.0 interface xe-1/3/0.0 link-protection
user@R3# set area 0.0.0.0 interface xe-1/3/0.0 metric 22
```

11. Configure the routing policy.

```
[edit policy-options]
user@R3# set policy-statement ecmp term 1 then load-balance per-packet
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R3# show interfaces
ge-0/0/5 {
    unit 0 {
        family inet {
            address 192.168.50.2/30;
        }
        family inet6 {
            address 2001:db8:50:1:1::2/64;
        }
        family mpls;
    }
}
xe-0/3/1 {
    unit 0 {
        family inet {
            address 192.168.75.1/30;
        }
        family inet6 {
            address 2001:db8:75:1::1/64;
        }
        family mpls;
    }
}
ge-1/0/0 {
  unit 0 {
    family inet {
      address 192.168.80.1/30;
    }
    family inet6 {
      address 2001:db8:80:1:1::1/64;
    }
    family mpls;
  }
}
ge-1/0/5 {
  unit 0 {
    family inet {
      address 172.16.200.1/24;
    }
    family inet6 {
      address 2001:db8:200:1:1::1/64;
    }
  }
}
ge-1/0/6 {
  unit 0 {
    family inet {
      address 192.168.85.1/30;
    }
    family inet6 {
      address 2001:db8:85:1:1::1/64;
    }
    family mpls;
  }
}
xe-1/3/0 {
  unit 0 {
    family inet {
      address 192.168.90.1/30;
    }
    family inet6 {
      address 2001:db8:90:1:1::1/64;
    }
    family mpls;
  }
}
user@R3# show protocols
rsvp {
    interface all;
}
mls {
    admin-groups {
        c0 0;
        c1 1;
        c2 2;
        c3 3;
        c4 4;
        c5 5;
        c6 6;
        c7 7;
        c8 8;
        c9 9;
        c10 10;
        c11 11;
        c12 12;
        c13 13;
        c14 14;
        c15 15;
        c16 16;
        c17 17;
        c18 18;
        c19 19;
        c20 20;
    }
}
interface all;
interface ge-0/0/5.0 {
    admin-group c0;
}

ospf {
    area 0.0.0.0 {
        interface ge-0/0/5.0 {
            link-protection;
            metric 10;
        }
        interface xe-0/3/1.0 {
            metric 21;
        }
        interface ge-1/0/0.0 {
            metric 13;
        }
        interface ge-1/0/6.0 {
            metric 15;
        }
        interface xe-1/3/0.0 {
            link-protection;
            metric 22;
        }
    }
}

ospf3 {
    area 0.0.0.0 {
        interface ge-0/0/5.0 {
            link-protection;
            metric 10;
        }
    }
}
interface xe-0/3/1.0 {
  metric 21;
}
interface ge-1/0/0.0 {
  metric 13;
}
interface ge-1/0/6.0 {
  metric 15;
}
interface xe-1/3/0.0 {
  link-protection;
  metric 22;
}
user@R3# show routing-options
srlg {
  srlg1 srlg-value 1001;
  srlg2 srlg-value 1002;
  srlg3 srlg-value 1003;
  srlg4 srlg-value 1004;
  srlg5 srlg-value 1005;
  srlg6 srlg-value 1006;
  srlg7 srlg-value 1007;
  srlg8 srlg-value 1008;
  srlg9 srlg-value 1009;
  srlg10 srlg-value 10010;
  srlg11 srlg-value 10011;
  srlg12 srlg-value 10012;
}
router-id 172.16.3.3;
forwarding-table {
  export ecmp;
}
backup-selection {
  destination 10.1.1.0/30 {
    interface xe-1/3/0.0 {
      admin-group {
        include-all c2;
      }
    }
  }
  interface all {
    admin-group {

If you are done configuring the device, enter **commit** from configuration mode.
Verification

IN THIS SECTION

- Verifying the Routes | 480
- Verifying the OSPF Route | 484
- Verifying the OSPF3 Route | 484
- Verifying the Backup Selection Policy for Device R3 | 485

Confirm that the configuration is working properly.

Verifying the Routes

Purpose

Verify that the expected routes are learned.

Action

From operational mode, run the show route command for the routing table.

```
user@R3> show route
```

inet.0: 48 destinations, 48 routes (48 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

```
172.16.3.3/32 *[Direct/0] 02:22:27
 > via lo0.0
10.4.0.0/16 *[Static/5] 02:22:57
 > to 10.92.31.254 via fxp0.0
10.5.0.0/16 *[Static/5] 02:22:57
 > to 10.92.31.254 via fxp0.0
10.6.128.0/17 *[Static/5] 02:22:57
 > to 10.92.31.254 via fxp0.0
10.9.0.0/16 *[Static/5] 02:22:57
 > to 10.92.31.254 via fxp0.0
10.10.0.0/16 *[Static/5] 02:22:57
 > to 10.92.31.254 via fxp0.0
10.13.4.0/23 *[Static/5] 02:22:57
 > to 10.92.31.254 via fxp0.0
10.13.10.0/23 *[Static/5] 02:22:57
 > to 10.92.31.254 via fxp0.0
```
10.82.0.0/15  *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.84.0.0/16  *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.85.12.0/22 *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.92.0.0/16  *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.92.16.0/20 *[Direct/0] 02:22:57
    > via fxp0.0
    Local via fxp0.0
10.94.0.0/16  *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.99.0.0/16  *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.102.0.0/16 *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.150.0.0/16 *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.155.0.0/16 *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.157.64.0/19 *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.160.0.0/16 *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.204.0.0/16 *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.205.0.0/16 *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.206.0.0/16 *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.207.0.0/16 *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.209.0.0/16 *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.212.0.0/16 *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.213.0.0/16 *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.214.0.0/16 *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.215.0.0/16 *[Static/5] 02:22:57
    > to 10.92.31.254 via fxp0.0
10.216.0.0/16 *[Static/5] 02:22:57
   > to 10.92.31.254 via fxp0.0
10.218.13.0/24 *[Static/5] 02:22:57
   > to 10.92.31.254 via fxp0.0
   > to 10.92.31.254 via fxp0.0
10.218.16.0/20 *[Static/5] 02:22:57
   > to 10.92.31.254 via fxp0.0
10.218.32.0/20 *[Static/5] 02:22:57
   > to 10.92.31.254 via fxp0.0
10.227.0.0/16 *[Static/5] 02:22:57
   > to 10.92.31.254 via fxp0.0
172.16.50.0/30 *[Direct/0] 02:19:55
   > via ge-0/0/5.0
172.16.50.2/32 *[Local/0] 02:19:58
   Local via ge-0/0/5.0
172.16.75.0/30 *[Direct/0] 02:19:55
   > via xe-0/3/1.0
172.16.75.1/32 *[Local/0] 02:19:57
   Local via xe-0/3/1.0
   > via lo0.0
172.16.0.0/12 *[Static/5] 02:22:57
   > to 10.92.31.254 via fxp0.0
192.168.0.0/16 *[Static/5] 02:22:57
   > to 10.92.31.254 via fxp0.0
192.168.102.0/23 *[Static/5] 02:22:57
   > to 10.92.31.254 via fxp0.0
192.168.136.0/24 *[Static/5] 02:22:57
   > to 10.92.31.254 via fxp0.0
   > to 10.92.31.254 via fxp0.0
192.168.137.0/24 *[Static/5] 02:22:57
   > to 10.92.31.254 via fxp0.0
192.168.233.5/32 *[OSPF/10] 00:16:55, metric 1
   MultiRecv

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

47.0005.80ff.f800.0000.0108.0001.1280.9202.4195/152
   *[Direct/0] 02:22:57
   > via lo0.0
mpls.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0                  *[MPLS/0] 00:16:55, metric 1
                Receive
1                  *[MPLS/0] 00:16:55, metric 1
                Receive
2                  *[MPLS/0] 00:16:55, metric 1
                Receive
13                 *[MPLS/0] 00:16:55, metric 1
                Receive

inet6.0: 10 destinations, 11 routes (10 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2001:db8:50:1:1::/64   *[Direct/0] 02:19:44
                     > via ge-0/0/5.0
                     Local via ge-0/0/5.0
2001:db8:75:1:1::/64   *[Direct/0] 02:19:44
                     > via xe-0/3/1.0
2001:db8:75:1:1::1/128 *[Local/0] 02:19:57
                     Local via xe-0/3/1.0
                     > via lo0.0
                     *[Direct/0] 02:22:57
                     > via lo0.0
fe80::/64          *[Direct/0] 02:19:44
                     > via ge-0/0/5.0
                     [Direct/0] 02:19:43
                     > via xe-0/3/1.0
fe80::205:86ff:fe00:ed05/128
                     *[Local/0] 02:19:58
                     Local via ge-0/0/5.0
fe80::205:86ff:fe00:ed3d/128
                     *[Local/0] 02:19:57
                     Local via xe-0/3/1.0
fe80::5668:a50f:fccl:3ca2/128
                     *[Direct/0] 02:22:57
                     > via lo0.0

**Meaning**
The output shows all Device R3 routes.
Verifying the OSPF Route

Purpose
Verify the routing table of OSPF.

Action
From operational mode, run the `show ospf route detail` command for Device R3.

```
user@R3> show ospf route detail
```

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Path</th>
<th>Route</th>
<th>NH</th>
<th>Metric</th>
<th>NextHop</th>
<th>Nexthop</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.50.0/30</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>10</td>
<td>ge-0/0/5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>area 0.0.0.0, origin 172.16.3.3, priority low</td>
<td></td>
</tr>
<tr>
<td>172.16.75.0/30</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>21</td>
<td>xe-0/3/1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>area 0.0.0.0, origin 172.16.3.3, priority low</td>
<td></td>
</tr>
</tbody>
</table>

Meaning
The output displays the routing table of OSPF routers.

Verifying the OSPF3 Route

Purpose
Verify the routing table of OSPF3.

Action
From operational mode, run the `show ospf3 route detail` command for Device R3.

```
user@R3> show ospf3 route detail
```

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Path</th>
<th>Route</th>
<th>NH</th>
<th>Metric</th>
<th>NextHop</th>
<th>Nexthop</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001:db8:50:1:1::/64</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NH-interface ge-0/0/5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Area 0.0.0.0, Origin 172.16.3.3, Priority low</td>
<td></td>
</tr>
<tr>
<td>2001:db8:75:1:1::/64</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NH-interface xe-0/3/1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Area 0.0.0.0, Origin 172.16.3.3, Priority low</td>
<td></td>
</tr>
</tbody>
</table>
**Meaning**
The output displays the routing table of OSPF3 routers.

**Verifying the Backup Selection Policy for Device R3**

**Purpose**
Verify the backup selection policy for Device R3.

**Action**
From operational mode, run the `show backup-selection` command for Device R3.

```plaintext
user@R3> show backup-selection

<table>
<thead>
<tr>
<th>Prefix: 10.1.1.0/30</th>
<th>Interface: all</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Admin-group exclude: c3</td>
</tr>
<tr>
<td></td>
<td>Neighbor preference: 172.16.7.7</td>
</tr>
<tr>
<td></td>
<td>Protection Type: Node, Downstream Paths Only: Disabled, SRLG: Strict, B/w >=</td>
</tr>
<tr>
<td></td>
<td>Primary: Enabled, Root-metric: lowest, Dest-metric: lowest</td>
</tr>
<tr>
<td></td>
<td>Metric Evaluation Order: Root-metric, Dest-metric</td>
</tr>
<tr>
<td></td>
<td>Policy Evaluation Order: Admin-group, SRLG, Bandwidth, Protection, node, Metric</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prefix: 172.16.30.0/30</th>
<th>Interface: all</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Admin-group exclude: c5</td>
</tr>
<tr>
<td></td>
<td>Neighbor preference: 172.16.7.7</td>
</tr>
<tr>
<td></td>
<td>Protection Type: Node, Downstream Paths Only: Disabled, SRLG: Strict, B/w >=</td>
</tr>
<tr>
<td></td>
<td>Primary: Enabled, Root-metric: lowest, Dest-metric: lowest</td>
</tr>
<tr>
<td></td>
<td>Metric Evaluation Order: Root-metric, Dest-metric</td>
</tr>
<tr>
<td></td>
<td>Policy Evaluation Order: Admin-group, SRLG, Bandwidth, Protection, node, Metric</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prefix: 172.16.45.0/30</th>
<th>Interface: all</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Admin-group exclude: c5</td>
</tr>
<tr>
<td></td>
<td>Neighbor preference: 172.16.7.7</td>
</tr>
<tr>
<td></td>
<td>Protection Type: Node, Downstream Paths Only: Disabled, SRLG: Strict, B/w >=</td>
</tr>
<tr>
<td></td>
<td>Primary: Enabled, Root-metric: lowest, Dest-metric: lowest</td>
</tr>
<tr>
<td></td>
<td>Metric Evaluation Order: Root-metric, Dest-metric</td>
</tr>
</tbody>
</table>
```
Meaning
The output displays the configured policies per prefix per primary next-hop interface.

SEE ALSO

backup-selection (Protocols ISIS)

Example: Injecting OSPF Routes into the BGP Routing Table

This example shows how to create a policy that injects OSPF routes into the BGP routing table.

Requirements

Before you begin:

- Configure network interfaces.
- Configure external peer sessions. See Example: Configuring External BGP Point-to-Point Peer Sessions.
- Configure interior gateway protocol (IGP) sessions between peers.
Overview

In this example, you create a routing policy called `injectpolicy1` and a routing term called `injectterm1`. The policy injects OSPF routes into the BGP routing table.

Configuration

<table>
<thead>
<tr>
<th>IN THIS SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring the Routing Policy</td>
</tr>
<tr>
<td>Configuring Tracing for the Routing Policy</td>
</tr>
</tbody>
</table>

**Configuring the Routing Policy**

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```
set policy-options policy-statement injectpolicy1 term injectterm1 from protocol ospf
set policy-options policy-statement injectpolicy1 term injectterm1 from area 0.0.0.1
set policy-options policy-statement injectpolicy1 term injectterm1 then accept
set protocols bgp export injectpolicy1
```

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the CLI User Guide.

To inject OSPF routes into a BGP routing table:

1. Create the policy term.

   ```
 [edit policy-options policy-statement injectpolicy1]
 user@host# set term injectterm1
   ```

2. Specify OSPF as a match condition.

   ```
 [edit policy-options policy-statement injectpolicy1 term injectterm1]
   ```
3. Specify the routes from an OSPF area as a match condition.

   user@host# set from protocol ospf

4. Specify that the route is to be accepted if the previous conditions are matched.

   [edit policy-options policy-statement injectpolicy1 term injectterm1]
   user@host# set from area 0.0.0.1

   user@host# set then accept

5. Apply the routing policy to BGP.

   [edit]
   user@host# set protocols bgp export injectpolicy1

Results

Confirm your configuration by entering the `show policy-options` and `show protocols bgp` commands from configuration mode. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

   user@host# show policy-options
   policy-statement injectpolicy1 {
     term injectterm1 {
       from {
         protocol ospf;
         area 0.0.0.1;
       }
       then accept;
     }
   }

   user@host# show protocols bgp
   export injectpolicy1;

If you are done configuring the device, enter `commit` from configuration mode.
Configuring Tracing for the Routing Policy

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
set policy-options policy-statement injectpolicy1 term injectterm1 then trace
set routing-options traceoptions file ospf-bgp-policy-log
set routing-options traceoptions file size 5m
set routing-options traceoptions file files 5
set routing-options traceoptions flag policy
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

1. Include a trace action in the policy.

```
[edit policy-options policy-statement injectpolicy1 term injectterm1]
user@host# then trace
```

2. Configure the tracing file for the output.

```
[edit routing-options traceoptions]
user@host# set file ospf-bgp-policy-log
user@host# set file size 5m
user@host# set file files 5
user@host# set flag policy
```

Results

Confirm your configuration by entering the `show policy-options` and `show routing-options` commands from configuration mode. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
uuser@host# show policy-options
policy-statement injectpolicy1 {
 term injectterm1 {
 then {
 trace;
 }
 }
```
If you are done configuring the device, enter **commit** from configuration mode.

**Verification**

Confirm that the configuration is working properly.

*Verifying That the Expected BGP Routes Are Present*

**Purpose**
Verify the effect of the export policy.

**Action**
From operational mode, enter the **show route** command.

**Troubleshooting**

---

**Using the show log Command to Examine the Actions of the Routing Policy**

**Problem**
The routing table contains unexpected routes, or routes are missing from the routing table.

**Solution**
If you configure policy tracing as shown in this example, you can run the **show log ospf-bgp-policy-log** command to diagnose problems with the routing policy. The **show log ospf-bgp-policy-log** command displays information about the routes that the **injectpolicy1** policy term analyzes and acts upon.
This example shows how to create a policy that redistributes static routes into OSPF.

Requirements

Before you begin:

- Configure the device interfaces. See the Interfaces User Guide for Security Devices.

Overview

In this example, you create a routing policy called exportstatic1 and a routing term called exportstatic1. The policy injects static routes into OSPF. This example includes the following settings:

- **policy-statement**—Defines the routing policy. You specify the name of the policy and further define the elements of the policy. The policy name must be unique and can contain letters, numbers, and hyphens (-) and be up to 255 characters long.

- **term**—Defines the match condition and applicable actions for the routing policy. The term name can contain letters, numbers, and hyphens (-) and be up to 255 characters long. You specify the name of the term and define the criteria that an incoming route must match by including the `from` statement and the action to take if the route matches the conditions by including the `then` statement. In this example you specify the static protocol match condition and the accept action.

- **export**—Applies the export policy you created to be evaluated when routes are being exported from the routing table into OSPF.

Configuration

CLI Quick Configuration
To quickly create a policy that injects static routes into OSPF, copy the following commands and paste them into the CLI.

```plaintext
[edit]
set policy-options policy-statement exportstatic1 term exportstatic1 from protocol static
set policy-options policy-statement exportstatic1 term exportstatic1 then accept
set protocols ospf export exportstatic1
```

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Modifying the Junos OS Configuration* in the *CLI User Guide*.

To inject static routes into OSPF:

1. Create the routing policy.

   ```plaintext
 [edit]
 user@host# edit policy-options policy-statement exportstatic1
   ```

2. Create the policy term.

   ```plaintext
 [edit policy-options policy-statement exportstatic1]
 user@host# set term exportstatic1
   ```

3. Specify static as a match condition.

   ```plaintext
 [edit policy-options policy-statement exportstatic1 term exportstatic1]
 user@host# set from protocol static
   ```

4. Specify that the route is to be accepted if the previous condition is matched.

   ```plaintext
 [edit policy-options policy-statement exportstatic1 term exportstatic1]
 user@host# set then accept
   ```

5. Apply the routing policy to OSPF.

   **NOTE:** For OSPFv3, include the `ospf3` statement at the `[edit protocols]` hierarchy level.
6. If you are done configuring the device, commit the configuration.

   [edit]
   user@host# commit

Results
Confirm your configuration by entering the `show policy-options` and `show protocols ospf` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

   user@host# show policy-options
   policy-statement exportstatic1 {
   term exportstatic1 {
   from protocol static;
   then accept;
   }
   }

   user@host# show protocols ospf
   export exportstatic1;

To confirm your OSPFv3 configuration, enter the `show policy-options` and the `show protocols ospf3` commands.

Verification

IN THIS SECTION

- Verifying That the Expected Static Routes Are Present | 494
- Verifying That AS External LSAs Are Added to the Routing Table | 494

Confirm that the configuration is working properly.
Verifying That the Expected Static Routes Are Present

**Purpose**
Verify the effect of the export policy.

**Action**
From operational mode, enter the `show route` command.

Verifying That AS External LSAs Are Added to the Routing Table

**Purpose**
On the routing device where you configured the export policy, verify that the routing device originates an AS external LSA for the static routes that are added to the routing table.

**Action**
From operational mode, enter the `show ospf database` command for OSPFv2, and enter the `show ospf3 database` command for OSPFv3.

---

**Example: Configuring an OSPF Import Policy**

This example shows how to create an OSPF import policy. OSPF import policies apply to external routes only. An external route is a route that is outside the OSPF autonomous system (AS).

**Requirements**

Before you begin:

- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.

---
• Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.

Overview

External routes are learned by AS boundary routers. External routes can be advertised throughout the OSPF domain if you configure the AS boundary router to redistribute the route into OSPF. An external route might be learned by the AS boundary router from a routing protocol other than OSPF, or the external route might be a static route that you configure on the AS boundary router.

For OSPFv3, the link-state advertisement (LSA) is referred to as the interarea prefix LSA and performs the same function as a network-summary LSA performs for OSPFv2. An area border router (ABR) originates an interarea prefix LSA for each IPv6 prefix that must be advertised into an area.

OSPF import policy allows you to prevent external routes from being added to the routing tables of OSPF neighbors. The import policy does not impact the OSPF database. This means that the import policy has no impact on the link-state advertisements. The filtering is done only on external routes in OSPF. The intra-area and interarea routes are not considered for filtering. The default action is to accept the route when the route does not match the policy.

This example includes the following OSPF policy settings:

- **policy-statement**—Defines the routing policy. You specify the name of the policy and further define the elements of the policy. The policy name must be unique and can contain letters, numbers, and hyphens (-) and be up to 255 characters long.

- **export**—Applies the export policy you created to be evaluated when network summary LSAs are flooded into an area. In this example, the export policy is named export_static.

- **import**—Applies the import policy you created to prevent external routes from being added to the routing table. In this example, the import policy is named filter_routes.

The devices you configure in this example represent the following functions:

- **R1**—Device R1 is in area 0.0.0.0 and has a direct connection to device R2. R1 has an OSPF export policy configured. The export policy redistributes static routes from R1’s routing table into R1’s OSPF database. Because the static route is in R1’s OSPF database, the route is advertised in an LSA to R1’s OSPF neighbor. R1’s OSPF neighbor is device R2.

- **R2**—Device R2 is in area 0.0.0.0 and has a direct connection to device R1. R2 has an OSPF import policy configured that matches the static route to the 10.0.16.0/30 network and prevents the static route from being installed in R2’s routing table. R2’s OSPF neighbor is device R1.

Configuration

**CLI Quick Configuration**
To quickly configure an OSPF import policy, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

Configuration on Device R1:

```
[edit]
set interfaces so-0/2/0 unit 0 family inet address 10.0.2.1/30
set protocols ospf export export_static
set protocols ospf area 0.0.0.0 interface so-0/2/0
set policy-options policy-statement export_static from protocol static
set policy-options policy-statement export_static then accept
```

Configuration on Device R2:

```
[edit]
set interfaces so-0/2/0 unit 0 family inet address 10.0.2.2/30
set protocols ospf import filter_routes
set protocols ospf area 0.0.0.0 interface so-0/2/0
set policy-options policy-statement filter_routes from route-filter 10.0.16.0/30 exact
set policy-options policy-statement filter_routes then reject
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Modifying the Junos OS Configuration in the CLI User Guide.

To configure an OSPF import policy:

1. Configure the interfaces.

```
[edit]
user@R1# set interfaces so-0/2/0 unit 0 family inet address 10.0.2.1/30
```

```
[edit]
user@R2# set interfaces so-0/2/0 unit 0 family inet address 10.0.2.2/30
```

2. Enable OSPF on the interfaces.

   NOTE: For OSPFv3, include the ospf3 statement at the [edit protocols] hierarchy level.
3. On R1, redistribute the static route into OSPF.

```bash
[edit]
user@R1# set protocols ospf area 0.0.0.0 interface so-0/2/0

[edit]
user@R2# set protocols ospf area 0.0.0.0 interface so-0/2/0
```

4. On R2, configure the OSPF import policy.

```bash
[edit]
user@R2# set protocols ospf import filter_routes
user@R2# set policy-options policy-statement filter_routes from route-filter 10.0.16.0/30 exact
user@R2# set policy-options policy-statement filter_routes then reject
```

5. If you are done configuring the devices, commit the configuration.

```bash
[edit]
user@host# commit
```

**Results**

Confirm your configuration by entering the `show interfaces`, `show policy-options`, and `show protocols ospf` commands on the appropriate device. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Output for R1:

```bash
user@R1# show interfaces
so-0/2/0 {
 unit 0 {
 family inet {
 address 10.0.2.1/30;
 }
 }
}
```
user@R1# show policy-options
policy-statement export_static {
    from protocol static;
    then accept;
}

user@R1# show protocols ospf
export export_static;
area 0.0.0.0 {
    interface so-0/2/0.0;
}

Output for R2:

user@R2# show interfaces
so-0/2/0 {
    unit 0 {
        family inet {
            address 10.0.2.2/30;
        }
    }
}

user@R2# show policy-options
policy-statement filter_routes {
    from {
        route-filter 10.0.16.0/30 exact;
    }
    then reject;
}

user@R2# show protocols ospf
import filter_routes;
area 0.0.0.0 {
    interface so-0/2/0.0;
}
To confirm your OSPFv3 configuration, enter the `show interfaces`, `show policy-options`, `show routing-options`, and `show protocols ospf3` commands on the appropriate device.

**Verification**

**Verifying the OSPF Database**

**Purpose**
Verify that OSPF is advertising the static route in the OSPF database.

**Action**
From operational mode, enter the `show ospf database` for OSPFv2, and enter the `show ospf3 database` command for OSPFv3.

**Verifying the Routing Table**

**Purpose**
Verify the entries in the routing table.

**Action**
From operational mode, enter the `show route` command.

---

**Example: Configuring a Route Filter Policy to Specify Priority for Prefixes Learned Through OSPF**
This example shows how to create an OSPF import policy that prioritizes specific prefixes learned through OSPF.

**Requirements**

Before you begin:

- Configure the device interfaces. See the *Interfaces User Guide for Security Devices*.
- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election See "Example: Controlling OSPF Designated Router Election" on page 71
- Configure a single-area OSPF network. See "Example: Configuring a Single-Area OSPF Network" on page 76.
- Configure a multiarea OSPF network. See “Example: Configuring a Multiarea OSPF Network” on page 79.

**Overview**

In a network with a large number of OSPF routes, it can be useful to control the order in which routes are updated in response to a network topology change. In Junos OS Release 9.3 and later, you can specify a priority of high, medium, or low for prefixes included in an OSPF import policy. In the event of an OSPF topology change, high priority prefixes are updated in the routing table first, followed by medium and then low priority prefixes.

OSPF import policy can only be used to set priority or to filter OSPF external routes. If an OSPF import policy is applied that results in a reject terminating action for a nonexternal route, then the reject action is ignored and the route is accepted anyway. By default, such a route is now installed in the routing table with a priority of low. This behavior prevents traffic black holes, that is, silently discarded traffic, by ensuring consistent routing within the OSPF domain.

In general, OSPF routes that are not explicitly assigned a priority are treated as priority medium, except for the following:

- Summary discard routes have a default priority of low.
- Local routes that are not added to the routing table are assigned a priority of low.
• External routes that are rejected by import policy and thus not added to the routing table are assigned a priority of low.

Any available match criteria applicable to OSPF routes can be used to determine the priority. Two of the most commonly used match criteria for OSPF are the **route-filter** and **tag** statements.

In this example, the routing device is in area 0.0.0.0, with interfaces **fe-0/1/0** and **fe-1/1/0** connecting to neighboring devices. You configure an import routing policy named ospf-import to specify a priority for prefixes learned through OSPF. Routes associated with these prefixes are installed in the routing table in the order of the prefixes' specified priority. Routes matching **192.0.2.0/24 or longer** are installed first because they have a priority of **high**. Routes matching **198.51.100.0/24 or longer** are installed next because they have a priority of **medium**. Routes matching **203.0.113.0/24 or longer** are installed last because they have a priority of **low**. You then apply the import policy to OSPF.

**NOTE:** The priority value takes effect when a new route is installed, or when there is a change to an existing route.

**Configuration**

**CLI Quick Configuration**

To quickly configure an OSPF import policy that prioritizes specific prefixes learned through OSPF, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter **commit** from configuration mode.

```
[edit]
set interfaces fe-0/1/0 unit 0 family inet address 192.168.8.4/30
set interfaces fe-0/1/0 unit 0 family inet address 192.168.8.5/30
set policy-options policy-statement ospf-import term t1 from route-filter 203.0.113.0/24 or longer
set policy-options policy-statement ospf-import term t1 then priority low
set policy-options policy-statement ospf-import term t1 then accept
set policy-options policy-statement ospf-import term t2 from route-filter 198.51.100.0/24 or longer
set policy-options policy-statement ospf-import term t2 then priority medium
set policy-options policy-statement ospf-import term t2 then accept
set policy-options policy-statement ospf-import term t3 from route-filter 192.0.2.0/24 or longer
set policy-options policy-statement ospf-import term t3 then priority high
set policy-options policy-statement ospf-import term t3 then accept
set protocols ospf import ospf-import
set protocols ospf area 0.0.0.0 interface fe-0/1/0
set protocols ospf area 0.0.0.0 interface fe-1/1/0
```
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Modifying the Junos OS Configuration in the CLI User Guide.

To configure an OSPF import policy that prioritizes specific prefixes:

1. Configure the interfaces.

   ```
 [edit]
 user@host# set interfaces fe-0/1/0 unit 0 family inet address 192.168.8.4/30
 user@host# set interfaces fe-0/2/0 unit 0 family inet address 192.168.8.5/30
   ```

2. Enable OSPF on the interfaces.

   ```
 NOTE: For OSPFv3, include the ospf3 statement at the [edit protocols] hierarchy level.
   ```

   ```
 [edit]
 user@host# set protocols ospf area 0.0.0.0 interface fe-0/1/0
 user@host# set protocols ospf area 0.0.0.0 interface fe-0/2/0
   ```

3. Configure the policy to specify the priority for prefixes learned through OSPF.

   ```
 [edit]
 user@host# set policy-options policy-statement ospf-import term t1 from route-filter 203.0.113.0/24 orlonger
 user@host# set policy-options policy-statement ospf-import term t1 then priority low
 user@host# set policy-options policy-statement ospf-import term t1 then accept
 user@host# set policy-options policy-statement ospf-import term t2 from route-filter 198.51.100.0/24 orlonger
 user@host# set policy-options policy-statement ospf-import term t2 then priority medium
 user@host# set policy-options policy-statement ospf-import term t2 then accept
 user@host# set policy-options policy-statement ospf-import term t3 from route-filter 192.0.2.0/24 orlonger
 user@host# set policy-options policy-statement ospf-import term t3 then priority high
 user@host# set policy-options policy-statement ospf-import term t3 then accept
   ```

4. Apply the policy to OSPF.

   ```
 [edit]
 user@host# set protocols ospf import ospf-import
   ```
5. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

**Results**

Confirm your configuration by entering the `show interfaces`, `show policy-options`, and the `show protocols ospf` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show interfaces
fe-0/1/0 {
 unit 0 {
 family inet {
 address 192.168.8.4/30;
 }
 }
}
fe-0/2/0 {
 unit 0 {
 family inet {
 address 192.168.8.5/30;
 }
 }
}

user@host# show protocols ospf
import ospf-import;
area 0.0.0.0 {
 interface fe-0/1/0.0;
 interface fe-0/2/0.0;
}

user@host# show policy-options
policy-statement ospf-import {
 term t1 {
 from {
 route-filter 203.0.113.0/24 or longer;
 }
 then {
 priority low;
 }
 }
```
To confirm your OSPFv3 configuration, enter the `show interfaces`, `show policy-options`, and `show protocols ospf3` commands.

**Verification**

Confirm that the configuration is working properly.

**Verifying the Prefix Priority in the OSPF Routing Table**

**Purpose**

Verify the priority assigned to the prefix in the OSPF routing table.
Action
From operational mode, enter the **show ospf route detail** for OSPFv2, and enter the **show ospf3 route detail** command for OSPFv3.

Import and Export Policies for Network Summaries Overview

By default, OSPF uses network-summary link-state advertisements (LSAs) to transmit route information across area boundaries. Each area border router (ABR) floods network-summary LSAs to other routing devices in the same area. The ABR also controls which routes from the area are used to generate network-summary LSAs into other areas. Each ABR maintains a separate topological database for each area to which they are connected. In Junos OS Release 9.1 and later, you can configure export and import policies for OSPFv2 and OSPFv3 that enable you to control how network-summary LSAs, which contain information about interarea OSPF prefixes, are distributed and generated. For OSPFv3, the LSA is referred to as the interarea prefix LSA and performs the same function as a network-summary LSA performs for OSPFv2. An ABR originates an interarea prefix LSA for each IPv6 prefix that must be advertised into an area.

The export policy enables you to specify which summary LSAs are flooded into an area. The import policy enables you to control which routes learned from an area are used to generate summary LSAs into other areas. You define a routing policy at the `[edit policy-options policy-statement policy-name]` hierarchy level. As with all OSPF export policies, the default for network-summary LSA export policies is to reject everything. Similarly, as with all OSPF import policies, the default for network-summary LSA import policies is to accept all OSPF routes.

Example: Configuring an OSPF Export Policy for Network Summaries

This example shows how to create an OSPF export policy to control the network-summary (Type 3) LSAs that the ABR floods into an OSPF area.
Requirements

Before you begin:

- Configure the router identifiers for the devices in your OSPF network. See "Example: Configuring an OSPF Router Identifier" on page 69.
- Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71

Overview

OSPF uses network-summary LSAs to transmit route information across area boundaries. Depending on your network environment, you might want to further filter the network-summary LSAs between OSPF areas. For example, if you create OSPF areas to define administrative boundaries, you might not want to advertise internal route information between those areas. To further improve the control of route distribution between multiple OSPF areas, you can configure network summary policies on the ABR for the area that you want to filter the advertisement of network-summary LSAs.

NOTE: For OSPFv3, the LSA is referred to as the interarea prefix LSA and performs the same function as a network-summary LSA performs for OSPFv2. An ABR originates an interarea prefix LSA for each IPv6 prefix that must be advertised into an area. In this topic, the terms network summary policy and network-summary policy are used to describe both OSPFv2 and OSPFv3 functionality.

The following guidelines apply to export network summary policies:

- You should have a thorough understanding of your network before configuring these policies. Incorrect network summary policy configuration might result in an unintended result such as suboptimal routing or dropped traffic.
- We recommend that you use the route-filter policy match condition for these types of policies.
- We recommend that you use the accept and reject routing policy terms for these types of policies.

Figure 27 on page 507 shows a sample topology with three OSPF areas. R4 generates network summaries for the routes in area 4 and sends them out of area 4 to area 0. R3 generates network summaries for the routes in area 3 and sends them out of area 3 to area 0.
In this example, you configure R4 with an export network summary policy named export-policy that only allows routes that match the 10.0.4.4 prefix from area 3 into area 4. The export policy controls the network-summary LSAs that R4 floods into area 4. This results in only the allowed interarea route to enter area 4, and all other interarea routes to be purged from the OSPF database and the routing table of the devices in area 4. You first define the policy and then apply it to the ABR by including the `network-summary-export` statement for OSPFv2 or the `inter-area-prefix-export` statement for OSPFv3.

The devices operate as follows:

- **R1**—Device R1 is an internal router in area 3. Interface `fe-0/1/0` has an IP address of 10.0.4.13/30 and connects to R3. Interface `fe-0/0/1` has an IP address of 10.0.4.5/30 and connects to R2.
- **R2**—Device R2 is an internal router in area 3. Interface `fe-0/0/1` has an IP address of 10.0.4.6/30 and connects to R1. Interface `fe-1/0/0` has an IP address of 10.0.4.1 and connects to R3.
- **R3**—Device R3 participates in area 3 and area 0. R3 is the ABR between area 3 and area 0, and passes network-summary LSAs between the areas. Interface `fe-1/0/0` has an IP address of 10.0.4.2/30 and connects to R2. Interface `fe-1/1/0` has an IP address of 10.0.4.14/30 and connects to R1. Interface `fe-0/0/1` has an IP address of 10.0.2.1/30 and connects to R4.
- **R4**—Device R4 participates in area 0 and area 4. R4 is the ABR between area 0 and area 4, and passes network-summary LSAs between the areas. Interface `fe-0/0/1` has an IP address of 10.0.2.4/30 and connects to R3. Interface `fe-1/1/0` has an IP address of 10.0.8.6/30 and connects to R5. Interface `fe-1/0/0` has an IP address of 10.0.8.9/30 and connects to R6.
- **R5**—Device R5 is an internal router in area 4. Interface `fe-1/1/0` has an IP address of 10.0.8.5/30 and connects to R4.
- **R6**—Device R6 is an internal router in area 4. Interface `fe-1/0/0` has an IP address of 10.0.8.10/30 and connects to R4.
Configuration

CLI Quick Configuration
To quickly configure an OSPF export policy for network summaries, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

Configuration on Device R1:

```plaintext
[edit]
set interfaces fe-0/1/0 unit 0 family inet address 10.0.4.13/30
set interfaces fe-0/0/1 unit 0 family inet address 10.0.4.5/30
set protocols ospf area 0.0.0.3 interface fe-0/1/0
set protocols ospf area 0.0.0.3 interface fe-0/0/1
```

Configuration on Device R2:

```plaintext
[edit]
set interfaces fe-0/1/0 unit 0 family inet address 10.0.4.6/30
set interfaces fe-1/0/0 unit 0 family inet address 10.0.4.1/30
set protocols ospf area 0.0.0.3 interface fe-0/1/0
set protocols ospf area 0.0.0.3 interface fe-1/0/0
```

Configuration on Device R3:

```plaintext
[edit]
set interfaces fe-1/0/0 unit 0 family inet address 10.0.4.2/30
set interfaces fe-1/1/0 unit 0 family inet address 10.0.4.14/30
set interfaces fe-0/0/1 unit 0 family inet address 10.0.2.1/30
set protocols ospf area 0.0.0.3 interface fe-1/0/0
set protocols ospf area 0.0.0.3 interface fe-1/1/0
set protocols ospf area 0.0.0.0 interface fe-0/0/1
```

Configuration on Device R4:

```plaintext
[edit]
set interfaces fe-0/0/1 unit 0 family inet address 10.0.2.1/30
set interfaces fe-1/1/0 unit 0 family inet address 10.0.8.6/30
set interfaces fe-1/0/0 unit 0 family inet address 10.0.8.9/30
set policy-options policy-statement export-policy term term1 from route-filter 10.0.4.4/30 prefix-length-range /30-/30
set policy-options policy-statement export-policy term term1 then accept
```
set protocols ospf area 0.0.0.0 interface fe-0/0/1
set protocols ospf area 0.0.0.4 interface fe-0/1/0
set protocols ospf area 0.0.0.4 interface fe-1/0/0
set protocols ospf area 0.0.0.4 network-summary-export export-policy

Configuration on Device R5:

[edit]
set interfaces fe-1/1/0 unit 0 family inet address 10.0.8.5/30
set protocols ospf area 0.0.0.4 interface fe-0/1/0

Configuration on Device R6:

[edit]
set interfaces fe-1/0/0 unit 0 family inet address 10.0.8.10/30
set protocols ospf area 0.0.0.4 interface fe-1/0/0

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Modifying the Junos OS Configuration in the CLI User Guide.

To configure an OSPF export policy for network summaries:

1. Configure the interfaces.

   **NOTE:** For OSPFv3, use IPv6 addresses.

   [edit]
   user@R1# set interfaces fe-0/1/0 unit 0 family inet address 10.0.4.13/30
   user@R1# set interfaces fe-0/0/1 unit 0 family inet address 10.0.4.5/30

   [edit]
   user@R2# set interfaces fe-0/1/0 unit 0 family inet address 10.0.4.6/30
   user@R2# set interfaces fe-1/0/0 unit 0 family inet address 10.0.4.1/30

   [edit]
   user@R3# set interfaces fe-1/0/0 unit 0 family inet address 10.0.4.14/30
2. Enable OSPF on the interfaces.

**NOTE:** For OSPFv3, include the `ospf3` statement at the `[edit protocols]` hierarchy level.
3. On R4, configure the export network summary policy.

```plaintext
[edit]
user@R4# set policy-options policy-statement export-policy term term1 from route-filter 10.0.4.4/30 prefix-length-range /30-/30
user@R4# set policy-options policy-statement export-policy term term1 then accept
```

4. On R4, apply the export network summary policy to OSPF.

```plaintext
NOTE: For OSPFv3, include the inter-area-prefix-export statement at the [edit protocols ospf3 area area-id] hierarchy level.
```

```plaintext
[edit]
user@R4# set protocols ospf area 0.0.0.4 network-summary-export export-policy
```

5. If you are done configuring the devices, commit the configuration.

```plaintext
[edit]
user@host# commit
```

**Results**

Confirm your configuration by entering the `show interfaces`, `show policy-options`, and `show protocols ospf` commands on the appropriate device. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

**Output for R1:**

```plaintext
user@R1# show interfaces
fe-0/0/1 {
 unit 0 {
```
family inet {
    address 10.0.4.5/30;
}
}
}
fe-1/1/0 {
    unit 0 {
        family inet {
            address 10.0.4.13/30;
        }
    }
}
user@R1# show protocols ospf
area 0.0.0.3 {
    interface fe-0/1/0.0;
    interface fe-0/0/1.0;
}

Output for R2:

user@R2# show interfaces
fe-0/1/0 {
    unit 0 {
        family inet {
            address 10.0.4.6/30;
        }
    }
}
}
fe-1/0/0 {
    unit 0 {
        family inet {
            address 10.0.4.3/30;
        }
    }
}
}
user@R2# show protocols ospf
area 0.0.0.3 {
    interface fe-0/1/0.0;
    interface fe-1/0/0.0;
}
Output for R3:

user@R3# show interfaces
fe-0/0/1 {
    unit 0 {
        family inet {
            address 10.0.2.3/30;
        }
    }
}
fe-1/0/0 {
    unit 0 {
        family inet {
            address 10.0.4.2/30;
        }
    }
}
fe-1/1/0 {
    unit 0 {
        family inet {
            address 10.0.4.14/30;
        }
    }
}

user@R3# show protocols ospf
area 0.0.0.0 {
    interface fe-0/0/1.0;
}
area 0.0.0.3 {
    interface fe-1/0/0.0;
    interface fe-1/1/0.0;
}

Output for R4:

user@R4# show interfaces
fe-0/0/1 {
    unit 0 {
        family inet {
            address 10.0.2.4/30;
        }
    }
}
fe-1/0/0 {
  unit 0 {
    family inet {
      address 10.0.8.6/30;
    }
  }
}

fe-1/1/0 {
  unit 0 {
    family inet {
      address 10.0.8.3/30;
    }
  }
}

user@R4# show protocols ospf
area 0.0.0.0 {
  interface fe-0/0/1.0;
}
area 0.0.0.4 {
  network-summary-export export-policy;
  interface fe-1/0/0.0;
  interface fe-1/1/0.0;
}

user@R4# show policy-options
policy-statement export-policy {
  term term1 {
    from {
      route-filter 10.0.4.4/30 prefix-length-range /30~/30;
    }
    then accept;
  }
}

Output for R5:

user@R5# show interfaces
fe-1/1/0 {
  unit 0 {
    family inet {

address 10.0.8.5/30;
}
}
}

user@R5# show protocols ospf
area 0.0.0.4 {
    interface fe-1/1/0.0;
}

Output for R6:

user@R6# show interfaces
fe-1/0/0 {
    unit 0 {
        family inet {
            address 10.0.8.7/30;
        }
    }
}

user@R6# show protocols ospf
area 0.0.0.4 {
    interface fe-1/0/0.0;
}

To confirm your OSPFv3 configuration, enter the show interfaces, show policy-options, and show protocols ospf3 commands on the appropriate device.

Verification

IN THIS SECTION

- Verifying the OSPF Database | 516
- Verifying the Routing Table | 516

Confirm that the configuration is working properly.
Verifying the OSPF Database

Purpose
Verify that the OSPF database for the devices in area 4 includes the interarea route that we permitted on the ABR R4. The other interarea routes that are not specified should age out or no longer be present in the OSPF database.

Action
From operational mode, enter the `show ospf database netsummary area 0.0.0.4` command for OSPFv2, and enter the `show ospf3 database inter-area-prefix area 0.0.0.4` command for OSPFv3.

Verifying the Routing Table

Purpose
Verify that the routes corresponding to the rejected network summaries are no longer present in R4’s, R5’s, or R6’s routing table.

Action
From operational mode, enter the `show route protocol ospf` command for both OSPFv2 and OSPFv3.

Example: Configuring an OSPF Import Policy for Network Summaries

This example shows how to create an OSPF import policy to control the network-summary (Type 3) LSAs that the ABR advertises out of an OSPF area.

Requirements

Before you begin:

- Configure the router identifiers for the devices in your OSPF network. See “Example: Configuring an OSPF Router Identifier” on page 69.
• Control OSPF designated router election. See "Example: Controlling OSPF Designated Router Election" on page 71.

Overview

OSPF uses network-summary LSAs to transmit route information across area boundaries. Depending on your network environment, you might want to further filter the network-summary LSAs between OSPF areas. For example, if you create OSPF areas to define administrative boundaries, you might not want to advertise internal route information between those areas. To further improve the control of route distribution between multiple OSPF areas, you can configure network summary policies on the ABR for the area that you want to filter the advertisement of network-summary LSAs.

NOTE: For OSPFv3, the LSA is referred to as the interarea prefix LSA and performs the same function as a network-summary LSA performs for OSPFv2. An ABR originates an interarea prefix LSA for each IPv6 prefix that must be advertised into an area. In this topic, the terms network summary policy and network-summary policy are used to describe both OSPFv2 and OSPFv3 functionality.

The following guidelines apply to import network summary policies:

• You should have a thorough understanding of your network before configuring these policies. Incorrect network summary policy configuration might result in an unintended result such as suboptimal routing or dropped traffic.

• We recommend that you use the route-filter policy match condition for these types of policies.

• We recommend that you use the accept and reject routing policy terms for these types of policies.

Figure 28 on page 518 shows a sample topology with three OSPF areas. R4 generates network summaries for the routes in area 4 and sends them out of area 4 to area 0. R3 generates network summaries for the routes in area 3 and sends them out of area 3 to area 0.
In this example, you configure R3 with an import network summary policy named import-policy so R3 only generates network summaries for the route 10.0.4.12/30. The import policy controls the routes and therefore the network summaries that R3 advertises out of area 3, so applying this policy means that R3 only advertises route 10.0.4.12/30 out of area 3. This results in existing network summaries from other interarea routes getting purged from the OSPF database in area 0 and area 4, as well as the routing tables of the devices in areas 0 and area 4. You first define the policy and then apply it to the ABR by including the `network-summary-import` statement for OSPFv2 or the `inter-area-prefix-import` statement for OSPFv3.

The devices operate as follows:

- **R1**—Device R1 is an internal router in area 3. Interface `fe-0/1/0` has an IP address of 10.0.4.13/30 and connects to R3. Interface `fe-0/0/1` has an IP address of 10.0.4.5/30 and connects to R2.

- **R2**—Device R2 is an internal router in area 3. Interface `fe-0/0/1` has an IP address of 10.0.4.6/30 and connects to R1. Interface `fe-1/0/0` has an IP address of 10.0.4.1/30 and connects to R3.

- **R3**—Device R3 participates in area 3 and area 0. R3 is the ABR between area 3 and area 0, and passes network-summary LSAs between the areas. Interface `fe-1/0/0` has an IP address of 10.0.4.2/30 and connects to R2. Interface `fe-1/1/0` has an IP address of 10.0.4.14/30 and connects to R1. Interface `fe-0/0/1` has an IP address of 10.0.2.1/30 and connects to R4.

- **R4**—Device R4 participates in area 0 and area 4. R4 is the ABR between area 0 and area 4, and passes network-summary LSAs between the areas. Interface `fe-0/0/1` has an IP address of 10.0.2.1/30 and connects to R3. Interface `fe-1/1/0` has an IP address of 10.0.8.6/30 and connects to R5. Interface `fe-1/0/0` has an IP address of 10.0.8.9/30 and connects to R6.

- **R5**—Device R5 is an internal router in area 4. Interface `fe-1/1/0` has an IP address of 10.0.8.5/30 and connects to R4.

- **R6**—Device R6 is an internal router in area 4. Interface `fe-1/0/0` has an IP address of 10.0.8.10/30 and connects to R4.
Configuration

CLI Quick Configuration
To quickly configure an OSPF import policy for network summaries, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

Configuration on Device R1:

```
[edit]
 set interfaces fe-0/1/0 unit 0 family inet address 10.0.4.13/30
 set interfaces fe-0/0/1 unit 0 family inet address 10.0.4.5/30
 set protocols ospf area 0.0.0.3 interface fe-0/1/0
 set protocols ospf area 0.0.0.3 interface fe-0/0/1
```

Configuration on Device R2:

```
[edit]
 set interfaces fe-0/1/0 unit 0 family inet address 10.0.4.6/30
 set interfaces fe-1/0/0 unit 0 family inet address 10.0.4.1/30
 set protocols ospf area 0.0.0.3 interface fe-0/1/0
 set protocols ospf area 0.0.0.3 interface fe-1/0/0
```

Configuration on Device R3:

```
[edit]
 set interfaces fe-1/0/0 unit 0 family inet address 10.0.4.2/30
 set interfaces fe-1/1/0 unit 0 family inet address 10.0.4.14/30
 set interfaces fe-0/0/1 unit 0 family inet address 10.0.2.1/30
 set policy-options policy-statement import-policy term term1 from route-filter 10.0.4.12/30 prefix-length-range /30-/30
 set policy-options policy-statement import-policy term term1 then accept
 set protocols ospf area 0.0.0.3 interface fe-1/0/0
 set protocols ospf area 0.0.0.3 interface fe-1/1/0
 set protocols ospf area 0.0.0.0 interface fe-0/0/1
 set protocols ospf area 0.0.0.3 network-summary-import import-policy
```

Configuration on Device R4:

```
[edit]
 set interfaces fe-0/0/1 unit 0 family inet address 10.0.2.1/30
 set interfaces fe-1/1/0 unit 0 family inet address 10.0.8.6/30
```
set interfaces fe-1/0/0 unit 0 family inet address 10.0.8.9/30
set protocols ospf area 0.0.0.0 interface fe-0/0/1
set protocols ospf area 0.0.0.4 interface fe-1/1/0
set protocols ospf area 0.0.0.4 interface fe-1/0/0

Configuration on Device R5:

[edit]
set interfaces fe-1/1/0 unit 0 family inet address 10.0.8.5/30
set protocols ospf area 0.0.0.4 interface fe-1/1/0

Configuration on Device R6:

[edit]
set interfaces fe-1/0/0 unit 0 family inet address 10.0.8.10/30
set protocols ospf area 0.0.0.4 interface fe-1/0/0

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Modifying the Junos OS Configuration in the CLI User Guide.

To configure an OSPF import policy for network summaries:

1. Configure the interfaces.

   **NOTE:** For OSPFv3, use IPv6 addresses.

[edit]
user@R1# set interfaces fe-0/1/0 unit 0 family inet address 10.0.4.13/30
user@R1# set interfaces fe-0/0/1 unit 0 family inet address 10.0.4.5/30

[edit]
user@R2# set interfaces fe-0/1/0 unit 0 family inet address 10.0.4.6/30
user@R2# set interfaces fe-1/0/0 unit 0 family inet address 10.0.4.1/30

[edit]
user@R3# set interfaces fe-1/0/0 unit 0 family inet address 10.0.4.14/30
user@R3# set interfaces fe-0/0/1 unit 0 family inet address 10.0.2.1/30

[edit]
user@R4# set interfaces fe-0/0/1 unit 0 family inet address 10.0.2.1/30
user@R4# set interfaces fe-1/1/0 unit 0 family inet address 10.0.8.6/30
user@R4# set interfaces fe-1/0/0 unit 0 family inet address 10.0.8.9/30

[edit]
user@R5# set interfaces fe-1/1/0 unit 0 family inet address 10.0.8.5/30

[edit]
user@R6# set interfaces fe-1/0/0 unit 0 family inet address 10.0.8.10/30

2. Enable OSPF on the interfaces.

**NOTE:** For OSPFv3, include the `ospf3` statement at the [edit protocols] hierarchy level.

[edit]
user@R1# set protocols ospf area 0.0.0.3 interface fe-0/1/0
user@R1# set protocols ospf area 0.0.0.3 interface fe-0/0/1

[edit]
user@R2# set protocols ospf area 0.0.0.3 interface fe-0/1/0
user@R2# set protocols ospf area 0.0.0.3 interface fe-1/0/0

[edit]
user@R3# set protocols ospf area 0.0.0.3 interface fe-1/0/0
user@R3# set protocols ospf area 0.0.0.3 interface fe-1/1/0
user@R3# set protocols ospf area 0.0.0.0 interface fe-0/0/1

[edit]
user@R4# set protocols ospf area 0.0.0.0 interface fe-0/0/1
user@R4# set protocols ospf area 0.0.0.4 interface fe-1/1/0
user@R4# set protocols ospf area 0.0.0.4 interface fe-1/0/0
3. On R3, configure the import network summary policy.

```
[edit]
user@R3# set policy-options policy-statement import-policy term term1 from route-filter 10.0.4.12/30 prefix-length-range /30-/30
user@R3# set policy-options policy-statement import-policy term term1 then accept
```

4. On R3, apply the import network summary policy to OSPF.

```
[edit]
user@R3# set protocols ospf area 0.0.0.3 network-summary-import import-policy
```

5. If you are done configuring the devices, commit the configuration.

```
[edit]
user@host# commit
```

**Results**

Confirm your configuration by entering the `show interfaces`, `show policy-options`, and `show protocols ospf` commands on the appropriate device. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

**Output for R1:**

```
user@R1# show interfaces
fe-0/0/1 {
 unit 0 {
```
family inet {
  address 10.0.4.5/30;
}
}
}
fe-0/1/0 {
  unit 0 {
    family inet {
      address 10.0.4.13/30;
    }
  }
}

user@R1# show protocols ospf
area 0.0.0.3 {
  interface fe-0/1/0.0;
  interface fe-0/0/1.0;
}

Output for R2:

user@R2# show interfaces
fe-0/1/0 {
  unit 0 {
    family inet {
      address 10.0.4.6/30;
    }
  }
}
}
fe-1/0/0 {
  unit 0 {
    family inet {
      address 10.0.4.1/30;
    }
  }
}

user@R2# show protocols ospf
area 0.0.0.3 {
  interface fe-0/1/0.0;
  interface fe-1/0/0.0;
}
Output for R3:

```
show interfaces
fe-0/0/1 {
 unit 0 {
 family inet {
 address 10.0.2.1/30;
 }
 }
}
fe-1/0/0 {
 unit 0 {
 family inet {
 address 10.0.4.2/30;
 }
 }
}
fe-1/1/0 {
 unit 0 {
 family inet {
 address 10.0.4.14/30;
 }
 }
}
show protocols ospf
area 0.0.0.0 {
 interface fe-0/0/1.0;
}
area 0.0.0.3 {
 network-summary-import import policy;
 interface fe-1/0/0.0;
 interface fe-1/1/0.0;
}
show policy-options
policy-statement import-policy {
 term term1 {
 from {
 route-filter 10.0.4.12/30 prefix-length-range /30-/30;
 }
 then accept;
 }
```
Output for R4:

```
user@R4# show interfaces
fe-0/0/1 {
 unit 0 {
 family inet {
 address 10.0.2.1/30;
 }
 }
}
fe-1/0/0 {
 unit 0 {
 family inet {
 address 10.0.8.9/30;
 }
 }
}
fe-1/1/0 {
 unit 0 {
 family inet {
 address 10.0.8.6/30;
 }
 }
}

user@R4# show protocols ospf
area 0.0.0.0 {
 interface fe-0/0/1.0;
}
area 0.0.0.4 {
 interface fe-0/1/0.0;
 interface fe-1/0/0.0;
}
```

Output for R5:

```
user@R5# show interfaces
fe-1/1/0 {
 unit 0 {
 family inet {

```
address 10.0.8.5/30;
}
}
}

user@R5# show protocols ospf
area 0.0.0.4 {
    interface fe-1/1/0.0;
}

Output for R6:

user@R6# show interfaces
fe-1/0/0 {
    unit 0 {
        family inet {
            address 10.0.8.10/30;
        }
    }
}

user@R6# show protocols ospf
area 0.0.0.4 {
    interface fe-1/0/0.0;
}

To confirm your OSPFv3 configuration, enter the show interfaces, show policy-options, and show protocols ospf3 commands on the appropriate device.

Verification

IN THIS SECTION

- Verifying the OSPF Database | 527
- Verifying the Routing Table | 527

Confirm that the configuration is working properly.
Verifying the OSPF Database

**Purpose**
Verify that the OSPF database for the devices in area 4 includes the interarea route that we are advertising from R3. Any other routes from area 3 should not be advertised into area 4, so those entries should age out or no longer be present in the OSPF database.

**Action**
From operational mode, enter the `show ospf database netsummary area 0.0.0.4` command for OSPFv2, and enter the `show ospf3 database inter-area-prefix area 0.0.0.4` command for OSPFv3.

Verifying the Routing Table

**Purpose**
Verify that the specified route is included in R4’s, R5’s, or R6’s routing table. Any other routes from area 3 should not be advertised into area 4.

**Action**
From operational mode, enter the `show route protocol ospf` command for both OSPFv2 and OSPFv3.

Example: Redistributing OSPF Routes into IS-IS

This example shows how to redistribute OSPF routes into an IS-IS network.

**Requirements**
No special configuration beyond device initialization is required before configuring this example.

**Overview**
Export policy can be applied to IS-IS to facilitate route redistribution.
Junos OS does not support the application of import policy for link-state routing protocols like IS-IS because such policies can lead to inconsistent link-state database (LSDB) entries, which in turn can result in routing inconstancies.

In this example, OSPF routes 192.168.0/24 through 192.168.3/24 are redistributed into IS-IS area 49.0002 from Device R2.

In addition, policies are configured to ensure that Device R1 can reach destinations on the 10.0.0.44/30 network, and that Device R3 can reach destinations on the 10.0.0.36/30 network. This enables end-to-end reachability.

Figure 29 on page 528 shows the topology used in this example.

Figure 29: IS-IS Route Redistribution Topology

"CLI Quick Configuration" on page 528 shows the configuration for all of the devices in Figure 29 on page 528. The section "Step-by-Step Procedure" on page 530 describes the steps on Device R2. "Step-by-Step Procedure" on page 532 describes the steps on Device R3.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1
Device R2

set interfaces fe-1/2/0 unit 0 description to-R7
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.38/30
set interfaces fe-1/2/0 unit 0 family iso
set interfaces lo0 unit 0 family inet address 172.16.3.5/32
set interfaces lo0 unit 0 family iso address 49.0002.0172.0016.0305.00
set protocols isis interface fe-1/2/0.0
set protocols isis interface lo0.0

set interfaces fe-1/2/1 unit 0 description to-R5
set interfaces fe-1/2/1 unit 0 family inet address 10.0.0.37/30
set interfaces fe-1/2/1 unit 0 family iso
set interfaces fe-1/2/0 unit 0 description to-OSPF-network
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.45/30
set interfaces lo0 unit 0 family inet address 172.16.9.7/32
set interfaces lo0 unit 0 family iso address 49.0002.0172.0016.0907.00
set protocols isis export ospf-isis
set protocols isis export send-direct-to-isis-neighbors
set protocols isis interface fe-1/2/1.0
set protocols isis interface lo0.0
set protocols ospf export send-direct-to-ospf-neighbors
set protocols ospf area 0.0.0.1 interface fe-1/2/0.0
set protocols ospf area 0.0.0.1 interface lo0.0 passive
set policy-options policy-statement ospf-isis term 1 from protocol ospf
set policy-options policy-statement ospf-isis term 1 from route-filter 192.168.0.0/22 longer
set policy-options policy-statement ospf-isis term 1 then accept
set policy-options policy-statement send-direct-to-isis-neighbors from protocol direct
set policy-options policy-statement send-direct-to-isis-neighbors from route-filter 10.0.0.44/30 exact
set policy-options policy-statement send-direct-to-isis-neighbors then accept
set policy-options policy-statement send-direct-to-ospf-neighbors from protocol direct
set policy-options policy-statement send-direct-to-ospf-neighbors from route-filter 10.0.0.36/30 exact
set policy-options policy-statement send-direct-to-ospf-neighbors then accept

Device R3
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.46/30
set interfaces lo0 unit 0 family inet address 192.168.1.1/32
set interfaces lo0 unit 0 family inet address 192.168.2.1/32
set interfaces lo0 unit 0 family inet address 192.168.3.1/32
set interfaces lo0 unit 0 family inet address 192.168.0.1/32
set protocols ospf export ospf
set protocols ospf area 0.0.0.1 interface fe-1/2/0.0
set protocols ospf area 0.0.0.1 interface lo0.0 passive
set policy-options policy-statement ospfterm1 from protocol static
set policy-options policy-statement ospfterm1 then accept
set routing-options static route 192.168.0.0/24 discard
set routing-options static route 192.168.1.0/24 discard
set routing-options static route 192.168.3.0/24 discard
set routing-options static route 192.168.2.0/24 discard

Step-by-Step Procedure
To configure Device R2:

1. Configure the network interfaces.

   [edit interfaces]
   user@R2# set fe-1/2/1 unit 0 description to-R5
   user@R2# set fe-1/2/1 unit 0 family inet address 10.0.0.37/30
   user@R2# set fe-1/2/1 unit 0 family iso
   user@R2# set fe-1/2/0 unit 0 description to-OSPF-network
   user@R2# set fe-1/2/0 unit 0 family inet address 10.0.0.45/30
   user@R2# set lo0 unit 0 family inet address 172.16.9.7/32
   user@R2# set lo0 unit 0 family iso address 49.0002.0172.0016.0907.00

2. Configure IS-IS on the interface facing Device R1 and the loopback interface.

   [edit protocols isis]
   user@R2# set interface fe-1/2/1.0
   user@R2# set interface lo0.0

3. Configure the policy that enables Device R1 to reach the 10.0.0.44/30 network.

   [edit policy-options policy-statement send-direct-to-isis-neighbors]
   user@R2# set from protocol direct
4. Apply the policy that enables Device R1 to reach the 10.0.0.44/30 network.

    [edit protocols isis]
    user@R2# set export send-direct-to-isis-neighbors

5. Configure OSPF on the interfaces.

    [edit protocols ospf]
    user@R2# set area 0.0.0.1 interface fe-1/2/0.0
    user@R2# set area 0.0.0.1 interface lo0.0 passive

6. Configure the OSPF route redistribution policy.

    [edit policy-options policy-statement ospf-isisterm 1]
    user@R2# set from protocol ospf
    user@R2# set from route-filter 192.168.0.0/22 longer
    user@R2# set then accept

7. Apply the OSPF route redistribution policy to the IS-IS instance.

    [edit protocols isis]
    user@R2# set export ospf-isis

8. Configure the policy that enables Device R3 to reach the 10.0.0.36/30 network.

    [edit policy-options policy-statement send-direct-to-ospf-neighbors]
    user@R2# set from protocol direct
    user@R2# set from route-filter 10.0.0.36/30 exact
    user@R2# set then accept

9. Apply the policy that enables Device R3 to reach the 10.0.0.36/30 network.

    [edit protocols ospf]
    user@R2# set export send-direct-to-ospf-neighbors
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure multi-level IS-IS:

1. Configure the network interfaces.

   Multiple addresses are configured on the loopback interface to simulate multiple route destinations.

   ```
 [edit interfaces]
 user@R3# set fe-1/2/0 unit 0 family inet address 10.0.0.46/30
 user@R3# set lo0 unit 0 family inet address 192.168.1.1/32
 user@R3# set lo0 unit 0 family inet address 192.168.2.1/32
 user@R3# set lo0 unit 0 family inet address 192.168.3.1/32
 user@R3# set lo0 unit 0 family inet address 192.168.0.1/32
   ```

2. Configure static routes to the loopback interface addresses.

   These are the routes that are redistributed into IS-IS.

   ```
 [edit routing-options static]
 user@R3# set route 192.168.0.0/24 discard
 user@R3# set route 192.168.1.0/24 discard
 user@R3# set route 192.168.3.0/24 discard
 user@R3# set route 192.168.2.0/24 discard
   ```

3. Configure OSPF on the interfaces.

   ```
 [edit protocols ospf area 0.0.0.1]
 user@R3# set interface fe-1/2/0.0
 user@R3# set interface lo0.0 passive
   ```

4. Configure the OSPF policy to export the static routes.

   ```
 [edit policy-options policy-statement ospf term 1]
 user@R3# set from protocol static
 user@R3# set then accept
   ```

5. Apply the OSPF export policy.

   ```
 [edit protocols ospf]
user@R3# set export ospf

Results
From configuration mode, confirm your configuration by entering the show interfaces, show protocols, show policy-options, and show routing-options commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Device R2

```
user@R2# show interfaces
fe-1/2/1 {
    unit 0 {
        description to-R5;
        family inet {
            address 10.0.0.37/30;
        }
        family iso;
    }
}
fe-1/2/0 {
    unit 0 {
        description to-OSPF-network;
        family inet {
            address 10.0.0.45/30;
        }
    }
}
lo0 {
    unit 0 {
        family inet {
            address 172.16.9.7/32;
        }
        family iso {
            address 49.0002.0172.0016.0907.00;
        }
    }
}
```

```
user@R2# show protocols
isis {
```
user@R2# show policy-options

policy-statement ospf-isis {
 term 1 {
 from {
 protocol ospf;
 route-filter 192.168.0.0/22 longer;
 }
 then accept;
 }
}

policy-statement send-direct-to-isis-neighbors {
 from {
 protocol direct;
 route-filter 10.0.0.44/30 exact;
 }
 then accept;
}

policy-statement send-direct-to-ospf-neighbors {
 from {
 protocol direct;
 route-filter 10.0.0.36/30 exact;
 }
 then accept;
}

Device R3
user@R3# show interfaces
fe-1/2/0 {
 unit 0 {
 family inet {
 address 10.0.0.46/30;
 }
 }
}
lo0 {
 unit 0 {
 family inet {
 address 192.168.1.1/32;
 address 192.168.2.1/32;
 address 192.168.3.1/32;
 address 192.168.0.1/32;
 }
 }
}

user@R3# show protocols
ospf {
 export ospf;
 area 0.0.0.1 {
 interface fe-1/2/0.0;
 interface lo0.0 {
 passive;
 }
 }
}

user@R3# show policy-options
policy-statement ospf {
 term 1 {
 from protocol static;
 then accept;
 }
}

user@R3# show routing-options
static {
 route 192.168.0.0/24 discard;
 route 192.168.1.0/24 discard;
 route 192.168.3.0/24 discard;
 route 192.168.2.0/24 discard;
}

If you are done configuring the device, enter commit from configuration mode.

Verification

IN THIS SECTION

- Verifying OSPF Route Advertisement | 536
- Verifying Route Redistribution | 537
- Verifying Connectivity | 538

Confirm that the configuration is working properly.

Verifying OSPF Route Advertisement

Purpose
Make sure that the expected routes are advertised by OSPF.

Action
From operational mode on Device R2, enter the show route protocol ospf command.

```
user@R2> show route protocol ospf
```

```
inet.0: 15 destinations, 15 routes (15 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

   192.168.0.0/24  *[OSPF/150] 03:54:21, metric 0, tag 0
                   > to 10.0.0.46 via fe-1/2/0.0
   192.168.0.1/32  *[OSPF/10]  03:54:21, metric 1
                   > to 10.0.0.46 via fe-1/2/0.0
   192.168.1.0/24  *[OSPF/150] 03:54:21, metric 0, tag 0
```
Meaning
The 192.168/16 routes are advertised by OSPF.

Verifying Route Redistribution

Purpose
Make sure that the expected routes are redistributed from OSPF into IS-IS.

Action
From operational mode on Device R1, enter the show route protocol isis command.

user@R1> show route protocol isis

inet.0: 13 destinations, 13 routes (13 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.0.0.44/30 *[IS-IS/160] 03:45:24, metric 20
 > to 10.0.0.37 via fe-1/2/0.0
172.16.9.7/32 *[IS-IS/15] 03:49:46, metric 10
 > to 10.0.0.37 via fe-1/2/0.0
192.168.0.0/24 *[IS-IS/160] 03:49:46, metric 10
 > to 10.0.0.37 via fe-1/2/0.0
192.168.0.1/32 *[IS-IS/160] 03:49:46, metric 11, tag2 1
 > to 10.0.0.37 via fe-1/2/0.0
192.168.1.0/24 *[IS-IS/160] 03:49:46, metric 10
Meaning
The 192.168/16 routes are redistributed into IS-IS.

Verifying Connectivity

Purpose
Check that Device R1 can reach the destinations on Device R3.

Action
From operational mode, enter the ping command.

user@R1> ping 192.168.1.1

PING 192.168.1.1 (192.168.1.1): 56 data bytes
64 bytes from 192.168.1.1: icmp_seq=0 ttl=63 time=2.089 ms
64 bytes from 192.168.1.1: icmp_seq=1 ttl=63 time=1.270 ms
64 bytes from 192.168.1.1: icmp_seq=2 ttl=63 time=2.135 ms

Meaning
These results confirm that Device R1 can reach the destinations in the OSPF network.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3R1</td>
<td>Starting in Junos OS Release 19.3R1, Junos supports creation of OSPF topology-independent TI-LFA backup paths where the prefix SID is learned from a segment routing mapping server advertisement when the PLR and mapping server are both in the same OSPF area.</td>
</tr>
</tbody>
</table>
RELATED DOCUMENTATION

OSPF Routing Policy Overview
Understanding Route Filters for Use in Routing Policy Match Conditions
15
CHAPTER

Configure OSPFv2 Sham Links

Configuring OSPFv2 Sham Links | 541
Configuring OSPFv2 Sham Links

OSPFv2 Sham Links Overview

You can create an intra-area link or sham link between two provider edge (PE) routing devices so that the VPN backbone is preferred over the back-door link. A back-door link is a backup link that connects customer edge (CE) devices in case the VPN backbone is unavailable. When such a backup link is available and the CE devices are in the same OSPF area, the default behavior is to prefer this backup link over the VPN backbone. This is because the backup link is considered an intra-area link, while the VPN backbone is always considered an interarea link. Intra-area links are always preferred over interarea links.

The sham link is an unnumbered point-to-point intra-area link between PE devices. When the VPN backbone has a sham intra-area link, this sham link can be preferred over the backup link if the sham link has a lower OSPF metric than the backup link.

The sham link is advertised using Type 1 link-state advertisements (LSAs). Sham links are valid only for routing instances and OSPFv2.

Each sham link is identified by the combination of a local endpoint address and a remote endpoint address. Figure 30 on page 541 shows an OSPFv2 sham link. Router CE1 and Router CE2 are located in the same OSPFv2 area. These customer edge (CE) routing devices are linked together by a Layer 3 VPN over Router PE1 and Router PE2. In addition, Router CE1 and Router CE2 are connected by an intra-area link used as a backup.

Figure 30: OSPFv2 Sham Link
OSPFv2 treats the link through the Layer 3 VPN as an interarea link. By default, OSPFv2 prefers intra-area links to interarea links, so OSPFv2 selects the backup intra-area link as the active path. This is not acceptable in a configuration where the intra-area link is not the expected primary path for traffic between the CE routing devices. You can configure the metric for the sham link to ensure that the path over the Layer 3 VPN is preferred to a backup path over an intra-area link connecting the CE routing devices.

For the remote endpoint, you can configure the OSPFv2 interface as a demand circuit, configure IPsec authentication (you configure the actual IPsec authentication separately), and define the metric value.

You should configure an OSPFv2 sham link under the following circumstances:

- Two CE routing devices are linked together by a Layer 3 VPN.
- These CE routing devices are in the same OSPFv2 area.
- An intra-area link is configured between the two CE routing devices.

If there is no intra-area link between the CE routing devices, you do not need to configure an OSPFv2 sham link.

NOTE: In Junos OS Release 9.6 and later, an OSPFv2 sham link is installed in the routing table as a hidden route. Additionally, a BGP route is not exported to OSPFv2 if a corresponding OSPF sham link is available.

NOTE: In Junos OS Release 16.1 and later, OSPF sham-links are supported on default instances. The cost of the sham-link is dynamically set to the aigp-metric of the BGP route if no metric is configured on the sham-link by the user. If the aigp-metric is not present in the BGP route then the sham-link cost defaults to 1.

Example: Configuring OSPFv2 Sham Links

IN THIS SECTION

- Requirements | 543
- Overview | 543
- Configuration | 544
- Verification | 551
This example shows how to enable OSPFv2 sham links on a PE routing device.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

The sham link is an unnumbered point-to-point intra-area link and is advertised by means of a type 1 link-state advertisement (LSA). Sham links are valid only for routing instances and OSPFv2.

Each sham link is identified by a combination of the local endpoint address and a remote endpoint address and the OSPFv2 area to which it belongs. You manually configure the sham link between two PE devices, both of which are within the same VPN routing and forwarding (VRF) routing instance, and you specify the address for the local end point of the sham link. This address is used as the source for the sham link packets and is also used by the remote PE routing device as the sham link remote end point. You can also include the optional **metric** option to set a metric value for the remote end point. The metric value specifies the cost of using the link. Routes with lower total path metrics are preferred over those with higher path metrics.

To enable OSPFv2 sham links on a PE routing device:

- Configure an extra loopback interface on the PE routing device.

- Configure the VRF routing instance that supports Layer 3 VPNs on the PE routing device, and associate the sham link with an existing OSPF area. The OSPFv2 sham link configuration is also included in the routing instance. You configure the sham link’s local endpoint address, which is the loopback address of the local VPN, and the remote endpoint address, which is the loopback address of the remote VPN. In this example, the VRF routing instance is named red.

Figure 31 on page 544 shows an OSPFv2 sham link.
Figure 31: OSPFv2 Sham Link Example

The devices in the figure represent the following functions:

- CE1 and CE2 are the customer edge devices.
- PE1 and PE2 are the provider edge devices.
- P is the provider device.

"CLI Quick Configuration" on page 544 shows the configuration for all of the devices in Figure 31 on page 544. The section "Step-by-Step Procedure" on page 547 describes the steps on Device PE1.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

CE1

```
set interfaces fe-1/2/0 unit 0 family inet address 10.1.1.1/30
set interfaces fe-1/2/0 unit 0 family mpls
set interfaces fe-1/2/1 unit 0 family inet address 10.0.0.17/30
set interfaces lo0 unit 0 family inet address 192.0.2.1/24
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ospf area 0.0.0.0 interface fe-1/2/1.0 metric 100
set policy-options policy-statement send-direct from protocol direct
```
set policy-options policy-statement send-direct then accept
set routing-options router-id 192.0.2.1
set routing-options autonomous-system 1

PE1

set interfaces fe-1/2/0 unit 0 family inet address 10.1.1.2/30
set interfaces fe-1/2/0 unit 0 family mpls
set interfaces fe-1/2/1 unit 0 family inet address 10.1.1.5/30
set interfaces lo0 unit 0 family inet address 192.0.2.2/24
set protocols mpls interface fe-1/2/1.0
set protocols bgp group toR4 type internal
set protocols bgp group toR4 local-address 192.0.2.2
set protocols bgp group toR4 family inet-vpn unicast
set protocols bgp group toR4 neighbor 192.0.2.4
set protocols ospf area 0.0.0.0 interface fe-1/2/1.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ldp interface fe-1/2/1.0
set protocols ldp interface lo0.0
set policy-options policy-statement bgp-to-ospf term 1 from protocol bgp
set policy-options policy-statement bgp-to-ospf term 1 then accept
set policy-options policy-statement bgp-to-ospf term 2 then reject
set routing-instances red instance-type vrf
set routing-instances red interface fe-1/2/0.0
set routing-instances red interface lo0.1
set routing-instances red route-distinguisher 2:1
set routing-instances red vrf-target target:2:1
set routing-instances red protocols ospf export bgp-to-ospf
set routing-instances red protocols ospf sham-link local 198.51.100.2
set routing-instances red protocols ospf area 0.0.0.0 sham-link-remote 198.51.100.4 metric 10
set routing-instances red protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set routing-instances red protocols ospf area 0.0.0.0 interface lo0.1
set routing-options router-id 192.0.2.2
set routing-options autonomous-system 2
set interfaces fe-1/2/0 unit 0 family inet address 10.1.1.6/30
set interfaces fe-1/2/0 unit 0 family mpls
set interfaces fe-1/2/1 unit 0 family inet address 10.1.1.9/30
set interfaces fe-1/2/1 unit 0 family mpls
set interfaces lo0 unit 3 family inet address 192.0.2.3/24
set protocols mpls interface all
set protocols ospf area 0.0.0.0 interface lo0.3 passive
set protocols ospf area 0.0.0.0 interface all
set protocols ldp interface all
set routing-options router-id 192.0.2.3

PE2

set interfaces fe-1/2/0 unit 0 family inet address 10.1.1.10/30
set interfaces fe-1/2/0 unit 0 family mpls
set interfaces fe-1/2/1 unit 0 family inet address 10.1.1.13/30
set interfaces fe-1/2/1 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 192.0.2.4/32
set interfaces lo0 unit 1 family inet address 198.51.100.4/32
set protocols mpls interface fe-1/2/0.0
set protocols bgp group toR2 type internal
set protocols bgp group toR2 local-address 192.0.2.4
set protocols bgp group toR2 family inet-vpn unicast
set protocols bgp group toR2 neighbor 192.0.2.2
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set protocols ldp interface fe-1/2/0.0
set protocols ldp interface lo0.0
set policy-options policy-statement bgp-to-ospf term 1 from protocol bgp
set policy-options policy-statement bgp-to-ospf term 1 then accept
set policy-options policy-statement bgp-to-ospf term 2 then reject
set routing-instances red instance-type vrf
set routing-instances red interface fe-1/2/1.0
set routing-instances red interface lo0.1
set routing-instances red route-distinguisher 2:1
set routing-instances red vrf-target target:2:1
set routing-instances red protocols ospf export bgp-to-ospf
set routing-instances red protocols ospf sham-link local 198.51.100.4
set routing-instances red protocols ospf area 0.0.0.0 sham-link-remote 198.51.100.2 metric 10
set routing-instances red protocols ospf area 0.0.0.0 interface fe-1/2/1.0
set routing-instances red protocols ospf area 0.0.0.0 interface lo0.1
set routing-options router-id 192.0.2.4
set routing-options autonomous-system 2

CE2

set interfaces fe-1/2/0 unit 14 family inet address 10.1.1.14/30
set interfaces fe-1/2/0 unit 14 family mpls
set interfaces lo0 unit 5 family inet address 192.0.2.5/24
set protocols ospf area 0.0.0.0 interface fe-1/2/0.14
set protocols ospf area 0.0.0.0 interface lo0.5 passive
set policy-options policy-statement send-direct from protocol direct
set policy-options policy-statement send-direct then accept
set routing-options router-id 192.0.2.5
set routing-options autonomous-system 3

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Modifying the Junos OS Configuration in CLI User Guide.

To configure OSPFv2 sham links on each PE device:

1. Configure the interfaces, including two loopback interfaces.

 [edit interfaces]
 user@PE1# set fe-1/2/0 unit 0 family inet address 10.1.1.2/30
 user@PE1# set fe-1/2/0 unit 0 family mpls
 user@PE1# set fe-1/2/1 unit 0 family inet address 10.1.1.5/30
 user@PE1# set fe-1/2/1 unit 0 family mpls
 user@PE1# set lo0 unit 0 family inet address 192.0.2.2/24
 user@PE1# set lo0 unit 1 family inet address 198.51.100.2/24

2. Configure MPLS on the core-facing interface.

 [edit protocols mpls]
 user@PE1# set interface fe-1/2/1.0
3. Configure internal BGP (IBGP).

```
(edit )
user@PE1# set protocols bgp group toR4 type internal
user@PE1# set protocols bgp group toR4 local-address 192.0.2.2
user@PE1# set protocols bgp group toR4 family inet-vpn unicast
user@PE1# set protocols bgp group toR4 neighbor 192.0.2.4
```

4. Configure OSPF on the core-facing interface and on the loopback interface that is being used in the main instance.

```
[edit protocols ospf area 0.0.0.0]
user@PE1# set interface fe-1/2/1.0
user@PE1# set interface lo0.0 passive
```

5. Configure LDP or RSVP on the core-facing interface and on the loopback interface that is being used in the main instance.

```
[edit protocols ldp]
user@PE1# set interface fe-1/2/1.0
user@PE1# set interface lo0.0
```

6. Configure a routing policy for use in the routing instance.

```
[edit policy-options policy-statement bgp-to-ospf]
user@PE1# set term 1 from protocol bgp
user@PE1# set term 1 then accept
user@PE1# set term 2 then reject
```

7. Configure the routing instance.

```
[edit routing-instances red]
user@PE1# set instance-type vrf
user@PE1# set interface fe-1/2/0.0
user@PE1# set route-distinguisher 2:1
user@PE1# set vrf-target target:2:1
user@PE1# set protocols ospf export bgp-to-ospf
user@PE1# set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
```

8. Configure the OSPFv2 sham link.
Include the extra loopback interface in the routing instance and also in the OSPF configuration. Notice that the metric on the sham-link interface is set to 10. On Device CE1’s backup OSPF link, the metric is set to 100. This causes the sham link to be the preferred link.

```
[edit routing-instances red]
user@PE1# set interface lo0.1
user@PE1# set protocols ospf sham-link local 198.51.100.2
user@PE1# set protocols ospf area 0.0.0.0 sham-link-remote 198.51.100.4 metric 10
user@PE1# set protocols ospf area 0.0.0.0 interface lo0.1
```

9. Configure the autonomous system (AS) number and the router ID.

```
[edit routing-options]
user@PE1# set router-id 192.0.2.2
user@PE1# set autonomous-system 2
```

10. If you are done configuring the device, commit the configuration.

```
[edit]
user@R1# commit
```

Results

Confirm your configuration by entering the `show interfaces` and the `show routing-instances` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Output for PE1:

```
user@PE1# show interfaces
fe-1/2/0 {
    unit 0{
        family inet {
            address 10.1.1.2/30;
        }
        family mpls;
    }
}
fe-1/2/1 {
    unit 0 {
        family inet {
            address 10.1.1.5/30;
        }
    }
}
```
user@PE1# show protocols

mpls {
 interface fe-1/2/1.0;
}

bgp {
 group toR4 {
 type internal;
 local-address 192.0.2.2;
 family inet-vpn {
 unicast;
 }
 neighbor 192.0.2.4;
 }
}

ospf {
 area 0.0.0.0 {
 interface fe-1/2/1.0;
 interface lo0.0 {
 passive;
 }
 }
}

ldp {
 interface fe-1/2/1.0;
 interface lo0.0;
}
user@PE1# show policy-options
policy-statement bgp-to-ospf {
 term 1 {
 from protocol bgp;
 then accept;
 }
 term 2 {
 then reject;
 }
}

user@PE1# show routing-instances
red {
 instance-type vrf;
 interface fe-1/2/0.0;
 interface lo0.1;
 route-distinguisher 2:1;
 vrf-target target:2:1;
 protocols {
 ospf {
 export bgp-to-ospf;
 sham-link local 198.51.100.2;
 area 0.0.0.0 {
 sham-link-remote 198.51.100.4 metric 10;
 interface fe-1/2/0.0;
 interface lo0.1;
 }
 }
 }
}

user@PE1# show routing-options
router-id 192.0.2.2;
autonomous-system 2;

Verification

IN THIS SECTION

- Verifying the Sham Link Interfaces | 552
- Verifying the Local and Remote End Points of the Sham Link | 552
Confirm that the configuration is working properly.

Verifying the Sham Link Interfaces

Purpose
Verify the sham link interface. The sham link is treated as an interface in OSPFv2, with the named displayed as `shamlink.<unique identifier>`, where the unique identifier is a number. For example, `shamlink.0`. The sham link appears as a point-to-point interface.

Action
From operational mode, enter the `show ospf interface instance instance-name` command.

```
user@PE1> show ospf interface instance red
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0.1</td>
<td>DR</td>
<td>0.0.0.0</td>
<td>198.51.100.2</td>
<td>0.0.0.0</td>
<td></td>
</tr>
<tr>
<td>fe-1/2/0.0</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
<tr>
<td>shamlink.0</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
</tbody>
</table>

Verifying the Local and Remote End Points of the Sham Link

Purpose
Verify the local and remote end points of the sham link. The MTU for the sham link interface is always zero.

Action
From operational mode, enter the `show ospf interface instance instance-name detail` command.

```
user@PE1> show ospf interface shamlink.0 instance red
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>shamlink.0</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
</tbody>
</table>

Type: P2P, Address: 0.0.0.0, Mask: 0.0.0.0, MTU: 0, Cost: 10
Local: 198.51.100.2, Remote: 198.51.100.4
Verifying the Sham Link Adjacencies

Purpose
Verify the adjacencies between the configured sham links.

Action
From operational mode, enter the `show ospf neighbor instance instance-name` command.

```
user@PE1> show ospf neighbor instance red
```

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
<th>State</th>
<th>ID</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.1</td>
<td>fe-1/2/0.0</td>
<td>Full</td>
<td>192.0.2.1</td>
<td>128</td>
<td>35</td>
</tr>
<tr>
<td>198.51.100.4</td>
<td>shamlink.0</td>
<td>Full</td>
<td>198.51.100.4</td>
<td>0</td>
<td>31</td>
</tr>
</tbody>
</table>

Verifying the Link-State Advertisement

Purpose
Verify that the router LSA originated by the instance carries the sham link adjacency as an unnumbered point-to-point link. The link data for sham links is a number ranging from 0x80010000 through 0x8001ffff.

Action
From operational mode, enter the `show ospf database instance instance-name` command.

```
user@PE1> show ospf database instance red
```

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>192.0.2.1</td>
<td>192.0.2.1</td>
<td>0x80000009</td>
<td>1803</td>
<td>0x22</td>
<td>0x6ec7</td>
<td>72</td>
</tr>
<tr>
<td>Router</td>
<td>192.0.2.5</td>
<td>192.0.2.5</td>
<td>0x80000007</td>
<td>70</td>
<td>0x22</td>
<td>0x2746</td>
<td>72</td>
</tr>
<tr>
<td>Router</td>
<td>*198.51.100.2</td>
<td>198.51.100.2</td>
<td>0x80000006</td>
<td>55</td>
<td>0x22</td>
<td>0xda6b</td>
<td>60</td>
</tr>
<tr>
<td>Network</td>
<td>10.0.0.18</td>
<td>192.0.2.5</td>
<td>0x80000002</td>
<td>70</td>
<td>0x22</td>
<td>0x9a71</td>
<td>32</td>
</tr>
</tbody>
</table>
Verifying the Path Selection

Purpose
Verify that the Layer 3 VPN path is used instead of the backup path.

Action
From operational mode, enter the traceroute command from Device CE1 to Device CE2.

```
user@CE1> traceroute 192.0.2.5
```

Meaning
The traceroute operation shows that the Layer 3 VPN is the preferred path. If you were to remove the sham link or if you were to modify the OSPF metric to prefer that backup path, the traceroute would show that the backup path is preferred.

RELATED DOCUMENTATION

Day One: Advanced OSPF in the Enterprise
Configuring OSPF on Logical Systems

IN THIS SECTION

- OSPF Support for Logical Systems | 556
- Example: Configuring OSPF on Logical Systems Within the Same Router | 557

OSPF Support for Logical Systems

IN THIS SECTION

- Introduction to Logical Systems | 556
- OSPF and Logical Systems | 556

This topic describes the following information:

Introduction to Logical Systems

With Junos OS, you can partition a single physical router into multiple logical devices that perform independent routing tasks. Because logical systems perform a subset of the tasks once handled by the main router, logical systems offer an effective way to maximize the use of a single routing or switching platform. Logical systems have their own unique routing tables, interfaces, policies, and routing instances.

OSPF and Logical Systems

You can configure both OSPF Version 2 (OSPFv2) and OSPF Version 3 (OSPFv3) for logical systems. In the case of OSPFv3, you can also configure OSPFv3 realms for logical systems, which allows OSPFv3 to advertise address families other than unicast IPv6.
You configure OSPF for logical systems at the following hierarchy levels:

- \([\text{edit logical-systems logical-system-name protocols (ospf | ospf3)}]\)
- \([\text{edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)}]\)
- \([\text{edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)}]\)
- \([\text{edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)}]\)

Example: Configuring OSPF on Logical Systems Within the Same Router

This example shows how to configure an OSPF network using multiple logical systems that are running on a single physical router. The logical systems are connected by logical tunnel interfaces.

Requirements

You must connect the logical systems by using logical tunnel (lt) interfaces. See Example: Connecting Logical Systems Within the Same Device Using Logical Tunnel Interfaces on MX Series Routers and EX Series Switches.

Overview

This example shows the configuration of a single OSPF area with three logical systems running on one physical router. Each logical system has its own routing table. The configuration enables the protocol on all logical system interfaces that participate in the OSPF domain and specifies the area that the interfaces are in.

Figure 32 on page 558 shows the sample network.
Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
set logical-systems LS1 interfaces lt-1/2/0 unit 0 description LS1->LS3
set logical-systems LS1 interfaces lt-1/2/0 unit 0 encapsulation ethernet
set logical-systems LS1 interfaces lt-1/2/0 unit 0 peer-unit 5
set logical-systems LS1 interfaces lt-1/2/0 unit 0 family inet address 10.0.1.2/30
set logical-systems LS1 interfaces lt-1/2/0 unit 2 description LS1->LS2
set logical-systems LS1 interfaces lt-1/2/0 unit 2 encapsulation ethernet
set logical-systems LS1 interfaces lt-1/2/0 unit 2 peer-unit 1
set logical-systems LS1 interfaces lt-1/2/0 unit 2 family inet address 10.0.0.1/30
set logical-systems LS1 protocols ospf area 0.0.0.0 interface lt-1/2/0.0
set logical-systems LS1 protocols ospf area 0.0.0.0 interface lt-1/2/0.2
set logical-systems LS2 interfaces lt-1/2/0 unit 1 description LS2->LS1
set logical-systems LS2 interfaces lt-1/2/0 unit 1 encapsulation ethernet
set logical-systems LS2 interfaces lt-1/2/0 unit 1 peer-unit 2
set logical-systems LS2 interfaces lt-1/2/0 unit 1 family inet address 10.0.0.2/30
set logical-systems LS2 interfaces lt-1/2/0 unit 4 description LS2->LS3
```
set logical-systems LS2 interfaces lt-1/2/0 unit 4 encapsulation ethernet
set logical-systems LS2 interfaces lt-1/2/0 unit 4 peer-unit 3
set logical-systems LS2 interfaces lt-1/2/0 unit 4 family inet address 10.0.2.2/30
set logical-systems LS2 protocols ospf area 0.0.0.0 interface lt-1/2/0.1
set logical-systems LS2 protocols ospf area 0.0.0.0 interface lt-1/2/0.4
set logical-systems LS3 interfaces lt-1/2/0 unit 3 description LS3->LS2
set logical-systems LS3 interfaces lt-1/2/0 unit 3 encapsulation ethernet
set logical-systems LS3 interfaces lt-1/2/0 unit 3 peer-unit 4
set logical-systems LS3 interfaces lt-1/2/0 unit 3 family inet address 10.0.2.1/30
set logical-systems LS3 interfaces lt-1/2/0 unit 5 description LS3->LS1
set logical-systems LS3 interfaces lt-1/2/0 unit 5 encapsulation ethernet
set logical-systems LS3 interfaces lt-1/2/0 unit 5 peer-unit 0
set logical-systems LS3 interfaces lt-1/2/0 unit 5 family inet address 10.0.1.1/30
set logical-systems LS3 protocols ospf area 0.0.0.0 interface lt-1/2/0.5
set logical-systems LS3 protocols ospf area 0.0.0.0 interface lt-1/2/0.3

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure OSPF on logical systems:

1. Configure the logical tunnel interface on Logical System LS1 connecting to Logical System LS2.

   ```
   [edit]
   user@host# set logical-systems LS1 interfaces lt-1/2/0 unit 2 description LS1->LS2
   user@host# set logical-systems LS1 interfaces lt-1/2/0 unit 2 encapsulation ethernet
   user@host# set logical-systems LS1 interfaces lt-1/2/0 unit 2 peer-unit 1
   user@host# set logical-systems LS1 interfaces lt-1/2/0 unit 2 family inet address 10.0.0.1/30
   ```

2. Configure the logical tunnel interface on Logical System LS1 connecting to Logical System LS3.

   ```
   [edit]
   user@host# set logical-systems LS1 interfaces lt-1/2/0 unit 0 description LS1->LS3
   user@host# set logical-systems LS1 interfaces lt-1/2/0 unit 0 encapsulation ethernet
   user@host# set logical-systems LS1 interfaces lt-1/2/0 unit 0 peer-unit 5
   user@host# set logical-systems LS1 interfaces lt-1/2/0 unit 0 family inet address 10.0.1.2/30
   ```

3. Configure the logical tunnel interface on Logical System LS2 connecting to Logical System LS1.

   ```
   [edit]
   ```

[edit]
user@host# set logical-systems LS2 interfaces lt-1/2/0 unit 4 description LS2->LS3
user@host# set logical-systems LS2 interfaces lt-1/2/0 unit 4 encapsulation ethernet
user@host# set logical-systems LS2 interfaces lt-1/2/0 unit 4 peer-unit 3
user@host# set logical-systems LS2 interfaces lt-1/2/0 unit 4 family inet address 10.0.2.2/30

5. Configure the logical tunnel interface on Logical System LS3 connecting to Logical System LS2.

[edit]
user@host# set logical-systems LS3 interfaces lt-1/2/0 unit 3 description LS3->LS2
user@host# set logical-systems LS3 interfaces lt-1/2/0 unit 3 encapsulation ethernet
user@host# set logical-systems LS3 interfaces lt-1/2/0 unit 3 peer-unit 4
user@host# set logical-systems LS3 interfaces lt-1/2/0 unit 3 family inet address 10.0.2.1/30

6. Configure the logical tunnel interface on Logical System LS3 connecting to Logical System LS1.

[edit]
user@host# set logical-systems LS3 interfaces lt-1/2/0 unit 5 description LS3->LS1
user@host# set logical-systems LS3 interfaces lt-1/2/0 unit 5 encapsulation ethernet
user@host# set logical-systems LS3 interfaces lt-1/2/0 unit 5 peer-unit 0
user@host# set logical-systems LS3 interfaces lt-1/2/0 unit 5 family inet address 10.0.1.1/30

7. Configure OSPF on all the interfaces.

[edit]
user@host# set logical-systems LS1 protocols ospf area 0.0.0.0 interface lt-1/2/0.0
user@host# set logical-systems LS1 protocols ospf area 0.0.0.0 interface lt-1/2/0.2
user@host# set logical-systems LS2 protocols ospf area 0.0.0.0 interface lt-1/2/0.1
user@host# set logical-systems LS2 protocols ospf area 0.0.0.0 interface lt-1/2/0.4
user@host# set logical-systems LS3 protocols ospf area 0.0.0.0 interface lt-1/2/0.5
user@host# set logical-systems LS3 protocols ospf area 0.0.0.0 interface lt-1/2/0.3
8. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

Results

Confirm your configuration by issuing the **show logical-systems** command.

```
show logical-systems
LS1 {
  interfaces {
    lt-1/2/0 {
      unit 0 {
        description LS1->LS3;
        encapsulation ethernet;
        peer-unit 5;
        family inet {
          address 10.0.1.2/30;
        }
      }
      unit 2 {
        description LS1->LS2;
        encapsulation ethernet;
        peer-unit 1;
        family inet {
          address 10.0.0.1/30;
        }
      }
    }
  }
  protocols {
    ospf {
      area 0.0.0.0 {
        interface lt-1/2/0.0;
        interface lt-1/2/0.2;
      }
    }
  }
}
LS2 {
  interfaces {
    lt-1/2/0 {
      unit 1 {
```
description LS2->LS1;
encapsulation ethernet;
peer-unit 2;
family inet {
 address 10.0.0.2/30;
}
}
unit 4 {
description LS2->LS3;
encapsulation ethernet;
peer-unit 3;
family inet {
 address 10.0.2.2/30;
}
}
}
}
protocols {
ospf {
 area 0.0.0.0 {
 interface lt-1/2/0.1;
 interface lt-1/2/0.4;
 }
}
}
}
LS3 {
interfaces {
lt-1/2/0 {
 unit 3 {
 description LS3->LS2;
 encapsulation ethernet;
 peer-unit 4;
 family inet {
 address 10.0.2.1/30;
 }
 }
}
unit 5 {
 description LS3->LS1;
 encapsulation ethernet;
 peer-unit 0;
 family inet {
 address 10.0.1.1/30;
 }
}
Verification

IN THIS SECTION

- Verifying That the Logical Systems Are Up | 563
- Verifying Connectivity Between the Logical Systems | 564

Confirm that the configuration is working properly.

Verifying That the Logical Systems Are Up

Purpose

Make sure that the interfaces are properly configured.

Action

```
user@host> show interfaces terse
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lt-1/2/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lt-1/2/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.0.1.2/30</td>
<td></td>
</tr>
<tr>
<td>lt-1/2/0.1</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.0.0.2/30</td>
<td></td>
</tr>
<tr>
<td>lt-1/2/0.2</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.0.0.1/30</td>
<td></td>
</tr>
<tr>
<td>lt-1/2/0.3</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.0.2.1/30</td>
<td></td>
</tr>
<tr>
<td>lt-1/2/0.4</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.0.2.2/30</td>
<td></td>
</tr>
</tbody>
</table>
Verifying Connectivity Between the Logical Systems

Purpose
Make sure that the OSPF adjacencies are established by checking the OSPF neighbor tables, checking the routing tables, and pinging the logical systems.

Action

user@host> show ospf neighbor logical-system LS1

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
<th>State</th>
<th>ID</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.1.1</td>
<td>lt-1/2/0.0</td>
<td>Full</td>
<td>10.0.1.1</td>
<td>128</td>
<td>37</td>
</tr>
<tr>
<td>10.0.0.2</td>
<td>lt-1/2/0.2</td>
<td>Full</td>
<td>10.0.0.2</td>
<td>128</td>
<td>33</td>
</tr>
</tbody>
</table>

user@host> show ospf neighbor logical-system LS2

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
<th>State</th>
<th>ID</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.1</td>
<td>lt-1/2/0.1</td>
<td>Full</td>
<td>10.0.0.1</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td>10.0.2.1</td>
<td>lt-1/2/0.4</td>
<td>Full</td>
<td>10.0.1.1</td>
<td>128</td>
<td>36</td>
</tr>
</tbody>
</table>

user@host> show ospf neighbor logical-system LS3

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
<th>State</th>
<th>ID</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.2.2</td>
<td>lt-1/2/0.3</td>
<td>Full</td>
<td>10.0.0.2</td>
<td>128</td>
<td>36</td>
</tr>
<tr>
<td>10.0.1.2</td>
<td>lt-1/2/0.5</td>
<td>Full</td>
<td>10.0.0.1</td>
<td>128</td>
<td>37</td>
</tr>
</tbody>
</table>

user@host> show route logical-system LS1

inet.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.0.0.0/30 *[Direct/0] 00:28:00
 > via lt-1/2/0.2
10.0.0.1/32 *[Local/0] 00:28:00
 Local via lt-1/2/0.2
<table>
<thead>
<tr>
<th>IP Address</th>
<th>Status</th>
<th>Metric</th>
<th>Route Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.1.0/30</td>
<td>[Direct/0]</td>
<td>00:28:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>via lt-1/2/0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.1.2/32</td>
<td>[Local/0]</td>
<td>00:28:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local via lt-1/2/0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.2.0/30</td>
<td>[OSPF/10]</td>
<td>00:27:05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>to 10.0.1.1</td>
<td>metric 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>via lt-1/2/0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to 10.0.0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>via lt-1/2/0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>224.0.0.5/32</td>
<td>[OSPF/10]</td>
<td>00:28:03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MultiRecv</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

user@host> show route logical-system LS2

inet.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Status</th>
<th>Metric</th>
<th>Route Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0/30</td>
<td>[Direct/0]</td>
<td>00:28:31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>via lt-1/2/0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.0.2/32</td>
<td>[Local/0]</td>
<td>00:28:32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local via lt-1/2/0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.1.0/30</td>
<td>[OSPF/10]</td>
<td>00:27:38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>to 10.0.0.1</td>
<td>metric 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>via lt-1/2/0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to 10.0.2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>via lt-1/2/0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.2.0/30</td>
<td>[Direct/0]</td>
<td>00:28:32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>via lt-1/2/0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.2.2/32</td>
<td>[Local/0]</td>
<td>00:28:32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local via lt-1/2/0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>224.0.0.5/32</td>
<td>[OSPF/10]</td>
<td>00:28:34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MultiRecv</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

user@host> show route logical-system LS3

inet.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Status</th>
<th>Metric</th>
<th>Route Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0/30</td>
<td>[OSPF/10]</td>
<td>00:28:23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>to 10.0.2.2</td>
<td>metric 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>via lt-1/2/0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to 10.0.1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>via lt-1/2/0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.1.0/30</td>
<td>[Direct/0]</td>
<td>00:29:13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>via lt-1/2/0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.1.1/32</td>
<td>[Local/0]</td>
<td>00:29:15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local via lt-1/2/0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
From LS1, Ping LS3

user@host> set cli logical-system LS1

user@host:LS1> ping 10.0.2.1

PING 10.0.2.1 (10.0.2.1): 56 data bytes
64 bytes from 10.0.2.1: icmp_seq=0 ttl=64 time=1.215 ms
64 bytes from 10.0.2.1: icmp_seq=1 ttl=64 time=1.150 ms
64 bytes from 10.0.2.1: icmp_seq=2 ttl=64 time=1.134 ms

From LS3, Ping LS1

user@host> set cli logical-system LS3

user@host:LS3> ping 10.0.0.1

PING 10.0.0.1 (10.0.0.1): 56 data bytes
64 bytes from 10.0.0.1: icmp_seq=0 ttl=64 time=1.193 ms
64 bytes from 10.0.0.1: icmp_seq=1 ttl=64 time=1.114 ms
64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=1.190 ms

RELATED DOCUMENTATION

Example: Creating an Interface on a Logical System
Example: Connecting Logical Systems Within the Same Device Using Logical Tunnel Interfaces on MX Series Routers and EX Series Switches
Example: Configuring a Conditional OSPF Default Route Policy on Logical Systems
Example: Configuring an OSPF Default Route Policy on Logical Systems
Example: Configuring an OSPF Import Policy on Logical Systems
CHAPTER 17

Troubleshooting Network Issues
Troubleshooting Network Issues

IN THIS SECTION

- Working with Problems on Your Network | 568
- Isolating a Broken Network Connection | 569
- Identifying the Symptoms of a Broken Network Connection | 570
- Isolating the Causes of a Network Problem | 572
- Taking Appropriate Action for Resolving the Network Problem | 573
- Evaluating the Solution to Check Whether the Network Problem Is Resolved | 574
- Checklist for Tracking Error Conditions | 575
- Configure Routing Protocol Process Tracing | 578
- Configure Routing Protocol Tracing for a Specific Routing Protocol | 581
- Monitor Trace File Messages Written in Near-Real Time | 583
- Stop Trace File Monitoring | 584

Working with Problems on Your Network

Problem

Description: This checklist provides links to troubleshooting basics, an example network, and includes a summary of the commands you might use to diagnose problems with the router and network.

Solution

Table 4: Checklist for Working with Problems on Your Network

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Isolating a Broken Network Connection" on page 569</td>
<td></td>
</tr>
</tbody>
</table>
| 1. Identifying the Symptoms of a Broken Network Connection on page 570 | ping (ip-address | hostname)
show route (ip-address | hostname)
traceroute (ip-address | hostname) |
<p>| 2. Isolating the Causes of a Network Problem on page 572 | show < configuration | interfaces | protocols | route > |</p>
<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Taking Appropriate Action for Resolving the Network Problem on page 573</td>
<td>[edit] delete routing options static route destination-prefix commit and-quit show route destination-prefix</td>
</tr>
<tr>
<td>4. Evaluating the Solution to Check Whether the Network Problem Is Resolved on page 574</td>
<td>show route (ip-address</td>
</tr>
</tbody>
</table>

Isolating a Broken Network Connection

By applying the standard four-step process illustrated in Figure 33 on page 569, you can isolate a failed node in the network. Note that the functionality described in this section is not supported in versions 15.1X49, 15.1X49-D30, or 15.1X49-D40.

Figure 33: Process for Diagnosing Problems in Your Network

Before you embark on the four-step process, however, it is important that you are prepared for the inevitable problems that occur on all networks. While you might find a solution to a problem by simply trying a variety of actions, you can reach an appropriate solution more quickly if you are systematic in your approach to the maintenance and monitoring of your network. To prepare for problems on your network, understand how the network functions under normal conditions, have records of baseline network activity, and carefully observe the behavior of your network during a problem situation.

Figure 34 on page 570 shows the network topology used in this topic to illustrate the process of diagnosing problems in a network.
The network in Figure 34 on page 570 consists of two autonomous systems (ASs). AS 65001 includes two routers, and AS 65002 includes three routers. The border router (R1) in AS 65001 announces aggregated prefixes 100.100/24 to the AS 65002 network. The problem in this network is that R6 does not have access to R5 because of a loop between R2 and R6.

To isolate a failed connection in your network, follow the steps in these topics:

- Isolating the Causes of a Network Problem on page 572
- Taking Appropriate Action for Resolving the Network Problem on page 573
- Taking Appropriate Action for Resolving the Network Problem on page 573
- Evaluating the Solution to Check Whether the Network Problem Is Resolved on page 574

Identifying the Symptoms of a Broken Network Connection

Problem

Description: The symptoms of a problem in your network are usually quite obvious, such as the failure to reach a remote host.

Solution
To identify the symptoms of a problem on your network, start at one end of your network and follow the routes to the other end, entering all or one of the following Junos OS command-line interfaces (CLI) operational mode commands:

```
user@host> ping (ip-address | host-name)
user@host> show route (ip-address | host-name)
user@host> traceroute (ip-address | host-name)
```

Sample Output

```
user@R6> ping 10.0.0.5
PING 10.0.0.5 (10.0.0.5): 56 data bytes
36 bytes from 10.1.26.1: Time to live exceeded
Vr HL TOS Len  ID Flg off TTL Pro  cks   Src      Dst
 4  5  00 0054 e2db  0 0000  01  01 a8c6 10.1.26.2  10.0.0.5
36 bytes from 10.1.26.1: Time to live exceeded
Vr HL TOS Len  ID Flg off TTL Pro  cks   Src      Dst
 4  5  00 0054 e2de  0 0000  01  01 a8c3 10.1.26.2  10.0.0.5
36 bytes from 10.1.26.1: Time to live exceeded
Vr HL TOS Len  ID Flg off TTL Pro  cks   Src      Dst
 4  5  00 0054 e2e2  0 0000  01  01 a8bf 10.1.26.2  10.0.0.5
^C
--- 10.0.0.5 ping statistics ---
3 packets transmitted, 0 packets received, 100% packet loss

user@R6> show route 10.0.0.5
inet.0: 20 destinations, 20 routes (20 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.0.0.5/32   *[IS-IS/165] 00:02:39, metric 10
> to 10.1.26.1 via so-0/0/2.0

user@R6> traceroute 10.0.0.5
traceroute to 10.0.0.5 (10.0.0.5), 30 hops max, 40 byte packets
1  10.1.26.1 (10.1.26.1) 0.649 ms 0.521 ms 0.490 ms
2  10.1.26.2 (10.1.26.2) 0.521 ms 0.537 ms 0.507 ms
3  10.1.26.1 (10.1.26.1) 0.523 ms 0.536 ms 0.514 ms
4  10.1.26.2 (10.1.26.2) 0.528 ms 0.551 ms 0.523 ms
5  10.1.26.1 (10.1.26.1) 0.531 ms 0.550 ms 0.524 ms
```
Meaning

The sample output shows an unsuccessful `ping` command in which the packets are being rejected because the time to live is exceeded. The output for the `show route` command shows the interface (10.1.26.1) that you can examine further for possible problems. The `traceroute` command shows the loop between 10.1.26.1 (R2) and 10.1.26.2 (R6), as indicated by the continuous repetition of the two interface addresses.

Isolating the Causes of a Network Problem

Problem

Description: A particular symptom can be the result of one or more causes. Narrow down the focus of your search to find each individual cause of the unwanted behavior.

Solution

To isolate the cause of a particular problem, enter one or all of the following Junos OS CLI operational mode command:

```
user@host> show < configuration | bgp | interfaces | isis | ospf | route >
```

Your particular problem may require the use of more than just the commands listed above. See the appropriate command reference for a more exhaustive list of commonly used operational mode commands.

Sample Output

```
user@R6> show interfaces terse
Interface               Admin Link Proto Local               Remote
so-0/0/0                up    up    inet  10.1.56.2/30
so-0/0/0.0              up    up   inet  10.1.26.2/30
so-0/0/2                up    up    iso
so-0/0/2.0              up    up   inet  10.1.26.2/30
so-0/0/3                up    up    iso
so-0/0/3.0              up    up   inet  10.1.36.2/30
...Output truncated...
```

The following sample output is from R2:

```
user@R2> show route 10.0.0.5
```
Meaning
The sample output shows that all interfaces on R6 are up. The output from R2 shows that a static route [Static/5] configured on R2 points to R6 (10.1.26.2) and is the preferred route to R5 because of its low preference value. However, the route is looping from R2 to R6, as indicated by the missing reference to R5 (10.1.15.2).

Taking Appropriate Action for Resolving the Network Problem

Problem
Description: The appropriate action depends on the type of problem you have isolated. In this example, a static route configured on R2 is deleted from the [routing-options] hierarchy level. Other appropriate actions might include the following:

Solution
• Check the local router’s configuration and edit it if appropriate.
• Troubleshoot the intermediate router.
• Check the remote host configuration and edit it if appropriate.
• Troubleshoot routing protocols.
• Identify additional possible causes.

To resolve the problem in this example, enter the following Junos OS CLI commands:

[edit]
user@R2# delete routing-options static route destination-prefix
user@R2# commit and-quit
user@R2# show route destination-prefix
Sample Output

```plaintext
[edit]
user@R2# delete routing-options static route 10.0.0.5/32

[edit]
user@R2# commit and-quit
commit complete
Exiting configuration mode

user@R2> show route 10.0.0.5

inet.0: 22 destinations, 24 routes (22 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.0.0.5/32          * [BGP/170] 3d 20:26:17, MED 5, localpref 100
           AS path: 65001I
               > to 10.1.12.1 via so-0/0/0.0
```

Meaning

The sample output shows the static route deleted from the [routing-options] hierarchy and the new configuration committed. The output for the show route command now shows the BGP route as the preferred route, as indicated by the asterisk (*).

Evaluating the Solution to Check Whether the Network Problem Is Resolved

Problem

Description: If the problem is solved, you are finished. If the problem remains or a new problem is identified, start the process over again.

You can address possible causes in any order. In relation to the network in "Isolating a Broken Network Connection" on page 569, we chose to work from the local router toward the remote router, but you might start at a different point, particularly if you have reason to believe that the problem is related to a known issue, such as a recent change in configuration.

Solution

To evaluate the solution, enter the following Junos OS CLI commands:

```plaintext
user@host> show route (ip-address | host-name)
user@host> ping (ip-address | host-name)
```
Sample Output

user@R6> show route 10.0.0.5

inet.0: 20 destinations, 20 routes (20 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.0.0.5/32 *[BGP/170] 00:01:35, MED 5, localpref 100, from 10.0.0.2
 AS path: 65001 I
 > to 10.1.26.1 via so-0/0/2.0

user@R6> ping 10.0.0.5

PING 10.0.0.5 (10.0.0.5): 56 data bytes
64 bytes from 10.0.0.5: icmp_seq=0 ttl=253 time=0.866 ms
64 bytes from 10.0.0.5: icmp_seq=1 ttl=253 time=0.837 ms
64 bytes from 10.0.0.5: icmp_seq=2 ttl=253 time=0.796 ms
^C
--- 10.0.0.5 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.796/0.833/0.866/0.029 ms

user@R6> traceroute 10.0.0.5

traceroute to 10.0.0.5 (10.0.0.5), 30 hops max, 40 byte packets
 1 10.1.26.1 (10.1.26.1) 0.629 ms 0.538 ms 0.497 ms
 2 10.1.12.1 (10.1.12.1) 0.534 ms 0.538 ms 0.510 ms
 3 10.0.0.5 (10.0.0.5) 0.776 ms 0.705 ms 0.672 ms

Meaning

The sample output shows that there is now a connection between R6 and R5. The show route command shows that the BGP route to R5 is preferred, as indicated by the asterisk (*). The ping command is successful and the traceroute command shows that the path from R6 to R5 is through R2 (10.1.26.1), and then through R1 (10.1.12.1).

Checklist for Tracking Error Conditions

Problem
Description: Table 5 on page 576 provides links and commands for configuring routing protocol daemon tracing, Border Gateway Protocol (BGP), Intermediate System-to-Intermediate System (IS-IS) protocol, and Open Shortest Path First (OSPF) protocol tracing to diagnose error conditions.

Solution

Table 5: Checklist for Tracking Error Conditions

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure Routing Protocol Process Tracing</td>
<td></td>
</tr>
</tbody>
</table>
| | edit routing-options traceoptions set file filename size size files number show commit run show log filename |}
| 2. Configure Routing Protocol Tracing for a Specific Routing Protocol on page 581 | [edit] |
| | edit protocol protocol-name traceoptions set file filename size size files number show commit run show log filename |}
| 3. Monitor Trace File Messages Written in Near-Real Time on page 583 | |
| | monitor start filename |}
| 4. Stop Trace File Monitoring on page 584 | |
| | monitor stop filename |}

Configure BGP-Specific Options

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Display Detailed BGP Protocol Information</td>
<td>[edit]</td>
</tr>
</tbody>
</table>
| | edit protocol bgp traceoptions set flag update detail show commit run show log filename |}
| 2. Display Sent or Received BGP Packets | [edit] |
| | edit protocol bgp traceoptions set flag update (send | receive) show commit run show log filename |}

Table 5: Checklist for Tracking Error Conditions *(continued)*

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Diagnose BGP Session Establishment Problems</td>
<td>[edit]</td>
</tr>
<tr>
<td></td>
<td>edit protocol bgp</td>
</tr>
<tr>
<td></td>
<td>set traceoptions flag open detail</td>
</tr>
<tr>
<td></td>
<td>show</td>
</tr>
<tr>
<td></td>
<td>commit</td>
</tr>
<tr>
<td></td>
<td>run show log filename</td>
</tr>
</tbody>
</table>

Configure IS-IS-Specific Options

1. Displaying Detailed IS-IS Protocol Information	[edit]
	edit protocol isis traceoptions
	set flag hello detail
	show
	commit
	run show log filename

2. Displaying Sent or Received IS-IS Protocol Packets	[edit]	
	edit protocols isis traceoptions	
	set flag hello (send	receive)
	show	
	commit	
	run show log filename	

3. Analyzing IS-IS Link-State PDUs in Detail	[edit]
	edit protocols isis traceoptions
	set flag lsp detail
	show
	commit
	run show log filename

Configure OSPF-Specific Options

1. Diagnose OSPF Session Establishment Problems	[edit]
	edit protocols ospf traceoptions
	set flag hello detail
	show
	commit
	run show log filename
Configure Routing Protocol Process Tracing

Action

To configure routing protocol process (rpdl) tracing, follow these steps:

1. In configuration mode, go to the following hierarchy level:

   ```
   [edit]
   user@host# edit routing-options traceoptions
   ```

2. Configure the file, file size, number, and flags:

   ```
   [edit routing-options traceoptions]
   user@host# set file filename size size file number
   ```

 For example:

   ```
   [edit routing-options traceoptions]
   user@host# set file daemonlog size 10240 files 10
   ```

3. Verify the configuration:

   ```
   user@host# show
   ```

 For example:
4. Commit the configuration:

 user@host# commit

NOTE: Some traceoptions flags generate an extensive amount of information. Tracing can also slow down the operation of routing protocols. Delete the traceoptions configuration if you no longer require it.

1. View the contents of the file containing the detailed messages:

 user@host# run show log filename

For example:

 [edit routing-options traceoptions]
 user@pro4-a# run show log daemonlog
 Sep 17 14:17:31 trace_on: Tracing to "/var/log/daemonlog" started
 Sep 17 14:17:31 Tracing flags enabled: general
 Sep 17 14:17:31 inet_routerid_notify: Router ID: 10.255.245.44
 Sep 17 14:17:31 inet_routerid_notify: No Router ID assigned
 Sep 17 14:17:31 Initializing LSI globals
 Sep 17 14:17:31 LSI initialization complete
 Sep 17 14:17:31 Initializing OSPF instances
 Sep 17 14:17:31 Reinitializing OSPFv2 instance master
 Sep 17 14:17:31 OSPFv2 instance master running
 [...Output truncated...]

Meaning

Table 6 on page 580 lists tracing flags and example output for Junos-supported routing protocol daemon tracing.
Table 6: Routing Protocol Daemon Tracing Flags

<table>
<thead>
<tr>
<th>Tracing Flag</th>
<th>Description</th>
<th>Example Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>All operations</td>
<td>Not available.</td>
</tr>
<tr>
<td>general</td>
<td>Normal operations and routing table change</td>
<td>Not available.</td>
</tr>
<tr>
<td>normal</td>
<td>Normal operations</td>
<td>Not available.</td>
</tr>
<tr>
<td>policy</td>
<td>Policy operations and actions</td>
<td>Nov 29 22:19:58 export: Dest 10.0.0.0 proto Static</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov 29 22:19:58 policy_match_qual_or: Qualifier proto Sense: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov 29 22:19:58 policy_match_qual_or: Qualifier proto Sense: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov 29 22:19:58 export: Dest 10.10.10.0 proto IS-IS</td>
</tr>
<tr>
<td>route</td>
<td>Routing table changes</td>
<td>Nov 29 22:23:59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov 29 22:23:59 rtlist_walker_job: rt_list walk for RIB inet.0 started with 42 entries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov 29 22:23:59 rt_flash_update_callback: flash KRT (inet.0) start</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov 29 22:23:59 rt_flash_update_callback: flash KRT (inet.0) done</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov 29 22:23:59 rtlist_walker_job: rt_list walk for inet.0 ended with 42 entries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov 29 22:23:59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov 29 22:23:59 KRT Request: send len 68 v14 seq 0 CHANGE route/user af addr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>172.16.0.0 nhop-type unicast nhop 10.10.10.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov 29 22:23:59 KRT Request: send len 68 v14 seq 0 ADD route/user af addr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>172.17.0.0 nhop-type unicast nhop 10.10.10.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov 29 22:23:59 KRT Request: send len 68 v14 seq 0 ADD route/user af addr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.149.3.0 nhop-type unicast nhop 10.10.10.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov 29 22:24:19 trace_on: Tracing to "/var/log/rpdlog" started</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov 29 22:24:19 KRT Request: send len 68 v14 seq 0 DELETE route/user af addr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.10.218.0 nhop-type unicast nhop 10.10.10.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov 29 22:24:19 RELEASE 10.10.218.0 255.255.255.0 gw 10.10.10.29, 10.10.10.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGP pref 170/-101 metric so-1/1/0.0, so-1/1/1.0 <Release Delete Int Ext> as 65401</td>
</tr>
<tr>
<td>state</td>
<td>State transitions</td>
<td>Not available.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6: Routing Protocol Daemon Tracing Flags *(continued)*

<table>
<thead>
<tr>
<th>Tracing Flag</th>
<th>Description</th>
<th>Example Output</th>
</tr>
</thead>
</table>

Configure Routing Protocol Tracing for a Specific Routing Protocol

Action

To configure routing protocol tracing for a specific routing protocol, follow these steps:

1. In configuration mode, go to the following hierarchy level:

   ```
   [edit]
   user@host# edit protocol protocol-name traceoptions
   ```

2. Configure the file, file size, number, and flags:

   ```
   [edit protocols protocol name traceoptions]
   ```
user@host# set file filename size size files number
[edit protocols protocol name traceoptions]
user@host# set flag flag

For example:

[edit protocols ospf traceoptions]
user@host# set file ospflog size 10240 files 10
[edit protocols ospf traceoptions]
user@host# set flag general

3. Verify the configuration:

user@host# show

For example:

[edit protocols ospf traceoptions]
user@host# show
file ospflog size 10k files 10;
flag general;

4. Commit the configuration:

user@host# commit

5. View the contents of the file containing the detailed messages:

user@host# run show log filename

For example:

[edit protocols ospf traceoptions]
user@pro4-a# run show log ospflog
Sep 17 14:23:10 trace_on: Tracing to "/var/log/ospflog" started
Sep 17 14:23:10 rt_flash_update_callback: flash OSPF (inet.0) start
Sep 17 14:23:10 OSPF: multicast address 224.0.0.5/32, route ignored
Sep 17 14:23:10 rt_flash_update_callback: flash OSPF (inet.0) done
Sep 17 14:23:10 CHANGE 10.255.245.46/32 gw 10.10.208.67 OSPF pref 10/0 metric 1/0 fe-0/0/0.0 <Delete Int>
Sep 17 14:23:10 CHANGE 10.255.245.46/32 gw 10.10.208.67 OSPF pref 10/0 metric 1/0 fe-0/0/0.0 <Active Int>
Meaning

Table 7 on page 583 lists standard tracing options that are available globally or that can be applied to specific protocols. You can also configure tracing for a specific BGP peer or peer group. For more information, see the Junos System Basics Configuration Guide.

Table 7: Standard Trace Options for Routing Protocols

<table>
<thead>
<tr>
<th>Tracing Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>All operations</td>
</tr>
<tr>
<td>general</td>
<td>Normal operations and routing table changes</td>
</tr>
<tr>
<td>normal</td>
<td>Normal operations</td>
</tr>
<tr>
<td>policy</td>
<td>Policy operations and actions</td>
</tr>
<tr>
<td>route</td>
<td>Routing table changes</td>
</tr>
<tr>
<td>state</td>
<td>State transitions</td>
</tr>
<tr>
<td>task</td>
<td>Interface transactions and processing</td>
</tr>
<tr>
<td>timer</td>
<td>Timer usage</td>
</tr>
</tbody>
</table>

Monitor Trace File Messages Written in Near-Real Time

Purpose

To monitor messages in near-real time as they are being written to a trace file.
Action

To monitor messages in near-real time as they are being written to a trace file, use the following Junos OS command-line interface (CLI) operational mode command:

```
user@host> monitor start filename
```

Sample Output

```
user@host> monitor start isis

user@host>
*** isis ***
Sep 15 18:32:21 Updating LSP isis5.02-00 in database
Sep 15 18:32:21 Updating L2 LSP isis5.02-00 in TED
Sep 15 18:32:21 Adding a half link from isis5.02 to isis6.00
Sep 15 18:32:21 Adding a half link from isis5.02 to isis5.00
Sep 15 18:32:21 Adding a half link from isis5.02 to isis6.00
Sep 15 18:32:21 Adding a half link from isis5.02 to isis5.00
Sep 15 18:32:21 Scheduling L2 LSP isis5.02-00 sequence 0xd87 on interface fxp2.3
Sep 15 18:32:21 Updating LSP isis5.00-00 in database
Sep 15 18:32:21 Updating L1 LSP isis5.00-00 in TED
Sep 15 18:32:21 Sending L2 LSP isis5.02-00 on interface fxp2.3
Sep 15 18:32:21 sequence 0xd87, checksum 0xc1c8, lifetime 1200
```

Stop Trace File Monitoring

Action

To stop monitoring a trace file in near-real time, use the following Junos OS CLI operational mode command after you have started monitoring:

```
user@host  monitor stop filename
```

Sample Output

```
user@host> monitor start isis
```
user@host>
*** isis ***
Sep 15 18:32:21 Updating LSP isis5.02-00 in database
Sep 15 18:32:21 Updating L2 LSP isis5.02-00 in TED
Sep 15 18:32:21 Adding a half link from isis5.02 to isis6.00
Sep 15 18:32:21 Adding a half link from isis5.02 to isis5.00
Sep 15 18:32:21 Adding a half link from isis5.02 to isis6.00
Sep 15 18:32:21 Adding a half link from isis5.02 to isis5.00
Sep 15 18:32:21 Scheduling L2 LSP isis5.02-00 sequence 0xd87 on interface fxp2.3
Sep 15 18:32:21 Updating LSP isis5.00-00 in database
Sep 15 18:32:21 Updating L1 LSP isis5.00-00 in TED
Sep 15 18:32:21 Sending L2 LSP isis5.02-00 on interface fxp2.3
Sep 15 18:32:21 sequence 0xd87, checksum 0xc1c8, lifetime 1200

monitor stop isis

user@host>
Verifying and Monitoring OSPF
Verifying and Monitoring OSPF Configuration

To verify an OSPF configuration, perform these tasks:

Verifying OSPF-Enabled Interfaces

Purpose
Verify that OSPF is running on a particular interface and that the interface is in the desired area.

Action
From the CLI, enter the `show ospf interface` command.

Sample Output

```
user@host> show ospf interface
```
Meaning

The output shows a list of the device interfaces that are configured for OSPF. Verify the following information:

- Each interface on which OSPF is enabled is listed.
- Under **Area**, each interface shows the area for which it was configured.
- Under **Intf** and **State**, the device loopback (lo0.0) interface and LAN interface that are linked to the OSPF network's designated router (DR) are identified.
- Under **DR ID**, the IP address of the OSPF network's designated router appears.
- Under **State**, each interface shows a state of **PtToPt** to indicate a point-to-point connection. If the state is **Waiting**, check the output again after several seconds. A state of **Down** indicates a problem.
- The designated router addresses always show a state of **DR**.

Verifying OSPF Neighbors

Purpose

OSPF neighbors are interfaces that have an immediate adjacency. On a point-to-point connection between the device and another router running OSPF, verify that each router has a single OSPF neighbor.

Action

From the CLI, enter the `show ospf neighbor` command.

Sample Output

```
user@host> show ospf neighbor

<table>
<thead>
<tr>
<th>Address</th>
<th>Intf</th>
<th>State</th>
<th>ID</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.254.225</td>
<td>fxp3.0</td>
<td>2Way</td>
<td>10.250.240.32</td>
<td>128</td>
<td>36</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>IP Address</th>
<th>Interface</th>
<th>State</th>
<th>Router ID</th>
<th>Priority</th>
<th>Dead Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.254.230</td>
<td>fxp3.0</td>
<td>Full</td>
<td>10.250.240.8</td>
<td>128</td>
<td>38</td>
</tr>
<tr>
<td>192.168.254.229</td>
<td>fxp3.0</td>
<td>Full</td>
<td>10.250.240.35</td>
<td>128</td>
<td>33</td>
</tr>
<tr>
<td>10.1.1.129</td>
<td>fxp2.0</td>
<td>Full</td>
<td>10.250.240.12</td>
<td>128</td>
<td>37</td>
</tr>
<tr>
<td>10.1.1.131</td>
<td>fxp2.0</td>
<td>Full</td>
<td>10.250.240.11</td>
<td>128</td>
<td>38</td>
</tr>
<tr>
<td>10.1.2.1</td>
<td>fxp1.0</td>
<td>Full</td>
<td>10.250.240.9</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td>10.1.2.81</td>
<td>fxp0.0</td>
<td>Full</td>
<td>10.250.240.10</td>
<td>128</td>
<td>33</td>
</tr>
</tbody>
</table>

Meaning

The output shows a list of the device's OSPF neighbors and their addresses, interfaces, states, router IDs, priorities, and number of seconds allowed for inactivity ("dead" time). Verify the following information:

- Each interface that is immediately adjacent to the device is listed.
- The device's own loopback address and the loopback addresses of any routers with which the device has an immediate adjacency are listed.
- Under **State**, each neighbor shows a state of **Full**. Because full OSPF connectivity is established over a series of packet exchanges between clients, the OSPF link might take several seconds to establish. During that time, the state might be displayed as **Attempt**, **Init**, or **2way**, depending on the stage of negotiation.

If, after 30 seconds, the state is not **Full**, the OSPF configuration between the neighbors is not functioning correctly.

Verifying the Number of OSPF Routes

Purpose

Verify that the OSPF routing table has entries for the following:

- Each subnetwork reachable through an OSPF link
- Each loopback address reachable on the network

For example, **Figure 35 on page 590** shows a sample network with an OSPF topology.
In this topology, OSPF is being run on all interfaces. Each segment in the network is identified by an address with a /24 prefix, with interfaces on either end of the segment being identified by unique IP addresses.

Action

From the CLI, enter the `show ospf route` command.

Sample Output

```
user@host> show ospf route

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Path</th>
<th>Route</th>
<th>NH</th>
<th>Metric</th>
<th>NextHop</th>
<th>Nexthop</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.10.1/24</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
<td>ge-0/0/2.0</td>
<td>10.0.21.1</td>
</tr>
<tr>
<td>10.10.10.2/24</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
<td>ge-0/0/2.0</td>
<td>10.0.21.1</td>
</tr>
<tr>
<td>10.10.10.4/24</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
<td>ge-0/0/1.0</td>
<td>10.0.13.1</td>
</tr>
<tr>
<td>10.10.10.5/24</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
<td>ge-0/0/2.0</td>
<td>10.0.21.1</td>
</tr>
<tr>
<td>10.10.10.6/24</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
<td>ge-0/0/1.0</td>
<td>10.0.13.1</td>
</tr>
<tr>
<td>10.10.10.10/24</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
<td>ge-0/0/2.0</td>
<td>10.0.21.1</td>
</tr>
<tr>
<td>10.10.10.11/24</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
<td>ge-0/0/1.0</td>
<td>10.0.13.1</td>
</tr>
<tr>
<td>10.10.10.13/24</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
<td>ge-0/0/1.0</td>
<td>10.0.13.1</td>
</tr>
<tr>
<td>10.10.10.16/24</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
<td>ge-0/0/1.0</td>
<td>10.0.13.1</td>
</tr>
<tr>
<td>10.10.10.19/24</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
<td>ge-0/0/1.0</td>
<td>10.0.13.1</td>
</tr>
<tr>
<td>10.10.10.20/24</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
<td>ge-0/0/2.0</td>
<td>10.0.21.1</td>
</tr>
<tr>
<td>10.10.10.21/24</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
<td>ge-0/0/2.0</td>
<td>10.0.21.1</td>
</tr>
<tr>
<td>192.168.5.1</td>
<td>Intra</td>
<td>Router</td>
<td>IP</td>
<td>1</td>
<td>ge-0/0/2.0</td>
<td>10.0.21.1</td>
</tr>
<tr>
<td>192.168.5.2</td>
<td>Intra</td>
<td>Router</td>
<td>IP</td>
<td>1</td>
<td>lo0</td>
<td>10.0.21.1</td>
</tr>
<tr>
<td>192.168.5.3</td>
<td>Intra</td>
<td>Router</td>
<td>IP</td>
<td>1</td>
<td>ge-0/0/1.0</td>
<td>10.0.13.1</td>
</tr>
<tr>
<td>192.168.5.4</td>
<td>Intra</td>
<td>Router</td>
<td>IP</td>
<td>1</td>
<td>ge-0/0/1.0</td>
<td>10.0.13.1</td>
</tr>
</tbody>
</table>
```
The output lists each route, sorted by IP address. Routes are shown with a route type of **Network**, and loopback addresses are shown with a route type of **Router**.

For the example shown in Figure 35 on page 590, verify that the OSPF routing table has 21 entries, one for each network segment and one for each router’s loopback address.

Verifying Reachability of All Hosts in an OSPF Network

Purpose

By using the traceroute tool on each loopback address in the network, verify that all hosts in the network are reachable from each device.

Action

For each device in the OSPF network:

1. In the J-Web interface, select **Troubleshoot > Traceroute**.

2. In the Host Name box, type the name of a host for which you want to verify reachability from the device.

3. Click **Start**. Output appears on a separate page.

Sample Output

| 1 172.17.40.254 (172.17.40.254) 0.362 ms 0.284 ms 0.251 ms |
| 2 routera-fxp0.englab.mycompany.net (192.168.71.246) 0.251 ms 0.235 ms 0.200 ms |

Meaning
Each numbered row in the output indicates a routing "hop" in the path to the host. The three-time increments indicate the round-trip time (RTT) between the device and the hop, for each traceroute packet. To ensure that the OSPF network is healthy, verify the following information:

- The final hop in the list is the host you want to reach.
- The number of expected hops to the host matches the number of hops in the traceroute output. The appearance of more hops than expected in the output indicates that a network segment is likely not reachable. In this case, verify the routes with the `show ospf route` command.

For information about `show ospf route`, see "Verifying the Number of OSPF Routes" on page 589

Tracing OSPF Protocol Traffic

Tracing operations record detailed messages about the operation of OSPF. You can trace OSPF protocol traffic to help debug OSPF protocol issues. When you trace OSPF protocol traffic, you specify the name of the file and the type of information you want to trace.

You can specify the following OSPF protocol-specific trace options:

- **database-description**—All database description packets, which are used in synchronizing the OSPF topological database
- **error**—OSPF error packets
- **event**—OSPF state transitions
- **flooding**—Link-state flooding packets
- **graceful-restart**—Graceful-restart events
- **hello**—Hello packets, which are used to establish neighbor adjacencies and to determine whether neighbors are reachable
- **ldp-synchronization**—Synchronization events between OSPF and LDP
- **lsa-ack**—Link-state acknowledgment packets, which are used in synchronizing the OSPF topological database
- **lsa-analysis**—Link-state analysis. Specific to the Juniper Networks implementation of OSPF, Junos OS performs LSA analysis before running the shortest-path-first (SPF) algorithm. LSA analysis helps to speed the calculations performed by the SPF algorithm.
- **lsa-request**—Link-state request packets, which are used in synchronizing the OSPF topological database
- **lsa-update**—Link-state updates packets, which are used in synchronizing the OSPF topological database
- **nsr-synchronization**—Nonstop routing synchronization events
- **on-demand**—Trace demand circuit extensions
- **packet-dump**—Dump the contents of selected packet types
- **packets**—All OSPF packets
- **restart-signaling**—(OSPFv2 only) Restart-signaling graceful restart events
- **spf**—Shortest path first (SPF) calculations

You can optionally specify one or more of the following flag modifiers:

- **detail**—Detailed trace information
- **receive**—Packets being received
- **send**—Packets being transmitted

NOTE: Use the **detail** flag modifier with caution as it might cause the CPU to become very busy.

Global tracing options are inherited from the configuration set by the **traceoptions** statement at the [edit routing-options] hierarchy level. You can override the following global trace options for the OSPF protocol using the **traceoptions flag** statement included at the [edit protocols ospf] hierarchy level:

- **all**—All tracing operations
- **general**—All normal operations and routing table changes (a combination of the normal and route trace operations)
- **normal**—Normal events
- **policy**—Policy processing
- **route**—Routing information
- **state**—State transitions
- **task**—Routing protocol task processing
- **timer**—Routing protocol timer processing

NOTE: Use the trace flag **all** with caution as it might cause the CPU to become very busy.
Example: Tracing OSPF Protocol Traffic

This example shows how to trace OSPF protocol traffic.

Requirements

This example assumes that OSPF is properly configured and running in your network, and you want to trace OSPF protocol traffic for debugging purposes.

Overview

You can trace OSPF protocol traffic to help debug OSPF protocol issues. When you trace OSPF protocol traffic, you specify the name of the file and the type of information you want to trace. All files are placed in a directory on the routing device's hard disk. On M Series and T Series routers, trace files are stored in the /var/log directory.

This example shows a few configurations that might be useful when debugging OSPF protocol issues. The verification output displayed is specific to each configuration.

TIP: To keep track of your log files, create a meaningful and descriptive name so it is easy to remember the content of the trace file. We recommend that you place global routing protocol tracing output in the file routing-log, and OSPF tracing output in the file ospf-log.

In the first example, you globally enable tracing operations for all routing protocols that are actively running on your routing device to the file routing-log. With this configuration, you keep the default settings for the trace file size and the number of trace files. After enabling global tracing operations, you enable tracing operations to provide detailed information about OSPF packets, including link-state advertisements, requests, and updates, database description packets, and hello packets to the file ospf-log, and you configure the following options:
• **size**—Specifies the maximum size of each trace file, in KB, MB, or GB. In this example, you configure 10 KB as the maximum size. When the file reaches its maximum size, it is renamed with a .0 extension. When the file again reaches its maximum size, it is renamed with a .1 extension, and the newly created file is renamed with a .0 extension. This renaming scheme continues until the maximum number of trace files is reached. Then, the oldest trace file is overwritten. If you specify a maximum file size, you must also specify a maximum number of trace files with the *files* option. You specify k for KB, m for MB, and g for GB. By default, the trace file size is 128 KB. The file size range is 10 KB through the maximum file size supported on your system.

• **files**—Specifies the maximum number of trace files. In this example, you configure a maximum of 5 trace files. When a trace file reaches its maximum size, it is renamed with a .0 extension, then a .1 extension, and so on until the maximum number of trace files is reached. When the maximum number of files is reached, the oldest trace file is overwritten. If you specify a maximum number of files, you must also specify a maximum file size with the *size* option. By default, there are 10 files. The range is 2 through 1000 files.

In the second example, you trace all SPF calculations to the file ospf-log by including the *spf* flag. You keep the default settings for the trace file size and the number of trace files.

In the third example, you trace the creation, receipt, and retransmission of all LSAs to the file ospf-log by including the *lsa-request*, *lsa-update*, and *lsa-ack* flags. You keep the default settings for the trace file size and the number of trace files.

Configuration

IN THIS SECTION

- Configuring Global Tracing Operations and Tracing OSPF Packet Information | 595
- Tracing SPF Calculations | 598
- Tracing Link-State Advertisements | 599

Configuring Global Tracing Operations and Tracing OSPF Packet Information

CLI Quick Configuration

To quickly enable global tracing operations for all routing protocols actively running on your routing device and to trace detailed information about OSPF packets, copy the following commands and paste them into the CLI.

```
[edit]
set routing-options traceoptions file routing-log
```
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Modifying the Junos OS Configuration* in the *CLI User Guide*.

To configure global routing tracing operations and tracing operations for OSPF packets:

1. Configure tracing at the routing options level to collect information about the active routing protocols on your routing device.

   ```
   [edit]
   user@host# edit routing-options traceoptions
   ```

2. Configure the filename for the global trace file.

   ```
   [edit routing-options traceoptions]
   user@host# set file routing-log
   ```

3. Configure the filename for the OSPF trace file.

   ```
   NOTE: To specify OSPFv3, include the `ospf3` statement at the [edit protocols] hierarchy level.
   ```

   ```
   [edit]
   user@host# edit protocols ospf traceoptions
   user@host# set file ospf-log
   ```

4. Configure the maximum number of trace files.

   ```
   [edit protocols ospf traceoptions]
   user@host# set files 5
   ```
5. Configure the maximum size of each trace file.

```
[edit protocols ospf traceoptions]
user@host# set file size 10k
```

6. Configure tracing flags.

```
[edit protocols ospf traceoptions]
user@host# set flag lsa-ack
user@host# set flag database-description
user@host# set flag hello
user@host# set flag lsa-update
user@host# set flag lsa-request
```

7. If you are done configuring the device, commit the configuration.

```
[edit protocols ospf traceoptions]
user@host# commit
```

Results

Confirm your configuration by entering the `show routing-options` and the `show protocols ospf` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show routing-options
traceoptions { 
    file routing-log;
}
```

```
user@host# show protocols ospf
traceoptions { 
    file ospf-log size 10k files 5; 
    flag lsa-ack; 
    flag database-description; 
    flag hello; 
    flag lsa-update; 
    flag lsa-request; 
}
```
To confirm your OSPFv3 configuration, enter the `show routing-options` and the `show protocols ospf3` commands.

Tracing SPF Calculations

CLI Quick Configuration

To quickly trace SPF calculations, copy the following commands and paste them into the CLI.

```
[edit]
set protocols ospf traceoptions file ospf-log
set protocols ospf traceoptions flag spf
```

Step-by-Step Procedure

To configure SPF tracing operations for OSPF:

1. Configure the filename for the OSPF trace file.

   ```
   [edit]
   user@host# edit protocols ospf traceoptions
   user@host# set file ospf-log
   ```

 NOTE: To specify OSPFv3, include the `ospf3` statement at the [edit protocols] hierarchy level.

2. Configure the SPF tracing flag.

   ```
   [edit protocols ospf traceoptions]
   user@host# set flag spf
   ```

3. If you are done configuring the device, commit the configuration.

   ```
   [edit protocols ospf traceoptions]
   user@host# commit
   ```

Results

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.
To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

Tracing Link-State Advertisements

CLI Quick Configuration

To quickly trace the creation, receipt, and retransmission of all LSAs, copy the following commands and paste them into the CLI.

```plaintext
[edit]
set protocols ospf traceoptions file ospf-log
set protocols ospf traceoptions flag lsa-request
set protocols ospf traceoptions flag lsa-update
set protocols ospf traceoptions flag lsa-ack
```

Step-by-Step Procedure

To configure link-state advertisement tracing operations for OSPF:

1. Configure the filename for the OSPF trace file.

   ```plaintext
   [edit]
   user@host# edit protocols ospf traceoptions
   user@host# set file ospf-log
   ```

2. Configure the link-state advertisement tracing flags.

   ```plaintext
   [edit protocols ospf traceoptions]
   user@host# set flag lsa-request
   user@host# set flag lsa-update
   user@host# set flag lsa-ack
   ```
3. If you are done configuring the device, commit the configuration.

```plaintext
[edit protocols ospf traceoptions]
user@host# commit
```

Results

Confirm your configuration by entering the `show protocols ospf` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
user@host# show protocols ospf
traceoptions {
  file ospf-log;
  flag lsa-request;
  flag lsa-update;
  flag lsa-ack;
}
```

To confirm your OSPFv3 configuration, enter the `show protocols ospf3` command.

Verification

Confirm that the configuration is working properly.

Verifying Trace Operations

Purpose

Verify that the Trace options field displays the configured trace operations, and verify that the Trace file field displays the location on the routing device where the file is saved, the name of the file to receive the output of the tracing operation, and the size of the file.

Action

From operational mode, enter the `show ospf overview extensive` command for OSPFv2, and enter the `show ospf3 overview extensive` command for OSPFv3.

RELATED DOCUMENTATION

- Understanding OSPF Configurations | 35
- Tracing and Logging Junos OS Operations
- For general information about tracing and global tracing options, see Example: Tracing Global Routing Protocol Operations
Configuration Statements and Operational Commands

Configuration Statements | 602
Operational Commands | 778
CHAPTER 19

Configuration Statements

IN THIS CHAPTER

- admin-group | 606
- allow-route-leaking | 608
- area | 609
- area-range | 611
- as-external | 613
- authentication | 614
- backup-spf-options (Protocols OSPF) | 616
- backup-selection (Protocols OSPF or OSPF3) | 618
- bandwidth-based-metrics | 620
- bfd-liveness-detection (Protocols OSPF) | 622
- context-identifier (Protocols OSPF) | 626
- database-protection | 627
- dead-interval | 629
- default-lsa | 631
- default-metric | 633
- demand-circuit | 635
- destination (Protocols OSPF or OSPF3) | 636
- disable (Protocols OSPF) | 637
- disable (OSPF) | 638
- domain-id | 640
- domain-vpn-tag | 641
- export | 642
- external-preference (Protocols OSPF) | 644
- flood-reduction | 646
- graceful-restart (Protocols OSPF) | 648
- hello-interval (Protocols OSPF) | 650
- helper-disable (OSPF) | 652
- hold-time (Protocols OSPF) | 653
- ignore-lsp-metrics | 654
- import | 655
- inter-area-prefix-export | 657
- inter-area-prefix-import | 658
- interface (Protocols OSPF) | 660
- interface (Protocols OSPF or OSPF3) | 663
- interface-type (Protocols OSPF) | 667
- intra-area-prefix | 670
- ipsec-sa (Protocols OSPF) | 671
- label-switched-path (Protocols OSPF) | 673
- ldp-stitching (Protocols OSPF) | 674
- ldp-synchronization | 675
- link-protection (Protocols OSPF) | 676
- lsa-refresh-interval | 678
- lsp-metric-into-summary | 679
- md5 | 680
- metric (Protocols OSPF Interface) | 682
- metric-type | 684
- mtu | 686
- neighbor (Protocols OSPF) | 690
- network-summary-export | 691
- network-summary-import | 692
- node-segment (Protocols OSPF) | 693
- no-advertise-adjacency-segment (Protocols OSPF) | 695
- no-source-packet-routing (Protocols OSPF) | 696
- no-strict-lsa-checking | 697
- notify-duration | 698
- no-domain-vpn-tag | 699
- no-eligible-backup (Protocols OSPF) | 700
- no-interface-state-traps | 701
- no-neighbor-down-notification | 702
- no-nssa-abr | 703
- no-rfc-1583 | 704
- node (Protocols OSPF or OSPF3) | 705
- node-link-degradation (Protocols OSPF) | 707
- node-link-protection (Protocols OSPF) | 708
- nssa | 709
- ospf | 710
- ospf3 | 711
- overload (Protocols OSPF) | 712
- passive (Protocols OSPF) | 714
- peer-interface (Protocols OSPF) | 716
- per-prefix-calculation | 717
- poll-interval | 719
- preference (Protocols OSPF) | 720
- prefix-export-limit (Protocols OSPF) | 722
- priority (Protocols OSPF) | 724
- protocols | 726
- realm | 730
- reference-bandwidth (Protocols OSPF) | 731
- remote-backup-calculation (Protocols OSPF) | 733
- retransmit-interval (OSPF) | 734
- rib-group (Protocols OSPF) | 736
- route-type-community | 737
- routing-instances (Multiple Routing Entities) | 738
- secondary (Protocols OSPF) | 740
- sham-link | 741
- sham-link-remote | 743
- shortcuts (Protocols OSPF) | 745
- simple-password | 746
- source-packet-routing-enable (Protocols OSPF) | 747
- source-packet-routing-disable (Protocols OSPF) | 748
- spf-options (Protocols OSPF) | 749
- stub | 751
- stub-network | 752
- strict-bfd (Protocols OSPF) | 753
- summaries | 754
- topology (OSPF Interface) | 756
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>topology (OSPF)</td>
<td>758</td>
</tr>
<tr>
<td>te-metric (Protocols OSPF)</td>
<td>759</td>
</tr>
<tr>
<td>traceoptions (Protocols OSPF)</td>
<td>760</td>
</tr>
<tr>
<td>traffic-engineering (OSPF)</td>
<td>764</td>
</tr>
<tr>
<td>traffic-engineering (Passive TE Mode)</td>
<td>767</td>
</tr>
<tr>
<td>transit-delay (OSPF)</td>
<td>769</td>
</tr>
<tr>
<td>type-7</td>
<td>771</td>
</tr>
<tr>
<td>use-post-convergence-lfa (Protocols OSPF)</td>
<td>773</td>
</tr>
<tr>
<td>post-convergence-lfa (Protocols OSPF)</td>
<td>775</td>
</tr>
<tr>
<td>virtual-link</td>
<td>776</td>
</tr>
</tbody>
</table>
admin-group

Syntax

```plaintext
admin-group {
    exclude [group-name ];
    include-all [group-name ];
    include-any [group-name ];
    preference [group-name ];
}
```

Hierarchy Level

```plaintext
[edit logical-systems logical-system-name routing-options backup-selection destination prefix interface interface-name],
[edit logical-systems logical-system-name routing-instances instance-name routing-options backup-selection destination prefix interface interface-name],
[edit routing-instances instance-name routing-options backup-selection destination prefix interface interface-name],
[edit routing-options backup-selection destination prefix interface interface-name]
```

Release Information

Description

Define the administrative groups criteria for the selection of the backup path.

```plaintext
NOTE: Configure group names of admin-group under the [edit protocols mpls] hierarchy level.
```

Options

exclude [group-name]— Specify the administrative groups to be excluded. The backup path is not selected as the loop-free alternate (LFA) or backup next hop if any of the links in the path have any one of the listed administrative groups.

group-name— Name of one or more admin-group defined under the [edit protocols mpls] hierarchy level.

include-all [group-name]— Require each link in the backup path to have all the listed administrative groups in order to accept the path.

group-name— Name of one or more admin-group defined under the [edit protocols mpls] hierarchy level.
include-any [group-name]— Require each link in the backup path to have at least one of the listed administrative groups in order to select the path.

 group-name— Name of one or more admin-group defined under the [edit protocols mpls] hierarchy level.

preference [group-name]— Define an ordered set of administrative groups that specifies the preference of the backup path. The leftmost element in the set is given the highest preference.

 group-name— Name of one or more admin-group defined under the [edit protocols mpls] hierarchy level.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Understanding Backup Selection Policy for IS-IS Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Backup Selection Policy for IS-IS Protocol</td>
</tr>
<tr>
<td>Understanding Backup Selection Policy for OSPF Protocol</td>
</tr>
<tr>
<td>backup-selection (Protocols ISIS)</td>
</tr>
<tr>
<td>destination</td>
</tr>
<tr>
<td>interface</td>
</tr>
</tbody>
</table>
allow-route-leaking

Syntax

allow-route-leaking;

Hierarchy Level

[edit logical-systems name protocols ospf overload],
[edit logical-systems name routing-instances name protocols ospf overload],
[edit protocols ospf overload],
[edit routing-instances name protocols ospf overload],
[edit protocols ospf3 overload]

Release Information
Statement introduced in Junos OS Release 18.2 for MX Series Routers.

Description
Allow routes to be leaked when OSPF overload is configured and advertise the external prefixes with maximum cost.

Required Privilege Level
routing—to view this statement in the configuration.
routing-control—to add this statement to the configuration.

RELATED DOCUMENTATION

Understanding OSPF Overload Function	222
stub-network	752
intra-area-prefix	670
as-external	613
area

Syntax

area area-id {
 interface interface-name {
 no-eligible-remote-backup;
 passive;
 topology (ipv4-multicast | name) {
 disable;
 }
 }
 virtual-link neighbor-id router-id transit-area area-id {
 topology (ipv4-multicast | name) {
 disable;
 }
 }
}

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit protocols (ospf | ospf3)],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Support for the no-eligible-remote-backup statement introduced in Junos OS Release 15.1.

Description

Specify the area identifier for this routing device to use when participating in OSPF routing. All routing devices in an area must use the same area identifier to establish adjacencies.
Specify multiple area statements to configure the routing device as an area border router. An area border router does not automatically summarize routes between areas. Use the area-range statement to configure route summarization. By definition, an area border router must be connected to the backbone area either through a physical link or through a virtual link. To create a virtual link, include the virtual-link statement.

To specify that the routing device is directly connected to the OSPF backbone, include the area 0.0.0.0 statement.

All routing devices on the backbone must be contiguous. If they are not, use the virtual-link statement to create the appearance of connectivity to the backbone.

You can also configure any interface that belongs to one or more topologies to advertise the direct interface addresses without actually running OSPF on that interface. By default, OSPF must be configured on an interface in order for direct interface addresses to be advertised as interior routes.

NOTE: If you configure an interface with the passive statement, it applies to all the topologies to which the interface belongs. You cannot configure an interface as passive for only one specific topology and have it remain active for any other topologies to which it belongs.

Options

area-id—Area identifier. The identifier can be up to 32 bits. It is common to specify the area number as a simple integer or an IP address. Area number 0.0.0.0 is reserved for the OSPF backbone area.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding OSPF Areas | 65
- Understanding Multiple Address Families for OSPFv3 | 57
- virtual-link | 776
area-range

Syntax

area-range network/mask-length <exact> <override-metric metric> <restrict>;

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id],
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id nssa],
[edit logical-systems logical-system-name realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id nssa],
[edit logical-systems logical-system-name routing-instances routing-instance-name realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id],
[edit protocols (ospf | ospf3) area area-id],
[edit protocols (ospf | ospf3) area area-id nssa],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id nssa],
[edit routing-instances routing-instance-name realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

(Area border routers only) For an area, summarize a range of IP addresses when sending summary link advertisements (within an area). To summarize multiple ranges, include multiple area-range statements.

For a not-so-stubby area (NSSA), summarize a range of IP addresses when sending NSSA link-state advertisements. The specified prefixes are used to aggregate external routes learned within the area when the routes are advertised to other areas. To specify multiple prefixes, include multiple area-range statements. All external routes learned within the area that do not fall into one of the prefixes are advertised individually to other areas.

Default
By default, area border routing devices do not summarize routes being sent from one area to other areas, but rather send all routes explicitly.

Options

- **exact**—(Optional) Summarization of a route is advertised only when an exact match is made with the configured summary range.

- **mask-length**—Number of significant bits in the network mask.

- **network**—IP address. You can specify one or more IP addresses.

- **override-metric metric**—(Optional) Override the metric for the IP address range and configure a specific metric value.

- **restrict**—(Optional) Do not advertise the configured summary. This hides all routes that are contained within the summary, effectively creating a route filter.

Range: 1 through 16,777,215

Required Privilege Level

- **routing**—To view this statement in the configuration.
- **routing-control**—To add this statement to the configuration.

RELATED DOCUMENTATION

- *Example: Summarizing Ranges of Routes in OSPF Link-State Advertisements*
as-external

Syntax

as-external;

Hierarchy Level

[edit logical-systems name protocols ospf overload],
[edit logical-systems name routing-instances name protocols ospf overload],
[edit protocols ospf overload],
[edit routing-instances name protocols ospf overload],
[edit protocols ospf3 overload]

Release Information
Statement introduced in Junos OS Release 18.2 for MX Series Routers.

Description
Advertise OSPF AS external prefixes with maximum usable metric.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Understanding OSPF Overload Function	222
allow-route-leaking	608
stub-network	752
intra-area-prefix	670
authentication

Syntax

```
authentication {
  md5 key-identifier {
    key key-value;
    start-time YYYY-MM-DD.hh:mm;
  }
  simple-password key;
}
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols ospf area area-id interface interface-name],
[edit logical-systems logical-system-name protocols ospf area area-id virtual-link],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id virtual-link],
[edit protocols ospf area area-id interface interface-name],
[edit protocols ospf area area-id virtual-link],
[edit routing-instances routing-instance-name protocols ospf area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf area area-id virtual-link]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure an authentication key (password). Neighboring routers use the password to verify the authenticity of packets sent from this interface.

All routers that are connected to the same IP subnet must use the same authentication scheme and password.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- routing—to view this statement in the configuration.
- routing-control—to add this statement to the configuration.

RELATED DOCUMENTATION
backup-spf-options (Protocols OSPF)

Syntax

```
backup-spf-options {
    disable;
    downstream-paths-only;
    no-install;
    node-link-degradation;
    per-prefix-calculation {
        all;
        externals;
        stubs;
        summary;
    }
    remote-backup-calculation;
}
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name protocols ospf topology (default | name)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf topology (default | name)],
[edit protocols (ospf | ospf3)],
[edit protocols ospf topology (default | name)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols ospf topology (default | name)]
```

Release Information

Statement introduced in Junos OS Release 10.0.
Statement introduced in Junos OS Release 11.3 for the QFX Series.

node-link-degradation, per-prefix-calculation, and remote-backup-calculation options introduced in Junos OS Release 15.1.

Support for remote-backup-calculation option introduced in Junos OS Release 18.2R1 for QFX5100, QFX5110, and QFX5200 switches.

Description

Configure options for running the shortest-path-first (SPF) algorithm for backup next hops for protected interfaces. Use these options to override the default behavior of having Junos OS calculate backup paths for all the topologies in an instance when at least one interface is configured with link protection or
node-link protection. These options also enable you to change the default behavior for a specific topology in an OSPF instance.

Options

disable—Do not calculate backup next hops for the specified instance or topology.

downstream-paths-only—Calculate and install only downstream paths as defined in RFC 5286, *Basic Specification for IP Fast Reroute: Loop-Free Alternates* for the specified instance or topology.

no-install—Do not install the backup next hops for the specified instance or topology.

node-link-degradation—Degrade to link protection when node-link protection is not available. A link protecting loop-free alternate (LFA) is used when node-link protecting LFA is not available in the topology for any of the protected links.

per-prefix-calculation—Calculate backup next hops for non-best prefix originators.

remote-backup-calculation—Determine the remote LFA backup paths from the point of local repair (PLR) in an OSPF network.

Required Privilege Level
routing—to view this statement in the configuration.
routing-control-level—to add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Backup SPF Options for Protected OSPF Interfaces | 338
- link-protection | 676
- node-link-protection | 708
- remote-backup-calculation | 733
backup-selection (Protocols OSPF or OSPF3)

Syntax

```
backup-selection {
    destination prefix {
        interface (interface-name | all) {
            admin-group {
                exclude [ group-name ];
                include-all [ group-name ];
                include-any [ group-name ];
                preference [ group-name ];
            }
            bandwidth-greater-equal-primary;
            dest-metric (highest | lowest);
            downstream-paths-only;
            metric-order [ root dest ];
            node {
                exclude [ node-address ];
                preference [ node-address ];
            }
            protection-type (link | node | node-link);
            root-metric (highest | lowest);
            srlg (loose | strict);
            evaluation-order [ admin-group srlg bandwidth protection-type node metric ];
        }
    }
}
```

Hierarchy Level

```
[edit logical-systems logical-system-name routing-options],
[edit logical-systems logical-system-name routing-instances instance-name routing-options],
[edit routing-instances instance-name routing-options],
[edit routing-options]
```

Release Information

Statement introduced in Junos OS Release 15.1.

Description

Define backup selection policies, per prefix per primary next-hop interface, to enforce loop-free alternate (LFA) selection based on admin-group, srlg, bandwidth, protection-type, node, and metric attributes of the backup path.
The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

routing—To view this statement in the configuration.

routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring Backup Selection Policy for the OSPF or OSPF3 Protocol | 453
- Configuring Backup Selection Policy for the OSPF Protocol | 444
- Understanding Backup Selection Policy for OSPF Protocol | 442
bandwidth-based-metrics

Syntax

bandwidth-based-metrics {
 bandwidth value;
 metric number;
}

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name protocols ospf area area-id interface interface-name topology topology-name],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name protocols ospf area area-id interface interface-name topology topology-name],
[edit logical-systems logical-system-name routing-instances routing-instances protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit protocols (ospf | ospf3) area area-id interface interface-name],
[edit protocols ospf area area-id interface interface-name topology topology-name],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf area area-id interface interface-name topology topology-name],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name]

Release Information
Statement introduced in Junos OS Release 9.5.
Statement introduced in Junos OS Release 9.5 for EX Series switches.

Description
Specify a set of bandwidth threshold values and associated metric values for an OSPF interface or for a topology on an OSPF interface. When the bandwidth of an interface changes, Junos OS automatically sets the interface metric to the value associated with the appropriate bandwidth threshold value.

Options
bandwidth value—Specify the bandwidth threshold in bits per second.

Range: 9600 through 1,000,000,000,000,000

metric number—Specify a metric value to associate with a specific bandwidth value.
Range: 1 through 65,535

NOTE: You must also configure a static metric value for the OSPF interface or topology with the `metric` statement. Junos OS uses this value to calculate the cost of a route from the OSPF interface or topology if the bandwidth for the interface is higher than any bandwidth threshold values configured for bandwidth-based metrics.

Required Privilege Level

`routing`—To view this statement in the configuration.
`routing-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Dynamically Adjusting OSPF Interface Metrics Based on Bandwidth | 217
- `metric` | 682
- Example: Dynamically Adjusting OSPF Interface Metrics Based on Bandwidth | 217
bfd-liveness-detection (Protocols OSPF)

Syntax

```plaintext
bfd-liveness-detection {
  authentication {
    algorithm algorithm-name;
    key-chain key-chain-name;
    loose-check;
  }
  detection-time {
    threshold milliseconds;
  }
  full-neighbors-only
  holddown-interval holddown-interval;
  minimum-interval milliseconds;
  minimum-receive-interval milliseconds;
  multiplier number;
  no-adaptation;
  transmit-interval {
    minimum-interval milliseconds;
    threshold milliseconds;
  }
  version (1 | automatic);
}
```

Hierarchy Level

```plaintext
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit protocols (ospf | ospf3) area area-id interface interface-name],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
detection-time threshold and **transmit-interval threshold** options added in Junos OS Release 8.2.
Support for logical systems introduced in Junos OS Release 8.3.
no-adaptation option introduced in Junos OS Release 9.0.
no-adaptation option introduced in Junos OS Release 9.0 for EX Series switches.
Support for OSPFv3 introduced in Junos OS Release 9.3.
Support for OSPFv3 introduced in Junos OS Release 9.3 for EX Series switches.
full-neighbors-only option introduced in Junos OS Release 9.5.
full-neighbors-only option introduced in Junos OS Release 9.5 for EX Series switches.
holddown-interval option introduced in Junos OS Release 19.4 for MX Series routers.
Statement introduced in Junos OS Release 12.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Configure bidirectional failure detection timers and authentication for OSPF.

The remaining statements are explained separately. See **CLI Explorer**.
Options

authentication algorithm algorithm-name — Configure the algorithm used to authenticate the specified BFD session: `simple-password`, `keyed-md5`, `keyed-sha-1`, `meticulous-keyed-md5`, or `meticulous-keyed-sha-1`.

authentication key-chain key-chain-name — Associate a security key with the specified BFD session using the name of the security keychain. The name you specify must match one of the keychains configured in the **authentication-key-chains key-chain** statement at the `[edit security]` hierarchy level.

authentication loose-check — (Optional) Configure loose authentication checking on the BFD session. Use only for transitional periods when authentication may not be configured at both ends of the BFD session.

detection-time threshold milliseconds — Configure a threshold for the adaptation of the BFD session detection time. When the detection time adapts to a value equal to or greater than the threshold, a single trap and a single system log message are sent.

full-neighbors-only — Establish BFD sessions only for OSPF neighbors in the full state. The default behavior is to establish BFD sessions for all OSPF neighbors.

holddown-interval holddown-interval — Time to hold the session-UP notification to the client.

Range: 0 through 255000 milliseconds

minimum-interval milliseconds — Configure the minimum interval after which the local routing device transmits a hello packet and then expects to receive a reply from the neighbor with which it has established a BFD session. Optionally, instead of using this statement, you can configure the minimum transmit and receive intervals separately using the **transmit-interval minimum-interval** and **minimum-receive-interval** statements.

Range: 1 through 255,000 milliseconds

minimum-receive-interval milliseconds — Configure the minimum interval after which the routing device expects to receive a reply from a neighbor with which it has established a BFD session. Optionally, instead of using this statement, you can configure the minimum receive interval using the **minimum-interval** statement.

Range: 1 through 255,000 milliseconds

multiplier number — Configure the number of hello packets not received by a neighbor that causes the originating interface to be declared down.

Range: 1 through 255

Default: 3

no-adaptation — Specify that BFD sessions should not adapt to changing network conditions. We recommend that you not disable BFD adaptation unless it is preferable not to have BFD adaptation enabled in your network.

transmit-interval threshold milliseconds — Configure the threshold for the adaptation of the BFD session transmit interval. When the transmit interval adapts to a value greater than the threshold, a single trap
and a single system message are sent. The interval threshold must be greater than the minimum transmit interval.

Range: 0 through $4,294,967,295 \times (2^{32} - 1)$

transmit-interval minimum-interval milliseconds—Configure the minimum interval at which the routing device transmits hello packets to a neighbor with which it has established a BFD session. Optionally, instead of using this statement, you can configure the minimum transmit interval using the **minimum-interval** statement.

Range: 1 through 255,000

version—Configure the BFD version to detect: 1 (BFD version 1) or **automatic** (autodetect the BFD version).

Default: automatic

Required Privilege Level
- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring BFD for OSPF | 294
- Example: Configuring BFD Authentication for OSPF
context-identifier (Protocols OSPF)

Syntax

context-identifier identifier

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id],
[edit protocols (ospf | ospf3) area area-id]

Release Information

Statement introduced in Junos OS Release 10.4.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure OSPF context-identifier information.

Options

identifier—IPv4 address that defines a protection pair. The context identifier is manually configured on both the primary and protector provider edge (PE) devices.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| show ospf context-identifier | 829 |
database-protection

Syntax

database-protection {
 ignore-count number;
 ignore-time seconds;
 maximum-lsa number;
 reset-time seconds;
 warning-only;
 warning-threshold percent;
}

Hierarchy Level

[edit protocols (ospf | ospf3)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-unicast | ipv6-multicast)]

Release Information

Statement introduced in Junos OS Release 10.2.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure the maximum number of link-state advertisements (LSAs) that are not generated by the router or switch in a given OSPF instance.

Default

By default, OSPF database protection is not enabled.

Options

ignore-count number—Configure the number of times the database can enter the ignore state. When the ignore count is exceeded, the database enters the isolate state.

Range: 1 through 32
Default: 5

ignore-time seconds—Configure the time the database must remain in the ignore state before it resumes regular operations (enters retry state).

Range: 30 through 3,600 seconds
Default: 300 seconds
maximum-lsa number—Configure the maximum number of LSAs whose advertising router ID is different from the local router ID in a given OSPF instance. This includes external LSAs as well as LSAs with any scope, such as the link, area, and autonomous system (AS). This value is mandatory.

Range: 1 through 1,000,000

Default: None

reset-time seconds—Configure the time period during which the database must operate without being in the ignore or isolate state before it is reset to a normal operating state.

Range: 60 through 86,400 seconds

Default: 600 seconds

warning-only—Specify that only a warning should be issued when the maximum LSA number is exceeded. If configured, no other action is taken against the database.

warning-threshold percent—Configure the percentage of the maximum number of LSAs to be exceeded before a warning message is logged.

Range: 30 through 100 percent

Default: 75 percent

Required Privilege Level
- **routing**—To view this statement in the configuration.
- **routing-control**—To add this statement to the configuration.

RELATED DOCUMENTATION

- [OSPF Database Protection Overview](#) | 432
- [Configuring OSPF Database Protection](#) | 433
dead-interval

Syntax

dead-interval seconds;

Hierarchy Level

[edit logical-systems logical-system-name protocols ospf area area-id peer-interface interface-name],
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id virtual-link],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit protocols ospf area area-id peer-interface interface-name],
[edit protocols (ospf | ospf3) area area-id interface interface-name],
[edit protocols (ospf | ospf3) area area-id virtual-link],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.

Description
Specify how long OSPF waits before declaring that a neighboring routing device is unavailable. This is an interval during which the routing device receives no hello packets from the neighbor.

Options
seconds—Interval to wait.

Range: 1 through 65,535 seconds
Default: Four times the hello interval—40 seconds (broadcast and point-to-point networks); 120 seconds (nonbroadcast multiple access (NBMA) networks)
Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring OSPF Timers | 283
Configuring RSVP and OSPF for LMP Peer Interfaces
hello-interval | 650
default-lsa

Syntax

```bash
default-lsa {
    default-metric metric;
    metric-type type;
    type-7;
}
```

Hierarchy Level

```bash
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id nssa],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id nssa],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id nssa],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id nssa],
[edit protocols (ospf | ospf3) area area-id nssa],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id nssa],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id nssa],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id nssa]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the `realm` statement introduced in Junos OS Release 9.2.
Support for the `realm` statement introduced in Junos OS Release 9.2 for EX Series switches.

Description

On area border routers only, for a not-so-stubby area (NSSA), inject a default link-state advertisement (LSA) with a specified metric value into the area. The default route matches any destination that is not explicitly reachable from within the area.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.
RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding OSPF Areas</td>
<td>65</td>
</tr>
<tr>
<td>Example: Configuring OSPF Not-So-Stubby Areas</td>
<td>107</td>
</tr>
<tr>
<td>nssa</td>
<td>709</td>
</tr>
<tr>
<td>stub</td>
<td>751</td>
</tr>
</tbody>
</table>
default-metric

Syntax

```bash
default-metric metric;
```

Hierarchy Level

```bash
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id nssa default-lsa],
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id stub],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id nssa default-lsa],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id stub],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id nssa default-lsa],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id stub],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id nssa default-lsa],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id stub],
[edit protocols (ospf | ospf3) area area-id nssa default-lsa],
[edit protocols (ospf | ospf3) area area-id stub],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id nssa default-lsa],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id stub],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id nssa default-lsa],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id stub],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id nssa default-lsa],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id stub]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the `realm` statement introduced in Junos OS Release 9.2.
Support for the `realm` statement introduced in Junos OS Release 9.2 for EX Series switches.

Description

On area border routing devices only, for a stub area, inject a default route with a specified metric value into the area. The default route matches any destination that is not explicitly reachable from within the area.
Options

metric—Metric value.

Range: 1 through 16,777,215

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Understanding OSPF Areas</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>nssa</td>
<td>709</td>
</tr>
<tr>
<td>stub</td>
<td>751</td>
</tr>
</tbody>
</table>
demand-circuit

Syntax

demand-circuit;

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id sham-link-remote],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit protocols (ospf | ospf3) area area-id interface interface-name],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf area area-id sham-link-remote],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name]

Release Information

Statement introduced before Junos OS Release 7.4.
Support for the realm statement introduced in Junos OS Release 9.2.

Description

Configure an interface as a demand circuit.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring OSPF Demand Circuits | 43
Example: Configuring OSPFv2 Sham Links | 542
destination (Protocols OSPF or OSPF3)

Syntax

```
destination prefix {
    interface (interface-name | all) {
        admin-group {
            exclude [group-name];
            include-all [group-name];
            include-any [group-name];
            preference [group-name];
        }
        bandwidth-greater-equal-primary;
        dest-metric (highest | lowest);
        downstream-paths-only;
        evaluation-order [admin-group srlg bandwidth protection-type neighbor neighbor-tag metric ];
        metric-order [root dest ];
        node {
            exclude [node-address ];
            preference [node-address ];
        }
        protection-type (link | node | node-link);
        root-metric (highest | lowest);
        srlg (loose | strict);
    }
}
```

Hierarchy Level

```
[edit logical-systems logical-system-name routing-options backup-selection],
[edit logical-systems logical-system-name routing-instances instance-name routing-options backup-selection],
[edit routing-instances instance-name routing-options backup-selection],
[edit routing-options backup-selection]
```

Release Information
Statement introduced in Junos OS Release 15.1.

Description
Define the backup selection policy for a particular destination prefix or for all the prefixes.

Options

prefix—Destination prefix name and prefix length. You can specify 0/0 for the IPv4 least-specific prefix or 0::0/0 for the IPv6 least-specific prefix.
The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

disable (Protocols OSPF)

Syntax

```
disable;
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit protocols (ospf | ospf3) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name]
```

Release Information

Statement introduced in Junos OS Release 7.5.

Description

Disable LDP synchronization for OSPF.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

```
| Example: Configuring Synchronization Between LDP and OSPF | 234 |
```
disable (OSPF)

Syntax

disable;

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name protocols ospf area area-id peer-interface interface-name],
[edit logical-systems logical-system-name protocols (ospf | ospf3) virtual-link],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 virtual-link],
[edit logical-systems logical-system-name routing-instances routing-instances protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit protocols (ospf | ospf3)],
[edit protocols ospf area area-id interface interface-name],
[edit protocols (ospf | ospf3) virtual-link],
[edit protocols ospf area area-id peer-interface interface-name],
[edit protocols ospf area area-id virtual-link neighbor-id router-id transit-area area-id],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols ospf3 area area-id interface interface-name],
[edit routing-instances routing-instances protocols ospf3 virtual-link],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.
Description

Disable OSPF, an OSPF interface, or an OSPF virtual link.

By default, control packets sent to the remote end of a virtual link must be forwarded using the default topology. In addition, the transit area path consists only of links that are in the default topology. You can disable a virtual link for a configured topology, but not for a default topology. Include the `disable` statement at the [edit protocols ospf area area-id virtual-link neighbor-id router-id transit-area area-id topology name] hierarchy level.

NOTE: If you disable the virtual link by including the `disable` statement at the [edit protocols ospf area area-id virtual-link neighbor-id router-id transit-area area-id] hierarchy level, you disable the virtual link for all topologies, including the default topology. You cannot disable the virtual link only in the default topology.

Default

The configured object is enabled (operational) unless explicitly disabled.

Required Privilege Level

- `routing`—To view this statement in the configuration.
- `routing-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- [Understanding OSPF Configurations](#) | 35
- [Configuring RSVP and OSPF for LMP Peer Interfaces](#)
domain-id

Syntax

domain-id domain-id;

Hierarchy Level

[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3)]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description
Specify a domain ID for a route. The domain ID identifies the OSPF domain from which the route originated.

Options
domain-id—You can specify either an IP address or an IP address and a local identifier using the following format: ip-address:local-identifier. If you do not specify a local identifier with the IP address, the identifier is assumed to have a value of 0.

Default: If the router ID is not configured in the routing instance, the router ID is derived from an interface address belonging to the routing instance. The default OSPF domain ID is the null value 0.0.0.0.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring Routing Between PE and CE Routers in Layer 3 VPNs |
domain-vpn-tag

Syntax

domain-vpn-tag number;

Hierarchy Level

[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3)]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description
Set a virtual private network (VPN) tag for OSPFv2 external routes generated by the provider edge (PE) routing device.

Options

number—VPN tag.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Routing Between PE and CE Routers in Layer 3 VPNs
export

Syntax

```
export [ policy-names ];
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit protocols (ospf | ospf3)],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the `realm` statement introduced in Junos OS Release 9.2.
Support for the `realm` statement introduced in Junos OS Release 9.2 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Apply one or more policies to routes being exported from the routing table into OSPF.

Options

`policy-names`—Name of one or more policies.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding OSPF Routing Policy | 440
- Import and Export Policies for Network Summaries Overview | 505
- import | 655
import 655
external-preference (Protocols OSPF)

Syntax

external-preference preference;

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name protocols ospf3 realm (ip4-unicast | ipv4-multicast | ipv6-multicast)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit protocols (ospf | ospf3)],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Set the route preference for OSPF external routes.

Options

preference—Preference value.

Range: 0 through 4,294,967,295 ($2^{32} - 1$)

Default: 150

Required Privilege Level

routing—To view this statement in the configuration.

routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Controlling OSPF Route Preferences | 220
preference | 720
flood-reduction

Syntax

```plaintext
flood-reduction;
```

Hierarchy Level

```plaintext
[edit protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interfaces interface-name],
[edit protocols ospf3 realm (ipv4-multicast | ipv4-unicast | ipv6-multicast) area area-id interfaces interface-name],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-multicast | ipv4-unicast | ipv6-multicast) area area-id interfaces interface-name],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-multicast | ipv4-unicast | ipv6-multicast) area area-id interfaces interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-multicast | ipv4-unicast | ipv6-multicast) area area-id interfaces interface-name],
[edit protocols ospf3 area area-id remote peer INTERFACE interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 area area-id remote peer INTERFACE interface-name],
[edit protocols ospf area area-id peer INTERFACE interface-name],
[edit logical-systems logical-system-name protocols ospf area area-id peer INTERFACE interface-name]
```

Release Information

Statement introduced in Junos OS Release 10.4 for EX Series switches.

Description

Specify to send self-generated link-state advertisements (LSAs) with the DoNotAge bit set. As a result, self-originated LSAs are not reflooded every 30 minutes, as required by OSPF by default. An LSA is refreshed only when the content of the LSA changes, which reduces OSPF traffic overhead in stable topologies.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring OSPF Refresh and Flooding Reduction in Stable Topologies | 232 |
graceful-restart (Protocols OSPF)

Syntax

```yaml
graceful-restart {
  disable;
  helper-disable (standard | restart-signaling | both);
  no-strict-lsa-checking;
  notify-duration seconds;
  restart-duration seconds;
}
```

Hierarchy Level

```bash
[edit logical-systems logical-system-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols ospf]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Support for the `no-strict-lsa-checking` statement introduced in Junos OS Release 8.5.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the helper mode `standard`, `restart-signaling`, and `both` options introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure graceful restart for OSPF.

Graceful restart allows a routing device to restart with minimal effects to the network, and is enabled for all routing protocols at the `[edit routing-options]` hierarchy level.

Options

disable—Disable graceful restart for OSPF.

helper-disable (standard | restart-signaling | both)—Disable helper mode for graceful restart. When helper mode is disabled, a device cannot help a neighboring device that is attempting to restart. Beginning with Junos OS Release 11.4, you can configure restart signaling-based helper mode for OSPFv2 graceful restart configurations. The `standard`, `restart-signaling`, and `both` options are only supported for OSPFv2. Specify `standard` to disable helper mode for standard graceful restart (based on RFC 3623). Specify `restart-signaling` to disable helper mode for restart signaling-based graceful restart (based on RFC 4811, RFC 4812, and
RFC 4813). Specify both to disable helper mode for both standard and restart signaling-based graceful restart. The last committed statement takes precedence over the previously configured statement.

Default: Helper mode is enabled by default. For OSPFv2, both standard and restart-signaling based helper modes are enabled by default.

no-strict-lsa-checking—Disable strict OSPF link-state advertisement (LSA) checking to prevent the termination of graceful restart by a helping router. LSA checking is enabled by default.

NOTE: The `helper-disable` statement and the `no-strict-lsa-checking` statement cannot be configured at the same time. If you attempt to configure both statements at the same time, the routing device displays a warning message when you enter the `show protocols (ospf | ospf3)` command.

notify-duration seconds—Estimated time needed to send out purged grace LSAs over all the interfaces.

Range: 1 through 3600 seconds
Default: 30 seconds

restart-duration seconds—Estimated time needed to reacquire a full OSPF neighbor from each area.

Range: 1 through 3600 seconds
Default: 180 seconds

Required Privilege Level
`routing`—To view this statement in the configuration.
`routing-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring Graceful Restart for OSPF | 309
- Example: Configuring the Helper Capability Mode for OSPFv2 Graceful Restart | 315
- Example: Configuring the Helper Capability Mode for OSPFv3 Graceful Restart | 320
- Example: Disabling Strict LSA Checking for OSPF Graceful Restart | 324
hello-interval (Protocols OSPF)

Syntax

```plaintext
hello-interval seconds;
```

Hierarchy Level

```plaintext
[edit logical-systems logical-system-name protocols ospf area area-id peer-interface interface-name],
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id virtual-link],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id virtual-link],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit protocols ospf area area-id peer-interface interface-name],
[edit protocols (ospf | ospf3) area area-id interface interface-name],
[edit protocols (ospf | ospf3) area area-id virtual-link],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the `realm` statement introduced in Junos OS Release 9.2.
Support for the `realm` statement introduced in Junos OS Release 9.2 for EX Series switches.

Description

Specify how often the routing device sends hello packets out the interface. The hello interval must be the same for all routing devices on a shared logical IP network.

Options

- **seconds**—Time between hello packets, in seconds.

Range: 1 through 255 seconds

Default: 10 seconds (broadcast and point-to-point networks); 30 seconds (nonbroadcast multiple access [NBMA] networks)
Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring OSPF Timers | 283
- Configuring RSVP and OSPF for LMP Peer Interfaces
- dead-interval | 629
helper-disable (OSPF)

Syntax

```
helper-disable < both | restart-signaling | standard >;
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols ospf graceful-restart],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf graceful-restart],
[edit protocols ospf graceful-restart],
[edit routing-instances routing-instance-name protocols ospf graceful-restart]
```

Release Information
Statement introduced before Junos OS Release 7.4.
Options both, restart-signaling, and standard introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Disable helper mode for graceful restart. When helper mode is disabled, a router cannot help a neighboring router that is attempting to restart. The last committed statement takes precedence over the previously configured statement.

Default
Helper mode is enabled by default for OSPF.

Options
both—(Optional) Disable helper mode for both standard and restart signaling-based graceful restart.

restart-signaling—(Optional) Disable helper mode for restart signaling-based graceful restart (based on RFC 4811, RFC 4812, and RFC 4813).

```
NOTE: Restart signaling-based helper mode is not supported for OSPFv3 configurations.
```

standard—(Optional) Disable helper mode for standard graceful restart (based on RFC 3623).

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.
hold-time (Protocols OSPF)

Syntax

```
hold-time seconds;
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols ospf area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id interface interface-name],
[edit protocols ospf area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf area area-id interface interface-name]
```

Release Information

Statement introduced in Junos OS Release 7.5.

Description

Configure the time period to advertise the maximum cost metric for a link that is not fully operational.

Options

- **seconds**—Hold-time value.

Range: 1 through 65,535 seconds

Default: Infinity

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring Synchronization Between LDP and OSPF
ignore-lsp-metrics

Syntax

ignore-lsp-metrics;

Hierarchy Level

```
[edit logical-systems logical-system-name protocols ospf traffic-engineering shortcuts],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf traffic-engineering shortcuts],
[edit protocols ospf traffic-engineering ],
[edit routing-instances routing-instance-name protocols ospf traffic-engineering shortcuts]
```

Release Information

Statement introduced in Junos OS Release 7.5.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for (OSPFv3) introduced in Junos OS Release 9.4.
Support for (OSPFv3) introduced in Junos OS Release 9.4 for EX Series switches.

Description

Ignore RSVP LSP metrics in OSPF traffic engineering shortcut calculations.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Enabling OSPF Traffic Engineering Support | 394
import

Syntax

import [policy-names];

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit protocols (ospf | ospf3)],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Filter OSPF routes from being added to the routing table.

Options

policy-names—Name of one or more policies.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Understanding OSPF Routing Policy | 440
Import and Export Policies for Network Summaries Overview | 505
export | 642
export | 642
inter-area-prefix-export

Syntax

inter-area-prefix-export [policy-names];

Hierarchy Level

[edit logical-systems logical-system-name protocols ospf3 area area-id],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 area area-id],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ip4-unicast | ipv4-multicast | ipv6-multicast) area area-id],
[edit protocols ospf3 area area-id],
[edit protocols ospf3 realm (ip4-unicast | ipv4-multicast | ipv6-multicast) area area-id],
[edit routing-instances routing-instance-name protocols ospf3 area area-id],
[edit routing-instances routing-instance-name protocols ospf3 realm (ip4-unicast | ipv4-multicast | ipv6-multicast) area area-id]

Release Information

Statement introduced in Junos OS Release 9.1.
Statement introduced in Junos OS Release 9.1 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.

Description

Apply an export policy for OSPFv3 to specify which interarea prefix link-state advertisements (LSAs) are flooded into an area.

Options

policy-name—Name of a policy configured at the [edit policy-options policy-statement policy-name term term-name] hierarchy level.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Import and Export Policies for Network Summaries Overview | 505
inter-area-prefix-import | 658
Routing Policies, Firewall Filters, and Traffic Policers User Guide
inter-area-prefix-import

Syntax

inter-area-prefix-import [policy-names];

Hierarchy Level

[edit logical-systems logical-system-name protocols ospf3 area area-id],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 area area-id],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id],
[edit protocols ospf3 area area-id],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)], area area-id],
[edit routing-instances routing-instance-name protocols ospf3 area area-id],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id]

Release Information

Statement introduced in Junos OS Release 9.1.
Statement introduced in Junos OS Release 9.1 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.

Description

Apply an import policy for OSPFv3 to specify which routes learned from an area are used to generate interarea prefixes into other areas.

Options

policy-name—Name of a policy configured at the [edit policy-options policy-statement policy-name term term-name] hierarchy level.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Import and Export Policies for Network Summaries Overview | 505
inter-area-prefix-export | 657
interface (Protocols OSPF)

Syntax

interface interface-name {
 disable;
 authentication key <key-id identifier>;
 bfd-liveness-detection {
 authentication {
 algorithm algorithm-name;
 key-chain key-chain-name;
 loose-check;
 }
 detection-time {
 threshold milliseconds;
 }
 minimum-interval milliseconds;
 minimum-receive-interval milliseconds;
 transmit-interval {
 threshold milliseconds;
 minimum-interval milliseconds;
 }
 multiplier number;
 }
 dead-interval seconds;
 demand-circuit;
 hello-interval seconds;
 ipsec-sa name;
 interface-type type;
 ldp-synchronization {
 disable;
 hold-time seconds;
 }
 metric metric;
 neighbor address <eligible>;
 no-interface-state-traps;
 passive;
 poll-interval seconds;
 priority number;
 retransmit-interval seconds;
 te-metric metric;
 topology (ipv4-multicast | name) {
 metric metric;
 }
 transit-delay seconds;
}
Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id],
[edit protocols (ospf | ospf3) area area-id],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the topology statement introduced in Junos OS Release 9.0.
Support for the realm statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.
Support for the no-interface-state-traps statement introduced in Junos OS Release 10.3. This statement is supported only for OSPFv2.
Statement introduced in Junos OS Release 11.3 for the QFX Series.

Description
Enable OSPF routing on a routing device interface.

You must include at least one interface statement in the configuration to enable OSPF on the routing device.
Options

interface-name—Name of the interface. Specify the interface by IP address or interface name for OSPFv2, or only the interface name for OSPFv3. Using both the interface name and IP address of the same interface produces an invalid configuration. To configure all interfaces, you can specify all. Specifying a particular interface and all produces an invalid configuration.

NOTE: For nonbroadcast interfaces, specify the IP address of the nonbroadcast interface as `interface-name`.

The remaining statements are explained separately. See CLI Explorer.

NOTE: You cannot run both OSPF and `ethernet-tcc` encapsulation between two Juniper Networks routing devices.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding OSPF Configurations | 35
- Example: Configuring Multiple Address Families for OSPFv3 | 58
- neighbor | 690
interface (Protocols OSPF or OSPF3)

Syntax

```plaintext
interface (interface-name | all) {
    admin-group {
        exclude [ group-name ];
        include-all [ group-name ];
        include-any [ group-name ];
        preference [ group-name ];
    }
    bandwidth-greater-equal-primary;
    dest-metric (highest | lowest);
    downstream-paths-only ;
    evaluation-order [ admin-group srlg bandwidth protection-type node metric ];
    metric-order [ root dest ];
    node {
        exclude [ node-address ];
        preference [ node-address ];
    }
    protection-type (link | node| node-link);
    root-metric (highest | lowest);
    srlg (loose |strict);
}
```

Hierarchy Level

```plaintext
[edit logical-systems logical-system-name routing-options backup-selection destination prefix],
[edit logical-systems logical-system-name routing-instances instance-name routing-options backup-selection destination prefix],
[edit routing-instances instance-name routing-options backup-selection prefix],
[edit routing-options backup-selection destination prefix]
```

Release Information
Statement introduced in Junos OS Release 15.1.

Description
Define the backup selection policy for a specific primary next hop.

Options

- `interface-name`— Name of the primary next-hop interface.
- `all`— All the interfaces.
bandwidth-greater-equal-primary— Allow the selection of the backup next hop only if the bandwidth is greater than or equal to the bandwidth of the primary next hop.

dest-metric (highest lowest)— Specify the metric from the one-hop neighbor or from the remote router such as an RSVP backup label-switched-path (LSP) tail-end router to the final destination.

 highest— Select the backup path that has the highest destination metric.

 lowest— Select the backup path that has the lowest destination metric.

downstream-paths-only— Select the backup path that is a downstream path to the destination.

evaluation-order [admin-group srlg bandwidth protection-type node metric]— Control the order and the criteria of evaluating the backup path. The default order of evaluation is admin-group, srlg, bandwidth, protection-type, node and metric.

NOTE: For the explicitly configured evaluation order, only the listed attributes influence the selection of the backup path.
metric-order [root dest]—Specify the order of preference of the root and the destination metric during the backup path selection. The preference order can be:

- **[root dest]** — Backup path selection or preference is first based on the root-metric criteria. If the criteria of all the root-metric is the same, then the selection or preference is based on the dest-metric.
- **[dest root]** — Backup path selection or preference is first based on the dest-metric criteria. If the criteria of all the dest-metric is the same, then the selection is based on the root-metric.

NOTE: Backup path selection or preference is first based on the dest-metric criteria. If the criteria of all the dest-metric is the same, then the selection is based on the root-metric. By default, backup paths with lower destination metric criteria are selected or preferred. If the criteria is the same, then the lowest root metric criteria is preferred or selected.

root—The metric to a one-hop neighbor or a remote router.

dest—The metric from a one-hop neighbor or remote router to the final destination.

protection-type (link | node | node-link)—Specify the required protection type of the backup path.

NOTE: If no protection-type is configured, then by default the first best path that matches all the other criteria is executed.

link—Select the backup path that provides link protection.

node—Select the backup path that provides node protection.

node-link—Allow either node or link protection LFA where node-protection LFA is preferred over link-protection LFA.

root-metric (highest lowest)—Specify the metric to the one-hop neighbor or to the remote router such as an RSVP backup label-switched-path (LSP) tail-end router.

- **highest**—Select the highest root metric.
- **lowest**—Select the lowest root metric.
srlg (loose | strict)—Define the backup selection to either allow or reject the common shared risk link groups (SRLGs) between the primary link and any link in the backup path.

loose— Allow the backup path that has common srlgs between the primary link and any link in the backup path. A backup path with a fewer number of srlg collisions is preferred.

strict— Reject the backup path that has common srlgs between the primary next-hop link and each link in the backup path.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring Backup Selection Policy for the OSPF or OSPF3 Protocol | 453
Configuring Backup Selection Policy for the OSPF Protocol | 444
Understanding Backup Selection Policy for OSPF Protocol | 442
backup-selection (Protocols ISIS)
interface-type (Protocols OSPF)

Syntax

interface-type (nbma | p2mp | p2mp-over-lan | p2p) {
 ipsec-sa;
 ldp-synchronization {
 (disable | enable);
 hold-time;
 }
 metric;
 mtu;
 neighbor address {
 eligible;
 }
 no-advertise-adjacency-segment;
 no-eligible-backup;
 no-eligible-remote-backup;
 no-interface-state-traps;
 no-neighbor-down-notification;
 node-link-protection;
 passive {
 traffic-engineering {
 remote-node-id;
 remote-node-router-id;
 }
 }
 poll-interval;
 priority;
 retransmit-interval;
 secondary;
 te-metric;
 topology (default | ipv4-multicast | name);
 transit-delay;
 bandwidth-based-metrics;
 bfd-liveness-detection;
 dead-interval;
 demand-circuit;
 disable;
 dynamic-neighbors;
 flood-reduction;
 hello-interval;
 link-protection;
 own-router-lsa;
}
Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-multicast | ipv4-unicast | ipv6-multicast) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-multicast | ipv4-unicast | ipv6-multicast) area area-id interface interface-name],
[edit protocols (ospf | ospf3) area area-id interface interface-name],
[edit protocols ospf3 realm (ipv4-multicast | ipv4-unicast | ipv6-multicast) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-multicast | ipv4-unicast | ipv6-multicast) area area-id interface interface-name]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for OSPFv3 for interface type p2p only introduced in Junos OS Release 9.4. You cannot configure other interface types for OSPFv3.
Support for OSPFv3 for interface type p2mp is introduced in Junos OS Release 18.1R1.
Support for OSPFv3 for interface type p2p only introduced in Junos OS Release 9.4 for EX Series switches.

Description
Specify the type of interface.

By default, the software chooses the correct interface type based on the type of physical interface. Therefore, you should never have to set the interface type. The exception to this is for NBMA interfaces, which default to an interface type of point-to-multipoint. To have these interfaces explicitly run in Nonbroadcast multiaccess (NBMA) mode, configure the nbma interface type, using the IP address of the local ATM interface.

In Junos OS Release 9.3 and later, a point-to-point interface can be an Ethernet interface without a subnet.

Default
The software chooses the correct interface type based on the type of physical interface.
Options

nbma (OSPFv2 only)—Nonbroadcast multiaccess (NBMA) interface

p2mp—Point-to-multipoint interface

p2mp-over-lan—Point-to-multipoint over LAN mode

p2p—Point-to-point interface

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

routing—To view this statement in the configuration.

routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| About OSPF Interfaces | 38 |
| Example: Configuring an OSPFv2 Interface on a Nonbroadcast Multiaccess Network | 51 |
intra-area-prefix

Syntax

intra-area-prefix;

Hierarchy Level

[edit logical-systems name protocols ospf3 overload],
[edit protocols ospf3 overload]

Release Information
Statement introduced in Junos OS Release 18.2 for MX Series Routers.

Description
Advertise intra-area Prefix with maximum metric.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Understanding OSPF Overload Function	222
allow-route-leaking	608
stub-network	752
as-external	613
ipsec-sa (Protocols OSPF)

Syntax

ipsec-sa name;

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id virtual-link],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id sham-link-remote address],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 area area-id virtual-link],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit protocols (ospf | ospf3) area area-id interface interface-name],
[edit protocols (ospf | ospf3) area area-id virtual-link],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf area area-id sham-link-remote address],
[edit routing-instances routing-instance-name protocols ospf3 area area-id virtual-link],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name]

Release Information

Statement introduced before Junos OS Release 7.4.
Support for OSPFv2 authentication added in Junos OS Release 8.3.
Support for the realm statement introduced in Junos OS Release 9.2.

Description

Apply IPsec authentication to an OSPF interface or virtual link or to an OSPFv2 remote sham link.

Options

name—Name of the IPsec authentication scheme.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.
RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding OSPFv2 Authentication</td>
<td>246</td>
</tr>
<tr>
<td>Understanding OSPFv3 Authentication</td>
<td>248</td>
</tr>
<tr>
<td>Example: Configuring IPsec Authentication for an OSPF Interface</td>
<td>261</td>
</tr>
</tbody>
</table>

Junos OS Administration Library

Junos OS Services Interfaces Library for Routing Devices
label-switched-path (Protocols OSPF)

Syntax

label-switched-path name metric metric;

Hierarchy Level

[edit logical-systems logical-system-name protocols ospf area area-id],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id],
[edit protocols ospf area area-id],
[edit routing-instances routing-instance-name protocols ospf area area-id]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Advertise label-switched paths into OSPF as point-to-point links.

The label-switched path is advertised in the appropriate OSPF levels as a point-to-point link and contains a local address and a remote address.

Options
name—Name of the label-switched path.

metric—Metric value.

Range: 1 through 65,535

Default: 1

Required Privilege Level
routing—to view this statement in the configuration.
routing-control—to add this statement to the configuration.

RELATED DOCUMENTATION

| Example: Advertising Label-Switched Paths into OSPFv2 | 407 |
Idp-stitching (Protocols OSPF)

Syntax

Idp-stitching;

Hierarchy Level

[edit protocols ospf source-packet-routing],
[edit routing-instances name protocols ospf source-packet-routing]

Release Information
Statement introduced in Junos OS Release 19.1.

Description
Enable segment routing to LDP stitching.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

LDP Mapping Server for Interoperability of Segment Routing with LDP Overview
ldp-synchronization

Syntax

```bash
ldp-synchronization {
  disable;
  hold-time seconds;
}
```

Hierarchy Level

```bash
[edit logical-systems logical-system-name protocols ospf area area-id interface interface-name],
[edit logical-systems logical-system-name protocols ospf3 realm ipv4-unicast area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm ipv4-unicast area area-id interface interface-name],
[edit protocols ospf area area-id interface interface-name],
[edit protocols ospf3 realm ipv4-unicast area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf3 realm ipv4-unicast area area-id interface interface-name],
```

Release Information

Statement introduced in Junos OS Release 7.5. Support for the `realm` statement introduced in Junos OS Release 9.2. Only the `ipv4-unicast` option is supported with this statement.

Description

Enable synchronization by advertising the maximum cost metric until LDP is operational on the link.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

`routing`—To view this statement in the configuration.

`routing-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring Synchronization Between LDP and OSPF | 234
link-protection (Protocols OSPF)

Syntax

link-protection;

Hierarchy Level

[edit protocols (ospf | ospf3) area area-name interface interface-name],
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-name interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-name interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-name interface interface-name],
[edit protocols ospf3 realm ipv4-unicast area area-id],
[edit logical-systems logical-system-name protocols ospf3 realm ipv4-unicast area area-id],
[edit routing-instances routing-instance-name protocols ospf3 realm ipv4-unicast area area-id],
[edit protocols ospf area area-id interface interface-name topology (default | name)],
[edit logical-systems logical-system-name protocols ospf area area-id interface interface-name topology (default | name)],
[edit routing-instances routing-instance-name protocols ospf area area-id interface interface-name topology (default | name)]

Release Information
Statement introduced in Junos OS Release 10.0.

Description
Enable link protection on the specified OSPF interface. Junos OS creates a backup loop-free alternate path to the primary next hop for all destination routes that traverse the protected interface.

NOTE: This feature calculates alternate next hop paths for unicast routes only. Therefore, this statement is not supported with the OSPF IPv4 multicast topology or with the OSPFv3 IPv4 multicast and IPv6 multicast realms.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.
Isa-refresh-interval

Syntax

```plaintext
ls-refresh-interval minutes;
```

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit protocols (ospf | ospf3)],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]

Release Information

Statement introduced in Junos OS Release 12.2.

Description

Configure the refresh interval for all self-generated link-state advertisement (LSAs). The OSPF standard requires that every LSA be refreshed every 30 minutes. The Juniper Networks implementation refreshes LSAs every 50 minutes. By default, any LSA that is not refreshed expires after 60 minutes. By using this configuration, you can specify when self-originated LSAs are refreshed.

You can override the default behavior by globally configuring the OSPF LSA refresh interval at the [edit protocols ospf | ospf3] hierarchy level. However, if you also have OSPF flood reduction configured for a specific interface in an OSPF area at the [edit protocols ospf | ospf3 area area-id interface interface-name] hierarchy level, the flood reduction configuration takes precedence for that specific interface.

Options

- `minutes`—Time between an LSA refresh, in minutes.

Range: 25 through 50 minutes (1,500 through 3,000 seconds)

Default: 50 minutes

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.
lsp-metric-into-summary

Syntax

```plaintext
lsp-metric-into-summary;
```

Hierarchy Level

```plaintext
[edit logical-systems logical-system-name protocols (ospf | ospf3) traffic-engineering shortcuts],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) traffic-engineering shortcuts],
[edit protocols (ospf | ospf3) traffic-engineering shortcuts],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) traffic-engineering shortcuts]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for OSPFv3 (ospf3) introduced in Junos OS Release 9.4.
Support for OSPFv3 (ospf3) introduced in Junos OS Release 9.4 for EX Series switches.

Description

Advertise the LSP metric in summary LSAs.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.
md5

Syntax

```markdown
md5 key-identifier {
  key key-values;
  start-time time;
}
```

Hierarchy Level

```markdown
[edit logical-systems logical-system-name protocols ospf area area-id interface interface-name authentication],
[edit logical-systems logical-system-name protocols ospf area area-id virtual-link authentication],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id interface interface-name authentication],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id virtual-link authentication],
[edit protocols ospf area area-id interface interface-name authentication],
[edit protocols ospf area area-id virtual-link authentication],
[edit routing-instances routing-instance-name protocols ospf area area-id interface interface-name authentication],
[edit routing-instances routing-instance-name protocols ospf area area-id virtual-link authentication]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure an MD5 authentication key (password).

Options

- **key-identifier**—MD5 key identifier.

 Range: 0 through 255

 Default: 0

- **key key-values**—One or more MD5 key strings. The MD5 key values can be from 1 through 16 characters long. You can specify more than one key value within the list. Characters can include ASCII strings. If you include spaces, enclose all characters in quotation marks (" ").

- **start-time time**—MD5 start time.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.
<table>
<thead>
<tr>
<th>RELATED DOCUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding OSPFv2 Authentication</td>
</tr>
<tr>
<td>Example: Configuring MD5 Authentication for OSPFv2 Exchanges</td>
</tr>
<tr>
<td>Example: Configuring a Transition of MD5 Keys on an OSPFv2 Interface</td>
</tr>
</tbody>
</table>
metric (Protocols OSPF Interface)

Syntax

```
metric metric;
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name protocols ospf area area-id interface interface-name topology (ipv4-multicast | name)],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit protocols (ospf | ospf3) area area-id interface interface-name],
[edit protocols ospf area area-id interface interface-name topology (ipv4-multicast | name)],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf area area-id interface interface-name realm],
[edit routing-instances routing-instance-name protocols ospf area area-id interface interface-name topology (ipv4-multicast | name)],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for Multitopology Routing introduced in Junos OS Release 9.0.
Support for Multitopology Routing introduced in Junos OS Release 9.0 for EX Series switches.
Support for the `realm` statement introduced in Junos OS Release 9.2.
Support for the `realm` statement introduced in Junos OS Release 9.2 for EX Series switches.

Description

Specify the cost of an OSPF interface. The cost is a routing metric that is used in the link-state calculation.

To set the cost of routes exported into OSPF, configure the appropriate routing policy.
Options

metric—Cost of the route.

Range: 1 through 65,535

Default: By default, the cost of an OSPF route is calculated by dividing the reference-bandwidth value by the bandwidth of the physical interface. Any specific value you configure for the **metric** overrides the default behavior of using the reference-bandwidth value to calculate the cost of the route for that interface.

Required Privilege Level

routings—To view this statement in the configuration.

routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Controlling the Cost of Individual OSPF Network Segments | 211
- Example: Configuring OSPFv2 Sham Links | 542
- Example: Configuring Multitopology Routing to Provide Redundancy for Multicast Traffic over Separate Network Paths
- Understanding Multitopology Routing for Class-Based Forwarding of Voice, Video, and Data Traffic
- Understanding Multitopology Routing in Conjunction with PIM
- bandwidth-based-metrics | 620
- reference-bandwidth | 731
metric-type

Syntax

```
metric-type type;
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id nssa default-lsa],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)] area area-id nssa default-lsa],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id nssa default-lsa],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)] area area-id nssa default-lsa],
[edit protocols (ospf | ospf3) area area-id nssa default-lsa],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)] area area-id nssa default-lsa],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id nssa default-lsa],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)] area area-id nssa default-lsa]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the `realm` statement introduced in Junos OS Release 9.2.
Support for the `realm` statement introduced in Junos OS Release 9.2 for EX Series switches.

Description

Specify the external metric type for the default LSA.

The configured metric determines the method used to compute the cost to a destination:

- The Type 1 external metric is equivalent to the link-state metric. The path cost uses the advertised external path cost and the path cost to the AS boundary router (the route is equal to the sum of all internal costs and the external cost).
- The Type 2 external metric uses the cost assigned by the AS boundary router (the route is equal to the external cost alone). By default, OSPF uses the Type 2 external metric.

Options

```
type—Metric type: 1 or 2
```

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding OSPF Areas | 65
- Example: Configuring OSPF Not-So-Stubby Areas | 107
mtu

Syntax

mtu bytes;

Hierarchy Level

[edit interfaces interface-name],
[edit interfaces interface-name unit logical-unit-number family family],
[edit interfaces interface-range name],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family family],
[edit logical-systems logical-system-name protocols l2circuit local-switching interface interface-name backup-neighbor address],
[edit logical-systems logical-system-name protocols l2circuit neighbor address interface interface-name],
[edit logical-systems logical-system-name protocols l2circuit neighbor address interface interface-name backup-neighbor address],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols l2vpn interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols vpls],
[edit protocols l2circuit local-switching interface interface-name backup-neighbor address],
[edit protocols l2circuit neighbor address interface interface-name]
[edit protocols l2circuit neighbor address interface interface-name backup-neighbor address],
[edit routing-instances routing-instance-name protocols l2vpn interface interface-name],
[edit routing-instances routing-instance-name protocols vpls],
[edit logical-systems name protocols osfp area name interface],
[edit logical-systems name routing-instances name protocols osfp area name interface]
[edit protocols osfp area name interface],
[edit routing-instances name protocols osfp area name interface]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for Layer 2 VPNs and VPLS introduced in Junos OS Release 10.4.
Statement introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport Routers.
Statement introduced in Junos OS Release 12.2 for ACX Series Universal Metro Routers.
Support at the [set interfaces interface-name unit logical-unit-number family ccc] hierarchy level introduced in Junos OS Release 12.3R3 for MX Series routers.
Statement introduced in Junos OS 17.3R1 Release for MX Series Routers.

Description
Specify the maximum transmission unit (MTU) size for the media or protocol. The default MTU size depends on the device type. Changing the media MTU or protocol MTU causes an interface to be deleted and added again.

To route jumbo data packets on an integrated routing and bridging (IRB) interface or routed VLAN interface (RVI) on EX Series switches, you must configure the jumbo MTU size on the member physical interfaces of the VLAN that you have associated with the IRB interface or RVI, as well as on the IRB interface or RVI itself (the interface named irb or vlan, respectively).

CAUTION: For EX Series switches, setting or deleting the jumbo MTU size on an IRB interface or RVI while the switch is transmitting packets might cause packets to be dropped.

NOTE:

The MTU for an IRB interface is calculated by removing the Ethernet header overhead [6(DMAC)+6(SMAC)+2(EtherType)]. Because, the MTU is the lower value of the MTU configured on the IRB interface and the MTU configured on the IRB’s associated bridge domain IFDs or IFLs, the IRB MTU is calculated as follows:

- In case of Layer 2 IFL configured with the `flexible-vlan-tagging` statement, the IRB MTU is calculated by including 8 bytes overhead (SVLAN+CVLAN).
- In case of Layer 2 IFL configured with the `vlan-tagging` statement, the IRB MTU is calculated by including a single VLAN 4 bytes overhead.
NOTE:

- If a packet whose size is larger than the configured MTU size is received on the receiving interface, the packet is eventually dropped. The value considered for MRU (maximum receive unit) size is also the same as the MTU size configured on that interface.

- Not all devices allow you to set an MTU value, and some devices have restrictions on the range of allowable MTU values. You cannot configure an MTU for management Ethernet interfaces (fxp0, em0, or me0) or for loopback, multilink, and multicast tunnel devices.

- On ACX Series routers, you can configure the protocol MTU by including the `mtu` statement at the `[edit interfaces interface-name unit logical-unit-number family inet]` or `[edit interfaces interface-name unit logical-unit-number family inet6]` hierarchy level.

 - If you configure the protocol MTU at any of these hierarchy levels, the configured value is applied to all families that are configured on the logical interface.

 - If you are configuring the protocol MTU for both `inet` and `inet6` families on the same logical interface, you must configure the same value for both the families. It is not recommended to configure different MTU size values for `inet` and `inet6` families that are configured on the same logical interface.

- Starting in Release 14.2, MTU for IRB interfaces is calculated by removing the Ethernet header overhead \((6(DMAC)+6(SMAC)+2(EtherType))\), and the MTU is a minimum of the two values:

 - Configured MTU
 - Associated bridge domain's physical or logical interface MTU

 - For Layer 2 logical interfaces configured with `flexible-vlan-tagging`, IRB MTU is calculated by including 8 bytes overhead (SVLAN+CVLAN).

 - For Layer 2 logical interfaces configured with `vlan-tagging`, IRB MTU is calculated by including single VLAN 4 bytes overhead.

NOTE: Changing the Layer 2 logical interface option from `vlan-tagging` to `flexible-vlan-tagging` or vice versa adjusts the logical interface MTU by 4 bytes with the existing MTU size. As a result, the Layer 2 logical interface is deleted and re-added, and the IRB MTU is re-computed appropriately.

For more information about configuring MTU for specific interfaces and router or switch combinations, see Configuring the Media MTU.
Options

bytes—MTU size.

Range: 256 through 9192 bytes, 256 through 9216 (EX Series switch interfaces), 256 through 9500 bytes (Junos OS 12.1X48R2 for PTX Series routers), 256 through 9500 bytes (Junos OS 16.1R1 for MX Series routers)

NOTE: Starting in Junos OS Release 16.1R1, the MTU size for a media or protocol is increased from 9192 to 9500 for Ethernet interfaces on the following MX Series MPCs:

- MPC1
- MPC2
- MPC2E
- MPC3E
- MPC4E
- MPC5E
- MPC6E

Default: 1500 bytes (INET, INET6, and ISO families), 1448 bytes (MPLS), 1514 bytes (EX Series switch interfaces)

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring the Media MTU
- Configuring the MTU for Layer 2 Interfaces
- Setting the Protocol MTU
neighbor (Protocols OSPF)

Syntax

neighbor address <eligible>;

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit protocols (ospf | ospf3) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For nonbroadcast interfaces only, specify neighboring routers. On a nonbroadcast interface, you must specify neighbors explicitly because OSPF does not send broadcast packets to dynamically discover their neighbors. To specify multiple neighbors, include multiple neighbor statements.

Options

address—IP address of a neighboring router.

eligible—(Optional) Allow the neighbor to become a designated router.

Default: If you omit this option, the neighbor is not considered eligible to become a designated router.

Required Privilege Level

routing—To view this statement in the configuration.

routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| About OSPF Interfaces | 38 |
| Example: Configuring an OSPFv2 Interface on a Nonbroadcast Multiaccess Network | 51 |
network-summary-export

Syntax

network-summary-export policy-name;

Hierarchy Level

[edit logical-systems logical-system-name protocols ospf area area-id],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id],
[edit protocols ospf area area-id],
[edit routing-instances routing-instance-name protocols ospf area area-id]

Release Information
Statement introduced in Junos OS Release 9.1.

Description
Apply an export policy that specifies which network-summary link-state advertisements (LSAs) are flooded into an OSPFv2 area.

Options
policy-name—Name of a policy configured at the [edit policy-options policy-statement policy-name term term-name] hierarchy level.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Import and Export Policies for Network Summaries Overview	505
Example: Configuring an OSPF Export Policy for Network Summaries	505
network-summary-import	692

Routing Policies, Firewall Filters, and Traffic Policers User Guide
network-summary-import

Syntax

network-summary-import policy-name;

Hierarchy Level

[edit logical-systems logical-system-name protocols ospf area area-id],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id],
[edit protocols ospf area area-id],
[edit routing-instances routing-instance-name protocols ospf area area-id]

Release Information
Statement introduced in Junos OS Release 9.1.

Description
Apply an import policy that specifies which routes learned from an OSPFv2 area are used to generate network-summary link-state advertisements to other areas.

Options
policy-name—Name of a policy configured at the [edit policy-options policy-statement policy-name term term-name] hierarchy level.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Import and Export Policies for Network Summaries Overview | 505
Example: Configuring an OSPF Import Policy for Network Summaries | 516
network-summary-export | 691
Routing Policies, Firewall Filters, and Traffic Policers User Guide
node-segment (Protocols OSPF)

Syntax

```plaintext	node-segment {
    ipv4-index index;
    index-range index range;
}
```

Hierarchy Level

```plaintext
[edit logical-systems logical-system-name protocols ospf source-packet-routing],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf source-packet-routing],
[edit protocols ospf source-packet-routing],
[edit routing-instances routing-instance-name protocols ospf source-packet-routing]
```

Release Information

Statement introduced in Junos OS Release 16.2 for MX Series.
Statement introduced in Junos OS Release 17.2R1 for QFX5100 and QFX10000 switches.
Statement introduced in Junos OS Release 17.3R1 for QFX5110 and QFX5200 switches.

Description

Enable source packet routing in networking (SPRING) at all levels. SPRING, or segment routing, is a control-plane architecture that enables an ingress router to steer a packet through a specific set of nodes and links in the network without relying on the intermediate nodes in the network to determine the actual path it should take.

NOTE: You can provision an IPv4 node segment index for a routing instance, not for a specific OSPF area. A node segment index is attached to the IPv4 router-id, if the router-ids are configured on the loopback interface. Otherwise, the lowest IP address on the loopback interface is chosen to attach the node segment identifier.

Options

- **index-range index range** — Range of node segment indices allowed.
 - **Default:** 4096
 - **Range:** 32 through 4096

- **ipv4-index index** — IPv4 node segment index.
 - **Range:** 0 through 4095
Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| OSPF Overview | 23 |
no-advertise-adjacency-segment (Protocols OSPF)

Syntax

no-advertise-adjacency-segment;

Hierarchy Level

[edit logical-systems logical-system-name protocols ospf area name interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area name interface interface-name],
[edit protocols ospf area name interface interface-name],
[edit routing-instances routing-instance-name protocols ospf area name interface interface-name],

Release Information

Statement introduced in Junos OS Release 16.2 for MX Series and PTX Series.
Statement introduced in Junos OS Release 17.2R1 for QFX5100 and QFX10000 switches.
Statement introduced in Junos OS Release 17.3R1 for QFX5110 and QFX5200 switches.

Description

Disable advertising of the adjacency segment for the specified interface.

Default

Enabled

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| OSPF Overview | 23 |
| source-packet-routing |
no-source-packet-routing (Protocols OSPF)

Syntax

no-source-packet-routing;

Hierarchy Level

[edit logical-systems logical-system-name protocols ospf backup-spf-options],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf backup-spf-options],
[edit protocols ospf backup-spf-options],
[edit routing-instances routing-instance-name protocols ospf backup-spf-options]

Release Information

Statement introduced in Junos OS Release 16.2 for MX Series.
Statement introduced in Junos OS Release 17.2R1 for QFX10000 and QFX5100 switches.
Statement introduced in Junos OS Release 17.3R1 for QFX5110 and QFX5200 switches.

Description

Disables use of source packet routing node segment labels for computing backup paths for normal IPv4 OSPF prefixes and OSPF source packet routing node segments.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| OSPF Overview | 23 |
no-strict-lsa-checking

Syntax

no-strict-lsa-checking;

Hierarchy Level

[edit protocols (ospf | ospf3) graceful-restart]

Release Information

Statement introduced in Junos OS Release 8.5.
Statement introduced in Junos OS Release 12.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Disable strict OSPF link-state advertisement (LSA) checking to prevent the termination of graceful restart by a helping router or switch.

Default

By default, LSA checking is enabled.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Graceful Restart Options for OSPF and OSPFv3
Configuring Graceful Restart for QFabric Systems
maximum-neighbor-recovery-time
recovery-time
notify-duration

Syntax

```
notify-duration seconds;
```

Hierarchy Level

```
[edit protocols (ospf | ospf3) graceful-restart],
[edit logical-systems logical-system-name protocols (ospf | ospf3) graceful-restart],
[edit logical-systems logical-system-name routing-instances instance-name protocols (ospf | ospf3) graceful-restart],
[edit routing-instances instance-name protocols (ospf | ospf3) graceful-restart]
```

Release Information

Statement introduced in Junos OS Release 8.3.
Statement introduced in Junos OS Release 12.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Specify the length of time the router or switch notifies helper OSPF routers that it has completed graceful restart.

Options

`seconds`—Length of time in the router notifies helper OSPF routers that it has completed graceful restart.

Range: 1 through 3600

Default: 30

Required Privilege Level

routing—To view this statement in the configuration.

routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Graceful Restart Options for OSPF and OSPFv3
- Configuring Graceful Restart for QFabric Systems
- `restart-duration`
no-domain-vpn-tag

Syntax

```plaintext
no-domain-vpn-tag;
```

Hierarchy Level

```plaintext
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3)]
```

Release Information

Statement introduced in Junos OS Release 10.3.

Description

Disable the virtual private network (VPN) tag for OSPFv2 and OSPFv3 external routes generated by the provider edge (PE) router when the VPN tag is no longer needed.

Options

None.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Routing Between PE and CE Routers in Layer 3 VPNs
no-eligible-backup (Protocols OSPF)

Syntax

no-eligible-backup;

Hierarchy Level

[edit protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit protocols ospf3 realm ipv4-unicast area area-id interface interface-name],
[edit logical-systems logical-system-name protocols ospf3 realm ipv4-unicast area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf3 realm ipv4-unicast area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm ipv4-unicast area area-id interface interface-name],
[edit protocols ospf area area-id interface interface-name topology (default | name)],
[edit logical-systems logical-system-name protocols ospf area area-id interface interface-name topology (default | name)],
[edit routing-instances routing-instance-name protocols ospf area area-id interface interface-name topology (default | name)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id interface interface-name topology (default | name)].

Release Information
Statement introduced in Junos OS Release 10.0.

Description
Exclude the specified interface as a backup interface for OSPF interfaces on which link protection or node-link protection is enabled.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Excluding an OSPF Interface as a Backup for a Protected Interface | 337
link-protection | 676
node-link-protection | 708
no-interface-state-traps

Syntax

```plaintext
no-interface-state-traps;
```

Hierarchy Level

```plaintext
[edit logical-systems logical-system-name protocols ospf area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id interface interface-name],
[edit protocols ospf area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf area area-id interface interface-name],
```

Release Information

Statement introduced in Junos OS Release 10.3.

Description

Disable the OSPF traps for interface state changes. This statement is particularly useful for OSPF interfaces in passive mode.

NOTE: The `no-interface-state-traps` statement is supported only for OSPFv2.

Default

This statement is disabled by default. You must include the `no-interface-state-traps` statement to disable OSPF traps for interface state changes.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring a Passive OSPF Interface | 46
- passive | 714
no-neighbor-down-notification

Syntax

no-neighbor-down-notification;

Hierarchy Level

[edit logical-systems logical-system-name protocols ospf area area-id interface interface-name],
[edit protocols ospf area area-id interface interface-name]

Release Information
Statement introduced in Junos OS Release 8.0.

Description
Disable neighbor down notification for OSPF to allow for migration from OSPF to IS-IS without disruption of the RSVP neighbors and associated RSVP-signaled LSPs.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.
no-nssa-abr

Syntax

no-nssa-abr;

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit protocols (ospf | ospf3)],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]

Release Information

Statement introduced in Junos OS Release 7.6.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Disable exporting Type 7 link-state advertisements into not-so-stubby-areas (NSSAs) for an autonomous system boundary router (ASBR) or an area border router (ABR).

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Example: Configuring OSPF Not-So-Stubby Areas | 107 |
no-rfc-1583

Syntax

```plaintext
no-rfc-1583;
```

Hierarchy Level

- `[edit logical-systems logical-system-name protocols (ospf | ospf3)]`
- `[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]`
- `[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)]`
- `[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]`
- `[edit protocols (ospf | ospf3)]`
- `[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]`
- `[edit routing-instances routing-instance-name protocols (ospf | ospf3)]`
- `[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]`

Release Information

Statement introduced in Junos OS Release 8.5.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the `realm` statement introduced in Junos OS Release 9.2.
Support for the `realm` statement introduced in Junos OS Release 9.2 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Disable compatibility with RFC 1583, OSPF Version 2. If the same external destination is advertised by AS boundary routers that belong to different OSPF areas, disabling compatibility with RFC 1583 can prevent routing loops.

Default

Compatibility with RFC 1583 is enabled by default.

Required Privilege Level

- `routing`—To view this statement in the configuration.
- `routing-control-level`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Disabling OSPFv2 Compatibility with RFC 1583 | 239
node (Protocols OSPF or OSPF3)

Syntax

```node {
    exclude [ node-address ];
    preference [ node-address ];
}
```

Hierarchy Level

- [edit logical-systems logical-system-name routing-instances instance-name routing-options backup-selection destination prefix interface interface-name],
- [edit logical-systems logical-system-name routing-options backup-selection destination prefix interface interface-name],
- [edit routing-instances instance-name routing-options backup-selection destination prefix interface interface-name],
- [edit routing-options backup-selection destination prefix interface interface-name]

Release Information

Statement introduced in Junos OS Release 15.1.

Description

Define a list of loop-back IP addresses of the adjacent nodes to either prefer or exclude in the backup path selection. The node can be a local (adjacent router) node, remote node, or any other router in the backup path.

NOTE: The nodes are identified through the route-id advertised by a node in the LSP.

Options

- **exclude [node-address]**— Specify one or more nodes to be excluded. The backup path that has a router from the list is not selected as the loop-free alternative or backup next hop.

- **preference [node-address]**— Define an ordered set of one or more nodes to be preferred. The backup path having the leftmost node is selected.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.
RELATED DOCUMENTATION

- Example: Configuring Backup Selection Policy for the OSPF or OSPF3 Protocol | 453
- Configuring Backup Selection Policy for the OSPF Protocol | 444
- Understanding Backup Selection Policy for OSPF Protocol | 442

backup-selection (Protocols ISIS)
node-link-degradation (Protocols OSPF)

Syntax

node-link-degradation;

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3) backup-spf-options],
[edit logical-systems logical-system-name protocols ospf topology (default | name) backup-spf-options],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) backup-spf-options],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf topology (default | name) backup-spf-options],
[edit protocols (ospf | ospf3) backup-spf-options],
[edit protocols ospf topology (default | name) backup-spf-options],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) backup-spf-options],
[edit routing-instances routing-instance-name protocols ospf topology (default | name) backup-spf-options]

Release Information

Statement introduced in Junos OS Release 15.1.

Description

Degrade to link protection when node-link protection is not available. A link protecting loop-free alternate (LFA) is used when node-link protecting LFA is not available in the topology for any of the protected links.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control-level—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Backup SPF Options for Protected OSPF Interfaces	338
link-protection	676
node-link-protection	708
node-link-protection (Protocols OSPF)

Syntax

```
node-link-protection;
```

Hierarchy Level

```
[edit protocols (ospf | ospf3) protocols area area-id interface interface-name],
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit protocols ospf3 realm ipv4-unicast area area-id interface interface-name],
[edit logical-systems logical-system-name protocols ospf3 realm ipv4-unicast area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf3 realm ipv4-unicast area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm ipv4-unicast area area-id interface interface-name],
```

Release Information
Statement introduced in Junos OS Release 10.0.

Description
Enable node-link protection on the specified OSPF interface. Junos OS creates an alternate loop-free path to the primary next hop for all destination routes that traverse a protected interface. This alternate path avoids the primary next-hop router altogether and establishes a path through a different router.

NOTE: This feature is not supported for the OSPF IPv4 multicast topology or for the OSPFv3 IPv4 multicast or IPv6 multicast topologies because node-link protection creates alternate next-hop paths only for unicast routes.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Node-Link Protection for OSPF | 335
- link-protection | 676
nssa

Syntax

```
nssa {
    area-range network/mask-length <restrict> <exact> <override-metric metric>;
    default-lsa {
        default-metric metric;
        metric-type type;
        type-7;
    }
    (no-summaries | summaries);
}
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit protocols (ospf | ospf3) area area-id],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.

Description

Configure a not-so-stubby area (NSSA). An NSSA allows external routes to be flooded within the area. These routes are then leaked into other areas.

You cannot configure an area as being both a stub area and an NSSA.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.
ospf

Syntax

```plaintext
ospf { ... }
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols],
[edit protocols],
[edit routing-instances routing-instance-name protocols]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Enable OSPF routing on the routing device.

You must include the `ospf` statement to enable OSPF on the routing device.

Default

OSPF is disabled on the routing device.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding OSPF Configurations | 35
ospf3

Syntax

ospf3 { ... }

Hierarchy Level

[edit logical-systems logical-system-name protocols],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols],
[edit protocols],
[edit routing-instances routing-instance-name protocols]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.

Description

Enable OSPFv3 routing on the routing device.

You must include the ospf3 statement to enable OSPFv3.

Default

OSPFv3 is disabled on the routing device.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Understanding OSPF Configurations | 35
overload (Protocols OSPF)

Syntax

 overload {
 timeout seconds;
 }

Hierarchy Level

 [edit logical-systems logical-system-name protocols (ospf | ospf3)],
 [edit logical-systems logical-system-name protocols ospf topology (default | ipv4-multicast | name)],
 [edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
 [edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
 [edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf topology (default | ipv4-multicast | name)],
 [edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
 [edit protocols (ospf | ospf3)],
 [edit protocols ospf topology (default | ipv4-multicast | name)],
 [edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
 [edit routing-instances routing-instance-name protocols (ospf | ospf3)],
 [edit routing-instances routing-instance-name protocols ospf topology (default | ipv4-multicast | name)],
 [edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for Multitopology Routing introduced in Junos OS Release 9.0.
Support for Multitopology Routing introduced in Junos OS Release 9.0 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure the local routing device so that it appears to be overloaded. You might do this when you want the routing device to participate in OSPF routing, but do not want it to be used for transit traffic.

 NOTE: Traffic destined to directly attached interfaces continues to reach the routing device.
Options

timeout seconds—(Optional) Number of seconds at which the overloading is reset. If no timeout interval is specified, the routing device remains in overload state until the overload statement is deleted or a timeout is set.

Range: 60 through 1800 seconds

Default: 0 seconds

NOTE: Multitopology Routing does not support the timeout option.

Required Privilege Level

routing—to view this statement in the configuration.

routing-control—to add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring OSPF to Make Routing Devices Appear Overloaded | 224

Example: Configuring Multitopology Routing for Class-Based Forwarding of Voice, Video, and Data Traffic

Example: Configuring Multitopology Routing to Provide Redundancy for Multicast Traffic over Separate Network Paths
passive (Protocols OSPF)

Syntax

```
passive {
  traffic-engineering {
  }
}
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit protocols (ospf | ospf3) area area-id interface interface-name],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.

traffic-engineering and remote-node-id address statements introduced in Junos OS Release 8.0.

traffic-engineering and remote-node-id address statements introduced in Junos OS Release 8.0 for EX Series switches.

Statement introduced in Junos OS Release 9.0 for EX Series switches.

Support for the realm statement introduced in Junos OS Release 9.2.

Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.

Description

Advertise the direct interface addresses on an interface without actually running OSPF on that interface. A passive interface is one for which the address information is advertised as an internal route in OSPF, but on which the protocol does not run.

To configure an interface in OSPF passive traffic engineering mode, include the traffic-engineering statement. Configuring OSPF passive traffic engineering mode enables the dynamic discovery of OSPF AS boundary routers.

Enable OSPF on an interface by including the interface statement at the [edit protocols (ospf | ospf3) area area-id] or the [edit routing-instances routing-instance-name protocols ospf area area-id] hierarchy levels.
Disable it by including the `disable` statement. To prevent OSPF from running on an interface, include the `passive` statement. These three states are mutually exclusive.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring a Passive OSPF Interface | 46
- Example: Configuring OSPF Passive Traffic Engineering Mode | 403
- disable | 638
peer-interface (Protocols OSPF)

Syntax

```
peer-interface interface-name {
  disable;
  dead-interval seconds;
  hello-interval seconds;
  retransmit-interval seconds;
  transit-delay seconds;
}
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols ospf area area-id],
[edit protocols ospf area area-id]
```

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Configure a peer interface.

Options

- `interface-name`—Name of the peer interface. To configure all interfaces, you can specify `all`.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring OSPFv2 Peer interfaces | 49
- Configuring RSVP and OSPF for LMP Peer Interfaces
- Configuring a Hierarchy of RSVP LSPs to Tunnel Multiple RSVP LSPs Over a Single RSVP LSP
per-prefix-calculation

Syntax

```plaintext
per-prefix-calculation {
  all;
  externals;
  stub;
  summary;
}
```

Hierarchy Level

```plaintext
[edit logical-systems logical-system-name protocols (ospf | ospf3) backup-spf-options],
[edit logical-systems logical-system-name protocols ospf topology (default | name) backup-spf-options],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) backup-spf-options],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf topology (default | name) backup-spf-options],
[edit protocols (ospf | ospf3) backup-spf-options],
[edit protocols ospf topology (default | name) backup-spf-options],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) backup-spf-options],
[edit routing-instances routing-instance-name protocols ospf topology (default | name) backup-spf-options]
```

Release Information

Statement introduced in Junos OS Release 15.1.

Description

Calculate backup nexthops for non-best prefix originators.

Options

- **all**—Calculate per-prefix loop free alternate (LFA) for all.
- **externals**—Calculate per-prefix LFA for not-so-stubby and externals only.
- **stubs**—Calculate per-prefix LFA for stubs only.
- **summary**—Calculate per-prefix LFA for summary originators only.

Required Privilege Level

- **routing**—To view this statement in the configuration.
- **routing-control-level**—To add this statement to the configuration.
RELATED DOCUMENTATION

Configuring Backup SPF Options for Protected OSPF Interfaces	338
link-protection	676
node-link-protection	708
poll-interval

Syntax

poll-interval seconds;

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit protocols (ospf | ospf3) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For nonbroadcast interfaces only, specify how often the router sends hello packets out of the interface before it establishes adjacency with a neighbor.

Options

seconds—Frequency at which to send hello packets.

Range: 1 through 255 seconds

Default: 120 seconds

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>OSPF Timers Overview</th>
<th>282</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Configuring an OSPFv2 Interface on a Nonbroadcast Multiaccess Network</td>
<td>51</td>
</tr>
</tbody>
</table>
preference (Protocols OSPF)

Syntax

preference preference;

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit protocols (ospf | ospf3)],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Set the route preference for OSPF internal routes.

Options

preference—Preference value.

Range: 0 through 4,294,967,295 ($2^{32} - 1$)

Default: 10

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Controlling OSPF Route Preferences | 220
external-preference | 644
prefix-export-limit (Protocols OSPF)

Syntax

prefix-export-limit number;

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name protocols ospf topology (default | ipv4-multicast | name)],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf topology (default | ipv4-multicast | name)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit protocols (ospf | ospf3)],
[edit protocols ospf topology (default | ipv4-multicast | name)],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols ospf topology (default | ipv4-multicast | name)],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for Multitopology Routing introduced in Junos OS Release 9.0.
Support for Multitopology Routing introduced in Junos OS Release 9.0 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure a limit to the number of prefixes exported into OSPF.

Options

number—Prefix limit.

Range: 0 through 4,294,967,295 (\(2^{32} - 1\))

Default: None

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Limiting the Number of Prefixes Exported to OSPF | 207
- Example: Configuring Multitopology Routing to Provide Redundancy for Multicast Traffic over Separate Network Paths
- Example: Configuring Multitopology Routing for Class-Based Forwarding of Voice, Video, and Data Traffic
- Understanding Multitopology Routing for Class-Based Forwarding of Voice, Video, and Data Traffic
- Understanding Multitopology Routing in Conjunction with PIM
priority (Protocols OSPF)

Syntax

```
priority number;
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols ospf | ospf3 area area-id interface interface-name],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit logical-systems routing-instances routing-instance-name protocols ospf | ospf3 area area-id interface interface-name],
[edit logical-systems routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit protocols ospf | ospf3 area area-id interface interface-name],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf | ospf3 area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the `realm` statement introduced in Junos OS Release 9.2.
Support for the `realm` statement introduced in Junos OS Release 9.2 for EX Series switches.

Description

Specify the routing device's priority for becoming the designated routing device. The routing device that has the highest priority value on the logical IP network or subnet becomes the network's designated router. You must configure at least one routing device on each logical IP network or subnet to be the designated router. You also should specify a routing device's priority for becoming the designated router on point-to-point interfaces.

Options

- **number**—Routing device’s priority for becoming the designated router. A priority value of 0 means that the routing device never becomes the designated router. A value of 1 means that the routing device has the least chance of becoming a designated router.

Range: 0 through 255
Default: 128

Required Privilege Level

routing—To view this statement in the configuration.
Routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| OSPF Designated Router Overview | 68 |
| Example: Controlling OSPF Designated Router Election | 71 |
protocols

Syntax

protocols {
 bgp {
 ... bgp-configuration ...
 }
 isis {
 ... isis-configuration ...
 }
 ldp {
 ... ldp-configuration ...
 }
 mpls {
 ... mpls-configuration ...
 }
 msdp {
 ... msdp-configuration ...
 }
 mstp {
 ... mstp-configuration ...
 }
 ospf {
 domain-id domain-id;
 domain-vpn-tag number;
 route-type-community (iana | vendor);
 traffic-engineering {
 <advertise-unnumbered-interfaces>;
 <credibility-protocol-preference>;
 ignore-lsp-metrics;
 multicast-rpf-routes;
 no-topology;
 shortcuts {
 lsp-metric-into-summary;
 }
 }
 ... ospf-configuration ...
 }
 ospf3 {
 domain-id domain-id;
 domain-vpn-tag number;
 route-type-community (iana | vendor);
 traffic-engineering {
 <advertise-unnumbered-interfaces>;
 }
<credibility-protocol-preference>;
ignore-lsp-metrics;
multicast-rpf-routes;
no-topology;
shortcuts {
 lsp-metric-into-summary;
}
}
... ospf3-configuration ...
}
pim {
 ... pim-configuration ...
}
rip {
 ... rip-configuration ...
}
ripng {
 ... ripng-configuration ...
}
rstp {
 rstp-configuration;
}
rsvp{
 ... rsvp-configuration ...
}
vstp {
 vstp configuration;
}
vpls {
 vpls configuration;
}
}

Hierarchy Level

[edit logical-systems logical-system-name routing-instances routing-instance-name],
[edit routing-instances routing-instance-name]
Release Information

Statement introduced before Junos OS Release 7.4.
Support for RIPng introduced in Junos OS Release 9.0.
Statement introduced in Junos OS Release 11.1 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
mpls and rsvp options added in Junos OS Release 15.1.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Specify the protocol for a routing instance. You can configure multiple instances of many protocol types. Not all protocols are supported on the switches. See the switch CLI.

Options

- `bgp`—Specify BGP as the protocol for a routing instance.
- `isis`—Specify IS-IS as the protocol for a routing instance.
- `ldp`—Specify LDP as the protocol for a routing instance or for a virtual router instance.
- `l2vpn`—Specify Layer 2 VPN as the protocol for a routing instance.
- `mpls`—Specify MPLS as the protocol for a routing instance.
- `msdp`—Specify the Multicast Source Discovery Protocol (MSDP) for a routing instance.
- `mstp`—Specify the Multiple Spanning Tree Protocol (MSTP) for a virtual switch routing instance.
- `ospf`—Specify OSPF as the protocol for a routing instance.
- `ospf3`—Specify OSPF version 3 (OSPFv3) as the protocol for a routing instance.
- `pim`—Specify the Protocol Independent Multicast (PIM) protocol for a routing instance.
- `rip`—Specify RIP as the protocol for a routing instance.
- `ripng`—Specify RIP next generation (RIPng) as the protocol for a routing instance.
- `rstp`—Specify the Rapid Spanning Tree Protocol (RSTP) for a virtual switch routing instance.
- `rsvp`—Specify the RSVP for a routing instance.
- `vstp`—Specify the VLAN Spanning Tree Protocol (VSTP) for a virtual switch routing instance.
- `vpls`—Specify VPLS as the protocol for a routing instance.

NOTE: OSPFv3 supports the `no-forwarding`, `virtual-router`, and `vrf` routing instance types only.
Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring Multiple Routing Instances of OSPF | 272
realm

Syntax

```plaintext
realm (ipv4-unicast | ipv4-multicast | ipv6-unicast) {
    area area-id {
        interface interface-name;
    }
}
```

Hierarchy Level

```plaintext
[edit logical-systems logical-system-name protocols ospf3],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3],
[edit protocols ospf3],
[edit routing-instances routing-instance-name protocols ospf3]
```

Release Information
Statement introduced in Junos OS Release 9.2.
Statement introduced in Junos OS Release 9.2 for EX Series switches.

Description
Configure OSPFv3 to advertise address families other than unicast IPv6. Junos OS maps each address family you configure to a separate realm with its own set of neighbors and link-state database.

Options
ipv4-unicast—Configure a realm for IPv4 unicast routes.
ipv4-multicast—Configure a realm for IPv4 multicast routes.
ipv6-multicast—Configure a realm for IPv6 multicast routes.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring Multiple Address Families for OSPFv3 | 58
reference-bandwidth (Protocols OSPF)

Syntax

reference-bandwidth reference-bandwidth;

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit protocols (ospf | ospf3)],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Set the reference bandwidth used in calculating the default interface cost. The cost is calculated using the following formula:

\[\text{cost} = \frac{\text{ref-bandwidth}}{\text{bandwidth}} \]

Options

reference-bandwidth—Reference bandwidth, in bits per second.

Range: 9600 through 1,000,000,000,000 bits

Default: 100 Mbps (100,000,000 bits)

NOTE: The default behavior is to use the reference-bandwidth value to calculate the cost of OSPF interfaces. You can override this behavior for any OSPF interface by configuring a specific cost with the metric statement.
Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Example: Controlling the Cost of Individual OSPF Network Segments</th>
<th>211</th>
</tr>
</thead>
<tbody>
<tr>
<td>metric</td>
<td>682</td>
</tr>
</tbody>
</table>
remote-backup-calculation (Protocols OSPF)

Syntax

remote-backup-calculation;

Hierarchy Level

[edit protocols (ospf | ospf3) backup-spf-options],
[edit protocols ospf topology (default | ipv4-multicast | name) backup-spf-options]

Release Information
Statement introduced in Junos OS Release 15.1.

Description
Determine the remote LFA backup paths from the point of local repair (PLR) in an OSPF network. For every protected link on the PLR, Junos OS creates a dynamic LDP label-switched path to reach the remote LFA node. When the primary link fails, the PLR uses these remote LFA backup paths to reach all the destinations reachable through the primary link.

Required Privilege Level

RELATED DOCUMENTATION

Remote LFA over LDP Tunnels in OSPF Networks Overview	368
Example: Configuring Remote LFA Over LDP Tunnels in OSPF Networks	371
Configuring Remote LFA Backup over LDP Tunnels in an OSPF Network	369
auto-targeted-session	
backup-spf-options	616
no-eligible-remote-backup	
retransmit-interval (OSPF)

Syntax

```
retransmit-interval seconds;
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols ospf area area-id peer-interface interface-name],
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id virtual-link],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id virtual-link],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit protocols ospf area area-id peer-interface interface-name],
[edit protocols (ospf | ospf3) area area-id interface interface-name],
[edit protocols (ospf | ospf3) area area-id virtual-link],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf3 area area-id virtual-link],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the `realm` statement introduced in Junos OS Release 9.2.
Support for the `realm` statement introduced in Junos OS Release 9.2 for EX Series switches.

Description

Specify how long the routing device waits to receive a link-state acknowledgment packet before retransmitting link-state advertisements (LSAs) to an interface’s neighbors.

Options

- `seconds`—Interval to wait.

Range: 1 through 65,535 seconds

Default: 5 seconds
NOTE: You must configure LSA retransmit intervals to be equal to or greater than 3 seconds to avoid triggering a retransmit trap, because Junos OS delays LSA acknowledgments by up to 2 seconds.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring OSPF Timers | 283
- Configuring RSVP and OSPF for LMP Peer Interfaces
rib-group (Protocols OSPF)

Syntax

rib-group group-name;

Hierarchy Level

- [edit logical-systems logical-system-name protocols (ospf | ospf3)],
- [edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
- [edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
- [edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
- [edit protocols (ospf | ospf3)],
- [edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
- [edit routing-instances routing-instance-name protocols (ospf | ospf3)],
- [edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the **realm** statement introduced in Junos OS Release 9.2.
Support for the **realm** statement introduced in Junos OS Release 9.2 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Install routes learned from OSPF routing instances into routing tables in the OSPF routing table group.

Options

- **group-name**—Name of the routing table group.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- *Example: Exporting Specific Routes from One Routing Table Into Another Routing Table*
- *Example: Importing Direct and Static Routes Into a Routing Instance*
- *Understanding Multiprotocol BGP*
route-type-community

Syntax

```plaintext
route-type-community (iana | vendor);
```

Hierarchy Level

```plaintext
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3)]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 12.3 for ACX Series routers.

Description

Specify an extended community value to encode the OSPF route type. Each extended community is coded as an eight-octet value. This statement sets the most significant bit to either an IANA or vendor-specific route type.

Options

- `iana`—Encode a route type with the value `0x0306`. This is the default value.
- `vendor`—Encode the route type with the value `0x8000`.

Required Privilege Level

- `routing`—To view this statement in the configuration.
- `routing-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Routing Between PE and CE Routers in Layer 3 VPNs
routing-instances (Multiple Routing Entities)

Syntax

```
routing-instances routing-instance-name [... ]
```

Hierarchy Level

```
[edit],
[edit logical-systems logical-system-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.

`remote-vtep-v6-list` statement introduced in Junos OS Release 17.3 for MX Series routers with MPC and MIC interfaces.

Description

Configure an additional routing entity for a router. You can create multiple instances of BGP, IS-IS, OSPF, OSPFv3, and RIP for a router. You can also create multiple routing instances for separating routing tables, routing policies, and interfaces for individual wholesale subscribers (retailers) in a Layer 3 wholesale network.

Each routing instance consist of the following:

- A set of routing tables
- A set of interfaces that belong to these routing tables
- A set of routing option configurations

Each routing instance has a unique name and a corresponding IP unicast table. For example, if you configure a routing instance with the name `my-instance`, its corresponding IP unicast table is `my-instance.inet.0`. All routes for `my-instance` are installed into `my-instance.inet.0`.

Routes are installed into the default routing instance `inet.0` by default, unless a routing instance is specified.

In Junos OS Release 9.0 and later, you can no longer specify a routing-instance name of `master`, `default`, or `bgp` or include special characters within the name of a routing instance.

In Junos OS Release 9.6 and later, you can include a slash (/) in a routing-instance name only if a logical system is not configured. That is, you cannot include the slash character in a routing-instance name if a logical system other than the default is explicitly configured. Routing-instance names, further, are restricted from having the form `__.*__` (beginning and ending with underscores). The colon `:` character cannot be used when multitone routing (MTR) is enabled.

Default
Routing instances are disabled for the router.

Options

routing-instance-name—Name of the routing instance. This must be a non-reserved string of not more than 128 characters.

remote-vtep-list—Configure static remote VXLAN tunnel endpoints.

remote-vtep-v6-list—Configure static IPv6 remote VXLAN tunnel endpoints.

Required Privilege Level

routing—To view this statement in the configuration.

routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring Interprovider Layer 3 VPN Option A
- Example: Configuring Interprovider Layer 3 VPN Option B
- Example: Configuring Interprovider Layer 3 VPN Option C
secondary (Protocols OSPF)

Syntax

secondary;

Hierarchy Level

[edit logical-systems logical-system-name protocols ospf area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id interface interface-name],
[edit protocols ospf area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf area area-id interface interface-name]

Release Information
Statement introduced in Junos OS Release 9.2.

Description
Configure an interface to belong to another OSPF area. A logical interface can be configured as primary interface only for one area. For any other area for which you configure the interface, you must configure it as a secondary interface.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>interface</th>
<th>660</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Configuring Multiarea Adjacency for OSPF</td>
<td>84</td>
</tr>
<tr>
<td>interface</td>
<td>660</td>
</tr>
</tbody>
</table>
sham-link

Syntax

```
sham-link {
    local address;
}
```

Hierarchy Level

```
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf],
[edit routing-instances routing-instance-name protocols ospf]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure the local endpoint of a sham link.

You can create an intra-area link or sham link between two provider edge (PE) routing devices so that the VPN backbone is preferred over the back-door link. A back-door link is a backup link that connects customer edge (CE) devices in case the VPN backbone is unavailable. When such a backup link is available and the CE devices are in the same OSPF area, the default behavior is to prefer this backup link over the VPN backbone. This is because the backup link is considered an intra-area link, while the VPN backbone is always considered an inter-area link. Intra-area links are always preferred over inter-area links.

The sham link is an unnumbered point-to-point intra-area link between PE devices. When the VPN backbone has a sham intra-area link, this sham link can be preferred over the backup link if the sham link has a lower OSPF metric than the backup link.

The sham link is advertised using Type 1 link-state advertisements (LSAs). Sham links are valid only for routing instances and OSPFv2.

Each sham link is identified by the combination of a local endpoint address and a remote endpoint address.

Options

- `local address`—The address for the local endpoint of the sham link.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration

RELATED DOCUMENTATION
sham-link-remote

Syntax

```plaintext
sham-link-remote address {
  demand-circuit;
  ipsec-sa name;
  metric metric;
}
```

Hierarchy Level

```
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id],
[edit routing-instances routing-instance-name protocols ospf area area-id]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Support for `ipsec-sa` statement added in Junos OS Release 8.3.

Description

Configure the remote endpoint of a sham link.

You can create an intra-area link or sham link between two provider edge (PE) routing devices so that the VPN backbone is preferred over the back-door link. A back-door link is a backup link that connects customer edge (CE) devices in case the VPN backbone is unavailable. When such a backup link is available and the CE devices are in the same OSPF area, the default behavior is to prefer this backup link over the VPN backbone. This is because the backup link is considered an intra-area link, while the VPN backbone is always considered an inter-area link. Intra-area links are always preferred over inter-area links.

The sham link is an unnumbered point-to-point intra-area link between PE devices. When the VPN backbone has a sham intra-area link, this sham link can be preferred over the backup link if the sham link has a lower OSPF metric than the backup link.

The sham link is advertised using Type 1 link-state advertisements (LSAs). Sham links are valid only for routing instances and OSPFv2.

Each sham link is identified by the combination of a local endpoint address and a remote endpoint address.

Options

- `address`—Address for the remote endpoint of the sham link.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- `routing`—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Example: Configuring OSPFv2 Sham Links | 542 |
| sham-link | 741 |
shortcuts (Protocols OSPF)

Syntax

shortcuts {
 lsp-metric-into-summary;
}

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3) traffic-engineering],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) traffic-engineering],
[edit protocols (ospf | ospf3) traffic-engineering],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) traffic-engineering]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for OSPFv3 (ospf3) introduced in Junos OS Release 9.4.
Support for OSPFv3 (ospf3) introduced in Junos OS Release 9.4 for EX Series switches.

Description
Configure OSPF to use MPLS label-switched paths (LSPs) as shortcut next hops. By default, shortcut routes calculated through OSPFv2 are installed in the inet.3 routing table, and shortcut routes calculated through OSPFv3 are installed in the inet6.3 routing table.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Example: Enabling OSPF Traffic Engineering Support | 394 |
simple-password

Syntax

simple-password key;

Hierarchy Level

[edit logical-systems logical-system-name protocols ospf area area-id interface interface-name authentication],
[edit logical-systems logical-system-name protocols ospf area area-id virtual-link authentication],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id interface interface-name authentication],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id virtual-link authentication],
[edit protocols ospf area area-id interface interface-name authentication],
[edit protocols ospf area area-id virtual-link authentication],
[edit routing-instances routing-instance-name protocols ospf area area-id interface interface-name authentication],
[edit routing-instances routing-instance-name protocols ospf area area-id virtual-link authentication]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Configure a simple authentication key (password).

Options
key—Password string.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Understanding OSPFv2 Authentication | 246 |
| Example: Configuring Simple Authentication for OSPFv2 Exchanges | 249 |
source-packet-routing-enable (Protocols OSPF)

Syntax

source-packet-routing {
 adjacency-segment {
 hold-time hold-time;
 }
 disable;
 explicit-null;
 node-segment {
 index-range index range;
 ipv4-index index;
 }
 srgb {
 start-label start-label;
 index-range index range;
 }
}

Hierarchy Level

[edit logical-systems logical-system-name protocols ospf],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf],
[edit protocols ospf],
[edit routing-instances routing-instance-name protocols ospf]

Release Information
Statement introduced in Junos OS Release 16.2.
Statement introduced in Junos OS Release 17.2R1 for QFX5100, QFX5110, and QFX10000 switches.

Description
Enable source packet routing in networking (SPRING) feature.

The remaining statements are explained separately. See CLI Explorer.

Default
Disabled on all the levels.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.
source-packet-routing-disable (Protocols OSPF)

Syntax

source-packet-routing {
 disable;
}

Hierarchy Level

[edit logical-systems logical-system-name protocols ospf area area-id],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id],
[edit protocols ospf area area-id],
[edit routing-instances routing-instance-name protocols ospf area area-id]

Release Information
Statement introduced in Junos OS Release 16.2 for MX and PTX Series.

Description
Disable source packet routing in networking (SPRING) feature for a specific OSPF area.

Default
Enabled, if source-packet-routing is configured globally at:

[edit logical-systems logical-system-name protocols ospf],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf],
[edit protocols ospf],
[edit routing-instances routing-instance-name protocols ospf]

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.
spf-options (Protocols OSPF)

Syntax

```
spf-options {
    delay milliseconds;
    holddown milliseconds;
    rapid-runs number;
}
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name protocols ospf topology (default | ipv4-multicast | name)],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf topology (default | ipv4-multicast | name)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit protocols (ospf | ospf3)],
[edit protocols ospf topology (default | ipv4-multicast | name)],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols ospf topology (default | ipv4-multicast | name)],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]
```

Release Information

Statement introduced in Junos OS Release 8.5.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for Multitopology Routing introduced in Junos OS Release 9.0.
Support for Multitopology Routing introduced in Junos OS Release 9.0 for EX Series switches.
Support for the `realm` statement introduced in Junos OS Release 9.2.
Support for the `realm` statement introduced in Junos OS Release 9.2 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.

Description

Configure options for running the shortest-path-first (SPF) algorithm. You can configure the following:

- A delay for when to run the SPF algorithm after a network topology change is detected.
- The maximum number of times the SPF algorithm can run in succession.
• A hold-down interval after the SPF algorithm runs the maximum number of times. If the network stabilizes during the holddown period and the SPF algorithm does not need to run again, the system reverts to the configured values for the delay and rapid-runs statements.

Running the SPF algorithm is usually the beginning of a series of larger system-wide events. For example, the SPF algorithm can lead to interior gateway protocol (IGP) prefix changes, which then lead to BGP nexthop resolution changes. Consider what happens if there are rapid link changes in the network. The local routing device can become overwhelmed. This is why it sometimes makes sense to throttle the scheduling of the SPF algorithm.

Options
delay milliseconds—Time interval between the detection of a topology change and when the SPF algorithm runs.
Range: 50 through 8000 milliseconds
Default: 200 milliseconds

holddown milliseconds—Time interval to hold down, or to wait before a subsequent SPF algorithm runs after the SPF algorithm has run the configured maximum number of times in succession.
Range: 2000 through 20,000 milliseconds
Default: 5000 milliseconds

rapid-runs number—Maximum number of times the SPF algorithm can run in succession. After the maximum is reached, the hold down interval begins.
Range: 1 through 10
Default: 3

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring SPF Algorithm Options for OSPF | 229
Example: Configuring Multitopology Routing to Provide Redundancy for Multicast Traffic over Separate Network Paths
Example: Configuring Multitopology Routing for Class-Based Forwarding of Voice, Video, and Data Traffic
Understanding Multitopology Routing for Class-Based Forwarding of Voice, Video, and Data Traffic
Understanding Multitopology Routing in Conjunction with PIM
stub

Syntax

stub <default-metric metric> <(no-summaries | summaries)>;

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit protocols (ospf | ospf3) area area-id],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.

Description

Specify that this area not be flooded with AS external link-state advertisements (LSAs). You must include the stub statement when configuring all routing devices that are in the stub area.

The backbone cannot be configured as a stub area.

You cannot configure an area to be both a stub area and a not-so-stubby area (NSSA).

Options

no-summaries—(Optional) Do not advertise routes into the stub area. If you include the default-metric option, only the default route is advertised.

summaries—(Optional) Flood summary LSAs into the stub area.

The remaining statement is explained separately. See CLI Explorer.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.
stub-network

Syntax

```
stub-network;
```

Hierarchy Level

```
[edit logical-systems name protocols ospf overload],
[edit logical-systems name routing-instances name protocols ospf overload],
[edit protocols ospf overload],
[edit routing-instances name protocols ospf overload]
```

Release Information

Statement introduced in Junos OS Release 18.2 for MX Series Routers.

Description

Advertise Stub Network with maximum metric.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding OSPF Overload Function | 222
- allow-route-leaking | 608
- intra-area-prefix | 670
- as-external | 613
strict-bfd (Protocols OSPF)

Syntax

```
strict-bfd;
```

Hierarchy Level

```
[edit logical-systems name protocols ospf area name interface],
[edit logical-systems name routing-instances name protocols ospf area name interface],
[edit logical-systems name tenants name routing-instances name protocols ospf area name interface],
[edit protocols ospf area name interface],
[edit routing-instances name protocols ospf area name interface],
[edit tenants name routing-instances name protocols ospf area name interface]
```

Release Information

Statement introduced in Junos OS Release 19.4

Description

Enable strict-bfd over an interface for OSPF.

Required Privilege Level

routing
summaries

Syntax

```plaintext
(summaries | no-summaries);
```

Hierarchy Level

```plaintext
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id nssa],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id nssa],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id nssa],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id nssa],
[edit protocols (ospf | ospf3) area area-id nssa],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id nssa],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id nssa],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id nssa]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the `realm` statement introduced in Junos OS Release 9.2.
Support for the `realm` statement introduced in Junos OS Release 9.2 for EX Series switches.

Description

Configure whether or not area border routers advertise summary routes into an not-so-stubby area (NSSA):

- **summaries**—Flood summary link-state advertisements (LSAs) into the NSSA.
- **no-summaries**—Prevent area border routers from advertising summaries into an NSSA. If `default-metric` is configured for an NSSA, a Type 3 LSA is injected into the area by default.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding OSPF Areas | 65
Example: Configuring OSPF Not-So-Stubby Areas | 107

nssa | 709

stub | 751
topology (OSPF Interface)

Syntax

```plaintext
topology (ipv4-multicast | name) {
    metric metric;
}
```

Hierarchy Level

```plaintext
[edit logical-systems logical-system-name protocols ospf area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id interface interface-name],
[edit protocols ospf area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf area area-id interface interface-name]
```

Release Information

Statement introduced in Junos OS Release 9.0.

Description

Configure interface-specific properties for multitopology OSPF, including topology-specific metric values for an interface.

All OSPF interfaces have a cost, which is a routing metric that is used in the link-state calculation. Routes with lower total path metrics are preferred over those with higher path metrics. The default value for the OSPF metric for an interface is 1. You can modify the default value for an OSPF interface and configure a topology-specific metric for that interface. The topology-specific metric applies to routes advertised from the interface that belong only to that topology.

Default

The default value of the topology metric is the same as the default metric value calculated by OSPF or the value configured for the OSPF metric.

Options

`ipv4-multicast`—Name of the topology for IPv4 multicast traffic.

`name`—Name of a topology created under the `edit routing-options` hierarchy level.

metric `metric`—Cost of a route from an OSPF interface. You can specify a metric value for a topology that is different from the value specified for the interface.

Range: 1 through 65,535

Default: 1

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring Multitopology Routing for Class-Based Forwarding of Voice, Video, and Data Traffic
- Example: Configuring Multitopology Routing to Provide Redundancy for Multicast Traffic over Separate Network Paths
- Understanding Multitopology Routing for Class-Based Forwarding of Voice, Video, and Data Traffic
- Understanding Multitopology Routing in Conjunction with PIM
topology (OSPF)

Syntax

topology (default | ipv4-multicast | name) {
 spf-options {
 delay milliseconds;
 holddown milliseconds;
 rapid-runs number;
 }
 topology-id number;
}

Hierarchy Level

[edit logical-systems logical-system-name protocols ospf],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf],
[edit protocols ospf],
[edit routing-instances routing-instance-name protocols ospf]

Release Information
Statement introduced in Junos OS Release 9.0.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Enable a topology for OSPF multitopology routing. You must first configure one or more topologies under the [edit routing-options] hierarchy level.

Options

default—Name of the default topology. This topology is automatically created, and all routes that correspond to it are automatically added to the inet.0 routing table. You can modify certain default parameters, such as for the SPF algorithm.

ipv4-multicast—Name of the topology for IPv4 multicast traffic.

name—Name of a topology you configured at the [edit routing-options] hierarchy level to create a topology for a specific type of traffic, such as voice or video.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
routing—to view this statement in the configuration.
routing-control—to add this statement to the configuration.
RELATED DOCUMENTATION

Example: Configuring Multitopology Routing to Provide Redundancy for Multicast Traffic over Separate Network Paths
Example: Configuring Multitopology Routing for Class-Based Forwarding of Voice, Video, and Data Traffic
Understanding Multitopology Routing for Class-Based Forwarding of Voice, Video, and Data Traffic
Understanding Multitopology Routing in Conjunction with PIM

te-metric (Protocols OSPF)

Syntax

```plaintext
te-metric metric;
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols ospf area area-id interface interface-name],
[edit protocols ospf area area-id interface interface-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Metric value used by traffic engineering for information injected into the traffic engineering database. The value of the traffic engineering metric does not affect normal OSPF forwarding.

Options

- `metric`—Metric value.

Range: 1 through 65,535

Default: Value of the IGP metric

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring the Traffic Engineering Metric for a Specific OSPF Interface
traceoptions (Protocols OSPF)

Syntax

```
traceoptions {
    file filename <files number> <size size> <world-readable | no-world-readable>;
    flag flag <flag-modifier> <disable>;
}
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols {ospf | ospf3}]
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols {ospf | ospf3} realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3]
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]
```

Release Information

- Statement introduced before Junos OS Release 7.4.
- Statement introduced in Junos OS Release 9.0 for EX Series switches.
- Support for the `realm` statement introduced in Junos OS Release 9.2.
- Support for the `realm` statement introduced in Junos OS Release 9.2 for EX Series switches.
- Statement introduced in Junos OS Release 11.3 for the QFX Series.
- Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure OSPF protocol-level tracing options.

To specify more than one tracing operation, include multiple `flag` statements.

```
NOTE: The `traceoptions` statement is not supported on QFabric systems.
```

Default

The default OSPF protocol-level tracing options are those inherited from the routing protocols `traceoptions` statement included at the `[edit routing-options]` hierarchy level.

Options
disable—(Optional) Disable the tracing operation. You can use this option to disable a single operation when you have defined a broad group of tracing operations, such as **all**.

file filename—Name of the file to receive the output of the tracing operation. Enclose the name within quotation marks. All files are placed in the directory */var/log*. We recommend that you place OSPF tracing output in the file **ospf-log**.

files number—(Optional) Maximum number of trace files. When a trace file named **trace-file** reaches its maximum size, it is renamed **trace-file.0**, then **trace-file.1**, and so on, until the maximum number of trace files is reached. Then, the oldest trace file is overwritten.

If you specify a maximum number of files, you also must specify a maximum file size with the **size** option.

Range: 2 through 1000 files

Default: 10 files

flag flag—Tracing operation to perform. To specify more than one tracing operation, include multiple **flag** statements.

OSPF Tracing Flags

- **database-description**—Database description packets, which are used in synchronizing the OSPF and OSPFv3 topological database.
- **error**—OSPF and OSPFv3 error packets.
- **event**—OSPF and OSPFv3 state transitions.
- **flooding**—Link-state flooding packets.
- **graceful-restart**—Graceful-restart events.
- **hello**—Hello packets, which are used to establish neighbor adjacencies and to determine whether neighbors are reachable.
- **ldp-synchronization**—Synchronization events between OSPF and LDP.
- **lsa-ack**—Link-state acknowledgment packets, which are used in synchronizing the OSPF topological database.
- **lsa-analysis**—Link-state analysis. Specific to the Juniper Networks implementation of OSPF, Junos OS performs LSA analysis before running the shortest-path-first (SPF) algorithm. LSA analysis helps to speed the calculations performed by the SPF algorithm.
- **lsa-request**—Link-state request packets, which are used in synchronizing the OSPF topological database.
- **lsa-update**—Link-state updates packets, which are used in synchronizing the OSPF topological database.
- **nsr-synchronization**—Nonstop routing synchronization events.
- **on-demand**—Trace demand circuit extensions.
- **packet-dump**—Content of selected packet types.
- **packets**—All OSPF packets.
restart-signaling—(OSPFv2 only) Restart-signaling graceful restart events.

spf—Shortest-path-first (SPF) calculations.

Global Tracing Flags

- **all**—All tracing operations.
- **general**—A combination of the **normal** and **route** trace operations.
- **normal**—All normal operations. If you do not specify this option, only unusual or abnormal operations are traced.
- **policy**—Policy operations and actions.
- **route**—Routing table changes.
- **state**—State transitions.
- **task**—Routing protocol task processing.
- **timer**—Routing protocol timer processing.

flag-modifier—(Optional) Modifier for the tracing flag. You can specify one or more of these modifiers:

- **detail**—Detailed trace information.
- **receive**—Packets being received.
- **send**—Packets being transmitted.

no-world-readable—(Optional) Prevent any user from reading the log file.

size size—(Optional) Maximum size of each trace file, in kilobytes (KB), megabytes (MB), or gigabytes (GB).

When a trace file named **trace-file** reaches this size, it is renamed **trace-file.0**. When the **trace-file** again reaches its maximum size, **trace-file.0** is renamed **trace-file.1** and **trace-file** is renamed **trace-file.0**. This renaming scheme continues until the maximum number of trace files is reached. Then, the oldest trace file is overwritten.

If you specify a maximum file size, you also must specify a maximum number of trace files with the **files** option.

Syntax: \(xk \) to specify KB, \(xm \) to specify MB, or \(xg \) to specify GB

Range: 10 KB through the maximum file size supported on your system

Default: 128 KB

world-readable—(Optional) Allow any user to read the log file.

Required Privilege Level

routing and trace—To view this statement in the configuration.

routing-control and trace-control—To add this statement to the configuration.
RELATED DOCUMENTATION

Example: Tracing OSPF Protocol Traffic | 594
traffic-engineering (OSPF)

Syntax

```plaintext
traffic-engineering {
  <advertise-unnumbered-interfaces>;
  <credibility-protocol-preference>;
  ignore-lsp-metrics;
  multicast-rpf-routes;
  no-topology;
  igp-topology;
  shortcuts {
    lsp-metric-into-summary;
  }
}
```

Hierarchy Level

```plaintext
[edit logical-systems logical-system-name protocols (ospf | ospf3)],
[edit protocols (ospf | ospf3)]
```

Release Information

- Statement introduced before Junos OS Release 7.4.
- **multicast-rpf-routes** option introduced in Junos OS Release 7.5.
- **advertise-unnumbered-interfaces** option introduced in Junos OS Release 8.5.
- Statement introduced in Junos OS Release 9.0 for EX Series switches.
- Support for OSPFv3 **(ospf3)** introduced in Junos OS Release 9.4.
- Support for OSPFv3 **(ospf3)** introduced in Junos OS Release 9.4 for EX Series switches.
- **credibility-protocol-preference** statement introduced in Junos OS Release 9.4.
- **credibility-protocol-preference** statement introduced in Junos OS Release 9.4 for EX Series switches.
- Statement introduced in Junos OS Release 11.3 for the QFX Series.
- Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.
- Support for **igp-topology** statement introduced in Junos OS Release 17.4R1 for MX series, and PTX Series.

Description

Enable the OSPF traffic engineering features.

Default

Traffic engineering support is disabled.

Options

- **advertise-unnumbered-interfaces**—(Optional) (OSPFv2 only) Include the link-local identifier in the link-local traffic-engineering link-state advertisement. This statement must be included on both ends of an
unnumbered link to allow an ingress LER to update the link in its traffic engineering database and use it for CSPF calculations. The link-local identifier is then used by RSVP to signal unnumbered interfaces as defined in RFC 3477.

credibility-protocol-preference—(Optional) (OSPFv2 only) Use the configured preference value for OSPF routes to calculate the traffic engineering database credibility value used to select IGP routes. Use this statement to override the default behavior, in which the traffic engineering database prefers IS-IS routes even if OSPF routes are configured with a lower, that is, preferred, preference value. For example, OSPF routes have a default preference value of 10, whereas IS-IS Level 1 routes have a default preference value of 15. When protocol preference is enabled, the credibility value is determined by deducting the protocol preference value from a base value of 512. Using default protocol preference values, OSPF has a credibility value of 502, whereas IS-IS has a credibility value of 497. Because the traffic engineering database prefers IGP routes with the highest credibility value, OSPF routes are now preferred.

multicast-rpf-routes—(Optional) (OSPFv2 only) Install routes for multicast RPF checks into the \texttt{inet.2} routing table. The \texttt{inet.2} routing table consists of unicast routes used for multicast RPF lookup. RPF is an antspoofing mechanism used to check whether the packet is coming in on an interface that is also sending data back to the packet source.

\textbf{NOTE:} You must enable OSPF traffic engineering shortcuts to use the \texttt{multicast-rpf-routes} statement. You must not allow LSP advertisements into OSPF when configuring the \texttt{multicast-rpf-routes} statement.

no-topology—(Optional) (OSPFv2 only) Disable the dissemination of the link-state topology information.

igp-topology—Download IGP topology information into the traffic engineering database (TED). In Junos OS, the IGPs install topology information into a database called the traffic engineering database. The traffic engineering database contains the aggregated topology information. The IGP routes are installed by the traffic engineering database on behalf of the corresponding IGP into a user-visible routing table called Lsdist.0, subject to route policies.

The remaining statements are explained separately. See CLI Explorer.
CAUTION: When the OSPF traffic engineering configuration is considerably modified, the routing table entries are deleted and the routing table is recreated. Changes to configuration that can cause this behavior include enabling or disabling:

- Traffic engineering shortcuts
- IGP shortcuts
- LDP tunneling
- Multiprotocol LSP
- Advertise summary metrics
- Multicast RPF routes

Required Privilege Level
- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Enabling OSPF Traffic Engineering Support | 394
traffic-engineering (Passive TE Mode)

Syntax

```plaintext
traffic-engineering {
    remote-node-id address;
    remote-node-router-id address;
}
```

Hierarchy Level

```plaintext
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name passive],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name passive],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name passive],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name passive],
[edit protocols (ospf | ospf3) area area-id interface interface-name passive],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name passive],
[edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id interface interface-name passive],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name passive]
```

Release Information

Statement introduced in Junos OS Release 8.0.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the `realm` statement introduced in Junos OS Release 9.2.
Support for the `realm` statement introduced in Junos OS Release 9.2 for EX Series switches.
`remote-node-router-id address` option introduced in Junos OS Release 14.2.

Description

Configure an interface in OSPF passive traffic engineering mode to enable dynamic discovery of OSPF AS boundary routers.

Default

OSPF passive traffic-engineering mode is disabled.

Options

`remote-node-id address`—IP address at the far end of the inter-AS link.

`remote-node-router-id address`—Router ID at the far end of the inter-AS link.
NOTE: The `remote-node-router-id address` option does not apply under the `[edit routing-instances routing-instance-name]` and `[edit protocols ospf3 area area-id]` hierarchy levels.

Required Privilege Level
- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION
- Example: Configuring OSPF Passive Traffic Engineering Mode | 403
- MPLS Applications User Guide
transit-delay (OSPF)

Syntax

transit-delay seconds;

Hierarchy Level

[edit logical-systems logical-system-name protocols ospf area area-id peer-interface interface-name],
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id interface interface-name],
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id virtual-link],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id interface interface-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 area area-id interface interface-name],
[edit protocols ospf area area-id peer-interface interface-name],
[edit protocols (ospf | ospf3) area area-id interface interface-name],
[edit protocols (ospf | ospf3) area area-id virtual-link],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)] area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf3 area area-id interface interface-name],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)] area area-id interface interface-name]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.

Description

Set the estimated time required to transmit a link-state update on the interface. When calculating this time, make sure to account for transmission and propagation delays.

You should never have to modify the transit delay time.

Options

seconds—Estimated time, in seconds.

Range: 1 through 65,535 seconds
Default: 1 second

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring OSPF Timers | 283
- Configuring RSVP and OSPF for LMP Peer Interfaces
type-7

Syntax

type-7;

Hierarchy Level

- [edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id nssa default-lsa],
- [edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id nssa default-lsa],
- [edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3) area area-id nssa default-lsa],
- [edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id nssa default-lsa],
- [edit protocols (ospf | ospf3) area area-id nssa default-lsa],
- [edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id nssa default-lsa],
- [edit routing-instances routing-instance-name protocols (ospf | ospf3) area area-id nssa default-lsa],
- [edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast) area area-id nssa default-lsa]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.

Description

Flood Type 7 default link-state advertisements (LSAs) if the no-summaries statement is configured.

By default, when the no-summaries statement is configured, a Type 3 LSA is injected into not-so-stubby areas (NSSAs) for Junos OS Release 5.0 and later. To support backward compatibility with earlier Junos OS releases, include the type-7 statement. This statement enables NSSA ABRs to advertise a Type 7 default LSA into the NSSA if you have also included the no-summaries statement in the configuration.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Understanding OSPF Areas | 65
use-post-convergence-lfa (Protocols OSPF)

Syntax

```
use-post-convergence-lfa <maximum-backup-paths maximum-backup-paths> <maximum-labels maximum-labels> ;
```

Hierarchy Level

```
[edit logical-systems name protocols ospf backup-spf-options],
[edit logical-systems name routing-instances name protocols ospf backup-spf-options],
[edit protocols ospf backup-spf-options],
[edit routing-instances name protocols ospf backup-spf-options]
```

Release Information

Statement introduced in Junos OS Release 18.2R1 for MX Series, PTX Series, and QFX Series.

Description

Calculate post-convergence MPLS fast reroute (FRR) backup next hops for the OSPF protocol using segment routing (SR). Junos OS allows you to control the maximum number of equal-cost multipath (ECMP) backup paths installed for a given destination. Junos OS also allows you to control the maximum number of labels in the installed backup paths. Configure the `use-source-packet-routing` statement at `[edit protocols ospf backup-spf-options]` hierarchy level to allow the backup paths to be available for inet.0 routing table along with inet.3 routing table.

Options

- **maximum-backup-paths**—Set the maximum number of equal-cost post-convergence backup paths to be installed.
 - Default: 1
 - Range: 1-8

- **maximum-labels**—Set the maximum number of labels used to construct a post-convergence backup path.
 - If the backup path for a particular prefix requires more labels than the configured maximum labels, then the backup path for that particular prefix is not installed.
 - Default: 3
 - Range: 2-5

Required Privilege Level

773
RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>post-convergence-lfa</th>
<th>775</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology-Independent Loop-Free Alternate with Segment Routing for OSPF</td>
<td>450</td>
</tr>
</tbody>
</table>
post-convergence-lfa (Protocols OSPF)

Syntax

post-convergence-lfa <node-protection <cost cost>;

Hierarchy Level

[edit logical-systems name protocols ospf area interface interface-name],
[edit logical-systems name routing-instances name protocols ospf area interface interface-name],
[edit protocols ospf area interface interface-name],
[edit routing-instances name protocols ospf area interface interface-name]

Release Information
Statement introduced in Junos OS Release 18.2R1 for MX Series, PTX Series, and QFX Series.

Description
Configure the installation of backup-paths that follow the post-convergence paths corresponding to the failure of this interface.

Options

node-protection—Enable node protection mode for topology-independent loop-free alternate (TI-LFA) routes for OSPF.

cost—Enable a node-protecting post-convergence backup path to be computed for all primary next-hops using this interface. Configure the cost of all the links used for calculating the TI-LFA post-convergence failure path cost. If node protection is enabled without configuring a cost value, then the cost is set to the maximum cost or default value of 65535.

Default: 65535
Range: 1 through 65535

Required Privilege Level
routing

RELATED DOCUMENTATION

use-post-convergence-lfa | 773
Toplogy-Independent Loop-Free Alternate with Segment Routing for OSPF | 450
virtual-link

Syntax

```
virtual-link neighbor-id router-id transit-area area-id {
  disable;
  authentication key <key-id identifier>;
  dead-interval seconds;
  hello-interval seconds;
  ipsec-sa name;
  retransmit-interval seconds;
  transit-delay seconds;
}
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols (ospf | ospf3) area area-id],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf area area-id],
[edit protocols (ospf | ospf3) area area-id],
[edit routing-instances routing-instance-name protocols ospf area area-id]
```

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description
For backbone areas only, create a virtual link to use in place of an actual physical link. All area border routers and other routing devices on the backbone must be contiguous. If this is not possible and there is a break in OSPF connectivity, use virtual links to create connectivity to the OSPF backbone. When configuring virtual links, you must configure links on the two routing devices that form the end points of the link, and both of these routing devices must be area border routers. You cannot configure links through stub areas.

Options
neighbor-id router-id—IP address of the routing device at the remote end of the virtual link.

transit-area area-id—Area identifier of the area through which the virtual link transits. Virtual links are not allowed to transit the backbone area.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.
RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Related Document</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding OSPF Areas</td>
<td>65</td>
</tr>
<tr>
<td>Example: Configuring OSPF Virtual Links to Connect Noncontiguous Areas</td>
<td>159</td>
</tr>
</tbody>
</table>
CHAPTER 20

Operational Commands

IN THIS CHAPTER

- clear bfd adaptation | 779
- clear bfd session | 781
- clear (ospf | ospf3) database | 783
- clear (ospf | ospf3) database-protection | 787
- clear (ospf | ospf3) io-statistics | 788
- clear (ospf | ospf3) neighbor | 790
- clear (ospf | ospf3) overload | 792
- clear (ospf | ospf3) statistics | 794
- show bfd session | 797
- show (ospf | ospf3) backup coverage | 811
- show (ospf | ospf3) backup lsp | 814
- show (ospf | ospf3) backup neighbor | 817
- show (ospf | ospf3) backup spf | 819
- show ospf context-identifier | 829
- show ospf database | 832
- show ospf3 database | 847
- show (ospf | ospf3) interface | 861
- show (ospf | ospf3) io-statistics | 869
- show (ospf | ospf3) log | 871
- show (ospf | ospf3) neighbor | 875
- show (ospf | ospf3) overview | 883
- show (ospf | ospf3) route | 890
- show (ospf | ospf3) statistics | 898
- show policy | 904
- show route | 908
- show route instance | 942
- show route protocol | 952
clear bfd adaptation

Syntax

```plaintext
clear bfd adaptation
<all>
<address session-address>
<discriminator discr-number>
```

Release Information
Command introduced before Junos OS Release 7.4.

Description
Clear adaptation for Bidirectional Forwarding Detection (BFD) sessions. BFD is a simple hello mechanism that detects failures in a network. Configured BFD interval timers can change, adapting to network situations. Use this command to return BFD interval timers to their configured values.

The `clear bfd adaptation` command is hitless, meaning that the command does not affect traffic flow on the routing device.

Options
- **all**—Clear adaptation for all BFD sessions.
- **address session-address**—(Optional) Clear adaptation for all BFD sessions matching the specified address.
- **discriminator discr-number**—(Optional) Clear adaptation for the local BFD session matching the specified discriminator.

Additional Information
For more information, see the description of the `bfd-liveness-detection` configuration statement in the Junos Routing Protocols Configuration Guide.

Required Privilege Level
clear

RELATED DOCUMENTATION
| show bfd session | 797 |

List of Sample Output
clear bfd adaptation on page 780

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

```plaintext
clear bfd adaptation
user@host> clear bfd adaptation
```
clear bfd session

List of Syntax
Syntax on page 781
Syntax (EX Series Switch and QFX Series) on page 781

Syntax

```
clear bfd session
<all>
<address session-address>
<discriminator discr-number>
<logical-system (all | logical-system-name)>
```

Syntax (EX Series Switch and QFX Series)

```
clear bfd session
<all>
<address session-address>
<discriminator discr-number>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 12.1 for the QFX Series.

Description
Drop one or more Bidirectional Forwarding Detection (BFD) sessions.

Options
all—Drop all BFD sessions.

address session-address—(Optional) Drop all BFD sessions matching the specified address.

discriminator discr-number—(Optional) Drop the local BFD session matching the specified discriminator.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level
clear

RELATED DOCUMENTATION
List of Sample Output

clear bfd session all on page 782

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

clear bfd session all

user@host> clear bfd session all
clear (ospf | ospf3) database

List of Syntax
Syntax on page 783
Syntax (EX Series Switch and QFX Series) on page 783

Syntax

```
clear (ospf | ospf3) database
<all>
<advertising-router (router-id | self)>
<area area-id>
<asbrsummary>
<external>
<instance instance-name>
<inter-area-prefix>
<inter-area-router>
<intra-area-prefix>
<link-local>
<logical-system (all | logical-system-name)>
<lsa-id lsa-id>
<netsummary>
<network>
<nssa>
<opaque-area>
<purge>
<realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)>
<router>
```

Syntax (EX Series Switch and QFX Series)

```
clear (ospf | ospf3) database
<all>
<advertising-router (router-id | self)>
<area area-id>
<asbrsummary>
<external>
<instance instance-name>
<inter-area-prefix>
<inter-area-router>
<intra-area-prefix>
<link-local>
<lsa-id lsa-id>
<netsummary>
```
Release Information
Command introduced before Junos OS Release 7.4.
advertising-router router-id, netsummary, network, nssa, opaque-area, and router options added in Junos OS Release 8.3. You must use the purge command with these options.
area area-id option added in Junos OS Release 8.3.
Command introduced in Junos OS Release 9.0 for EX Series switches.
realm option added in Junos OS Release 9.2.
advertising-router (router-id | self) option added in Junos OS Release 9.5.
advertising-router (router-id | self) option introduced in Junos OS Release 9.5 for EX Series switches.
Command introduced in Junos OS Release 11.3 for the QFX Series.
purge option (and all options that are dependent on the purge option) hidden in Junos OS Release 13.3.

Description
With the master Routing Engine, delete entries in the Open Shortest Path First (OSPF) link-state advertisement (LSA) database. With the backup Routing Engine, delete the OSPF LSA database and sync the new database with the master Routing Engine.

CAUTION: You can also use the purge command with any of the options to discard rather than delete the specified LSA entries. This command is useful only for testing. Use it with care, because it causes significant network disruption.

Options
all—Delete all LSAs other than the system’s own LSAs, which are regenerated. To resynchronize the database, the system destroys all adjacent neighbors that are in the state EXSTART or higher. The neighbors are then reacquired and the databases are synchronized.

advertising-router (router-id | self)—(Optional) Discard entries for the LSA entries advertised by the specified routing device or by this routing device.

area area-id—(Optional) Discard entries for the LSAs in the specified area.

asbrsummary—(Optional) Discard summary AS boundary router LSA entries.

eexternal—(Optional) Discard external LSAs.
instance instance-name—(Optional) Delete or discard entries for the specified routing instance only.

inter-area-prefix—(OSPFv3 only) (Optional) Discard interarea prefix LSAs.

inter-area-router—(OSPFv3 only) (Optional) Discard interarea router LSAs.

intra-area-prefix—(OSPFv3 only) (Optional) Discard intra-area prefix LSAs.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

link-local—(Optional) Delete link-local LSAs.

lsa-id lsa-id—(Optional) Discard the LSA entries with the specified LSA identifier.

netsummary—(Optional) Discard summary network LSAs.

network—(Optional) Discard network LSAs.

nssa—(Optional) Discard not-so-stubby area (NSSA) LSAs.

opaque-area—(Optional) Discard opaque area-scope LSAs.

realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)—(OSPFv3 only) (Optional) Delete the entries for the specified OSPFv3 realm, or address family. Use the realm option to specify an address family for OSPFv3 other than IPv6 unicast, which is the default.

router—(Optional) Discard router LSAs.

purge—(Optional) Discard all entries in the link-state advertisement database. All link-state advertisements are set to MAXAGE and are flooded. The database is repopulated when the originators of the link-state advertisements receive the MAXAGE link-state advertisements and reissue them.

Required Privilege Level
clear

RELATED DOCUMENTATION

- show ospf database | 832
- show ospf3 database | 847

List of Sample Output
clear ospf database all on page 786

Output Fields
When you enter this command, you are provided feedback on the status of your request.
Sample Output

clear ospf database all

user@host> clear ospf database all
clear (ospf | ospf3) database-protection

Syntax

```plaintext
clear (ospf | ospf3) database-protection
<instance instance-name>
```

Release Information
Command introduced in Junos OS Release 10.2.
Command introduced in Junos OS Release 11.3 for the QFX Series.

Description
Clear the Open Shortest Path First (OSPF) link-state database from its isolated state. Reset the ignore count, ignore timer, and reset timer, and resume normal operations.

Options

- `instance instance-name`—(Optional) Clear the OSPF link-state database for the specified routing instance only.

Required Privilege Level
clear

Output Fields
This command produces no output.

Sample Output

```plaintext
clear ospf database-protection
user@host> clear ospf database-protection
```
clear (ospf | ospf3) io-statistics

List of Syntax
Syntax on page 788
Syntax (EX Series Switch and QFX Series) on page 788

Syntax

```
clear (ospf | osfp3) io-statistics
   <logical-system (all | logical-system-name)>
```

Syntax (EX Series Switch and QFX Series)

```
clear (ospf | osfp3) io-statistics
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Clear Open Shortest Path First (OSPF) input and output statistics.

Options
none—Clear OSPF input and output statistics.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level
clear

List of Sample Output
clear ospf io-statistics on page 789

Output Fields
When you enter this command, you are provided feedback on the status of your request.
Sample Output

clear ospf io-statistics

user@host> clear ospf io-statistics
clear (ospf | ospf3) neighbor

List of Syntax
Syntax on page 790
Syntax (EX Series Switch and QFX Series) on page 790

Syntax

```
clear (ospf | ospf3) neighbor
   <all>
   <area area-id>
   <instance instance-name>
   <interface interface-name>
   <logical-system (all | logical-system-name)>
   <neighbor>
   <realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)>
```

Syntax (EX Series Switch and QFX Series)

```
clear (ospf | ospf3) neighbor
   <all>
   <area area-id>
   <instance instance-name>
   <interface interface-name>
   <neighbor>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
realm option introduced in Junos OS Release 9.2.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Tear down Open Shortest Path First (OSPF) neighbor connections.

Options
all—Tear down OSPF connections with all neighbors for all routing instances.

area area-id—(Optional) Tear down neighbor connections for the specified area only.

instance instance-name—(Optional) Tear down neighbor connections for the specified routing instance only.
interface interface-name—(Optional) Tear down neighbor connections for the specified interface only.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

neighbor—(Optional) Clear the state of the specified neighbor only.

realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)—(Optional) (OSPFv3 only) Clear the state of the specified OSPFv3 realm, or address family. Use the realm option to specify an address family for OSPFv3 other than IPv6 unicast, which is the default.

Required Privilege Level
clear

RELATED DOCUMENTATION

show (ospf | ospf3) neighbor | 875

List of Sample Output
clear ospf neighbor all on page 791

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

clear ospf neighbor all
user@host> clear ospf neighbor all
clear (ospf | ospf3) overload

List of Syntax
Syntax on page 792
Syntax (EX Series Switches) on page 792

Syntax

```
clear (ospf | ospf3) overload
  <instance instance-name>
  <logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```
clear (ospf | ospf3) overload
  <instance instance-name>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Clear the Open Shortest Path First (OSPF) overload bit and rebuild link-state advertisements (LSAs).

Options
none—Clear the overload bit and rebuild LSAs for all routing instances.

instance instance-name—(Optional) Clear the overload bit and rebuild LSAs for the specified routing instance only.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level
clear

List of Sample Output
clear ospf overload on page 793

Output Fields
When you enter this command, you are provided feedback on the status of your request.
Sample Output

clear ospf overload

user@host> clear ospf overload
clear (ospf | ospf3) statistics

List of Syntax
Syntax on page 794
Syntax (EX Series Switch and QFX Series) on page 794

Syntax

```
clear (ospf | ospf3) statistics
  <instance instance-name>
  <logical-system (all | logical-system-name)>
  <realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)>
```

Syntax (EX Series Switch and QFX Series)

```
clear (ospf | ospf3) statistics
  <instance instance-name>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
realm option introduced in Junos OS Release 9.2.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Clear Open Shortest Path First (OSPF) statistics.

Options

none—Clear OSPF statistics.

instance instance-name—(Optional) Clear statistics for the specified routing instance only.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)—(Optional) (OSPFv3 only) Clear statistics for the specified OSPFv3 realm, or address family. Use the realm option to specify an address family for OSPFv3 other than IPv6 unicast, which is the default.

Required Privilege Level
clear
Sample Output

clear ospf statistics

The following sample output displays OSPF statistics before and after the `clear ospf statistics` command is entered:

```
user@host> show ospf statistics
```

<table>
<thead>
<tr>
<th>Packet type</th>
<th>Total</th>
<th>Last 5 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sent</td>
<td>Received</td>
</tr>
<tr>
<td>Hello</td>
<td>3254</td>
<td>2268</td>
</tr>
<tr>
<td>DbD</td>
<td>41</td>
<td>46</td>
</tr>
<tr>
<td>LSReq</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>LSUpdate</td>
<td>212</td>
<td>154</td>
</tr>
<tr>
<td>LSAck</td>
<td>65</td>
<td>98</td>
</tr>
<tr>
<td>DBDs retransmitted</td>
<td>:</td>
<td>3, last 5 seconds :</td>
</tr>
<tr>
<td>LSAs flooded</td>
<td>:</td>
<td>12, last 5 seconds :</td>
</tr>
<tr>
<td>LSAs flooded high-prio</td>
<td>:</td>
<td>0, last 5 seconds :</td>
</tr>
<tr>
<td>LSAs retransmitted</td>
<td>:</td>
<td>0, last 5 seconds :</td>
</tr>
<tr>
<td>LSAs transmitted to nbr:</td>
<td>:</td>
<td>3, last 5 seconds :</td>
</tr>
<tr>
<td>LSAs requested</td>
<td>:</td>
<td>5, last 5 seconds :</td>
</tr>
<tr>
<td>LSAs acknowledged</td>
<td>:</td>
<td>19, last 5 seconds :</td>
</tr>
<tr>
<td>Flood queue depth</td>
<td>:</td>
<td>0</td>
</tr>
<tr>
<td>Total rexmit entries</td>
<td>:</td>
<td>0</td>
</tr>
<tr>
<td>db summaries</td>
<td>:</td>
<td>0</td>
</tr>
<tr>
<td>lsreq entries</td>
<td>:</td>
<td>0</td>
</tr>
</tbody>
</table>

Receive errors:
- 626 subnet mismatches
clear ospf statistics

```
user@host> clear ospf statistics
```

show ospf statistics

```
user@host> show ospf statistics

<table>
<thead>
<tr>
<th>Packet type</th>
<th>Total</th>
<th>Last 5 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sent</td>
<td>Received</td>
</tr>
<tr>
<td>Hello</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>DbD</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LSReq</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LSUpdate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LSAck</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DBDs retransmitted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSAs flooded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSAs flooded high-prio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSAs retransmitted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSAs transmitted to nbr:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSAs requested</td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>LSAs acknowledged</td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>Flood queue depth</td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>Total rexmit entries</td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>db summaries</td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>lsreq entries</td>
<td>:</td>
<td></td>
</tr>
</tbody>
</table>

Receive errors:

None
```
show bfd session

List of Syntax
Syntax on page 797
Syntax (EX Series Switch and QFX Series) on page 797

Syntax

```
show bfd session
   <brief | detail | extensive | summary>
   <address address>
   <client rsvp-oam (brief | detail | extensive | summary) | vpls-oam (brief | detail | extensive | instance instance-name | summary)>
   <discriminator discriminator>
   <logical-system (all | logical-system-name)>
   <prefix address>
   <subscriber (address destination-address | discriminator discriminator | extensive)>
```

Syntax (EX Series Switch and QFX Series)

```
show bfd session
   <brief | detail | extensive | summary>
   <address address>
   <client rsvp-oam (brief | detail | extensive | summary) | vpls-oam (brief | detail | extensive | instance instance-name | summary)>
   <discriminator discriminator>
   <prefix address>
```

Release Information
Command introduced before Junos OS Release 7.4.
Options discriminator and address introduced in Junos OS Release 8.2.
Option prefix introduced in Junos OS Release 9.0.
Command introduced in Junos OS Release 12.1 for the QFX Series.
Option client introduced in Junos OS Release 12.3R3.
Option subscriber introduced in Junos OS Release 15.1 for the MX Series.

Description
Display information about active Bidirectional Forwarding Detection (BFD) sessions.

Options
none—(Same as brief) Display information about active BFD sessions.

brief | detail | extensive | summary—(Optional) Display the specified level of output.
address address—(Optional) Display information about the BFD session for the specified neighbor address.

client rsvp-oam
(brief | detail | extensive | summary)
| vpls-oam
(brief | detail | extensive | instance *instance-name* | summary)—(Optional) Display information about RSVP-OAM or VPLS-OAM BFD sessions in the specified level of output. For VPLS-OAM, display the specified level of output or display information about all of the BFD sessions for the specified VPLS routing instance.

discriminator discriminator—(Optional) Display information about the BFD session using the specified local discriminator.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

<subscriber (address destination-address | discriminator discriminator | extensive)>—(Optional) Display information about all BFD sessions for subscribers, or for a single BFD subscriber session with a particular destination address, or with a particular denominator.

Required Privilege Level
view

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>clear bfd session</th>
<th>781</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding BFD for Static Routes for Faster Network Failure Detection</td>
<td></td>
</tr>
<tr>
<td>Example: Configuring BFD for Static Routes for Faster Network Failure Detection</td>
<td></td>
</tr>
<tr>
<td>*Understanding BFD for OSPF</td>
<td>292*</td>
</tr>
<tr>
<td>*Example: Configuring BFD for OSPF</td>
<td>294*</td>
</tr>
</tbody>
</table>
| *Understanding BFD for BGP*
| *Example: Configuring BFD on Internal BGP Peer Sessions* |
| *Understanding Bidirectional Forwarding Detection Authentication for PIM* |
| *Configuring BFD for PIM*
| *Understanding BFD for IS-IS* |

List of Sample Output

- show bfd session on page 804
- show bfd session brief on page 804
- show bfd session detail on page 804
- show bfd session detail (with Authentication) on page 804
show bfd session address extensive on page 805
show bfd session client rsvp-oam on page 806
show bfd session client vpls-oam summary on page 806
show bfd session client vpls-oam instance instance-name on page 806
show bfd session extensive on page 806
show bfd session extensive (with Authentication) on page 807
show bfd session summary on page 808
show bfd session subscriber on page 808
show bfd session subscriber address on page 808
show bfd session subscriber extensive on page 809
show bfd session subscriber discriminator extensive on page 810

Output Fields
Table 8 on page 799 describes the output fields for the `show bfd session` command. Output fields are listed in the approximate order in which they appear.

Table 8: show bfd session Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Address on which the BFD session is active.</td>
<td>brief detail extensive</td>
</tr>
<tr>
<td>State</td>
<td>State of the BFD session: Up, Down, Init (initializing), or Failing.</td>
<td>brief detail extensive</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface on which the BFD session is active.</td>
<td>brief detail extensive</td>
</tr>
<tr>
<td>Detect Time</td>
<td>Negotiated time interval, in seconds, used to detect BFD control packets.</td>
<td>brief detail extensive</td>
</tr>
<tr>
<td>Transmit Interval</td>
<td>Time interval, in seconds, used by the transmitting system to send BFD control packets.</td>
<td>brief detail extensive</td>
</tr>
<tr>
<td>Multiplier</td>
<td>Negotiated multiplier by which the time interval is multiplied to determine the detection time for the transmitting system.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Session up time</td>
<td>How long a BFD session has been established.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Client</td>
<td>Protocol or process for which the BFD session is active: ISIS, OSPF, DHCP, Static, or VGD.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>TX interval</td>
<td>Time interval, in seconds, used by the host system to transmit BFD control packets.</td>
<td>brief detail extensive</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>RX interval</td>
<td>Time interval, in seconds, used by the host system to receive BFD control packets.</td>
<td>brief detail extensive none</td>
</tr>
<tr>
<td>Authenticate</td>
<td>Indicates that BFD authentication is configured.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>keychain</td>
<td>Name of the security authentication keychain being used by a specific client.</td>
<td>extensive</td>
</tr>
<tr>
<td>algo</td>
<td>BFD authentication algorithm being used for a specific client: keyed-md5, keyed-sha-1, meticulous-keyed-md5, or meticulous-keyed-sha-1, or simple-password.</td>
<td>extensive</td>
</tr>
<tr>
<td>mode</td>
<td>Level of BFD authentication enforcement being used by a specific client: strict or loose. Strict enforcement indicates that authentication is configured at both ends of the session (the default). Loose enforcement indicates that one end of the session might not be authenticated.</td>
<td>extensive</td>
</tr>
<tr>
<td>Local diagnostic</td>
<td>Local diagnostic information about failing BFD sessions.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>

Following are the expected values for Local Diagnostic output field:

- **None**—No diagnostic
- **CtlExpire**—Control detection time expired
- **EchoExpire**—Echo detection time expired
- **NbrSignal**—Neighbor signalled session down
- **FwdPlaneReset**—Forwarding plane reset
- **PathDown**—Path down
- **ConcatPathDown**—Concatenated path down
- **AdminDown**—Administratively down
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote diagnostic</td>
<td>Remote diagnostic information about failing BFD sessions. Following are the expected values for Remote Diagnostic output field:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• None—No diagnostic</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• CtlExpire—Control detection time expired</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• EchoExpire—Echo detection time expired</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• NbrSignal—Neighbor signalled session down</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FwdPlaneReset—Forwarding plane reset</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PathDown—Path down</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ConcatPathDown—Concatenated path down</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AdminDown—Administratively down</td>
<td></td>
</tr>
<tr>
<td>Remote state</td>
<td>Reports whether the remote system's BFD packets have been received and whether the remote system is receiving transmitted control packets.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Version</td>
<td>BFD version: 0 or 1.</td>
<td>extensive</td>
</tr>
<tr>
<td>Replicated</td>
<td>The replicated flag appears when nonstop routing or graceful Routing Engine switchover is configured and the BFD session has been replicated to the backup Routing Engine.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Min async interval</td>
<td>Minimum amount of time, in seconds, between asynchronous control packet transmissions across the BFD session.</td>
<td>extensive</td>
</tr>
<tr>
<td>Min slow interval</td>
<td>Minimum amount of time, in seconds, between synchronous control packet transmissions across the BFD session.</td>
<td>extensive</td>
</tr>
<tr>
<td>Adaptive async TX interval</td>
<td>Transmission interval being used because of adaptation.</td>
<td>extensive</td>
</tr>
<tr>
<td>RX interval</td>
<td>Minimum required receive interval.</td>
<td>extensive</td>
</tr>
<tr>
<td>Local min TX interval</td>
<td>Minimum amount of time, in seconds, between control packet transmissions on the local system.</td>
<td>extensive</td>
</tr>
<tr>
<td>Local min RX interval</td>
<td>Minimum amount of time, in seconds, between control packet detections on the local system.</td>
<td>extensive</td>
</tr>
<tr>
<td>Remote min TX interval</td>
<td>Minimum amount of time, in seconds, between control packet transmissions on the remote system.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
Table 8: show bfd session Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote min TX interval</td>
<td>Minimum amount of time, in seconds, between control packet detections on the remote system.</td>
<td>extensive</td>
</tr>
<tr>
<td>Threshold transmission interval</td>
<td>Threshold for notification if the transmission interval increases.</td>
<td>extensive</td>
</tr>
<tr>
<td>Threshold for detection time</td>
<td>Threshold for notification if the detection time increases.</td>
<td>extensive</td>
</tr>
<tr>
<td>Local discriminator</td>
<td>Authentication code used by the local system to identify that BFD session.</td>
<td>extensive</td>
</tr>
<tr>
<td>Remote discriminator</td>
<td>Authentication code used by the remote system to identify that BFD session.</td>
<td>extensive</td>
</tr>
<tr>
<td>Echo mode</td>
<td>Information about the state of echo transmissions on the BFD session.</td>
<td>extensive</td>
</tr>
<tr>
<td>Prefix</td>
<td>LDP FEC address associated with the BFD session.</td>
<td>All levels</td>
</tr>
<tr>
<td>Egress, Destination</td>
<td>Displays the LDP FEC destination address. This field is displayed only on a router at the egress of an LDP FEC, where the BFD session has an LDP Operation, Administration, and Maintenance (OAM) client.</td>
<td>All levels</td>
</tr>
<tr>
<td>Remote is control-plane independent</td>
<td>The BFD session on the remote peer is running on its Packet Forwarding Engine. In this case, when the remote node undergoes a graceful restart, the local peer can help the remote peer with the graceful restart. The following BFD sessions are not distributed to the Packet Forwarding Engine: tunnel-encapsulated sessions, and sessions over integrated routing and bridging (IRB) interfaces.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
Table 8: show bfd session Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication</td>
<td>Summary status of BFD authentication:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>- status—enabled/active indicates authentication is configured and active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>enabled/inactive indicates authentication is configured but not active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This only occurs when the remote end of the session does not support authentication and loose checking is configured.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- keychain—Name of the security authentication keychain associated with the specified BFD session.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- algo—BFD authentication algorithm being used:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>keyed-md5, keyed-sha-1, meticulous-keyed-md5, meticulous-keyed-sha-1, or simple-password.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- mode—Level of BFD authentication enforcement:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>strict or loose. Strict enforcement indicates authentication is configured at both ends of the session (the default). Loose enforcement indicates that one end of the session might not be authenticated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This information is only shown if BFD authentication is configured.</td>
<td></td>
</tr>
<tr>
<td>Session ID</td>
<td>The BFD session ID number that represents the protection using MPLS fast reroute (FRR) and loop-free alternate (LFA).</td>
<td>detail extensive</td>
</tr>
<tr>
<td>sessions</td>
<td>Total number of active BFD sessions.</td>
<td>All levels</td>
</tr>
<tr>
<td>clients</td>
<td>Total number of clients that are hosting active BFD sessions.</td>
<td>All levels</td>
</tr>
<tr>
<td>Cumulative transmit rate</td>
<td>Total number of BFD control packets transmitted per second on all active sessions.</td>
<td>All levels</td>
</tr>
<tr>
<td>Cumulative receive rate</td>
<td>Total number of BFD control packets received per second on all active sessions.</td>
<td>All levels</td>
</tr>
<tr>
<td>Multi-hop, min-recv-TTL</td>
<td>Minimum time to live (TTL) accepted if the session is configured for multihop.</td>
<td>extensive</td>
</tr>
<tr>
<td>route table</td>
<td>Route table used if the session is configured for multihop.</td>
<td>extensive</td>
</tr>
<tr>
<td>local address</td>
<td>Local address of the source used if the session is configured for multihop.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>The source IP address for outgoing BFD packets from the egress side of an MPLS BFD session is based on the outgoing interface IP address.</td>
<td></td>
</tr>
</tbody>
</table>
Sample Output

show bfd session

user@host> show bfd session

<table>
<thead>
<tr>
<th>Address</th>
<th>State</th>
<th>Interface</th>
<th>Detect Time</th>
<th>Interval</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.9.1.33</td>
<td>Up</td>
<td>so-7/1/0.0</td>
<td>0.600</td>
<td>0.200</td>
<td>3</td>
</tr>
<tr>
<td>10.9.1.29</td>
<td>Up</td>
<td>ge-4/0/0.0</td>
<td>0.600</td>
<td>0.200</td>
<td>3</td>
</tr>
</tbody>
</table>

2 sessions, 2 clients
Cumulative transmit rate 10.0 pps, cumulative receive rate 10.0 pps

show bfd session brief

The output for the `show bfd session brief` command is identical to that for the `show bfd session` command.

show bfd session detail

user@host> show bfd session detail

<table>
<thead>
<tr>
<th>Address</th>
<th>State</th>
<th>Interface</th>
<th>Detect Time</th>
<th>Interval</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.9.1.33</td>
<td>Up</td>
<td>so-7/1/0.0</td>
<td>0.600</td>
<td>0.200</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Client OSPF, TX interval 0.200, RX interval 0.200, multiplier 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Session up time 3d 00:34:02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Local diagnostic None, remote diagnostic None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Remote state Up, version 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Replicated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.9.1.29</td>
<td>Up</td>
<td>ge-4/0/0.0</td>
<td>0.600</td>
<td>0.200</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Client ISIS L2, TX interval 0.200, RX interval 0.200, multiplier 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Session up time 3d 00:29:04, previous down time 00:00:01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Local diagnostic NbrSignal, remote diagnostic AdminDown</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Remote state Up, version 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 sessions, 2 clients
Cumulative transmit rate 10.0 pps, cumulative receive rate 10.0 pps

show bfd session detail (with Authentication)

user@host> show bfd session detail
Transmit

<table>
<thead>
<tr>
<th>Address</th>
<th>State</th>
<th>Interface</th>
<th>Detect Time</th>
<th>Interval</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.9.1.33</td>
<td>Up</td>
<td>so-7/1/0.0</td>
<td>0.600</td>
<td>0.200</td>
<td>3</td>
</tr>
<tr>
<td>10.9.1.29</td>
<td>Up</td>
<td>ge-4/0/0.0</td>
<td>0.600</td>
<td>0.200</td>
<td>3</td>
</tr>
</tbody>
</table>

- Client OSPF, TX interval 0.200, RX interval 0.200, multiplier 3, **Authenticate**
- Session up time 3d 00:34:18
- Local diagnostic None, remote diagnostic None
- Remote state Up, version 1
- Replicated

- Client ISIS L2, TX interval 0.200, RX interval 0.200, multiplier 3
- Session up time 3d 00:29:12, previous down time 00:00:01
- Local diagnostic NbrSignal, remote diagnostic AdminDown
- Remote state Up, version 1

2 sessions, 2 clients
Cumulative transmit rate 10.0 pps, cumulative receive rate 10.0 pps

show bfd session address extensive

`user@host> show bfd session 10.255.245.212 extensive`

<table>
<thead>
<tr>
<th>Address</th>
<th>State</th>
<th>Interface</th>
<th>Detect Time</th>
<th>Interval</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.255.245.212</td>
<td>Up</td>
<td></td>
<td>1.200</td>
<td>0.400</td>
<td>3</td>
</tr>
</tbody>
</table>

- Client Static, TX interval 0.400, RX interval 0.400, multiplier 3
- Session up time 00:17:03, previous down time 00:00:14
- Local diagnostic CtlExpire, remote diagnostic NbrSignal
- Remote state Up, version 1
- Replicated

Min async interval 0.400, min slow interval 1.000
Adaptive async tx interval 0.400, rx interval 0.400
Local min tx interval 0.400, min rx interval 0.400, multiplier 3
Remote min tx interval 0.400, min rx interval 0.400, multiplier 3
Threshold transmission interval 0.000, Threshold for detection time 0.000
Local discriminator 6, remote discriminator 16
Echo mode disabled/inactive
Multi-hop, min-rev-TTL 255, route-table 0, local-address 10.255.245.205

1 sessions, 1 clients
Cumulative transmit rate 2.5 pps, cumulative receive rate 2.5 pps
show bfd session client rsvp-oam

```
user@host> show bfd session client rsvp-oam

<table>
<thead>
<tr>
<th>Address</th>
<th>State</th>
<th>Interface</th>
<th>Time</th>
<th>Interval</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.0.223</td>
<td>Up</td>
<td></td>
<td>540.000</td>
<td>180.000</td>
<td>3</td>
</tr>
</tbody>
</table>

1 Up sessions, 0 Down sessions
1 sessions, 1 clients
Cumulative transmit rate 0.0 pps, cumulative receive rate 0.0 pps
```

show bfd session client vpls-oam summary

```
user@host> show bfd session client vpls-oam summary

1 Up sessions, 1 Down sessions
2 sessions, 2 clients
Cumulative transmit rate 2.0 pps, cumulative receive rate 1.0 pps
```

show bfd session client vpls-oam instance instance-name

```
user@host> show bfd session client vpls-oam instance vpls

<table>
<thead>
<tr>
<th>Address</th>
<th>State</th>
<th>Interface</th>
<th>Time</th>
<th>Interval</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>Up</td>
<td>ae9.0</td>
<td>3.000</td>
<td>1.000</td>
<td>3</td>
</tr>
</tbody>
</table>

1 Up Sessions, 0 Down Sessions
1 sessions, 1 clients
Cumulative transmit rate 1.0 pps, cumulative receive rate 1.0 pps
```

show bfd session extensive

```
user@host> show bfd session extensive

<table>
<thead>
<tr>
<th>Address</th>
<th>State</th>
<th>Interface</th>
<th>Time</th>
<th>Interval</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.31.1.2</td>
<td>Up</td>
<td>ge-2/1/8.0</td>
<td>0.030</td>
<td>0.010</td>
<td>3</td>
</tr>
</tbody>
</table>

Client OSPF realm ospf-v2 Area 0.0.0.0, TX interval 0.010, RX interval 0.010
Session up time 00:10:13
Local diagnostic None, remote diagnostic None
Remote state Up, version 1
```
Replicated
Min async interval 0.010, min slow interval 1.000
Adaptive async TX interval 0.010, RX interval 0.010
Local min TX interval 0.010, minimum RX interval 0.010, multiplier 3
Remote min TX interval 0.010, min RX interval 0.010, multiplier 3
Local discriminator 12, remote discriminator 4
Echo mode disabled/inactive
Remote is control-plane independent
Session ID: 0x201
Micro-BFD Session

<table>
<thead>
<tr>
<th>Address</th>
<th>State</th>
<th>Interface</th>
<th>Time</th>
<th>Interval</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.31.2.2</td>
<td>Up</td>
<td>ge-2/1/4.0</td>
<td>0.030</td>
<td>0.010</td>
<td>3</td>
</tr>
</tbody>
</table>

Client OSPF realm ospf-v2 Area 0.0.0.0, TX interval 0.010, RX interval 0.010
Session up time 00:10:14
Local diagnostic None, remote diagnostic NbrSignal
Remote state Up, version 1
Replicated
Min async interval 0.010, min slow interval 1.000
Adaptive async TX interval 0.010, RX interval 0.010
Local min TX interval 0.010, minimum RX interval 0.010, multiplier 3
Remote min TX interval 0.010, min RX interval 0.010, multiplier 3
Local discriminator 13, remote discriminator 5
Echo mode disabled/inactive
Remote is control-plane independent
Session ID: 0x202

2 sessions, 2 clients
Cumulative transmit rate 200.0 pps, cumulative receive rate 200.0 pps

show bfd session extensive (with Authentication)

user@host> show bfd session extensive

<table>
<thead>
<tr>
<th>Address</th>
<th>State</th>
<th>Interface</th>
<th>Time</th>
<th>Interval</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.208.26</td>
<td>Up</td>
<td>so-1/0/0.0</td>
<td>2.400</td>
<td>0.800</td>
<td>10</td>
</tr>
</tbody>
</table>

Client Static, TX interval 0.600, RX interval 0.600, Authenticate
keychain bfd, algo keyed-md5, mode loose
Session up time 00:18:07
Local diagnostic None, remote diagnostic NbrSignal
Remote state Up, version 1
Replicated
Min async interval 0.600, min slow interval 1.000
Adaptive async TX interval 0.600, RX interval 0.600
Local min TX interval 0.600, minimum RX interval 0.600, multiplier 10
Remote min TX interval 0.800, min RX interval 0.800, multiplier 3
Local discriminator 2, remote discriminator 3
Echo mode disabled/inactive

Authentication enabled/active, keychain bfd, algo keyed-md5, mode loose

1 sessions, 1 clients
Cumulative transmit rate 1.2 pps, cumulative receive rate 1.2 pps

show bfd session summary
user@host> show bfd session summary

2 sessions, 2 clients
Cumulative transmit rate 10.0 pps, cumulative receive rate 10.0 pps

show bfd session subscriber
user@host> show bfd session subscriber

<table>
<thead>
<tr>
<th>Detect</th>
<th>Transmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>State</td>
</tr>
<tr>
<td>1.0.0.2</td>
<td>Up</td>
</tr>
<tr>
<td>1.0.0.6</td>
<td>Up</td>
</tr>
<tr>
<td>1.0.0.10</td>
<td>Up</td>
</tr>
<tr>
<td>1.0.0.14</td>
<td>Up</td>
</tr>
<tr>
<td>1.0.0.18</td>
<td>Up</td>
</tr>
</tbody>
</table>

20 sessions, 20 clients

show bfd session subscriber address
user@host> show bfd session subscriber address 1.0.0.2

<table>
<thead>
<tr>
<th>Detect</th>
<th>Transmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>State</td>
</tr>
<tr>
<td>1.0.0.2</td>
<td>Up</td>
</tr>
</tbody>
</table>
1 sessions, 1 clients
Cumulative transmit rate 5.0 pps, cumulative receive rate 5.0 pps

show bfd session subscriber extensive
user@host> show bfd session subscriber extensive

<table>
<thead>
<tr>
<th>Detect</th>
<th>Transmit</th>
<th>Address</th>
<th>State</th>
<th>Interface</th>
<th>Time</th>
<th>Interval</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.0.0.2</td>
<td>Up</td>
<td>ae0.0</td>
<td>90.000</td>
<td>30.000</td>
<td>3</td>
</tr>
</tbody>
</table>

Client DHCP, TX interval 30.000, RX interval 30.000
Session up time 09:11:50
Local diagnostic None, remote diagnostic NbrSignal
Remote state Up, version 1
Replicated
Min async interval 30.000, min slow interval 30.000
Adaptive async TX interval 30.000, RX interval 30.000
Local min TX interval 30.000, minimum RX interval 30.000, multiplier 3
Remote min TX interval 30.000, min RX interval 30.000, multiplier 3
Local discriminator 20, remote discriminator 16
Echo mode disabled/inactive
Remote is control-plane independent
Session ID: 0x1

<table>
<thead>
<tr>
<th>Detect</th>
<th>Transmit</th>
<th>Address</th>
<th>State</th>
<th>Interface</th>
<th>Time</th>
<th>Interval</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.0.0.6</td>
<td>Up</td>
<td>ae0.1</td>
<td>90.000</td>
<td>30.000</td>
<td>3</td>
</tr>
</tbody>
</table>

Client DHCP, TX interval 30.000, RX interval 30.000
Session up time 09:11:50
Local diagnostic None, remote diagnostic NbrSignal
Remote state Up, version 1
Replicated
Min async interval 30.000, min slow interval 30.000
Adaptive async TX interval 30.000, RX interval 30.000
Local min TX interval 30.000, minimum RX interval 30.000, multiplier 3
Remote min TX interval 30.000, min RX interval 30.000, multiplier 3
Local discriminator 21, remote discriminator 17
Echo mode disabled/inactive
Remote is control-plane independent
Session ID: 0x2
show bfd session subscriber discriminator extensive

user@host> show bfd session subscriber discriminator 20 extensive

<table>
<thead>
<tr>
<th>Detect</th>
<th>Transmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>State</td>
</tr>
<tr>
<td>1.0.0.2</td>
<td>Up</td>
</tr>
</tbody>
</table>

Client DHCP, TX interval 30.000, RX interval 30.000
Session up time 09:11:50
Local diagnostic None, remote diagnostic NbrSignal
Remote state Up, version 1
Replicated
Min async interval 30.000, min slow interval 30.000
Adaptive async TX interval 30.000, RX interval 30.000
Local min TX interval 30.000, minimum RX interval 30.000, multiplier 3
Remote min TX interval 30.000, min RX interval 30.000, multiplier 3
Local discriminator 20, remote discriminator 16
Echo mode disabled/inactive
Remote is control-plane independent
Session ID: 0x1

1 sessions, 1 clients
Cumulative transmit rate 5.0 pps, cumulative receive rate 5.0 pps
show (ospf | ospf3) backup coverage

Syntax

```plaintext
show (ospf | ospf3) backup coverage
<instance instance-name>
<logical-system (all | logical-system-name)>
<realm (ipv4-unicast | ipv6-unicast)>
<topology topology-name>
```

Syntax (QFX Series)

```plaintext
show (ospf | ospf3) backup coverage
<instance instance-name>
<topology topology-name>
```

Release Information

Command introduced in Junos OS Release 10.0.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Display information about the level of backup coverage available for all the nodes and prefixes in the network.

Options

- `none`—Display information about the level backup coverage for all OSPF routing instances in all logical systems.
- `logical-system (all | logical-system-name)`—(Optional) Display information about the level of backup coverage for all logical systems or for a specific logical system.
- `instance instance-name`—(Optional) Display information about the level of backup coverage for a specific OSPF routing instance.
- `realm (ipv4-unicast | ipv6-unicast)`—(Optional) (OSPFv3 only) Display information about the level of backup coverage for the specific OSPFv3 realm, or address family.
- `topology (default | topology-name)`—(Optional) (OSPFv2 only) Display information about the level of backup coverage for the specific OSPF topology.

Required Privilege Level

`view`
RELATED DOCUMENTATION

| show (ospf | ospf3) backup lsp | 814 |

List of Sample Output

show ospf backup coverage on page 812
show ospf3 backup coverage on page 813

Output Fields

Table 9 on page 812 lists the output fields for the show (ospf | ospf3) backup coverage command. Output fields are listed in the approximate order in which they appear.

Table 9: show (ospf | ospf3) backup coverage Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Coverage</td>
<td>Information about backup coverage for each OSPF node.</td>
</tr>
<tr>
<td>Area</td>
<td>Area number. Area 0.0.0.0 is the backbone.</td>
</tr>
<tr>
<td>Covered Nodes</td>
<td>Number of nodes for which backup coverage is available.</td>
</tr>
<tr>
<td>Total Nodes</td>
<td>Total number of OSPF nodes.</td>
</tr>
<tr>
<td>Route Coverage</td>
<td>Information about backup coverage for each type of OSPF route.</td>
</tr>
<tr>
<td>Path Type</td>
<td>Type of OSPF path: Intra, Inter, Ext1, Ext2, and All.</td>
</tr>
<tr>
<td>Covered Routes</td>
<td>For each path type, the number of routes for which backup coverage is available.</td>
</tr>
<tr>
<td>Total Routes</td>
<td>For each path type, the total number of configured routes.</td>
</tr>
<tr>
<td>Percent Covered</td>
<td>For all nodes and for each path type, the percentage for which backup coverage is available.</td>
</tr>
</tbody>
</table>

Sample Output

show ospf backup coverage

user@host> show ospf backup coverage
Topology default coverage:

Node Coverage:

<table>
<thead>
<tr>
<th>Area</th>
<th>Covered</th>
<th>Total</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nodes</td>
<td>Nodes</td>
<td>Covered</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>4</td>
<td>5</td>
<td>80.00%</td>
</tr>
</tbody>
</table>

Route Coverage:

<table>
<thead>
<tr>
<th>Path Type</th>
<th>Covered</th>
<th>Total</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Routes</td>
<td>Routes</td>
<td>Covered</td>
</tr>
<tr>
<td>Intra</td>
<td>8</td>
<td>14</td>
<td>57.14%</td>
</tr>
<tr>
<td>Inter</td>
<td>0</td>
<td>0</td>
<td>100.00%</td>
</tr>
<tr>
<td>Ext1</td>
<td>0</td>
<td>0</td>
<td>100.00%</td>
</tr>
<tr>
<td>Ext2</td>
<td>1</td>
<td>1</td>
<td>100.00%</td>
</tr>
<tr>
<td>All</td>
<td>9</td>
<td>15</td>
<td>60.00%</td>
</tr>
</tbody>
</table>

show ospf3 backup coverage

user @host > show ospf3 backup coverage

show ospf3 backup coverage

Node Coverage:

<table>
<thead>
<tr>
<th>Area</th>
<th>Covered</th>
<th>Total</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nodes</td>
<td>Nodes</td>
<td>Covered</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>4</td>
<td>5</td>
<td>80.00%</td>
</tr>
</tbody>
</table>

Route Coverage:

<table>
<thead>
<tr>
<th>Path Type</th>
<th>Covered</th>
<th>Total</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Routes</td>
<td>Routes</td>
<td>Covered</td>
</tr>
<tr>
<td>Intra</td>
<td>4</td>
<td>6</td>
<td>66.67%</td>
</tr>
<tr>
<td>Inter</td>
<td>0</td>
<td>0</td>
<td>100.00%</td>
</tr>
<tr>
<td>Ext1</td>
<td>0</td>
<td>0</td>
<td>100.00%</td>
</tr>
<tr>
<td>Ext2</td>
<td>1</td>
<td>1</td>
<td>100.00%</td>
</tr>
<tr>
<td>All</td>
<td>5</td>
<td>7</td>
<td>71.43%</td>
</tr>
</tbody>
</table>
show (ospf | ospf3) backup lsp

Syntax

```plaintext
show (ospf | ospf3) backup lsp
   <logical-system (all | logical-system-name)>
   <realm (ipv4-unicast | ipv6-unicast)>
```

Release Information
Command introduced in Junos OS Release 10.0.

Description
Display information about MPLS label-switched-paths (LSPs) designated as backup routes for OSPF routes.

NOTE: MPLS LSPs can be used as backup routes only for routes in the default OSPFv2 topology and not for any configured topology. Additionally, MPLS LSPs cannot be used as backup routes for nondefault instances either for OSPFv2 or OSPFv3.

Options

- **none**—Display information all MPLS LSPs designated as backup routes.

- **logical-system (all | logical-system-name)**—(Optional) Display information about MPLS LSPs designated as backup routes for all logical systems or a specific logical system.

- **realm (ipv4-unicast | ipv6-unicast)**—(Optional) (OSPFv3 only) Display information about MPLS LSPs designated as backup routes for a specific realm, or address family.

Required Privilege Level
view

RELATED DOCUMENTATION

- show (ospf | ospf3) backup coverage | 811

List of Sample Output
show ospf backup lsp on page 815
show ospf3 backup lsp on page 816

Output Fields
Table 10 on page 815 lists the output fields for the `show (ospf | ospf3) backup lsp` command. Output fields are listed in the approximate order in which they appear.

Table 10: show (ospf | ospf3) backup lsp Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS LSP name</td>
<td>Name of each MPLS LSP designated as a backup path.</td>
</tr>
<tr>
<td>Egress</td>
<td>IP address of the egress router for the LSP.</td>
</tr>
<tr>
<td>Status</td>
<td>State of the LSP:</td>
</tr>
<tr>
<td></td>
<td>• Up—The router can detect RSVP hello messages from the neighbor.</td>
</tr>
<tr>
<td></td>
<td>• Down—The router has received one of the following indications:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Deleted—The LSP is no longer available as a backup path.</td>
</tr>
<tr>
<td>Last change</td>
<td>Time elapsed since the neighbor state changed either from up or down or from down to up. The format is <code>hh:mm:ss</code>.</td>
</tr>
<tr>
<td>TE-metric</td>
<td>Configured traffic engineering metric.</td>
</tr>
<tr>
<td>Metric</td>
<td>Configured metric.</td>
</tr>
</tbody>
</table>

Sample Output

```
show ospf backup lsp

user@host> show ospf backup lsp

tobanff
  Egress: 10.255.71.239, Status: up, Last change: 00:00:23
  TE-metric: 0, Metric: 0
```
Sample Output

show ospf3 backup lsp

user@host> show ospf3 backup lsp

tobanff
 Egress: 10.255.71.239, Status: up, Last change: 00:00:45
 TE-metric: 0, Metric: 0
show (ospf | ospf3) backup neighbor

Syntax

```
show (ospf | ospf3) backup neighbor
  <area area-id>
  <instance (default | instance-name)>
  <logical-system (default | ipv4-multicast | logical-system-name)>
  <topology (default | ipv4-multicast | topology-name)>
```

Syntax (QFX Series)

```
show (ospf | ospf3) backup neighbor
  <area area-id>
  <instance instance-name>
  <topology (default | ipv4-multicast | topology-name)>
```

Release Information
Command introduced in Junos OS Release 10.0.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display the neighbors through which direct next hops for the backup paths are available.

Options
none—Display all neighbors that have direct next hops for backup paths.

area area-id—(Optional) Display the area information.

instance (default | instance-name)—(Optional) Display information about the default routing instance or a particular routing instance.

logical-system (default | ipv4-multicast | logical-system-name)—(Optional) Display information about the default logical system, IPv4 multicast logical system, or a particular logical system.

topology (default | ipv4-multicast | topology-name)—(OSPFv2 only) (Optional) Display information about the default topology, IPv4 multicast topology, or a particular topology.

Required Privilege Level
view

RELATED DOCUMENTATION
List of Sample Output

show ospf backup neighbor on page 818

Output Fields

Table 11 on page 818 lists the output fields for the show (ospf | ospf3) backup neighbor command. Output fields are listed in the approximate order in which they appear.

Table 11: show (ospf | ospf3) backup neighbor Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor to Self Metric</td>
<td>Metric from the backup neighbor to the OSPF node.</td>
<td>All levels</td>
</tr>
<tr>
<td>Self to Neighbor Metric</td>
<td>Metric from the OSPF node to the backup neighbor.</td>
<td>All levels</td>
</tr>
<tr>
<td>Direct next-hop</td>
<td>Interface and address of the direct next hop.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Sample Output

show ospf backup neighbor

user@host> show ospf backup neighbor

Topology default backup neighbors:

Area 0.0.0.5 backup neighbors:

10.0.0.5
 Neighbor to Self Metric: 5
 Self to Neighbor Metric: 5
 Direct next-hop: ge-4/0/0.111 via 10.0.175.5

10.0.0.6
 Neighbor to Self Metric: 5
 Self to Neighbor Metric: 5
 Direct next-hop: ge-4/1/0.110 via 10.0.176.6
show (ospf | ospf3) backup spf

Syntax

```
show (ospf | ospf3) backup spf
  <brief | detail>
  <area area-id>
  <instance instance-name>
  <logical-system (all | logical-system-name)>
  <no-coverage>
  <node-id>
  <realm (ipv4–unicast | ipv6–unicast)>
  <topology (default | ipv4-multicast | topology-name)>
```

Syntax (QFX Series)

```
show (ospf | ospf3) backup spf
  <brief | detail>
  <area area-id>
  <instance instance-name>
  <no-coverage>
  <node-id>
  <topology (default | ipv4-multicast | topology-name)>
```

Release Information

Command introduced in Junos OS Release 10.0.
Command introduced in Junos OS Release 11.3 for the QFX Series.

Description

Display information about OSPF shortest-path-first calculations for backup paths.

Options

- **none**—Display information about OSPF shortest-path-first (SPF) calculations for all backup paths for all destination nodes.
- **brief | detail**—(Optional) Display the specified level of output.
- **area area-id**—(Optional) Display the area information.
- **instance instance-name**—(Optional) Display information about the routing instance.
- **logical-system (all | logical-system-name)**—(Optional) Display information about all logical systems or a specific logical system.
- **no-coverage**—(Optional) Display information if there is no backup coverage.
node-id—(Optional) Display information about the node specified.

realm (ipv4-unicast | ipv6-unicast)—(Optional) Display information about the ipv4 or ipv6 realm.

topology (default | ipv4-multicast | topology-name)—(Optional) (OSPFv2 only) Display information about the default topology, IPv4 multicast topology, or a specific topology.

Required Privilege Level
view

List of Sample Output
show ospf backup spf on page 821
show ospf backup spf detail on page 821
show ospf3 backup spf on page 824

Output Fields
Table 12 on page 820 lists the output fields for the show ospf [ospf3] backup spf command. Output fields are listed in the approximate order in which they appear.

Table 12: show (ospf | ospf3) backup spf Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area area-id</td>
<td>Area for which the results are displayed. Area 0.0.0.0 is the backbone area.</td>
<td>All levels</td>
</tr>
<tr>
<td>results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>address</td>
<td>Address of the node for which the results are displayed.</td>
<td>All levels</td>
</tr>
<tr>
<td>Self to Destination</td>
<td>Metric from the node to the destination.</td>
<td>All levels</td>
</tr>
<tr>
<td>Metric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent Node</td>
<td>Address of the parent node.</td>
<td>All levels</td>
</tr>
<tr>
<td>Primary next-hop</td>
<td>Address of the next hop.</td>
<td>All levels</td>
</tr>
<tr>
<td>Backup Neighbor</td>
<td>Address of the backup neighbor or LSP endpoint and the following information:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• Neighbor to Destination Metric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Neighbor to Self Metric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Self to Neighbor Metric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Status (Eligible, Not Eligible, Not Evaluated) and the reason for the status.</td>
<td></td>
</tr>
<tr>
<td>NOTE: If the backup neighbor is an LSP endpoint, it is indicated as such after the neighbor address.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sample Output

```plaintext
show ospf backup spf

user@host> show ospf backup spf

Topology default results:

Area 0.0.0.0 results:

pro16-d-lo0.xxx.yyyy.net
  Self to Destination Metric: 1
  Parent Node: pro16-b-lo0.xxx.yyyy.net
  Primary next-hop: at-1/0/1.0
  Backup Neighbor: pro16-c-lo0.xxx.yyyy.net (LSP endpoint)
    Neighbor to Destination Metric: 4, Neighbor to Self Metric: 3
    Self to Neighbor Metric: 3
    Not eligible, Reason: Path loops
  Backup Neighbor: pro16-d-lo0.xxx.yyyy.net
    Neighbor to Destination Metric: 0, Neighbor to Self Metric: 1
    Self to Neighbor Metric: 1
    Not eligible, Reason: Primary next-hop link fate sharing
...
```

```plaintext
show ospf backup spf detail

user@host> show ospf backup spf detail

Topology default results:

Area 0.0.0.0 results:

11.14.10.2
  Self to Destination Metric: 1
  Parent Node: 10.255.70.103
  Primary next-hop: ae0.0
  Backup Neighbor: 10.255.71.243
    Neighbor to Destination Metric: 2, Neighbor to Self Metric: 1
    Self to Neighbor Metric: 1
    Not eligible, Reason: Path loops
  Backup Neighbor: 10.255.71.52
    Neighbor to Destination Metric: 15, Neighbor to Self Metric: 15
    Self to Neighbor Metric: 1
```
Not eligible, Reason: Primary next-hop link fate sharing
Backup Neighbor: 10.255.71.242
Neighbor to Destination Metric: 16, Neighbor to Self Metric: 15
Self to Neighbor Metric: 1
Not eligible, Reason: Path loops

10.255.71.52
Self to Destination Metric: 1
Parent Node: 11.14.10.2
Primary next-hop: ae0.0 via 11.14.10.2
Backup Neighbor: 10.255.71.52
Neighbor to Destination Metric: 0, Neighbor to Self Metric: 15
Self to Neighbor Metric: 1
Not eligible, Reason: Primary next-hop link fate sharing
Backup Neighbor: 10.255.71.243
Neighbor to Destination Metric: 2, Neighbor to Self Metric: 1
Self to Neighbor Metric: 1
Not eligible, Reason: Path loops
Backup Neighbor: 10.255.71.242
Neighbor to Destination Metric: 16, Neighbor to Self Metric: 15
Self to Neighbor Metric: 1
Not eligible, Reason: Path loops

10.255.71.242
Self to Destination Metric: 1
Parent Node: 10.255.70.103
Primary next-hop: as0.0
Backup Neighbor: 10.255.71.242
Neighbor to Destination Metric: 0, Neighbor to Self Metric: 15
Self to Neighbor Metric: 1
Not eligible, Reason: Primary next-hop link fate sharing
Backup Neighbor: 10.255.71.243
Neighbor to Destination Metric: 2, Neighbor to Self Metric: 1
Self to Neighbor Metric: 1
Not eligible, Reason: Path loops
Backup Neighbor: 10.255.71.52
Neighbor to Destination Metric: 16, Neighbor to Self Metric: 15
Self to Neighbor Metric: 1
Not eligible, Reason: Path loops

10.255.71.243
Self to Destination Metric: 1
Parent Node: 10.255.70.103
Primary next-hop: so-6/0/0.0
Backup Neighbor: 10.255.71.243
 Neighbor to Destination Metric: 0, Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1
 Not eligible, Reason: Primary next-hop link fate sharing

Backup Neighbor: 10.255.71.52
 Neighbor to Destination Metric: 16, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not eligible, Reason: Path loops

Backup Neighbor: 10.255.71.242
 Neighbor to Destination Metric: 16, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not eligible, Reason: Path loops

12.15.0.1
 Self to Destination Metric: 2
 Parent Node: 10.255.71.243
 Primary next-hop: so-6/0/0.0
 Backup next-hop: ae0.0 via 11.14.10.2

Backup Neighbor: 10.255.71.243
 Neighbor to Destination Metric: 1, Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1
 Not eligible, Reason: Primary next-hop link fate sharing

Backup Neighbor: 10.255.71.52
 Neighbor to Destination Metric: 16, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Eligible, Reason: Contributes backup next-hop

Backup Neighbor: 10.255.71.242
 Neighbor to Destination Metric: 17, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not evaluated, Reason: Interface is already covered

10.255.71.238
 Self to Destination Metric: 2
 Parent Node: 10.255.71.243
 Primary next-hop: so-6/0/0.0
 Backup next-hop: as0.0

Backup Neighbor: 10.255.71.243
 Neighbor to Destination Metric: 1, Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1
 Not eligible, Reason: Primary next-hop link fate sharing

Backup Neighbor: 10.255.71.242
 Neighbor to Destination Metric: 15, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Eligible, Reason: Contributes backup next-hop
Backup Neighbor: 10.255.71.52
 Neighbor to Destination Metric: 16, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not evaluated, Reason: Interface is already covered

10.255.71.239
 Self to Destination Metric: 2
 Parent Node: 12.15.0.1
 Primary next-hop: so-6/0/0.0
 Backup next-hop: ae0.0 via 11.14.10.2
 Backup Neighbor: 10.255.71.243
 Neighbor to Destination Metric: 1, Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1
 Not eligible, Reason: Primary next-hop link fate sharing
 Backup Neighbor: 10.255.71.52
 Neighbor to Destination Metric: 15, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Eligible, Reason: Contributes backup next-hop
 Backup Neighbor: 10.255.71.242
 Neighbor to Destination Metric: 16, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not evaluated, Reason: Interface is already covered

14.15.0.2
 Self to Destination Metric: 3
 Parent Node: 10.255.71.239
 Primary next-hop: so-6/0/0.0
 Backup next-hop: ae0.0 via 11.14.10.2
 Backup Neighbor: 10.255.71.243
 Neighbor to Destination Metric: 2, Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1
 Not eligible, Reason: Primary next-hop link fate sharing
 Backup Neighbor: 10.255.71.52
 Neighbor to Destination Metric: 15, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Eligible, Reason: Contributes backup next-hop
 Backup Neighbor: 10.255.71.242
 Neighbor to Destination Metric: 17, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not evaluated, Reason: Interface is already covered

show ospf3 backup spf

user@host> show ospf3 backup spf
Area 0.0.0.0 results:

10.255.71.52;0.0.0.5
Self to Destination Metric: 1
Parent Node: 10.255.70.103
Primary next-hop: ae0.0
Backup Neighbor: 10.255.71.243
 Neighbor to Destination Metric: 2, Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1
 Not eligible, Reason: Path loops
Backup Neighbor: 10.255.71.52
 Neighbor to Destination Metric: 15, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not eligible, Reason: Primary next-hop link fate sharing
Backup Neighbor: 10.255.71.242
 Neighbor to Destination Metric: 16, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not eligible, Reason: Path loops

10.255.71.52
Self to Destination Metric: 1
Parent Node: 10.255.71.52;0.0.0.5
Primary next-hop: ae0.0 via fe80::290:69ff:fe0f:67f0
Backup Neighbor: 10.255.71.52
 Neighbor to Destination Metric: 0, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not eligible, Reason: Primary next-hop link fate sharing
Backup Neighbor: 10.255.71.243
 Neighbor to Destination Metric: 2, Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1
 Not eligible, Reason: Path loops
Backup Neighbor: 10.255.71.242
 Neighbor to Destination Metric: 16, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not eligible, Reason: Path loops

10.255.71.242
Self to Destination Metric: 1
Parent Node: 10.255.70.103
Primary next-hop: as0.0
Backup Neighbor: 10.255.71.242
 Neighbor to Destination Metric: 0, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not eligible, Reason: Primary next-hop link fate sharing
Backup Neighbor: 10.255.71.243
 Neighbor to Destination Metric: 2, Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1
 Not eligible, Reason: Path loops
Backup Neighbor: 10.255.71.52
 Neighbor to Destination Metric: 16, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not eligible, Reason: Path loops

10.255.71.243
 Self to Destination Metric: 1
 Parent Node: 10.255.70.103
 Primary next-hop: so-6/0/0.0
Backup Neighbor: 10.255.71.243
 Neighbor to Destination Metric: 0, Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1
 Not eligible, Reason: Primary next-hop link fate sharing
Backup Neighbor: 10.255.71.52
 Neighbor to Destination Metric: 16, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not eligible, Reason: Path loops
Backup Neighbor: 10.255.71.242
 Neighbor to Destination Metric: 16, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not evaluated, Reason: Interface is already covered

10.255.71.243;0.0.0.2
 Self to Destination Metric: 2
 Parent Node: 10.255.71.243
 Primary next-hop: so-6/0/0.0
Backup next-hop: ae0.0 via ff80::290:69ff:fe0f:67f0
Backup Neighbor: 10.255.71.243
 Neighbor to Destination Metric: 1, Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1
 Not eligible, Reason: Primary next-hop link fate sharing
Backup Neighbor: 10.255.71.52
 Neighbor to Destination Metric: 16, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Eligible, Reason: Contributes backup next-hop
Backup Neighbor: 10.255.71.242
 Neighbor to Destination Metric: 17, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not evaluated, Reason: Interface is already covered
10.255.71.238
Self to Destination Metric: 2
Parent Node: 10.255.71.243
Primary next-hop: so-6/0/0.0
Backup next-hop: as0.0
Backup Neighbor: 10.255.71.243
 Neighbor to Destination Metric: 1, Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1
 Not eligible, Reason: Primary next-hop link fate sharing
Backup Neighbor: 10.255.71.242
 Neighbor to Destination Metric: 15, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Eligible, Reason: Contributes backup next-hop
Backup Neighbor: 10.255.71.52
 Neighbor to Destination Metric: 16, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not evaluated, Reason: Interface is already covered

10.255.71.239
Self to Destination Metric: 2
Parent Node: 10.255.71.239;0.0.0.2
Primary next-hop: so-6/0/0.0
Backup next-hop: ae0.0 via fe80::290:69ff:fe0f:67f0
Backup Neighbor: 10.255.71.243
 Neighbor to Destination Metric: 1, Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1
 Not eligible, Reason: Primary next-hop link fate sharing
Backup Neighbor: 10.255.71.52
 Neighbor to Destination Metric: 15, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Eligible, Reason: Contributes backup next-hop
Backup Neighbor: 10.255.71.242
 Neighbor to Destination Metric: 16, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not evaluated, Reason: Interface is already covered

10.255.71.239;0.0.0.4
Self to Destination Metric: 3
Parent Node: 10.255.71.239
Primary next-hop: so-6/0/0.0
Backup next-hop: ae0.0 via fe80::290:69ff:fe0f:67f0
Backup Neighbor: 10.255.71.243
 Neighbor to Destination Metric: 2, Neighbor to Self Metric: 1
 Self to Neighbor Metric: 1
Not eligible, Reason: Primary next-hop link fate sharing
Backup Neighbor: 10.255.71.52
 Neighbor to Destination Metric: 15, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Eligible, Reason: Contributes backup next-hop
Backup Neighbor: 10.255.71.242
 Neighbor to Destination Metric: 17, Neighbor to Self Metric: 15
 Self to Neighbor Metric: 1
 Not evaluated, Reason: Interface is already covered
show ospf context-identifier

List of Syntax

Syntax on page 829

Syntax (EX Series Switches and QFX Series) on page 829

Syntax

show ospf context-identifier
 <brief | detail>
 <area area-id>
 <context-id>
 <instance instance-name>
 <logical-system (all | logical-system-name)>

Syntax (EX Series Switches and QFX Series)

show ospf context-identifier
 <brief | detail>
 <area area-id>
 <context-id>
 <instance instance-name>

Release Information

Command introduced in Junos OS Release 10.4.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Display the context identifier information processed and advertised by Open Shortest Path First (OSPF) for egress protection.

Options

none—Display information about all context identifiers.

brief | detail—(Optional) Display the specified level of output.

area area-id—(Optional) Display information about the context identifier for the specified area.

context-id—(Optional) Display information about the specified context identifier.

instance instance-name—(Optional) Display information about the context identifier for the specified routing instance.
logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level

view

RELATED DOCUMENTATION

| egress-protection (Layer 2 circuit) in the Junos OS VPNs Library for Routing Devices |
| egress-protection (MPLS) in the Junos OS VPNs Library for Routing Devices |

List of Sample Output

- *show ospf context-identifier on page 831*
- *show ospf context-identifier detail on page 831*

Output Fields

Table 13 on page 830 lists the output fields for the `show ospf context-identifier` command. Output fields are listed in the approximate order in which they appear.

Table 13: show ospf context-identifier Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>IPv4 address that defines a protection pair. The context is manually configured on both primary and protector provider edge (PE) devices.</td>
<td>All levels</td>
</tr>
<tr>
<td>Status</td>
<td>State of the path: active or inactive.</td>
<td>All levels</td>
</tr>
<tr>
<td>Metric</td>
<td>Advertised OSPF metric.</td>
<td>All levels</td>
</tr>
<tr>
<td>Area</td>
<td>OSPF area number.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
| Other Advertisements | Other advertisements received by the OSPF node:
 - Advertising router—Address of the device that sent the advertisement.
 - Type—Type of OSPF path: inter-area and stub.
 - Metric—Advertised OSPF metric.
 - None—No additional advertisements were received by the OSPF node. | detail |
Sample Output

```bash
show ospf context-identifier

user@host> show ospf context-identifier

  Context-id: 2.2.4.3
      Status: active, Metric: 65534, PE role: protector, Area: 0.0.0.0
```

```bash
show ospf context-identifier detail

user@host> show ospf context-identifier detail

  Context-id: 88.24.13.1
      Status: inactive, Metric: 0, PE role: protector, Area: 0.0.0.13
      Other Advertisements:
          Advertising router: 8.8.8.103
              Type: stub link
              Metric: 65534
```
show ospf database

List of Syntax
Syntax on page 832
Syntax (EX Series Switches and QFX Series) on page 832

Syntax

show ospf database
<brief | detail | extensive | summary>
<advertising-router (address | self)>
<area area-id>
<asbrsummary>
<external>
<instance instance-name>
<link-local>
<logical-system (all | logical-system-name)>
<lsa-id lsa-id>
<netsummary>
<network>
<nssa>
<opaque-area>
<router>

Syntax (EX Series Switches and QFX Series)

show ospf database
<brief | detail | extensive | summary>
<advertising-router (address | self)>
<area area-id>
<asbrsummary>
<external>
<instance instance-name>
<link-local>
<lsa-id lsa-id>
<netsummary>
<network>
<nssa>
<opaque-area>
<router>

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
advertising-router self (address | self) option introduced in Junos OS Release 9.5.
advertising-router self (address | self) option introduced in Junos OS Release 9.5 for EX Series switches.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display the entries in the OSPF version 2 (OSPFv2) link-state database, which contains data about link-state advertisement (LSA) packets.

Options
none—Display standard information about entries in the OSPFv2 link-state database for all routing instances.

brief | detail | extensive | summary—(Optional) Display the specified level of output.

advertising-router (address | self)—(Optional) Display the LSAs advertised either by a particular routing device or by this routing device.

area area-id—(Optional) Display the LSAs in a particular area.

asbrsummary—(Optional) Display summary AS boundary router LSA entries.

external—(Optional) Display external LSAs.

instance instance-name—(Optional) Display all OSPF database information under the named routing instance.

link-local—(Optional) Display information about link-local LSAs.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

lsa-id lsa-id—(Optional) Display the LSA with the specified LSA identifier.

netsummary—(Optional) Display summary network LSAs.

network—(Optional) Display information about network LSAs.

nssa—(Optional) Display information about not-so-stubby area (NSSA) LSAs.

opaque-area—(Optional) Display opaque area-scope LSAs.

router—(Optional) Display information about router LSAs.

Required Privilege Level
view

RELATED DOCUMENTATION

| clear (ospf | ospf3) database | 783 |

List of Sample Output

- show ospf database on page 836
- show ospf database on page 837
- show ospf database brief on page 837
- show ospf database detail on page 838
- show ospf database extensive on page 839
- show ospf database summary on page 842
- show ospf database opaque-area detail on page 843

Output Fields

Table 14 on page 834 describes the output fields for the `show ospf database` command. Output fields are listed in the approximate order in which they appear.

Table 14: show ospf database Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>area</td>
<td>Area number. Area 0.0.0.0 is the backbone area.</td>
<td>All levels</td>
</tr>
<tr>
<td>Type</td>
<td>Type of link advertisement: ASBRSum, Extern, Network, NSSA, OpaqArea, Router, or Summary.</td>
<td>All levels</td>
</tr>
<tr>
<td>ID</td>
<td>LSA identifier included in the advertisement. An asterisk preceding the identifier marks database entries that originated from the local routing device.</td>
<td>All levels</td>
</tr>
<tr>
<td>Adv Rtr</td>
<td>Address of the routing device that sent the advertisement.</td>
<td>All levels</td>
</tr>
<tr>
<td>Seq</td>
<td>Link sequence number of the advertisement.</td>
<td>All levels</td>
</tr>
<tr>
<td>Age</td>
<td>Time elapsed since the LSA was originated, in seconds.</td>
<td>All levels</td>
</tr>
<tr>
<td>Opt</td>
<td>Optional OSPF capabilities associated with the LSA.</td>
<td>All levels</td>
</tr>
<tr>
<td>Cksum</td>
<td>Checksum value of the LSA.</td>
<td>All levels</td>
</tr>
<tr>
<td>Len</td>
<td>Length of the advertisement, in bytes.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 14: show ospf database Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>Router link-state advertisement information:</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• bits—Flags describing the routing device that generated the LSP.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• link count—Number of links in the advertisement.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• id—ID of a routing device or subnet on the link.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• data—For stub networks, the subnet mask. Otherwise, the IP address of the routing device that generated the LSP.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• type—Type of link. It can be PointToPoint, Transit, Stub, or Virtual.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TOS count—Number of type-of-service (ToS) entries in the advertisement.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TOS 0 metric—Metric for ToS 0.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TOS—Type-of-service (ToS) value.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• metric—Metric for the ToS.</td>
<td></td>
</tr>
<tr>
<td>Network</td>
<td>Network link-state advertisement information:</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• mask—Network mask.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• attached router—ID of the attached neighbor.</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td>Summary link-state advertisement information:</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• mask—Network mask.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TOS—Type-of-service (ToS) value.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• metric—Metric for the ToS.</td>
<td></td>
</tr>
<tr>
<td>Gen timer</td>
<td>How long until the LSA is regenerated.</td>
<td>extensive</td>
</tr>
<tr>
<td>Aging timer</td>
<td>How long until the LSA expires.</td>
<td>extensive</td>
</tr>
<tr>
<td>Installed</td>
<td>How long ago the route was installed.</td>
<td>extensive</td>
</tr>
<tr>
<td>hh:mm:ss ago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>expires in</td>
<td>How long until the route expires.</td>
<td>extensive</td>
</tr>
<tr>
<td>hh:mm:ss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sent hh:mm:ss ago</td>
<td>How long ago the LSA was sent.</td>
<td>extensive</td>
</tr>
<tr>
<td>Last changed</td>
<td>How long ago the route was changed.</td>
<td>extensive</td>
</tr>
<tr>
<td>hh:mm:ss ago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change count</td>
<td>Number of times the route has changed.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
Table 14: show ospf database Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours</td>
<td>Indicates that this is a local advertisement.</td>
<td>extensive</td>
</tr>
<tr>
<td>Router LSAs</td>
<td>Number of router link-state advertisements in the link-state database.</td>
<td>summary</td>
</tr>
<tr>
<td>Network LSAs</td>
<td>Number of network link-state advertisements in the link-state database.</td>
<td>summary</td>
</tr>
<tr>
<td>Summary LSAs</td>
<td>Number of summary link-state advertisements in the link-state database.</td>
<td>summary</td>
</tr>
<tr>
<td>NSSA LSAs</td>
<td>Number of not-so-stubby area link-state advertisements in the link-state database.</td>
<td>summary</td>
</tr>
</tbody>
</table>

Sample Output

show ospf database

user@host> show ospf database

OSPF link state database, Area 0.0.0.1

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>10.255.70.103</td>
<td>10.255.70.103</td>
<td>0x80000002</td>
<td>215</td>
<td>0x20</td>
<td>0x4112</td>
<td>48</td>
</tr>
<tr>
<td>Router</td>
<td>*10.255.71.242</td>
<td>10.255.71.242</td>
<td>0x80000002</td>
<td>214</td>
<td>0x20</td>
<td>0x11b1</td>
<td>48</td>
</tr>
<tr>
<td>Summary</td>
<td>*23.1.1.0</td>
<td>10.255.71.242</td>
<td>0x80000002</td>
<td>172</td>
<td>0x20</td>
<td>0x6d72</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>*24.1.1.0</td>
<td>10.255.71.242</td>
<td>0x80000002</td>
<td>177</td>
<td>0x20</td>
<td>0x607e</td>
<td>28</td>
</tr>
<tr>
<td>NSSA</td>
<td>*33.1.1.1</td>
<td>10.255.71.242</td>
<td>0x80000002</td>
<td>217</td>
<td>0x28</td>
<td>0x73bd</td>
<td>36</td>
</tr>
</tbody>
</table>

OSPF link state database, Area 0.0.0.2

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>10.255.71.52</td>
<td>10.255.71.52</td>
<td>0x80000004</td>
<td>174</td>
<td>0x20</td>
<td>0xda01</td>
<td>36</td>
</tr>
<tr>
<td>Router</td>
<td>*10.255.71.242</td>
<td>10.255.71.242</td>
<td>0x80000003</td>
<td>173</td>
<td>0x20</td>
<td>0xe191</td>
<td>36</td>
</tr>
<tr>
<td>Network</td>
<td>*23.1.1.0</td>
<td>10.255.71.242</td>
<td>0x80000002</td>
<td>173</td>
<td>0x20</td>
<td>0xc976</td>
<td>32</td>
</tr>
<tr>
<td>Summary</td>
<td>*12.1.1.0</td>
<td>10.255.71.242</td>
<td>0x80000001</td>
<td>217</td>
<td>0x20</td>
<td>0xffec</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>*24.1.1.0</td>
<td>10.255.71.242</td>
<td>0x80000002</td>
<td>177</td>
<td>0x20</td>
<td>0x607e</td>
<td>28</td>
</tr>
<tr>
<td>NSSA</td>
<td>*33.1.1.1</td>
<td>10.255.71.242</td>
<td>0x80000001</td>
<td>222</td>
<td>0x28</td>
<td>0xe047</td>
<td>36</td>
</tr>
</tbody>
</table>

OSPF link state database, Area 0.0.0.3

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>10.255.71.238</td>
<td>10.255.71.238</td>
<td>0x80000003</td>
<td>179</td>
<td>0x20</td>
<td>0x3942</td>
<td>36</td>
</tr>
<tr>
<td>Router</td>
<td>*10.255.71.242</td>
<td>10.255.71.242</td>
<td>0x80000003</td>
<td>177</td>
<td>0x20</td>
<td>0xf23d</td>
<td>36</td>
</tr>
<tr>
<td>Network</td>
<td>*24.1.1.1</td>
<td>10.255.71.242</td>
<td>0x80000002</td>
<td>177</td>
<td>0x20</td>
<td>0xc591</td>
<td>32</td>
</tr>
</tbody>
</table>
show ospf database

The output for `show ospf database nssa` with `nssa-only` configuration statement enabled at `[edit policy-options policy-statement policy-name term term-name then external]`, which clears P-bit on type 7 LSA.

```
user@host> show ospf database
```

OSPF link state database, Area 0.0.0.1

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>10.255.70.103</td>
<td>10.255.70.103</td>
<td>0x800000002</td>
<td>215</td>
<td>0x20</td>
<td>0x4112</td>
<td>48</td>
</tr>
<tr>
<td>Router</td>
<td>*10.255.71.242</td>
<td>10.255.71.242</td>
<td>0x800000002</td>
<td>214</td>
<td>0x20</td>
<td>0x11b1</td>
<td>48</td>
</tr>
<tr>
<td>Summary</td>
<td>*23.1.1.0</td>
<td>10.255.71.242</td>
<td>0x800000002</td>
<td>172</td>
<td>0x20</td>
<td>0x6d72</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>*24.1.1.0</td>
<td>10.255.71.242</td>
<td>0x800000002</td>
<td>177</td>
<td>0x20</td>
<td>0x607e</td>
<td>28</td>
</tr>
<tr>
<td>NSSA</td>
<td>*33.1.1.1</td>
<td>10.255.71.242</td>
<td>0x800000002</td>
<td>217</td>
<td>0x20</td>
<td>0xe047</td>
<td>36</td>
</tr>
</tbody>
</table>

OSPF link state database, Area 0.0.0.2

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>10.255.71.52</td>
<td>10.255.71.52</td>
<td>0x800000004</td>
<td>174</td>
<td>0x20</td>
<td>0xd021</td>
<td>36</td>
</tr>
<tr>
<td>Router</td>
<td>*10.255.71.242</td>
<td>10.255.71.242</td>
<td>0x800000003</td>
<td>173</td>
<td>0x20</td>
<td>0xe191</td>
<td>36</td>
</tr>
<tr>
<td>Network</td>
<td>*23.1.1.1</td>
<td>10.255.71.242</td>
<td>0x800000002</td>
<td>173</td>
<td>0x20</td>
<td>0x9c76</td>
<td>32</td>
</tr>
<tr>
<td>Summary</td>
<td>*12.1.1.0</td>
<td>10.255.71.242</td>
<td>0x800000001</td>
<td>217</td>
<td>0x20</td>
<td>0xe047</td>
<td>36</td>
</tr>
<tr>
<td>Summary</td>
<td>*24.1.1.0</td>
<td>10.255.71.242</td>
<td>0x800000002</td>
<td>177</td>
<td>0x20</td>
<td>0x607e</td>
<td>32</td>
</tr>
<tr>
<td>NSSA</td>
<td>*33.1.1.1</td>
<td>10.255.71.242</td>
<td>0x800000001</td>
<td>222</td>
<td>0x20</td>
<td>0x28</td>
<td>36</td>
</tr>
</tbody>
</table>

OSPF link state database, Area 0.0.0.3

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>10.255.71.238</td>
<td>10.255.71.238</td>
<td>0x800000003</td>
<td>179</td>
<td>0x20</td>
<td>0x3942</td>
<td>36</td>
</tr>
<tr>
<td>Router</td>
<td>*10.255.71.242</td>
<td>10.255.71.242</td>
<td>0x800000002</td>
<td>177</td>
<td>0x20</td>
<td>0xc591</td>
<td>36</td>
</tr>
<tr>
<td>Network</td>
<td>*24.1.1.1</td>
<td>10.255.71.242</td>
<td>0x800000001</td>
<td>217</td>
<td>0x20</td>
<td>0xe047</td>
<td>36</td>
</tr>
<tr>
<td>Summary</td>
<td>*12.1.1.0</td>
<td>10.255.71.242</td>
<td>0x800000001</td>
<td>172</td>
<td>0x20</td>
<td>0xe6d72</td>
<td>36</td>
</tr>
<tr>
<td>Summary</td>
<td>*23.1.1.0</td>
<td>10.255.71.242</td>
<td>0x800000002</td>
<td>222</td>
<td>0x20</td>
<td>0xe047</td>
<td>36</td>
</tr>
</tbody>
</table>

show ospf database brief

The output for the `show ospf database brief` command is identical to that for the `show ospf database` command. For sample output, see `show ospf database` on page 836.
show ospf database detail

```
user@host> show ospf database detail

OSPF link state database, Area 0.0.0.1

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>10.255.70.103</td>
<td>10.255.70.103</td>
<td>0x80000002</td>
<td>261</td>
<td>0x20</td>
<td>0x4112</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bits 0x0, link count 2
id 10.255.71.242, data 12.1.1.1, Type PointToPoint (1)
TOS count 0, TOS 0 metric 1
id 12.1.1.0, data 255.255.255.0, Type Stub (3)
TOS count 0, TOS 0 metric 1

Router *10.255.71.242 | 10.255.71.242 | 0x80000002 | 260   | 0x20 | 0x11b1 | 48  |
|         |              |              |         |       |        |     |
|         |              |              |         |       |        |     |
|         |              |              |         |       |        |     |
|         |              |              |         |       |        |     |

bits 0x3, link count 2
id 10.255.70.103, data 12.1.1.2, Type PointToPoint (1)
TOS count 0, TOS 0 metric 1
id 12.1.1.0, data 255.255.255.0, Type Stub (3)
TOS count 0, TOS 0 metric 1

Summary *23.1.1.0 | 10.255.71.242 | 0x80000002 | 218   | 0x20 | 0x6d72 | 28  |
| mask 255.255.255.0 |
| TOS 0x0, metric 1 |

Summary *24.1.1.0 | 10.255.71.242 | 0x80000002 | 223   | 0x20 | 0x607e | 28  |
| mask 255.255.255.0 |
| TOS 0x0, metric 1 |

NSSA *33.1.1.1 | 10.255.71.242 | 0x80000002 | 263   | 0x28 | 0x73bd | 36  |
| mask 255.255.255.255 |
| Type 2, TOS 0x0, metric 0, fwd addr 12.1.1.2, tag 0.0.0.0 |

OSPF link state database, Area 0.0.0.2

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>10.255.71.52</td>
<td>10.255.71.52</td>
<td>0x80000004</td>
<td>220</td>
<td>0x20</td>
<td>0xd021</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bits 0x0, link count 1
id 23.1.1.1.1, data 23.1.1.1.2, Type Transit (2)
TOS count 0, TOS 0 metric 1

Router *10.255.71.242 | 10.255.71.242 | 0x80000003 | 219   | 0x20 | 0xe191 | 36  |
|              |              |              |         |       |        |     |
|              |              |              |         |       |        |     |
|              |              |              |         |       |        |     |
|              |              |              |         |       |        |     |

bits 0x3, link count 1
id 23.1.1.1.1, data 23.1.1.1.1, Type Transit (2)
TOS count 0, TOS 0 metric 1

Network *23.1.1.1 | 10.255.71.242 | 0x80000002 | 219   | 0x20 | 0x9c76 | 32  |
| mask 255.255.255.0 |
| attached router 10.255.71.242 |
| attached router 10.255.71.52 |

Summary *12.1.1.0 | 10.255.71.242 | 0x80000001 | 263   | 0x20 | 0xfeec | 28  |
| mask 255.255.255.0 |
| TOS 0x0, metric 1 |
```
show ospf database extensive

user@host> show ospf database extensive

OSPF link state database, Area 0.0.0.1

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>10.255.70.103</td>
<td>10.255.70.103</td>
<td>0x80000002</td>
<td>286</td>
<td>0x20</td>
<td>0x4112</td>
<td>48</td>
</tr>
</tbody>
</table>
bits 0x0, link count 2
id 10.255.71.242, data 12.1.1.1, Type PointToPoint (1)
TOS count 0, TOS 0 metric 1
id 12.1.1.0, data 255.255.255.0, Type Stub (3)
TOS count 0, TOS 0 metric 1
Aging timer 00:55:14
Installed 00:04:43 ago, expires in 00:55:14
Last changed 00:04:43 ago, Change count: 2
Router *10.255.71.242 10.255.71.242 0x80000002 285 0x20 0x111b 48
bits 0x3, link count 2
id 10.255.70.103, data 12.1.1.2, Type PointToPoint (1)
TOS count 0, TOS 0 metric 1
id 12.1.1.0, data 255.255.255.0, Type Stub (3)
TOS count 0, TOS 0 metric 1
Gen timer 00:45:15
Aging timer 00:55:15
Installed 00:04:45 ago, expires in 00:55:15, sent 00:04:43 ago
Last changed 00:04:45 ago, Change count: 2, Ours
Summary *23.1.1.0 10.255.71.242 0x80000002 243 0x20 0x6d72 28
mask 255.255.255.0
TOS 0x0, metric 1
Gen timer 00:45:57
Aging timer 00:55:57
Installed 00:04:03 ago, expires in 00:55:57, sent 00:04:01 ago
Last changed 00:04:48 ago, Change count: 1, Ours
Summary *24.1.1.0 10.255.71.242 0x80000002 248 0x20 0x607e 28
mask 255.255.255.0
TOS 0x0, metric 1
Gen timer 00:45:52
Aging timer 00:55:52
Installed 00:04:08 ago, expires in 00:55:52, sent 00:04:06 ago
Last changed 00:04:48 ago, Change count: 1, Ours
NSSA *33.1.1.1 10.255.71.242 0x80000002 288 0x28 0x73bd 36
mask 255.255.255.255
Type 2, TOS 0x0, metric 1, fwd addr 12.1.1.2, tag 0.0.0.0
Gen timer 00:45:12
Aging timer 00:55:12
Installed 00:04:48 ago, expires in 00:55:12, sent 00:04:48 ago
Last changed 00:04:48 ago, Change count: 2, Ours

OSPF link state database, Area 0.0.0.2
<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router 10.255.71.52</td>
<td>10.255.71.52</td>
<td>0x80000004</td>
<td>245</td>
<td>0x20</td>
<td>0xdf01</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>
| bits 0x0, link count 1
id 23.1.1.1, data 23.1.1.2, Type Transit (2)
TOS count 0, TOS 0 metric 1
Aging timer 00:55:55
Installed 00:04:02 ago, expires in 00:55:55
Last changed 00:04:02 ago, Change count: 2
Router *10.255.71.242 10.255.71.242 0x80000003 244 0x20 0xe191 36
bits 0x3, link count 1
id 23.1.1.1, data 23.1.1.1, Type Transit (2)
TOS count 0, TOS 0 metric 1
Gen timer 00:45:56
Aging timer 00:55:56
Installed 00:04:04 ago, expires in 00:55:56, sent 00:04:02 ago
Last changed 00:04:04 ago, Change count: 2, Ours
Network *23.1.1.1 10.255.71.242 0x80000002 244 0x20 0x9c76 32
mask 255.255.255.0
attached router 10.255.71.242
attached router 10.255.71.52
Gen timer 00:45:56
Aging timer 00:55:56
Installed 00:04:04 ago, expires in 00:55:56, sent 00:04:02 ago
Last changed 00:04:04 ago, Change count: 1, Ours

Summary *12.1.1.0 10.255.71.242 0x80000001 288 0x20 0xfeec 28
mask 255.255.255.0
TOS 0x0, metric 1
Gen timer 00:45:12
Aging timer 00:55:12
Installed 00:04:48 ago, expires in 00:55:12, sent 00:04:04 ago
Last changed 00:04:48 ago, Change count: 1, Ours

Summary *24.1.1.0 10.255.71.242 0x80000002 248 0x20 0x607e 28
mask 255.255.255.0
TOS 0x0, metric 1
Gen timer 00:45:52
Aging timer 00:55:52
Installed 00:04:08 ago, expires in 00:55:52, sent 00:04:04 ago
Last changed 00:04:48 ago, Change count: 1, Ours

NSSA *33.1.1.1 10.255.71.242 0x80000001 293 0x28 0xe047 36
mask 255.255.255.255
Type 2, TOS 0x0, metric 0, fwd addr 23.1.1.1, tag 0.0.0.0
Gen timer 00:45:07
Aging timer 00:55:07
Installed 00:04:53 ago, expires in 00:55:07, sent 00:04:04 ago
Last changed 00:04:53 ago, Change count: 1, Ours

OSPF link state database, Area 0.0.0.3
Type ID Adv Rtr Seq Age Opt Cksum Len
Router 10.255.71.238 10.255.71.238 0x80000003 250 0x20 0x3942 36
bits 0x0, link count 1
id 24.1.1.1, data 24.1.1.2, Type Transit (2)
TOS count 0, TOS 0 metric 1
Aging timer 00:55:50
show ospf database summary

user@host> show ospf database summary
Area 0.0.0.1:
 2 Router LSAs
 2 Summary LSAs
 1 NSSA LSAs
Area 0.0.0.2:
 2 Router LSAs
 1 Network LSAs
 2 Summary LSAs
 1 NSSA LSAs
Area 0.0.0.3:
 2 Router LSAs
 1 Network LSAs
 2 Summary LSAs
 1 NSSA LSAs
Externals:
 Interface fe-2/2/1.0:
 Interface ge-0/3/2.0:
 Interface so-0/1/2.0:
 Interface so-0/1/2.0:

show ospf database opaque-area detail

user@host> show ospf database opaque-area detail

OSPF database, Area 0.0.0.0
Type ID Adv Rtr Seq Age Opt Cksum Len
OpaqArea*4.0.0.0 1.1.1.10 0x800000ef 1510 0x22 0x2810 156
Area-opaque LSA
 SR-Algorithm (8), length 1:
 Algo (1), length 1:
 0
 SID/Label Range (9), length 12:
 Range Size (1), length 3:
 256
 SID/Label (1), length 3:
 Label (1), length 3:
 802048
 SID/Label Range (9), length 12:
 Range Size (1), length 3:
 SID/Label (1), length 3:
 Label (1), length 3:
 802304
 SID/Label Range (9), length 12:
 Range Size (1), length 3:
The Extended Prefix LSA (eg):

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpaqArea*7.0.0.1</td>
<td>10.10.10.10</td>
<td>0x80000002</td>
<td>561</td>
<td>0x22</td>
<td>0x60eb</td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>

Area-opaque LSA

Extended Prefix (1), length 20:
 Route Type (1), length 1:
 1
Prefix Length (2), length 1:
 32
AF (3), length 1:
 0
Flags (4), length 1:
 0x40
Prefix (5), length 32:
 10.10.10.10
Prefix Sid (2), length 8:
 Flags (1), length 1:
 0x00
 MT ID (2), length 1:
 0
 Algorithm (3), length 1:
 0
 SID (4), length 4:
 0

OSPF database, Area 0.0.0.0

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpaqArea*7.0.0.1</td>
<td>80.0.0.4</td>
<td>0x80000054</td>
<td>1095</td>
<td>0x22</td>
<td>0x29c</td>
<td></td>
<td>44</td>
</tr>
</tbody>
</table>

Area- opaque LSA

 Extended Prefix (1), length 20:
 Route Type (1), length 1:
 1
 Prefix Length (2), length 1:
 32
 AF (3), length 1:
 0
 Flags (4), length 1:
 0x00
 Prefix (5), length 32:
 80.0.0.4
 Prefix Sid (2), length 8:
 Flags (1), length 1:
 0x00
 MT ID (2), length 1:
 0
 Algorithm (3), length 1:
 0
 SID (4), length 4:
 3

Extended Links LSA (eg):
<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpaqArea</td>
<td>8.0.0.1</td>
<td>1.1.1.1</td>
<td>0x80000001</td>
<td>688</td>
<td>0x22</td>
<td>0xcd8a</td>
<td>48</td>
</tr>
</tbody>
</table>

Area-opaque LSA

Extended Link (1), length 24:

- Link Type (1), length 1:
 - 2
- Link Id (2), length 4:
 - 11.1.1.1
- Link Data (3), length 4:
 - 11.1.1.2
- Adjacency Sid (2), length 7:
 - Flags (1), length 1:
 - 0x60
 - MT ID (2), length 1:
 - 0
 - Weight (3), length 1:
 - 0
 - Label (4), length 3:
 - 300416
show ospf3 database

List of Syntax
Syntax on page 847
Syntax (EX Series Switches and QFX Series) on page 847

Syntax

```
show ospf3 database
<brief | detail | extensive | summary>
<advertising-router (address | self)>
<area area-id>
<external>
<instance instance-name>
<inter-area-prefix>
<inter-area-router>
<intra-area-prefix>
<link>
<link-local>
<logical-system (all | logical-system-name)>
<lsa-id lsa-id>
<network>
<nssa>
<realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)>
<router>
```

Syntax (EX Series Switches and QFX Series)

```
show ospf3 database
<brief | detail | extensive | summary>
<advertising-router (address | self)>
<area area-id>
<external>
<instance instance-name>
<inter-area-prefix>
<inter-area-router>
<intra-area-prefix>
<link>
<link-local>
<lsa-id lsa-id>
<network>
<nssa>
<nssa>
<router>
```
Release Information

Command introduced before Junos OS Release 7.4.

Command introduced in Junos OS Release 9.0 for EX Series switches.

realm option introduced in Junos OS Release 9.2.

advertising-router *(address | self)* option introduced in Junos Release 9.5.

advertising-router *(address | self)* option introduced in Junos OS Release 9.5 for EX Series switches.

Command introduced in Junos OS Release 11.3 for the QFX Series.

Description

Display the entries in the OSPF version 3 (OSPFv3) link-state database, which contains data about link-state advertisement (LSA) packets.

Options

- **none**—Display standard information about all entries in the OSPFv3 link-state database.

- **brief | detail | extensive | summary**—(Optional) Display the specified level of output.

- **advertising-router** *(address | self)*—(Optional) Display the LSAs advertised either by a particular routing device or by this routing device.

- **area area-id**—(Optional) Display the LSAs in a particular area.

- **external**—(Optional) Display external LSAs.

- **instance instance-name**—(Optional) Display all OSPF database information under the named routing instance.

- **inter-area-prefix**—(Optional) Display information about interarea-prefix LSAs.

- **inter-area-router**—(Optional) Display information about interarea-router LSAs.

- **intra-area-prefix**—(Optional) Display information about intra-area-prefix LSAs.

- **link**—(Optional) Display information about link LSAs.

- **link-local**—(Optional) Display information about link-local LSAs.

- **logical-system (all | logical-system-name)**—(Optional) Perform this operation on all logical systems or on a particular logical system.

- **lsa-id lsa-id**—(Optional) Display the LSA with the specified LSA identifier.

- **network**—(Optional) Display information about network LSAs.

- **nssa**—(Optional) Display information about not-so-stubby area (NSSA) LSAs.

- **realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)**—(Optional) Display information about the specified OSPFv3 realm, or address family. Use the **realm** option to specify an address family other than IPv6 unicast, which is the default.
router—(Optional) Display information about router LSAs.

Required Privilege Level
view

RELATED DOCUMENTATION

| clear (ospf | ospf3) database | 783 |

List of Sample Output

- show ospf3 database brief on page 855
- show ospf3 database extensive on page 855
- show ospf3 database summary on page 859

Output Fields

Table 15 on page 849 lists the output fields for the `show ospf3 database` command. Output fields are listed in the approximate order in which they appear.

Table 15: show ospf3 database Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF link state database, area area-number</td>
<td>Entries in the link-state database for this area.</td>
<td>brief detail extensive</td>
</tr>
<tr>
<td>OSPF AS SCOPE link state database</td>
<td>Entries in the AS scope link-state database.</td>
<td>brief detail extensive</td>
</tr>
<tr>
<td>OSPF Link-Local link state database, interface interface-name</td>
<td>Entries in the link-local link-state database for this interface.</td>
<td>brief detail extensive</td>
</tr>
<tr>
<td>area</td>
<td>Area number. Area 0.0.0.0 is the backbone area.</td>
<td>All levels</td>
</tr>
<tr>
<td>Type</td>
<td>Type of link advertisement: Extern, InterArPfx, InterArRtr, IntraArPrx, Link, Network, NSSA, or Router.</td>
<td>brief detail extensive</td>
</tr>
<tr>
<td>ID</td>
<td>Link identifier included in the advertisement. An asterisk (*) preceding the identifier marks database entries that originated from the local routing device.</td>
<td>brief detail extensive</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Adv Rtr</td>
<td>Address of the routing device that sent the advertisement.</td>
<td>brief detail extensive</td>
</tr>
<tr>
<td>Seq</td>
<td>Link sequence number of the advertisement.</td>
<td>brief detail extensive</td>
</tr>
<tr>
<td>Age</td>
<td>Time elapsed since the LSA was originated, in seconds.</td>
<td>brief detail extensive</td>
</tr>
<tr>
<td>Cksum</td>
<td>Checksum value of the LSA.</td>
<td>brief detail extensive</td>
</tr>
<tr>
<td>Len</td>
<td>Length of the advertisement, in bytes.</td>
<td>brief detail extensive</td>
</tr>
<tr>
<td></td>
<td>Router (Router Link-State Advertisements)</td>
<td></td>
</tr>
<tr>
<td>bits</td>
<td>Flags describing the routing device that generated the LSP.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Options</td>
<td>Option bits carried in the router LSA.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>For Each Router Link</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Type of interface. The value of all other output fields describing a routing device interface depends on the interface’s type:</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• PointToPoint (1)—Point-to-point connection to another routing device.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Transit (2)—Connection to a transit network.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Virtual (4)—Virtual link.</td>
<td></td>
</tr>
<tr>
<td>Loc-if-id</td>
<td>Local interface ID assigned to the interface that uniquely identifies the interface with the routing device.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Nbr-if-id</td>
<td>Interface ID of the neighbor’s interface for this routing device link.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Nbr-rtr-id</td>
<td>Router ID of the neighbor routing device (for type 2 interfaces, the attached link’s designated router).</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Metric</td>
<td>Cost of the router link.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Gen timer</td>
<td>How long until the LSA is regenerated, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>Aging timer</td>
<td>How long until the LSA expires, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>Installed nn:nn:nn ago</td>
<td>How long ago the route was installed, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>expires in nn:nn:nn</td>
<td>How long until the route expires, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>sent nn:nn:nn ago</td>
<td>Time elapsed since the LSA was last transmitted or flooded to an adjacency or an interface, respectively, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>Ours</td>
<td>Indicates that this is a local advertisement.</td>
<td>extensive</td>
</tr>
<tr>
<td>Network (Network Link-State Advertisements)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options</td>
<td>Option bits carried in the network LSA.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Attached Router</td>
<td>Router IDs of each of the routing devices attached to the link. Only routing devices that are fully adjacent to the designated router are listed. The designated router includes itself in this list.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>InterArPfx (Interarea-Prefix Link-State Advertisements)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefix</td>
<td>IPv6 address prefix.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Prefix-options</td>
<td>Option bit associated with the prefix.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Metric</td>
<td>Cost of this route. Expressed in the same units as the interface costs in the router LSAs. When the interarea-prefix LSA is describing a route to a range of addresses, the cost is set to the maximum cost to any reachable component of the address range.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Gen timer</td>
<td>How long until the LSA is regenerated, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>Aging timer</td>
<td>How long until the LSA expires, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>Installed nn:nn:nn ago</td>
<td>How long ago the route was installed, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>expires in nn:nn:nn</td>
<td>How long until the route expires, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>sent nn:nn:nn ago</td>
<td>Time elapsed since the LSA was last transmitted or flooded to an adjacency or an interface, respectively, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>Ours</td>
<td>Indicates that this is a local advertisement.</td>
<td>extensive</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>InterArRtr (Interarea-Router Link-State Advertisements)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dest-router-id</td>
<td>Router ID of the routing device described by the LSA.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>options</td>
<td>Optional capabilities supported by the routing device.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Metric</td>
<td>Cost of this route. Expressed in the same units as the interface costs in the router LSAs. When the interarea-prefix LSA is describing a route to a range of addresses, the cost is set to the maximum cost to any reachable component of the address range.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Prefix</td>
<td>IPv6 address prefix.</td>
<td>extensive</td>
</tr>
<tr>
<td>Prefix-options</td>
<td>Option bit associated with the prefix.</td>
<td>extensive</td>
</tr>
<tr>
<td>Extern (External Link-State Advertisements)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefix</td>
<td>IPv6 address prefix.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Prefix-options</td>
<td>Option bit associated with the prefix.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Metric</td>
<td>Cost of the route, which depends on the value of Type.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Type n</td>
<td>Type of external metric: Type 1 or Type 2.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Aging timer</td>
<td>How long until the LSA expires, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>Installed nn:nn:nn ago</td>
<td>How long ago the route was installed, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>expires in nn:nn:nn</td>
<td>How long until the route expires, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>sent nn:nn:nn ago</td>
<td>Time elapsed since the LSA was last transmitted or flooded to an adjacency or an interface, respectively, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>Link (Link-State Advertisements)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv6-Address</td>
<td>IPv6 link-local address on the link for which this link LSA originated.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Options</td>
<td>Option bits carried in the link LSA.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 15: show ospf3 database Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>priority</td>
<td>Router priority of the interface attaching the originating routing device to the link.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Prefix-count</td>
<td>Number of IPv6 address prefixes contained in the LSA. The rest of the link LSA contains a list of IPv6 prefixes to be associated with the link.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Prefix</td>
<td>IPv6 address prefix.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Prefix-options</td>
<td>Option bit associated with the prefix.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Gen timer</td>
<td>How long until the LSA is regenerated, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>Aging timer</td>
<td>How long until the LSA expires, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>Installed nn:nn:nn ago</td>
<td>How long ago the route was installed, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>expires in nn:nn:nn</td>
<td>How long until the route expires, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>sent nn:nn:nn ago</td>
<td>Time elapsed since the LSA was last transmitted or flooded to an adjacency or an interface, respectively, in the format hours:minutes:seconds.</td>
<td>extensive</td>
</tr>
<tr>
<td>Ours</td>
<td>Indicates that this is a local advertisement.</td>
<td>extensive</td>
</tr>
</tbody>
</table>

IntraArPfx (Intra-Area-Prefix Link-State Advertisements)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref-lsa-type</td>
<td>LSA type of the referenced LSA.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Router—Address prefixes are associated with a router LSA.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Network—Address prefixes are associated with a network LSA.</td>
<td></td>
</tr>
<tr>
<td>Ref-lsa-id</td>
<td>Link-state ID of the referenced LSA.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Ref-router-id</td>
<td>Advertising router ID of the referenced LSA.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Prefix-count</td>
<td>Number of IPv6 address prefixes contained in the LSA. The rest of the link LSA contains a list of IPv6 prefixes to be associated with the link.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Prefix</td>
<td>IPv6 address prefix.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Prefix-options</td>
<td>Option bit associated with the prefix.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 15: show ospf3 database Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>Cost of this prefix. Expressed in the same units as the interface costs in the router LSAs.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Gen timer</td>
<td>How long until the LSA is regenerated, in the format \textit{hours:minutes:seconds}.</td>
<td>extensive</td>
</tr>
<tr>
<td>Aging timer</td>
<td>How long until the LSA expires, in the format \textit{hours:minutes:seconds}.</td>
<td>extensive</td>
</tr>
<tr>
<td>Installed \textit{hh:mm:ss} ago</td>
<td>How long ago the route was installed, in the format \textit{hours:minutes:seconds}.</td>
<td>extensive</td>
</tr>
<tr>
<td>expires in \textit{hh:mm:ss}</td>
<td>How long until the route expires, in the format \textit{hours:minutes:seconds}.</td>
<td>extensive</td>
</tr>
<tr>
<td>sent \textit{hh:mm:ss} ago</td>
<td>Time elapsed since the LSA was last transmitted or flooded to an adjacency or an interface, respectively, in the format \textit{hours:minutes:seconds}.</td>
<td>extensive</td>
</tr>
<tr>
<td>n Router LSAs</td>
<td>Number of router LSAs in the link-state database.</td>
<td>summary</td>
</tr>
<tr>
<td>n Network LSAs</td>
<td>Number of network LSAs in the link-state database.</td>
<td>summary</td>
</tr>
<tr>
<td>n InterArPfx LSAs</td>
<td>Number of interarea-prefix LSAs in the link-state database.</td>
<td>summary</td>
</tr>
<tr>
<td>n InterArRtr LSAs</td>
<td>Number of interarea-router LSAs in the link-state database.</td>
<td>summary</td>
</tr>
<tr>
<td>n IntraArPfx LSAs</td>
<td>Number of intra-area-prefix LSAs in the link-state database.</td>
<td>summary</td>
</tr>
<tr>
<td>Externals</td>
<td>Display of the external LSA database.</td>
<td>summary</td>
</tr>
<tr>
<td>n Extern LSAs</td>
<td>Number of external LSAs in the link-state database.</td>
<td>summary</td>
</tr>
<tr>
<td>Interface \textit{interface-name}</td>
<td>Name of the interface for which link-local LSA information is displayed.</td>
<td>summary</td>
</tr>
<tr>
<td>n Link LSAs</td>
<td>Number of link LSAs in the link-state database.</td>
<td>summary</td>
</tr>
</tbody>
</table>
show ospf3 database brief

user@host> show ospf3 database brief

OSPF3 link state database, area 0.0.0.0

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>0.0.0.1</td>
<td>10.255.4.85</td>
<td>0x80000003</td>
<td>885</td>
<td>0xa697</td>
<td>40</td>
</tr>
<tr>
<td>Router</td>
<td>*0.0.0.1</td>
<td>10.255.4.93</td>
<td>0x80000002</td>
<td>953</td>
<td>0xc677</td>
<td>40</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.2</td>
<td>10.255.4.93</td>
<td>0x80000001</td>
<td>910</td>
<td>0xb96f</td>
<td>44</td>
</tr>
<tr>
<td>InterArRtr</td>
<td>*0.0.0.1</td>
<td>10.255.4.93</td>
<td>0x80000001</td>
<td>910</td>
<td>0xe159</td>
<td>32</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>*0.0.0.1</td>
<td>10.255.4.93</td>
<td>0x80000002</td>
<td>432</td>
<td>0x788f</td>
<td>72</td>
</tr>
</tbody>
</table>

OSPF3 link state database, area 0.0.0.1

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>*0.0.0.1</td>
<td>10.255.4.93</td>
<td>0x80000003</td>
<td>916</td>
<td>0xea40</td>
<td>40</td>
</tr>
<tr>
<td>Router</td>
<td>0.0.0.1</td>
<td>10.255.4.97</td>
<td>0x80000006</td>
<td>851</td>
<td>0xc95b</td>
<td>40</td>
</tr>
<tr>
<td>Network</td>
<td>0.0.0.2</td>
<td>10.255.4.97</td>
<td>0x80000002</td>
<td>916</td>
<td>0x4598</td>
<td>32</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.1</td>
<td>10.255.4.93</td>
<td>0x80000002</td>
<td>117</td>
<td>0xa980</td>
<td>44</td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.2</td>
<td>10.255.4.93</td>
<td>0x80000002</td>
<td>62</td>
<td>0xd47e</td>
<td>44</td>
</tr>
<tr>
<td>NSSA</td>
<td>0.0.0.1</td>
<td>10.255.4.97</td>
<td>0x80000002</td>
<td>362</td>
<td>0x45ee</td>
<td>44</td>
</tr>
<tr>
<td>IntraArPfx</td>
<td>0.0.0.1</td>
<td>10.255.4.97</td>
<td>0x80000006</td>
<td>851</td>
<td>0x2f77</td>
<td>52</td>
</tr>
</tbody>
</table>

OSPF3 AS SCOPE link state database

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extern</td>
<td>0.0.0.1</td>
<td>10.255.4.85</td>
<td>0x80000002</td>
<td>63</td>
<td>0x9b86</td>
<td>44</td>
</tr>
<tr>
<td>Extern</td>
<td>*0.0.0.1</td>
<td>10.255.4.93</td>
<td>0x80000001</td>
<td>910</td>
<td>0x59c9</td>
<td>44</td>
</tr>
</tbody>
</table>

OSPF3 Link-Local link state database, interface ge-1/3/0.0

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>*0.0.0.2</td>
<td>10.255.4.93</td>
<td>0x80000003</td>
<td>916</td>
<td>0x4dad</td>
<td>64</td>
</tr>
</tbody>
</table>

show ospf3 database extensive

user@host> show ospf3 database extensive

OSPF3 link state database, area 0.0.0.0

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>0.0.0.1</td>
<td>10.255.4.85</td>
<td>0x80000003</td>
<td>1028</td>
<td>0xa697</td>
<td>40</td>
</tr>
</tbody>
</table>
| bits 0x2, Options 0x13
| Type PointToPoint (1), Metric 10
| Loc-If-Id 2, Nbr-If-Id 3, Nbr-Rtr-Id 10.255.4.93
| Aging timer 00:42:51 |
Router *0.0.0.1 10.255.4.93 0x80000002 1096 0xc677 40
 bits 0x3, Options 0x13
 Type PointToPoint (1), Metric 10
 Loc-If-Id 3, Nbr-If-Id 2, Nbr-Rtr-Id 10.255.4.85
 Gen timer 00:00:40
 Aging timer 00:41:44
 Installed 00:18:16 ago, expires in 00:41:44, sent 00:18:14 ago
 Ours

InterArPfx *0.0.0.2 10.255.4.93 0x80000001 1053 0xb96f 44
 Prefix feee::10:10:2:0/126
 Prefix-options 0x0, Metric 10
 Gen timer 00:17:02
 Aging timer 00:42:26
 Installed 00:17:33 ago, expires in 00:42:27, sent 00:17:31 ago
 Ours

InterArPfx *0.0.0.3 10.255.4.93 0x80000001 1053 0x71d3 44
 Prefix feee::10:255:4:97/128
 Prefix-options 0x0, Metric 10
 Gen timer 00:21:07
 Aging timer 00:42:26
 Installed 00:17:33 ago, expires in 00:42:27, sent 00:17:31 ago
 Ours

InterArRtr *0.0.0.1 10.255.4.93 0x80000001 1053 0xe159 32
 Dest-router-id 10.255.4.97, Options 0x19, Metric 10
 Gen timer 00:29:18
 Aging timer 00:42:26
 Installed 00:17:33 ago, expires in 00:42:27, sent 00:17:31 ago
 Ours

IntraArPfx 0.0.0.1 10.255.4.85 0x80000002 1028 0x2403 72
 Ref-lsa-type Router, Ref-lsa-id 0.0.0.0, Ref-router-id 10.255.4.85
 Prefix-count 2
 Prefix feee::10:255:4:85/128
 Prefix-options 0x2, Metric 0
 Prefix feee::10:10:1:0/126
 Prefix-options 0x0, Metric 10
 Aging timer 00:42:51
 Installed 00:17:05 ago, expires in 00:42:52, sent 02:37:54 ago

IntraArPfx *0.0.0.1 10.255.4.93 0x80000002 575 0x788f 72
 Ref-lsa-type Router, Ref-lsa-id 0.0.0.0, Ref-router-id 10.255.4.93
 Prefix-count 2
 Prefix feee::10:255:4:93/128
 Prefix-options 0x2, Metric 0
 Prefix feee::10:10:1:0/126
Prefix-options 0x0, Metric 10
Gen timer 00:33:23
Aging timer 00:50:24
Installed 00:09:35 ago, expires in 00:50:25, sent 00:09:33 ago
OSPF3 link state database, area 0.0.0.1

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>0.0.0.1</td>
<td>10.255.4.93</td>
<td>0x80000003</td>
<td>1059</td>
<td>0xea40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bits 0x3, Options 0x19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type Transit (2), Metric 10</td>
<td>Loc-If-Id 2, Nbr-If-Id 2, Nbr-Rtr-Id 10.255.4.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gen timer 00:08:51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aging timer 00:42:20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Installed 00:17:39 ago, expires in 00:42:21, sent 00:17:37 ago</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router</td>
<td>0.0.0.1</td>
<td>10.255.4.97</td>
<td>0x80000006</td>
<td>994</td>
<td>0xc95b</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bits 0x2, Options 0x19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type Transit (2), Metric 10</td>
<td>Loc-If-Id 2, Nbr-If-Id 2, Nbr-Rtr-Id 10.255.4.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gen timer 00:16:31 ago, expires in 00:43:26, sent 02:37:54 ago</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network</td>
<td>0.0.0.2</td>
<td>10.255.4.97</td>
<td>0x80000002</td>
<td>1059</td>
<td>0x4598</td>
<td>32</td>
</tr>
<tr>
<td>Options 0x11</td>
<td>Attached router 10.255.4.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aging timer 00:42:20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Installed 00:17:36 ago, expires in 00:42:21, sent 02:37:54 ago</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InterArPfx</td>
<td>*0.0.0.1</td>
<td>10.255.4.93</td>
<td>0x80000002</td>
<td>260</td>
<td>0xa980</td>
<td>44</td>
</tr>
<tr>
<td>Prefix feee::10:10:1:0/126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefix-options 0x0, Metric 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen timer 00:45:39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aging timer 00:55:39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installed 00:04:20 ago, expires in 00:55:40, sent 00:04:18 ago</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ours</td>
<td>InterArPfx</td>
<td>*0.0.0.2</td>
<td>10.255.4.93</td>
<td>0x80000002</td>
<td>205</td>
<td>0xd47e</td>
</tr>
<tr>
<td>Prefix feee::10:255:4:93/128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefix-options 0x0, Metric 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen timer 00:46:35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aging timer 00:56:35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installed 00:03:25 ago, expires in 00:56:35, sent 00:03:23 ago</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ours</td>
<td>InterArPfx</td>
<td>*0.0.0.3</td>
<td>10.255.4.93</td>
<td>0x80000001</td>
<td>1089</td>
<td>0x9bbb</td>
</tr>
<tr>
<td>Prefix feee::10:255:4:85/128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefix-options 0x0, Metric 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen timer 00:04:46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aging timer 00:41:51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Installed 00:18:09 ago, expires in 00:41:51, sent 00:17:43 ago

Ours

NSSA 0.0.0.1 10.255.4.97 0x80000002 505 0x45ee 44
Prefix feee::200:200:1:0/124
Prefix-options 0x8, Metric 10, Type 2,
Aging timer 00:51:35
Installed 00:08:22 ago, expires in 00:51:35, sent 02:37:54 ago

IntraArPfx 0.0.0.1 10.255.4.97 0x80000006 994 0x2f77 52
Ref-lsa-type Router, Ref-lsa-id 0.0.0.0, Ref-router-id 10.255.4.97
Prefix-count 1
Prefix feee::10:255:4:97/128
Prefix-options 0x2, Metric 0
Aging timer 00:43:25
Installed 00:16:31 ago, expires in 00:43:26, sent 02:37:54 ago

IntraArPfx 0.0.0.3 10.255.4.97 0x80000002 1059 0x4446 52
Ref-lsa-type Network, Ref-lsa-id 0.0.0.2, Ref-router-id 10.255.4.97
Prefix-count 1
Prefix feee::10:10:2:0/126
Prefix-options 0x0, Metric 0
Aging timer 00:42:20
Installed 00:17:36 ago, expires in 00:42:21, sent 02:37:54 ago

OSPF3 AS SCOPE link state database

Type ID Adv Rtr Seq Age Cksum Len
Extern 0.0.0.1 10.255.4.85 0x80000002 206 0x9b86 44
Prefix feee::100:100:1:0/124
Prefix-options 0x0, Metric 20, Type 2,
Aging timer 00:56:34
Installed 00:03:23 ago, expires in 00:56:34, sent 02:37:54 ago

Extern *0.0.0.1 10.255.4.93 0x80000001 1053 0x59c9 44
Prefix feee::200:200:1:0/124
Prefix-options 0x0, Metric 10, Type 2,
Gen timer 00:25:12
Aging timer 00:42:26
Installed 00:17:33 ago, expires in 00:42:27, sent 00:17:31 ago

OSPF3 Link-Local link state database, interface ge-1/3/0.0

Type ID Adv Rtr Seq Age Cksum Len
Link *0.0.0.2 10.255.4.93 0x80000003 1059 0x4dab 64
fe80::290:69ff:fe39:1cfd
Options 0x11, priority 128
Prefix-count 1
Prefix feee::10:10:2:0/126 Prefix-options 0x0
Gen timer 00:12:56
Aging timer 00:42:20
Installed 00:17:39 ago, expires in 00:42:21, sent 00:17:37 ago

Link 0.0.0.2 10.255.4.97 0x80000003 205 0xa87d 64
fe80::290:69ff:fe38:883e
Options 0x11, priority 128
Prefix-count 1
Prefix feee::10:10:2:0/126 Prefix-options 0x0
Aging timer 00:56:35
Installed 00:03:22 ago, expires in 00:56:35, sent 02:37:54 ago

OSPF3 Link-Local link state database, interface so-2/2/0.0
Type ID Adv Rtr Seq Age Cksum Len
Link 0.0.0.2 10.255.4.85 0x80000002 506 0x42bb 64
fe80::280:42ff:fe10:f169
Options 0x13, priority 128
Prefix-count 1
Prefix feee::10:10:1:0/126 Prefix-options 0x0
Aging timer 00:51:34
Installed 00:08:23 ago, expires in 00:51:34, sent 02:37:54 ago
Link *0.0.0.3 10.255.4.93 0x80000002 505 0x6b7a 64
fe80::280:42ff:fe10:f177
Options 0x13, priority 128
Prefix-count 1
Prefix feee::10:10:1:0/126 Prefix-options 0x0
Gen timer 00:37:28
Aging timer 00:51:35
Installed 00:08:25 ago, expires in 00:51:35, sent 00:08:23 ago

show ospf3 database summary

user@host> show ospf3 database summary

Area 0.0.0.0:
 2 Router LSAs
 1 InterArPfx LSAs
 1 InterArRtr LSAs
 1 IntraArPfx LSAs
Area 0.0.0.1:
 2 Router LSAs
 1 Network LSAs
 2 InterArPfx LSAs
 1 NSSA LSAs
 1 IntraArPfx LSAs
Externals:
2 Extern LSAs
Interface ge-1/3/0.0:
 1 Link LSAs
Interface lo0.0:
Interface so-2/2/0.0:
 1 Link LSAs
show (ospf | ospf3) interface

List of Syntax
Syntax on page 861
Syntax (EX Series Switches and QFX Series) on page 861

Syntax

```
show (ospf | ospf3) interface
<brief | detail | extensive>
<area area-id>
<interface-name>
<instance instance-name>
<logical-system (all | logical-system-name)>
<realm (ip4-multicast | ipv4-unicast | ipv6-multicast)>
```

Syntax (EX Series Switches and QFX Series)

```
show (ospf | ospf3) interface
<brief | detail | extensive>
<area area-id>
<interface-name>
<instance instance-name>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
area option introduced in Junos OS Release 9.2.
area option introduced in Junos OS Release 9.2 for EX Series switches.
realm option introduced in Junos OS Release 9.2.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display the status of OSPF interfaces.

Options
none—Display standard information about the status of all OSPF interfaces for all routing instances
brief | detail | extensive—(Optional) Display the specified level of output.
area area-id—(Optional) Display information about the interfaces that belong to the specified area.
interface-name—(Optional) Display information for the specified interface.
instance **instance-name**—(Optional) Display all OSPF interfaces under the named routing instance.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)—(OSPFv3 only) (Optional) Display information about the interfaces for the specified OSPFv3 realm, or address family. Use the **realm** option to specify an address family for OSPFv3 other than IPv6 unicast, which is the default.

Required Privilege Level
view

List of Sample Output
show ospf interface brief on page 865
show ospf interface detail on page 865
show ospf3 interface detail on page 865
show ospf interface detail(When Multiarea Adjacency Is Configured) on page 865
show ospf interface area area-id on page 867
show ospf interface extensive (When Flooding Reduction Is Enabled) on page 867
show ospf interface extensive (When LDP Synchronization Is Configured) on page 868

Output Fields
Table 16 on page 862 lists the output fields for the **show (ospf | ospf3) interface** command. Output fields are listed in the approximate order in which they appear.

Table 16: show (ospf | ospf3) interface Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the interface running OSPF version 2 or OSPF version 3.</td>
<td>All levels</td>
</tr>
<tr>
<td>State</td>
<td>State of the interface: BDR, Down, DR, DRother, Loop, PtToPt, or Waiting.</td>
<td>All levels</td>
</tr>
<tr>
<td>Area</td>
<td>Number of the area that the interface is in.</td>
<td>All levels</td>
</tr>
<tr>
<td>DR ID</td>
<td>Address of the area's designated router.</td>
<td>All levels</td>
</tr>
<tr>
<td>BDR ID</td>
<td>Backup designated router for a particular subnet.</td>
<td>All levels</td>
</tr>
<tr>
<td>Nbrs</td>
<td>Number of neighbors on this interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Type</td>
<td>Type of interface: LAN, NBMA, P2MP, P2P, or Virtual.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Address</td>
<td>IP address of the neighbor.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Mask</td>
<td>Netmask of the neighbor.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>Prefix-length</td>
<td>(OSPFv3) IPv6 prefix length, in bits.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>OSPF3-Intf-Index</td>
<td>(OSPFv3) OSPF version 3 interface index.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>MTU</td>
<td>Interface maximum transmission unit (MTU).</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Cost</td>
<td>Interface cost (metric).</td>
<td>detail extensive</td>
</tr>
<tr>
<td>DR addr</td>
<td>Address of the designated router.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>BDR addr</td>
<td>Address of the backup designated router.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Adj count</td>
<td>Number of adjacent neighbors.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Secondary</td>
<td>Indicates that this interface is configured as a secondary interface for this area.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>This interface can belong to more than one area, but can be designated as a primary interface for only one area.</td>
<td></td>
</tr>
<tr>
<td>Flood Reduction</td>
<td>Indicates that this interface is configured with flooding reduction. All self-originated LSAs from this interface are initially sent with the DoNotAge bit set. As a result, LSAs are refreshed only when a change occurs.</td>
<td>extensive</td>
</tr>
<tr>
<td>Priority</td>
<td>Router priority used in designated router (DR) election on this interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flood list</td>
<td>List of link-state advertisements (LSAs) that might be about to flood this interface.</td>
<td>extensive</td>
</tr>
<tr>
<td>Ack list</td>
<td>Acknowledgment list. List of pending acknowledgments on this interface.</td>
<td>extensive</td>
</tr>
<tr>
<td>Descriptor list</td>
<td>List of packet descriptors.</td>
<td>extensive</td>
</tr>
<tr>
<td>Hello</td>
<td>Configured value for the hello timer.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Dead</td>
<td>Configured value for the dead timer.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 16: show (ospf | ospf3) interface Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
</table>
| Auth type | (OSPFv2) Authentication mechanism for sending and receiving OSPF protocol packets:
• **MD5**—The MD5 mechanism is configured in accordance with RFC 2328.
• **None**—No authentication method is configured.
• **Password**—A simple password (RFC 2328) is configured. | detail extensive|
| Topology | (Multiarea adjacency) Name of topology: **default** or **name**. | |
| LDP sync state | (OSPFv2 and LDP synchronization) Current state of LDP synchronization: in sync, in holddown, and not supported. | extensive |
| reason | (OSPFv2 and LDP synchronization) Reason for the current state of LDP synchronization. The LDP session might be up or down, or adjacency might be up or down. | extensive |
| config holdtime | (OSPFv2 and LDP synchronization) Configured value of the hold timer. If the state is not synchronized, and the hold time is not infinity, the **remaining** field displays the number of seconds that remain until the configured hold timer expires. | extensive |
| IPSec SA name | (OSPFv2) Name of the IPSec security association name. | detail extensive|
| Active key ID | (OSPFv2 and MD5) Number from 0 to 255 that uniquely identifies an MD5 key. | detail extensive|
| Start time | (OSPFv2 and MD5) Time at which the routing device starts using an MD5 key to authenticate OSPF packets transmitted on the interface on which this key is configured. To authenticate received OSPF protocol packets, the key becomes effective immediately after the configuration is committed. If the start time option is not configured, the key is effective immediately for send and receive and is displayed as **Start time 1970 Jan 01 00:00:00 PST.** | detail extensive|
| ReXmit | Configured value for the Retransmit timer. | detail extensive|
| Stub, Not Stub, or Stub NSSA | Type of area. | detail extensive|
show ospf interface brief

user@host> show ospf interface brief

<table>
<thead>
<tr>
<th>Intf</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>at-5/1/0.0</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
<tr>
<td>ge-2/3/0.0</td>
<td>DR</td>
<td>0.0.0.0</td>
<td>192.168.4.16</td>
<td>192.168.4.15</td>
<td>1</td>
</tr>
<tr>
<td>lo0.0</td>
<td>DR</td>
<td>0.0.0.0</td>
<td>192.168.4.16</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td>so-0/0/0.0</td>
<td>Down</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td>so-6/0/1.0</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
<tr>
<td>so-6/0/2.0</td>
<td>Down</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td>so-6/0/3.0</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
</tbody>
</table>

show ospf interface detail

user@host> show ospf interface detail

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>fe-0/0/1.0</td>
<td>BDR</td>
<td>0.0.0.0</td>
<td>192.168.37.12</td>
<td>10.255.245.215</td>
<td>1</td>
</tr>
</tbody>
</table>
| Type LAN, address 192.168.37.11, Mask 255.255.255.248, MTU 4460, Cost 40
| DR addr 192.168.37.12, BDR addr 192.168.37.11, Adj count 1, Priority 128
| Hello 10, Dead 40, ReXmit 5, Not Stub
| t1-0/2/1.0 | PtToPt | 0.0.0.0 | 0.0.0.0 | 0.0.0.0 | 0 |
| Type P2P, Address 0.0.0.0, Mask 0.0.0.0, MTU 1500, Cost 2604
| Adj count 0
| Hello 10, Dead 40, ReXmit 5, Not Stub
| Auth type: MD5, Active key ID 3, Start time 2002 Nov 19 10:00:00 PST
| IPsec SA Name: sa

show ospf3 interface detail

user@host> show ospf3 interface so-0/0/3.0 detail

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR-ID</th>
<th>BDR-ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>so-0/0/3.0</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
</tbody>
</table>
| Address fe80::2a0:a5ff:fe28:1dfe, Prefix-length 64
| OSPF3-Intf-index 1, Type P2P, MTU 4470, Cost 12, Adj-count 1
| Hello 10, Dead 40, ReXmit 5, Not Stub

show ospf interface detail
(When Multiarea Adjacency Is Configured)

user@host> show ospf interface detail

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0.0</td>
<td>DR</td>
<td>0.0.0.0</td>
<td>10.255.245.2</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Type: LAN, Address: 127.0.0.1, Mask: 255.255.255.255, MTU: 65535, Cost: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DR addr: 127.0.0.1, Adj count: 0, Priority: 128</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hello: 10, Dead: 40, ReXmit: 5, Not Stub</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auth type: None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topology default (ID 0) -> Cost: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lo0.0</td>
<td>DR</td>
<td>0.0.0.0</td>
<td>10.255.245.2</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Type: LAN, Address: 10.255.245.2, Mask: 255.255.255.255, MTU: 65535, Cost: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DR addr: 10.255.245.2, Adj count: 0, Priority: 128</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hello: 10, Dead: 40, ReXmit: 5, Not Stub</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auth type: None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topology default (ID 0) -> Cost: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>so-0/0/0.0</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Type: P2P, Address: 0.0.0.0, Mask: 0.0.0.0, MTU: 4470, Cost: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adj count: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hello: 10, Dead: 40, ReXmit: 5, Not Stub</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auth type: None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topology default (ID 0) -> Cost: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>so-0/0/0.0</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Type: P2P, Address: 192.168.37.46, Mask: 255.255.255.254, MTU: 4470, Cost: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adj count: 0, Passive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hello: 10, Dead: 40, ReXmit: 5, Not Stub</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auth type: None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topology default (ID 0) -> Passive, Cost: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>so-1/0/0.0</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Type: P2P, Address: 0.0.0.0, Mask: 0.0.0.0, MTU: 4470, Cost: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adj count: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hello: 10, Dead: 40, ReXmit: 5, Not Stub</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auth type: None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topology default (ID 0) -> Cost: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>so-1/0/0.0</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Type: P2P, Address: 192.168.37.54, Mask: 255.255.255.254, MTU: 4470, Cost: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adj count: 0, Passive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hello: 10, Dead: 40, ReXmit: 5, Not Stub</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auth type: None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topology default (ID 0) -> Passive, Cost: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>so-0/0/0.0</td>
<td>PtToPt</td>
<td>1.1.1.1</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Type: P2P, Address: 0.0.0.0, Mask: 0.0.0.0, MTU: 4470, Cost: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adj count: 1, Secondary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show ospf interface area area-id

user@host> show ospf interface area 1.1.1.1

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>so-0/0/0.0</td>
<td>PtToPt</td>
<td>1.1.1.1</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
<tr>
<td>so-1/0/0.0</td>
<td>PtToPt</td>
<td>1.1.1.1</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
</tbody>
</table>

show ospf interface extensive
(When Flooding Reduction Is Enabled)

user@host> show ospf interface extensive

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>fe-0/0/0.0</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Type: P2P, Address: 10.10.10.1, Mask: 255.255.255.0, MTU: 1500, Cost: 1
Adj count: 0
Secondary, Flood Reduction
Hello: 10, Dead: 40, ReXmit: 5, Not Stub
Auth type: None
show ospf interface extensive
(When LDP Synchronization Is Configured)
user@host> show ospf interface extensive

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>so-1/0/3.0</td>
<td>Down</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Type: P2P, Address: 0.0.0.0, Mask: 0.0.0.0, MTU: 4470, Cost: 65535
Adj count: 0
Hello: 10, Dead: 40, ReXmit: 5, Not Stub
Auth type: None
LDP sync state: in holddown, for: 00:00:08, reason: LDP down during config
 config holdtime: 10 seconds, remaining: 1
show (ospf | ospf3) io-statistics

List of Syntax
Syntax on page 869
Syntax (EX Series Switch and QFX Series) on page 869

Syntax

```
show (ospf | ospf3) io-statistics
<logical-system (all | logical-system-name)>
```

Syntax (EX Series Switch and QFX Series)

```
show (ospf | ospf3) io-statistics
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display Open Shortest Path First (OSPF) input and output statistics.

Options
none—Display OSPF input and output statistics.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level
view

RELATED DOCUMENTATION

| clear (ospf | ospf3) statistics | 794 |

List of Sample Output
show ospf io-statistics on page 870

Output Fields
Table 17 on page 870 lists the output fields for the `show ospf io-statistics` command. Output fields are listed in the approximate order in which they appear.

Table 17: show (ospf | ospf3) io-statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets read</td>
<td>Number of OSPF packets read since the last time the routing protocol was started.</td>
</tr>
<tr>
<td>average per run</td>
<td>Total number of packets divided by the total number of times the OSPF read operation is scheduled to run.</td>
</tr>
<tr>
<td>max run</td>
<td>Maximum number of packets for a given run among all scheduled runs.</td>
</tr>
<tr>
<td>Receive errors</td>
<td>Number of faulty packets received with errors.</td>
</tr>
</tbody>
</table>

Sample Output

`show ospf io-statistics`

```
user@host> show ospf io-statistics

Packets read: 7361, average per run: 1.00, max run: 1
Receive errors: None
```
show (ospf | ospf3) log

List of Syntax
Syntax on page 871
Syntax (EX Series Switch and QFX Series) on page 871

Syntax

```
show (ospf | ospf3) log
  <instance instance-name>
  <logical-system (all | logical-system-name)>
  <realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)>
  <topology topology-name>
```

Syntax (EX Series Switch and QFX Series)

```
show (ospf | ospf3) log
  <instance instance-name>
  <topology topology-name>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
`topology` option introduced in Junos OS Release 9.0.
`topology` option introduced in Junos OS Release 9.0 for EX Series switches.
`realm` option introduced in Junos OS Release 9.2.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display the entries in the Open Shortest Path First (OSPF) log of SPF calculations.

Options
`none`—Display entries in the OSPF log of SPF calculations for all routing instances.
`instance instance-name`—(Optional) Display entries for the specified routing instance.
`logical-system (all | logical-system-name)`—(Optional) Perform this operation on all logical systems or on a particular logical system.
`topology topology-name`—(Optional) (OSPFv2 only) Display entries for the specified topology.
realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)—(OSPFv3 only) (Optional) Display entries for the specified OSPFv3 realm, or address family. Use the realm option to specify an address family for OSPFv3 other than IPv6 unicast, which is the default.

Required Privilege Level

view

List of Sample Output

show ospf log on page 872

show ospf log topology voice on page 873

Output Fields

Table 18 on page 872 lists the output fields for the `show (ospf | ospf3) log` command. Output fields are listed in the approximate order in which they appear.

Table 18: show (ospf | ospf3) log Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>When</td>
<td>Time, in weeks (w) and days (d), since the SPF calculation was made.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of calculation: Cleanup, External, Interarea, NSSA, Redist, SPF, Stub, Total, or Virtuallink.</td>
</tr>
<tr>
<td>Elapsed</td>
<td>Amount of time, in seconds, that elapsed during the operation, or the time required to complete the SPF calculation. The start time is the time displayed in the When field.</td>
</tr>
</tbody>
</table>

Sample Output

show ospf log

```
user@host> show ospf log

<table>
<thead>
<tr>
<th>When</th>
<th>Type</th>
<th>Elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1w4d 17:25:58</td>
<td>Stub</td>
<td>0.000017</td>
</tr>
<tr>
<td>1w4d 17:25:58</td>
<td>SPF</td>
<td>0.000070</td>
</tr>
<tr>
<td>1w4d 17:25:58</td>
<td>Stub</td>
<td>0.000019</td>
</tr>
<tr>
<td>1w4d 17:25:58</td>
<td>Interarea</td>
<td>0.000054</td>
</tr>
<tr>
<td>1w4d 17:25:58</td>
<td>External</td>
<td>0.000005</td>
</tr>
<tr>
<td>1w4d 17:25:58</td>
<td>Cleanup</td>
<td>0.000203</td>
</tr>
</tbody>
</table>
```
show ospf log topology voice

user@host> show ospf log topology voice

Topology voice SPF log:

<table>
<thead>
<tr>
<th>When</th>
<th>Type</th>
<th>Elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:06:11</td>
<td>SPF</td>
<td>0.000116</td>
</tr>
<tr>
<td>00:06:11</td>
<td>Stub</td>
<td>0.000114</td>
</tr>
<tr>
<td>00:06:11</td>
<td>Interarea</td>
<td>0.000126</td>
</tr>
<tr>
<td>00:06:11</td>
<td>External</td>
<td>0.000067</td>
</tr>
<tr>
<td>00:06:11</td>
<td>NSSA</td>
<td>0.000037</td>
</tr>
<tr>
<td>00:06:11</td>
<td>Cleanup</td>
<td>0.000186</td>
</tr>
</tbody>
</table>

Maximum length of each event type

<table>
<thead>
<tr>
<th>When</th>
<th>Type</th>
<th>Elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:13:43</td>
<td>SPF</td>
<td>0.000140</td>
</tr>
<tr>
<td>00:13:33</td>
<td>Stub</td>
<td>0.000116</td>
</tr>
<tr>
<td>00:13:43</td>
<td>Interarea</td>
<td>0.000128</td>
</tr>
<tr>
<td>00:13:33</td>
<td>External</td>
<td>0.000075</td>
</tr>
<tr>
<td>00:13:38</td>
<td>NSSA</td>
<td>0.000039</td>
</tr>
<tr>
<td>00:13:53</td>
<td>Cleanup</td>
<td>0.000657</td>
</tr>
</tbody>
</table>

Last 100 events

<table>
<thead>
<tr>
<th>When</th>
<th>Type</th>
<th>Elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:13:53</td>
<td>SPF</td>
<td>0.000090</td>
</tr>
<tr>
<td>00:13:53</td>
<td>Stub</td>
<td>0.000041</td>
</tr>
<tr>
<td>00:13:53</td>
<td>Interarea</td>
<td>0.000123</td>
</tr>
<tr>
<td>00:13:53</td>
<td>External</td>
<td>0.000040</td>
</tr>
<tr>
<td>00:13:53</td>
<td>NSSA</td>
<td>0.000038</td>
</tr>
<tr>
<td>00:13:53</td>
<td>Cleanup</td>
<td>0.000657</td>
</tr>
<tr>
<td>Time</td>
<td>Type</td>
<td>Count</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>00:13:53</td>
<td>Total</td>
<td>0.001252</td>
</tr>
<tr>
<td>00:06:11</td>
<td>SPF</td>
<td>0.000116</td>
</tr>
<tr>
<td>00:06:11</td>
<td>Stub</td>
<td>0.000114</td>
</tr>
<tr>
<td>00:06:11</td>
<td>Interarea</td>
<td>0.000126</td>
</tr>
<tr>
<td>00:06:11</td>
<td>External</td>
<td>0.000067</td>
</tr>
<tr>
<td>00:06:11</td>
<td>NSSA</td>
<td>0.000037</td>
</tr>
<tr>
<td>00:06:11</td>
<td>Cleanup</td>
<td>0.000186</td>
</tr>
<tr>
<td>00:06:11</td>
<td>Total</td>
<td>0.000818</td>
</tr>
</tbody>
</table>
show (ospf | ospf3) neighbor

List of Syntax

Syntax on page 875
Syntax (EX Series Switches and QFX Series) on page 875

Syntax

```
show (ospf | ospf3) neighbor
  <brief | detail | extensive>
  <area area-id>
  <instance (all | instance-name)>
  <interface interface-name>
  <logical-system (all | logical-system-name)>
  <neighbor>
  <realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)>
```

Syntax (EX Series Switches and QFX Series)

```
show (ospf | ospf3) neighbor
  <brief | detail | extensive>
  <area area-id>
  <instance (all | instance-name)>
  <interface interface-name>
  <neighbor>
```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
instance all option introduced in Junos OS Release 9.1.
instance all option introduced in Junos OS Release 9.1 for EX Series switches.
area, interface, and realm options introduced in Junos OS Release 9.2.
area and interface options introduced in Junos OS Release 9.2 for EX Series switches.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Display information about OSPF neighbors.

CPU utilization might increase while the device learns its OSPF neighbors. We recommend that you use the `show (ospf | ospf3) neighbor` command after the device learns and establishes OSPF neighbor adjacencies. Depending on the size of your network, this might take several minutes. If you receive a "timeout communicating with routing daemon" error when using the `show (ospf | ospf3) neighbor` command,
wait several minutes before attempting to use the command again. This is not a critical system error, but you might experience a delay in using the CLI.

Options

none—Display standard information about all OSPF neighbors for all routing instances.

brief | detail | extensive—(Optional) Display the specified level of output.

area area-id—(Optional) Display information about the OSPF neighbors for the specified area.

instance (all | instance-name)—(Optional) Display all OSPF interfaces for all routing instances or under the named routing instance.

interface interface-name—(Optional) Display information about OSPF neighbors for the specified logical interface.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

neighbor—(Optional) Display information about the specified OSPF neighbor.

realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)—(OSPFv3 only) (Optional) Display information about the OSPF neighbors for the specified OSPFv3 realm, or address family. Use the realm option to specify an address family for OSPFv3 other than IPv6 unicast, which is the default.

Required Privilege Level

view

RELATED DOCUMENTATION

| clear (ospf | ospf3) neighbor | 790 |

List of Sample Output

show ospf neighbor brief on page 879
show ospf neighbor detail on page 879
show ospf neighbor extensive on page 879
show ospf3 neighbor detail on page 881
show ospf neighbor area area-id on page 881
show ospf neighbor interface interface-name on page 881
show ospf3 neighbor instance all (OSPFv3 Multiple Family Address Support Enabled) on page 882

Output Fields

Table 19 on page 877 lists the output fields for the show (ospf | ospf3) neighbor command. Output fields are listed in the approximate order in which they appear.
Table 19: show (ospf | ospf3) neighbor Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Address of the neighbor.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface through which the neighbor is reachable.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
| **State** | State of the neighbor:
- **Attempt**—Valid only for neighbors attached to nonbroadcast networks. It indicates that no recent information has been received from the neighbor, but that a more concerted effort must be made to contact the neighbor.
- **Down**—Initial state of a neighbor conversation. It indicates that no recent information has been received from the neighbor. Hello packets might continue to be sent to neighbors in the **Down** state, although at a reduced frequency.
- **Exchange**—Routing device is describing its entire link-state database by sending database description packets to the neighbor. Each packet has a sequence number and is explicitly acknowledged.
- **ExStart**—First step in creating an adjacency between the two neighboring routing devices. The goal of this step is to determine which routing device is the master, and to determine the initial sequence number.
- **Full**—Neighboring routing devices are fully adjacent. These adjacencies appear in router link and network link advertisements.
- **Init**—A hello packet has recently been sent by the neighbor. However, bidirectional communication has not yet been established with the neighbor. This state may occur, for example, because the routing device itself did not appear in the neighbor's hello packet.
- **Loading**—Link-state request packets are sent to the neighbor to acquire more recent advertisements that have been discovered (but not yet received) in the **Exchange** state.
- **2Way**—Communication between the two routing devices is bidirectional. This state has been ensured by the operation of the Hello Protocol. This is the most advanced state short of beginning adjacency establishment. The (backup) designated router is selected from the set of neighbors in state **2Way** or greater. | All levels |
<p>| ID | Router ID of the neighbor. | All levels |
| Pri | Priority of the neighbor to become the designated router. | All levels |
| Dead | Number of seconds until the neighbor becomes unreachable. | All levels |</p>
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link state acknowledgment list</td>
<td>Number of link-state acknowledgments received.</td>
<td>extensive</td>
</tr>
</tbody>
</table>
| Link state retransmission list | Total number of link-state advertisements retransmitted. For **extensive** output only, the following information is also displayed:
 - **Type**—Type of link advertisement: ASBR, Sum, Extern, Network, NSSA, OpaqArea, Router, or Summary.
 - **LSA ID**—LSA identifier included in the advertisement. An asterisk preceding the identifier marks database entries that originated from the local routing device.
 - **Adv rtr**—Address of the routing device that sent the advertisement.
 - **Seq**—Link sequence number of the advertisement. | detail extensive|
| Neighbor-address | *(OSPFv3 only)* If the neighbor uses virtual links, the **Neighbor-address** is the site-local, local, or global address. If the neighbor uses a physical interface, the **Neighbor-address** is an IPv6 link-local address. | detail extensive|
| area | Area that the neighbor is in. | detail extensive|
| OSPF3-Intf-Index | *(OSPFv3 only)* Displays the OSPFv3 interface index. | detail extensive|
| opt | Option bits received in the hello packets from the neighbor. | detail extensive|
| DR or DR-ID | Address of the designated router. | detail extensive|
| BDR or BDR-ID | Address of the backup designated router. | detail extensive|
| Up | Length of time since the neighbor came up. | detail extensive|
| adjacent | Length of time since the adjacency with the neighbor was established. | detail extensive|
| SPRING Adjacency Labels | Segment routing in networking adjacency labels. **NOTE:** Displayed only when segment routing is enabled. | detail extensive|
| Label | Segment routing label. | detail extensive|
| Flags | Segment routing flags. Flags VL indicate *value* and *local*. | detail extensive|
Sample Output

show ospf neighbor brief

user@host> show ospf neighbor brief

<table>
<thead>
<tr>
<th>Address</th>
<th>Intf</th>
<th>State</th>
<th>ID</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.254.225</td>
<td>fxp3.0</td>
<td>2Way</td>
<td>10.250.240.32</td>
<td>128</td>
<td>36</td>
</tr>
<tr>
<td>192.168.254.230</td>
<td>fxp3.0</td>
<td>Full</td>
<td>10.250.240.8</td>
<td>128</td>
<td>38</td>
</tr>
<tr>
<td>192.168.254.229</td>
<td>fxp3.0</td>
<td>Full</td>
<td>10.250.240.35</td>
<td>128</td>
<td>33</td>
</tr>
<tr>
<td>10.1.1.129</td>
<td>fxp2.0</td>
<td>Full</td>
<td>10.250.240.12</td>
<td>128</td>
<td>37</td>
</tr>
<tr>
<td>10.1.1.131</td>
<td>fxp2.0</td>
<td>Full</td>
<td>10.250.240.11</td>
<td>128</td>
<td>38</td>
</tr>
<tr>
<td>10.1.2.1</td>
<td>fxp1.0</td>
<td>Full</td>
<td>10.250.240.9</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td>10.1.2.81</td>
<td>fxp0.0</td>
<td>Full</td>
<td>10.250.240.10</td>
<td>128</td>
<td>33</td>
</tr>
</tbody>
</table>

show ospf neighbor detail

user@host> show ospf neighbor detail

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
<th>State</th>
<th>ID</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.6.60</td>
<td>lt-1/2/0.12</td>
<td>Full</td>
<td>1.1.1.60</td>
<td>128</td>
<td>38</td>
</tr>
<tr>
<td>Area 0.0.0.0, opt 0x52, DR 0.0.0.0, BDR 0.0.0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up 23:53:47, adjacent 23:53:34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPRING Adjacency Labels:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label</td>
<td>Flags</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>299968</td>
<td>VL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.10.70</td>
<td>lt-1/2/0.14</td>
<td>Full</td>
<td>1.1.1.70</td>
<td>128</td>
<td>37</td>
</tr>
<tr>
<td>Area 0.0.0.0, opt 0x52, DR 0.0.0.0, BDR 0.0.0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPRING Adjacency Labels:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label</td>
<td>Flags</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>299952</td>
<td>VL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show ospf neighbor extensive

user@host> show ospf neighbor extensive

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
<th>State</th>
<th>ID</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5.1.2</td>
<td>ge-1/2/0.1</td>
<td>Full</td>
<td>10.5.1.2</td>
<td>128</td>
<td>33</td>
</tr>
</tbody>
</table>
area 0.0.0.1, opt 0x42, DR 10.5.1.2, BDR 10.5.1.1
Up 06:09:42, adjacent 05:17:50

Link state retransmission list:

<table>
<thead>
<tr>
<th>Type</th>
<th>LSA ID</th>
<th>Adv rtr</th>
<th>Seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>10.8.56.0</td>
<td>172.25.27.82</td>
<td>0x8000004d</td>
</tr>
<tr>
<td>Router</td>
<td>10.5.1.94</td>
<td>10.5.1.94</td>
<td>0x8000005c</td>
</tr>
<tr>
<td>Network</td>
<td>10.5.24.2</td>
<td>10.5.1.94</td>
<td>0x80000036</td>
</tr>
<tr>
<td>Summary</td>
<td>10.8.57.0</td>
<td>172.25.27.82</td>
<td>0x80000024</td>
</tr>
<tr>
<td>Extern</td>
<td>1.10.90.0</td>
<td>10.8.1.2</td>
<td>0x80000041</td>
</tr>
<tr>
<td>Extern</td>
<td>1.4.109.0</td>
<td>10.6.1.2</td>
<td>0x80000041</td>
</tr>
<tr>
<td>Router</td>
<td>10.5.1.190</td>
<td>10.5.1.190</td>
<td>0x8000005f</td>
</tr>
<tr>
<td>Network</td>
<td>10.5.48.2</td>
<td>10.5.1.190</td>
<td>0x8000003d</td>
</tr>
<tr>
<td>Summary</td>
<td>10.8.58.0</td>
<td>172.25.27.82</td>
<td>0x8000004d</td>
</tr>
<tr>
<td>Extern</td>
<td>1.10.91.0</td>
<td>10.8.1.2</td>
<td>0x80000041</td>
</tr>
<tr>
<td>Extern</td>
<td>1.4.110.0</td>
<td>10.6.1.2</td>
<td>0x80000041</td>
</tr>
<tr>
<td>Router</td>
<td>10.5.1.18</td>
<td>10.5.1.18</td>
<td>0x8000005f</td>
</tr>
<tr>
<td>Network</td>
<td>10.5.5.2</td>
<td>10.5.1.18</td>
<td>0x80000033</td>
</tr>
<tr>
<td>Summary</td>
<td>10.8.59.0</td>
<td>172.25.27.82</td>
<td>0x8000003a</td>
</tr>
<tr>
<td>Summary</td>
<td>10.8.62.0</td>
<td>172.25.27.82</td>
<td>0x80000025</td>
</tr>
</tbody>
</table>

10.5.10.2 ge-1/2/0.10 ExStart 10.5.1.38 128 38
area 0.0.0.1, opt 0x42, DR 10.5.10.2, BDR 10.5.10.1
Up 06:09:42
master, seq 0xac1530f8, retrans DBD in 2 sec
retrans LSREQ in 0 sec

10.5.11.2 ge-1/2/0.11 Full 10.5.1.42 128 33
area 0.0.0.1, opt 0x42, DR 10.5.11.2, BDR 10.5.11.1
Up 06:09:42, adjacent 05:27:00
Link state retransmission list:

<table>
<thead>
<tr>
<th>Type</th>
<th>LSA ID</th>
<th>Adv rtr</th>
<th>Seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>10.8.58.0</td>
<td>172.25.27.82</td>
<td>0x8000004d</td>
</tr>
<tr>
<td>Extern</td>
<td>1.10.91.0</td>
<td>10.8.1.2</td>
<td>0x80000041</td>
</tr>
<tr>
<td>Extern</td>
<td>1.1.247.0</td>
<td>10.5.1.2</td>
<td>0x8000003f</td>
</tr>
<tr>
<td>Extern</td>
<td>1.4.110.0</td>
<td>10.6.1.2</td>
<td>0x80000041</td>
</tr>
<tr>
<td>Router</td>
<td>10.5.1.18</td>
<td>10.5.1.18</td>
<td>0x8000005f</td>
</tr>
<tr>
<td>Network</td>
<td>10.5.5.2</td>
<td>10.5.1.18</td>
<td>0x80000033</td>
</tr>
<tr>
<td>Summary</td>
<td>10.8.59.0</td>
<td>172.25.27.82</td>
<td>0x8000003a</td>
</tr>
</tbody>
</table>

show ospf3 neighbor detail

user@host> **show ospf3 neighbor detail**

<table>
<thead>
<tr>
<th>ID</th>
<th>Interface</th>
<th>State</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.255.71.13</td>
<td>fe-0/0/2.0</td>
<td>Full</td>
<td>128</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Neighbor-address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fe80::290:69ff:fe9b:e002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>area 0.0.0.0, opt 0x13, OSPF3-Intf-Index 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DR-ID 10.255.71.13, BDR-ID 10.255.71.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up 02:51:43, adjacent 02:51:43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show ospf neighbor area area-id

user@host> **show ospf neighbor area 1.1.1.1**

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
<th>State</th>
<th>ID</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.37.47</td>
<td>so-0/0/0.0</td>
<td>Full</td>
<td>10.255.245.4</td>
<td>128</td>
<td>33</td>
</tr>
<tr>
<td>Area 1.1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.37.55</td>
<td>so-1/0/0.0</td>
<td>Full</td>
<td>10.255.245.5</td>
<td>128</td>
<td>37</td>
</tr>
<tr>
<td>Area 1.1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show ospf neighbor interface interface-name

user@host> **show ospf neighbor interface so-0/0/0.0**
show ospf3 neighbor instance all (OSPFv3 Multiple Family Address Support Enabled)

user @host > show ospf3 neighbor instance all

<table>
<thead>
<tr>
<th>ID</th>
<th>Interface</th>
<th>State</th>
<th>ID</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.1.1.1</td>
<td>fe-0/0/2.0</td>
<td>Full</td>
<td>128</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>100.1.2.1</td>
<td>fe-0/0/2.1</td>
<td>Full</td>
<td>128</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

Neighbor-address fe80::217:cb00:c87c:8c03

Instance: inb
Realm: ipv4-unicast
ID Interface State | Pri | Dead |
100.1.2.1 fe-0/0/2.1 Full | 128 | 33 |

Neighbor-address fe80::217:cb00:c97c:8c03
show (ospf | ospf3) overview

List of Syntax
Syntax on page 883
Syntax (EX Series Switch and QFX Series) on page 883

Syntax

```
show (ospf | ospf3) overview
  <brief | extensive>
  <instance instance-name>
  <logical-system (all | logical-system-name)>
  <realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)>
```

Syntax (EX Series Switch and QFX Series)

```
show (ospf | ospf3) overview
  <brief | extensive>
  <instance instance-name>
```

Release Information
Command introduced in Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
realm option introduced in Junos OS Release 9.2.
Database protection introduced in Junos 10.2.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display Open Shortest Path First (OSPF) overview information.

Options
none—Display standard information about all OSPF neighbors for all routing instances.

brief | extensive—(Optional) Display the specified level of output.

instance instance-name—(Optional) Display all OSPF interfaces under the named routing instance.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)—(Optional) (OSPFv3 only) Display information about the specified OSPFv3 realm, or address family. Use the realm option to specify an address family for OSPFv3 other than IPv6 unicast, which is the default.
Required Privilege Level
view

List of Sample Output
show ospf overview (without SRGB) on page 886
show ospf overview (with SRGB) on page 887
show ospf overview (With Database Protection) on page 888
show ospf3 overview (With Database Protection) on page 888
show ospf overview extensive on page 889

Output Fields
Table 20 on page 884 lists the output fields for the `show ospf overview` command. Output fields are listed in the approximate order in which they appear.

Table 20: show ospf overview Output Fields

<table>
<thead>
<tr>
<th>Field name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance</td>
<td>OSPF routing instance.</td>
<td>All levels</td>
</tr>
<tr>
<td>Router ID</td>
<td>Router ID of the routing device.</td>
<td>All levels</td>
</tr>
<tr>
<td>Route table index</td>
<td>Route table index.</td>
<td>All levels</td>
</tr>
<tr>
<td>Configured overload</td>
<td>Overload capability is enabled. If the overload timer is also configured, display the time that remains before it is set to expire. This field is not displayed after the timer expires.</td>
<td>All levels</td>
</tr>
<tr>
<td>Topology</td>
<td>Topology identifier.</td>
<td>All levels</td>
</tr>
<tr>
<td>Prefix export count</td>
<td>Number of prefixes exported into OSPF.</td>
<td>All levels</td>
</tr>
<tr>
<td>Full SPF runs</td>
<td>Number of complete Shortest Path First calculations.</td>
<td>All levels</td>
</tr>
<tr>
<td>SPF delay</td>
<td>Delay before performing consecutive Shortest Path First calculations.</td>
<td>All levels</td>
</tr>
<tr>
<td>SPF holddown</td>
<td>Delay before performing additional Shortest Path First (SPF) calculations after the maximum number of consecutive SPF calculations is reached.</td>
<td>All levels</td>
</tr>
<tr>
<td>SPF rapid runs</td>
<td>Maximum number of Shortest Path First calculations that can be performed in succession before the hold-down timer begins.</td>
<td>All levels</td>
</tr>
<tr>
<td>LSA refresh time</td>
<td>Refresh period for link-state advertisement (in minutes).</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 20: show ospf overview Output Fields (continued)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPRING</td>
<td>Source protocol routing in networking: enable or disable.</td>
<td>All levels</td>
</tr>
<tr>
<td>Node Segments</td>
<td>Nodes of source protocol routing in networking: enable or disable.</td>
<td>All levels</td>
</tr>
<tr>
<td>Ipv4 Index</td>
<td>Ipv4 Index.</td>
<td>All levels</td>
</tr>
<tr>
<td>Index Range</td>
<td>Ipv4 Index range.</td>
<td>All levels</td>
</tr>
<tr>
<td>Node Segment Blocks Allocated</td>
<td>Details about node segment blocks.</td>
<td>All levels</td>
</tr>
<tr>
<td>Database protection state</td>
<td>Current state of database protection.</td>
<td>All levels</td>
</tr>
<tr>
<td>Warning threshold</td>
<td>Threshold at which a warning message is logged (percentage of maximum LSA count).</td>
<td>All levels</td>
</tr>
<tr>
<td>Non self-generated LSAs</td>
<td>Number of LSAs whose router ID is not equal to the local router ID: Current, Warning (threshold), and Allowed.</td>
<td>All levels</td>
</tr>
<tr>
<td>Ignore time</td>
<td>How long the database has been in the ignore state.</td>
<td>All levels</td>
</tr>
<tr>
<td>Reset time</td>
<td>How long the database must stay out of the ignore or isolated state before it returns to normal operations.</td>
<td>All levels</td>
</tr>
<tr>
<td>Ignore count</td>
<td>Number of times the database has been in the ignore state: Current and Allowed.</td>
<td>All levels</td>
</tr>
<tr>
<td>Restart</td>
<td>Graceful restart capability: enabled or disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td>Restart duration</td>
<td>Time period for complete reacquisition of OSPF neighbors.</td>
<td>All levels</td>
</tr>
<tr>
<td>Restart grace period</td>
<td>Time period for which the neighbors should consider the restarting routing device as part of the topology.</td>
<td>All levels</td>
</tr>
<tr>
<td>Graceful restart helper mode</td>
<td>(OSPFv2) Standard graceful restart helper capability (based on RFC 3623): enabled or disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td>Restart-signaling helper mode</td>
<td>(OSPFv2) Restart signaling-based graceful restart helper capability (based on RFC 4811, RFC 4812, and RFC 4813): enabled or disabled.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 20: show ospf overview Output Fields (continued)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helper mode</td>
<td>(OSPFv3) Graceful restart helper capability: enabled or disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td>Trace options</td>
<td>OSPF-specific trace options.</td>
<td>extensive</td>
</tr>
<tr>
<td>Trace file</td>
<td>Name of the file to receive the output of the tracing operation.</td>
<td>extensive</td>
</tr>
<tr>
<td>Area</td>
<td>Area number. Area 0.0.0.0 is the backbone area.</td>
<td>All levels</td>
</tr>
<tr>
<td>Stub type</td>
<td>Stub type of area: Normal Stub, Not Stub, or Not so Stubby Stub.</td>
<td>All levels</td>
</tr>
<tr>
<td>Authentication Type</td>
<td>Type of authentication: None, Password, or MD5.</td>
<td>All levels</td>
</tr>
<tr>
<td>NOTE: The Authentication Type field refers to the authentication configured at the [edit protocols ospf area area-id] level. Any authentication configured for an interface in this area will not affect the value of this field.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Area border routers | Number of area border routers. | All levels |
| Neighbors | Number of autonomous system boundary routers. | All levels |

Sample Output

show ospf overview (without SRGB)

```plaintext
user@host> show ospf overview

Instance: master
    Router ID: 10.255.245.6
    Route table index: 0
    Configured overload, expires in 118 seconds
    LSA refresh time: 50 minutes
    SPRING: Enabled
    Node Segments: Enabled
    Ipv4 Index : 10, Index Range: 2048
    Node Segment Blocks Allocated:
    Start Index : 0, Size : 256, Label-Range: [ 802048, 802303 ]
    Start Index : 256, Size : 256, Label-Range: [ 802304, 802559 ]
```
show ospf overview (with SRGB)

user@host> show ospf overview

Instance: master
 Router ID: 10.10.10.10
 Route table index: 0
 LSA refresh time: 50 minutes
 Traffic engineering
 SPRING: Enabled
 SRGB Config Range:
 SRGB Start-Label: 1000, SRGB Index-Range: 2000
 SRGB Block Allocation: Success
 SRGB Start Index: 1000, SRGB Size: 2000, Label-Range: [1000, 2999]
 Node Segments: Enabled
 IPv4 Index: 1000
 Post Convergence Backup: Disabled
 Area: 0.0.0.0
 Stub type: Not Stub
 Authentication Type: None
 Area border routers: 0, AS boundary routers: 0
 Neighbors
 Up (in full state): 0
 Topology: default (ID 0)
 Prefix export count: 0
 Full SPF runs: 1
 SPF delay: 0.200000 sec, SPF holddown: 5 sec, SPF rapid runs: 3
show ospf overview (With Database Protection)

user@host> show ospf overview

Instance: master
 Router ID: 10.255.112.218
 Route table index: 0
 LSA refresh time: 50 minutes
 Traffic engineering
 Restart: Enabled
 Restart duration: 180 sec
 Restart grace period: 210 sec
 Graceful restart helper mode: Enabled
 Restart-signaling helper mode: Enabled
 Database protection state: Normal
 Warning threshold: 70 percent
 Non self-generated LSAs: Current 582, Warning 700, Allowed 1000
 Ignore time: 30, Reset time: 60
 Ignore count: Current 0, Allowed 1
 Area: 0.0.0.0
 Stub type: Not Stub
 Authentication Type: None
 Area border routers: 0, AS boundary routers: 0
 Neighbors
 Up (in full state): 160
 Topology: default (ID 0)
 Prefix export count: 0
 Full SPF runs: 70
 SPF delay: 0.200000 sec, SPF holddown: 5 sec, SPF rapid runs: 3
 Backup SPF: Not Needed

show ospf3 overview (With Database Protection)

user@host> show ospf3 overview
show ospf overview extensive

user@host> show ospf overview extensive

Instance: master
 Router ID: 10.255.112.128
 Route table index: 0
 LSA refresh time: 50 minutes
 Database protection state: Normal
 Warning threshold: 80 percent
 Non self-generated LSAs: Current 3, Warning 8, Allowed 10
 Ignore time: 30, Reset time: 60
 Ignore count: Current 0, Allowed 2
 Area: 0.0.0.0
 Stub type: Not Stub
 Area border routers: 0, AS boundary routers: 0
 Neighbors
 Up (in full state): 1
 Topology: default (ID 0)
 Prefix export count: 0
 Full SPF runs: 7
 SPF delay: 0.200000 sec, SPF holddown: 5 sec, SPF rapid runs: 3
 Backup SPF: Not Needed

Instance: master
 Router ID: 1.1.1.103
 Route table index: 0
 Full SPF runs: 13, SPF delay: 0.200000 sec
 LSA refresh time: 50 minutes
 Restart: Disabled
 Trace options: lsa
 Trace file: /var/log/ospf size 131072 files 10
 Area: 0.0.0.0
 Stub type: Not Stub
 Authentication Type: None
 Area border routers: 0, AS boundary routers: 0
 Neighbors
 Up (in full state): 1
show (ospf | ospf3) route

List of Syntax
Syntax on page 890
Syntax (EX Series Switch and QFX Series) on page 890

Syntax

```
show (ospf | ospf3) route
  <brief | detail | extensive>
  <abr | asbr | extern | inter | intra>
  <destination>
  <instance (default | ipv4-multicast | instance-name)>
  <logical-system (default | ipv4-multicast | logical-system-name)>
  <network>
  <no-backup-coverage>
  <realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)>
  <router>
  <topology (default | ipv4-multicast | topology-name)>
  <transit>
```

Syntax (EX Series Switch and QFX Series)

```
show (ospf | ospf3) route
  <brief | detail | extensive>
  <abr | asbr | extern | inter | intra>
  <destination>
  <instance instance-name>
  <network>
  <no-backup-coverage>
  <router>
  <topology (default | ipv4-multicast | topology-name)>
  <transit>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
topology option introduced in Junos OS Release 9.0.
realm option introduced in Junos OS Release 9.2.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display the entries in the Open Shortest Path First (OSPF) routing table.
Options

none—Display standard information about all entries in the OSPF routing table for all routing instances and all topologies.

destination—Display routes to the specified IP address (with optional destination prefix length).

brief | detail | extensive—(Optional) Display the specified level of output.

abr—(Optional) Display routes to area border routers.

asbr—(Optional) Display routes to autonomous system border routers.

extern—(Optional) Display external routes.

inter—(Optional) Display interarea routes.

intra—(Optional) Display intra-area routes.

instance (default | ipv4-multicast | instance-name)—(Optional) Display entries for the default routing instance, the IPv4 multicast routing instance, or for the specified routing instance.

logical-system (default | ipv4-multicast | logical-system-name)—(Optional) Perform this operation on the default logical system, the IPv4 multicast logical system, or on a particular logical system.

network—(Optional) Display routes to networks.

no-backup-coverage—(Optional) Display routes with no backup coverage.

realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)—(OSPFv3 only) (Optional) Display entries in the routing table for the specified OSPFv3 realm, or address family. Use the **realm** option to specify an address family for OSPFv3 other than IPv6 unicast, which is the default.

router—(Optional) Display routes to all routers.

topology (default | ipv4-multicast | topology-name)—(OSPFv2 only) (Optional) Display routes for the default OSPF topology, IPv4 multicast topology, or for a particular topology.

transit—(Optional) (OSPFv3 only) Display OSPFv3 routes to pseudonodes.

Required Privilege Level

view

List of Sample Output

- show ospf route on page 893
- show ospf route detail on page 894
- show ospf route extensive on page 895
- show ospf3 route on page 895
- show ospf3 route detail on page 896
Output Fields

Table 21 on page 892 list the output fields for the `show (ospf | ospf3) route` command. Output fields are listed in the approximate order in which they appear.

Table 21: `show (ospf | ospf3) route` Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Output Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td>Name of the topology.</td>
<td>All levels</td>
</tr>
<tr>
<td>Prefix</td>
<td>Destination of the route.</td>
<td>All levels</td>
</tr>
<tr>
<td>Path type</td>
<td>How the route was learned:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• Inter—Interarea route</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ext1—External type 1 route</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ext2—External type 2 route</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Intra—Intra-area route</td>
<td></td>
</tr>
<tr>
<td>Route type</td>
<td>The type of routing device from which the route was learned:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• AS BR—Route to AS border router.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Area BR—Route to area border router.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Area/AS BR—Route to router that is both an Area BR and AS BR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Network—Network router.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Router—Route to a router that is neither an Area BR nor an AS BR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Transit—(OSPFv3 only) Route to a pseudonode representing a transit network, LAN, or nonbroadcast multiaccess (NBMA) link.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Discard—Route to a summary discard.</td>
<td></td>
</tr>
<tr>
<td>NH Type</td>
<td>Next-hop type: LSP or IP.</td>
<td>All levels</td>
</tr>
<tr>
<td>Metric</td>
<td>Route's metric value.</td>
<td>All levels</td>
</tr>
<tr>
<td>NH-interface</td>
<td>(OSPFv3 only) Interface through which the route's next hop is reachable.</td>
<td>All levels</td>
</tr>
<tr>
<td>NH-addr</td>
<td>(OSPFv3 only) IPv6 address of the next hop.</td>
<td>All levels</td>
</tr>
<tr>
<td>NextHop Interface</td>
<td>(OSPFv2 only) Interface through which the route's next hop is reachable.</td>
<td>All levels</td>
</tr>
<tr>
<td>Nexthop addr/label</td>
<td>(OSPFv2 only) If the NH Type is IP, then it is the address of the next hop. If the NH Type is LSP, then it is the name of the label-switched path.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 21: show (ospf | ospf3) route Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Output Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>Area ID of the route.</td>
<td>detail</td>
</tr>
<tr>
<td>Origin</td>
<td>Router from which the route was learned.</td>
<td>detail</td>
</tr>
<tr>
<td>Type 7</td>
<td>Route was learned through a not-so-stubby area (NSSA) link-state advertisement (LSA).</td>
<td>detail</td>
</tr>
<tr>
<td>P-bit</td>
<td>Route was learned through NSSA LSA and the propagate bit was set.</td>
<td>detail</td>
</tr>
<tr>
<td>Fwd NZ</td>
<td>Forwarding address is nonzero. Fwd NZ is only displayed if the route is learned through an NSSA LSA.</td>
<td>detail</td>
</tr>
<tr>
<td>optional-capability</td>
<td>Optional capabilities propagated in the router LSA. This field is in the output for intra-area router routes only (when Route Type is Area BR, AS BR, Area/AS BR, or Router), not for interarea router routes or network routes. Three bits in this field are defined as follows: • 0x4 (V) — Routing device is at the end of a virtual active link. • 0x2 (E) — Routing device is an autonomous system boundary router. • 0x1 (B) — Routing device is an area border router.</td>
<td>detail</td>
</tr>
<tr>
<td>priority</td>
<td>The priority assigned to the prefix:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• high</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• medium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: The priority field applies only to routes of type Network.</td>
<td></td>
</tr>
<tr>
<td>BGP-ORR Generation-ID</td>
<td>Display the BGP-ORR generation identifier of the main OSPF route. This field is shown only for non-zero values.</td>
<td>extensive</td>
</tr>
</tbody>
</table>

Sample Output

```
show ospf route

user@host> show ospf route
```
Topology default Route Table:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Path</th>
<th>Route</th>
<th>NH</th>
<th>Metric</th>
<th>NextHop</th>
<th>Nexthop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.60/32</td>
<td>Intra Network</td>
<td>Spring</td>
<td>6</td>
<td>lt-1/2/0.14</td>
<td>10.0.10.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bkup SPRING</td>
<td></td>
<td>lt-1/2/0.12</td>
<td>10.0.6.60</td>
<td></td>
</tr>
<tr>
<td>1.1.1.70/32</td>
<td>Intra Network</td>
<td>IP</td>
<td>1</td>
<td>lt-1/2/0.14</td>
<td>10.0.10.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bkup LSP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.1.70/32</td>
<td>Intra Network</td>
<td>Spring</td>
<td>1</td>
<td>lt-1/2/0.14</td>
<td>10.0.10.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bkup SPRING</td>
<td></td>
<td>lt-1/2/0.12</td>
<td>10.0.6.60</td>
<td></td>
</tr>
<tr>
<td>1.1.1.80/32</td>
<td>Intra Network</td>
<td>IP</td>
<td>6</td>
<td>lt-1/2/0.14</td>
<td>10.0.10.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bkup IP</td>
<td></td>
<td>lt-1/2/0.12</td>
<td>10.0.6.60</td>
<td></td>
</tr>
<tr>
<td>802068 (S=0)</td>
<td>Intra Network</td>
<td>Mpls</td>
<td>0</td>
<td>lt-1/2/0.14</td>
<td>10.0.10.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bkup MPLS</td>
<td></td>
<td>lt-1/2/0.12</td>
<td>10.0.6.60</td>
<td></td>
</tr>
<tr>
<td>802078 (S=0)</td>
<td>Intra Network</td>
<td>Mpls</td>
<td>0</td>
<td>lt-1/2/0.14</td>
<td>10.0.10.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bkup MPLS</td>
<td></td>
<td>lt-1/2/0.12</td>
<td>10.0.6.60</td>
<td></td>
</tr>
<tr>
<td>802088 (S=0)</td>
<td>Intra Network</td>
<td>Mpls</td>
<td>0</td>
<td>lt-1/2/0.14</td>
<td>10.0.10.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bkup MPLS</td>
<td></td>
<td>lt-1/2/0.12</td>
<td>10.0.6.60</td>
<td></td>
</tr>
<tr>
<td>802098 (S=0)</td>
<td>Intra Network</td>
<td>Mpls</td>
<td>0</td>
<td>lt-1/2/0.14</td>
<td>10.0.10.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bkup MPLS</td>
<td></td>
<td>lt-1/2/0.12</td>
<td>10.0.6.60</td>
<td></td>
</tr>
<tr>
<td>802108 (S=0)</td>
<td>Intra Network</td>
<td>Mpls</td>
<td>0</td>
<td>lt-1/2/0.14</td>
<td>10.0.10.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bkup MPLS</td>
<td></td>
<td>lt-1/2/0.12</td>
<td>10.0.6.60</td>
<td></td>
</tr>
<tr>
<td>802118 (S=0)</td>
<td>Intra Network</td>
<td>Mpls</td>
<td>0</td>
<td>lt-1/2/0.14</td>
<td>10.0.10.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bkup MPLS</td>
<td></td>
<td>lt-1/2/0.12</td>
<td>10.0.6.60</td>
<td></td>
</tr>
<tr>
<td>802118</td>
<td>Intra Network</td>
<td>Mpls</td>
<td>0</td>
<td>lt-1/2/0.14</td>
<td>10.0.10.70</td>
<td></td>
</tr>
</tbody>
</table>

show ospf route detail

```
user@host> show ospf route detail

Topology default Route Table:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Path</th>
<th>Route</th>
<th>NH</th>
<th>Metric</th>
<th>NextHop</th>
<th>Nexthop</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.255.14.174</td>
<td>Inter</td>
<td>AS BR</td>
<td>IP</td>
<td>210</td>
<td>t1-3/0/1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>area 0.0.0.2, origin 10.255.14.185</td>
<td></td>
</tr>
<tr>
<td>10.255.14.178</td>
<td>Intra</td>
<td>Router</td>
<td>IP</td>
<td>200</td>
<td>t3-3/1/3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>area 0.0.0.2, origin 10.255.14.178, optional-capability 0x0</td>
<td></td>
</tr>
<tr>
<td>10.210.1.0/30</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>10</td>
<td>t3-3/1/2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>area 0.0.0.2, origin 10.255.14.172, priority medium</td>
<td></td>
</tr>
<tr>
<td>198.51.100/24</td>
<td>Inter</td>
<td>Network</td>
<td>IP</td>
<td>210</td>
<td>t1-3/0/1.0</td>
<td></td>
</tr>
</tbody>
</table>
```
show ospf route extensive

topology default Route Table:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Path</th>
<th>Route</th>
<th>NH</th>
<th>Metric</th>
<th>NextHop</th>
<th>Nexthop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.1</td>
<td>Intra</td>
<td>Router</td>
<td>IP</td>
<td>100</td>
<td>ge-0/0/2.0</td>
<td>10.1.1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>area 0.0.0.0, origin 1.1.1.1, optional-capability 0x0</td>
<td>1.1.1.1/32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>area 0.0.0.0, origin 1.1.1.1, priority medium</td>
<td>BGP-ORR generation-id: 1</td>
</tr>
</tbody>
</table>

show ospf3 route

user@host> show ospf3 route

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Path</th>
<th>Route</th>
<th>NH</th>
<th>Metric</th>
<th>NextHop</th>
<th>Nexthop</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.255.71.13</td>
<td>Intra</td>
<td>Router</td>
<td>IP</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NH-interface fe-0/0/2.0, NH-addr fe80::290:69ff:fe9b:e002</td>
<td>10.255.71.13;0.0.0.2</td>
</tr>
<tr>
<td>10.255.245.1</td>
<td>Intra</td>
<td>Router</td>
<td>IP</td>
<td>40</td>
<td>fxp1.1</td>
<td>192.168.36.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>area 0.0.0.0, origin 10.255.245.1 optional-capability 0x0</td>
<td>10.255.245.3</td>
</tr>
<tr>
<td>10.255.245.3</td>
<td>Intra</td>
<td>AS BR</td>
<td>IP</td>
<td>1</td>
<td>fxp2.3</td>
<td>192.168.36.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>area 0.0.0.0, origin 10.255.245.3 optional-capability 0x0</td>
<td>10.255.245.1/32</td>
</tr>
<tr>
<td>10.255.245.1/32</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>40</td>
<td>fxp1.1</td>
<td>192.168.36.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>area 0.0.0.0, origin 10.255.245.1, priority high</td>
<td>10.255.245.2/32</td>
</tr>
<tr>
<td>10.255.245.2/32</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>0</td>
<td>lo0.0</td>
<td>192.168.36.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>area 0.0.0.0, origin 10.255.245.2, priority medium</td>
<td>10.255.245.3/32</td>
</tr>
<tr>
<td>10.255.245.3/32</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
<td>fxp2.3</td>
<td>192.168.36.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>area 0.0.0.0, origin 10245.3, priority low</td>
<td>Intra Transit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IP 1</td>
</tr>
<tr>
<td>192::168:222:84/126</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NH-interface fe-0/0/2.0</td>
<td>192::168:222:84/126</td>
</tr>
<tr>
<td>192::168:222:84/126</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NH-interface fe-0/0/2.0</td>
<td>192::168:222:84/126</td>
</tr>
</tbody>
</table>
show ospf3 route detail

user@host> show ospf3 route detail

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Path type</th>
<th>Route type</th>
<th>NH</th>
<th>Metric</th>
<th>NextHop</th>
<th>Nexthop</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.255.14.174</td>
<td>Intra</td>
<td>Area/AS BR</td>
<td>IP</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface so-1/2/2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 0.0.0.0, Origin 10.255.14.174</td>
<td>Intra</td>
<td>Router</td>
<td>IP</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface t3-3/1/3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 0.0.0.0, Origin 10.255.14.178</td>
<td>Intra</td>
<td>Transit</td>
<td>IP</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface so-1/2/2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 0.0.0.0, Origin 10.255.14.185</td>
<td>Inter</td>
<td>Network</td>
<td>IP</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface so-1/2/2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 0.0.0.0, Origin 10.255.14.174, Priority low</td>
<td>Intra</td>
<td>Router</td>
<td>IP</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface so-1/2/2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 0.0.0.0, Origin 10.255.14.174, Fwd NZ, Priority medium</td>
<td>Ext1</td>
<td>Network</td>
<td>IP</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface so-1/2/2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 0.0.0.0, Origin 10.255.14.174, Fwd NZ, Priority low</td>
<td>Ext2</td>
<td>Network</td>
<td>IP</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface so-1/2/2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 0.0.0.0, Origin 10.255.14.174, Fwd NZ, Priority high</td>
<td>Ext2</td>
<td>Network</td>
<td>IP</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>abcd::10:255:14:172/128</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-interface lo0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 0.0.0.0, Origin 10.255.14.172, Priority low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show ospf route topology voice

user@host> show ospf route topology voice

Topology voice Route Table:
<table>
<thead>
<tr>
<th>Prefix</th>
<th>Path</th>
<th>Route</th>
<th>NH</th>
<th>Metric</th>
<th>NextHop</th>
<th>Nexthop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Type</td>
<td>Type</td>
<td>Interface</td>
<td>addr/label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------</td>
<td>-----------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.255.8.2</td>
<td>Intra</td>
<td>Router</td>
<td>IP</td>
<td>1 so-0/2/0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.255.8.3</td>
<td>Intra</td>
<td>Router</td>
<td>IP</td>
<td>2 so-0/2/0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.255.8.1/32</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>0 lo0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.255.8.2/32</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1 so-0/2/0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.255.8.3/32</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>2 so-0/2/0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.8.0/29</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>2 so-0/2/0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.8.44/30</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>2 so-0/2/0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.8.46/32</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1 so-0/2/0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.8.48/30</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1 so-0/2/1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.8.52/30</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>2 so-0/2/0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.9.44/30</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>1 so-0/2/0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.9.45/32</td>
<td>Intra</td>
<td>Network</td>
<td>IP</td>
<td>2 so-0/2/0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show (ospf | ospf3) statistics

List of Syntax
Syntax on page 898
Syntax (EX Series Switch and QFX Series) on page 898

Syntax

```
show (ospf | ospf3) statistics
<instance instance-name>
<logical-system (all | logical-system-name)>
<realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)>
```

Syntax (EX Series Switch and QFX Series)

```
show (ospf | ospf3) statistics
<instance instance-name>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
realm option introduced in Junos OS Release 9.2.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display OSPF statistics.

Options
none—Display OSPF statistics for all routing instances.

instance instance-name—(Optional) Display all statistics for the specified routing instance.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

realm (ipv4-multicast | ipv4-unicast | ipv6-multicast)—(Optional) (OSPFv3 only) Display all statistics for the specified OSPFv3 realm, or address family. Use the realm option to specify an address family for OSPFv3 other than IPv6 unicast, which is the default.

Required Privilege Level
view
RELATED DOCUMENTATION

- clear (ospf | ospf3) statistics | 794

List of Sample Output
- show ospf statistics on page 900
- show ospf statistics logical-system all on page 901
- show ospf3 statistics on page 902

Output Fields
Table 22 on page 899 lists the output fields for the `show (ospf | ospf3) statistics` command. Output fields are listed in the approximate order in which they appear.

Table 22: `show (ospf | ospf3) statistics` Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet type</td>
<td>Type of OSPF packet.</td>
</tr>
<tr>
<td>Total Sent/Total Received</td>
<td>Total number of packets sent and received.</td>
</tr>
<tr>
<td>Last 5 seconds Sent/Last 5 seconds Received</td>
<td>Total number of packets sent and received in the last 5 seconds.</td>
</tr>
<tr>
<td>DBDs retransmitted</td>
<td>Total number of database description packets retransmitted, and number retransmitted in the last 5 seconds.</td>
</tr>
<tr>
<td>LSAs flooded</td>
<td>Total number of link-state advertisements flooded, and number flooded in the last 5 seconds.</td>
</tr>
<tr>
<td>LSAs flooded high-prio</td>
<td>Total number of high priority link-state advertisements flooded, and number flooded in the last 5 seconds.</td>
</tr>
<tr>
<td>A link-state advertisement is deemed a high priority if it has changed since it was last sent.</td>
<td></td>
</tr>
<tr>
<td>LSAs retransmitted</td>
<td>Total number of link-state advertisements retransmitted, and number retransmitted in the last 5 seconds.</td>
</tr>
<tr>
<td>LSAs transmitted to nbr</td>
<td>Total number of link-state advertisements transmitted to a neighbor, and number transmitted in the last 5 seconds.</td>
</tr>
<tr>
<td>LSAs requested</td>
<td>Total number of link-state advertisements requested by neighboring devices, and number requested in the last 5 seconds.</td>
</tr>
</tbody>
</table>
Table 22: show (ospf | ospf3) statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSA acknowledgments</td>
<td>Total number of link-state advertisements acknowledged, and number acknowledged in the last 5 seconds.</td>
</tr>
<tr>
<td>Flood queue depth</td>
<td>Total number of entries in the extended queue.</td>
</tr>
<tr>
<td>Total rexmit entries</td>
<td>Total number of retransmission entries waiting to be sent from the OSPF routing instance.</td>
</tr>
<tr>
<td>db summaries</td>
<td>Total number of database description summaries waiting to be sent from the OSPF routing instance.</td>
</tr>
<tr>
<td>lsreq entries</td>
<td>Total number of link-state request entries waiting to be sent from the OSPF routing instance.</td>
</tr>
<tr>
<td>Receive errors</td>
<td>Number and type of receive errors. Some sample receive errors include:</td>
</tr>
<tr>
<td></td>
<td>• mtu mismatches</td>
</tr>
<tr>
<td></td>
<td>• no interface found</td>
</tr>
<tr>
<td></td>
<td>• no virtual link found</td>
</tr>
<tr>
<td></td>
<td>• nssa mismatches</td>
</tr>
<tr>
<td></td>
<td>• stub area mismatches</td>
</tr>
<tr>
<td></td>
<td>• subnet mismatches</td>
</tr>
<tr>
<td></td>
<td>If there are no receive errors, the output displays none.</td>
</tr>
</tbody>
</table>

Sample Output

show ospf statistics

```
user@host> show ospf statistics

Packet type          Total       Last 5 seconds
                    Sent  Received     Sent  Received
Hello                31    14         2     2
DbD                  9      10         0     0
LSReq                2      2          0     0
LSUpdate             8      16         0     0
LSAck                9      9          0     0
```
show ospf statistics logical-system all

user@host> show ospf statistics logical-system all

logical-system: C
OSPF instance is not running

logical-system: B

<table>
<thead>
<tr>
<th>Packet type</th>
<th>Total Sent</th>
<th>Total Received</th>
<th>Last 5 seconds Sent</th>
<th>Last 5 seconds Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello</td>
<td>313740</td>
<td>313653</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>DbD</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LSReq</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LSUpdate</td>
<td>2752</td>
<td>1825</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LSAck</td>
<td>1821</td>
<td>2747</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

DBDs retransmitted : 0, last 5 seconds : 0
LSAs flooded : 2741, last 5 seconds : 0
LSAs flooded high-prio : 10, last 5 seconds : 0
LSAs retransmitted : 0, last 5 seconds : 0
LSAs transmitted to nbr: 2, last 5 seconds : 0
LSAs requested : 1, last 5 seconds : 0
LSAs acknowledged : 1831, last 5 seconds : 0
Receive errors:
 None

logical-system: A

Packet type Total Last 5 seconds
 Sent Received Sent Received
Hello 313698 313695 0 0
DbD 2 3 0 0
LSReq 1 1 0 0
LSUpdate 1825 2752 0 0
LSAck 2747 1821 0 0

DBDs retransmitted : 0, last 5 seconds : 0
LSAs flooded : 1825, last 5 seconds : 0
LSAs flooded high-prio : 10, last 5 seconds : 0
LSAs retransmitted : 0, last 5 seconds : 0
LSAs transmitted to nbr: 1, last 5 seconds : 0
LSAs requested : 2, last 5 seconds : 0
LSAs acknowledged : 2748, last 5 seconds : 0

Flood queue depth : 0
Total rexmit entries : 0
db summaries : 0
lsreq entries : 0

Receive errors:
 None

show ospf3 statistics

user@host> show ospf3 statistics

Packet type Total Last 5 seconds
 Sent Received Sent Received
Hello 0 0 0 0
DbD 0 0 0 0
<table>
<thead>
<tr>
<th>Metric</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSReq</td>
<td>0</td>
</tr>
<tr>
<td>LSUpdate</td>
<td>0</td>
</tr>
<tr>
<td>LSAck</td>
<td>0</td>
</tr>
<tr>
<td>DBDs retransmitted</td>
<td>0, last 5 s: 0</td>
</tr>
<tr>
<td>LSAs flooded</td>
<td>0, last 5 s: 0</td>
</tr>
<tr>
<td>LSAs flooded high-prio</td>
<td>0, last 5 s: 0</td>
</tr>
<tr>
<td>LSAs retransmitted</td>
<td>0, last 5 s: 0</td>
</tr>
<tr>
<td>LSAs transmitted to nbr:</td>
<td>0, last 5 s: 0</td>
</tr>
<tr>
<td>LSAs requested</td>
<td>0, last 5 s: 0</td>
</tr>
<tr>
<td>LSAs acknowledged</td>
<td>0, last 5 s: 0</td>
</tr>
<tr>
<td>Flood queue depth</td>
<td>0</td>
</tr>
<tr>
<td>Total rexmit entries</td>
<td>0</td>
</tr>
<tr>
<td>db summaries</td>
<td>0</td>
</tr>
<tr>
<td>lsreq entries</td>
<td>0</td>
</tr>
</tbody>
</table>

Receive errors:
 None
show policy

List of Syntax
Syntax on page 904
Syntax (EX Series Switches) on page 904

Syntax

show policy
<logical-system (all | logical-system-name)>
<policy-name>
<statistics >

Syntax (EX Series Switches)

show policy
<policy-name>

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
statistics option introduced in Junos OS Release 16.1 for MX Series routers.

Description
Display information about configured routing policies.

Options
none—List the names of all configured routing policies.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

policy-name—(Optional) Show the contents of the specified policy.

statistics—(Optional) Use in conjunction with the test policy command to show the length of time (in microseconds) required to evaluate a given policy and the number of times it has been executed. This information can be used, for example, to help structure a policy so it is evaluated efficiently. Timers shown are per route; times are not cumulative. Statistics are incremented even when the router is learning (and thus evaluating) routes from peering routers.

Required Privilege Level
view
RELATED DOCUMENTATION

- `show policy damping`
- `test policy`

List of Sample Output
- `show policy` on page 905
- `show policy policy-name` on page 906
- `show policy statistics policy-name` on page 906
- `show policy (Multicast Scoping)` on page 906
- `show policy (Route Filter and source Address Filter Lists)` on page 907

Output Fields

Table 23 on page 905 lists the output fields for the `show policy` command. Output fields are listed in the approximate order in which they appear.

Table 23: show policy Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>policy-name</code></td>
<td>Name of the policy listed.</td>
</tr>
<tr>
<td><code>term</code></td>
<td>Name of the user-defined policy term. The term name <code>unnamed</code> is used for policy elements that occur outside of user defined terms</td>
</tr>
<tr>
<td><code>from</code></td>
<td>Match condition for the policy.</td>
</tr>
<tr>
<td><code>then</code></td>
<td>Action for the policy.</td>
</tr>
</tbody>
</table>

Sample Output

`show policy`

```
user@host> show policy

Configured policies:
__vrf-export-red-internal__
__vrf-import-red-internal__
red-export
rf-test-policy
multicast-scoping
```
show policy policy-name
user@host> show policy vrf-import-red-internal

Policy vrf-import-red-internal:
 from
 203.0.113.0/28 accept
 203.0.113.32/28 accept
 then reject

show policy statistics policy-name
user@host> show policy statistics iBGP-v4-RR-Import

Policy iBGP-v4-RR-Import:
 [1243328] Term Lab-Infra:
 from [1243328 0] proto BGP
 [28 0] route filter:
 10.11.0.0/8 or longer
 10.13.0.0/8 or longer
 then [28 0] accept
 [1243300] Term External:
 from [1243300 1] proto BGP
 [1243296 0] community Ext-Com1 [64496:1515]
 [1243296 0] prefix-list-filter Customer-Routes
 [1243296 0] aspath AS6221
 [1243296 1] route filter:
 172.16.49.0/12 or longer
 172.16.50.0/12 or longer
 172.16.51.0/12 or longer
 172.16.52.0/12 or longer
 172.16.56.0/12 or longer
 172.16.60.0/12 or longer
 then [1243296 2] community + Ext-Com2 [64496:2000] [1243296 0] accept
 [4] Term Final:
 then [4 0] reject

show policy (Multicast Scoping)
user@host> show policy multicast-scoping

Policy multicast-scoping:
 from
 multicast-scipe == 8
then
accept

show policy (Route Filter and source Address Filter Lists)

user@host> show policy rf-test-policy

Policy rf-test-policy:
 Term term1:
 from source-address-filter-list saf-list-1
 source-address filter:
 192.0.2.0/29 longer
 192.0.2.64/28 exact
 192.0.2.128/28 exact
 192.0.2.160/28 orlonger
 Term term2:
 from route-filter-list rf-list-1
 route filter:
 198.51.100.0/29 upto 198.51.100.0/30
 198.51.100.8/29 upto 198.51.100.8/30 accept
 Term unnamed:
 then reject
show route

List of Syntax
Syntax on page 908
Syntax (EX Series Switches) on page 908

Syntax

```
show route
  <all>
  <destination-prefix>
  <logical-system (all | logical-system-name)>
  <private>
  <te-ipv4-prefix-ip te-ipv4-prefix-ip>
  <te-ipv4-prefix-node-ip te-ipv4-prefix-node-ip>
  <te-ipv4-prefix-node-iso te-ipv4-prefix-node-iso>
  <rib-sharding (main | rib-shard-name)>
```

Syntax (EX Series Switches)

```
show route
  <all>
  <destination-prefix>
  <private>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
Option private introduced in Junos OS Release 9.5.
Option private introduced in Junos OS Release 9.5 for EX Series switches.
Command introduced in Junos OS Release 15.1R3 on MX Series routers for enhanced subscriber management.
Options te-ipv4-prefix-ip, te-ipv4-prefix-node-ip, and te-ipv4-prefix-node-iso introduced in Junos OS Release 17.2R1 on MX Series and PTX Series.
rib-sharding option introduced in cRPD Release 20.1R1.

Description
Display the active entries in the routing tables.

Options
none—Display brief information about all active entries in the routing tables.
all—(Optional) Display information about all routing tables, including private, or internal, routing tables.

destination-prefix—(Optional) Display active entries for the specified address or range of addresses.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

private—(Optional) Display information only about all private, or internal, routing tables.

display-client-data —(Optional) Display client id and cookie information for routes installed by the routing protocol process client applications.

te-ipv4-prefix-ip te-ipv4-prefix-ip—(Optional) Display IPv4 address of the traffic-engineering prefix, without the mask length if present in the routing table.

te-ipv4-prefix-node-ip te-ipv4-prefix-node-ip—(Optional) Display all prefixes that have originated from the traffic-engineering node. You can filter IPv4 node addresses from the traffic-engineered routes in the lsdist.0 table.

te-ipv4-prefix-node-iso te-ipv4-prefix-node-iso—(Optional) Display all prefixes that have originated from the traffic-engineering node. You can filter IPv4 routes with the specified ISO circuit ID from the lsdist.0 table.

rib-sharding (main | rib-shard-name)—(Optional) Display the rib shard name.

Required Privilege Level
view

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Understanding IS-IS Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Configuring IS-IS</td>
</tr>
<tr>
<td>Examples: Configuring Internal BGP Peering</td>
</tr>
<tr>
<td>Examples: Configuring External BGP Peering</td>
</tr>
<tr>
<td>Examples: Configuring OSPF Routing Policy</td>
</tr>
<tr>
<td>Verifying and Managing Junos OS Enhanced Subscriber Management</td>
</tr>
</tbody>
</table>

List of Sample Output

show route on page 913
show route (VPN) on page 914
show route (with Destination Prefix) on page 915
show route destination-prefix detail on page 915
show route extensive on page 915
show route extensive (ECMP) on page 916
Output Fields

Table 24 on page 910 describes the output fields for the `show route` command. Output fields are listed in the approximate order in which they appear.

Table 24: show route Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>routing-table-name</code></td>
<td>Name of the routing table (for example, inet.0).</td>
</tr>
<tr>
<td><code>number destinations</code></td>
<td>Number of destinations for which there are routes in the routing table.</td>
</tr>
<tr>
<td><code>number routes</code></td>
<td>Number of routes in the routing table and total number of routes in the following states:</td>
</tr>
<tr>
<td></td>
<td>• active (routes that are active).</td>
</tr>
<tr>
<td></td>
<td>• holddown (routes that are in the pending state before being declared inactive). A holddown route was once the active route and is no longer the active route. The route is in the holddown state because a protocol still has interest in the route, meaning that the interest bit is set. A protocol might have its interest bit set on the previously active route because the protocol is still advertising the route. The route will be deleted after all protocols withdraw their advertisement of the route and remove their interest bit. A persistent holddown state often means that the interested protocol is not releasing its interest bit properly. However, if you have configured advertisement of multiple routes (with the <code>add-path</code> or <code>advertise-inactive</code> statement), the holddown bit is most likely set because BGP is advertising the route as an active route. In this case, you can ignore the holddown state because nothing is wrong.</td>
</tr>
<tr>
<td></td>
<td>• hidden (routes that are not used because of a routing policy).</td>
</tr>
<tr>
<td></td>
<td>If you have configured <code>uRPF-loose</code> mode, the holddown bit is most likely set because Kernel Routing Table (KRT) is using inactive route to build valid incoming interfaces. In this case, you can ignore the holddown state because nothing is wrong.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>destination-prefix</td>
<td>Route destination (for example: 10.0.0.1/24). Sometimes the route information is presented in another format, such as:</td>
</tr>
<tr>
<td></td>
<td>• MPLS-label (for example, 80001).</td>
</tr>
<tr>
<td></td>
<td>• interface-name (for example, ge-1/0/2).</td>
</tr>
<tr>
<td></td>
<td>• neighbor-address: control-word-status: encapsulation type: vc-id: source (Layer 2 circuit only. For example, 10.1.1.195:NoCtrlWord:1:1:Local/96):</td>
</tr>
<tr>
<td></td>
<td>• neighbor-address—Address of the neighbor.</td>
</tr>
<tr>
<td></td>
<td>• control-word-status—Whether the use of the control word has been negotiated for this virtual circuit: NoCtrlWord or CtrlWord.</td>
</tr>
<tr>
<td></td>
<td>• encapsulation type—Type of encapsulation, represented by a number: (1) Frame Relay DLCI, (2) ATM AAL5 VCC transport, (3) ATM transparent cell transport, (4) Ethernet, (5) VLAN Ethernet, (6) HDLC, (7) PPP, (8) ATM VCC cell transport, (10) ATM VPC cell transport.</td>
</tr>
<tr>
<td></td>
<td>• vc-id—Virtual circuit identifier.</td>
</tr>
<tr>
<td></td>
<td>• source—Source of the advertisement: Local or Remote.</td>
</tr>
<tr>
<td>[protocol, preference]</td>
<td>Protocol from which the route was learned and the preference value for the route.</td>
</tr>
<tr>
<td></td>
<td>• +—A plus sign indicates the active route, which is the route installed from the routing table into the forwarding table.</td>
</tr>
<tr>
<td></td>
<td>• - —A hyphen indicates the last active route.</td>
</tr>
<tr>
<td></td>
<td>• *—An asterisk indicates that the route is both the active and the last active route. An asterisk before a to line indicates the best subpath to the route.</td>
</tr>
<tr>
<td></td>
<td>In every routing metric except for the BGP LocalPref attribute, a lesser value is preferred. In order to use common comparison routines, Junos OS stores the 1’s complement of the LocalPref value in the Preference2 field. For example, if the LocalPref value for Route 1 is 100, the Preference2 value is -101. If the LocalPref value for Route 2 is 155, the Preference2 value is -156. Route 2 is preferred because it has a higher LocalPref value and a lower Preference2 value.</td>
</tr>
<tr>
<td>weeks:days</td>
<td>How long the route been known (for example, 2w 4d 13:11:14, or 2 weeks, 4 days, 13 hours, 11 minutes, and 14 seconds).</td>
</tr>
<tr>
<td>hours:minutes:seconds</td>
<td></td>
</tr>
<tr>
<td>metric</td>
<td>Cost value of the indicated route. For routes within an AS, the cost is determined by the IGP and the individual protocol metrics. For external routes, destinations, or routing domains, the cost is determined by a preference value.</td>
</tr>
<tr>
<td>localpref</td>
<td>Local preference value included in the route.</td>
</tr>
</tbody>
</table>
Table 24: show route Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>from</td>
<td>Interface from which the route was received.</td>
</tr>
<tr>
<td>AS path</td>
<td>AS path through which the route was learned. The letters at the end of the AS path indicate the path origin, providing an indication of the state of the route at the point at which the AS path originated:</td>
</tr>
<tr>
<td></td>
<td>• I—IGP.</td>
</tr>
<tr>
<td></td>
<td>• E—EGP.</td>
</tr>
<tr>
<td></td>
<td>• ?—Incomplete; typically, the AS path was aggregated.</td>
</tr>
<tr>
<td></td>
<td>When AS path numbers are included in the route, the format is as follows:</td>
</tr>
<tr>
<td></td>
<td>• []—Brackets enclose the local AS number associated with the AS path if more than one AS number is configured on the routing device, or if AS path prepending is configured.</td>
</tr>
<tr>
<td></td>
<td>• { }—Braces enclose AS sets, which are groups of AS numbers in which the order does not matter. A set commonly results from route aggregation. The numbers in each AS set are displayed in ascending order.</td>
</tr>
<tr>
<td></td>
<td>• ()—Parentheses enclose a confederation.</td>
</tr>
<tr>
<td></td>
<td>• ([])—Parentheses and brackets enclose a confederation set.</td>
</tr>
<tr>
<td></td>
<td>NOTE: In Junos OS Release 10.3 and later, the AS path field displays an unrecognized attribute and associated hexadecimal value if BGP receives attribute 128 (attribute set) and you have not configured an independent domain in any routing instance.</td>
</tr>
<tr>
<td>encapsulated</td>
<td>Extended next-hop encoding capability enabled for the specified BGP community for routing IPv4 traffic over IPv6 tunnels. When BGP receives routes without the tunnel community, IPv4-Over IPv6 tunnels are not created and BGP routes are resolved without encapsulation.</td>
</tr>
<tr>
<td>Route Labels</td>
<td>Stack of labels carried in the BGP route update.</td>
</tr>
<tr>
<td>validation-state</td>
<td>(BGP-learned routes) Validation status of the route:</td>
</tr>
<tr>
<td></td>
<td>• Invalid—Indicates that the prefix is found, but either the corresponding AS received from the EBGP peer is not the AS that appears in the database, or the prefix length in the BGP update message is longer than the maximum length permitted in the database.</td>
</tr>
<tr>
<td></td>
<td>• Unknown—Indicates that the prefix is not among the prefixes or prefix ranges in the database.</td>
</tr>
<tr>
<td></td>
<td>• Unverified—Indicates that the origin of the prefix is not verified against the database. This is because the database got populated and the validation is not called for in the BGP import policy, although origin validation is enabled, or the origin validation is not enabled for the BGP peers.</td>
</tr>
<tr>
<td></td>
<td>• Valid—Indicates that the prefix and autonomous system pair are found in the database.</td>
</tr>
</tbody>
</table>
Table 24: show route Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>to</td>
<td>Next hop to the destination. An angle bracket (>) indicates that the route is the selected route. If the destination is Discard, traffic is dropped.</td>
</tr>
</tbody>
</table>
| **via** | Interface used to reach the next hop. If there is more than one interface available to the next hop, the interface that is actually used is followed by the word **Selected**. This field can also contain the following information:
 - **Weight**—Value used to distinguish primary, secondary, and fast reroute backup routes. Weight information is available when MPLS label-switched path (LSP) link protection, node-link protection, or fast reroute is enabled, or when the standby state is enabled for secondary paths. A lower weight value is preferred. Among routes with the same weight value, load balancing is possible.
 - **Balance**—Balance coefficient indicating how traffic of unequal cost is distributed among next hops when a routing device is performing unequal-cost load balancing. This information is available when you enable BGP multipath load balancing.
 - **lsp-path-name**—Name of the LSP used to reach the next hop.
 - **label-action**—MPLS label and operation occurring at the next hop. The operation can be **pop** (where a label is removed from the top of the stack), **push** (where another label is added to the label stack), or **swap** (where a label is replaced by another label). For VPNs, expect to see multiple **push** operations, corresponding to the inner and outer labels required for VPN routes (in the case of a direct PE-to-PE connection, the VPN route would have the inner label push only). |
| **Private unicast** | (Enhanced subscriber management for MX Series routers) Indicates that an access-internal route is managed by enhanced subscriber management. By contrast, access-internal routes not managed by enhanced subscriber management are displayed with associated next-hop and media access control (MAC) address information. |
| **balance** | Distribution of the load based on the underlying operational interface bandwidth for equal-cost multipaths (ECMP) across the nexthop gateways in percentages. |

Sample Output

show route

```
user@host> show route
```
inet.0: 11 destinations, 12 routes (11 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

1:65500:1:10.0.0.20/24
 *[VPN/70] 19:53:41, metric2 1
 Indirect

1:65500:1:10.0.0.40/24
 *[BGP/170] 19:53:29, localpref 100, from 10.0.0.30
 AS path: I
 > to 10.0.24.4 via lt-0/3/0.24, label-switched-path toD
 [BGP/170] 19:53:26, localpref 100, from 10.0.0.33
 AS path: I
 > to 10.0.24.4 via lt-0/3/0.24, label-switched-path toD

1:65500:1:10.0.0.60/24
 *[BGP/170] 19:53:29, localpref 100, from 10.0.0.30
 AS path: I
 > to 10.0.28.8 via lt-0/3/0.28, label-switched-path toF
 [BGP/170] 19:53:25, localpref 100, from 10.0.0.33
 AS path: I
 > to 10.0.28.8 via lt-0/3/0.28, label-switched-path toF

show route (VPN)
The following sample output shows a VPN route with composite next hops enabled. The first Push operation corresponds to the outer label. The second Push operation corresponds to the inner label.

user@host> show route 192.0.2.0

13979:665001.inet.0: 871 destinations, 3556 routes (871 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

192.0.2.0/24
 [BGP/170] 00:28:32, localpref 100, from 10.9.9.160
 AS path: 13980 ?, validation-state: unverified
 > to 10.100.0.42 via ae2.0, Push 16, Push 300368(top)
 [BGP/170] 00:28:28, localpref 100, from 10.9.9.169
 AS path: 13980 ?, validation-state: unverified
 > to 10.100.0.42 via ae2.0, Push 126016, Push 300368(top)
 #[Multipath/255] 00:28:28, metric2 102
 > to 10.100.0.42 via ae2.0, Push 16, Push 300368(top)
 to 10.100.0.42 via ae2.0, Push 16, Push 300368(top)
show route (with Destination Prefix)

```
user@host> show route 192.168.0.0/12
```

<table>
<thead>
<tr>
<th>inet.0: 10 destinations, 10 routes (9 active, 0 holddown, 1 hidden)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ = Active Route, - = Last Active, * = Both</td>
</tr>
<tr>
<td>192.168.0.0/12 *[Static/5] 2w4d 12:54:27</td>
</tr>
<tr>
<td>> to 192.168.167.254 via fxp0.0</td>
</tr>
</tbody>
</table>

show route destination-prefix detail

```
user@host> show route 198.51.100.0 detail
```

<table>
<thead>
<tr>
<th>inet.0: 15 destinations, 20 routes (15 active, 0 holddown, 0 hidden)</th>
</tr>
</thead>
<tbody>
<tr>
<td>198.51.100.0/24 (2 entries, 2 announced)</td>
</tr>
<tr>
<td>*BGP Preference: 170/-101</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>BGP-Static Preference: 4294967292</td>
</tr>
<tr>
<td>Next hop type: Discard</td>
</tr>
<tr>
<td>Address: 0x9041ae4</td>
</tr>
<tr>
<td>Next-hop reference count: 2</td>
</tr>
<tr>
<td>State: <NoReadvrt Int Ext AlwaysFlash></td>
</tr>
<tr>
<td>Inactive reason: Route Preference</td>
</tr>
<tr>
<td>Local AS: 200</td>
</tr>
<tr>
<td>Age: 4d 1:40:40</td>
</tr>
<tr>
<td>Validation State: unverified</td>
</tr>
<tr>
<td>Task: RT</td>
</tr>
<tr>
<td>Announcement bits (1): 2-BGP_RT_Background</td>
</tr>
<tr>
<td>AS path: 4 5 6 I</td>
</tr>
</tbody>
</table>

show route extensive

```
user@host> show route extensive
```

<table>
<thead>
<tr>
<th>v1.mvpn.0: 5 destinations, 8 routes (5 active, 1 holddown, 0 hidden)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:65500:1:10.0.0.40/240 (1 entry, 1 announced)</td>
</tr>
<tr>
<td>*BGP Preference: 170/-101</td>
</tr>
<tr>
<td>PMSI: Flags 0x0: Label[0:0:0]: PIM-SM: Sender 10.0.0.40 Group 203.0.113.1</td>
</tr>
<tr>
<td>Next hop type: Indirect</td>
</tr>
<tr>
<td>Address: 0x92455b8</td>
</tr>
</tbody>
</table>
Next-hop reference count: 2
Source: 10.0.0.30
Protocol next hop: 10.0.0.40
Indirect next hop: 2 no-forward
State: <Active Int Ext>
 Local AS: 64510 Peer AS: 64511
 Age: 3 Metric2: 1
Validation State: unverified
Task: BGP_64510.10.0.0.30+179
Announcement bits (2): 0-PIM.v1 1-mvpn global task
AS path: I (Originator) Cluster list: 10.0.0.30
AS path: Originator ID: 10.0.0.40
Communities: target:64502:100 encapsulation:0L:14 Import
Accepted
Localpref: 100
Router ID: 10.0.0.30
Primary Routing Table bgp.mvpn.0
Indirect next hops: 1
 Protocol next hop: 10.0.0.40 Metric: 1
 Indirect next hop: 2 no-forward
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.0.24.4 via lt-0/3/0.24 weight 0x1
 10.0.0.40/32 Originating RIB: inet.3
 Metric: 1 Node path count: 1
 Forwarding nhops: 1
 Nexthop: 10.0.24.4 via lt-0/3/0.24

show route extensive (ECMP)

user@host> show route extensive

*IS-IS Preference: 15
 Level: 1
 Next hop type: Router, Next hop index: 1048577
 Address: 0xXXXXXXXXXX
 Next-hop reference count: YY
 Next hop: 198.51.100.2 via ae1.0 balance 43%, selected
 Session Id: 0x141
 Next hop: 192.0.2.2 via ae0.0 balance 57%

show route extensive (Multipath Resolution)

user@host> show route extensive
inet.0: 37 destinations, 37 routes (36 active, 0 holddown, 1 hidden)
10.1.1.2/32 (1 entry, 1 announced)

TSI:
KRT in-kernel 10.1.1.2/32 -> {indirect(1048574)}
 *Static Preference: 5
 Next hop type: Indirect, Next hop index: 0
 Address: 0xb39d1b0
 Next-hop reference count: 2
 Next hop type: Router, Next hop index: 581
 Next hop: 10.1.1.2 via ge-2/0/1.0, selected
 Session Id: 0x144
 Next hop: 10.2.1.2 via ge-2/0/2.0, selected
 Session Id: 0x145
 Protocol next hop: 10.1.1.1
 Indirect next hop: 0xb2b20f0 1048574 INH Session ID: 0x143
 State: <Active Int Ext>
 Age: 2:53 Metric2: 0
 Validation State: unverified
 Task: RT
 Announcement bits (2): 0-KRT 2-Resolve tree 1
 AS path: I
 Indirect next hops: 1
 Protocol next hop: 10.1.1.1
 Indirect next hop: 0xb2b20f0 1048574 INH Session ID: 0x143

Indirect path forwarding next hops: 2
 Next hop type: Router
 Next hop: 10.1.1.2 via ge-2/0/1.0
 Session Id: 0x144
 Next hop: 10.2.1.2 via ge-2/0/2.0
 Session Id: 0x145
10.1.1.1/32 Originating RIB: inet.0
 Node path count: 1
 Node flags: 1
 Forwarding nexthops: 2 (Merged)
 Nexthop: 10.1.1.2 via ge-2/0/1.0
 Nexthop: 10.2.1.2 via ge-2/0/2.0

user@host> show route active-path extensive

user@host> show route 198.51.100.1 active-path extensive

inet.0: 1000061 destinations, 1000082 routes (1000061 active, 0 holddown, 0 hidden)
198.51.100.1/32 (1 entry, 1 announced)
TSI:
KRT in-kernel 198.51.100.1/32 -> {indirect(1051215)}
unicast reverse-path: 0
[ae0.0 ae1.0]
Page 0 idx 0, (group Internet-IPv4 type External) Type 1 val 0xbb2e53d8 (adv_entry)
Advertised metrics:
Nexthop: Self
AS path: [500] 410 I
Communities:
Path 198.51.100.1 from 10.0.0.11 Vector len 4. Val: 0
*BGP Preference: 170/-101
Next hop type: Indirect, Next hop index: 0
Address: 0x2e9aacdc
Next-hop reference count: 500000
Source: 10.0.0.11
Next hop type: Router, Next hop index: 0
Next hop: 10.0.12.2 via ae0.0 weight 0x1
Label operation: Push 3851, Push 25, Push 20(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl(top)
Load balance label: Label 3851: None; Label 25: None; Label 20: None;
Label element ptr: 0xb5dc1780
Label parent element ptr: 0x18d48080
Label element references: 2
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
Next hop: 10.0.12.2 via ae0.0 weight 0x1
Label operation: Push 3851, Push 25, Push 22(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl(top)
Load balance label: Label 3851: None; Label 25: None; Label 22: None;
Label element ptr: 0xb5dc1700
Label parent element ptr: 0x18d41000
Label element references: 2
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
Next hop: 10.0.12.2 via ae0.0 weight 0x1
Label operation: Push 3851, Push 24, Push 48(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl(top)
Load balance label: Label 3851: None; Label 24: None; Label 48: None;
Label element ptr: 0x18d40800
Label parent element ptr: 0x18d49780
Label element references: 3
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
Next hop: 10.0.12.2 via ae0.0 weight 0x1
Label operation: Push 3851, Push 24, Push 49(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl(top)
Load balance label: Label 3851: None; Label 24: None; Label 49: None;
Label element ptr: 0xb5dc1680
Label parent element ptr: 0x18d48f00
Label element references: 2
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
Next hop: 10.0.13.3 via ae1.0 weight 0x1
Label operation: Push 3851, Push 25, Push 21(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl(top)
Load balance label: Label 3851: None; Label 25: None; Label 21: None;
Label element ptr: 0xb5dc1600
Label parent element ptr: 0x18d44d80
Label element references: 2
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
Next hop: 10.0.13.3 via ae1.0 weight 0x1
Label operation: Push 3851, Push 25, Push 25(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl(top)
Load balance label: Label 3851: None; Label 25: None; Label 25: None;
Label element ptr: 0xb5dc1580
Label parent element ptr: 0x18d3da80
Label element references: 2
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
Next hop: 10.0.13.3 via ae1.0 weight 0x1, selected
Label operation: Push 3851, Push 24, Push 68(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl(top)
Load balance label: Label 3851: None; Label 24: None; Label 68: None;
Label element ptr: 0x18d41500
Label parent element ptr: 0x18d49000
Label element references: 3
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
Next hop: 10.0.13.3 via ae1.0 weight 0x1
Label operation: Push 3851, Push 24, Push 69(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl(top)
Load balance label: Label 3851: None; Label 24: None; Label 69: None;
Label element ptr: 0xb5dc1500
Label parent element ptr: 0x18d48300
Label element references: 2
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
Protocol next hop: 10.0.0.11
Label operation: Push 3851
Label TTL action: prop-ttl
Load balance label: Label 3851: None;
Indirect next hop: 0x1883e200 1051215 INH Session ID: 0xb0d
State:
Local AS: 500 Peer AS: 500
Age: 1:40:03 Metric2: 2
Validation State: unverified
Task: BGP_500.10.0.0.11
Announcement bits (5): 0-KRT 8-KRT 9-BGP_RT_Background 10-Resolve tree 5 11-Resolve tree 8
AS path: 410 I
Accepted
Route Label: 3851
Localpref: 100
Router ID: 10.0.0.11
Indirect next hops: 1
Protocol next hop: 10.0.0.11 Metric: 2
Label operation: Push 3851
Label TTL action: prop-ttl
Load balance label: Label 3851: None;
Indirect next hop: 0x1883e200 1051215 INH Session ID: 0xb0d
Indirect path forwarding next hops (Merged): 8
Next hop type: Router
Next hop: 10.0.12.2 via ae0.0 weight 0x1
Session Id: 0x0
Next hop: 10.0.12.2 via ae0.0 weight 0x1
Session Id: 0x0
Next hop: 10.0.12.2 via ae0.0 weight 0x1
Session Id: 0x0
Next hop: 10.0.12.2 via ae0.0 weight 0x1
Session Id: 0x0
Next hop: 10.0.13.3 via ae1.0 weight 0x1
Session Id: 0x0
Next hop: 10.0.13.3 via ae1.0 weight 0x1
Next hop: 10.0.13.3 via ae1.0 weight 0x1
Session Id: 0x0
Next hop: 10.0.13.3 via ae1.0 weight 0x1
Session Id: 0x0
Next hop: 10.0.13.3 via ae1.0 weight 0x1
Session Id: 0x0
10.0.0.11/32 Originating RIB: inet.3
Metric: 1 Node path count: 4
Node flags: 1
Indirect nexthops: 4
Protocol Nexthop: 10.0.0.4 Metric: 1 Push 24
Indirect nexthop: 0x1880f200 1048597 INH Session ID: 0xb0c
Path forwarding nexthops link: 0x36120400
Path inh link: 0x0
Indirect path forwarding nexthops: 2
Nexthop: 10.0.12.2 via ae0.0
Session Id: 0
Nexthop: 10.0.13.3 via ae1.0
Session Id: 0
10.0.0.4/32 Originating RIB: inet.3
Metric: 1 Node path count: 1
Forwarding nexthops: 2
Nexthop: 10.0.12.2 via ae0.0
Session Id: 0
Nexthop: 10.0.13.3 via ae1.0
Session Id: 0
Protocol Nexthop: 10.0.0.5 Metric: 1 Push 24
Indirect nexthop: 0x18810000 1048596 INH Session ID: 0xb0b
Path forwarding nexthops link: 0x1545be00
Path inh link: 0x0
Indirect path forwarding nexthops: 2
Nexthop: 10.0.12.2 via ae0.0
Session Id: 0
Nexthop: 10.0.13.3 via ae1.0
Session Id: 0
10.0.0.5/32 Originating RIB: inet.3
Metric: 1 Node path count: 1
Forwarding nexthops: 2
Nexthop: 10.0.12.2 via ae0.0
Session Id: 0
Nexthop: 10.0.13.3 via ae1.0
Session Id: 0
Protocol Nexthop: 10.0.0.6 Metric: 1 Push 25
Indirect nexthop: 0x1880e600 1048588 INH Session ID: 0xb0a
Path forwarding nexthops link: 0x3611f440
Path inh link: 0x0
Indirect path forwarding nexthops: 2
Nexthop: 10.0.12.2 via ae0.0
Session Id: 0
Nexthop: 10.0.13.3 via ae1.0
Session Id: 0
10.0.0.6/32 Originating RIB: inet.3
Metric: 1 Node path count: 1
Forwarding nexthops: 2
Nexthop: 10.0.12.2 via ae0.0
Session Id: 0
Nexthop: 10.0.13.3 via ae1.0
Session Id: 0
Protocol Nexthop: 10.0.0.7 Metric: 1 Push 25
Indirect nexthop: 0x1880dc00 1048586 INH Session ID: 0xb09
Path forwarding nexthops link: 0x15466d80
Path inh link: 0x0
Indirect path forwarding nexthops: 2
Nexthop: 10.0.12.2 via ae0.0
Session Id: 0
Nexthop: 10.0.13.3 via ae1.0
Session Id: 0
10.0.0.7/32 Originating RIB: inet.3
Metric: 1 Node path count: 1
Forwarding nexthops: 2
Nexthop: 10.0.12.2 via ae0.0
Session Id: 0
Nexthop: 10.0.13.3 via ae1.0
Session Id: 0

show route (Enhanced Subscriber Management)

user@host> show route

inet.0: 41 destinations, 41 routes (40 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

198.51.100.11/24 *[Access-internal/12] 00:00:08
 > to #0 10.0.0.1.93.65 via demux0.1073741824
198.51.100.12/24 *[Access-internal/12] 00:00:08
 Private unicast
show route (IPv6 Flow Specification)

user@host> show route

inet6: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2001:db8::10:255:185:19/128
 *[Direct/0] 05:11:27
 > via lo0.0

2001:db8::11:11:0/120
 *[BGP/170] 00:28:58, localpref 100
 AS path: 2000 I, validation-state: unverified
 > to 2001:db8::13:14:2:2 via ge-1/1/4.0

2001:db8::13:14:2:0/120
 *[Direct/0] 00:45:07
 > via ge-1/1/4.0

2001:db8::13:14:2:1/128
 *[Local/0] 00:45:18
 Local via ge-1/1/4.0

fe80::2a0:a50f:fc71:71d5/128
 *[Direct/0] 05:11:27
 > via lo0.0

fe80::5e5e:abff:feb0:933e/128
 *[Local/0] 00:45:18
 Local via ge-1/1/4.0

inet6flow: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2001:db8::11:11:10/128
 *,proto=6,dstport=80,srcport=65535/term:1
 *[BGP/170] 00:28:58, localpref 100, from 2001:db8::13:14:2:2
 AS path: 2000 I, validation-state: unverified
 Fictitious

2001:db8::11:11:30/128
 *,icmp6-type=128,len=100,dscp=10/term:2
 *[BGP/170] 00:20:54, localpref 100, from 2001:db8::13:14:2:2
 AS path: 2000 I, validation-state: unverified
 Fictitious

show route display-client-data detail

user@host> show route 198.51.100.0/24 display-client-data detail

inet: 59 destinations, 70 routes (59 active, 0 holddown, 0 hidden)
198.51.100.0/24 (1 entry, 1 announced)
 State: <FlashAll>
BGP-Static Preference: 5/-101
Next hop type: Indirect, Next hop index: 0
Address: 0xa5c2af8
Next-hop reference count: 2
Next hop type: Router, Next hop index: 1641
Next hop: 192.0.2.1 via ge-2/1/1.0, selected
Session Id: 0x160
Protocol next hop: 192.0.2.1
Indirect next hop: 0xa732cb0 1048621 INH Session ID: 0x17e
State: <Active Int Ext AlwaysFlash NSR-incapable Programmed>
Age: 3:13 Metric2: 0
Validation State: unverified
Announcement bits (3): 0-KRT 5-LDP 6-Resolve tree 3
AS path: I
Client id: 1, Cookie: 1

show route rib-sharding

user@host> show route rib-sharding shard-name

inet.0: 193295 destinations, 386345 routes (193295 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

1.0.4.0/22 *[BGP/170] 03:35:38, localpref 100, from 1.1.1.1
 AS path: 69 10458 14203 4826 38803 56203 I, validation-state: unverified
 > to 10.205.191.254 via fxp0.0
 [BGP/170] 03:35:38, localpref 100, from 1.1.1.2
 AS path: 69 10458 14203 4826 38803 56203 I, validation-state: unverified
 > to 10.205.191.254 via fxp0.0

1.0.6.0/24 *[BGP/170] 03:35:38, localpref 100, from 1.1.1.1
 AS path: 69 10458 14203 4826 38803 56203 I, validation-state: unverified
 > to 10.205.191.254 via fxp0.0
 [BGP/170] 03:35:38, localpref 100, from 1.1.1.2
 AS path: 69 10458 14203 4826 38803 56203 I, validation-state: unverified
 > to 10.205.191.254 via fxp0.0

1.0.64.0/18 *[BGP/170] 03:35:38, localpref 100, from 1.1.1.1
 AS path: 69 10458 14203 2914 2497 7670 18144 I, validation-state: unverified
 > to 10.205.191.254 via fxp0.0
 [BGP/170] 03:35:38, localpref 100, from 1.1.1.2
AS path: 69 10458 14203 2914 2497 7670 18144 I, validation-state: unverified
> to 10.205.191.254 via fxp0.0

show route te-ipv4-prefix-ip

user@host> show route te-ipv4-prefix-ip 10.10.10.10

lsdist.0: 283 destinations, 283 routes (283 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.10.10.10/32 } ISIS-L1:0 }/1152
 *[IS-IS/15] 00:01:01
 Fictitious
PREFIX { Node { AS:64496 ISO:0100.0101.0101.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152
 *[IS-IS/18] 00:01:01
 Fictitious
PREFIX { Node { AS:64496 ISO:0100.0202.0202.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152
 *[IS-IS/18] 00:01:01
 Fictitious
PREFIX { Node { AS:64496 ISO:0100.0303.0303.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152
 *[IS-IS/18] 00:01:01
 Fictitious
PREFIX { Node { AS:64496 ISO:0100.0404.0404.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152
 *[IS-IS/18] 00:01:01
 Fictitious
PREFIX { Node { AS:64496 ISO:0100.0505.0505.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152
 *[IS-IS/18] 00:01:01
 Fictitious
PREFIX { Node { AS:64496 ISO:0100.0606.0606.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152
 *[IS-IS/18] 00:01:01
 Fictitious
PREFIX { Node { AS:64496 ISO:0100.0707.0707.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152
 *[IS-IS/18] 00:01:01
 Fictitious
show route te-ipv4-prefix-ip extensive

user@host> show route te-ipv4-prefix-ip 10.10.10.10 extensive

lsdist.0: 298 destinations, 298 routes (298 active, 0 holddown, 0 hidden)
 *IS-IS Preference: 15
 Level: 1
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 298
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 7:58
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: 0x40, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0000.0000.0000 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 298
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 7:58
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0101.0101.0000 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 298
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 7:58
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: 0xe0, Algo: 0>
Next hop type: Fictitious, Next hop index: 0
Address: 0xa1a2ac4
Next-hop reference count: 298
Next hop:
State: <Active NotInstall>
Local AS: 64496
Age: 7:58
Validation State: unverified
Task: IS-IS
AS path: I
Prefix SID: 1000, Flags: Oxe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0303.0303.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 298
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 7:58
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: Oxe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0404.0404.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 298
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 7:58
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: Oxe0, Algo: 0
PREFIX { Node { AS:64496 ISO:0100.0505.0505.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0x1a2ac4
 Next-hop reference count: 298
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 7:58
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0606.0606.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0x1a2ac4
 Next-hop reference count: 298
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 7:58
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0707.0707.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0x1a2ac4
 Next-hop reference count: 298
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 7:58
 Validation State: unverified
Task: IS-IS
AS path: I
Prefix SID: 1000, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 298
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 7:58
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: 0x40, Algo: 0

show route te-ipv4-prefix-node-iso

user@host> show route te-ipv4-prefix-node-iso 0100.0a0a.0a0a.00

lsdist.0: 283 destinations, 283 routes (283 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.10.10.10/32 } ISIS-L1:0 }/1152
 *[IS-IS/15] 00:05:20
 Fictitious
PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.1.1.1/32 } ISIS-L2:0 }/1152
 *[IS-IS/18] 00:05:20
 Fictitious
PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.2.2.2/32 } ISIS-L2:0 }/1152
 *[IS-IS/18] 00:05:20
 Fictitious
PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.3.3.3/32 } ISIS-L2:0 }/1152
 *[IS-IS/18] 00:05:20
 Fictitious
PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.4.4.4/32 } ISIS-L2:0 }/1152
 *[IS-IS/18] 00:05:20
 Fictitious
show route te-ipv4-prefix-node-iso extensive

user@host> show route te-ipv4-prefix-node-iso 0100.0a0a.0a0a.00 extensive

lsdist.0: 283 destinations, 283 routes (283 active, 0 holddown, 0 hidden)
PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.10.10.10/32 } ISIS-L1:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 15
 Level: 1
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:47
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: 0x40, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.1.1.1/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
*IS-IS Preference: 18
Level: 2
Next hop type: Fictitious, Next hop index: 0
Address: 0xala2ac4
Next-hop reference count: 283
Next hop:
State: <Active NotInstall>
Local AS: 64496
Age: 6:47
Validation State: unverified
Task: IS-IS
AS path: I
Prefix SID: 1001, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.2.2.2/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
*IS-IS Preference: 18
Level: 2
Next hop type: Fictitious, Next hop index: 0
Address: 0xala2ac4
Next-hop reference count: 283
Next hop:
State: <Active NotInstall>
Local AS: 64496
Age: 6:47
Validation State: unverified
Task: IS-IS
AS path: I
Prefix SID: 1002, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.3.3.3/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
*IS-IS Preference: 18
Level: 2
Next hop type: Fictitious, Next hop index: 0
Address: 0xala2ac4
Next-hop reference count: 283
Next hop:
State: <Active NotInstall>
Local AS: 64496
Age: 6:47
Validation State: unverified
Task: IS-IS
AS path: I
Prefix SID: 1003, Flags: Ox0e0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.4.4.4/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:47
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1004, Flags: Ox0e0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.5.5.5/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:47
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1005, Flags: Ox0e0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.6.6.6/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
show route te-ipv4-prefix-node-isodetail

user@host> show route te-ipv4-prefix-node-iso 0100.0a0a.0a0a.00 detail
lsdist.0: 283 destinations, 283 routes (283 active, 0 holddown, 0 hidden)

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.10.10.10/32 } ISIS-L1:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 15
 Level: 1
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xala2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:54
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: 0x40, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.1.1.1/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xala2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:54
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1001, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.2.2.2/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xala2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:54
Validation State: unverified
Task: IS-IS
AS path: I
Prefix SID: 1002, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.3.3.3/32 } ISIS-L2:0 }
/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xala2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:54
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1003, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.4.4.4/32 } ISIS-L2:0 }
/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xala2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:54
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1004, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.5.5.5/32 } ISIS-L2:0 }
/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xala2ac4
 Next-hop reference count: 283
Next hop:
State: <Active NotInstall>
Local AS: 64496
Age: 6:54
Validation State: unverified
Task: IS-IS
AS path: I
Prefix SID: 1005, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.6.6.6/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:54
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1006, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.7.7.7/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:54
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1007, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
show route rib-sharding junos-bgpshard14

inet.0: 54 destinations, 54 routes (54 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2.2.50.8/30 *[Direct/0] 00:29:15
 > via eth9.101
2.2.50.9/32 *[Local/0] 00:29:15
 Local via eth9.101
2.2.51.8/30 *[Direct/0] 00:29:15
 > via eth9.102@
2.2.51.9/32 *[Local/0] 00:29:15
 Local via eth9.102@
2.2.52.8/30 *[Direct/0] 00:29:15
 > via eth8.103
2.2.52.9/32 *[Local/0] 00:29:15
 Local via eth8.103
2.2.54.8/30 *[Direct/0] 00:29:15
 > via eth8.104@
2.2.54.9/32 *[Local/0] 00:29:15
 Local via eth8.104@
2.2.55.8/30 *[Direct/0] 00:29:15
 > via eth6.105
2.2.55.9/32 *[Local/0] 00:29:15
 Local via eth6.105
2.2.56.8/30 *[Direct/0] 00:29:15
 > via eth6.106@
2.2.56.9/32 *[Local/0] 00:29:15
 Local via eth6.106@
<table>
<thead>
<tr>
<th>Address</th>
<th>State</th>
<th>Time</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.57.8/30</td>
<td>[Direct/0] 00:29:15</td>
<td>via eth7.107</td>
<td></td>
</tr>
<tr>
<td>2.2.57.9/32</td>
<td>[Local/0] 00:29:15</td>
<td>Local via eth7.107</td>
<td></td>
</tr>
<tr>
<td>2.2.58.8/30</td>
<td>[Direct/0] 00:29:15</td>
<td>via eth7.108@</td>
<td></td>
</tr>
<tr>
<td>2.2.58.9/32</td>
<td>[Local/0] 00:29:15</td>
<td>Local via eth7.108@</td>
<td></td>
</tr>
<tr>
<td>3.2.56.8/30</td>
<td>[Direct/0] 00:23:38</td>
<td>via eth11.115</td>
<td></td>
</tr>
<tr>
<td>3.2.56.9/32</td>
<td>[Local/0] 00:23:38</td>
<td>Local via eth11.115</td>
<td></td>
</tr>
<tr>
<td>3.2.57.8/30</td>
<td>[Direct/0] 00:23:38</td>
<td>via eth11.116</td>
<td></td>
</tr>
<tr>
<td>3.2.57.9/32</td>
<td>[Local/0] 00:23:38</td>
<td>Local via eth11.116</td>
<td></td>
</tr>
<tr>
<td>3.12.50.8/30</td>
<td>[Direct/0] 00:23:38</td>
<td>via eth13.109</td>
<td></td>
</tr>
<tr>
<td>3.12.50.9/32</td>
<td>[Local/0] 00:23:38</td>
<td>Local via eth13.109</td>
<td></td>
</tr>
<tr>
<td>3.12.51.8/30</td>
<td>[Direct/0] 00:23:38</td>
<td>via eth13.110</td>
<td></td>
</tr>
<tr>
<td>3.12.51.9/32</td>
<td>[Local/0] 00:23:38</td>
<td>Local via eth13.110</td>
<td></td>
</tr>
<tr>
<td>3.12.52.8/30</td>
<td>[Direct/0] 00:23:38</td>
<td>via eth10.111</td>
<td></td>
</tr>
<tr>
<td>3.12.52.9/32</td>
<td>[Local/0] 00:23:38</td>
<td>Local via eth10.111</td>
<td></td>
</tr>
<tr>
<td>3.12.53.8/30</td>
<td>[Direct/0] 00:23:38</td>
<td>via eth10.112</td>
<td></td>
</tr>
<tr>
<td>3.12.53.9/32</td>
<td>[Local/0] 00:23:38</td>
<td>Local via eth10.112</td>
<td></td>
</tr>
<tr>
<td>3.12.55.8/30</td>
<td>[Direct/0] 00:23:38</td>
<td>via eth12.113</td>
<td></td>
</tr>
<tr>
<td>3.12.55.9/32</td>
<td>[Local/0] 00:23:38</td>
<td>Local via eth12.113</td>
<td></td>
</tr>
<tr>
<td>3.12.56.8/30</td>
<td>[Direct/0] 00:23:38</td>
<td>via eth12.114</td>
<td></td>
</tr>
<tr>
<td>3.12.56.9/32</td>
<td>[Local/0] 00:23:38</td>
<td>Local via eth12.114</td>
<td></td>
</tr>
<tr>
<td>10.0.0.0/24</td>
<td>[Direct/0] 1d 01:57:27</td>
<td>via eth5.100</td>
<td></td>
</tr>
<tr>
<td>10.0.0.1/32</td>
<td>[Local/0] 1d 01:57:27</td>
<td>Local via eth5.100</td>
<td></td>
</tr>
<tr>
<td>IP Address</td>
<td>AccessType</td>
<td>Last Active</td>
<td>Route via</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>10.216.160.0/21</td>
<td>[Direct/0]</td>
<td>1d 01:57:27</td>
<td>via eth0,V</td>
</tr>
<tr>
<td>10.216.161.169/32</td>
<td>[Local/0]</td>
<td>1d 01:57:27</td>
<td>Local via eth0,V</td>
</tr>
<tr>
<td>12.2.45.0/24</td>
<td>[Direct/0]</td>
<td>16:49:27</td>
<td>via eth4,V</td>
</tr>
<tr>
<td>12.2.45.9/32</td>
<td>[Local/0]</td>
<td>16:49:27</td>
<td>Local via eth4,V</td>
</tr>
<tr>
<td>12.2.46.0/24</td>
<td>[Direct/0]</td>
<td>1d 01:57:27</td>
<td>via eth2,V</td>
</tr>
<tr>
<td>12.2.46.9/32</td>
<td>[Local/0]</td>
<td>1d 01:57:27</td>
<td>Local via eth2,V</td>
</tr>
<tr>
<td>20.0.0.0/24</td>
<td>[Direct/0]</td>
<td>1d 01:57:27</td>
<td>via eth5.200</td>
</tr>
<tr>
<td>20.0.0.1/32</td>
<td>[Local/0]</td>
<td>1d 01:57:27</td>
<td>Local via eth5.200</td>
</tr>
<tr>
<td>20.255.255.10/32</td>
<td>[Direct/0]</td>
<td>1d 01:57:27</td>
<td>via lo.0</td>
</tr>
<tr>
<td>20.255.255.11/32</td>
<td>[Direct/0]</td>
<td>1d 01:57:27</td>
<td>via lo.0</td>
</tr>
<tr>
<td>20.255.255.12/32</td>
<td>[Direct/0]</td>
<td>1d 01:57:27</td>
<td>via lo.0</td>
</tr>
<tr>
<td>20.255.255.13/32</td>
<td>[Direct/0]</td>
<td>1d 01:57:27</td>
<td>via lo.0</td>
</tr>
<tr>
<td>20.255.255.14/32</td>
<td>[Direct/0]</td>
<td>1d 01:57:27</td>
<td>via lo.0</td>
</tr>
<tr>
<td>20.255.255.15/32</td>
<td>[Direct/0]</td>
<td>1d 01:57:27</td>
<td>via lo.0</td>
</tr>
<tr>
<td>20.255.255.16/32</td>
<td>[Direct/0]</td>
<td>1d 01:57:27</td>
<td>via lo.0</td>
</tr>
<tr>
<td>30.0.0.0/24</td>
<td>[Direct/0]</td>
<td>1d 01:57:27</td>
<td>via eth3,V</td>
</tr>
<tr>
<td>30.0.0.1/32</td>
<td>[Local/0]</td>
<td>1d 01:57:27</td>
<td>Local via eth3,V</td>
</tr>
<tr>
<td>172.17.0.1/32</td>
<td>[Local/0]</td>
<td>1d 01:57:27</td>
<td>Reject</td>
</tr>
<tr>
<td>172.18.0.1/32</td>
<td>[Local/0]</td>
<td>1d 01:57:27</td>
<td>Reject</td>
</tr>
<tr>
<td>192.168.2.254/32</td>
<td>[Local/0]</td>
<td>1d 01:57:27</td>
<td>Reject</td>
</tr>
</tbody>
</table>

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
inet6.0: 14 destinations, 14 routes (14 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

fe80::42:ffff:fe7a:26ec/128
 *[Direct/0] 1d 01:57:27
 > via lo.0

fe80::ec4:7aff:fed1:43c8/128
 *[Direct/0] 1d 01:57:27
 Reject

fe80::92e2:baff:fecc:3ed4/128
 *[Direct/0] 00:23:38
 Local via eth0,V

fe80::92e2:baff:fecc:3ed5/128
 *[Direct/0] 00:23:38
 Local via eth12.114

fe80::92e2:baff:fecc:a024/128
 *[Direct/0] 16:49:27
 Local via eth4,V

fe80::92e2:baff:fecc:a025/128
 *[Direct/0] 1d 01:57:27
 Local

fe80::92e2:baff:fecc:a030/128
 *[Direct/0] 00:29:15
 Local via eth6.106@

fe80::92e2:baff:fecc:a031/128
 *[Direct/0] 00:29:15
 Local via eth7.108@

fe80::92e2:baff:fecc:a038/128
 *[Direct/0] 1d 01:57:27
 Local via eth2,V

fe80::92e2:baff:fecc:a039/128
 *[Direct/0] 1d 01:57:27
 Local via eth3,V

fe80::92e2:baff:fecc:a050/128
 *[Direct/0] 00:29:15
 Local via eth8.104@

fe80::92e2:baff:fecc:a051/128
 *[Direct/0] 00:29:15
 Local via eth9.102@

fe80::92e2:baff:fecc:a054/128
*[Local/0] 00:23:38
 Local via eth10.112
fe80::92e2:baff:fece:a055/128
*[Local/0] 00:23:38
 Local via eth11.116
show route instance

List of Syntax
Syntax on page 942
Syntax (EX Series Switches and QFX Series) on page 942

Syntax

```
show route instance
  <brief | detail | summary>
  <instance-name>
  <logical-system (all | logical-system-name)>
  <operational>
```

Syntax (EX Series Switches and QFX Series)

```
show route instance
  <brief | detail | summary>
  <instance-name>
  <operational>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display routing instance information.

Options
none—(Same as brief) Display standard information about all routing instances.
brief | detail | summary—(Optional) Display the specified level of output. If you do not specify a level of output, the system defaults to brief. (These options are not available with the operational keyword.)
instance-name—(Optional) Display information for all routing instances whose name begins with this string (for example, cust1, cust11, and cust111 are all displayed when you run the show route instance cust1 command).
logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.
operational—(Optional) Display operational routing instances.
Required Privilege Level
view

RELATED DOCUMENTATION

Example: Transporting IPv6 Traffic Across IPv4 Using Filter-Based Tunneling
Example: Configuring the Helper Capability Mode for OSPFv3 Graceful Restart | 320

List of Sample Output
show route instance on page 944
show route instance detail (Graceful Restart Complete) on page 945
show route instance detail (Graceful Restart Incomplete) on page 947
show route instance detail (VPLS Routing Instance) on page 950
show route instance operational on page 950
show route instance summary on page 950

Output Fields
Table 25 on page 943 lists the output fields for the `show route instance` command. Output fields are listed in the approximate order in which they appear.

Table 25: show route instance Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance or <code>instance-name</code></td>
<td>Name of the routing instance.</td>
<td>All levels</td>
</tr>
<tr>
<td>Operational Routing Instances</td>
<td>(operational) keyword only Names of all operational routing instances.</td>
<td>—</td>
</tr>
<tr>
<td>Type</td>
<td>Type of routing instance: forwarding, l2vpn, no-forwarding, vpls, virtual-router, or vrf.</td>
<td>All levels</td>
</tr>
<tr>
<td>State</td>
<td>State of the routing instance: active or inactive.</td>
<td>brief detail none</td>
</tr>
<tr>
<td>Interfaces</td>
<td>Name of interfaces belonging to this routing instance.</td>
<td>brief detail none</td>
</tr>
<tr>
<td>Restart State</td>
<td>Status of graceful restart for this instance: Pending or Complete.</td>
<td>detail</td>
</tr>
<tr>
<td>Path selection timeout</td>
<td>Maximum amount of time, in seconds, remaining until graceful restart is declared complete. The default is 300.</td>
<td>detail</td>
</tr>
<tr>
<td>Tables</td>
<td>Tables (and number of routes) associated with this routing instance.</td>
<td>brief detail none</td>
</tr>
</tbody>
</table>
Table 25: show route instance Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route-distinguisher</td>
<td>Unique route distinguisher associated with this routing instance.</td>
<td>detail</td>
</tr>
<tr>
<td>Vrf-import</td>
<td>VPN routing and forwarding instance import policy name.</td>
<td>detail</td>
</tr>
<tr>
<td>Vrf-export</td>
<td>VPN routing and forwarding instance export policy name.</td>
<td>detail</td>
</tr>
<tr>
<td>Vrf-import-target</td>
<td>VPN routing and forwarding instance import target community name.</td>
<td>detail</td>
</tr>
<tr>
<td>Vrf-export-target</td>
<td>VPN routing and forwarding instance export target community name.</td>
<td>detail</td>
</tr>
<tr>
<td>Vrf-edge-protection-id</td>
<td>Context identifier configured for edge-protection.</td>
<td>detail</td>
</tr>
<tr>
<td>Fast-reroute-priority</td>
<td>Fast reroute priority setting for a VPLS routing instance: high, medium, or low. The default is low.</td>
<td></td>
</tr>
<tr>
<td>Restart State</td>
<td>Restart state:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• **Pending:protocol-name—List of protocols that have not yet completed graceful restart for this routing table.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Complete—All protocols have restarted for this routing table.</td>
<td></td>
</tr>
<tr>
<td>Primary rib</td>
<td>Primary table for this routing instance.</td>
<td>brief none summary</td>
</tr>
<tr>
<td>Active/holddown/hidden</td>
<td>Number of active, hold-down, and hidden routes.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Sample Output

show route instance

```
user@host> show route instance
```

<table>
<thead>
<tr>
<th>Instance</th>
<th>Type</th>
<th>Active/holddown/hidden</th>
</tr>
</thead>
<tbody>
<tr>
<td>master</td>
<td>forwarding</td>
<td></td>
</tr>
<tr>
<td>inet.0</td>
<td></td>
<td>16/0/1</td>
</tr>
<tr>
<td>iso.0</td>
<td></td>
<td>1/0/0</td>
</tr>
<tr>
<td>mpls.0</td>
<td></td>
<td>0/0/0</td>
</tr>
</tbody>
</table>
show route instance detail (Graceful Restart Complete)

user@host> show route instance detail

master:
 Router ID: 10.255.14.176
 Type: forwarding State: Active
 Restart State: Complete Path selection timeout: 300
 Tables:
 inet.0 : 17 routes (15 active, 0 holddown, 1 hidden)
 Restart Complete
 inet.3 : 2 routes (2 active, 0 holddown, 0 hidden)
 Restart Complete
 iso.0 : 1 routes (1 active, 0 holddown, 0 hidden)
 Restart Complete
 mpls.0 : 19 routes (19 active, 0 holddown, 0 hidden)
 Restart Complete
 bgp.l3vpn.0 : 10 routes (10 active, 0 holddown, 0 hidden)
 Restart Complete
 inet6.0 : 2 routes (2 active, 0 holddown, 0 hidden)
 Restart Complete
 bgp.l2vpn.0 : 1 routes (1 active, 0 holddown, 0 hidden)
 Restart Complete

BGP-INET:
 Router ID: 10.69.103.1
 Type: vrf State: Active
 Restart State: Complete Path selection timeout: 300
 Interfaces:
 t3-0/0/0.103
 Route-distinguisher: 10.255.14.176:103
 Vrf-import: [BGP-INET-import]
 Vrf-export: [BGP-INET-export]
 Tables:
 BGP-INET.inet.0 : 4 routes (4 active, 0 holddown, 0 hidden)
 Restart Complete

BGP-L:
 Router ID: 10.69.104.1
 Type: vrf State: Active
Restart State: Complete Path selection timeout: 300

Interfaces:
 t3-0/0/0/0.104
Route-distinguisher: 10.255.14.176:104
Vrf-import: [BGP-L-import]
Vrf-export: [BGP-L-export]
Tables:
 BGP-L.inet.0 : 4 routes (4 active, 0 holddown, 0 hidden)
 Restart Complete
 BGP-L.mpls.0 : 3 routes (3 active, 0 holddown, 0 hidden)
 Restart Complete

L2VPN:
 Router ID: 0.0.0.0
 Type: l2vpn State: Active
Restart State: Complete Path selection timeout: 300
Interfaces:
 t3-0/0/0/0.512
Route-distinguisher: 10.255.14.176:512
Vrf-import: [L2VPN-import]
Vrf-export: [L2VPN-export]
Tables:
 L2VPN.l2vpn.0 : 2 routes (2 active, 0 holddown, 0 hidden)
 Restart Complete

LDP:
 Router ID: 10.69.105.1
 Type: vrf State: Active
Restart State: Complete Path selection timeout: 300
Interfaces:
 t3-0/0/0/0.105
Route-distinguisher: 10.255.14.176:105
Vrf-import: [LDP-import]
Vrf-export: [LDP-export]
Tables:
 LDP.inet.0 : 5 routes (4 active, 0 holddown, 0 hidden)
 Restart Complete

OSPF:
 Router ID: 10.69.101.1
 Type: vrf State: Active
Restart State: Complete Path selection timeout: 300
Interfaces:
 t3-0/0/0/0.101
Vrf-import: [OSPF-import]
Vrf-export: [OSPF-export]
Vrf-import-target: [target:11111
Tables:
 OSPF.inet.0 : 8 routes (7 active, 0 holddown, 0 hidden)
 Restart Complete
RIP:
 Router ID: 10.69.102.1
 Type: vrf
 State: Active
 Restart State: Complete
 Path selection timeout: 300
 Interfaces:
 t3-0/0/0.102
 Vrf-import: [RIP-import]
 Vrf-export: [RIP-export]
Tables:
 RIP.inet.0 : 6 routes (6 active, 0 holddown, 0 hidden)
 Restart Complete
STATIC:
 Router ID: 10.69.100.1
 Type: vrf
 State: Active
 Restart State: Complete
 Path selection timeout: 300
 Interfaces:
 t3-0/0/0.100
 Route-distinguisher: 10.255.14.176:100
 Vrf-import: [STATIC-import]
 Vrf-export: [STATIC-export]
Tables:
 STATIC.inet.0 : 4 routes (4 active, 0 holddown, 0 hidden)
 Restart Complete

show route instance detail (Graceful Restart Incomplete)

user@host> show route instance detail

master:
 Router ID: 10.255.14.176
 Type: forwarding
 State: Active
 Restart State: Pending
 Path selection timeout: 300
 Tables:
 inet.0 : 17 routes (15 active, 1 holddown, 1 hidden)
 Restart Pending: OSPF LDP
 inet.3 : 2 routes (2 active, 0 holddown, 0 hidden)
 Restart Pending: OSPF LDP
 iso.0 : 1 routes (1 active, 0 holddown, 0 hidden)
 Restart Complete
mpls.0 : 23 routes (23 active, 0 holddown, 0 hidden)
Restart Pending: LDP VPN

bgp.l3vpn.0 : 10 routes (10 active, 0 holddown, 0 hidden)
Restart Pending: BGP VPN

inet6.0 : 2 routes (2 active, 0 holddown, 0 hidden)
Restart Complete

bgp.l2vpn.0 : 1 routes (1 active, 0 holddown, 0 hidden)
Restart Pending: BGP VPN

BGP-INET:
Router ID: 10.69.103.1
Type: vrf State: Active
Restart State: Pending Path selection timeout: 300
Interfaces:
 t3-0/0/0/0.103
Route-distinguisher: 10.255.14.176:103
Vrf-import: [BGP-INET-import]
Vrf-export: [BGP-INET-export]
Tables:
 BGP-INET.inet.0 : 6 routes (5 active, 0 holddown, 0 hidden)
 Restart Pending: VPN

BGP-L:
Router ID: 10.69.104.1
Type: vrf State: Active
Restart State: Pending Path selection timeout: 300
Interfaces:
 t3-0/0/0/0.104
Route-distinguisher: 10.255.14.176:104
Vrf-import: [BGP-L-import]
Vrf-export: [BGP-L-export]
Tables:
 BGP-L.inet.0 : 6 routes (5 active, 0 holddown, 0 hidden)
 Restart Pending: VPN
 BGP-L.mpls.0 : 2 routes (2 active, 0 holddown, 0 hidden)
 Restart Pending: VPN

L2VPN:
Router ID: 0.0.0.0
Type: l2vpn State: Active
Restart State: Pending Path selection timeout: 300
Interfaces:
 t3-0/0/0/0.512
Route-distinguisher: 10.255.14.176:512
Vrf-import: [L2VPN-import]
Vrf-export: [L2VPN-export]
Tables:
L2VPN.l2vpn.0 : 2 routes (2 active, 0 holddown, 0 hidden)
Restart Pending: VPN L2VPN

LDP:
Router ID: 10.69.105.1
Type: vrf State: Active
Restart State: Pending Path selection timeout: 300
Interfaces:
t3-0/0/0.105
Route-distinguisher: 10.255.14.176:105
Vrf-import: [LDP-import]
Vrf-export: [LDP-export]
Tables:
LDP.inet.0 : 5 routes (4 active, 1 holddown, 0 hidden)
Restart Pending: OSPF LDP VPN

OSPF:
Router ID: 10.69.101.1
Type: vrf State: Active
Restart State: Pending Path selection timeout: 300
Interfaces:
t3-0/0/0.101
Vrf-import: [OSPF-import]
Vrf-export: [OSPF-export]
Tables:
OSPF.inet.0 : 8 routes (7 active, 1 holddown, 0 hidden)
Restart Pending: OSPF VPN

RIP:
Router ID: 10.69.102.1
Type: vrf State: Active
Restart State: Pending Path selection timeout: 300
Interfaces:
t3-0/0/0.102
Vrf-import: [RIP-import]
Vrf-export: [RIP-export]
Tables:
RIP.inet.0 : 8 routes (6 active, 2 holddown, 0 hidden)
Restart Pending: RIP VPN

STATIC:
Router ID: 10.69.100.1
Type: vrf State: Active
Restart State: Pending Path selection timeout: 300
Interfaces:
t3-0/0/0.100
Route-distinguisher: 10.255.14.176:100
Vrf-import: [STATIC-import]
Vrf-export: [STATIC-export]
Tables:
 STATIC.inet.0 : 4 routes (4 active, 0 holddown, 0 hidden)
Restart Pending: VPN

show route instance detail (VPLS Routing Instance)
user@host> show route instance detail test-vpls

test-vpls:
 Router ID: 0.0.0.0
 Type: vpls State: Active
 Interfaces:
 lsi.1048873
 lsi.1048832
 fe-0/1/0.513
 Route-distinguisher: 10.255.37.65:1
 Vrf-import: [__vrf-import-test-vpls-internal__]
 Vrf-export: [__vrf-export-test-vpls-internal__]
 Vrf-import-target: [target:300:1]
 Vrf-export-target: [target:300:1]
 Vrf-edge-protection-id: 166.1.3.1 Fast-reroute-priority: high
Tables:
 test-vpls.l2vpn.0 : 3 routes (3 active, 0 holddown, 0 hidden)

show route instance operational
user@host> show route instance operational

 Operational Routing Instances:

 master
 default

show route instance summary
user@host> show route instance summary

<table>
<thead>
<tr>
<th>Instance</th>
<th>Type</th>
<th>Primary rib</th>
<th>Active/holddown/hidden</th>
</tr>
</thead>
<tbody>
<tr>
<td>master</td>
<td>forwarding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>vrf</td>
<td>Description</td>
<td>Path Count</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>---------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>inet.0</td>
<td>vrf</td>
<td>BGP-INET.inet.0</td>
<td>5</td>
</tr>
<tr>
<td>iso.0</td>
<td>vrf</td>
<td>BGP-INET.iso.0</td>
<td>0</td>
</tr>
<tr>
<td>mpls.0</td>
<td>vrf</td>
<td>BGP-INET.mpls.0</td>
<td>4</td>
</tr>
<tr>
<td>13vpn.0</td>
<td>vrf</td>
<td>BGP-INET.13vpn.0</td>
<td>0</td>
</tr>
<tr>
<td>inet6.0</td>
<td>vrf</td>
<td>BGP-INET.inet6.0</td>
<td>0</td>
</tr>
<tr>
<td>l2vpn.0</td>
<td>vrf</td>
<td>BGP-INET.l2vpn.0</td>
<td>2</td>
</tr>
<tr>
<td>l2circuit.0</td>
<td>vrf</td>
<td>BGP-INET.l2circuit.0</td>
<td>0</td>
</tr>
<tr>
<td>L2VPN</td>
<td>l2vpn</td>
<td>L2VPN.inet.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2VPN.iso.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2VPN.inet6.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2VPN.l2vpn.0</td>
<td>2</td>
</tr>
<tr>
<td>LDP</td>
<td>vrf</td>
<td>LDP.inet.0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LDP.iso.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LDP.mpls.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LDP.inet6.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LDP.l2circuit.0</td>
<td>0</td>
</tr>
<tr>
<td>OSPF</td>
<td>vrf</td>
<td>OSPF.inet.0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OSPF.iso.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OSPF.inet6.0</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>vrf</td>
<td>RIP.inet.0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RIP.iso.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RIP.inet6.0</td>
<td>0</td>
</tr>
<tr>
<td>STATIC</td>
<td>vrf</td>
<td>STATIC.inet.0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STATIC.iso.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STATIC.inet6.0</td>
<td>0</td>
</tr>
</tbody>
</table>
show route protocol

List of Syntax
Syntax on page 952
Syntax (EX Series Switches) on page 952

Syntax

```
show route protocol protocol
  <brief | detail | extensive | terse>
  <logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```
show route protocol protocol
  <brief | detail | extensive | terse>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
ospf2 and ospf3 options introduced in Junos OS Release 9.2.
ospf2 and ospf3 options introduced in Junos OS Release 9.2 for EX Series switches.
flow option introduced in Junos OS Release 10.0.
flow option introduced in Junos OS Release 10.0 for EX Series switches.

Description
Display the route entries in the routing table that were learned from a particular protocol.

Options
brief | detail | extensive | terse—(Optional) Display the specified level of output. If you do not specify a level of output, the system defaults to brief.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

protocol—Protocol from which the route was learned:
- access—Access route for use by DHCP application
- access-internal—Access-internal route for use by DHCP application
- aggregate—Locally generated aggregate route
- arp—Route learned through the Address Resolution Protocol
- atmvpn—Asynchronous Transfer Mode virtual private network
- **bgp**—Border Gateway Protocol
- **ccc**—Circuit cross-connect
- **direct**—Directly connected route
- **dvmrp**—Distance Vector Multicast Routing Protocol
- **esis**—End System-to-Intermediate System
- **flow**—Locally defined flow-specification route
- **frr**—Precomputed protection route or backup route used when a link goes down
- **isis**—Intermediate System-to-Intermediate System
- **ldp**—Label Distribution Protocol
- **l2circuit**—Layer 2 circuit
- **l2vpn**—Layer 2 virtual private network
- **local**—Local address
- **mpls**—Multiprotocol Label Switching
- **msdp**—Multicast Source Discovery Protocol
- **ospf**—Open Shortest Path First versions 2 and 3
- **ospf2**—Open Shortest Path First versions 2 only
- **ospf3**—Open Shortest Path First version 3 only
- **pim**—Protocol Independent Multicast
- **rip**—Routing Information Protocol
- **ripng**—Routing Information Protocol next generation
- **rsvp**—Resource Reservation Protocol
- **rtarget**—Local route target virtual private network
- **static**—Statically defined route
- **tunnel**—Dynamic tunnel
- **vpn**—Virtual private network

NOTE: EX Series switches run a subset of these protocols. See the switch CLI for details.

Required Privilege Level
view
List of Sample Output

show route protocol access on page 954
show route protocol access-internal extensive on page 955
show route protocol arp on page 955
show route protocol bgp on page 956
show route protocol bgp detail on page 956
show route protocol bgp detail (Labeled Unicast) on page 957
show route protocol bgp detail (Aggregate Extended Community Bandwidth) on page 958
show route protocol bgp extensive on page 959
show route protocol bgp terse on page 960
show route protocol direct on page 960
show route protocol frr on page 961
show route protocol l2circuit detail on page 961
show route protocol l2vpn extensive on page 962
show route protocol ldp on page 963
show route protocol ldp extensive on page 964
show route protocol ospf (Layer 3 VPN) on page 966
show route protocol ospf detail on page 966
show route protocol rip on page 967
show route protocol rip detail on page 967
show route protocol ripng table inet6 on page 968
show route protocol static detail on page 968

Output Fields

For information about output fields, see the output field tables for the show route command, the show route detail command, the show route extensive command, or the show route terse command.

Sample Output

show route protocol access

user@host> show route protocol access

inet.0: 30380 destinations, 30382 routes (30379 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

13.160.0.3/32 *[Access/13] 00:00:09
 > to 13.160.0.2 via fe-0/0/0.0
13.160.0.4/32 *[Access/13] 00:00:09
 > to 13.160.0.2 via fe-0/0/0.0
13.160.0.5/32 *[Access/13] 00:00:09
 > to 13.160.0.2 via fe-0/0/0.0
show route protocol access-internal extensive

```
user@host> show route protocol access-internal 13.160.0.19 extensive

inet.0: 100020 destinations, 100022 routes (100019 active, 0 holddown, 1 hidden)
13.160.0.19/32 (1 entry, 1 announced)
TSI:
KRT in-kernel 13.160.0.19/32 -> {13.160.0.2}
  *Access-internal Preference: 12
    Next-hop reference count: 200000
    Next hop: 13.160.0.2 via fe-0/0/0.0, selected
    State: <Active Int>
    Age: 36
    Task: RPD Unix Domain Server./var/run/rpd_serv.local
    Announcement bits (1): 0-KRT
    AS path: I
```

show route protocol arp

```
user@host> show route protocol arp

inet.0: 43 destinations, 43 routes (42 active, 0 holddown, 1 hidden)
inet.3: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
cust1.inet.0: 1033 destinations, 2043 routes (1033 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

20.20.1.3/32        [ARP/4294967293] 00:04:35, from 20.20.1.1
                      Unusable
20.20.1.4/32        [ARP/4294967293] 00:04:35, from 20.20.1.1
                      Unusable
20.20.1.5/32        [ARP/4294967293] 00:04:32, from 20.20.1.1
                      Unusable
20.20.1.6/32        [ARP/4294967293] 00:04:34, from 20.20.1.1
                      Unusable
20.20.1.7/32        [ARP/4294967293] 00:04:35, from 20.20.1.1
                      Unusable
20.20.1.8/32        [ARP/4294967293] 00:04:35, from 20.20.1.1
                      Unusable
20.20.1.9/32        [ARP/4294967293] 00:04:35, from 20.20.1.1
                      Unusable
20.20.1.10/32       [ARP/4294967293] 00:04:35, from 20.20.1.1
                      Unusable
20.20.1.11/32       [ARP/4294967293] 00:04:33, from 20.20.1.1
```
show route protocol bgp

user@host> show route protocol bgp 192.168.64.0/21

inet.0: 335832 destinations, 335833 routes (335383 active, 0 holddown, 450 hidden)
+ = Active Route, - = Last Active, * = Both

192.168.64.0/21 *[BGP/170] 6d 10:41:16, localpref 100, from 192.168.69.71
 AS path: 10458 14203 2914 4788 4788 I
 > to 192.168.167.254 via fxp0.0

show route protocol bgp detail

user@host> show route protocol bgp 66.117.63.0/24 detail

inet.0: 335805 destinations, 335806 routes (335356 active, 0 holddown, 450 hidden)
66.117.63.0/24 (1 entry, 1 announced)
 *BGP Preference: 170/-101
 Next hop type: Indirect
 Next-hop reference count: 1006436
 Source: 192.168.69.71
 Next hop type: Router, Next hop index: 324
 Next hop: 192.168.167.254 via fxp0.0, selected
 Protocol next hop: 192.168.69.71
 Indirect next hop: 8e166c0 342
 State: <Active Ext>
 Local AS: 69 Peer AS: 10458
 Age: 6d 10:42:42 Metric2: 0
 Task: BGP_10458.192.168.69.71+179
 Announcement bits (3): 0-KRT 2-BGP RT Background 3-Resolve tree 1

 AS path: 10458 14203 2914 4788 4788 I
 Communities: 2914:410 2914:2403 2914:3400
 Accepted
 Localpref: 100
 Router ID: 207.17.136.192
show route protocol bgp detail (Labeled Unicast)

user@host> show route protocol bgp 1.1.1.8/32 detail

inet.0: 45 destinations, 46 routes (45 active, 0 holddown, 0 hidden)
1.1.1.8/32 (2 entries, 2 announced)
State:
*BGP Preference: 1/-101
Next hop type: Indirect, Next hop index: 0
Address: 0xc007f30
Next-hop reference count: 2
Source: 1.1.1.1
Next hop type: Router, Next hop index: 614
Next hop: 20.1.1.2 via ge-0/0/1.0, selected
Label-switched-path lsp1
Label operation: Push 1000126, Push 1000125, Push 1000124, Push 1000123, Push 299872 (top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl, prop-ttl, prop-ttl (top)
Load balance label: Label 1000126: None; Label 1000125: None; Label 1000124: None;
Label 1000123: None; Label 299872: None;
Label element ptr: 0xc007860
Label parent element ptr: 0xc0089a0
Label element references: 1
Label element child references: 0
Label element lsp id: 0
Session Id: 0x140
Protocol next hop: 1.1.1.4
Label operation: Push 1000126, Push 1000125, Push 1000124, Push 1000123 (top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl, prop-ttl
Load balance label: Label 1000126: None; Label 1000125: None; Label 1000124: None;
Label 1000123: None;
Indirect next hop: 0xae8d300 1048576 INH Session ID: 0x142
State:
Local AS: 5 Peer AS: 5
Age: 22:43 Metric2: 2
Validation State: unverified
Task: BGP_5.1.1.1.1
Announcement bits (2): 0-KRT 7-Resolve tree 2
AS path: I
Accepted
Route Labels: 1000123 (top) 1000124 1000125 1000126
Localpref: 100
Router ID: 1.1.1.1
show route protocol bgp detail (Aggregate Extended Community Bandwidth)

user@host> show route 10.0.2.0 protocol bgp detail

inet.0: 20 destinations, 26 routes (20 active, 0 holddown, 0 hidden)
10.0.2.0/30 (2 entries, 1 announced)
 *BGP Preference: 170/-101
 Next hop type: Router, Next hop index: 0
 Address: 0xb618990
 Next-hop reference count: 3
 Source: 10.0.1.1
 Next hop: 10.0.0.2 via ge-0/0/0.0 balance 40%
 Session Id: 0x0
 Next hop: 10.0.1.1 via ge-0/0/1.0 balance 60%, selected
 Session Id: 0x0
 State: <Active Ext>
 Local AS: 65000 Peer AS: 65001
 Age: 20:33
 Validation State: unverified
 Task: BGP_65001.10.0.1.1
 Announcement bits (3): 0-KRT 2-BGP_Listen.0.0.0.0+179

3-BGP_RT_Background
 AS path: 65001 I
 Communities: bandwidth:65000:60000000
 Accepted Multipath
 Localpref: 100
 Router ID: 128.49.121.137

BGP Preference: 170/-101
 Next hop type: Router, Next hop index: 595
 Address: 0xb7a1330
 Next-hop reference count: 9
 Source: 10.0.0.2
 Next hop: 10.0.0.2 via ge-0/0/0.0, selected
 Session Id: 0x141
 State: <NotBest Ext>
 Inactive reason: Not Best in its group - Active preferred
 Local AS: 65000 Peer AS: 65001
 Age: 20:33
 Validation State: unverified
 Task: BGP_65001.10.0.0.2
 AS path: 65001 I
 Communities: bandwidth:65000:40000000
 Accepted MultipathContrib
 Localpref: 100
 Router ID: 128.49.121.132
show route protocol bgp extensive

user@host> show route protocol bgp 192.168.64.0/21 extensive

inet.0: 335827 destinations, 335828 routes (335378 active, 0 holddown, 450 hidden)
192.168.64.0/21 (1 entry, 1 announced)

TSI:
KRT in-kernel 1.9.0.0/16 -> {indirect(342)}

Page 0 idx 1 Type 1 val db31a80
 Nexthop: Self
 AS path: [69] 10458 14203 2914 4788 4788 I
 Communities: 2914:410 2914:2403 2914:3400

Path 1.9.0.0 from 192.168.69.71 Vector len 4. Val: 1
 *BGP Preference: 170/-101
 Next hop type: Indirect
 Next-hop reference count: 1006502
 Source: 192.168.69.71
 Next hop type: Router, Next hop index: 324
 Next hop: 192.168.167.254 via fxp0.0, selected
 Protocol next hop: 192.168.69.71
 Indirect next hop: 8e166c0 342
 State: <Active Ext>
 Local AS: 69 Peer AS: 10458
 Age: 6d 10:44:45 Metric2: 0
 Task: BGP_10458.192.168.69.71+179
 Announcement bits (3): 0-KRT 2-BGP RT Background 3-Resolve tree 1

 AS path: 10458 14203 2914 4788 4788 I
 Communities: 2914:410 2914:2403 2914:3400
 Accepted
 Localpref: 100
 Router ID: 207.17.136.192
 Indirect next hops: 1
 Protocol next hop: 192.168.69.71
 Indirect next hop: 8e166c0 342
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 192.168.167.254 via fxp0.0

192.168.0.0/16 Originating RIB: inet.0
 Node path count: 1
 Forwarding nexthops: 1
 Nexthop: 192.168.167.254 via fxp0.0
show route protocol bgp terse

user@host> show route protocol bgp 192.168.64.0/21 terse

inet.0: 24 destinations, 32 routes (23 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>A Destination</th>
<th>P</th>
<th>Prf</th>
<th>Metric 1</th>
<th>Metric 2</th>
<th>Next hop</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.64.0/21</td>
<td>B</td>
<td>170</td>
<td>100</td>
<td></td>
<td>>172.16.100.1</td>
<td>10023</td>
</tr>
</tbody>
</table>

show route protocol direct

user@host> show route protocol direct

inet.0: 335843 destinations, 335844 routes (335394 active, 0 holddown, 450 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.8.0/24 *[Direct/0] 17w0d 10:31:49
 > via fe-1/3/1.0
10.255.165.1/32 *[Direct/0] 25w4d 04:13:18
 > via lo0.0
172.16.30.0/24 *[Direct/0] 17w0d 23:06:26
 > via fe-1/3/2.0
192.168.164.0/22 *[Direct/0] 25w4d 04:13:20
 > via fxp0.0

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

47.0005.80ff.f800.0000.0108.0001.0102.5516.5001/152
 *[Direct/0] 25w4d 04:13:21
 > via lo0.0

inet6.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2001:db8::10:255:165:1/128
 *[Direct/0] 25w4d 04:13:21
 > via lo0.0
fe80::2a0:a5ff:fe12:ad7/128
 *[Direct/0] 25w4d 04:13:21
 > via lo0.0
show route protocol frr

user@host> show route protocol frr

inet.0: 43 destinations, 43 routes (42 active, 0 holddown, 1 hidden)

inet.3: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
cust1.inet.0: 1033 destinations, 2043 routes (1033 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

20.20.1.3/32 *[FRR/200] 00:05:38, from 20.20.1.1
> to 20.20.1.3 via ge-4/1/0.0
 to 10.10.15.1 via ge-0/2/4.0, Push 16, Push 299792(top)
20.20.1.4/32 *[FRR/200] 00:05:38, from 20.20.1.1
> to 20.20.1.4 via ge-4/1/0.0
 to 10.10.15.1 via ge-0/2/4.0, Push 16, Push 299792(top)
20.20.1.5/32 *[FRR/200] 00:05:35, from 20.20.1.1
> to 20.20.1.5 via ge-4/1/0.0
 to 10.10.15.1 via ge-0/2/4.0, Push 16, Push 299792(top)
20.20.1.6/32 *[FRR/200] 00:05:37, from 20.20.1.1
> to 20.20.1.6 via ge-4/1/0.0
 to 10.10.15.1 via ge-0/2/4.0, Push 16, Push 299792(top)
20.20.1.7/32 *[FRR/200] 00:05:38, from 20.20.1.1
> to 20.20.1.7 via ge-4/1/0.0
 to 10.10.15.1 via ge-0/2/4.0, Push 16, Push 299792(top)
20.20.1.8/32 *[FRR/200] 00:05:38, from 20.20.1.1
> to 20.20.1.8 via ge-4/1/0.0
 to 10.10.15.1 via ge-0/2/4.0, Push 16, Push 299792(top)
20.20.1.9/32 *[FRR/200] 00:05:38, from 20.20.1.1
> to 20.20.1.9 via ge-4/1/0.0
 to 10.10.15.1 via ge-0/2/4.0, Push 16, Push 299792(top)
20.20.1.10/32 *[FRR/200] 00:05:38, from 20.20.1.1
...

show route protocol l2circuit detail

user@host> show route protocol l2circuit detail

mpls.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
100000 (1 entry, 1 announced)
 *L2CKT Preference: 7
 Next hop: via ge-2/0/0.0, selected
 Label operation: PopOffset: 4
State: <Active Int>
Local AS: 99
Age: 9:52
Task: Common L2 VC
Announcement bits (1): 0-KRT
AS path: I

ge-2/0/0.0 (1 entry, 1 announced)
 *L2CKT Preference: 7
 Next hop: via so-1/1/2.0 weight 1, selected
 Label-switched-path my-lsp
 Label operation: Push 100000, Push 100000(top)[0] Offset: -4
 Protocol next hop: 10.245.255.63
 Push 100000 Offset: -4
 Indirect next hop: 86af0c0 298
State: <Active Int>
Local AS: 99
Age: 9:52
Task: Common L2 VC
Announcement bits (2): 0-KRT 1-Common L2 VC
AS path: I

l2circuit.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

10.245.255.63:CtrlWord:4:3:Local/96 (1 entry, 1 announced)
 *L2CKT Preference: 7
 Next hop: via so-1/1/2.0 weight 1, selected
 Label-switched-path my-lsp
 Label operation: Push 100000[0]
 Protocol next hop: 10.245.255.63 Indirect next hop: 86af000 296
State: <Active Int>
Local AS: 99
Age: 10:21
Task: l2 circuit
Announcement bits (1): 0-LDP
AS path: I
VC Label 100000, MTU 1500, VLAN ID 512

show route protocol l2vpn extensive

user@host> show route protocol l2vpn extensive

inet.0: 14 destinations, 15 routes (13 active, 0 holddown, 1 hidden)
inet.3: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

mpls.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
800001 (1 entry, 1 announced)
TSI:
KRT in-kernel 800001 /36 -> {so-0/0/0.0}
 *L2VPN Preference: 7
 Next hop: via so-0/0/0.0 weight 49087 balance 97%, selected
 Label operation: Pop Offset: 4
 State: <Active Int>
 Local AS: 69
 Age: 7:48
 Task: Common L2 VC
 Announcement bits (1): 0-KRT
 AS path: I
so-0/0/0.0 (1 entry, 1 announced)
TSI:
KRT in-kernel so-0/0/0.0.0 /16 -> {indirect(288)}
 *L2VPN Preference: 7
 Next hop: via so-0/0/1.0, selected
 Label operation: Push 800000 Offset: -4
 Push 800000 Offset: -4
 Indirect next hop: 85142a0 288
 State: <Active Int>
 Local AS: 69
 Age: 7:48
 Task: Common L2 VC
 Announcement bits (2): 0-KRT 1-Common L2 VC
 AS path: I
 Communities: target:69:1 Layer2-info: encaps:PPP,
 control flags:2, mtu: 0

show route protocol ldp
user@host> show route protocol ldp

inet.0: 12 destinations, 13 routes (12 active, 0 holddown, 0 hidden)
inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
show route protocol ldp extensive

user@host> show route protocol ldp extensive

192.168.16.1/32 (1 entry, 1 announced)
 State: <FlashAll>
 *LDP Preference: 9
 Next-hop reference count: 3
 Next hop: via t1-4/0/0.0, selected
 Label operation: Push 100000
 State: <Active Int>
 Local AS: 64500
 Age: 1d 23:03:58 Metric: 1
 Task: LDP
 Announcement bits (2): 0-Resolve tree 1 2-Resolve tree 2
 AS path: I

192.168.17.1/32 (1 entry, 1 announced)
 State: <FlashAll>
 *LDP Preference: 9
 Next-hop reference count: 3
 Next hop: via t1-4/0/0.0, selected
 State: <Active Int>
 Local AS: 64500
 Age: 1d 23:03:58 Metric: 1
Task: LDP
Announcement bits (2): 0-Resolve tree 1 2-Resolve tree 2
AS path: I

private1__inet.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
mpls.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)

100064 (1 entry, 1 announced)
TSI:
KRT in-kernel 100064 /36 -> (t1-4/0/0.0)
 *LDP Preference: 9
 Next-hop reference count: 2
 Next hop: via t1-4/0/0.0, selected
 State: <Active Int>
 Local AS: 64500
 Age: 1d 23:03:58 Metric: 1
 Task: LDP
 Announcement bits (1): 0-KRT
 AS path: I
 Prefixes bound to route: 192.168.17.1/32

100064(S=0) (1 entry, 1 announced)
TSI:
KRT in-kernel 100064 /40 -> (t1-4/0/0.0)
 *LDP Preference: 9
 Next-hop reference count: 2
 Next hop: via t1-4/0/0.0, selected
 Label operation: Pop
 State: <Active Int>
 Local AS: 64500
 Age: 1d 23:03:58 Metric: 1
 Task: LDP
 Announcement bits (1): 0-KRT
 AS path: I

100080 (1 entry, 1 announced)
TSI:
KRT in-kernel 100080 /36 -> (t1-4/0/0.0)
 *LDP Preference: 9
 Next-hop reference count: 2
 Next hop: via t1-4/0/0.0, selected
 Label operation: Swap 100000
 State: <Active Int>
Local AS: 64500
Age: 1d 23:03:58 Metric: 1
Task: LDP
Announcement bits (1): 0-KRT
AS path: I
Prefixes bound to route: 192.168.16.1/32

show route protocol ospf (Layer 3 VPN)
user@host> show route protocol ospf

inet.0: 40 destinations, 40 routes (39 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

10.39.1.4/30 *[OSPF/10] 00:05:18, metric 4
 > via t3-3/2/0.0
10.39.1.8/30 [OSPF/10] 00:05:18, metric 2
 > via t3-3/2/0.0
10.255.14.171/32 *[OSPF/10] 00:05:18, metric 4
 > via t3-3/2/0.0
10.255.14.179/32 *[OSPF/10] 00:05:18, metric 2
 > via t3-3/2/0.0
172.16.233.5/32 *[OSPF/10] 20:25:55, metric 1

VPN-AB.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.39.1.16/30 [OSPF/10] 00:05:43, metric 1
 > via so-0/2/2.0
10.255.14.173/32 *[OSPF/10] 00:05:43, metric 1
 > via so-0/2/2.0
172.16.233.5/32 *[OSPF/10] 20:26:20, metric 1

show route protocol ospf detail
user@host> show route protocol ospf detail

VPN-AB.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.39.1.16/30 (2 entries, 0 announced)
 OSPF Preference: 10
 Nexthop: via so-0/2/2.0, selected
State: <Int>
Inactive reason: Route Preference
Age: 6:25 Metric: 1
Area: 0.0.0.0
Task: VPN-AB-OSPF
AS path: I
Communities: Route-Type:0.0.0:0:1:0

show route protocol rip
user@host> show route protocol rip

inet.0: 26 destinations, 27 routes (25 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

VPN-AB.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
10.255.14.177/32 *[RIP/100] 20:24:34, metric 2
 > to 10.39.1.22 via t3-0/2/2.0
172.16.233.9/32 *[RIP/100] 00:03:59, metric 1

show route protocol rip detail
user@host> show route protocol rip detail

inet.0: 26 destinations, 27 routes (25 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

VPN-AB.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
10.255.14.177/32 (1 entry, 1 announced)
 *RIP Preference: 100
 Nexthop: 10.39.1.22 via t3-0/2/2.0, selected
 State: <Active Int>
 Age: 20:25:02 Metric: 2
 Task: VPN-AB-RIPv2
 Announcement bits (2): 0-KRT 2-BGP.0.0.0.0+179
 AS path: I
 Route learned from 10.39.1.22 expires in 96 seconds
show route protocol ripng table inet6

user@host> show route protocol ripng table inet6

inet6.0: 4215 destinations, 4215 routes (4214 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

1111::1/128 *[RIPng/100] 02:13:33, metric 2
 > to fe80::2a0:a5ff:fe3d:56 via t3-0/2/0.0
1111::2/128 *[RIPng/100] 02:13:33, metric 2
 > to fe80::2a0:a5ff:fe3d:56 via t3-0/2/0.0
1111::3/128 *[RIPng/100] 02:13:33, metric 2
 > to fe80::2a0:a5ff:fe3d:56 via t3-0/2/0.0
1111::4/128 *[RIPng/100] 02:13:33, metric 2
 > to fe80::2a0:a5ff:fe3d:56 via t3-0/2/0.0
1111::5/128 *[RIPng/100] 02:13:33, metric 2
 > to fe80::2a0:a5ff:fe3d:56 via t3-0/2/0.0
1111::6/128 *[RIPng/100] 02:13:33, metric 2
 > to fe80::2a0:a5ff:fe3d:56 via t3-0/2/0.0

show route protocol static detail

user@host> show route protocol static detail

inet.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
10.5.0.0/16 (1 entry, 1 announced)
 *Static Preference: 5
 Next hop type: Router, Next hop index: 324
 Address: 0x9274010
 Next-hop reference count: 27
 Next hop: 192.168.187.126 via fxp0.0, selected
 Session Id: 0x0
 State: <Active NoReadvrt Int Ext>
 Age: 7w3d 21:24:25
 Validation State: unverified
 Task: RT
 Announcement bits (1): 0-KRT
 AS path: I

10.10.0.0/16 (1 entry, 1 announced)
 *Static Preference: 5
 Next hop type: Router, Next hop index: 324
 Address: 0x9274010
 Next-hop reference count: 27
 Next hop: 192.168.187.126 via fxp0.0, selected
Session Id: 0x0
State: <Active NoReadvrt Int Ext>
Age: 7w3d 21:24:25
Validation State: unverified
Task: RT
Announcement bits (1): 0-KRT
AS path: I

10.13.10.0/23 (1 entry, 1 announced)
 *Static Preference: 5
 Next hop type: Router, Next hop index: 324
 Address: 0x9274010
 Next-hop reference count: 27
 Next hop: 192.168.187.126 via fxp0.0, selected
 Session Id: 0x0
 State: <Active NoReadvrt Int Ext>
 Age: 7w3d 21:24:25
 Validation State: unverified
 Task: RT
 Announcement bits (1): 0-KRT
 AS path: I